WO2016070828A1 - 智能变电站过程层网络交换时延告知的实现系统和方法 - Google Patents

智能变电站过程层网络交换时延告知的实现系统和方法 Download PDF

Info

Publication number
WO2016070828A1
WO2016070828A1 PCT/CN2015/093907 CN2015093907W WO2016070828A1 WO 2016070828 A1 WO2016070828 A1 WO 2016070828A1 CN 2015093907 W CN2015093907 W CN 2015093907W WO 2016070828 A1 WO2016070828 A1 WO 2016070828A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
module
physical interface
service flow
flow information
Prior art date
Application number
PCT/CN2015/093907
Other languages
English (en)
French (fr)
Inventor
陈磊
黄在朝
梁云
郭经红
吴军民
张刚
黄辉
张小建
王小波
郭静
郭雅娟
邓辉
王向群
张增华
王玮
沈文
陶静
姚启桂
李春龙
Original Assignee
国家电网公司
中国电力科学研究院
国网智能电网研究院
国网江苏省电力公司
国网江苏省电力公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 中国电力科学研究院, 国网智能电网研究院, 国网江苏省电力公司, 国网江苏省电力公司电力科学研究院 filed Critical 国家电网公司
Publication of WO2016070828A1 publication Critical patent/WO2016070828A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks

