WO2016070388A1 - 非线性预编码的比特加载方法、发送端、接收端及系统 - Google Patents

非线性预编码的比特加载方法、发送端、接收端及系统 Download PDF

Info

Publication number
WO2016070388A1
WO2016070388A1 PCT/CN2014/090502 CN2014090502W WO2016070388A1 WO 2016070388 A1 WO2016070388 A1 WO 2016070388A1 CN 2014090502 W CN2014090502 W CN 2014090502W WO 2016070388 A1 WO2016070388 A1 WO 2016070388A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
power control
receiving end
noise ratio
control factor
Prior art date
Application number
PCT/CN2014/090502
Other languages
English (en)
French (fr)
Inventor
周斌
王祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/090502 priority Critical patent/WO2016070388A1/zh
Priority to CN201480078543.3A priority patent/CN106464460B/zh
Priority to EP14905387.8A priority patent/EP3197086B1/en
Publication of WO2016070388A1 publication Critical patent/WO2016070388A1/zh
Priority to US15/586,579 priority patent/US10284256B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/50Systems for transmission between fixed stations via two-conductor transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/143Two-way operation using the same type of signal, i.e. duplex for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • H04L5/1476Two-way operation using the same type of signal, i.e. duplex using time-sharing operating bitwise

Definitions

  • the embodiment of the invention provides a bit preloading method, a transmitting end, a receiving end and a system for non-linear precoding, which are used to solve the problem that the receiving end adopts a fixed nonlinear precoding modulus value and an actual measured signal to noise ratio in the prior art.
  • a first aspect of the present invention provides a non-linear precoding bit loading method, including:
  • the receiving end obtains a first correspondence between the plurality of preset bit numbers and the no power control signal to noise ratio
  • the receiving end After the receiving end actually measures the power control signal to noise ratio on the subcarrier, determining, according to the second correspondence, a preset number of bits corresponding to the actually measured power control signal to noise ratio, and The determined preset number of bits is used as the actual bit load number of the single subcarrier to notify the transmitting end.
  • the receiving end determines a power control factor of a plurality of preset bit numbers, including:
  • the receiving end determines a rule according to a preset mode value, a preset mode value determining parameter, and a preset power control
  • the factor determining rule determines a power control factor of the plurality of preset bit numbers.
  • the receiving end determines a power control factor of the plurality of preset number of bits, including:
  • the receiving end receives a power control factor of the plurality of preset bit numbers sent by the sending end.
  • a second aspect of the present invention provides a non-linear precoding bit loading method, including:
  • the sending end receives the actual bit loading number of the single subcarrier notified by the receiving end; the actual bit loading number of the single subcarrier is after the receiving end actually measures the power control signal to noise ratio on the subcarrier, according to multiple presets a preset number of bits corresponding to the actually measured power control signal to noise ratio determined by a second correspondence between the number of bits and the power control signal to noise ratio; the second correspondence is determined by the receiving end Determining, by the receiving end, the power control factor of the plurality of preset bit numbers, and the first correspondence between the plurality of preset bit numbers obtained by the receiving end and the powerless control signal to noise ratio,
  • the power control factor reflects a relationship between a power-less control signal-to-noise ratio and a power signal-to-noise ratio; the receiving end supports multiple bit loading modes for information transmission, and the multiple bit loading modes refer to A plurality of modes of the plurality of preset bit numbers are respectively loaded on a single subcarrier.
  • the method before the sending end receives the actual bit loading number of the single subcarrier notified by the receiving end, the method further includes:
  • the sending end sends a preset power control factor determining rule to the receiving end, so that the receiving end determines a power control factor of the plurality of preset bit numbers.
  • a third aspect of the present invention provides a receiving end, including:
  • a determining module configured to determine a power control factor of a plurality of preset bit numbers, where the receiving end supports multiple bit loading modes for information transmission, where the multiple bit loading modes refer to loading the multiple on a single subcarrier Multiple modes of preset bit numbers;
  • the determining module is further configured to: after actually measuring the power control signal to noise ratio on the subcarrier, determine, according to the second correspondence, a preset number of bits corresponding to the actually measured power control signal to noise ratio;
  • a notification module configured to notify the sending end that the determined preset number of bits is used as the actual bit loading number of the single subcarrier.
  • a fourth aspect of the present invention provides a transmitting end, including:
  • a receiving module configured to receive an actual bit loading number of a single subcarrier notified by the receiving end; the actual bit loading number of the single subcarrier is after the receiving end actually measures the power control signal to noise ratio on the subcarrier, according to the a preset number of bits corresponding to the actually measured power control signal to noise ratio determined by a second correspondence between the preset number of bits and the power control signal to noise ratio; the second correspondence is determined by the a first power-controlling factor between the plurality of preset bits determined by the receiving end, and a first correspondence between the plurality of preset bit numbers obtained by the receiving end and a no-power control signal-to-noise ratio
  • the relationship determines that the power control factor reflects a relationship between a power-free control signal-to-noise ratio and a power signal-to-noise ratio; the receiving end supports multiple bit loading modes for information transmission, and the multiple bit loading modes refer to Multiple modes of the plurality of preset bit numbers are respectively loaded on the single subcarrier.
  • the sending end further includes:
  • a sending module configured to send a preset power control factor determining rule to the receiving end, so that the receiving end determines a power control factor of the multiple preset number of bits.
  • a fifth aspect of the present invention provides a receiving end, including:
  • a processor configured to determine a power control factor of a plurality of preset bit numbers, where the receiving end supports multiple bit loading modes for information transmission, where the multiple bit loading modes refer to loading the multiple on a single subcarrier Multiple modes of preset bit numbers;
  • the processor is further configured to obtain a first correspondence between the plurality of preset bit numbers and the no power control signal to noise ratio;
  • the processor is further configured to determine, according to the power control factor and the first correspondence, a second correspondence between the plurality of preset bit numbers and the power control signal to noise ratio, the power control factor Reacting the relationship between the power-free control signal-to-noise ratio and the power-to-noise ratio;
  • a transmitter configured to notify the sending end of the determined preset number of bits as the actual bit loading number of the single subcarrier.
  • the processor is specifically configured to:
  • a sixth aspect of the present invention provides a transmitting end, including:
  • a receiver configured to receive an actual bit load number of a single subcarrier notified by the receiving end; the actual bit loading number of the single subcarrier is after the receiving end actually measures the power control signal to noise ratio on the subcarrier, according to the Second correspondence between the preset number of bits and the power control signal to noise ratio And determining, by the relationship, a preset number of bits corresponding to the actually measured power control signal to noise ratio; the second correspondence is determined by the receiving end according to the plurality of preset bits determined by the receiving end a power control factor, and a first correspondence between the plurality of preset bit numbers obtained by the receiving end and a no-power control signal-to-noise ratio, wherein the power control factor reflects a no-power control signal-to-noise ratio and has The relationship between the power signal-to-noise ratios; the receiving end supports multiple bit loading modes for information transmission, and the multiple bit loading modes refer to loading the plurality of preset bit numbers on the single subcarriers respectively. Multiple modes.
  • the sending end further includes:
  • a transmitter configured to send a preset power control factor determining rule to the receiving end, so that the receiving end determines a power control factor of the multiple preset number of bits.
  • a seventh aspect of the present invention provides a system, comprising: the receiving end according to any of the possible embodiments of the third aspect, and the transmitting end according to any of the possible embodiments of the fourth aspect.
  • the eighth aspect of the present invention provides a system, comprising: the receiving end according to any one of the possible embodiments of the fifth aspect, and the transmitting end according to any of the possible embodiments of the sixth aspect.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end Power control of the transmitted signal, that is, the transmitting end sends The power adjustment of the signal, that is, the factor affecting the expected bit error rate of the receiving end is considered. Therefore, in the case that the system has coding, the bit loading scheme provided by the embodiment of the present invention can achieve the expected bit error rate. The system has high reliability.
  • FIG. 1 is a schematic flowchart of a method for loading a bit of a nonlinear precoding according to Embodiment 1 of the present invention
  • the first corresponding relationship does not reflect the power control of the sending signal by the transmitting end. Therefore, the receiving end may determine the multiple preset number of bits according to the first corresponding relationship and the power control factors of the multiple preset number of bits.
  • a second correspondence with the power control signal to noise ratio For example, if the first correspondence is expressed in the table as (SNR b , b), where b represents the preset number of bits, SNR b represents the power control SNR, and the power control factor of the preset number of bits b determined by the receiving end For D b , then the receiver can change (SNR b , b) to ( b) the table, the new one ( b) The table is the second correspondence between the preset bit number b and the power control signal to noise ratio.
  • the receiving end may also determine the actual bit loading number of a single subcarrier by traversing a plurality of preset bit numbers. For example, for a certain subcarrier, the SNR actually measured by the receiving end is SNR1, and the receiving end may first assume that the actual bit loading number of the subcarrier is b1, and determine the power control factor D1 of b1, from the foregoing description. It can be seen that work The meaning of the rate control factor is the power control of the transmitting signal at the transmitting end. Therefore, the power adjustment mode of the transmitting signal to the transmitting end can be known by D1. For example, here, D1 corresponds to the transmitting end, and the power of the transmitting signal is doubled.
  • the receiving end can add SNR1 to 3dB to obtain SNR2, which should be the powerless control SNR. Then, the receiving end searches for the number of bits corresponding to SNR2 according to the first corresponding relationship. If the number of bits is equal to b1, it can be determined that the actual bit loading number corresponding to the subcarrier is b1. If not equal to b1, the traversal can be continued. The number of preset bits supported by other systems, and so on, until the actual number of bits loaded for that subcarrier is determined.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; After actually measuring the power control signal to noise ratio on the subcarrier, determining the preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and determining the determined preset number of bits as a single The actual bit load number of the subcarrier is notified to the sender.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • the loading scheme can achieve the expected bit error rate at the receiving end and the system reliability is high.
  • FIG. 2 is a schematic flowchart of a method for loading a bit of a nonlinear precoding according to Embodiment 2 of the present invention. Both the receiving end and the transmitting end in this embodiment support multiple bit loading modes for information transmission.
  • the above multiple bit loading modes refer to multiple modes in which a plurality of preset bit numbers are respectively loaded on a single subcarrier.
  • the method includes:
  • the sending end receives the actual bit loading number of the single subcarrier notified by the receiving end.
  • the execution body of each step may be a receiving end.
  • it may be a UE that receives a DSL signal
  • the transmitting end may be a DSLAM.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • the loading scheme can achieve the expected bit error rate at the receiving end and the system reliability is high.
  • FIG. 3 is a schematic flowchart diagram of a non-linear precoding bit loading method according to Embodiment 3 of the present invention.
  • the receiving end sends a parameter required for determining a power control factor of a plurality of preset bit numbers to the transmitting end, and the transmitting end determines a power control factor of the plurality of preset bit numbers, and then sends the power control factor to the transmitting end.
  • Receiving end The execution body of each of the following steps may be the receiving end, In the meantime, it may be a UE that receives a DSL signal, and the above-mentioned sender may be a DSLAM.
  • the receiving end may determine the nonlinear precoding modulus value of the plurality of preset bit numbers according to the preset modulus determining rule and the preset mode determining parameter.
  • the above-mentioned nonlinear precoding modulus value has the same meaning as the modulus value used in the nonlinear precoding process of the DSL signal in the prior art, and details are not described herein again.
  • the receiving end sends a plurality of preset pre-coding modulus values of the preset number of bits to the transmitting end.
  • the transmitting end receives a nonlinear precoding modulus value of a plurality of preset bit numbers sent by the receiving end.
  • the transmitting end may determine the power control of the plurality of preset bit numbers according to the corresponding nonlinear precoding modulus value sent by the receiving end, and according to a preset power control factor determining rule. factor.
  • the foregoing power control factor determining rule may be a corresponding functional relationship between a plurality of preset pre-coding modulus values and a power control factor, and the transmitting end is based on a plurality of preset bit numbers.
  • the rules for determining the power control factor of the linear precoding modulus are the same and will not be described here.
  • the receiving end receives a power control factor of a plurality of preset bits sent by the sending end.
  • the receiving end obtains a first correspondence between a plurality of preset bit numbers and a powerless control signal to noise ratio.
  • step S102 The description of this step is the same as that of step S102, and details are not described herein again.
  • the receiving end notifies the sending end of the determined preset number of bits as the actual bit loading number of the single subcarrier.
  • the power control factor of the bit load number pre-stored by the receiving end may be considered, where the pre-stored bit loading number may be, for example, the bit loading scheme currently used by the receiving end.
  • the number of bit loadings and their power control factors may be considered, where the pre-stored bit loading number may be, for example, the bit loading scheme currently used by the receiving end.
  • step S307 the receiving end according to (b c , D c ), where b c represents the number of pre-stored bit loads, and D c represents the power control factor of the pre-stored bit loading number, and according to step S303 (SNR b , b a table, that is, a first correspondence between the plurality of preset bit numbers and the no power control SNR, wherein the SNR b represents the no power control SNR, and the (b, D b ) table sent by the receiving end determines the plurality of The power control SNR corresponding to the preset number of bits.
  • (SNR b , b) can be transformed, and SNR b is transformed into That is to generate a new one ( b) Table, at this time, the preset number of bits b in the new table corresponds to the power-controlled SNR after power control, that is, the power-controlled SNR is already measured on the sub-carrier actually measured by the receiving end. Power control SNR. Finally, the receiving end can measure the power control measurement SNR on the subcarrier and find ( b) The table obtains the preset number of bits corresponding to the actually measured power control signal to noise ratio on the subcarrier, and notifies the transmitting end of the actual bit loading number of the single subcarrier.
  • the sending end receives the actual bit loading number of the single subcarrier notified by the receiving end.
  • step S201 The description of this step is the same as that of step S201, and details are not described herein again.
  • the sending end may send the actual transmission to the transmitting end according to the power control factor of the subcarrier.
  • the information of the bit loading number, and the receiving end can also receive the information of the actual bit loading number sent by the transmitting end through the subcarrier.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; The actual measurement of the power on the subcarrier After controlling the signal to noise ratio, determining a preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and notifying the determined terminal number as the actual bit loading number of the single subcarrier.
  • FIG. 5 is a schematic flowchart of a method for loading a bit of a nonlinear precoding according to Embodiment 4 of the present invention.
  • the non-linear precoding modulus value of the plurality of preset bit numbers is directly determined by the receiving end and sent to the transmitting end, and the power control factor of the plurality of preset bit numbers is determined by the transmitting end, and
  • the receiving end only needs to send a parameter for determining a non-linear precoding modulus value of the plurality of preset bit numbers to the transmitting end, and the sending end only needs to send to the receiving end to determine a plurality of preset bit numbers.
  • the executor of the following steps may be a receiving end. In practice, it may be a UE that receives a DSL signal, and the transmitting end may be a DSLAM.
  • the method includes:
  • the receiving end acquires a preset modulus determination rule and a preset modulus determination parameter.
  • the receiving end may determine the parameter according to the preset mode determining rule and the preset mode determining parameter, and determine the nonlinearity of the plurality of preset bit numbers. Precoded modulus values.
  • the specific determination process is the same as step S301, and details are not described herein again.
  • the sending end receives the preset modulus determining rule and the preset mode determining parameter sent by the receiving end.
  • the sending end determines a nonlinear precoding modulus value of the plurality of preset bit numbers according to the preset modulus determining rule and the preset mode determining parameter.
  • the receiving end determines a plurality of preset pre-coding modes of the number of preset bits.
  • the values are the same and will not be described here.
  • the transmitting end determines a power control factor of the plurality of preset bit numbers according to the nonlinear precoding modulus value and the preset power control factor determining rule of the preset number of bits.
  • step S304 This step is the same as step S304, and details are not described herein again.
  • the sending end sends a preset power control factor determining rule to the receiving end.
  • the receiving end receives a preset power control factor determining rule sent by the sending end.
  • This step is the same as the power control factor determined by the transmitting end to determine a plurality of preset bit numbers in step S304, and details are not described herein again.
  • step S102 The description of this step is the same as that of step S102, and details are not described herein again.
  • the receiving end determines, according to the power control factor and the first correspondence, a second correspondence between the plurality of preset bit numbers and the power control signal to noise ratio.
  • the receiving end notifies the sending end of the determined preset number of bits as the actual bit loading number of the single subcarrier.
  • steps S410 to S412 is the same as steps S103 to S104, respectively. It should be noted that, in the implementation of steps S401 to S408 and step S409, there is no order limitation.
  • the transmitting end receives the actual bit loading number of the single subcarrier notified by the receiving end.