Definitions

  • the invention belongs to the technical field of power system operation and planning, and particularly relates to a system and method for realizing the process of network switching delay notification of the intelligent substation process layer.
  • the relay protection in the substation adopts the direct mining direct jump mode, that is, the protection device and the merging unit adopt the point-to-point method.
  • This method is more reliable, but the wiring is more complicated, a large amount of cables or optical cables are wasted and information cannot be shared.
  • Ethernet technology is a relatively mature and feasible technology in the field of industrial control.
  • the existing intelligent substation adopts a two-layer network communication architecture, that is, a process layer network and a bay layer network.
  • the process layer network connects the bay level device and the process layer device
  • the bay layer network connects the station layer device and the bay layer device.
  • the network protection of relay protection that is, the network mining network hopping, can realize the sharing of network information, and greatly simplify the wiring of light, improve debugging efficiency, and save construction costs.
  • the invention aims to solve the problem that the data transmission delay of the relay protection service network is unknown.
  • the present invention provides an implementation system and method for intelligent substation process layer network exchange delay notification, which realizes relay protection network data service by determining time stamp location and hardware time stamp technology.
  • the delay within the network node is known, so that the network transmission delay is determined.
  • the present invention provides an implementation system for intelligent substation process layer network switching delay notification, the system comprising a first physical interface transceiver, a delay measurement statistics module, a processor module, a switch module, a local clock module, a power module, and a a second physical interface transceiver; the first physical interface transceiver and the second physical interface transceiver are bidirectionally connected to the switching module by the delay measurement and statistics module, and the processor module and the delay measurement and statistics module are both a two-way connection; the local clock module is unidirectionally connected to the first physical interface transceiver, the second physical interface transceiver, the delay measurement and statistics module, the processor module, and the switch module, and provides a local reference clock; Other modules in the system provide DC voltage.
  • the first physical interface transceiver and the second physical interface transceiver are respectively connected to the delay measurement and statistics module through the S3MII bus to implement data interaction.
  • the first physical interface transceiver module collects intelligent substation data service flow information through the first port, and transmits the collected data service flow information to the delay measurement and statistics module to implement data interaction with the delay measurement and statistics module;
  • the second physical interface transceiver module outputs the data service flow information of the add delay flag by using the second port, and implements data interaction with the delay measurement and statistics module and the external terminal device.
  • the processor module is connected to the delay measurement and statistics module and the exchange module through a data bus and an MII bus, respectively, to realize interaction of control information and data.
  • the delay measurement and statistics module mainly completes measurement and statistics of data frame forwarding delay, and implements data interaction with the physical interface transceiver module, the processor module, and the interaction module.
  • the switching module includes a first Ethernet media access controller and a second Ethernet media access controller to jointly perform data frame collection, storage, forwarding, and transmission.
  • the local clock module provides a 125M clock for the first physical interface transceiver, the second physical interface transceiver, the delay measurement statistics module, and the switch module, and provides a 50M clock for the processor module.
  • the power module provides a 2.5V, 1.2V DC voltage for the first physical interface transceiver and the second physical interface transceiver, and provides 1.2V, 2.5, and 3.3V DC voltages for the delay measurement and statistics module.
  • the processor module provides a 1V, 2.5V, 3.3V DC voltage; provides a 3.3V DC voltage to the clock module, and provides a 2.5V, 3.3V DC voltage to the switch module.
  • the invention also provides a method for implementing intelligent substation process layer network exchange delay notification, the method comprising the following steps:
  • Step 1 Data service flow information is encapsulated at the terminal link layer
  • Step 2 Calculate a delay flag bit update value of the data service flow information
  • Step 3 Calculate the forwarding delay value of the network node
  • Step 4 Parse the network node forwarding delay value.
  • the data service flow information is encapsulated in the following sequence at the terminal link layer:
  • the first seven bytes are the frame preamble, (2) the next byte is the frame start character, (3) the six-byte destination address and the six-byte source address, and (4) four words.
  • Section 802.1q (5) 2 bytes of length / type bits, (6) 46-1500 bytes of data load area; delay flag bit exists in the payload area, bit width is 4 bytes, the initial value is 0x00000000.
  • the delay measurement statistic module records the time T 1 of the arrival of the current data service flow information, and sets the delay flag in the T 1 and the data service flow information.
  • the existing value T S is subjected to a difference operation to obtain a delay flag bit update value T 1 ' of the data service flow information, and the original delay flag bit value is updated with T 1 '.
  • the time delay measurement and statistics module records the time T 2 at this time, and the T 2 and the data service flow information
  • the delay flag bit update value T 1 ' performs a difference operation to obtain a network node forwarding delay value T 2 ', and replaces the existing value of the replacement time flag with T 2 '.
  • the network node forwards the delay value T 2 ', and learns the delay of the data service flow information through the implementation system.
  • the invention provides an implementation system and method for intelligent substation process layer network exchange delay notification, and adopts a hardware time stamp method to realize measurement of internal delay of a network node, and the method has the advantages of high speed, high precision and easy implementation.
  • the delay of the network node can be accurately and quickly measured, thereby solving the problem that the data delay of the relay protection service network is unknown, and providing support for the realization of the recovery network of the relay protection network, and has practical engineering application value.