  • step S201 This step is the same as step S201, and details are not described herein again.
  • the sending end may send the actual transmission to the transmitting end according to the power control factor of the subcarrier.
  • the information of the bit loading number, and the receiving end can also receive the information of the actual bit loading number sent by the transmitting end through the subcarrier.
  • FIG. 6 is a schematic structural diagram of a receiving end according to Embodiment 5 of the present invention. As shown in FIG. 6, the receiving end 1 includes a determining module 10, an obtaining module 11, and a notification module 12.
  • the determining module 10 is specifically configured to: determine a power control factor of the plurality of preset bit numbers according to the preset mode value determining rule, the preset mode determining parameter, and the preset power control factor determining rule.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; After actually measuring the power control signal to noise ratio on the subcarrier, determining the preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and determining the determined preset number of bits as a single The actual bit load number of the subcarrier is notified to the sender.
  • the receiving module 20 is configured to receive a preset power control factor determining rule sent by the sending end.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • the loading scheme can achieve the expected bit error rate at the receiving end and the system reliability is high.
  • FIG. 8 is a schematic structural diagram of a transmitting end according to Embodiment 7 of the present invention. As shown in FIG. 8, the transmitting end 3 includes: a receiving module 30.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; The actual measurement of the power on the subcarrier After controlling the signal to noise ratio, determining a preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and notifying the determined terminal number as the actual bit loading number of the single subcarrier.
  • the processor 50 is specifically configured to: determine a power control factor of the plurality of preset bit numbers according to the preset mode value determination rule, the preset mode value determination parameter, and the preset power control factor determination rule.
  • the preset number of bits corresponding to the actually measured power-controlled SNR is determined according to the second correspondence, and The determined preset number of bits is used as the actual bit load number of the single subcarrier to notify the transmitting end.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • the loading scheme can achieve the expected bit error rate at the receiving end and the system reliability is high.
  • FIG. 11 is a schematic structural diagram of a receiving end according to Embodiment 10 of the present invention.
  • the receiving end 6 includes a processor 50, a transmitter 51, and a receiver 60.
  • the processor 50 and the transmitter 51 are the same as the previous embodiment, and are not described herein again.
  • the receiver 60 is configured to receive a preset power control factor determination rule sent by the sending end.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; After actually measuring the power control signal to noise ratio on the subcarrier, determining the preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and determining the determined preset number of bits as a single The actual bit load number of the subcarrier is notified to the sender.
  • the receiving end of the embodiment of the present invention considers the work of multiple preset bit numbers when determining the actual bit loading number of a single subcarrier.
  • the rate control factor that is, it considers the power control of the transmitting signal at the transmitting end, that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the system has coding conditions.
  • the bit loading scheme provided by the embodiment of the present invention can achieve the expected bit error rate and the system reliability is high.
  • the receiver 70 is configured to receive the actual bit loading number of the single subcarrier notified by the receiving end; the actual bit loading number of the single subcarrier is determined by the receiving end after actually measuring the power control signal to noise ratio on the subcarrier, according to multiple a preset number of bits corresponding to the actually measured power control signal to noise ratio determined by a second correspondence between the preset number of bits and the power control signal to noise ratio; the second correspondence is determined by the receiving end according to the receiving end a power control factor of a plurality of preset bit numbers, and a first correspondence relationship between a plurality of preset bit numbers obtained by the receiving end and a no-power control signal-to-noise ratio, wherein the power control factor reflects the power-free control signal-to-noise ratio and The relationship between the power signal-to-noise ratios; the receiving end supports multiple bit loading modes for information transmission, and the multiple bit loading modes refer to multiple modes in which a plurality of preset bit numbers are respectively loaded on a single subcarrier.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; After actually measuring the power control signal to noise ratio on the subcarrier, determining the preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and determining the determined preset number of bits as a single The actual bit load number of the subcarrier is notified to the sender.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • Loading scheme, receiving The end can achieve the expected bit error rate and the system reliability is high.
  • the receiver 70 is further configured to: receive a preset modulus determining rule and a preset mode determining parameter sent by the receiving end; the processor 80 is configured to determine a rule according to the preset mode, determine a preset parameter, and preset the parameter.
  • the power control factor determining rule determines a power control factor of the plurality of preset bit numbers; the transmitter 81 is configured to send the power control factors of the plurality of preset bit numbers to the receiving end.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; After actually measuring the power control signal to noise ratio on the subcarrier, determining the preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and determining the determined preset number of bits as a single The actual bit load number of the subcarrier is notified to the sender.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • the loading scheme can achieve the expected bit error rate at the receiving end and the system reliability is high.
  • FIG. 14 is a schematic structural diagram of a system according to Embodiment 13 of the present invention. As shown in FIG. 14, the system 9 includes a receiving end 90 and a transmitting end 91.
  • the receiving end 90 may be any one of the above-mentioned Embodiments 5 and 6.
  • the transmitting end 91 may be any one of the above-mentioned Embodiments 7 and 8.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; After actually measuring the power control signal to noise ratio on the subcarrier, determining the preset number of bits corresponding to the actually measured power control signal to noise ratio according to the second correspondence, and determining the determined preset number of bits as a single The actual bit load number of the subcarrier is notified to the sender.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • the loading scheme can achieve the expected bit error rate at the receiving end and the system reliability is high.
  • FIG. 15 is a schematic structural diagram of a system according to Embodiment 14 of the present invention. As shown in FIG. 15, the system 10 includes a receiving end 100 and a transmitting end 101.
  • the receiving end 100 may be any receiving end of the foregoing Embodiments 9 and 10.
  • the transmitting end 101 may be any one of the foregoing Embodiments 11 and 12.
  • a power control factor of a plurality of preset bit numbers is determined by the receiving end, and the receiving end supports multiple bit loading modes for information transmission, where multiple bit loading modes refer to a single The plurality of modes of the preset number of bits are respectively loaded on the subcarriers; and the first correspondence between the plurality of preset bit numbers and the powerless control signal to noise ratio is obtained by the receiving end, and then according to the power control factor and the first Corresponding relationship, determining a second correspondence between a plurality of preset bit numbers and a power control signal to noise ratio, the power control factor reflecting a relationship between a no power control signal to noise ratio and a power signal to noise ratio; After actually measuring the power control signal to noise ratio on the subcarrier, determining the power control signal to noise ratio of the actual measurement according to the second correspondence relationship Corresponding preset number of bits, and the determined preset number of bits is notified to the transmitting end as the actual bit loading number of the single subcarrier.
  • the receiving end of the embodiment of the present invention considers a power control factor of a plurality of preset bit numbers when determining the actual bit loading number of a single subcarrier, that is, it considers the transmitting end
  • the power control of the transmitted signal that is, the power adjustment performed by the transmitting end on the transmitted signal, that is, the factor that affects the expected bit error rate of the receiving end is considered, and thus the bit provided by the embodiment of the present invention is used when the system has the encoding.
  • the loading scheme can achieve the expected bit error rate at the receiving end and the system reliability is high.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or module is only a logical function division.
  • there may be another division manner for example, multiple units or modules may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • processing methods for implementing specific functions mentioned in the foregoing device embodiments include, but are not limited to, the corresponding processing methods disclosed in the method embodiments; in addition, the mutual coupling or direct coupling or communication connection shown or discussed may be It is an indirect coupling or communication connection through some interface, device or module, which can be electrical, mechanical or other form.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明实施例提供一种非线性预编码的比特加载方法、发送端、接收端及系统,包括:接收端确定多个预设比特数的功率控制因子;所述接收端获得所述多个预设比特数与无功率控制信噪比之间的第一对应关系;所述接收端根据所述功率控制因子和所述第一对应关系,确定所述多个预设比特数与已功率控制信噪比之间的第二对应关系;所述接收端在子载波上实际测量已功率控制信噪比后,根据所述第二对应关系,确定与所述实际测量的已功率控制信噪比对应的预设比特数,并将所述确定的预设比特数作为单个子载波的实际比特加载数通知发送端。采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。

Description

非线性预编码的比特加载方法、发送端、接收端及系统 技术领域
本发明涉及通信技术,尤其涉及一种非线性预编码的比特加载方法、发送端、接收端及系统。
背景技术
数字用户线(Digital Subscriber Line,简称DSL)技术是一种通过电话线,即无屏蔽双绞线(Unshielded Twist Pair,简称UTP)进行数据传输的高速传输技术,包括非对称数字用户线(Asymmetrical Digital Subscriber Line,简称ADSL)、甚高速数字用户线(Very-high-bit-rate Digital Subscriber Line,简称VDSL)、甚高速数字用户线2(Very-high-bit-rate Digital Subscriber Line 2,简称VDSL2)和单线对高速数字用户线(Single-pair High-bit-rate Digital Subscriber Line,简称SHDSL)等。在各种数字用户线(xDSL)技术中,通带传输的xDSL采用离散多音频(Discrete Multi-Tone,简称DMT)调制技术进行调制和解调。提供多路DSL信号接入的系统叫做DSL接入复用器(DSL Access Multiplexer,简称DSLAM)。
由电磁感应原理可知,在时分双工(Time Division Duplex,简称TDD)模式下,DSLAM接入的多路DSL信号之间,会相互产生干扰,称为串音(Crosstalk)。Crosstalk又分为近端串音(NEXT)和远端串音(FEXT),上述二者的能量都会随着频段的升高而增强。对于下行信道采用时分复用的下一代铜线宽带接入标准(G.fast),由于G.fast使用的频段越来越宽,因而FEXT愈发严重地影响线路的传输性能。一种方法是采用矢量化(Vectoring)技术,即利用在DSLAM端对多个用户的DSL信号进行联合发送或接收,通过信号处理的方法来抵消FEXT的干扰,从而最终消除每一路DSL信号中的FEXT干扰。
具体的,对于下行,即从DSLAM端发送信号至用户端时,在DSLAM端进行联合预发送处理时,可以采用线性或非线性预编码方案,即根据DSLAM端与多个用户端之间的联合信道信息,在DSLAM端发送多个用户 的DSL信号时,对它们进行线性或非线性预编码,以消除每一路DSL信号中的FEXT干扰。现有针对应用于DSL的非线性预编码的研究多关注于其性能,通常是由接收端采用固定的非线性预编码模值和实际测量的信噪比(Signal to Noise Ratio,简称SNR)来确定比特加载数目,以使发送端可以根据接收端所确定的比特加载数目向接收端发送相应比特的信息。
然而,通过分析和仿真应用于DSL的非线性预编码的比特加载方案,可以发现,非线性预编码模值会影响DSLAM端,即发送端根据上述比特加载数目向接收端发送相应比特的信息时的信号功率,进而影响接收端接收信号的SNR,进而影响接收端的误码率,导致系统可靠性差。
发明内容
本发明实施例提供一种非线性预编码的比特加载方法、发送端、接收端及系统,用以解决现有技术中接收端采用固定的非线性预编码模值和实际测量的信噪比确定比特加载数目而导致的系统可靠性差的问题。
本发明的第一方面,提供一种非线性预编码的比特加载方法,包括:
接收端确定多个预设比特数的功率控制因子,所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在单个子载波上分别加载所述多个预设比特数的多种模式;
所述接收端获得所述多个预设比特数与无功率控制信噪比之间的第一对应关系;
所述接收端根据所述功率控制因子和所述第一对应关系,确定所述多个预设比特数与已功率控制信噪比之间的第二对应关系,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;
所述接收端在子载波上实际测量已功率控制信噪比后,根据所述第二对应关系,确定与所述实际测量的已功率控制信噪比对应的预设比特数,并将所述确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
在第一种可能的实现方式中,根据第一方面,所述接收端确定多个预设比特数的功率控制因子,包括:
所述接收端根据预设模值确定规则、预设模值确定参数和预设功率控 制因子确定规则,确定所述多个预设比特数的功率控制因子。
在第二种可能的实现方式中,根据第一方面,所述接收端确定多个预设比特数的功率控制因子,包括:
所述接收端向所述发送端发送所述多个预设比特数的非线性预编码模值,或者,预设模值确定规则和预设模值确定参数,以使所述发送端确定所述多个预设比特数的功率控制因子;
所述接收端接收所述发送端发送的所述多个预设比特数的功率控制因子。
本发明的第二方面,提供一种非线性预编码的比特加载方法,包括:
发送端接收接收端通知的单个子载波的实际比特加载数;所述单个子载波的实际比特加载数为所述接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应关系确定的,与所述实际测量的已功率控制信噪比对应的预设比特数;所述第二对应关系由所述接收端根据所述接收端确定的所述多个预设比特数的功率控制因子,以及所述接收端获得的所述多个预设比特数与无功率控制信噪比之间的第一对应关系确定,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在所述单个子载波上分别加载所述多个预设比特数的多种模式。
在第一种可能的实现方式中,根据第二方面,在所述发送端接收接收端通知的单个子载波的实际比特加载数之前,所述方法还包括:
所述发送端向所述接收端发送预设功率控制因子确定规则,以使所述接收端确定所述多个预设比特数的功率控制因子。
本发明的第三方面,提供一种接收端,包括:
确定模块,用于确定多个预设比特数的功率控制因子,所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在单个子载波上分别加载所述多个预设比特数的多种模式;
获得模块,用于获得所述多个预设比特数与无功率控制信噪比之间的 第一对应关系;
所述确定模块还用于根据所述功率控制因子和所述第一对应关系,确定所述多个预设比特数与已功率控制信噪比之间的第二对应关系,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;
所述确定模块还用于在子载波上实际测量已功率控制信噪比后,根据所述第二对应关系,确定与所述实际测量的已功率控制信噪比对应的预设比特数;
通知模块,用于将所述确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
在第一种可能的实现方式中,根据第三方面,所述确定模块具体用于:
根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子。
在第二种可能的实现方式中,根据第三方面,所述确定模块具体用于:
向所述发送端发送所述多个预设比特数的非线性预编码模值,或者,预设模值确定规则和预设模值确定参数,以使所述发送端确定所述多个预设比特数的功率控制因子;
接收所述发送端发送的所述多个预设比特数的功率控制因子。
本发明的第四方面,提供一种发送端,包括:
接收模块,用于接收接收端通知的单个子载波的实际比特加载数;所述单个子载波的实际比特加载数为所述接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应关系确定的,与所述实际测量的已功率控制信噪比对应的预设比特数;所述第二对应关系由所述接收端根据所述接收端确定的所述多个预设比特数的功率控制因子,以及所述接收端获得的所述多个预设比特数与无功率控制信噪比之间的第一对应关系确定,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在所述单个子载波上分别加载所述多个预设比特数的多种模式。
在第一种可能的实现方式中,根据第四方面,所述发送端还包括;
发送模块,用于向所述接收端发送预设功率控制因子确定规则,以使所述接收端确定所述多个预设比特数的功率控制因子。
本发明的第五方面,提供一种接收端,包括:
处理器,用于确定多个预设比特数的功率控制因子,所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在单个子载波上分别加载所述多个预设比特数的多种模式;
所述处理器还用于获得所述多个预设比特数与无功率控制信噪比之间的第一对应关系;
所述处理器还用于根据所述功率控制因子和所述第一对应关系,确定所述多个预设比特数与已功率控制信噪比之间的第二对应关系,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;
所述处理器还用于在子载波上实际测量已功率控制信噪比后,根据所述第二对应关系,确定与所述实际测量的已功率控制信噪比对应的预设比特数;
发送器,用于将所述确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
在第一种可能的实现方式中,根据第五方面,所述处理器具体用于:
根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子。
在第二种可能的实现方式中,根据第五方面,所述处理器具体用于:
向所述发送端发送所述多个预设比特数的非线性预编码模值,或者,预设模值确定规则和预设模值确定参数,以使所述发送端确定所述多个预设比特数的功率控制因子;
接收所述发送端发送的所述多个预设比特数的功率控制因子。
本发明的第六方面,提供一种发送端,包括:
接收器,用于接收接收端通知的单个子载波的实际比特加载数;所述单个子载波的实际比特加载数为所述接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应 关系确定的,与所述实际测量的已功率控制信噪比对应的预设比特数;所述第二对应关系由所述接收端根据所述接收端确定的所述多个预设比特数的功率控制因子,以及所述接收端获得的所述多个预设比特数与无功率控制信噪比之间的第一对应关系确定,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在所述单个子载波上分别加载所述多个预设比特数的多种模式。
在第一种可能的实现方式中,根据第六方面,所述发送端还包括;
发送器,用于向所述接收端发送预设功率控制因子确定规则,以使所述接收端确定所述多个预设比特数的功率控制因子。
本发明的第七方面,提供一种系统,包括:如第三方面的任一种可能的实施方式所述的接收端和如第四方面的任一种可能的实施方式所述的发送端。
本发明的第八方面,提供一种系统,包括:如第五方面的任一种可能的实施方式所述的接收端和如第六方面的任一种可能的实施方式所述的发送端。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送 信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种非线性预编码的比特加载方法的流程示意图;
图2为本发明实施例二提供的一种非线性预编码的比特加载方法的流程示意图;
图3为本发明实施例三提供的一种非线性预编码的比特加载方法的流程示意图;
图4为本发明实施例三提供的一种非线性预编码模值示意图;
图5为本发明实施例四提供的一种非线性预编码的比特加载方法的流程示意图;
图6为本发明实施例五提供的一种接收端的结构示意图;
图7为本发明实施例六提供的一种接收端的结构示意图;
图8为本发明实施例七提供的一种发送端的结构示意图;
图9为本发明实施例八提供的一种发送端的结构示意图;
图10为本发明实施例九提供的一种接收端的结构示意图;
图11为本发明实施例十提供的一种接收端的结构示意图;
图12为本发明实施例十一提供的一种发送端的结构示意图;
图13为本发明实施例十二提供的一种发送端的结构示意图;
图14为本发明实施例十三提供的一种系统的结构示意图;