  • FIG. 1 is a block diagram showing the structure of an implementation system for a network-switched network delay delay of a smart substation in the implementation of the present invention
  • FIG. 2 is a schematic diagram of a package manner for encapsulating data service flow information at a terminal link layer in the implementation of the present invention
  • FIG. 3 is a schematic diagram of a method for implementing network switch delay notification in a smart substation process layer in the implementation of the present invention.
  • the present invention provides an implementation system for intelligent substation process layer network switching delay notification, where the system includes a first physical interface transceiver, a delay measurement statistics module, a processor module, a switch module, and a local clock module.
  • the first physical interface transceiver and the second physical interface transceiver are bidirectionally connected to the switching module by the delay measurement and statistics module, the processor module and the delay
  • the measurement and statistics modules are connected in a bidirectional manner;
  • the local clock module is unidirectionally connected to the first physical interface transceiver, the second physical interface transceiver, the delay measurement and statistics module, the processor module, and the switch module, respectively, to provide a local reference clock;
  • the power module provides DC voltage to other modules in the system.
  • the first physical interface transceiver and the second physical interface transceiver are respectively connected to the delay measurement and statistics module through the S3MII bus to implement data interaction.
  • the first physical interface transceiver module collects intelligent substation data service flow information through the first port, and transmits the collected data service flow information to the delay measurement and statistics module to implement data interaction with the delay measurement and statistics module;
  • the first physical interface transceiver and the second physical interface transceiver mainly perform parallel and serial conversion, serial-to-parallel conversion, reverse conversion, encoding, and decoding of data service flow information.
  • the second physical interface transceiver module outputs the data service flow information of the add delay flag by using the second port, and implements data interaction with the delay measurement and statistics module and the external terminal device.
  • the processor module is connected to the delay measurement and statistics module and the exchange module through a data bus and an MII bus, respectively, to realize interaction of control information and data.
  • the delay measurement and statistics module mainly completes measurement and statistics of data frame forwarding delay, and implements data interaction with the physical interface transceiver module, the processor module, and the interaction module.
  • the switching module includes a first Ethernet media access controller and a second Ethernet media access controller to jointly perform data frame collection, storage, forwarding, and transmission.
  • the process is as follows:
  • the data frame first goes to the buffer of the switching module, and the switching module checks whether the frame is complete, whether the FCS check is correct, and if it is a BPDU, it is handed over to the CPU for processing, and if the buffer is full, the data frame is discarded;
  • the port processes the data frame according to the Vlan entry rule. If the port is tagged and the port allows the tag to pass, the process proceeds to the next process. If there is no tag, the data frame is tagged according to the PVID setting of the switch.
  • the data frame enters the main switching engine, and the data frame is sent to the port belonging to the corresponding VLAN according to the VLAN Table table;
  • the switch module searches for the destination MAC address on all the ports in the Vlan. If it is found, it is sent to the corresponding port. If it is found, it is sent to all ports. If it is multicast, it depends on whether there is IGMP Snooping. If it is enabled, if it is enabled, This function will send multicast data to the corresponding port, if it does not have this function, it will be sent to all ports; if it is broadcast data, it will be sent to all ports;
  • the switching module After the corresponding port is reached, the switching module performs rule processing on the data frame, with or without a tag;
  • the switching module performs QoS processing according to the configuration, including queue reorganization, Tos reset, port speed limit, and the like;
  • the local clock module provides a 125M clock for the first physical interface transceiver, the second physical interface transceiver, the delay measurement statistics module, and the switch module, and provides a 50M clock for the processor module.
  • the power module provides a 2.5V, 1.2V DC voltage for the first physical interface transceiver and the second physical interface transceiver, and provides 1.2V, 2.5, and 3.3V DC voltages for the delay measurement and statistics module.
  • the processor module provides a 1V, 2.5V, 3.3V DC voltage; provides a 3.3V DC voltage to the clock module, and provides a 2.5V, 3.3V DC voltage to the switch module.
  • the invention also provides a method for implementing intelligent substation process layer network exchange delay notification, the method comprising the following steps:
  • Step 1 Data service flow information is encapsulated at the terminal link layer
  • Step 2 Calculate a delay flag bit update value of the data service flow information
  • Step 3 Calculate the forwarding delay value of the network node
  • Step 4 Parse the network node forwarding delay value.
  • the data service flow information is encapsulated in the following sequence at the terminal link layer (as shown in FIG. 2):
  • the first seven bytes are the frame preamble, (2) the next byte is the frame start character, (3) the six-byte destination address and the six-byte source address, and (4) four words.
  • Section 802.1q (5) 2 bytes of length / type bits, (6) 46-1500 bytes of data load area; delay flag bit exists in the payload area, bit width is 4 bytes, the initial value is 0x00000000.
  • the time delay measurement and statistics module records the time T 1 of the arrival of the current data service flow information, and uses the T 1 and the data service flow information.
  • the existing value T S of the delay flag bit is subjected to a difference operation to obtain a delay flag bit update value T 1 ' of the data service flow information, and the original delay flag bit value is updated with T 1 '.
  • the time delay measurement and statistics module records the time T 2 at this time, and the T 2 and the data service flow information
  • the delay flag bit update value T 1 ' performs a difference operation to obtain a network node forwarding delay value T 2 ', and replaces the existing value of the replacement time flag with T 2 '.
  • the network node forwards the delay value T 2 ', and learns the delay of the data service flow information through the implementation system.

Abstract

本发明提供一种智能变电站过程层网络交换时延告知的实现系统和方法,通过确定时间标记位置及硬件时间戳技术,实现了继电保护网络数据业务在网络节点内的时延可知,从而使得网络传输时延确定。本发明实现了网络节点内部时延的测量,该方法运算速度快、精度高、易实现,可以准确快速的测量网络节点的时延,从而解决了继电保护业务网络数据时延不可知的问题,为继电保护网采网跳的实现提供支撑,具有实际工程应用价值。

Description

智能变电站过程层网络交换时延告知的实现系统和方法 技术领域
本发明属于电力系统运行与规划技术领域,具体涉及一种智能变电站过程层网络交换时延告知的实现系统和方法。
背景技术
目前,变电站中的继电保护采用直采直跳方式,即保护装置与合并单元采用点到点的方式,这种方式较为可靠,但接线较复杂,浪费了大量电缆或光缆且信息不能共享。智能变电站要求,全站信息数字化,通信平台网络化,信息平台共享化。以太网技术是目前工业控制领域较为成熟可行的技术。现有智能变电站采用两层网络通信架构,即过程层网络和间隔层网络。过程层网络连接间隔层设备和过程层设备,间隔层网络连接站控层设备和间隔层设备。继电保护的网络化,即网采网跳,可以实现网络信息的共享,并且大大简化光线接线,提高调试效率,节约建设成本。但要实现继电保护的网采网跳,还需在解决网络数据传输时延确定性。本发明旨在解决继电保护业务网络数据传输时延不可知的问题。
发明内容
为了克服上述现有技术的不足,本发明提供了一种智能变电站过程层网络交换时延告知的实现系统和方法,通过确定时间标记位置及硬件时间戳技术,实现了继电保护网络数据业务在网络节点内的时延可知,从而使得网络传输时延确定。
为了实现上述发明目的,本发明采取如下技术方案:
本发明提供一种智能变电站过程层网络交换时延告知的实现系统,所述系统包括第一物理接口收发器、时延测量统计模块、处理器模块、交换模块、本地时钟模块、电源模块和第二物理接口收发器;所述第一物理接口收发器与第二物理接口收发器分别通过所述时延测量统计模块与交换模块双向连接,所述处理器模块与所述时延测量统计模块均双向连接;所述本地时钟模块分别与第一物理接口收发器、第二物理接口收发器、时延测量统计模块、处理器模块以及交换模块单向连接,提供本地参考时钟;所述电源模块为系统中其它模块提供直流电压。
所述第一物理接口收发器与第二物理接口收发器分别通过S3MII总线与所述时延测量统计模块连接,实现数据的交互。
所述第一物理接口收发器模块通过第一端口采集智能变电站数据业务流信息,并将采集的数据业务流信息传送到所述时延测量统计模块,实现和时延测量统计模块的数据交互;
所述第二物理接口收发器模块通过第二端口将添加时延标记位的数据业务流信息输出,实现与时延测量统计模块和外界终端设备的数据交互。
所述处理器模块连接通过数据总线和MII总线分别和所述时延测量统计模块及交换模块连接,实现控制信息和数据的交互。
所述时延测量统计模块主要完成数据帧转发时延的测量与统计,并实现与物理接口收发器模块、处理器模块和交互模块的数据交互。
所述交换模块包括第一以太网媒体接入控制器和第二以太网媒体接入控制器,共同完成数据帧的收取、存储、转发和发送。
所述本地时钟模块为第一物理接口收发器、第二物理接口收发器、时延测量统计模块和交换模块分别提供125M时钟,并为处理器模块提供50M时钟。
所述电源模块为第一物理接口收发器和第二物理接口收发器分别提供2.5V、1.2V直流电压,为所述时延测量统计模块提供1.2V、2.5、3.3V直流电压,为所述处理器模块提供1V、2.5V、3.3V直流电压;为所述时钟模块提供3.3V直流电压,并为所述交换模块提供2.5V、3.3V直流电压。