图15为本发明实施例十四提供的一种系统的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例一提供的一种非线性预编码的比特加载方法的流程示意图。本实施例可以应用于在采用数字用户线(Digital Subscriber Line,简称DSL)技术进行数据传输时,由接收端来确定比特加载方案的场景下。本实施例中的接收端和发送端均支持多种比特加载模式进行信息传输,上述多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式。
如图1所示,该方法包括:
S101、接收端确定多个预设比特数的功率控制因子。
S102、接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系。
S103、接收端根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系。
S104、接收端在子载波上实际测量已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
上述各步骤的执行主体可以为接收端,在实际中,其可以是接收DSL信号的用户端,上述发送端可以为DSL接入复用器(DSLAccess Multiplexer,简称DSLAM)。
具体的,首先接收端可以确定多个预设比特数的功率控制因子。上述功率控制因子表示发送端在向接收端发送信号时,对信号进行功率控制的因子,例如,若该功率控制因子为0.5,其表示发送端将发送信号功率降低1倍。事实上,上述功率控制因子反应了无功率控制信噪比(Signal to Noise Ratio,简称SNR)和已功率信噪比之间的关系。该无功率控制信噪比表示发送端未对发送信号进行功率控制时的SNR,该已功率控制SNR表示发送端对发送信号进行了功率控制之后的SNR。可选的,接收端可以 根据预设的用于计算功率控制因子的规则,以及预设参数,确定上述多个预设比特数的功率控制因子。需要说明的是,上述多个预设比特数的功率控制因子表示多个预设比特数分别对应的多个功率控制因子,它们可以相同,也可以不同,此处不做具体限定。
接收端可以获得多个预设比特数与无功率控制SNR之间的第一对应关系。可选的,上述第一对应关系可以根据误码率与无功率控制SNR之间的对应曲线得到,获得该第一对应关系的方法与现有技术相同,此处不再赘述。在实际中,接收端可以自己计算该第一对应关系,也可以从高层发送的通知消息中获取上述第一对应关系。此外,需要说明的是,步骤S101与步骤S102在实现时,并无先后顺序限制。
由于上述第一对应关系并未体现发送端对发送信号的功率控制,因此,接收端可以根据第一对应关系,结合上述多个预设比特数的功率控制因子,确定上述多个预设比特数与已功率控制信噪比之间的第二对应关系。例如,若将上述第一对应关系用表格表示为(SNRb,b),其中,b表示预设比特数,SNRb表示无功率控制SNR,接收端确定的预设比特数b的功率控制因子为Db,那么,接收端可以将(SNRb,b)变为(
Figure PCTCN2014090502-appb-000001
b)表,该新的(
Figure PCTCN2014090502-appb-000002
b)表即为预设比特数b与已功率控制信噪比之间的第二对应关系。
之后,当接收端在子载波上实际测量了已功率控制信噪比后,其即可根据上述第二对应关系,确定与该实际测量的已功率控制信噪比对应的预设比特数,并将其确定的预设比特数作为单个子载波的实际比特加载数通知给发送端。以上述表格表示的(
Figure PCTCN2014090502-appb-000003
b)为例,接收端只需查表,即可得到实际测量的已功率控制信噪比对应的预设比特数。当然,此处表格只为举例,实际中并不局限于这种实施方式。需要说明的是,若接收端和发送端使用多个子载波进行信息传输,则可以重复上述操作,即分别按照各子载波上实际测量的已功率控制信噪比,分别确定各子载波的实际比特加载数,再通知发送端即可。下文均以单个子载波为例说明。
此外,可选的,在实际中,接收端也可以通过遍历多个预设比特数,从而确定单个子载波的实际比特加载数。举例来说,对于某个子载波,接收端在其上实际测量的SNR为SNR1,接收端可以先假设该子载波的实际比特加载数为b1,并确定b1的功率控制因子D1,从前面的描述可知,功 率控制因子的涵义是发送端对发送信号的功率控制,因此,由D1即可知道发送端对发送信号的功率调整方式,例如此处D1对应于发送端将发送信号功率调小了一倍,对应于SNR,即为,与无功率控制的SNR相比,真实发送的SNR降低了3分贝(dB),那么,接收端可以将SNR1加3dB得到SNR2,该SNR2就应该是无功率控制的SNR,之后接收端再根据上第一对应关系,查找SNR2对应的比特数,若该比特数等于b1,即可确定该子载波对应的实际比特加载数目为b1,若不等于b1,则可以继续遍历其他系统支持的预设比特数,以此类推,直至确定该子载波的实际比特加载数。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图2为本发明实施例二提供的一种非线性预编码的比特加载方法的流程示意图。本实施例中的接收端和发送端均支持多种比特加载模式进行信息传输,上述多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式。如图2所示,该方法包括:
S201、发送端接收接收端通知的单个子载波的实际比特加载数。
上述各步骤的执行主体可以为接收端,在实际中,其可以是接收DSL信号的用户端,上述发送端可以为DSLAM。
具体的,发送端可以接收接收端通知的单个子载波的实际比特加载数,其中,上述单个子载波的实际比特加载数为接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应关系确定的,与上述实际测量的已功率控制信噪比对应的预设比特数;上述第二对应关系是由接收端根据其确定的多个预设比特数的功率控制因子,以及其获得的多个预设比特数与无功率控制信噪比之间的第一对应关系而确定,上述功率控制因子、无功率控制信噪比以及已功率控制信噪比的具体涵义均与上一实施例相同,此处不再赘述。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图3为本发明实施例三提供的一种非线性预编码的比特加载方法的流程示意图。在本实施例中,由接收端向发送端发送用于确定多个预设比特数的功率控制因子所需要的参数,由发送端确定多个预设比特数的功率控制因子后,再发送给接收端。下述各步骤的执行主体可以为接收端,在实 际中,其可以是接收DSL信号的用户端,上述发送端可以为DSLAM。
具体的,如图3所示,该方法包括:
S301、接收端获取多个预设比特数的非线性预编码模值。
具体的,接收端可以根据预设模值确定规则和预设模值确定参数,确定多个预设比特数的非线性预编码模值。上述非线性预编码模值与现有技术中对DSL信号进行非线性预编码过程中使用的模值的意义相同,此处不再赘述。
具体的,上述预设模值确定规则可以为用预设比特数确定其对应的非线性预编码模值的规则,例如可以采用下列公式:
Figure PCTCN2014090502-appb-000004
其中,M=2b,1≤b≤B_max,b表示上述预设比特数,B_max表示系统支持的最大比特数,Mb表示b比特的非线性预编码模值,即星座图上有四个点。CG表示预编码增益,即上述预设模值确定参数。MBb表示b比特的正交幅度调制(Quadrature Amplitude Modulation,简称QAM)星座图的横向或纵向最大边界。
以图4为例,b为2,该2比特的QAM星座图上有4个点,而其横向或纵向的最大边界即为横轴x上标注的MBb,根据应用于DSL的非线性预编码方案可知,为了使接收端正确解码,需要将发送信号限制在如图4所示
Figure PCTCN2014090502-appb-000005
的虚线方框中,此时的Mb大于MBb,这是因为在实际中,发送信号到达接收端后,会受到噪声的影响,所以以横轴x为例,发送端调制后的点用黑色实心圆点表示,只要噪声并未超过
Figure PCTCN2014090502-appb-000006
那么,经过噪声干扰之后的点也仍然在这个虚线方框中,因而接收端仍然可以正确解码。下文中的各符号意义相同,后续不再赘述。
接收端可以根据上述公式(1),确定多个预设比特数的非线性预编码模值。
S302、接收端向发送端发送多个预设比特数的非线性预编码模值。
具体的,在实际中,接收端可以事先与发送端约定好多个预设比特数的非线性预编码模值的位置,例如,约定用于发送上述非线性预编码模值的信息的格式,发送端即可从特定位置处分别读取多个预设比特数的非线性预编码模值。当然,接收端也可以将多个预设比特数与其对应的非线性 预编码模值都发给发送端,这里并不做限定。
S303、发送端接收接收端发送的多个预设比特数的非线性预编码模值。
可选的,若接收端与发送端约定了用于发送上述非线性预编码模值的信息的格式,那么,发送端可以从特定位置处分别读取多个预设比特数的非线性预编码模值。
S304、发送端根据多个预设比特数的非线性预编码模值和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子。
具体的,对于多个预设比特数,发送端可以根据接收端发送的其对应的非线性预编码模值,并按照预设的功率控制因子确定规则,确定多个预设比特数的功率控制因子。上述功率控制因子确定规则可以为多个预设比特数的非线性预编码模值与功率控制因子之间的对应函数关系,其与现有技术中,发送端根据多个预设比特数的非线性预编码模值确定其功率控制因子的规则相同,此处不再赘述。
S305、发送端向接收端发送多个预设比特数的功率控制因子。
S306、接收端接收发送端发送的多个预设比特数的功率控制因子。
S307、接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系。
该步骤的描述与步骤S102相同,此处不再赘述。
S308、接收端根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系。
S309、接收端在子载波上实际测量已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数。
S310、接收端将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
上述步骤S308~S310的描述分别与步骤S103~S104相同。需要说明的是,步骤S301~S306与步骤S307在实现时,并无先后顺序限制。
此外,在实际中,还可以在确定第一对应关系时,考虑接收端预存的比特加载数的功率控制因子,此处的预存比特加载数,例如可以是接收端当前采用的比特加载方案中的比特加载数目及其的功率控制因子。
下面以发送端与接收端之间通过表格的方式交互信息为例,详细说明 上述过程。
例如,在步骤S301中,接收端确定出了预设比特数b的Mb,其可以在步骤S302中将(b,Mb)表发送给发送端,在步骤S304中,发送端根据(b,Mb)表,确定出(b,Db)表,其中,Db表示预设比特数b的功率控制因子,然后再将(b,Db)表发送给接收端。在步骤S307中,接收端根据(bc,Dc),其中,bc表示上述预存比特加载数目,Dc表示上述预存比特加载数目的功率控制因子,并根据步骤S303的(SNRb,b)表,即上述多个预设比特数与无功率控制SNR之间的第一对应关系,其中,SNRb表示无功率控制SNR,以及接收端发送的(b,Db)表,确定多个预设比特数对应的已功率控制SNR。具体可以对(SNRb,b)进行变换,将其中的SNRb变换成
Figure PCTCN2014090502-appb-000007
即生成新的(
Figure PCTCN2014090502-appb-000008
b)表,此时这张新表中的预设比特数b就对应着经过了功率控制后的已功率控制SNR,也就是说,这个已功率控制SNR是接收端实际测量得到的子载波上的已功率控制SNR。最后,接收端可以测量出子载波上的已功率控制测量SNR,并查找(
Figure PCTCN2014090502-appb-000009
b)表,得到该子载波上实际测量的已功率控制信噪比对应的预设比特数,并将其作为单个子载波的实际比特加载数通知发送端。
S311、发送端接收接收端通知的单个子载波的实际比特加载数。