本发明还提供一种智能变电站过程层网络交换时延告知的实现方法,所述方法包括以下步骤:
步骤1:数据业务流信息在终端链路层进行封装;
步骤2:计算数据业务流信息的时延标记位更新值;
步骤3:计算网络节点转发时延值;
步骤4:解析网络节点转发时延值。
所述步骤1中,在终端链路层对数据业务流信息采用如下顺序进行封装:
(1)前七个字节为帧前导码,(2)下一字节为帧开始符,(3)六个字节的目的地址和六个字节的源地址,(4)四个字节的802.1q,(5)2个字节的长度/类型位,(6)46-1500字节的数据负荷区;时延标记位存在于负荷区,位宽为4字节,初始值为0x00000000。
所述步骤2中,当数据业务流信息进入实现系统时,利用时延测量统计模块记录下当前数据业务流信息到达的时间T1,并将T1与数据业务流信息中的时延标记位的现有值TS做差运算,得到数据业务流信息的时延标记位更新值T1′,用T1′更新原有的时延标记位值。
所述步骤3中,当数据业务流信息经过交换模块和第二物理接口收发器到达第二端口时,由时延测量统计模块记录此时的时刻T2,并将T2与数据业务流信息的时延标记位更新值T1′做差运算,得到网络节点转发时延值T2′,用T2′替换替换时间标志位现有值。
所述步骤4中,数据业务流信息通过第二端口到达外界终端设备后,解析网络节点转发时延值T2′,得知数据业务流信息经过实现系统所产生的时延。
与现有技术相比,本发明的有益效果在于:
本发明提供了一种智能变电站过程层网络交换时延告知的实现系统和方法,采用了硬件时间戳的方法实现了网络节点内部时延的测量,该方法运算速度快、精度高、易实现,可以准确快速的测量网络节点的时延,从而解决了继电保护业务网络数据时延不可知的问题,为继电保护网采网跳的实现提供支撑,具有实际工程应用价值。
附图说明
图1是本发明实施中智能变电站过程层网络交换时延告知的实现系统结构框图;
图2是本发明实施中在终端链路层对数据业务流信息进行封装的封装方式示意图;
图3是本发明实施中智能变电站过程层网络交换时延告知的实现方法示意图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
如图1,本发明提供一种智能变电站过程层网络交换时延告知的实现系统,所述系统包括第一物理接口收发器、时延测量统计模块、处理器模块、交换模块、本地时钟模块、电源模块和第二物理接口收发器;所述第一物理接口收发器与第二物理接口收发器分别通过所述时延测量统计模块与交换模块双向连接,所述处理器模块与所述时延测量统计模块均双向连接;所述本地时钟模块分别与第一物理接口收发器、第二物理接口收发器、时延测量统计模块、处理器模块以及交换模块单向连接,提供本地参考时钟;所述电源模块为系统中其它模块提供直流电压。
所述第一物理接口收发器与第二物理接口收发器分别通过S3MII总线与所述时延测量统计模块连接,实现数据的交互。
所述第一物理接口收发器模块通过第一端口采集智能变电站数据业务流信息,并将采集的数据业务流信息传送到所述时延测量统计模块,实现和时延测量统计模块的数据交互;所述第一物理接口收发器与第二物理接口收发器主要完成数据业务流信息并串转换、串并转换、反向转换、编码和解码。
所述第二物理接口收发器模块通过第二端口将添加时延标记位的数据业务流信息输出,实现与时延测量统计模块和外界终端设备的数据交互。
所述处理器模块连接通过数据总线和MII总线分别和所述时延测量统计模块及交换模块连接,实现控制信息和数据的交互。
所述时延测量统计模块主要完成数据帧转发时延的测量与统计,并实现与物理接口收发器模块、处理器模块和交互模块的数据交互。
所述交换模块包括第一以太网媒体接入控制器和第二以太网媒体接入控制器,共同完成数据帧的收取、存储、转发和发送。过程如下:
(1)数据帧先到交换模块的缓存,交换模块检查帧是否完整,FCS交验是否正确,如果是BPDU则交给CPU处理,如果缓存满就丢弃数据帧;
(2)端口根据Vlan进规则处理数据帧,如果带标签而该端口允许该标签通过则进入下一流程,如果没有标签就根据交换机PVID设置来给数据帧打上标签;
(3)根据In过滤表对数据帧进行过滤,包括MAC地址、IP地址、TCP/UDP端口号等的访问列表过滤;
(4)端口学习MAC地址;
(5)数据帧进入主交换引擎,根据VLAN Table表把数据帧发送到属于相应VLAN的端口;
(6)交换模块在该Vlan内的所有端口上查找目的MAC地址,如果查到就发送到相应端口,查不到就发送到所有端口;如果是组播就要看有没有IGMP Snooping,如果启用了该功能就会把组播数据发送到相应端口,如果没有该功能就发送到所有端口;如果是广播数据就发送到所有端口;
(7)到达相应端口之后交换模块对数据帧进行出规则处理,带Tag或者不带Tag出去;
(8)交换模块根据配置进行QoS处理,包括队列重组、Tos重设、端口限速等功能;
(9)重新计算该数据帧的FCS;
(10)数据帧出交换模块。
所述本地时钟模块为第一物理接口收发器、第二物理接口收发器、时延测量统计模块和交换模块分别提供125M时钟,并为处理器模块提供50M时钟。
所述电源模块为第一物理接口收发器和第二物理接口收发器分别提供2.5V、1.2V直流电压,为所述时延测量统计模块提供1.2V、2.5、3.3V直流电压,为所述处理器模块提供1V、2.5V、3.3V直流电压;为所述时钟模块提供3.3V直流电压,并为所述交换模块提供2.5V、3.3V直流电压。
本发明还提供一种智能变电站过程层网络交换时延告知的实现方法,所述方法包括以下步骤:
步骤1:数据业务流信息在终端链路层进行封装;
步骤2:计算数据业务流信息的时延标记位更新值;
步骤3:计算网络节点转发时延值;
步骤4:解析网络节点转发时延值。
所述步骤1中,在终端链路层对数据业务流信息采用如下顺序进行封装(如图2):
(1)前七个字节为帧前导码,(2)下一字节为帧开始符,(3)六个字节的目的地址和六个字节的源地址,(4)四个字节的802.1q,(5)2个字节的长度/类型位,(6)46-1500字节的数据负荷区;时延标记位存在于负荷区,位宽为4字节,初始值为0x00000000。
所述步骤2中,(如图3)当数据业务流信息进入实现系统时,利用时延测量统计模块记录下当前数据业务流信息到达的时间T1,并将T1与数据业务流信息中的时延标记位的现有值TS做差运算,得到数据业务流信息的时延标记位更新值T1′,用T1′更新原有的时延标记位值。
所述步骤3中,当数据业务流信息经过交换模块和第二物理接口收发器到达第二端口时,由时延测量统计模块记录此时的时刻T2,并将T2与数据业务流信息的时延标记位更新值T1′做差运算,得到网络节点转发时延值T2′,用T2′替换替换时间标志位现有值。
所述步骤4中,数据业务流信息通过第二端口到达外界终端设备后,解析网络节点转发时延值T2′,得知数据业务流信息经过实现系统所产生的时延。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。