该步骤的描述与步骤S201相同,此处不再赘述。
可选的,在步骤S311之后,以单个子载波为例,在确定了其上的实际比特加载数后,发送端可以按照该子载波的功率控制因子,通过该子载波向发送端发送的实际比特加载数的信息,而接收端也可以通过该子载波接收发送端发送的实际比特加载数的信息。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率 控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图5为本发明实施例四提供的一种非线性预编码的比特加载方法的流程示意图。上一实施例是由接收端直接确定了多个预设比特数的非线性预编码模值并将其发送给发送端,并由发送端确定多个预设比特数的功率控制因子,而在本实施例中,接收端只需向发送端发送用于确定多个预设比特数的非线性预编码模值的参数,发送端也只需向接收端发送用于确定多个预设比特数的功率控制因子的确定规则。下述各步骤的执行主体可以为接收端,在实际中,其可以是接收DSL信号的用户端,上述发送端可以为DSLAM。
具体的,如图5所示,该方法包括:
S401、接收端获取预设模值确定规则和预设模值确定参数。
上述预设模值确定规则和预设模值确定参数可以是预设在接收端的,也可以是接收端通过高层发送的通知消息获知的,此处并不做限定。
可选的,接收端在获取了预设模值确定规则和预设模值确定参数之后,可以根据预设模值确定规则和预设模值确定参数,确定多个预设比特数的非线性预编码模值。其具体确定过程与步骤S301相同,此处不再赘述。
S402、接收端向发送端发送预设模值确定规则和预设模值确定参数。
S403、发送端接收接收端发送的预设模值确定规则和预设模值确定参数。
S404、发送端根据预设模值确定规则和预设模值确定参数,确定多个预设比特数的非线性预编码模值。
该步骤与步骤S301中接收端确定多个预设比特数的非线性预编码模 值相同,此处不再赘述。
S405、发送端根据多个预设比特数的非线性预编码模值和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子。
该步骤与步骤S304相同,此处不再赘述。
S406、发送端向接收端发送预设功率控制因子确定规则。
S407、接收端接收发送端发送的预设功率控制因子确定规则。
S408、接收端根据多个预设比特数的非线性预编码模值和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子。
该步骤与步骤S304中发送端确定多个预设比特数的功率控制因子相同,此处不再赘述。
S409、接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系。
该步骤的描述与步骤S102相同,此处不再赘述。
S410、接收端根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系。
S411、接收端在子载波上实际测量已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数。
S412、接收端将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
上述步骤S410~S412的描述分别与步骤S103~S104相同。需要说明的是,步骤S401~S408与步骤S409在实现时,并无先后顺序限制。
S413、发送端接收接收端通知的单个子载波的实际比特加载数。
该步骤与步骤S201相同,此处不再赘述。
可选的,在步骤S411之后,以单个子载波为例,在确定了其上的实际比特加载数后,发送端可以按照该子载波的功率控制因子,通过该子载波向发送端发送的实际比特加载数的信息,而接收端也可以通过该子载波接收发送端发送的实际比特加载数的信息。
上述实施例三和四只是举例说明,在实际中,多个预设比特数的非线性预编码模值和功率控制因子既可以在接收端确定,也可以在发送端确定,而并不局限于上述实施例所列举的实施方式,例如,也可以由发送端确定多个预设比特数的非线性预编码模值,并确定多个预设比特数的功率控制因 子发送给接收端,或是,由发送端接收多个预设比特数的非线性预编码模值,并向接收端发送预设功率控制因子确定规则等等,这些都不做限定。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图6为本发明实施例五提供的一种接收端的结构示意图。如图6所示,该接收端1包括:确定模块10、获得模块11和通知模块12。
具体的,确定模块10用于确定多个预设比特数的功率控制因子,接收端1支持多种比特加载模式进行信息传输,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;获得模块11用于获得多个预设比特数与无功率控制信噪比之间的第一对应关系;确定模块10还用于根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;确定模块10还用于在子载波上实际测量已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数;通知模块12用于将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
进一步地,确定模块10具体用于:根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子。
更进一步地,确定模块10具体用于:向发送端发送多个预设比特数的非线性预编码模值,或者,预设模值确定规则和预设模值确定参数,以使发送端确定多个预设比特数的功率控制因子;接收发送端发送的多个预设比特数的功率控制因子。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图7为本发明实施例六提供的一种接收端的结构示意图。如图7所示,该接收端2包括:确定模块10、获得模块11、通知模块12和接收模块20。其中,确定模块10、获得模块11和通知模块12与上一实施例相同,此处不再赘述。
具体的,接收模块20用于接收发送端发送的预设功率控制因子确定规则。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的 功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图8为本发明实施例七提供的一种发送端的结构示意图。如图8所示,该发送端3包括:接收模块30。
具体的,接收模块30用于接收接收端通知的单个子载波的实际比特加载数;单个子载波的实际比特加载数为接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应关系确定的,与实际测量的已功率控制信噪比对应的预设比特数;第二对应关系由接收端根据接收端确定的多个预设比特数的功率控制因子,以及接收端获得的多个预设比特数与无功率控制信噪比之间的第一对应关系确定,功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;接收端支持多种比特加载模式进行信息传输,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应 关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图9为本发明实施例八提供的一种发送端的结构示意图。如图9所示,该发送端4包括:接收模块30、确定模块40和发送模块41。接收模块30与上一实施例相同,此外,接收模块30还用于接收接收端发送的多个预设比特数的非线性预编码模值;确定模块40用于根据非线性预编码模值和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子;发送模块41用于向接收端发送多个预设比特数的功率控制因子。
或者,接收模块30还用于接收接收端发送的预设模值确定规则和预设模值确定参数可选的;确定模块40用于根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子;发送模块41用于向接收端发送多个预设比特数的功率控制因子。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率 控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图10为本发明实施例九提供的一种接收端的结构示意图。如图10所示,该接收端5包括:处理器50和发送器51。
具体的,处理器50用于确定多个预设比特数的功率控制因子,接收端支持多种比特加载模式进行信息传输,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;处理器50还用于获得多个预设比特数与无功率控制信噪比之间的第一对应关系;处理器50还用于根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;处理器50还用于在子载波上实际测量已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数;发送器51用于将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
进一步地,处理器50具体用于:根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子。
更进一步地,处理器50具体用于:向发送端发送多个预设比特数的非线性预编码模值,或者,预设模值确定规则和预设模值确定参数,以使发送端确定多个预设比特数的功率控制因子;接收发送端发送的多个预设比特数的功率控制因子。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多 种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图11为本发明实施例十提供的一种接收端的结构示意图。如图11所示,该接收端6包括:处理器50、发送器51和接收器60。其中,处理器50和发送器51与上一实施例相同,此处不再赘述。
具体的,接收器60用于接收发送端发送的预设功率控制因子确定规则。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功 率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图12为本发明实施例十一提供的一种发送端的结构示意图。如图12所示,该发送端7包括:接收器70。
具体的,接收器70用于接收接收端通知的单个子载波的实际比特加载数;单个子载波的实际比特加载数为接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应关系确定的,与实际测量的已功率控制信噪比对应的预设比特数;第二对应关系由接收端根据接收端确定的多个预设比特数的功率控制因子,以及接收端获得的多个预设比特数与无功率控制信噪比之间的第一对应关系确定,功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;接收端支持多种比特加载模式进行信息传输,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收 端可以达到预期的误码率,系统可靠性高。
图13为本发明实施例十二提供的一种发送端的结构示意图。如图13所示,该发送端8包括:接收器70、处理器80和发送器81。该接收器70与上一实施例相同,此外,接收器70还用于:接收接收端发送的多个预设比特数的非线性预编码模值;处理器80用于根据非线性预编码模值和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子;发送器81用于向接收端发送多个预设比特数的功率控制因子。