Claims (13)

  1. 一种智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述系统包括第一物理接口收发器、时延测量统计模块、处理器模块、交换模块、本地时钟模块、电源模块和第二物理接口收发器;所述第一物理接口收发器与第二物理接口收发器分别通过所述时延测量统计模块与交换模块双向连接,所述处理器模块与所述时延测量统计模块均双向连接;所述本地时钟模块分别与第一物理接口收发器、第二物理接口收发器、时延测量统计模块、处理器模块以及交换模块单向连接,提供本地参考时钟;所述电源模块为系统中其它模块提供直流电压。
  2. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述第一物理接口收发器与第二物理接口收发器分别通过S3MII总线与所述时延测量统计模块连接,实现数据的交互。
  3. 根据权利要求2所述的智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述第一物理接口收发器模块通过第一端口采集智能变电站数据业务流信息,并将采集的数据业务流信息传送到所述时延测量统计模块,实现和时延测量统计模块的数据交互;
    所述第二物理接口收发器模块通过第二端口将添加时延标记位的数据业务流信息输出,实现与时延测量统计模块和外界终端设备的数据交互。
  4. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述处理器模块连接通过数据总线和MII总线分别和所述时延测量统计模块及交换模块连接,实现控制信息和数据的交互。
  5. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述时延测量统计模块主要完成数据帧转发时延的测量与统计,并实现与物理接口收发器模块、处理器模块和交互模块的数据交互。
  6. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述交换模块包括第一以太网媒体接入控制器和第二以太网媒体接入控制器,共同完成数据帧的收取、存储、转发和发送。
  7. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述本地时钟模块为第一物理接口收发器、第二物理接口收发器、时延测量统计模块和交换模块分别提供125M时钟,并为处理器模块提供50M时钟。
  8. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现系统,其特征在于:所述电源模块为第一物理接口收发器和第二物理接口收发器分别提供2.5V、1.2V直流电压,为所述时延测量统计模块提供1.2V、2.5、3.3V直流电压,为所述处理器模块提供1V、2.5V、3.3V直流电压;为所述时钟模块提供3.3V直流电压,并为所述交换模块提供2.5V、3.3V直流电压。
  9. 一种智能变电站过程层网络交换时延告知的实现方法,其特征在于:所述方法包括以下步骤:
    步骤1:数据业务流信息在终端链路层进行封装;
    步骤2:计算数据业务流信息的时延标记位更新值;
    步骤3:计算网络节点转发时延值;
    步骤4:解析网络节点转发时延值。
  10. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现方法,其特征在于:所述步骤1中,在终端链路层对数据业务流信息采用如下顺序进行封装:
    (1)前七个字节为帧前导码,(2)下一字节为帧开始符,(3)六个字节的目的地址和六个字节的源地址,(4)四个字节的802.1q,(5)2个字节的长度/类型位,(6)46-1500字节的数据负荷区;时延标记位存在于负荷区,位宽为4字节,初始值为0x00000000。
  11. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现方法,其特征在于:所述步骤2中,当数据业务流信息进入实现系统时,利用时延测量统计模块记录下当前数据业务流信息到达的时间T1,并将T1与数据业务流信息中的时延标记位的现有值TS做差运算,得到数据业务流信息的时延标记位更新值T1′,用T1′更新原有的时延标记位值。
  12. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现方法,其特征在于:所述步骤3中,当数据业务流信息经过交换模块和第二物理接口收发器到达第二端口时,由时延测量统计模块记录此时的时刻T2,并将T2与数据业务流信息的时延标记位更新值T1′做差运算,得到网络节点转发时延值T2′,用T2′替换替换时间标志位现有值。
  13. 根据权利要求1所述的智能变电站过程层网络交换时延告知的实现方法,其特征在于:所述步骤4中,数据业务流信息通过第二端口到达外界终端设备后,解析网络节点转发时延值T2′,得知数据业务流信息经过实现系统所产生的时延。
PCT/CN2015/093907 2014-11-07 2015-11-05 智能变电站过程层网络交换时延告知的实现系统和方法 WO2016070828A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410638751.6A CN104378257A (zh) 2014-11-07 2014-11-07 智能变电站过程层网络交换时延告知的实现系统和方法
CN201410638751.6 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016070828A1 true WO2016070828A1 (zh) 2016-05-12

Family

ID=52556932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093907 WO2016070828A1 (zh) 2014-11-07 2015-11-05 智能变电站过程层网络交换时延告知的实现系统和方法

Country Status (2)

Country Link
CN (1) CN104378257A (zh)
WO (1) WO2016070828A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378257A (zh) * 2014-11-07 2015-02-25 国家电网公司 智能变电站过程层网络交换时延告知的实现系统和方法
CN104836705A (zh) * 2015-05-13 2015-08-12 国家电网公司 对智能变电站时延标定交换机进行标定时延误差测试方法
CN105703974A (zh) * 2016-03-24 2016-06-22 国网江西省电力公司检修分公司 一种驻留时间标定交换机驻留时间误差测试装置
CN106254381A (zh) * 2016-09-12 2016-12-21 全球能源互联网研究院 协议解析方法、装置及包含协议解析装置的二层交换系统
CN107205056B (zh) * 2017-08-02 2020-02-18 广东电网有限责任公司电力调度控制中心 一种远动装置延时响应调度主站的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741068A (zh) * 2009-12-10 2010-06-16 深圳南瑞科技有限公司 数字化变电站和传统变电站间光纤纵差保护同步采样方法
CN102594683A (zh) * 2012-02-17 2012-07-18 黑龙江省电力有限公司 具备sdh网络精确对时功能的专用网络交换方法及设备
WO2013113380A1 (en) * 2012-02-01 2013-08-08 Abb Technology Ag Updating data of a controller of a primary device of a power substation
CN103716147A (zh) * 2013-12-16 2014-04-09 武汉中元华电软件有限公司 一种具有路径延时测量功能的采样值传输及同步方法
CN104378257A (zh) * 2014-11-07 2015-02-25 国家电网公司 智能变电站过程层网络交换时延告知的实现系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833510B1 (ko) * 2006-08-03 2008-05-29 한국전자통신연구원 Mpls 네트워크 상에서 oam 성능 감시 패킷을 이용한lsp의 성능 파라미터 측정 방법과 그 장치
CN103236893A (zh) * 2013-03-22 2013-08-07 南京南瑞继保电气有限公司 一种智能变电站过程层网络报文同步方法
CN103840556B (zh) * 2014-03-25 2015-10-28 清华大学 智能变电站多间隔暂态行波信号实时共享方法
CN103888320A (zh) * 2014-04-14 2014-06-25 北京四方继保自动化股份有限公司 使用fpga实现传输延时可测的交换机装置和延时测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741068A (zh) * 2009-12-10 2010-06-16 深圳南瑞科技有限公司 数字化变电站和传统变电站间光纤纵差保护同步采样方法
WO2013113380A1 (en) * 2012-02-01 2013-08-08 Abb Technology Ag Updating data of a controller of a primary device of a power substation
CN102594683A (zh) * 2012-02-17 2012-07-18 黑龙江省电力有限公司 具备sdh网络精确对时功能的专用网络交换方法及设备
CN103716147A (zh) * 2013-12-16 2014-04-09 武汉中元华电软件有限公司 一种具有路径延时测量功能的采样值传输及同步方法
CN104378257A (zh) * 2014-11-07 2015-02-25 国家电网公司 智能变电站过程层网络交换时延告知的实现系统和方法

Also Published As

Publication number Publication date
CN104378257A (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
WO2016070828A1 (zh) 智能变电站过程层网络交换时延告知的实现系统和方法
WO2016107210A1 (zh) 具有报文多级滤清及业务分类控制的冗余工业以太网系统
CN103460666B (zh) 网络系统和vlan标签数据获取方法
US20150085862A1 (en) Forwarding Multicast Data Packets
US8976791B1 (en) Methods and apparatus for processing multi-headed packets
WO2018072273A1 (zh) 一种基于hsr双向环网的报文时延测量及修正方法
CN103326963A (zh) 数字化变电站过程层数据交换装置
US20130142073A1 (en) Communication unit, communication system, communication method, and recording medium
US9973349B2 (en) Relay system and switching device
US20150236933A1 (en) Timestamping Packets in a Network
WO2011121987A1 (ja) 通信装置、通信システム、設定方法、設定プログラム、および設定用回路
WO2018049584A1 (zh) 一种变电站内通信网络中避免数据报文碰撞的方法
US9722896B2 (en) Micro-OAM for link groups
CN106953814B (zh) 一种变电站过程层网络交换芯片系统及其报文转发处理方法、时间测量标记方法
US20160127270A1 (en) Relay System and Switching Device
EP2897328B1 (en) Method, system and apparatus for establishing communication link
CN113056892A (zh) 在tsn感知网络上传输分组
CN104486153A (zh) 一种基于fpga的智能变电站过程层网络传输性能监测方法
CN103947167B (zh) 网络通信装置和传输帧的优先频带限制的方法
CN102801622B (zh) 一种数据报文的转发方法及转发装置
US20090213745A1 (en) Frame monitoring device and frame monitoring method
CN108540350A (zh) 一种基于fpga的网络流量预处理方法
US10033666B2 (en) Techniques for virtual Ethernet switching of a multi-node fabric
CN102769567B (zh) 一种多链接透明互联网络数据帧的转发方法和装置
WO2012129938A1 (zh) 一种esadi处理方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856889

Country of ref document: EP

Kind code of ref document: A1