或者,接收器70还用于:接收接收端发送的预设模值确定规则和预设模值确定参数;处理器80用于根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定多个预设比特数的功率控制因子;发送器81用于向接收端发送多个预设比特数的功率控制因子。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图14为本发明实施例十三提供的一种系统的结构示意图。如图14所示,该系统9包括:接收端90和发送端91。
具体的,接收端90可以为上述实施例五和六中的任一种接收端,发送端91可以为上述实施例七和八中的任一种发送端。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
图15为本发明实施例十四提供的一种系统的结构示意图。如图15所示,该系统10包括:接收端100和发送端101。
具体的,接收端100可以为上述实施例九和十中的任一种接收端,发送端101可以为上述实施例十一和十二中的任一种发送端。
在本发明实施例的比特加载方案中,由接收端确定多个预设比特数的功率控制因子,该接收端支持多种比特加载模式进行信息传输,其中,多种比特加载模式是指在单个子载波上分别加载多个预设比特数的多种模式;并由接收端获得多个预设比特数与无功率控制信噪比之间的第一对应关系,再根据功率控制因子和第一对应关系,确定多个预设比特数与已功率控制信噪比之间的第二对应关系,该功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;在接收端实际测量了子载波上的已功率控制信噪比后,根据第二对应关系,确定与实际测量的已功率控制信噪比 对应的预设比特数,并将确定的预设比特数作为单个子载波的实际比特加载数通知发送端。相比于现有技术中的比特加载方案,本发明实施例的接收端在确定单个子载波的实际比特加载数时,考虑了多个预设比特数的功率控制因子,即其考虑了发送端对发送信号的功率控制,即发送端对发送信号进行的功率调整,也就是考虑了影响接收端达到预期误码率的因素,因而在系统有编码的情况下,采用本发明实施例提供的比特加载方案,接收端可以达到预期的误码率,系统可靠性高。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。并且,上述装置实施例中提到的实现具体功能的处理方法包括但不限于方法实施例中揭示的对应处理方法;另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种非线性预编码的比特加载方法,其特征在于,包括:
    接收端确定多个预设比特数的功率控制因子,所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在单个子载波上分别加载所述多个预设比特数的多种模式;
    所述接收端获得所述多个预设比特数与无功率控制信噪比之间的第一对应关系;
    所述接收端根据所述功率控制因子和所述第一对应关系,确定所述多个预设比特数与已功率控制信噪比之间的第二对应关系,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;
    所述接收端在子载波上实际测量已功率控制信噪比后,根据所述第二对应关系,确定与所述实际测量的已功率控制信噪比对应的预设比特数,并将所述确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
  2. 根据权利要求1所述的方法,其特征在于,所述接收端确定多个预设比特数的功率控制因子,包括:
    所述接收端根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子。
  3. 根据权利要求2所述的方法,其特征在于,在所述接收端确定所述多个预设比特数的功率控制因子之前,所述方法还包括:
    所述接收端接收所述发送端发送的所述预设功率控制因子确定规则。
  4. 根据权利要求1所述的方法,其特征在于,所述接收端确定多个预设比特数的功率控制因子,包括:
    所述接收端向所述发送端发送所述多个预设比特数的非线性预编码模值,或者,预设模值确定规则和预设模值确定参数,以使所述发送端确定所述多个预设比特数的功率控制因子;
    所述接收端接收所述发送端发送的所述多个预设比特数的功率控制因子。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述预设模值确定规则和预设模值确定参数用于获取所述多个预设比特数的非线性预 编码模值。
  6. 一种非线性预编码的比特加载方法,其特征在于,包括:
    发送端接收接收端通知的单个子载波的实际比特加载数;所述单个子载波的实际比特加载数为所述接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应关系确定的,与所述实际测量的已功率控制信噪比对应的预设比特数;所述第二对应关系由所述接收端根据所述接收端确定的所述多个预设比特数的功率控制因子,以及所述接收端获得的所述多个预设比特数与无功率控制信噪比之间的第一对应关系确定,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在所述单个子载波上分别加载所述多个预设比特数的多种模式。
  7. 根据权利要求6所述的方法,其特征在于,在所述发送端接收接收端通知的单个子载波的实际比特加载数之前,所述方法还包括:
    所述发送端向所述接收端发送预设功率控制因子确定规则,以使所述接收端确定所述多个预设比特数的功率控制因子。
  8. 根据权利要求6所述的方法,其特征在于,在所述发送端接收接收端通知的单个子载波的实际比特加载数之前,所述方法还包括:
    所述发送端接收所述接收端发送的所述多个预设比特数的非线性预编码模值;
    所述发送端根据所述非线性预编码模值和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子;
    所述发送端向所述接收端发送所述多个预设比特数的功率控制因子。
  9. 根据权利要求6所述的方法,其特征在于,在所述发送端接收接收端通知的单个子载波的实际比特加载数之前,所述方法还包括:
    所述发送端接收所述接收端发送的预设模值确定规则和预设模值确定参数;
    所述发送端根据所述预设模值确定规则、所述预设模值确定参数和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子;
    所述发送端向所述接收端发送所述多个预设比特数的功率控制因子。
  10. 一种接收端,其特征在于,包括:
    确定模块,用于确定多个预设比特数的功率控制因子,所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在单个子载波上分别加载所述多个预设比特数的多种模式;
    获得模块,用于获得所述多个预设比特数与无功率控制信噪比之间的第一对应关系;
    所述确定模块还用于根据所述功率控制因子和所述第一对应关系,确定所述多个预设比特数与已功率控制信噪比之间的第二对应关系,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;
    所述确定模块还用于在子载波上实际测量已功率控制信噪比后,根据所述第二对应关系,确定与所述实际测量的已功率控制信噪比对应的预设比特数;
    通知模块,用于将所述确定的预设比特数作为单个子载波的实际比特加载数通知发送端。
  11. 根据权利要求10所述的接收端,其特征在于,所述确定模块具体用于:
    根据预设模值确定规则、预设模值确定参数和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子。
  12. 根据权利要求11所述的接收端,其特征在于,所述接收端还包括:
    接收模块,用于接收所述发送端发送的所述预设功率控制因子确定规则。
  13. 根据权利要求10所述的接收端,其特征在于,所述确定模块具体用于:
    向所述发送端发送所述多个预设比特数的非线性预编码模值,或者,预设模值确定规则和预设模值确定参数,以使所述发送端确定所述多个预设比特数的功率控制因子;
    接收所述发送端发送的所述多个预设比特数的功率控制因子。
  14. 一种发送端,其特征在于,包括:
    接收模块,用于接收接收端通知的单个子载波的实际比特加载数;所 述单个子载波的实际比特加载数为所述接收端在子载波上实际测量已功率控制信噪比后,根据多个预设比特数与已功率控制信噪比之间的第二对应关系确定的,与所述实际测量的已功率控制信噪比对应的预设比特数;所述第二对应关系由所述接收端根据所述接收端确定的所述多个预设比特数的功率控制因子,以及所述接收端获得的所述多个预设比特数与无功率控制信噪比之间的第一对应关系确定,所述功率控制因子反应了无功率控制信噪比和已功率信噪比之间的关系;所述接收端支持多种比特加载模式进行信息传输,所述多种比特加载模式是指在所述单个子载波上分别加载所述多个预设比特数的多种模式。
  15. 根据权利要求14所述的发送端,其特征在于,所述发送端还包括;
    发送模块,用于向所述接收端发送预设功率控制因子确定规则,以使所述接收端确定所述多个预设比特数的功率控制因子。
  16. 根据权利要求14所述的发送端,其特征在于,所述接收模块还用于:
    接收所述接收端发送的所述多个预设比特数的非线性预编码模值;
    所述发送端还包括:
    确定模块,用于根据所述非线性预编码模值和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子;
    发送模块,用于向所述接收端发送所述多个预设比特数的功率控制因子。
  17. 根据权利要求14所述的发送端,其特征在于,所述接收模块还用于:
    接收所述接收端发送的预设模值确定规则和预设模值确定参数;
    所述发送端还包括:
    确定模块,用于根据所述预设模值确定规则、所述预设模值确定参数和预设功率控制因子确定规则,确定所述多个预设比特数的功率控制因子;
    发送模块,用于向所述接收端发送所述多个预设比特数的功率控制因子。
  18. 一种系统,其特征在于,包括:如权利要求10-13中任一项所述 的接收端和如权利要求14-17中任一项所述的发送端。
PCT/CN2014/090502 2014-11-06 2014-11-06 非线性预编码的比特加载方法、发送端、接收端及系统 WO2016070388A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/090502 WO2016070388A1 (zh) 2014-11-06 2014-11-06 非线性预编码的比特加载方法、发送端、接收端及系统
CN201480078543.3A CN106464460B (zh) 2014-11-06 2014-11-06 非线性预编码的比特加载方法、发送端、接收端及系统
EP14905387.8A EP3197086B1 (en) 2014-11-06 2014-11-06 Bit loading method for nonlinear precoding, receiving end, and system
US15/586,579 US10284256B2 (en) 2014-11-06 2017-05-04 Nonlinear precoding bit loading method, transmit end, receive end, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090502 WO2016070388A1 (zh) 2014-11-06 2014-11-06 非线性预编码的比特加载方法、发送端、接收端及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/586,579 Continuation US10284256B2 (en) 2014-11-06 2017-05-04 Nonlinear precoding bit loading method, transmit end, receive end, and system

Publications (1)

Publication Number Publication Date
WO2016070388A1 true WO2016070388A1 (zh) 2016-05-12

Family

ID=55908405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090502 WO2016070388A1 (zh) 2014-11-06 2014-11-06 非线性预编码的比特加载方法、发送端、接收端及系统

Country Status (4)

Country Link
US (1) US10284256B2 (zh)
EP (1) EP3197086B1 (zh)
CN (1) CN106464460B (zh)
WO (1) WO2016070388A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177263A1 (zh) * 2017-03-28 2018-10-04 中兴通讯股份有限公司 一种预编码处理方法及装置、存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204825B (zh) * 2016-03-16 2019-07-12 华为技术有限公司 数据发送方法、数据接收方法、发送端设备及接收端设备
US11855719B2 (en) * 2019-10-30 2023-12-26 Nokia Solutions And Networks Oy Quantized precoding in massive MIMO system
CN111934727A (zh) * 2020-08-11 2020-11-13 浙江鑫网能源工程有限公司 一种5g室内外多路mimo收发有源天线系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1787426A (zh) * 2004-12-07 2006-06-14 日本电气株式会社 多载波传输设备和方法
CN1863259A (zh) * 2005-09-26 2006-11-15 华为技术有限公司 Xdsl网络中自动选择运行模式的实现方法及装置
US7295518B1 (en) * 2001-08-30 2007-11-13 Entropic Communications Inc. Broadband network for coaxial cable using multi-carrier modulation
CN101534138A (zh) * 2008-03-14 2009-09-16 华为技术有限公司 比特加载的方法、用于比特加载的装置及数据传输系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5852630A (en) * 1997-07-17 1998-12-22 Globespan Semiconductor, Inc. Method and apparatus for a RADSL transceiver warm start activation procedure with precoding
EP1786130A1 (en) * 2004-09-17 2007-05-16 Matsushita Electric Industrial Co., Ltd. Transmission control frame generation device and transmission control device
CN101854328B (zh) * 2010-07-05 2012-08-15 河南工业大学 多载波码分多址系统中分层空时非线性预编码方法
EP2904711B1 (en) * 2012-10-03 2021-07-28 Sckipio Technologies S.i Ltd Hybrid precoder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295518B1 (en) * 2001-08-30 2007-11-13 Entropic Communications Inc. Broadband network for coaxial cable using multi-carrier modulation
CN1787426A (zh) * 2004-12-07 2006-06-14 日本电气株式会社 多载波传输设备和方法
CN1863259A (zh) * 2005-09-26 2006-11-15 华为技术有限公司 Xdsl网络中自动选择运行模式的实现方法及装置
CN101534138A (zh) * 2008-03-14 2009-09-16 华为技术有限公司 比特加载的方法、用于比特加载的装置及数据传输系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018177263A1 (zh) * 2017-03-28 2018-10-04 中兴通讯股份有限公司 一种预编码处理方法及装置、存储介质

Also Published As

Publication number Publication date
CN106464460A (zh) 2017-02-22
US10284256B2 (en) 2019-05-07
EP3197086A1 (en) 2017-07-26
US20170237465A1 (en) 2017-08-17
CN106464460B (zh) 2019-09-03
EP3197086B1 (en) 2018-10-24
EP3197086A4 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
US11677438B2 (en) Training optimization of multiple lines in a vectored system using a prepared-to-join group
Oksman et al. The ITU-T's new G. vector standard proliferates 100 Mb/s DSL
US9985685B2 (en) Power spectrum density optimization
EP3402116A1 (en) Method and apparatus for reducing feedback overhead
US10284256B2 (en) Nonlinear precoding bit loading method, transmit end, receive end, and system
EP2997691B1 (en) Online reconfiguration transition synchronization
AU2007203273B2 (en) Transmission output control apparatus, multicarrier transmission system, transmission output control method and transmission ouput control program in computer-readable storage medium
WO2014100991A1 (zh) 一种线路的初始化方法及设备
US20200084080A1 (en) Digital subscriber line transceiver
US10432350B2 (en) Method for adjusting parameters of sending device and receiving device, and terminal device
CN101765983A (zh) 处理信道的方法和装置以及包括该装置的通信系统
WO2016077991A1 (zh) 串扰消除的方法、装置及系统
KR100940383B1 (ko) 송신 출력 제어 장치, 멀티 캐리어 전송 시스템, 송신 출력 제어 방법 및 송신 출력 제어 프로그램을 기록한 컴퓨터 판독가능 기록 매체
CN104025528A (zh) 一种在线重配置的执行方法、装置和系统
JP2005516531A (ja) ジッパーディーエムティーシステム及びこのシステムにおけるタイミングアドバーンス決定方法
EP3565130B1 (en) Signal processing method, apparatus and system
de Medeiros Physical Layer Techniques for High Frequency Wireline Broadband Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905387

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014905387

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE