WO2016067365A1 - Observation device, observation method, and computer program - Google Patents

Observation device, observation method, and computer program Download PDF

Info

Publication number
WO2016067365A1
WO2016067365A1 PCT/JP2014/078613 JP2014078613W WO2016067365A1 WO 2016067365 A1 WO2016067365 A1 WO 2016067365A1 JP 2014078613 W JP2014078613 W JP 2014078613W WO 2016067365 A1 WO2016067365 A1 WO 2016067365A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
observation
eye
projection
pupil
Prior art date
Application number
PCT/JP2014/078613
Other languages
French (fr)
Japanese (ja)
Inventor
琢也 白戸
伊藤 善尚
柳澤 琢麿
健久 奧山
佐藤 充
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2016556083A priority Critical patent/JP6293299B2/en
Priority to PCT/JP2014/078613 priority patent/WO2016067365A1/en
Publication of WO2016067365A1 publication Critical patent/WO2016067365A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to an observation apparatus, an observation method, and a computer program for observing the eye state of a subject (for example, the state of a tear film formed on the surface of the cornea).
  • Patent Document 1 describes a fundus camera including a television monitor that displays a fundus image of a subject eye photographed with a television camera on the subject eye.
  • Patent Document 2 describes an ophthalmologic examination apparatus including a liquid crystal display that presents an anterior segment image of a subject eye photographed by a television camera toward a subject.
  • Patent Document 3 describes an ophthalmologic apparatus that includes a display that displays a video signal from a light receiving element on which an anterior ocular segment image is formed so that a subject can gaze at an image displayed on the display during measurement. Has been.
  • the observation devices described in Patent Literature 1 to Patent Literature 3 have difficulty in continuously presenting an observation image that can be viewed by the subject when the eye position of the subject (for example, the position of the anterior eye or pupil) changes. Or not easy. That is, it is difficult or not easy for the observation devices described in Patent Literature 1 to Patent Literature 3 to continue presenting an observation image that can be visually recognized when the subject moves his / her eyes.
  • the observation apparatus described in Patent Document 1 can move the television monitor in a required range on a plane perpendicular to the optical axis when the eye of the subject turns around.
  • it is necessary to physically move the television monitor each time the subject's eyes turn around it is difficult to keep presenting an observation image that can be visually recognized by the subject relatively easily.
  • the observation devices described in Patent Documents 2 and 3 do not consider any change in the position of the eye of the subject. For this reason, there is a possibility that light for forming an observation image on the retina cannot pass through the pupil due to a change in the position of the eye of the subject. As a result, the subject may not be able to visually recognize the observation image.
  • an observation apparatus of the present invention is an observation apparatus for observing the state of a subject's eye, and is formed on a first image to be projected on the surface of the cornea of the eye and the retina of the eye.
  • a projection unit capable of projecting a second image to be imaged onto the eye; and an imaging unit that acquires an observation image by imaging the eye, wherein the projection unit uses the observation image as the second image.
  • the projection position of the second image is adjusted so that light that forms the second image on the retina passes through the pupil of the eye.
  • the observation method of the present invention can project a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye onto the eye.
  • An observation method of observing the state of the eye using a projection unit and an imaging unit that acquires an observation image by imaging the eye, using the observation image as the second image, and the first image The projection position of the second image is adjusted so that light that forms two images on the retina passes through the pupil of the eye.
  • the computer program of the present invention can project a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye onto the eye.
  • the observation apparatus is caused to perform an operation of adjusting the projection position of the second image so that the light that forms the second image on the retina passes through the pupil of the eye.
  • the observation device of the present embodiment is an observation device that observes the state of the eye of a subject, and includes a first image to be projected on the surface of the cornea of the eye and a second image to be imaged on the retina of the eye.
  • a projection unit capable of projecting onto the eye; and an imaging unit that acquires an observation image by imaging the eye, wherein the projection unit uses the observation image as the second image, and the second image.
  • the projection position of the second image is adjusted so that the light that forms an image on the retina passes through the pupil of the eye.
  • the eye state of the subject is observed.
  • the observation device is reflected in the eye (typically the surface of the eye, the surface of the cornea, the surface of the tear film formed on the surface of the cornea, the surface of the oil layer covering the tear film or the cornea).
  • the state of the projection image can be observed.
  • the operation of “observing the eye state” mentioned here includes an arbitrary operation for directly or indirectly estimating the eye state.
  • the operation of “observing the state of the eye” is an operation of imaging the eye described later (typically imaging the surface of the eye, the surface of the cornea, or the tear film formed on the surface of the cornea). May be included.
  • the operation of “observing the eye state” may include an operation of analyzing an observation image acquired by imaging the eye.
  • the operation of “observing the eye state” may include an operation of directly or indirectly estimating the eye state based on the analysis result of the observation image.
  • a part of the operation of “observing the eye state” may be performed by a user of the observation apparatus (for example, an ophthalmologist or a subject).
  • the user of the observation device may estimate the eye state directly or indirectly based on an observation image acquired by the observation device imaging the eye.
  • the observation apparatus includes a projecting unit and an imaging unit.
  • the projection means projects both the first image and the second image on the eyes of the subject. That is, the projecting unit projects a projection image including the first image and the second image or obtained by synthesizing the first image and the second image onto the eye of the subject.
  • the “projecting the projected image onto the eye” referred to here corresponds to the projected image in a desired region on the eye surface regardless of whether or not the projected image is formed on the eye surface. It shall mean the whole operation
  • An operation for realizing a state in which the projected image is reflected in the eye, an operation for illuminating the eye with a light / dark pattern corresponding to the projection image, and the like may be included.
  • the first image is an image projected on the surface of the cornea of the subject's eye.
  • the first image may be an image formed on the surface of the cornea.
  • the first image may not be an image formed on the surface of the cornea.
  • the first image may not be an image formed on the retina of the subject's eye.
  • the second image is an image different from the first image.
  • the second image is an image formed on the retina of the subject's eye. Note that the retina is located behind the cornea when viewed from the projection means side (that is, the image formed on the retina is not imaged on the cornea but is also projected on the cornea). Considering it, it can be said that the second image is an image projected onto the surface of the cornea.
  • the first example of the projecting unit is a display unit (for example, a display element to be described later) for displaying the first image and the second image, light for projecting the first image on the cornea, and the second image are combined on the retina.
  • a light guide means for guiding light for imaging to the eyes may be provided.
  • the first example of the light guiding means is a diffusing means for diffusing light for projecting the first image onto the cornea (for example, a diffusing plate described later) and light for forming the second image on the retina.
  • Optical means for guiding to the retina for example, a Koehler illumination lens or an eyepiece lens described later
  • the second example of the light guide means guides the light for projecting the first image onto the cornea to the cornea and the optical means for guiding the light for forming the second image on the retina to the retina (for example, described later).
  • An objective lens or the like may be provided.
  • the second example of the projection means projects light (in other words, illuminates the eyes) with a light / dark pattern corresponding to the first image (for example, a platide plate described later), and a display for displaying the second image.
  • Means for example, a display element to be described later
  • light guide means for example, an eyepiece to be described later
  • the imaging means acquires an observation image by imaging the eye.
  • the imaging means acquires an observation image by imaging the surface of the eye (for example, the surface of the cornea).
  • an imaging means acquires an observation image by imaging the eye on which the first image is projected.
  • the imaging unit may acquire an observation image by imaging an eye on which the first image is not projected.
  • the projection unit uses the observation image acquired by the imaging unit as the second image. Therefore, the projecting unit projects the observation image acquired by the imaging unit onto the eyes of the subject so that the observation image is formed on the retina.
  • the projection unit further adjusts the projection position of the second image (that is, the observation image).
  • the projection unit adjusts the projection position of the second image so that light for forming the second image on the retina passes through the pupil of the eye of the subject. Therefore, even when the position of the subject's eye (for example, the position of the anterior eye or pupil) changes, the projection unit can adjust the projection position of the second image according to the position of the subject's eye. .
  • the projecting unit can project the second image so that the light for forming the second image on the retina passes through the pupil (for example, the pupil whose position has changed).
  • the projection unit may adjust the projection position of the second image (that is, the observation image) under the control of the control unit.
  • the observation apparatus may include a control unit that controls the projection unit so as to adjust the projection position of the second image (that is, the observation image).
  • the control means controls the projection means to adjust the projection position of the second image for the purpose of allowing the light for forming the second image on the retina to pass through the pupil of the eye of the subject. Also good.
  • the “projection position of the second image” referred to here is typically the projection position of the second image on the surface of the cornea (that is, the light for imaging the second image on the retina on the cornea surface). (Irradiation position).
  • a virtual direction orthogonal to the optical axis of a light guide means for example, a projection lens, a Koehler illumination lens, an eyepiece lens or an objective lens described later
  • Adjustment of the projection position of the second image on a smooth plane substantially leads to adjustment of the projection position of the second image on the surface of the cornea.
  • the “projection position of the second image” refers to the second image on a virtual plane orthogonal to the optical axis of the light guiding means for guiding the light for forming the second image on the retina to the eye. It may mean the projection position of.
  • the observation device of the present embodiment adjusts the projection position of the observation image so that the light for forming the observation image used as the second image on the retina passes through the pupil of the subject's eye. be able to. For this reason, a test subject can visually recognize an observation image suitably. In particular, even when the position of the subject's eyes (for example, the position of the anterior eye or the pupil) changes, the subject can appropriately view the observation image.
  • the observation device further includes a detection unit that detects the position of the pupil, and the projection unit converts the second image based on the position of the pupil detected by the detection unit.
  • the projection position of the second image is adjusted so that light to be imaged on the retina passes through the pupil of the eye.
  • the observation apparatus is based on the position of the pupil detected by the detection unit so that the light for forming the observation image used as the second image on the retina passes through the pupil of the subject's eye.
  • the projection position of the observation image can be adjusted.
  • the observation apparatus can suitably adjust the projection position of the observation image so that the light for forming the observation image on the retina passes through the pupil of the eye of the subject.
  • the projection unit projects the second image by an amount corresponding to the shift amount of the current position of the pupil detected by the detection unit from the pupil reference position.
  • the projection position of the second image is adjusted so that the position deviates from the projection reference position.
  • the observation apparatus is based on the position of the pupil detected by the detection unit so that the light for forming the observation image used as the second image on the retina passes through the pupil of the subject's eye.
  • the projection position of the observation image can be adjusted.
  • the projection means projects an observation image at the projection reference position on the surface of the cornea in a situation where the pupil is located at the pupil reference position
  • the light for forming the observation image on the retina causes the pupil of the subject's eye to be formed.
  • a passing observation device In such an observation device, when the current position of the pupil deviates from the pupil reference position, the observation image is formed on the retina even if the projection means projects the observation image onto the projection reference position on the surface of the cornea. There is a possibility that part or all of the light to be transmitted does not pass through the pupil of the eye of the subject.
  • the observation image on the surface of the cornea is an amount corresponding to the deviation amount of the current position of the pupil from the pupil reference position.
  • the projection position of the observation image is adjusted so that the projection position deviates from the projection reference position.
  • the projection means projects the observation image at a position deviated from the projection reference position on the surface of the cornea (typically the position where the pupil is present). Therefore, light for forming an observation image on the retina passes through the pupil of the subject's eye.
  • the position of the eye of the subject for example, the position of the anterior eye or the pupil
  • the subject can appropriately view the observation image.
  • the detection unit detects the position of the pupil based on the observation image.
  • the detection unit can detect the position of the pupil relatively easily based on the observation image acquired by the imaging unit by imaging the eye.
  • a specific method for detecting the position of the pupil by the detecting means is arbitrary. However, typically, the detection means detects the position of the pupil by analyzing the observation image.
  • the projection unit adjusts the projection position of the first image so that light that projects the first image onto the surface of the cornea is projected around the pupil. To do.
  • the subject preferably visually recognizes the observation image used as the second image, but does not visually recognize part or all of the first image that is relatively less necessary to be visually recognized. Therefore, the subject can appropriately view the observation image without being bothered by the first image projected onto the eye together with the observation image used as the second image.
  • the projection unit distributes the first image and the projection position of the first image around the projection position of the second image on the surface of the cornea. Projecting the second image.
  • the projecting means can project the projected image in which the second image is located at the center portion and the first image is located at the outer edge portion on the eye.
  • the center of the projection image projected by the projection means The light that forms the second image located on the retina easily passes through the pupil. Therefore, the projecting means can suitably project the second image so that the light that forms the second image on the retina passes through the pupil.
  • the observation method of the present embodiment includes a projection unit capable of projecting a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye, and the eye
  • the projection position of the second image is adjusted so that the light to be imaged passes through the pupil of the eye.
  • the observation method of the present embodiment it is possible to receive the same effects as the various effects that the observation apparatus of the present embodiment described above receives.
  • the observation method of the present embodiment can also adopt various aspects.
  • the computer program according to the present embodiment includes a projection unit capable of projecting a first image to be projected on the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye, and the eye.
  • a computer program for operating an observation device that observes the state of the eye using an imaging unit that acquires an observation image by imaging, wherein the observation image is used as the second image, and the second image The observation apparatus is caused to perform an operation of adjusting the projection position of the second image so that light that forms an image on the retina passes through the pupil of the eye.
  • the computer program of the present embodiment it is possible to receive the same effects as the various effects that the observation apparatus of the present embodiment described above receives.
  • the computer program of the present embodiment can also adopt various aspects.
  • the computer program of the present embodiment may be recorded on a computer-readable recording medium.
  • the observation apparatus includes the projection unit and the imaging unit, and the observation image is displayed so that the light that forms the observation image used as the second image on the retina passes through the pupil of the eye. Adjust the projection position.
  • the projection position of the observation image is adjusted so that the light that forms the observation image used as the second image on the retina passes through the pupil of the eye.
  • the computer program according to the present embodiment causes the observation apparatus to perform an operation of adjusting the projection position of the observation image so that the light that forms the observation image used as the second image on the retina passes through the pupil of the eye. Therefore, even when the position of the eye changes, the subject can preferably visually recognize the observation image acquired by imaging the eye.
  • the observation apparatus, the observation method, and the computer program of the present invention are formed on the surface of the cornea by acquiring the observation image by imaging the surface of the subject's cornea and analyzing the acquired observation image. It is assumed that the present invention is applied to an observation apparatus that estimates (in other words, measures) the state of the tear film.
  • the observation apparatus, the observation method, and the computer program of the present invention may be applied to any observation apparatus that observes the eye state of the subject.
  • the observation apparatus, the observation method, and the computer program of the present invention acquire an observation image by imaging the surface of the subject's cornea and display the acquired observation image to a user (for example, an ophthalmologist) or the like. You may apply with respect to an observation apparatus. In this case, the user may estimate the eye state based on the observation image displayed by the observation device.
  • FIG. 1 is a block diagram showing the configuration of the observation apparatus 1 of the first embodiment.
  • the observation apparatus 1 of the first example includes a projection unit 110 that is a specific example of the “projection unit” in the above-described embodiment, and one of the “projection unit” in the above-described embodiment.
  • the diffusion plate 120 as a specific example
  • the eyepiece lens 124 as a specific example of the “projection unit” in the above-described embodiment
  • the Koehler illumination lens as a specific example of the “projection unit” in the above-described embodiment 131
  • a beam splitter 132 an imaging unit 140 that is a specific example of the “imaging unit” in the above-described embodiment
  • a control unit 150 that is a specific example of the “control unit” in the above-described embodiment.
  • the projection unit 110, the diffusion plate 120, the eyepiece lens 124, the Koehler illumination lens 131, the beam splitter 132, and the imaging unit 140 respectively represent the projection unit 110, the eyepiece lens 124, the Koehler illumination lens 131, or the imaging. It is described using a cross-sectional view along the optical axis of the portion 140.
  • Projection unit 110 projects a desired projection image.
  • the projection unit 110 projects the projection image so that at least a part of the projection image forms an image on a diffusion plate 120 described later.
  • the projection unit 110 projects the projection image so that at least a part of the projection image forms an image on the retina.
  • the projection unit 110 includes a display element 111, a projection lens 112, and a projection diaphragm 113.
  • the display element 111 displays a projection image to be projected by the projection unit 110.
  • the display element 111 is an arbitrary display device such as a liquid crystal display, for example.
  • the display element 111 includes a display surface 111a on which a projection image is displayed.
  • the display surface 111a is a first display area for displaying an examination image (see FIGS. 3A to 3D described later) used for observing the state of the tear film. It is virtually divided into 111a1 and a second display area 111a2 for displaying an observation image (see FIG. 4 described later) that is an imaging result of the imaging unit 140.
  • the first display area 111a1 is distributed so as to surround the second display area 111a2. In other words, the first display area 111a1 is distributed around or outside the second display area 111a2.
  • the second display area 111a2 is preferably closer to the center of the display surface 111a than the first display area 111a1.
  • the display element 111 displays an inspection image in the first display area 111a1. Further, the display element 111 displays an observation image in the second display area 111a2. In other words, in the first embodiment, the display element 111 is arranged so that the inspection image surrounds the observation image (in other words, the observation image is positioned at or near the center of the inspection image). A projected image obtained by combining the image is displayed. As a result, illumination light L11 for projecting the inspection image onto the eye (more specifically, projecting the inspection image onto the diffusion plate 120) is emitted from the first display region 111a1. From the second display area 111a2, illumination light L12 for projecting the observation image onto the eye (more specifically, forming the observation image on the retina) is emitted.
  • the projection lens 112 focuses the illumination light L11 on the diffusion plate 120. As a result, the inspection image projected by the projection unit 110 is formed on the diffusion plate 120. In addition, the projection lens 112 forms an image of the illumination light L12 on the retina together with the Koehler illumination lens 131 and the eyepiece lens. As a result, the observation image projected by the projection unit 110 forms an image on the retina.
  • the projection diaphragm 113 adjusts the light amounts of the illumination light L11 and the illumination light L12 emitted from the projection unit 110.
  • the diffusion plate 120 is a plate (in other words, a screen) that diffuses the illumination light L11 incident on the diffusion plate 120.
  • the diffusing plate 120 emits the illumination light L11 incident on the surface 121 of the diffusing plate 120 facing the projection unit 110 side, and the surface 122 of the diffusing plate 120 facing the subject side (corneal side). Is diffused as illumination light L21. At least a part of the illumination light L21 diffused by the diffusion plate 120 illuminates the cornea.
  • the cross section of the surface 122 of the diffusion plate 120 is preferably a saw-shaped cross section. That is, the surface 122 preferably has a shape like the surface of a Fresnel lens.
  • the cross section of the surface 122 is a saw-shaped cross section that can diffuse more illumination light L11 toward the cornea as illumination light L21 as compared to the case where the cross section of the surface 122 is not a saw-like cross section. It is preferable to become. As a result, as shown in FIG. 1, the illumination light L11 is diffused by the diffusion plate 120 so that more illumination light L11 is directed to the cornea as illumination light L21.
  • an opening 123 is formed in the diffusion plate 120.
  • the eye of the subject is located at a position where the cornea can face the opening 123.
  • the opening 123 is an opening that penetrates the diffusion plate 120 from the surface 121 toward the surface 122.
  • the opening 123 is an opening through which the reflected light L31 that is the illumination light L21 reflected by the cornea passes.
  • An eyepiece lens 124 that guides the reflected light L31 to the reflection surface of the beam splitter 132 is disposed in the opening 123.
  • the opening 123 is further an opening through which the illumination light L12 incident on the diffusion plate 120 after passing through the beam splitter 132 passes.
  • the illumination light L12 passing through the opening 123 is guided to the retina by the eyepiece lens 124 disposed in the opening 123.
  • the illumination light L12 forms an image on the retina. That is, the illumination light L12 emitted from the projection unit 110 is not diffused by the diffusion plate 120. However, at least a part of the illumination light L12 emitted from the projection unit 110 may be diffused by the diffusion plate 120.
  • the diffusion plate 120 is a transmission type diffusion plate.
  • the diffusion plate 120 may be a reflection type diffusion plate.
  • the observation apparatus 1 may include an arbitrary optical element that can diffuse the illumination light L11 incident on the diffusion plate 120 in addition to or instead of the diffusion plate 120.
  • the observation apparatus 1 may include a Fresnel lens in addition to or instead of the diffusion plate 120.
  • the cross section of the surface 122 of the diffusion plate 120 may not be a saw-shaped cross section.
  • the surface 122 of the diffusion plate 120 may be a flat surface.
  • the Koehler illumination lens 131 together with the projection lens 112 and the eyepiece lens 124, forms an image of the illumination light L12 on the retina.
  • an intermediate imaging plane on which the illumination light L12 forms an image is positioned between the Koehler illumination lens 131 and the eyepiece lens 124.
  • the illumination light L12 forms an image on an intermediate image plane that coincides with the front focal point of the eyepiece lens 124 positioned between the Koehler illumination lens 131 and the eyepiece lens 124.
  • the illumination light L11 preferably does not pass through the Koehler illumination lens 131 (that is, does not pass through the lens surface of the Koehler illumination lens 131). However, at least a part of the illumination light L11 may pass through the Koehler illumination lens 131.
  • the beam splitter 132 transmits the illumination light L11 and the illumination light L12 emitted from the projection unit 110. On the other hand, the beam splitter 132 reflects the reflected light L31, which is the illumination light L21 reflected by the cornea, toward the imaging unit 140.
  • the imaging unit 140 is a corneal reflection image of the diffusion plate 120 on which the inspection image is projected (that is, an image formed by the reflected light L31 that is the illumination light L21 reflected by the cornea, and is substantially the diffusion plate 120.
  • the surface 122) or the surface of the cornea In order to capture a cornea reflection image or the surface of the cornea, the imaging unit 140 includes an imaging diaphragm 141, an imaging lens 142, and an imaging element 143.
  • the imaging diaphragm 141 adjusts the light amount of the reflected light L31 reflected by the beam splitter 130 (more specifically, the light amount of the reflected light L31 toward the image sensor 143).
  • the imaging lens 142 forms an image of the reflected light L31 on the imaging device 143 (more specifically, on the imaging surface of the imaging device 143). As a result, on the image sensor 143, a cornea reflection image of the diffusion plate 120 on which the inspection image is projected or an image showing the surface of the cornea is formed.
  • the image sensor 143 includes a CCD sensor or a CMOS sensor that converts the reflected light L31 incident on the image sensor 143 into an electric signal. As a result, the image sensor 143 acquires an observation image that is a cornea reflection image of the diffusion plate 120 on which the inspection image is projected or an image showing the surface of the cornea. The observation image acquired by the image sensor 143 is output to the control unit 150.
  • the control unit 150 controls the overall operation of the observation apparatus 1.
  • the control unit 150 may include a CPU (Central Processing Unit).
  • the control unit 150 may include a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), for example.
  • the control unit 150 estimates the state of the tear film formed on the surface of the cornea by analyzing the observation image acquired by the imaging unit 140. Furthermore, the control unit 150 controls the projection unit 110 so that the illumination light L12 for forming an observation image on the retina passes through the pupil of the subject.
  • the control unit 150 includes an image analysis unit 151 and a state estimation unit 152 mainly for estimating the tear film state. Furthermore, the control unit 150 includes a pupil detection unit 153 and a display control unit 154 in order to control the projection unit 110 so that the illumination light L12 mainly passes through the pupil of the subject.
  • the control unit 150 may execute a computer program on the CPU for causing the CPU to execute the operations of the image analysis unit 151, the state estimation unit 152, the pupil detection unit 153, and the display control unit 154.
  • the control unit 150 may read such a computer program from a recording medium such as a memory, or may download the computer program via a network.
  • the image analysis unit 151, the state estimation unit 152, the pupil detection unit 153, and the display control unit 154 function on the CPU as logical processing blocks, for example.
  • at least one of the image analysis unit 151, the state estimation unit 152, the pupil detection unit 153, and the display control unit 154 may be a circuit block physically realized in the control unit 150.
  • the image analysis unit 151 analyzes the observation image acquired by the imaging unit 140. For example, as will be described in detail later, when an all-white inspection image is projected onto the diffusion plate 120, the image analysis unit 151 may analyze the interference color that appears in the observation image.
  • the interference color appearing in the observation image is the color exhibited by the interference light between the reflected light L31 reflected by the surface of the oil layer and the reflected light L31 reflected by the back surface of the oil layer (that is, the interface between the oil layer and the water layer). means.
  • the image analysis unit 151 changes the temporal change (temporal) of the linear pattern appearing in the observation image. May be analyzed.
  • the state estimation unit 152 estimates the state of the tear film based on the analysis result of the image analysis unit 151 (in other words, measures). For example, based on the “interference color appearing in the observation image” that is an example of the analysis result of the image analysis unit 151, the state estimation unit 152 configures an “oil layer (that is, a tear film) that is an example of the state of the tear film. It is also possible to estimate the “thickness of the oil layer)”.
  • the state estimation unit 152 uses “BUT (tear film Break Up Time), which is an example of a tear film state, based on an“ analysis of a linear pattern with time ”that is an example of an analysis result of the image analysis unit 151 : Tear film destruction time: the time from when the subject's eyes open until the surface of the tear film breaks)) may be estimated.
  • BUT head film Break Up Time
  • the pupil detection unit 153 detects the position of the subject's pupil that appears in the observation image acquired by the imaging unit 140. For example, the pupil detection unit 153 detects the position of the pupil appearing in the observation image by analyzing the observation image acquired by the imaging unit 140.
  • the display control unit 154 controls the display element 111 so as to display an examination image used for observing the state of the tear film. Further, the display control unit 154 controls the display element 111 so that the observation image acquired by the imaging unit 140 is displayed.
  • the display control unit 154 controls the display element 111 so as to display the inspection image in the first display area 111a1 surrounding the second display area 111a2. Further, the display control unit 154 controls the display element 111 so as to display the observation image in the second display area 111a2 surrounded by the first display area 111a1. Therefore, the display control unit 154 displays the projection image obtained by combining the observation image and the inspection image so that the observation image overlaps the center (or the vicinity of the center) of the inspection image.
  • the element 111 is controlled. In other words, the display control unit 154 controls the display element 111 to display a projection image obtained by combining the observation image and the inspection image so that the inspection image surrounds the observation image.
  • the display control unit 154 further adjusts the display position of the observation image on the display surface 111a of the display element 111 based on the detection result of the pupil detection unit 153. That is, the display control unit 154 further controls the display element 111 so as to adjust the display position of the observation image based on the detection result of the pupil detection unit 153. Specifically, the display control unit 154 adjusts the display position of the observation image on the display surface 111a so that the illumination light L12 for forming the observation image on the retina passes through the pupil. That is, the display control unit 154 adjusts the position where the second display region 111a2 is distributed on the display surface 111a.
  • the display position of the observation image on the display surface 111a is adjusted by adjusting the surface of the cornea (or an optical member that guides the illumination light L12 from the projection unit 110 to the retina (for example, the Koehler illumination lens 131 or the eyepiece 124).
  • This corresponds to adjustment of the projection position of the observation image on a virtual optical surface perpendicular to the optical axis. That is, the adjustment of the display position of the observation image on the display surface 111a corresponds to the adjustment of the irradiation position of the illumination light L12 on the surface of the cornea. Therefore, it can be said that the display control unit 154 substantially adjusts the projection position of the observation image (that is, the irradiation position of the illumination light L12).
  • FIG. 2 is a flowchart showing a flow of operations of the observation apparatus 1 of the first embodiment.
  • the display control unit 154 controls the display element 111 so as to display the inspection image on the display surface 111 (step S101). At this time, the display control unit 154 may control the display element 111 so as to display the inspection image on the entire display surface 111. Alternatively, the display control unit 154 displays the inspection image on the first display area 111a1 (that is, the center of the display surface 111a or the area excluding the second display area 111a2) in the display surface 111a. May be controlled. As a result, the display element 111 displays an inspection image (step S101).
  • FIG. 3A to FIG. 3D are plan views each showing an inspection image.
  • FIG. 3A shows an inspection image displayed when the observation apparatus 1 estimates the thickness of the oil layer, which is an example of the tear film state.
  • the display control unit 154 displays an inspection image that is an all-white image (that is, an image that is entirely white).
  • the display element 111 is controlled to display.
  • FIG. 3B shows a first example of an inspection image displayed when the observation apparatus 1 estimates a BUT that is an example of a tear film state.
  • the display control unit 154 displays an examination image that is an image of a plurality of concentric rings (that is, a multiple ring pattern).
  • the display element 111 is controlled.
  • FIG. 3C shows a second example of the inspection image displayed when the observation apparatus 1 estimates the BUT.
  • the display control unit 154 replaces the inspection image that is a multiple ring pattern shown in FIG.
  • the display element 111 may be controlled so as to display an inspection image which is an image (that is, a stripe pattern) of a plurality of straight lines or line segments.
  • FIG. 3D shows a third example of the inspection image displayed when the observation apparatus 1 estimates the BUT.
  • the display control unit 154 displays the inspection image that is a multiple ring pattern shown in FIG. 3B and the inspection image shown in FIG.
  • the display element 111 may be controlled so as to display an inspection image that is an image of a lattice (that is, a lattice pattern) instead of the inspection image that is a stripe pattern.
  • the display control unit 154 displays the inspection image that is an image (that is, a linear pattern) of a plurality of straight lines, line segments, or curves. To control.
  • the inspection image shown in FIG. 3A is merely an example of the inspection image displayed when the observation apparatus 1 estimates the thickness of the oil layer. Therefore, when the observation apparatus 1 estimates the oil layer thickness, the display control unit 154 controls the display element 111 so as to display another inspection image different from the inspection image shown in FIG. May be.
  • the inspection images shown in FIGS. 3B to 3D are only examples of inspection images displayed when the observation apparatus 1 estimates the BUT. Therefore, when the observation apparatus 1 estimates the BUT, the display control unit 154 displays the other inspection image different from the inspection images shown in FIGS. May be controlled.
  • illumination light L11 for projecting the inspection image onto the diffusion plate 120 is emitted from the display surface 111a (or the first display region 111a1).
  • the illumination light L11 enters the diffusion plate 120 via the projection lens 112 and the projection stop 113.
  • an inspection image is formed on the diffusion plate 120.
  • the diffusion plate 120 diffuses the illumination light L11 incident on the diffusion plate 120 as illumination light L21.
  • the illumination light L21 enters the subject's cornea. Therefore, the diffusing plate 120 functions as an illuminating plate that illuminates the eyes with a light / dark pattern corresponding to the inspection image projected by the projection unit 110.
  • the inspection image may be formed on the cornea. Alternatively, the inspection image may not be formed on the cornea.
  • the imaging unit 140 captures the cornea reflection image of the diffuser plate 120 on which the inspection image is projected or the surface of the cornea (step S102). As a result, the imaging unit 140 acquires an observation image that is an image reflecting the surface state of the cornea (step S102).
  • FIG. 4 is a plan view showing an observation image.
  • FIG. 4 shows an observation image obtained by capturing a corneal reflection image of the diffusion plate 120 when the inspection image (multiple ring pattern) shown in FIG. 3B is projected on the diffusion plate 120.
  • the observation image not only the inspection image (that is, a multiple ring pattern) on the diffusion plate 120 reflected in the cornea (and the eye) of the subject, but also the anterior eye of the subject. Department is included.
  • the imaging lens 142 is focused on the diffusing plate 120 reflected in the cornea, so the anterior eye portion of the subject is slightly blurred. there is a possibility.
  • the display control unit 154 synthesizes the inspection image displayed on the display element 111 in step S101 and the observation image acquired by the imaging unit 140 in step S102 (step S103). As a result, the display control unit 154 generates a projection image obtained by synthesizing the inspection image and the observation image (step S103).
  • FIG. 5 is a plan view showing a projection image obtained by synthesizing the inspection image and the observation image.
  • the inspection image that is a multiple ring pattern surrounds the observation image.
  • the observation image is arranged at the center of the inspection image or in the vicinity of the center.
  • the display control unit 154 combines the inspection image and the observation image so that the inspection image surrounds the observation image (for example, the observation image is located at or near the center of the inspection image). To do.
  • the display control unit 154 displays the inspection image in the first display area 111a1 surrounding the second display area 111a2 and displays the inspection image in the second display area 111a2 surrounded by the first display area 111a1.
  • the inspection image and the observation image are synthesized.
  • the display control unit 154 controls the display element 111 so as to display the projection image generated in step S103 (that is, an image obtained by combining the inspection image and the observation image). (Step S104). As a result, the display element 111 displays a projection image (that is, an image obtained by combining the inspection image and the observation image) (step S104).
  • the inspection image is projected onto the eye from the first display area 111a1 of the display surface 111a (more specifically, the inspection image is projected onto the diffusion plate 120).
  • Illumination light L11 is emitted.
  • the diffusion plate 120 functions as an illumination plate that illuminates the eyes with a light / dark pattern corresponding to the inspection image projected by the projection unit 110.
  • the observation image is projected onto the eye from the second display area 111a2 of the display surface 111a (more specifically, the observation image is formed on the retina).
  • Illumination light L12 is emitted.
  • the illumination light L12 enters the subject's cornea via the projection lens 112, the projection stop 113, the Koehler illumination lens 131, the beam splitter 132, and the eyepiece lens 124.
  • the illumination light L12 forms an image on the retina of the subject. Accordingly, the subject can visually recognize an observation image that is an image of the surface of the cornea on which the inspection image is projected.
  • the image analysis unit 151 analyzes the observation image acquired by the imaging unit 140 in step S102 (step S111).
  • the imaging unit 140 images the surface of the cornea after the focus of the imaging lens 142 is matched to the surface of the cornea. For this reason, an observation image turns into an image of the surface of the cornea illuminated by the test
  • the image analysis unit 151 analyzes the observation image so as to identify interference colors generated in the inspection image included in the observation image (that is, interference colors appearing in the observation image). However, the image analysis unit 151 may analyze the observation image so as to estimate a feature different from the interference color among the features of the inspection image included in the observation image.
  • the imaging unit 140 images the surface 122 of the diffusion plate 120 after matching the focus of the imaging lens 142 with the diffusion plate 120 reflected on the cornea. For this reason, the observation image becomes a cornea reflection image of the diffusion plate 120 on which the inspection image which is a multiple ring pattern is projected.
  • the image analysis unit 151 analyzes the observation image so as to determine temporal changes (in other words, temporal changes) of the plurality of rings included in the observation image. In particular, the image analysis unit 151 analyzes the observation image so as to determine the temporal destruction status of the plurality of rings included in the observation image.
  • the image analysis unit 151 changes over time in a plurality of lines or lattices included in the observation image (in particular, The observation image is analyzed so as to estimate the destruction state.
  • the image analysis unit 151 may analyze the observation image so as to estimate a feature different from the temporal change (particularly, the destruction state) of the plurality of lines among the features of the inspection image included in the observation image. Good.
  • the state estimation unit 152 estimates the state of the tear film based on the analysis result of the image analysis unit 151 in step S111 (step S112).
  • the image analysis unit 151 analyzes the observation image so as to identify the interference color generated in the inspection image included in the observation image.
  • the state estimation unit 152 estimates the thickness of the oil layer based on the interference color corresponding to the analysis result of the image analysis unit 151.
  • the interference color that appears in the observation image obtained by imaging the cornea illuminated by the diffuser plate 120 onto which the inspection image that is an all-white image is projected is a color unique to the thickness of the oil layer. It tends to be. Therefore, the state estimation unit 152 can estimate the thickness of the oil layer based on the interference color corresponding to the analysis result of the image analysis unit 151.
  • the state estimation unit 152 may estimate a tear film state different from the thickness of the oil layer.
  • the image analysis unit 151 determines a change with time (particularly, a destruction state) of a plurality of rings included in an inspection image included in the observation image.
  • the observation image is analyzed.
  • the state estimation unit 152 estimates the BUT based on changes over time of the plurality of rings corresponding to the analysis result of the image analysis unit 151 (particularly, the destruction state). Specifically, when a crack is formed on the surface of the tear film, the shapes of a plurality of rings included in the observation image are disturbed.
  • the state estimation unit 152 starts from the time when the subject's eyes are opened until the shapes of the plurality of rings included in the observation image are disturbed (for example, the shape of at least one of the plurality of rings is disturbed in a predetermined manner). By estimating the time, the BUT can be estimated. However, the state estimation unit 152 may estimate a tear film state different from the BUT.
  • the BUT is used as one of indices for diagnosing whether or not the eye of the subject is dry eye. Therefore, the observation apparatus 1 supports diagnosis of whether or not the eye of the subject is dry eye by presenting the BUT estimated by the state estimation unit 152 to the user (for example, an ophthalmologist or a subject). Good.
  • the observation apparatus 1 may support diagnosis of whether or not the eye of the subject is dry eye by presenting the thickness of the oil layer estimated by the state estimation unit 152 to the user.
  • the observation apparatus 1 estimates the BUT based on the thickness of the oil layer estimated by the state estimation unit 152 and presents the estimated BUT to the user, thereby diagnosing whether or not the eye of the subject is dry eye. May be supported.
  • the display control unit 154 displays based on the detection result of the pupil detection unit 153.
  • the display position of the observation image on the display surface 111a of the element 111 is adjusted.
  • the pupil detection unit 153 detects the position of the subject's pupil that appears in the observation image acquired by the imaging unit 140 (step S121). For example, the pupil detection unit 153 detects the position of the pupil appearing in the observation image by analyzing the observation image acquired by the imaging unit 140.
  • the pupil detection unit 153 performs pattern matching processing for detecting the pattern of the pupil (or at least a part of the eye including the pupil or the pupil that surrounds the pupil) from the observation image, thereby determining the position of the pupil appearing in the observation image. It may be detected. Since the pattern matching process itself is publicly known, detailed description of the pattern matching process is omitted.
  • an alignment operation is performed when the display element 111 displays the inspection image in step S101.
  • the alignment operation is, for example, an operation of adjusting the eye position of the subject or the projection position of the examination image or the projection image so that the centers of the plurality of rings constituting the multiple ring pattern coincide with the center of the pupil. That is, the positional relationship between the plurality of rings and the pupil is a predetermined positional relationship by the alignment operation.
  • the pupil detection unit 153 may detect the position of the pupil based on the positions of a plurality of rings in the observation image.
  • the display control unit 154 may control the display element 111 such that a marker for detecting the position of the pupil is included in the examination image.
  • the pupil detection unit 153 may detect the position of the pupil based on the position of the marker in the observation image.
  • the pupil detection unit 153 detects the position of the pupil of the subject appearing in the observation image using any known or novel method.
  • the display control unit 154 passes the illumination light L12 for forming an observation image on the retina based on the detection result of the pupil detection unit 153 in step S121 (that is, the position of the detected pupil). It is determined whether or not it is possible (step S122).
  • the display control unit 154 may determine whether or not the illumination light L12 can pass through the pupil by performing the following operation. First, the display control unit 154 calculates an optical path of the illumination light L12 for forming an observation image displayed in the second display area 111a2 on the retina. As a result, the display control unit 154 can specify the passage position of the illumination light L12 on the cornea. Thereafter, the display control unit 154 determines whether or not the passage position of the illumination light L12 on the cornea matches the position of the pupil detected by the pupil detection unit 153. That is, the display control unit 154 determines whether the passage position of the illumination light L12 on the cornea is included in the position of the pupil detected by the pupil detection unit 153.
  • the display control unit 154 Determines that the illumination light L12 can pass through the pupil. However, the display control unit 154 may determine whether or not the illumination light L12 can pass through the pupil using a known or new method different from the method described above.
  • step S122 when it is determined that the illumination light L12 cannot pass through the pupil (step S122: No), the display control unit 154 causes the illumination light L12 to pass through the pupil.
  • the display position of the observation image on the display surface 111a is adjusted (step S123). That is, the display control unit 154 adjusts the distribution position of the second display region 111a2 on the display surface 111a so that the illumination light L12 passes through the pupil (step S123).
  • description will be given using an example in which an inspection image that is a multiple ring pattern is projected onto the eye.
  • FIG. 6A shows an example in which the observation image is displayed at the display reference position that is the center of the display surface 111a. That is, FIG. 6A shows an example in which the observation image is displayed at the display reference position on the display surface 111a so that the center of the observation image matches the center of the inspection image (that is, the centers of the plurality of rings). Is shown.
  • the observation image displayed at the display reference position on the display surface 111a forms an image on the retina when the pupil is located at the pupil reference position.
  • the state in which the pupil is located at the pupil reference position is a state in which the pupil is facing directly in front of the subject as shown in FIG.
  • the centers of the plurality of rings constituting the observation image displayed at the display reference position coincide with the centers of the pupils positioned at the pupil reference position.
  • the state where the pupil is located at the pupil reference position is a state where the centers of a plurality of rings constituting the observation image displayed at the display reference position in the observation image coincide with the center of the pupil.
  • the illumination light L12 for forming the observation image on the retina can pass through the pupil located at the pupil reference position.
  • the illumination light L12 forms an image on the retina. That is, the observation image is formed on the retina. Accordingly, the subject can visually recognize the observation image.
  • the subject moves his / her eyes as shown in FIG. 7 (a) with reference to the state shown in FIGS. 6 (a) to 6 (d).
  • the pupil is located at a position shifted by a predetermined shift amount s0 from the pupil reference position.
  • the subject moves his / her eyes toward the left side (however, the left side when viewed from the subject and the right side when viewed from the projection unit 110). That is, in the example shown in FIG. 7A, the pupil is located at a position shifted by a predetermined shift amount s0 toward the left side from the pupil reference position.
  • FIG. 7B shows an observation image acquired by imaging the eye shown in FIG. 7A (in other words, imaging a reflection image of the diffusion plate 120 by the eye shown in FIG. 7A).
  • the centers of the plurality of rings constituting the observation image displayed at the display reference position in the observation image do not coincide with the pupil center.
  • the center of the pupil is located at a position shifted by a predetermined shift amount s1 from the centers of the plurality of rings constituting the observation image displayed at the display reference position.
  • a predetermined shift amount s1 from the centers of the plurality of rings constituting the observation image displayed at the display reference position.
  • the center of the pupil is shifted from the center of the plurality of rings constituting the observation image displayed at the display reference position to the right side (however, right side toward the observation image). It is located at a position shifted by an amount s1.
  • the predetermined deviation amount s1 is typically proportional to the predetermined deviation amount s0.
  • the illumination light L12 for forming the observation image displayed at the display reference position on the retina has a pupil located at a position shifted from the pupil reference position. Can't pass. As a result, the illumination light L12 does not form an image on the retina. That is, the observation image is not formed on the retina. Therefore, the subject cannot visually recognize the observation image.
  • the display control unit 154 adjusts the display position of the observation image on the display surface 111a (that is, the position of the second display area 111a2) so that the illumination light L12 passes through the pupil. Specifically, as illustrated in FIG. 7D, the display control unit 154 displays the display position of the observation image so that the display position of the observation image coincides with a position shifted by a predetermined shift amount s2 from the display reference position. Adjust.
  • the predetermined deviation amount s2 is typically proportional to the predetermined deviation amount s0.
  • the display control unit 154 has the display position of the observation image on the left side from the display reference position (however, the left side when viewed from the projection unit 110, the right side when viewed from the subject, and so on. ), The display position of the observation image is adjusted so as to coincide with the position shifted by the predetermined shift amount s2. That is, in the example shown in FIG. 7D, the display control unit 154 moves the observation image display position in the direction opposite to the pupil shift direction from the display reference position (that is, the pupil shift direction with respect to the reference position). The display position of the observation image is adjusted so as to coincide with the position shifted by the predetermined shift amount s2.
  • the display control unit 154 causes the display position of the observation image to be shifted from the display reference position by the predetermined shift amount s2 in the same direction as the pupil shift direction.
  • the display position of the observation image may be adjusted so as to coincide with.
  • the optical path of the illumination light L12 changes.
  • the illumination light L12 for forming an observation image displayed at a position shifted from the display reference position on the retina is positioned at a position shifted from the pupil reference position. Can pass through the pupil.
  • the illumination light L12 forms an image on the retina. That is, the observation image is formed on the retina. Therefore, the subject can visually recognize the observation image even when the eye (particularly the pupil) is moved.
  • step S122 when it is determined that the illumination light L12 can pass through the pupil (step S122: Yes), the display control unit 154 displays the display surface. It is not necessary to adjust the display position of the observation image on 111a.
  • step S102 to step S104, from step S111 to step S112, and from step S121 to step S213 are repeated until the observation operation by the observation apparatus 1 is completed (step S131).
  • the observation apparatus 1 of the first embodiment can adjust the display position of the observation image on the display surface 111a based on the position of the pupil of the subject. Therefore, the subject can visually recognize the observation image even when the eye (particularly the pupil) is moved. That is, the subject can visually recognize the observation image even when the position of the eye (particularly the pupil) changes.
  • the observation apparatus 1 of the first embodiment can detect the position of the pupil of the subject by analyzing the observation image. Therefore, the observation apparatus 1 can detect the position of the pupil of the subject relatively easily.
  • the observation apparatus 1 allows the observation image and the inspection so that the inspection image surrounds the observation image (in other words, the observation image is located at or near the center of the inspection image).
  • a projected image obtained by combining the image can be projected.
  • the pupil is located at the center of the eye (that is, the center of the surface of the eye, the surface of the anterior eye portion, or the surface of the cornea).
  • the observation apparatus 1 can preferably project the observation image so that the possibility that the illumination light L12 passes through the pupil is relatively high.
  • the possibility that the illumination light L11 passes through the pupil is lower than when the inspection image is located at the center of the projection image. . That is, the possibility that the illumination light L11 is projected around the pupil increases.
  • the subject does not visually recognize a part or all of the inspection image whose necessity for visual recognition is relatively small while appropriately viewing the observation image. Therefore, the subject can appropriately view the observation image without being bothered by the inspection image projected onto the eye together with the observation image.
  • the display control unit 154 may adjust the display position of the inspection image on the display surface 111a in addition to adjusting the display position of the observation image on the display surface 111a. At this time, the display control unit 154 may adjust the display position of the inspection image on the display surface 111a in an adjustment manner similar to the adjustment manner of the display position of the observation image on the display surface 111a. For example, when an inspection image that is a multiple ring pattern is projected on the eye, the display control unit 154 displays the center of a plurality of rings projected on the surface of the cornea so that it matches the center of the pupil. The display position of the inspection image on the surface 111a may be adjusted.
  • the display control unit 154 determines that the positional relationship between the examination image projected on the surface of the cornea and the pupil is predetermined regardless of the change in the position of the pupil.
  • the display position of the inspection image on the display surface 111a may be adjusted so that the positional relationship is satisfied.
  • the display control unit 154 directly or indirectly indicates whether or not the illumination light L12 passes through the pupil.
  • the display position of the observation image may be adjusted based on other characteristics.
  • the display control unit 154 displays an arbitrary image different from the observation image in the second display region 111a2.
  • the display element 111 may be controlled to display.
  • the display control unit 154 may control the display element 111 such that an image indicating information useful for observation of the eye state is displayed in the second display area 111a2.
  • FIG. 8 is a block diagram showing the configuration of the observation apparatus 2 of the second embodiment.
  • the detailed description is abbreviate
  • the observation device 2 of the second example is different from the observation device 1 of the first example in place of the diffuser plate 120 and the eyepiece lens 124 in the above-described embodiment. It is different in that it includes an objective lens 220 that is a specific example.
  • Other configuration requirements provided in the observation device 2 of the second embodiment may be the same as other configuration requirements provided in the observation device 1 of the first embodiment.
  • the objective lens 220 forms the illumination light L11 incident on the objective lens 220 together with the projection lens 112 on the subject's cornea (or its vicinity, the same applies hereinafter). Specifically, the objective lens 220 is, together with the projection lens 112, the illumination light L11 incident on the objective lens 220 in contact with the cornea (particularly in contact with the central portion of the cornea or the vicinity thereof) or in the vicinity of the cornea.
  • the image is formed on a virtual imaging plane.
  • the objective lens 220 forms an image of the illumination light L12 incident on the objective lens 220 on the retina of the subject together with the projection lens 112 and the Koehler illumination lens 131.
  • an intermediate imaging plane on which the illumination light L12 forms an image is positioned between the Koehler illumination lens 131 and the objective lens 220.
  • the illumination light L12 forms an image on an intermediate image plane that coincides with the front focal point of the objective lens 220 located between the Koehler illumination lens 131 and the objective lens 220.
  • the objective lens 220 functions as an illuminating plate that illuminates the eyes with a light / dark pattern corresponding to the inspection image projected by the projection unit 110, and the projection An observation image projected by the unit 110 is formed on the retina.
  • the reflected light L31 which is the illumination light L11 reflected by the cornea
  • the reflected light L31 enters the imaging unit 140.
  • the imaging unit 140 can acquire an observation image.
  • the projection stop 113 and the center of curvature of the cornea have a conjugate relationship.
  • the illumination light L11 is incident substantially perpendicular to the cornea.
  • the reflected light L31 which is the illumination light L11 reflected by the cornea, passes through the objective lens 220 through the optical path substantially the same as the optical path of the illumination light L11 and enters the beam splitter 132.
  • the optical path of the illumination light L11 and the optical path of the reflected light L31 are largely distinguished and described. Yes.
  • the observation device 2 of the second embodiment can perform the operation (that is, the operation shown in FIG. 2) performed by the observation device 1 of the first embodiment described above.
  • the observation apparatus 2 of the second embodiment can preferably enjoy the effects that the observation apparatus 1 of the first embodiment described above can enjoy.
  • the observation apparatus 2 may not include the Koehler illumination lens 131.
  • the observation apparatus 2 may move the projection lens 112 along the optical axis of the projection lens 112.
  • the projection lens 112 can image the illumination light L11 on the cornea together with the objective lens 220 when the projection lens 112 is located at the first position.
  • the projection lens 112 when the projection lens 112 is located at a second position different from the first position, the projection lens 112 can image the illumination light L12 together with the objective lens 220 on the retina. Therefore, the observation apparatus 2 projects the projection image including the inspection image and the observation image by moving the projection lens 112 so that the inspection image is projected onto the surface of the cornea and the observation image is formed on the retina. be able to.
  • control unit 150 may control the display element 111 such that the display element 111 displays a projection image in synchronization with the movement of the projection lens 112.
  • the imaging unit 140 can preferably acquire an observation image because the illumination light L11 forms an image on the cornea.
  • the illumination light L12 does not form an image on the retina
  • the subject cannot visually recognize the observation image.
  • the projection lens 112 is positioned at the second position
  • the subject can visually recognize the observation image because the illumination light L12 forms an image on the retina.
  • the inspection image is blurred.
  • the display element 111 displays the observation image obtained by the imaging unit 140 when the projection lens 112 is located at the first position and the display element 111 is displayed when the projection lens 112 is located at the second position, the frame rate is lowered.
  • the subject can view the observed image without the Koehler illumination lens 113.
  • the projection image displayed by the display element 111 cannot be visually recognized by the subject, so it is not necessary to combine the observation image with the inspection image, and the projection image matches the inspection image. It may be.
  • the objective lens 220 passes the illumination light L11 and the lens portion that forms the illumination light L11 on the cornea and the illumination light L12.
  • a lens portion that focuses the illumination light L12 on the retina may be provided.
  • the objective lens 220 may include a lens portion through which the illumination light L11 passes and the illumination light L11 forms an image on the cornea, while an opening through which the illumination light L12 passes may be formed in the objective lens 220.
  • the observation apparatus 2 can project a projection image including the inspection image and the observation image so that the inspection image is projected onto the surface of the cornea and the observation image is formed on the retina.
  • FIG. 9 is a block diagram illustrating a configuration of the observation apparatus 3 according to the third embodiment.
  • the detailed description is abbreviate
  • the observation apparatus 3 of the third example includes a projection unit 310 that is a specific example of the “projection unit” in the above-described embodiment and one of the “projection unit” in the above-described embodiment.
  • a platide plate 320 that is a specific example, an eyepiece 324 that is a specific example of the “projection unit” in the above-described embodiment, a beam splitter 332, an imaging unit 140, and a control unit 350 are provided.
  • the projection unit 310 is different from the projection unit 110 of the first embodiment in that a relay lens 314 is provided.
  • the projection unit 310 is different from the projection unit 110 of the first embodiment in that the inspection image is not projected (that is, the illumination light L11 is not emitted).
  • Other configuration requirements of the projection unit 310 of the third embodiment may be the same as other configuration requirements of the projection unit 110 of the first embodiment.
  • an intermediate image plane on which the illumination light L12 forms an image is located between the relay lens 314 and the objective lens 220.
  • the illumination light L12 forms an image on an intermediate image plane that coincides with the front focal point of the eyepiece lens 324 located between the relay lens 314 and the eyepiece lens 324. Therefore, it can be said that the relay lens 314 is a lens having substantially the same function as the Koehler illumination lens 131 described above.
  • the platide plate 320 is a plate that illuminates the surface of the cornea with a bright and dark pattern (illumination pattern) corresponding to the inspection image.
  • a configuration example of the platide plate 320 that projects a multiple ring pattern, which is an example of the platide plate 320, will be described.
  • a surface 322 of the platide plate 320 facing the subject (corneal side) is a concave surface.
  • a light transmitting portion constituting a ring pattern having a predetermined width is formed on the surface 322 of the platide plate 320 facing the subject side (corneal side).
  • a region other than the light transmitting portion of the surface 322 becomes a light shielding portion.
  • the platide plate 320 includes a light source (not shown) therein.
  • the illumination light L11 emitted from the light source passes through the light transmitting part and is irradiated on the surface of the cornea.
  • the surface of the cornea is illuminated with a light / dark pattern corresponding to the inspection image which is a multiple ring pattern.
  • an opening 323 is formed in the platide plate 320.
  • the eye of the subject is located at a position where the cornea can face the opening 323.
  • the opening 323 is an opening that penetrates the platide plate 320 from the surface 322 toward the other surface of the platide plate 320.
  • the opening 323 is an opening through which the reflected light L31 that is the illumination light L11 reflected by the cornea passes.
  • An eyepiece 324 that guides the reflected light L31 to the beam splitter 132 is disposed in the opening 323.
  • the beam splitter 332 reflects the illumination light L12 emitted from the projection unit 310 toward the placido plate 320 (particularly, the eyepiece lens 324). On the other hand, the beam splitter 332 transmits the reflected light L31 that is the illumination light L11 reflected by the cornea.
  • the control unit 350 is different from the control unit 150 of the first embodiment described above in that the display control unit 154 does not have to control the display element 111 so as to display an inspection image.
  • Other configuration requirements provided in the control unit 350 of the third embodiment may be the same as other configuration requirements provided in the control unit 150 of the first embodiment.
  • the observation device 3 of the third embodiment can perform the operation (that is, the operation shown in FIG. 2) performed by the observation device 1 of the first embodiment described above.
  • the display element 111 displays the observation image (that is, projects the image on the eye), while the platide plate 320 illuminates the eye with a light / dark pattern corresponding to the inspection image.
  • the observation apparatus 3 of the third embodiment can preferably enjoy the effects that the observation apparatus 1 of the first embodiment described above can enjoy.
  • Observation apparatus 110 Projection unit 111
  • Display element 112 Projection lens 113
  • Projection stop 120 Diffusion plate 124 Eyepiece lens 131 Koehler illumination lens 132
  • Beam splitter 140 Imaging unit 141 Imaging stop 142 Imaging lens 143 Imaging element 150
  • Control unit 151 Image Analysis unit 152
  • State estimation unit 153 Pupil detection unit 154
  • Display control unit 220 Objective lens 310
  • Projection unit 320 Placido plate 332 Beam splitter

Abstract

The present invention allows a test subject to favorably see an observed image acquired by capturing an image of an eye even when the position of the eye changes. An observation device (1) is provided with a projection means (110) capable of projecting on an eye of a test subject a first image to be projected on the corneal surface of the eye and a second image to be formed on the retina of the eye, and an image pickup means (140) for acquiring an observed image by capturing an image of the eye. The projection means uses the observed image as the second image and adjusts the projection position of the second image so that the light (L12) for forming the second image on the retina passes through the pupil of the eye.

Description

観察装置及び観察方法並びにコンピュータプログラムObservation apparatus, observation method, and computer program
 本発明は、被験者の眼の状態(例えば、角膜の表面に形成される涙液層の状態)を観察する観察装置及び観察方法並びにコンピュータプログラムに関する。 The present invention relates to an observation apparatus, an observation method, and a computer program for observing the eye state of a subject (for example, the state of a tear film formed on the surface of the cornea).
 このような観察装置として、被験者の眼を撮像することで得られる観察画像を被験者に提示する観察装置が知られている。例えば、特許文献1には、テレビカメラで撮影した被験眼の眼底像を被験眼に対して表示するテレビモニタを備える眼底カメラが記載されている。特許文献2には、テレビカメラで撮影された被験眼の前眼部像を被験者に向けて提示する液晶ディスプレイを備える眼科検査装置が記載されている。特許文献3には、前眼部像が結像する受光素子からの映像信号を表示する表示器を備え、被験者が測定中に表示器に表示された像を注視することができる眼科装置が記載されている。 As such an observation apparatus, an observation apparatus that presents an observation image obtained by imaging a subject's eye to the subject is known. For example, Patent Document 1 describes a fundus camera including a television monitor that displays a fundus image of a subject eye photographed with a television camera on the subject eye. Patent Document 2 describes an ophthalmologic examination apparatus including a liquid crystal display that presents an anterior segment image of a subject eye photographed by a television camera toward a subject. Patent Document 3 describes an ophthalmologic apparatus that includes a display that displays a video signal from a light receiving element on which an anterior ocular segment image is formed so that a subject can gaze at an image displayed on the display during measurement. Has been.
特開昭63-59927号公報JP-A-63-59927 特開平6-245907号公報JP-A-6-245907 特許第2960739号Patent No. 2960739
 特許文献1から特許文献3に記載された観察装置は、被験者の眼の位置(例えば、前眼ないしは瞳孔の位置等)が変わる場合に、被験者が視認可能な観察画像を提示し続けることが困難である又は容易ではない。つまり、特許文献1から特許文献3に記載された観察装置は、被験者が眼を動かした場合に、被験者が視認可能な観察画像を提示し続けることが困難である又は容易ではない。 The observation devices described in Patent Literature 1 to Patent Literature 3 have difficulty in continuously presenting an observation image that can be viewed by the subject when the eye position of the subject (for example, the position of the anterior eye or pupil) changes. Or not easy. That is, it is difficult or not easy for the observation devices described in Patent Literature 1 to Patent Literature 3 to continue presenting an observation image that can be visually recognized when the subject moves his / her eyes.
 例えば、特許文献1に記載された観察装置は、被験者の眼が廻る場合にテレビモニタを光軸と垂直な面の所要範囲を移動させることができる。しかしながら、被験者の眼が廻る都度テレビモニタを物理的に移動させる必要があるがゆえに、被験者が視認可能な観察画像を比較的容易に提示し続けることが困難である。 For example, the observation apparatus described in Patent Document 1 can move the television monitor in a required range on a plane perpendicular to the optical axis when the eye of the subject turns around. However, since it is necessary to physically move the television monitor each time the subject's eyes turn around, it is difficult to keep presenting an observation image that can be visually recognized by the subject relatively easily.
 例えば、特許文献2及び3に記載された観察装置は、被験者の眼の位置の変化を何ら考慮していない。このため、被験者の眼の位置の変化に起因して、観察画像を網膜上で結像させるための光が瞳孔を通過することができなくなる可能性がある。その結果、被験者は、観察画像を視認することができなくなる可能性がある。 For example, the observation devices described in Patent Documents 2 and 3 do not consider any change in the position of the eye of the subject. For this reason, there is a possibility that light for forming an observation image on the retina cannot pass through the pupil due to a change in the position of the eye of the subject. As a result, the subject may not be able to visually recognize the observation image.
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、眼の位置が変わる場合においても、眼を撮像することで取得される観察画像を被験者が好適に視認することが可能な観察装置及び観察方法並びにコンピュータプログラムを提供することを課題とする。 Examples of problems to be solved by the present invention include the above. It is an object of the present invention to provide an observation apparatus, an observation method, and a computer program that enable a subject to appropriately view an observation image acquired by imaging an eye even when the position of the eye changes. To do.
 上記課題を解決するために、本発明の観察装置は、被験者の眼の状態を観察する観察装置であって、前記眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを備え、前記投影手段は、前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する。 In order to solve the above problems, an observation apparatus of the present invention is an observation apparatus for observing the state of a subject's eye, and is formed on a first image to be projected on the surface of the cornea of the eye and the retina of the eye. A projection unit capable of projecting a second image to be imaged onto the eye; and an imaging unit that acquires an observation image by imaging the eye, wherein the projection unit uses the observation image as the second image. In addition, the projection position of the second image is adjusted so that light that forms the second image on the retina passes through the pupil of the eye.
 上記課題を解決するために、本発明の観察方法は、被験者の眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを用いて前記眼の状態を観察する観察方法であって、前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する。 In order to solve the above-described problems, the observation method of the present invention can project a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye onto the eye. An observation method of observing the state of the eye using a projection unit and an imaging unit that acquires an observation image by imaging the eye, using the observation image as the second image, and the first image The projection position of the second image is adjusted so that light that forms two images on the retina passes through the pupil of the eye.
 上記課題を解決するために、本発明のコンピュータプログラムは、被験者の眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを用いて前記眼の状態を観察する観察装置を動作させるコンピュータプログラムであって、前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する動作を前記観察装置に実行させる。 In order to solve the above problem, the computer program of the present invention can project a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye onto the eye. A computer program for operating an observation device that observes the state of the eye using a projection unit and an imaging unit that acquires an observation image by imaging the eye, and uses the observation image as the second image In addition, the observation apparatus is caused to perform an operation of adjusting the projection position of the second image so that the light that forms the second image on the retina passes through the pupil of the eye.
 本発明のこのような作用及び利得は次に説明する実施の形態から明らかにされる。 The operation and gain of the present invention will be clarified from the embodiments described below.
第1実施例の観察装置の構成を示すブロック図である。It is a block diagram which shows the structure of the observation apparatus of 1st Example. 第1実施例の観察装置の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement of the observation apparatus of 1st Example. 検査画像を示す平面図である。It is a top view which shows a test | inspection image. 観察画像を示す平面図である。It is a top view which shows an observation image. 検査画像と観察画像とを合成することで得られる投影画像を示す平面図である。It is a top view which shows the projection image obtained by synthesize | combining a test | inspection image and an observation image. 観察画像の表示位置の調整動作を説明する模式図である。It is a schematic diagram explaining the adjustment operation of the display position of an observation image. 観察画像の表示位置の調整動作を説明する模式図である。It is a schematic diagram explaining the adjustment operation of the display position of an observation image. 第2実施例の観察装置の構成を示すブロック図である。It is a block diagram which shows the structure of the observation apparatus of 2nd Example. 第3実施例の観察装置の構成を示すブロック図である。It is a block diagram which shows the structure of the observation apparatus of 3rd Example.
 以下、発明を実施するための形態として、本発明の観察装置及び観察方法、並びにコンピュータプログラムの夫々に係る実施形態について順に説明する。 Hereinafter, as embodiments for carrying out the invention, embodiments of the observation apparatus, the observation method, and the computer program of the present invention will be described in order.
 (観察装置の実施形態)
 <1>
 本実施形態の観察装置は、被験者の眼の状態を観察する観察装置であって、前記眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを備え、前記投影手段は、前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する。
(Embodiment of observation apparatus)
<1>
The observation device of the present embodiment is an observation device that observes the state of the eye of a subject, and includes a first image to be projected on the surface of the cornea of the eye and a second image to be imaged on the retina of the eye. A projection unit capable of projecting onto the eye; and an imaging unit that acquires an observation image by imaging the eye, wherein the projection unit uses the observation image as the second image, and the second image. The projection position of the second image is adjusted so that the light that forms an image on the retina passes through the pupil of the eye.
 本実施形態の観察装置によれば、被験者の眼の状態が観察される。例えば、観察装置は、眼(典型的には、眼の表面、角膜の表面、角膜の表面に形成される涙液層の表面、涙液層を覆っている油層の表面又は角膜に写っている投影画像)の状態を観察することができる。尚、ここで言う「眼の状態を観察する」という動作は、眼の状態を直接的に又は間接的に推定するための任意の動作を包含する。例えば、「眼の状態を観察する」という動作は、後述する眼を撮像する(典型的には、眼の表面、角膜の表面又は角膜の表面に形成される涙液層を撮像する)動作を含んでいてもよい。例えば、「眼の状態を観察する」という動作は、眼を撮像することで取得される観察画像を解析する動作を含んでいてもよい。例えば、「眼の状態を観察する」という動作は、観察画像の解析結果に基づいて眼の状態を直接的に又は間接的に推定する動作を含んでいてもよい。但し、「眼の状態を観察する」という動作の一部は、観察装置のユーザ(例えば、眼科医や被験者等)によって行われてもよい。例えば、観察装置のユーザは、観察装置が眼を撮像することで取得される観察画像に基づいて、眼の状態を直接的に又は間接的に推定してもよい。 According to the observation apparatus of the present embodiment, the eye state of the subject is observed. For example, the observation device is reflected in the eye (typically the surface of the eye, the surface of the cornea, the surface of the tear film formed on the surface of the cornea, the surface of the oil layer covering the tear film or the cornea). The state of the projection image) can be observed. The operation of “observing the eye state” mentioned here includes an arbitrary operation for directly or indirectly estimating the eye state. For example, the operation of “observing the state of the eye” is an operation of imaging the eye described later (typically imaging the surface of the eye, the surface of the cornea, or the tear film formed on the surface of the cornea). May be included. For example, the operation of “observing the eye state” may include an operation of analyzing an observation image acquired by imaging the eye. For example, the operation of “observing the eye state” may include an operation of directly or indirectly estimating the eye state based on the analysis result of the observation image. However, a part of the operation of “observing the eye state” may be performed by a user of the observation apparatus (for example, an ophthalmologist or a subject). For example, the user of the observation device may estimate the eye state directly or indirectly based on an observation image acquired by the observation device imaging the eye.
 眼の状態を観察するために、観察装置は、投影手段と、撮像手段とを備えている。 In order to observe the state of the eye, the observation apparatus includes a projecting unit and an imaging unit.
 投影手段は、第1画像及び第2画像の双方を、被験者の眼に投影する。つまり、投影手段は、第1画像及び第2画像を含む又は第1画像及び第2画像を合成することで得られる投影画像を、被験者の眼に投影する。尚、ここで言う「投影画像を眼に投影する」動作とは、投影画像が眼の表面上で結像しているか否かに関わらず、眼の表面上の所望領域に投影画像に相当する投影光又は照明光を導く又は照射する動作全般を意味するものとする。従って、「投影画像を眼に投影する」動作は、投影画像を眼に直接的に投影する動作のみならず、投影画像を所望の光学手段(例えば、拡散板)に投影すると共に当該光学手段に投影された投影画像が眼に映りこむ状態を実現する動作や、投影画像に対応する明暗パターンで眼を照明する動作等を含み得るものとする。 The projection means projects both the first image and the second image on the eyes of the subject. That is, the projecting unit projects a projection image including the first image and the second image or obtained by synthesizing the first image and the second image onto the eye of the subject. The “projecting the projected image onto the eye” referred to here corresponds to the projected image in a desired region on the eye surface regardless of whether or not the projected image is formed on the eye surface. It shall mean the whole operation | movement which guides or irradiates projection light or illumination light. Therefore, the operation of “projecting the projected image onto the eye” not only projects the projected image directly on the eye, but also projects the projected image onto a desired optical means (for example, a diffusion plate) and applies it to the optical means. An operation for realizing a state in which the projected image is reflected in the eye, an operation for illuminating the eye with a light / dark pattern corresponding to the projection image, and the like may be included.
 第1画像は、被験者の眼の角膜の表面に投影される画像である。第1画像は、角膜の表面上で結像する画像であってもよい。第1画像は、角膜の表面上で結像する画像でなくてもよい。第1画像は、被験者の眼の網膜上で結像する画像でなくてもよい。一方で、第2画像は、第1画像とは異なる画像である。第2画像は、被験者の眼の網膜上で結像する画像である。尚、投影手段側から見て網膜が角膜よりも奥側に位置する(つまり、網膜上で結像する画像は、角膜上で結像していないものの、角膜にも投影されている)ことを考慮すれば、第2画像は、角膜の表面に投影される画像であるとも言える。 The first image is an image projected on the surface of the cornea of the subject's eye. The first image may be an image formed on the surface of the cornea. The first image may not be an image formed on the surface of the cornea. The first image may not be an image formed on the retina of the subject's eye. On the other hand, the second image is an image different from the first image. The second image is an image formed on the retina of the subject's eye. Note that the retina is located behind the cornea when viewed from the projection means side (that is, the image formed on the retina is not imaged on the cornea but is also projected on the cornea). Considering it, it can be said that the second image is an image projected onto the surface of the cornea.
 投影手段の第1例は、第1画像及び第2画像を表示する表示手段(例えば、後述する表示素子)と、第1画像を角膜に投影させるための光及び第2画像を網膜上で結像させるための光を眼に導く導光手段とを備えていてもよい。導光手段の第1例は、第1画像を角膜に投影させるための光を拡散する拡散手段(例えば、後述する拡散板等)と、第2画像を網膜上で結像させるための光を網膜に導く光学手段(例えば、後述するケーラー照明用レンズや接眼レンズ等)とを備えていてもよい。導光手段の第2例は、第1画像を角膜に投影させるための光を角膜に導くと共に、第2画像を網膜上で結像させるための光を網膜に導く光学手段(例えば、後述する対物レンズ等)を備えていてもよい。 The first example of the projecting unit is a display unit (for example, a display element to be described later) for displaying the first image and the second image, light for projecting the first image on the cornea, and the second image are combined on the retina. A light guide means for guiding light for imaging to the eyes may be provided. The first example of the light guiding means is a diffusing means for diffusing light for projecting the first image onto the cornea (for example, a diffusing plate described later) and light for forming the second image on the retina. Optical means for guiding to the retina (for example, a Koehler illumination lens or an eyepiece lens described later) may be provided. The second example of the light guide means guides the light for projecting the first image onto the cornea to the cornea and the optical means for guiding the light for forming the second image on the retina to the retina (for example, described later). An objective lens or the like).
 投影手段の第2例は、第1画像に応じた明暗パターンで光を投射する(言い換えれば、眼を照明する)投射手段(例えば、後述するプラチド板等)と、第2画像を表示する表示手段(例えば、後述する表示素子等)と、第2画像を網膜上で結像させるための光を網膜に導く導光手段(例えば、後述する接眼レンズ等)を備えていてもよい。 The second example of the projection means projects light (in other words, illuminates the eyes) with a light / dark pattern corresponding to the first image (for example, a platide plate described later), and a display for displaying the second image. Means (for example, a display element to be described later) and light guide means (for example, an eyepiece to be described later) for guiding light for forming a second image on the retina to the retina may be provided.
 撮像手段は、眼を撮像することで観察画像を取得する。特に、撮像手段は、眼の表面(例えば、角膜の表面)を撮像することで観察画像を取得する。また、撮像手段は、少なくとも第1画像が投影されている眼を撮像することで観察画像を取得することが好ましい。但し、撮像手段は、第1画像が投影されていない眼を撮像することで観察画像を取得してもよい。 The imaging means acquires an observation image by imaging the eye. In particular, the imaging means acquires an observation image by imaging the surface of the eye (for example, the surface of the cornea). Moreover, it is preferable that an imaging means acquires an observation image by imaging the eye on which the first image is projected. However, the imaging unit may acquire an observation image by imaging an eye on which the first image is not projected.
 本実施形態では特に、投影手段は、撮像手段が取得した観察画像を第2画像として用いる。従って、投影手段は、撮像手段が取得した観察画像を、当該観察画像が網膜上で結像するように、被験者の眼に投影する。 Particularly in this embodiment, the projection unit uses the observation image acquired by the imaging unit as the second image. Therefore, the projecting unit projects the observation image acquired by the imaging unit onto the eyes of the subject so that the observation image is formed on the retina.
 本実施形態では更に、投影手段は、第2画像(つまり、観察画像)の投影位置を調整する。特に、投影手段は、第2画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過するように、第2画像の投影位置を調整する。従って、被験者の眼の位置(例えば、前眼ないしは瞳孔の位置等)が変わる場合であっても、投影手段は、被験者の眼の位置に合わせて第2画像の投影位置を調整することができる。その結果、投影手段は、第2画像を網膜上で結像させるための光が瞳孔(例えば、位置が変わった瞳孔)を通過するように、第2画像を投影することができる。 In this embodiment, the projection unit further adjusts the projection position of the second image (that is, the observation image). In particular, the projection unit adjusts the projection position of the second image so that light for forming the second image on the retina passes through the pupil of the eye of the subject. Therefore, even when the position of the subject's eye (for example, the position of the anterior eye or pupil) changes, the projection unit can adjust the projection position of the second image according to the position of the subject's eye. . As a result, the projecting unit can project the second image so that the light for forming the second image on the retina passes through the pupil (for example, the pupil whose position has changed).
 投影手段は、制御手段の制御下で、第2画像(つまり、観察画像)の投影位置を調整してもよい。つまり、本実施形態の観察装置は、第2画像(つまり、観察画像)の投影位置を調整するように投影手段を制御する制御手段を備えていてもよい。特に、制御手段は、第2画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過することを目的として第2画像の投影位置を調整するように、投影手段を制御してもよい。 The projection unit may adjust the projection position of the second image (that is, the observation image) under the control of the control unit. That is, the observation apparatus according to the present embodiment may include a control unit that controls the projection unit so as to adjust the projection position of the second image (that is, the observation image). In particular, the control means controls the projection means to adjust the projection position of the second image for the purpose of allowing the light for forming the second image on the retina to pass through the pupil of the eye of the subject. Also good.
 ここで言う「第2画像の投影位置」は、典型的には、角膜の表面上における第2画像の投影位置(つまり、第2画像を網膜に結像させるための光の、角膜表面上における照射位置)を意味する。但し、第2画像を網膜上で結像させるための光を眼に導く導光手段(例えば、後述する投影レンズ、ケーラー照明用レンズ、接眼レンズ又は対物レンズ等)の光軸に直交する仮想的な平面上における第2画像の投影位置の調整は、実質的には、角膜の表面上における第2画像の投影位置の調整につながる。従って、ここで言う「第2画像の投影位置」は、第2画像を網膜上で結像させるための光を眼に導く導光手段の光軸に直交する仮想的な平面上における第2画像の投影位置を意味していてもよい。 The “projection position of the second image” referred to here is typically the projection position of the second image on the surface of the cornea (that is, the light for imaging the second image on the retina on the cornea surface). (Irradiation position). However, a virtual direction orthogonal to the optical axis of a light guide means (for example, a projection lens, a Koehler illumination lens, an eyepiece lens or an objective lens described later) that guides the light for forming the second image on the retina to the eye. Adjustment of the projection position of the second image on a smooth plane substantially leads to adjustment of the projection position of the second image on the surface of the cornea. Therefore, the “projection position of the second image” here refers to the second image on a virtual plane orthogonal to the optical axis of the light guiding means for guiding the light for forming the second image on the retina to the eye. It may mean the projection position of.
 このように、本実施形態の観察装置は、第2画像として用いられる観察画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過するように、観察画像の投影位置を調整することができる。このため、被験者は、観察画像を好適に視認することができる。特に、被験者の眼の位置(例えば、前眼ないしは瞳孔の位置等)が変わる場合であっても、被験者は、観察画像を好適に視認することができる。 As described above, the observation device of the present embodiment adjusts the projection position of the observation image so that the light for forming the observation image used as the second image on the retina passes through the pupil of the subject's eye. be able to. For this reason, a test subject can visually recognize an observation image suitably. In particular, even when the position of the subject's eyes (for example, the position of the anterior eye or the pupil) changes, the subject can appropriately view the observation image.
 <2>
 本実施形態の観察装置の他の態様では、前記瞳孔の位置を検出する検出手段を更に備え、前記投影手段は、前記検出手段が検出した前記瞳孔の位置に基づいて、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する。
<2>
In another aspect of the observation apparatus of the present embodiment, the observation device further includes a detection unit that detects the position of the pupil, and the projection unit converts the second image based on the position of the pupil detected by the detection unit. The projection position of the second image is adjusted so that light to be imaged on the retina passes through the pupil of the eye.
 この態様によれば、観察装置は、第2画像として用いられる観察画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過するように、検出手段が検出した瞳孔の位置に基づいて、観察画像の投影位置を調整することができる。このため、観察装置は、観察画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過するように、観察画像の投影位置を好適に調整することができる。 According to this aspect, the observation apparatus is based on the position of the pupil detected by the detection unit so that the light for forming the observation image used as the second image on the retina passes through the pupil of the subject's eye. Thus, the projection position of the observation image can be adjusted. For this reason, the observation apparatus can suitably adjust the projection position of the observation image so that the light for forming the observation image on the retina passes through the pupil of the eye of the subject.
 <3>
 上述の如く検出手段を備える観察装置の他の態様では、前記投影手段は、前記検出手段が検出した前記瞳孔の現在位置の瞳孔基準位置からのずれ量に応じた量だけ前記第2画像の投影位置が投影基準位置からずれるように、前記第2画像の投影位置を調整する。
<3>
In another aspect of the observation apparatus including the detection unit as described above, the projection unit projects the second image by an amount corresponding to the shift amount of the current position of the pupil detected by the detection unit from the pupil reference position. The projection position of the second image is adjusted so that the position deviates from the projection reference position.
 この態様によれば、観察装置は、第2画像として用いられる観察画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過するように、検出手段が検出した瞳孔の位置に基づいて、観察画像の投影位置を調整することができる。 According to this aspect, the observation apparatus is based on the position of the pupil detected by the detection unit so that the light for forming the observation image used as the second image on the retina passes through the pupil of the subject's eye. Thus, the projection position of the observation image can be adjusted.
 例えば、瞳孔が瞳孔基準位置に位置する状況下において投影手段が角膜の表面上の投影基準位置に観察画像を投影すると、観察画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過する観察装置を想定する。このような観察装置では、瞳孔の現在位置が瞳孔基準位置からずれた場合には、投影手段が角膜の表面上の投影基準位置に観察画像を投影しても、観察画像を網膜上で結像させるための光の一部又は全部が被験者の眼の瞳孔を通過しなくなる可能性がある。そこで、この態様の観察装置は、瞳孔の現在位置が瞳孔基準位置からずれた場合には、瞳孔の現在位置の瞳孔基準位置からのずれ量に応じた量だけ、角膜の表面上における観察画像の投影位置が投影基準位置からずれるように、観察画像の投影位置を調整する。その結果、瞳孔の現在位置が瞳孔基準位置からずれた場合には、投影手段が角膜の表面上の投影基準位置からずれた位置(典型的には、瞳孔が存在する位置)に観察画像を投影するがゆえに、観察画像を網膜上で結像させるための光が被験者の眼の瞳孔を通過することになる。その結果、被験者の眼の位置(例えば、前眼ないしは瞳孔の位置等)が変わる場合であっても、被験者は、観察画像を好適に視認することができる。 For example, when the projection means projects an observation image at the projection reference position on the surface of the cornea in a situation where the pupil is located at the pupil reference position, the light for forming the observation image on the retina causes the pupil of the subject's eye to be formed. Assume a passing observation device. In such an observation device, when the current position of the pupil deviates from the pupil reference position, the observation image is formed on the retina even if the projection means projects the observation image onto the projection reference position on the surface of the cornea. There is a possibility that part or all of the light to be transmitted does not pass through the pupil of the eye of the subject. Therefore, in the observation apparatus of this aspect, when the current position of the pupil deviates from the pupil reference position, the observation image on the surface of the cornea is an amount corresponding to the deviation amount of the current position of the pupil from the pupil reference position. The projection position of the observation image is adjusted so that the projection position deviates from the projection reference position. As a result, if the current position of the pupil deviates from the pupil reference position, the projection means projects the observation image at a position deviated from the projection reference position on the surface of the cornea (typically the position where the pupil is present). Therefore, light for forming an observation image on the retina passes through the pupil of the subject's eye. As a result, even when the position of the eye of the subject (for example, the position of the anterior eye or the pupil) changes, the subject can appropriately view the observation image.
 <4>
 上述の如く検出手段を備える観察装置の他の態様では、前記検出手段は、前記観察画像に基づいて、前記瞳孔の位置を検出する。
<4>
In another aspect of the observation apparatus including the detection unit as described above, the detection unit detects the position of the pupil based on the observation image.
 この態様によれば、検出手段は、眼を撮像することで撮像手段が取得する観察画像に基づいて、瞳孔の位置を比較的容易に検出することができる。尚、検出手段が瞳孔の位置を検出する具体的手法は任意である。但し、典型的には、検出手段は、観察画像を解析することで、瞳孔の位置を検出する。 According to this aspect, the detection unit can detect the position of the pupil relatively easily based on the observation image acquired by the imaging unit by imaging the eye. A specific method for detecting the position of the pupil by the detecting means is arbitrary. However, typically, the detection means detects the position of the pupil by analyzing the observation image.
 <5>
 本実施形態の観察装置の他の態様では、前記投影手段は、前記第1画像を前記角膜の表面に投影する光が前記瞳孔の周囲に投影されるように前記第1画像の投影位置を調整する。
<5>
In another aspect of the observation apparatus of the present embodiment, the projection unit adjusts the projection position of the first image so that light that projects the first image onto the surface of the cornea is projected around the pupil. To do.
 この態様によれば、被験者は、第2画像として用いられる観察画像を好適に視認する一方で、視認する必要性が相対的に小さい第1画像の一部又は全部を視認することはなくなる。従って、被験者は、第2画像として用いられる観察画像と共に眼に投影される第1画像に煩わされることなく、観察画像を好適に視認することができる。 According to this aspect, the subject preferably visually recognizes the observation image used as the second image, but does not visually recognize part or all of the first image that is relatively less necessary to be visually recognized. Therefore, the subject can appropriately view the observation image without being bothered by the first image projected onto the eye together with the observation image used as the second image.
 <6>
 本実施形態の観察装置の他の態様では、前記投影手段は、前記角膜の表面において前記第2画像の投影位置の周囲に前記第1画像の投影位置が分布するように、前記第1画像及び前記第2画像を投影する。
<6>
In another aspect of the observation apparatus according to the present embodiment, the projection unit distributes the first image and the projection position of the first image around the projection position of the second image on the surface of the cornea. Projecting the second image.
 この態様によれば、投影手段は、第2画像が中心部に位置する一方で第1画像が外縁部に位置する投影画像を眼に投影することができる。ここで、瞳孔が眼の中心(つまり、眼の表面、前眼部の表面又は角膜の表面の中心)に位置する可能性が高いことを考慮すれば、投影手段が投影する投影画像の中心部に位置する第2画像を網膜上で結像させる光は、瞳孔を通過しやすくなる。従って、投影手段は、第2画像を網膜上で結像させる光が瞳孔を通過するように、第2画像を好適に投影することができる。 According to this aspect, the projecting means can project the projected image in which the second image is located at the center portion and the first image is located at the outer edge portion on the eye. Here, considering that the pupil is likely to be located at the center of the eye (that is, the center of the surface of the eye, the surface of the anterior eye or the surface of the cornea), the center of the projection image projected by the projection means The light that forms the second image located on the retina easily passes through the pupil. Therefore, the projecting means can suitably project the second image so that the light that forms the second image on the retina passes through the pupil.
 (観察方法の実施形態)
 <7>
 本実施形態の観察方法は、被験者の眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを用いて前記眼の状態を観察する観察方法であって、前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する。
(Embodiment of observation method)
<7>
The observation method of the present embodiment includes a projection unit capable of projecting a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye, and the eye An observation method for observing the state of the eye using an imaging unit that acquires an observation image by imaging, wherein the observation image is used as the second image, and the second image is displayed on the retina. The projection position of the second image is adjusted so that the light to be imaged passes through the pupil of the eye.
 本実施形態の観察方法によれば、上述した本実施形態の観察装置が享受する各種効果と同様の効果を享受することが可能となる。尚、上述した本実施形態の観察装置における各種態様に対応して、本実施形態の観察方法も各種態様を採ることが可能である。 According to the observation method of the present embodiment, it is possible to receive the same effects as the various effects that the observation apparatus of the present embodiment described above receives. Incidentally, in response to the various aspects of the observation apparatus of the present embodiment described above, the observation method of the present embodiment can also adopt various aspects.
 (コンピュータプログラムの実施形態)
 <8>
 本実施形態のコンピュータプログラムは、被験者の眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを用いて前記眼の状態を観察する観察装置を動作させるコンピュータプログラムであって、前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する動作を前記観察装置に実行させる。
(Embodiment of computer program)
<8>
The computer program according to the present embodiment includes a projection unit capable of projecting a first image to be projected on the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye, and the eye. A computer program for operating an observation device that observes the state of the eye using an imaging unit that acquires an observation image by imaging, wherein the observation image is used as the second image, and the second image The observation apparatus is caused to perform an operation of adjusting the projection position of the second image so that light that forms an image on the retina passes through the pupil of the eye.
 本実施形態のコンピュータプログラムによれば、上述した本実施形態の観察装置が享受する各種効果と同様の効果を享受することが可能となる。尚、上述した本実施形態の観察装置における各種態様に対応して、本実施形態のコンピュータプログラムも各種態様を採ることが可能である。また、本実施形態のコンピュータプログラムは、コンピュータによって読み取り可能な記録媒体に記録されていてもよい。 According to the computer program of the present embodiment, it is possible to receive the same effects as the various effects that the observation apparatus of the present embodiment described above receives. Incidentally, in response to the various aspects of the observation apparatus of the present embodiment described above, the computer program of the present embodiment can also adopt various aspects. Further, the computer program of the present embodiment may be recorded on a computer-readable recording medium.
 本実施形態のこのような作用及び他の利得は次に説明する実施例から更に明らかにされる。 Such an operation and other advantages of the present embodiment will be further clarified from examples described below.
 以上説明したように、本実施形態の観察装置は、投影手段及び撮像手段を備え、第2画像として用いられる観察画像を網膜上で結像させる光が眼の瞳孔を通過するように観察画像の投影位置を調整する。本実施形態の観察方法は、第2画像として用いられる観察画像を網膜上で結像させる光が眼の瞳孔を通過するように観察画像の投影位置を調整する。本実施形態のコンピュータプログラムは、第2画像として用いられる観察画像を網膜上で結像させる光が眼の瞳孔を通過するように観察画像の投影位置を調整する動作を観察装置に実行させる。従って、眼の位置が変わる場合においても、眼を撮像することで取得される観察画像を被験者が好適に視認することができる。 As described above, the observation apparatus according to the present embodiment includes the projection unit and the imaging unit, and the observation image is displayed so that the light that forms the observation image used as the second image on the retina passes through the pupil of the eye. Adjust the projection position. In the observation method of the present embodiment, the projection position of the observation image is adjusted so that the light that forms the observation image used as the second image on the retina passes through the pupil of the eye. The computer program according to the present embodiment causes the observation apparatus to perform an operation of adjusting the projection position of the observation image so that the light that forms the observation image used as the second image on the retina passes through the pupil of the eye. Therefore, even when the position of the eye changes, the subject can preferably visually recognize the observation image acquired by imaging the eye.
 以下、図面を参照しながら、本発明の観察装置及び観察方法並びにコンピュータプログラムの実施例を説明する。尚、以下では、本発明の観察装置及び観察方法並びにコンピュータプログラムが、被験者の角膜の表面を撮像することで観察画像を取得すると共に当該取得した観察画像を解析することで角膜の表面に形成される涙液層の状態を推定する(言い換えれば、計測する)観察装置に適用されるものとする。 Hereinafter, embodiments of the observation apparatus, the observation method, and the computer program of the present invention will be described with reference to the drawings. In the following, the observation apparatus, the observation method, and the computer program of the present invention are formed on the surface of the cornea by acquiring the observation image by imaging the surface of the subject's cornea and analyzing the acquired observation image. It is assumed that the present invention is applied to an observation apparatus that estimates (in other words, measures) the state of the tear film.
 但し、本発明の観察装置及び観察方法並びにコンピュータプログラムは、被験者の眼の状態を観察する任意の観察装置に対して適用されてもよい。例えば、本発明の観察装置及び観察方法並びにコンピュータプログラムは、被験者の角膜の表面を撮像することで観察画像を取得するとともに当該取得した観察画像をユーザ(例えば、眼科医)等に向けて表示する観察装置に対して適用されてもよい。この場合、ユーザは、観察装置が表示する観察画像に基づいて、眼の状態を推定してもよい。 However, the observation apparatus, the observation method, and the computer program of the present invention may be applied to any observation apparatus that observes the eye state of the subject. For example, the observation apparatus, the observation method, and the computer program of the present invention acquire an observation image by imaging the surface of the subject's cornea and display the acquired observation image to a user (for example, an ophthalmologist) or the like. You may apply with respect to an observation apparatus. In this case, the user may estimate the eye state based on the observation image displayed by the observation device.
 (1)第1実施例
 はじめに、図1から図7を参照しながら、第1実施例の観察装置1について説明する。
(1) First Example First, an observation apparatus 1 according to a first example will be described with reference to FIGS.
 (1-1)第1実施例の観察装置1の構成
 はじめに、図1を参照しながら、第1実施例の観察装置1の構成について説明する。図1は、第1実施例の観察装置1の構成を示すブロック図である。
(1-1) Configuration of Observation Device 1 of First Example First, the configuration of the observation device 1 of the first example will be described with reference to FIG. FIG. 1 is a block diagram showing the configuration of the observation apparatus 1 of the first embodiment.
 図1に示すように、第1実施例の観察装置1は、上述した実施形態中の「投影手段」の一具体例である投影部110と、上述した実施形態中の「投影手段」の一具体例である拡散板120と、上述した実施形態中の「投影手段」の一具体例である接眼レンズ124と、上述した実施形態中の「投影手段」の一具体例であるケーラー照明用レンズ131と、ビームスプリッタ132と、上述した実施形態中の「撮像手段」の一具体例である撮像部140と、上述した実施形態中の「制御手段」の一具体例である制御部150とを備える。尚、図1では、投影部110、拡散板120、接眼レンズ124、ケーラー照明用レンズ131、ビームスプリッタ132及び撮像部140の夫々は、投影部110、接眼レンズ124、ケーラー照明用レンズ131又は撮像部140の光軸に沿った断面図を用いて記載されている。 As shown in FIG. 1, the observation apparatus 1 of the first example includes a projection unit 110 that is a specific example of the “projection unit” in the above-described embodiment, and one of the “projection unit” in the above-described embodiment. The diffusion plate 120 as a specific example, the eyepiece lens 124 as a specific example of the “projection unit” in the above-described embodiment, and the Koehler illumination lens as a specific example of the “projection unit” in the above-described embodiment 131, a beam splitter 132, an imaging unit 140 that is a specific example of the “imaging unit” in the above-described embodiment, and a control unit 150 that is a specific example of the “control unit” in the above-described embodiment. Prepare. In FIG. 1, the projection unit 110, the diffusion plate 120, the eyepiece lens 124, the Koehler illumination lens 131, the beam splitter 132, and the imaging unit 140 respectively represent the projection unit 110, the eyepiece lens 124, the Koehler illumination lens 131, or the imaging. It is described using a cross-sectional view along the optical axis of the portion 140.
 投影部110は、所望の投影画像を投影する。投影部110は、投影画像の少なくとも一部が後述する拡散板120上で結像するように、投影画像を投影する。投影部110は、投影画像の少なくとも一部が網膜上で結像するように、投影画像を投影する。投影画像を投影するために、投影部110は、表示素子111と、投影レンズ112と、投影絞り113とを備える。 Projection unit 110 projects a desired projection image. The projection unit 110 projects the projection image so that at least a part of the projection image forms an image on a diffusion plate 120 described later. The projection unit 110 projects the projection image so that at least a part of the projection image forms an image on the retina. In order to project a projection image, the projection unit 110 includes a display element 111, a projection lens 112, and a projection diaphragm 113.
 表示素子111は、投影部110が投影するべき投影画像を表示する。表示素子111は、例えば、液晶ディスプレイ等の任意のディスプレイ装置である。 The display element 111 displays a projection image to be projected by the projection unit 110. The display element 111 is an arbitrary display device such as a liquid crystal display, for example.
 表示素子111は、投影画像が表示される表示面111aを備えている。第1実施例では、表示面111aは、涙液層の状態を観察するために用いられる検査画像(後述する図3(a)から図3(d)参照)を表示するための第1表示領域111a1と、撮像部140の撮像結果である観察画像(後述する図4参照)を表示するための第2表示領域111a2とに仮想的に区分される。 The display element 111 includes a display surface 111a on which a projection image is displayed. In the first embodiment, the display surface 111a is a first display area for displaying an examination image (see FIGS. 3A to 3D described later) used for observing the state of the tear film. It is virtually divided into 111a1 and a second display area 111a2 for displaying an observation image (see FIG. 4 described later) that is an imaging result of the imaging unit 140.
 第1表示領域111a1は、第2表示領域111a2を取り囲むように分布する。言い換えれば、第1表示領域111a1は、第2表示領域111a2の周囲又は外側に分布する。第2表示領域111a2は、第1表示領域111a1よりも表示面111aの中心部に近接していることが好ましい。 The first display area 111a1 is distributed so as to surround the second display area 111a2. In other words, the first display area 111a1 is distributed around or outside the second display area 111a2. The second display area 111a2 is preferably closer to the center of the display surface 111a than the first display area 111a1.
 表示素子111は、第1表示領域111a1に検査画像を表示する。更に、表示素子111は、第2表示領域111a2に観察画像を表示する。つまり、第1実施例では、表示素子111は、検査画像が観察画像を取り囲むように(言い換えれば、検査画像の中心部又は当該中心部の近傍に観察画像が位置するように)観察画像と検査画像とを合成することで得られる投影画像を表示する。その結果、第1表示領域111a1からは、検査画像を眼に投影する(より具体的には、検査画像を拡散板120に投影する)ための照明光L11が出射される。第2表示領域111a2からは、観察画像を眼に投影する(より具体的には、観察画像を網膜上に結像させる)ための照明光L12が出射される。 The display element 111 displays an inspection image in the first display area 111a1. Further, the display element 111 displays an observation image in the second display area 111a2. In other words, in the first embodiment, the display element 111 is arranged so that the inspection image surrounds the observation image (in other words, the observation image is positioned at or near the center of the inspection image). A projected image obtained by combining the image is displayed. As a result, illumination light L11 for projecting the inspection image onto the eye (more specifically, projecting the inspection image onto the diffusion plate 120) is emitted from the first display region 111a1. From the second display area 111a2, illumination light L12 for projecting the observation image onto the eye (more specifically, forming the observation image on the retina) is emitted.
 投影レンズ112は、照明光L11を拡散板120上に結像させる。その結果、投影部110が投影する検査画像は、拡散板120上で結像する。加えて、投影レンズ112は、ケーラー照明用レンズ131及び接眼レンズ124と共に、照明光L12を網膜上に結像させる。その結果、投影部110が投影する観察画像は、網膜上で結像する。 The projection lens 112 focuses the illumination light L11 on the diffusion plate 120. As a result, the inspection image projected by the projection unit 110 is formed on the diffusion plate 120. In addition, the projection lens 112 forms an image of the illumination light L12 on the retina together with the Koehler illumination lens 131 and the eyepiece lens. As a result, the observation image projected by the projection unit 110 forms an image on the retina.
 投影絞り113は、投影部110から出射する照明光L11及び照明光L12の光量を調整する。 The projection diaphragm 113 adjusts the light amounts of the illumination light L11 and the illumination light L12 emitted from the projection unit 110.
 拡散板120は、拡散板120に入射してくる照明光L11を拡散する板(言い換えれば、スクリーン)である。具体的には、拡散板120は、投影部110側を向いている拡散板120の表面121に入射してくる照明光L11を、被験者側(角膜側)を向いている拡散板120の表面122から照明光L21として拡散する。拡散板120によって拡散された照明光L21の少なくとも一部は、角膜を照明する。 The diffusion plate 120 is a plate (in other words, a screen) that diffuses the illumination light L11 incident on the diffusion plate 120. Specifically, the diffusing plate 120 emits the illumination light L11 incident on the surface 121 of the diffusing plate 120 facing the projection unit 110 side, and the surface 122 of the diffusing plate 120 facing the subject side (corneal side). Is diffused as illumination light L21. At least a part of the illumination light L21 diffused by the diffusion plate 120 illuminates the cornea.
 第1実施例では、拡散板120の表面122の断面(具体的には、光軸に沿った断面)は、のこぎり状の断面となることが好ましい。つまり、表面122は、フレネルレンズの表面の如き形状を有していることが好ましい。特に、表面122の断面は、表面122の断面がのこぎり状の断面とならない場合と比較してより多くの照明光L11を照明光L21として角膜に向けて拡散することが可能なのこぎり状の断面となることが好ましい。その結果、図1に示すように、照明光L11は、より多くの照明光L11が照明光L21として角膜に向かうように、拡散板120によって拡散される。 In the first embodiment, the cross section of the surface 122 of the diffusion plate 120 (specifically, the cross section along the optical axis) is preferably a saw-shaped cross section. That is, the surface 122 preferably has a shape like the surface of a Fresnel lens. In particular, the cross section of the surface 122 is a saw-shaped cross section that can diffuse more illumination light L11 toward the cornea as illumination light L21 as compared to the case where the cross section of the surface 122 is not a saw-like cross section. It is preferable to become. As a result, as shown in FIG. 1, the illumination light L11 is diffused by the diffusion plate 120 so that more illumination light L11 is directed to the cornea as illumination light L21.
 第1実施例では、拡散板120には、開口123が形成されている。被験者の眼は、角膜が開口123に対向することが可能な位置に位置している。開口123は、表面121から表面122に向かって拡散板120を貫通する開口である。 In the first embodiment, an opening 123 is formed in the diffusion plate 120. The eye of the subject is located at a position where the cornea can face the opening 123. The opening 123 is an opening that penetrates the diffusion plate 120 from the surface 121 toward the surface 122.
 開口123は、角膜によって反射された照明光L21である反射光L31が通過する開口である。開口123には、反射光L31をビームスプリッタ132の反射面に導く接眼レンズ124が配置されている。 The opening 123 is an opening through which the reflected light L31 that is the illumination light L21 reflected by the cornea passes. An eyepiece lens 124 that guides the reflected light L31 to the reflection surface of the beam splitter 132 is disposed in the opening 123.
 開口123は更に、ビームスプリッタ132を通過した後に拡散板120に入射してくる照明光L12が通過する開口である。開口123を通過する照明光L12は、開口123に配置される接眼レンズ124によって、網膜に導かれる。その結果、照明光L12は、網膜上で結像する。つまり、投影部110から出射する照明光L12は、拡散板120によって拡散されることはない。但し、投影部110から出射する照明光L12の少なくとも一部が、拡散板120によって拡散されてもよい。 The opening 123 is further an opening through which the illumination light L12 incident on the diffusion plate 120 after passing through the beam splitter 132 passes. The illumination light L12 passing through the opening 123 is guided to the retina by the eyepiece lens 124 disposed in the opening 123. As a result, the illumination light L12 forms an image on the retina. That is, the illumination light L12 emitted from the projection unit 110 is not diffused by the diffusion plate 120. However, at least a part of the illumination light L12 emitted from the projection unit 110 may be diffused by the diffusion plate 120.
 尚、図1では、拡散板120は、透過型の拡散板である。しかしながら、拡散板120は、反射型の拡散板であってもよい。また、観察装置1は、拡散板120に加えて又は代えて、拡散板120に入射してくる照明光L11を拡散することが可能な任意の光学素子を備えていてもよい。例えば、観察装置1は、拡散板120に加えて又は代えて、フレネルレンズを備えていてもよい。また、拡散板120の表面122の断面は、のこぎり状の断面でなくてもよい。例えば、拡散板120の表面122は、平面であってもよい。 In FIG. 1, the diffusion plate 120 is a transmission type diffusion plate. However, the diffusion plate 120 may be a reflection type diffusion plate. Further, the observation apparatus 1 may include an arbitrary optical element that can diffuse the illumination light L11 incident on the diffusion plate 120 in addition to or instead of the diffusion plate 120. For example, the observation apparatus 1 may include a Fresnel lens in addition to or instead of the diffusion plate 120. Further, the cross section of the surface 122 of the diffusion plate 120 may not be a saw-shaped cross section. For example, the surface 122 of the diffusion plate 120 may be a flat surface.
 ケーラー照明用レンズ131は、投影レンズ112及び接眼レンズ124と共に、照明光L12を網膜上に結像させる。典型的には、ケーラー照明用レンズ131と接眼レンズ124との間には、照明光L12が結像する中間結像面が位置する。例えば、照明光L12は、ケーラー照明用レンズ131と接眼レンズ124との間に位置する接眼レンズ124の前側焦点と一致する中間結像面上で結像する。尚、照明光L11は、ケーラー照明用レンズ131を通過しない(つまり、ケーラー照明用レンズ131のレンズ面を通過しない)ことが好ましい。但し、照明光L11の少なくとも一部は、ケーラー照明用レンズ131を通過してもよい。 The Koehler illumination lens 131, together with the projection lens 112 and the eyepiece lens 124, forms an image of the illumination light L12 on the retina. Typically, an intermediate imaging plane on which the illumination light L12 forms an image is positioned between the Koehler illumination lens 131 and the eyepiece lens 124. For example, the illumination light L12 forms an image on an intermediate image plane that coincides with the front focal point of the eyepiece lens 124 positioned between the Koehler illumination lens 131 and the eyepiece lens 124. The illumination light L11 preferably does not pass through the Koehler illumination lens 131 (that is, does not pass through the lens surface of the Koehler illumination lens 131). However, at least a part of the illumination light L11 may pass through the Koehler illumination lens 131.
 ビームスプリッタ132は、投影部110から出射する照明光L11及び照明光L12を透過する。一方で、ビームスプリッタ132は、角膜によって反射された照明光L21である反射光L31を、撮像部140に向けて反射する。 The beam splitter 132 transmits the illumination light L11 and the illumination light L12 emitted from the projection unit 110. On the other hand, the beam splitter 132 reflects the reflected light L31, which is the illumination light L21 reflected by the cornea, toward the imaging unit 140.
 撮像部140は、検査画像が投影されている拡散板120の角膜反射像(つまり、角膜によって反射された照明光L21である反射光L31によって形成される画像であり、実質的には拡散板120の表面122)又は角膜の表面を撮像する。角膜反射像又は角膜の表面を撮像するために、撮像部140は、撮像絞り141と、撮像レンズ142と、撮像素子143とを備えている。 The imaging unit 140 is a corneal reflection image of the diffusion plate 120 on which the inspection image is projected (that is, an image formed by the reflected light L31 that is the illumination light L21 reflected by the cornea, and is substantially the diffusion plate 120. The surface 122) or the surface of the cornea. In order to capture a cornea reflection image or the surface of the cornea, the imaging unit 140 includes an imaging diaphragm 141, an imaging lens 142, and an imaging element 143.
 撮像絞り141は、ビームスプリッタ130によって反射された反射光L31の光量(より具体的には、撮像素子143に向かう反射光L31の光量)を調整する。 The imaging diaphragm 141 adjusts the light amount of the reflected light L31 reflected by the beam splitter 130 (more specifically, the light amount of the reflected light L31 toward the image sensor 143).
 撮像レンズ142は、反射光L31を撮像素子143上に(より具体的には、撮像素子143の撮像面上に)結像させる。その結果、撮像素子143上では、検査画像が投影されている拡散板120の角膜反射像又は角膜の表面を示す画像が結像する。 The imaging lens 142 forms an image of the reflected light L31 on the imaging device 143 (more specifically, on the imaging surface of the imaging device 143). As a result, on the image sensor 143, a cornea reflection image of the diffusion plate 120 on which the inspection image is projected or an image showing the surface of the cornea is formed.
 撮像素子143は、撮像素子143に入射してくる反射光L31を電気信号に変換するCCDセンサ又はCMOSセンサを備えている。その結果、撮像素子143は、検査画像が投影されている拡散板120の角膜反射像又は角膜の表面を示す画像である観察画像を取得する。撮像素子143が取得した観察画像は、制御部150に出力される。 The image sensor 143 includes a CCD sensor or a CMOS sensor that converts the reflected light L31 incident on the image sensor 143 into an electric signal. As a result, the image sensor 143 acquires an observation image that is a cornea reflection image of the diffusion plate 120 on which the inspection image is projected or an image showing the surface of the cornea. The observation image acquired by the image sensor 143 is output to the control unit 150.
 制御部150は、観察装置1の全体の動作を制御する。制御部150は、例えば、CPU(Central Processing Unit)を備えていてもよい。制御部150は、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)等のメモリを備えていてもよい。 The control unit 150 controls the overall operation of the observation apparatus 1. For example, the control unit 150 may include a CPU (Central Processing Unit). The control unit 150 may include a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), for example.
 第1実施例では特に、制御部150は、撮像部140が取得した観察画像を解析することで、角膜の表面に形成される涙液層の状態を推定する。更に、制御部150は、観察画像を網膜に結像させるための照明光L12が被験者の瞳孔を通過するように、投影部110を制御する。制御部150は、主として涙液層の状態を推定するために、画像解析部151と、状態推定部152とを備えている。更に、制御部150は、主として照明光L12が被験者の瞳孔を通過するように投影部110を制御するために、瞳孔検出部153と、表示制御部154とを備えている。 Particularly in the first embodiment, the control unit 150 estimates the state of the tear film formed on the surface of the cornea by analyzing the observation image acquired by the imaging unit 140. Furthermore, the control unit 150 controls the projection unit 110 so that the illumination light L12 for forming an observation image on the retina passes through the pupil of the subject. The control unit 150 includes an image analysis unit 151 and a state estimation unit 152 mainly for estimating the tear film state. Furthermore, the control unit 150 includes a pupil detection unit 153 and a display control unit 154 in order to control the projection unit 110 so that the illumination light L12 mainly passes through the pupil of the subject.
 制御部150は、画像解析部151、状態推定部152、瞳孔検出部153及び表示制御部154の動作をCPUに実行させるためのコンピュータプログラムを、CPU上で実行してもよい。制御部150は、このようなコンピュータプログラムをメモリ等の記録媒体から読み出してもよいし、ネットワークを介してダウンロードしてもよい。その結果、画像解析部151、状態推定部152、瞳孔検出部153及び表示制御部154は、例えば、論理的な処理ブロックとしてCPU上で機能する。但し、画像解析部151、状態推定部152、瞳孔検出部153及び表示制御部154のうちの少なくとも一つは、制御部150内に物理的に実現される回路ブロックであってもよい。 The control unit 150 may execute a computer program on the CPU for causing the CPU to execute the operations of the image analysis unit 151, the state estimation unit 152, the pupil detection unit 153, and the display control unit 154. The control unit 150 may read such a computer program from a recording medium such as a memory, or may download the computer program via a network. As a result, the image analysis unit 151, the state estimation unit 152, the pupil detection unit 153, and the display control unit 154 function on the CPU as logical processing blocks, for example. However, at least one of the image analysis unit 151, the state estimation unit 152, the pupil detection unit 153, and the display control unit 154 may be a circuit block physically realized in the control unit 150.
 画像解析部151は、撮像部140が取得した観察画像を解析する。例えば、後に詳述するように、全白色の検査画像が拡散板120に投影されている場合には、画像解析部151は、観察画像に現れる干渉色を解析してもよい。尚、観察画像に現れる干渉色は、油層の表面によって反射された反射光L31と油層の裏面(つまり、油層と水層との界面)によって反射された反射光L31との干渉光が呈する色を意味する。例えば、後に詳述するように、線状パターンを含む検査画像が拡散板120に投影されている場合には、画像解析部151は、観察画像に現れる線状パターンの経時的な変化(時間的な変化)を解析してもよい。 The image analysis unit 151 analyzes the observation image acquired by the imaging unit 140. For example, as will be described in detail later, when an all-white inspection image is projected onto the diffusion plate 120, the image analysis unit 151 may analyze the interference color that appears in the observation image. The interference color appearing in the observation image is the color exhibited by the interference light between the reflected light L31 reflected by the surface of the oil layer and the reflected light L31 reflected by the back surface of the oil layer (that is, the interface between the oil layer and the water layer). means. For example, as will be described in detail later, when an inspection image including a linear pattern is projected on the diffusion plate 120, the image analysis unit 151 changes the temporal change (temporal) of the linear pattern appearing in the observation image. May be analyzed.
 状態推定部152は、画像解析部151の解析結果に基づいて、涙液層の状態を推定する(言い換えれば、計測する)。例えば、状態推定部152は、画像解析部151の解析結果の一例である「観察画像に現れる干渉色」に基づいて、涙液層の状態の一例である「油層(つまり、涙液層を構成する一つの層である油層)の厚さ」を推定してもよい。例えば、状態推定部152は、画像解析部151の解析結果の一例である「線状パターンの経時的な変化」に基づいて、涙液層の状態の一例である「BUT(tear film Break Up Time:涙液層破壊時間:被験者の眼が開いてから涙液層の表面に亀裂が入るまでの時間)」を推定してもよい。 The state estimation unit 152 estimates the state of the tear film based on the analysis result of the image analysis unit 151 (in other words, measures). For example, based on the “interference color appearing in the observation image” that is an example of the analysis result of the image analysis unit 151, the state estimation unit 152 configures an “oil layer (that is, a tear film) that is an example of the state of the tear film. It is also possible to estimate the “thickness of the oil layer)”. For example, the state estimation unit 152 uses “BUT (tear film Break Up Time), which is an example of a tear film state, based on an“ analysis of a linear pattern with time ”that is an example of an analysis result of the image analysis unit 151 : Tear film destruction time: the time from when the subject's eyes open until the surface of the tear film breaks)) may be estimated.
 瞳孔検出部153は、撮像部140が取得した観察画像中に現れる被験者の瞳孔の位置を検出する。例えば、瞳孔検出部153は、撮像部140が取得した観察画像を解析することで、観察画像中に現れる瞳孔の位置を検出する。 The pupil detection unit 153 detects the position of the subject's pupil that appears in the observation image acquired by the imaging unit 140. For example, the pupil detection unit 153 detects the position of the pupil appearing in the observation image by analyzing the observation image acquired by the imaging unit 140.
 表示制御部154は、涙液層の状態を観察するために用いられる検査画像を表示するように、表示素子111を制御する。更に、表示制御部154は、撮像部140が取得した観察画像を表示するように、表示素子111を制御する。 The display control unit 154 controls the display element 111 so as to display an examination image used for observing the state of the tear film. Further, the display control unit 154 controls the display element 111 so that the observation image acquired by the imaging unit 140 is displayed.
 第1実施例では、表示制御部154は、第2表示領域111a2を取り囲む第1表示領域111a1に検査画像を表示するように、表示素子111を制御する。更に、表示制御部154は、第1表示領域111a1によって取り囲まれる第2表示領域111a2に観察画像を表示するように、表示素子111を制御する。従って、表示制御部154は、観察画像が検査画像の中心部(或いは、中心部の近傍)に重なるように観察画像と検査画像とを合成することで得られる投影画像を表示するように、表示素子111を制御する。言い換えれば、表示制御部154は、検査画像が観察画像を取り囲むように観察画像と検査画像とを合成することで得られる投影画像を表示するように、表示素子111を制御する。 In the first embodiment, the display control unit 154 controls the display element 111 so as to display the inspection image in the first display area 111a1 surrounding the second display area 111a2. Further, the display control unit 154 controls the display element 111 so as to display the observation image in the second display area 111a2 surrounded by the first display area 111a1. Therefore, the display control unit 154 displays the projection image obtained by combining the observation image and the inspection image so that the observation image overlaps the center (or the vicinity of the center) of the inspection image. The element 111 is controlled. In other words, the display control unit 154 controls the display element 111 to display a projection image obtained by combining the observation image and the inspection image so that the inspection image surrounds the observation image.
 表示制御部154は更に、瞳孔検出部153の検出結果に基づいて、表示素子111の表示面111a上における観察画像の表示位置を調整する。つまり、表示制御部154は更に、瞳孔検出部153の検出結果に基づいて、観察画像の表示位置を調整するように表示素子111を制御する。具体的には、表示制御部154は、観察画像を網膜に結像させるための照明光L12が瞳孔を通過するように、表示面111a上における観察画像の表示位置を調整する。つまり、表示制御部154は、表示面111a上において第2表示領域111a2が分布する位置を調整する。 The display control unit 154 further adjusts the display position of the observation image on the display surface 111a of the display element 111 based on the detection result of the pupil detection unit 153. That is, the display control unit 154 further controls the display element 111 so as to adjust the display position of the observation image based on the detection result of the pupil detection unit 153. Specifically, the display control unit 154 adjusts the display position of the observation image on the display surface 111a so that the illumination light L12 for forming the observation image on the retina passes through the pupil. That is, the display control unit 154 adjusts the position where the second display region 111a2 is distributed on the display surface 111a.
 尚、表示面111a上における観察画像の表示位置の調整は、角膜の表面(或いは、照明光L12を投影部110から網膜に導く光学部材(例えば、ケーラー照明用レンズ131や、接眼レンズ124)の光軸に垂直な仮想的な光学面)上における観察画像の投影位置の調整に相当する。つまり、表示面111a上における観察画像の表示位置の調整は、角膜の表面上における照明光L12の照射位置の調整に相当する。従って、表示制御部154は、実質的には、観察画像の投影位置(つまり、照明光L12の照射位置)を調整しているとも言える。 The display position of the observation image on the display surface 111a is adjusted by adjusting the surface of the cornea (or an optical member that guides the illumination light L12 from the projection unit 110 to the retina (for example, the Koehler illumination lens 131 or the eyepiece 124). This corresponds to adjustment of the projection position of the observation image on a virtual optical surface perpendicular to the optical axis. That is, the adjustment of the display position of the observation image on the display surface 111a corresponds to the adjustment of the irradiation position of the illumination light L12 on the surface of the cornea. Therefore, it can be said that the display control unit 154 substantially adjusts the projection position of the observation image (that is, the irradiation position of the illumination light L12).
 (1-2)第1実施例の観察装置1の動作
 続いて、図2を参照しながら、第1実施例の観察装置1の動作について説明する。図2は、第1実施例の観察装置1の動作の流れを示すフローチャートである。
(1-2) Operation of the Observation Device 1 of the First Example Next, the operation of the observation device 1 of the first example will be described with reference to FIG. FIG. 2 is a flowchart showing a flow of operations of the observation apparatus 1 of the first embodiment.
 図2に示すように、表示制御部154は、表示面111に検査画像を表示するように、表示素子111を制御する(ステップS101)。このとき、表示制御部154は、表示面111の全面に検査画像を表示するように、表示素子111を制御してもよい。或いは、表示制御部154は、表示面111aのうちの第1表示領域111a1(つまり、表示面111aの中心部又は第2表示領域111a2を除く領域)に検査画像を表示するように、表示素子111を制御してもよい。その結果、表示素子111は、検査画像を表示する(ステップS101)。 As shown in FIG. 2, the display control unit 154 controls the display element 111 so as to display the inspection image on the display surface 111 (step S101). At this time, the display control unit 154 may control the display element 111 so as to display the inspection image on the entire display surface 111. Alternatively, the display control unit 154 displays the inspection image on the first display area 111a1 (that is, the center of the display surface 111a or the area excluding the second display area 111a2) in the display surface 111a. May be controlled. As a result, the display element 111 displays an inspection image (step S101).
 ここで、図3(a)から図3(d)を参照しながら、検査画像について説明する。図3(a)から図3(d)は、夫々、検査画像を示す平面図である。 Here, the inspection image will be described with reference to FIGS. 3 (a) to 3 (d). FIG. 3A to FIG. 3D are plan views each showing an inspection image.
 図3(a)は、観察装置1が涙液層の状態の一例である油層の厚さを推定する場合に表示される検査画像を示している。図3(a)に示すように、観察装置1が油層の厚さを推定する場合には、表示制御部154は、全白色の画像(つまり、全体が白色となる画像)である検査画像を表示するように、表示素子111を制御する。 FIG. 3A shows an inspection image displayed when the observation apparatus 1 estimates the thickness of the oil layer, which is an example of the tear film state. As shown in FIG. 3A, when the observation apparatus 1 estimates the thickness of the oil layer, the display control unit 154 displays an inspection image that is an all-white image (that is, an image that is entirely white). The display element 111 is controlled to display.
 図3(b)は、観察装置1が涙液層の状態の一例であるBUTを推定する場合に表示される検査画像の第1例を示している。図3(b)に示すように、観察装置1がBUTを推定する場合には、表示制御部154は、同心円の複数のリングの画像(つまり、多重リング状パターン)である検査画像を表示するように、表示素子111を制御する。 FIG. 3B shows a first example of an inspection image displayed when the observation apparatus 1 estimates a BUT that is an example of a tear film state. As shown in FIG. 3B, when the observation apparatus 1 estimates the BUT, the display control unit 154 displays an examination image that is an image of a plurality of concentric rings (that is, a multiple ring pattern). Thus, the display element 111 is controlled.
 図3(c)は、観察装置1がBUTを推定する場合に表示される検査画像の第2例を示している。図3(c)に示すように、観察装置1がBUTを推定する場合には、表示制御部154は、図3(b)に示す多重リング状パターンである検査画像に代えて、互いに平行な複数の直線又は線分の画像(つまり、ストライプ状パターン)である検査画像を表示するように、表示素子111を制御してもよい。 FIG. 3C shows a second example of the inspection image displayed when the observation apparatus 1 estimates the BUT. As shown in FIG. 3C, when the observation apparatus 1 estimates the BUT, the display control unit 154 replaces the inspection image that is a multiple ring pattern shown in FIG. The display element 111 may be controlled so as to display an inspection image which is an image (that is, a stripe pattern) of a plurality of straight lines or line segments.
 図3(d)は、観察装置1がBUTを推定する場合に表示される検査画像の第3例を示している。図3(d)に示すように、観察装置1がBUTを推定する場合には、表示制御部154は、図3(b)に示す多重リング状パターンである検査画像及び図3(c)に示すストライプ状パターンである検査画像に代えて、格子の画像(つまり、格子状パターン)である検査画像を表示するように、表示素子111を制御してもよい。 FIG. 3D shows a third example of the inspection image displayed when the observation apparatus 1 estimates the BUT. As shown in FIG. 3D, when the observation apparatus 1 estimates the BUT, the display control unit 154 displays the inspection image that is a multiple ring pattern shown in FIG. 3B and the inspection image shown in FIG. The display element 111 may be controlled so as to display an inspection image that is an image of a lattice (that is, a lattice pattern) instead of the inspection image that is a stripe pattern.
 つまり、観察装置1がBUTを推定する場合には、表示制御部154は、複数の直線、線分又は曲線の画像(つまり、線状パターン)である検査画像を表示するように、表示素子111を制御する。 That is, when the observation apparatus 1 estimates the BUT, the display control unit 154 displays the inspection image that is an image (that is, a linear pattern) of a plurality of straight lines, line segments, or curves. To control.
 尚、図3(a)に示す検査画像は、観察装置1が油層の厚さを推定する場合に表示される検査画像の一例に過ぎない。従って、観察装置1が油層の厚さを推定する場合に、表示制御部154は、図3(a)に示す検査画像とは異なる他の検査画像を表示するように、表示素子111を制御してもよい。 Note that the inspection image shown in FIG. 3A is merely an example of the inspection image displayed when the observation apparatus 1 estimates the thickness of the oil layer. Therefore, when the observation apparatus 1 estimates the oil layer thickness, the display control unit 154 controls the display element 111 so as to display another inspection image different from the inspection image shown in FIG. May be.
 同様に、図3(b)から図3(d)に示す検査画像は、観察装置1がBUTを推定する場合に表示される検査画像の一例に過ぎない。従って、観察装置1がBUTを推定する場合に、表示制御部154は、図3(b)から図3(d)に示す検査画像とは異なる他の検査画像を表示するように、表示素子111を制御してもよい。 Similarly, the inspection images shown in FIGS. 3B to 3D are only examples of inspection images displayed when the observation apparatus 1 estimates the BUT. Therefore, when the observation apparatus 1 estimates the BUT, the display control unit 154 displays the other inspection image different from the inspection images shown in FIGS. May be controlled.
 再び図2において、表示素子111が検査画像を表示すると、表示面111a(或いは、第1表示領域111a1)からは、検査画像を拡散板120に投影するための照明光L11が出射される。照明光L11は、投影レンズ112及び投影絞り113を介して、拡散板120に入射する。その結果、拡散板120上では、検査画像が結像する。拡散板120は、拡散板120に入射してくる照明光L11を、照明光L21として拡散する。その結果、照明光L21は、被験者の角膜に入射する。従って、拡散板120は、投影部110が投影している検査画像に応じた明暗パターンで眼を照明する照明板として機能する。このとき、検査画像は、角膜上で結像していてもよい。或いは、検査画像は、角膜上で結像していなくてもよい。 In FIG. 2 again, when the display element 111 displays the inspection image, illumination light L11 for projecting the inspection image onto the diffusion plate 120 is emitted from the display surface 111a (or the first display region 111a1). The illumination light L11 enters the diffusion plate 120 via the projection lens 112 and the projection stop 113. As a result, an inspection image is formed on the diffusion plate 120. The diffusion plate 120 diffuses the illumination light L11 incident on the diffusion plate 120 as illumination light L21. As a result, the illumination light L21 enters the subject's cornea. Therefore, the diffusing plate 120 functions as an illuminating plate that illuminates the eyes with a light / dark pattern corresponding to the inspection image projected by the projection unit 110. At this time, the inspection image may be formed on the cornea. Alternatively, the inspection image may not be formed on the cornea.
 その後、撮像部140は、検査画像が投影されている拡散板120の角膜反射像もしくは角膜の表面を撮像する(ステップS102)。その結果、撮像部140は、角膜の表面状態を反映した画像である観察画像を取得する(ステップS102)。 After that, the imaging unit 140 captures the cornea reflection image of the diffuser plate 120 on which the inspection image is projected or the surface of the cornea (step S102). As a result, the imaging unit 140 acquires an observation image that is an image reflecting the surface state of the cornea (step S102).
 ここで、図4を参照しながら、観察画像について説明する。図4は、観察画像を示す平面図である。 Here, the observation image will be described with reference to FIG. FIG. 4 is a plan view showing an observation image.
 図4は、図3(b)に示す検査画像(多重リング状パターン)が拡散板120投影されている場合に当該拡散板120の角膜反射像を撮像することで取得される観察画像を示している。図4に示すように、観察画像中には、被験者の角膜(更には、眼)に映り込んでいる拡散板120上の検査画像(つまり、多重リング状パターン)のみならず、被験者の前眼部が含まれている。但し、後述するように観察装置1がBUTを推定する場合には、撮像レンズ142は角膜に映り込んでいる拡散板120にピントを合わせることが好ましいがゆえに、被験者の前眼部は多少ボケる可能性がある。 FIG. 4 shows an observation image obtained by capturing a corneal reflection image of the diffusion plate 120 when the inspection image (multiple ring pattern) shown in FIG. 3B is projected on the diffusion plate 120. Yes. As shown in FIG. 4, in the observation image, not only the inspection image (that is, a multiple ring pattern) on the diffusion plate 120 reflected in the cornea (and the eye) of the subject, but also the anterior eye of the subject. Department is included. However, when the observation apparatus 1 estimates BUT as will be described later, it is preferable that the imaging lens 142 is focused on the diffusing plate 120 reflected in the cornea, so the anterior eye portion of the subject is slightly blurred. there is a possibility.
 再び図2において、表示制御部154は、ステップS101で表示素子111が表示している検査画像とステップS102で撮像部140が取得した観察画像とを合成する(ステップS103)。その結果、表示制御部154は、検査画像と観察画像とを合成することで得られる投影画像を生成する(ステップS103)。 In FIG. 2 again, the display control unit 154 synthesizes the inspection image displayed on the display element 111 in step S101 and the observation image acquired by the imaging unit 140 in step S102 (step S103). As a result, the display control unit 154 generates a projection image obtained by synthesizing the inspection image and the observation image (step S103).
 ここで、図5を参照しながら、検査画像と観察画像とを合成することで得られる投影画像について説明する。図5は、検査画像と観察画像とを合成することで得られる投影画像を示す平面図である。 Here, a projection image obtained by synthesizing the inspection image and the observation image will be described with reference to FIG. FIG. 5 is a plan view showing a projection image obtained by synthesizing the inspection image and the observation image.
 図5に示すように、投影画像中において、多重リング状パターンである検査画像は、観察画像を取り囲む。投影画像中において、観察画像は、検査画像の中心部又は当該中心部の近傍に配置される。このため、表示制御部154は、検査画像が観察画像を取り囲むように(例えば、検査画像の中心部又は当該中心部の近傍に観察画像が位置する)ように、検査画像と観察画像とを合成する。言い換えれば、表示制御部154は、第2表示領域111a2を取り囲む第1表示領域111a1に検査画像が表示され且つ第1表示領域111a1によって取り囲まれる第2表示領域111a2に検査画像が表示されるように、検査画像と観察画像とを合成する。 As shown in FIG. 5, in the projection image, the inspection image that is a multiple ring pattern surrounds the observation image. In the projection image, the observation image is arranged at the center of the inspection image or in the vicinity of the center. For this reason, the display control unit 154 combines the inspection image and the observation image so that the inspection image surrounds the observation image (for example, the observation image is located at or near the center of the inspection image). To do. In other words, the display control unit 154 displays the inspection image in the first display area 111a1 surrounding the second display area 111a2 and displays the inspection image in the second display area 111a2 surrounded by the first display area 111a1. The inspection image and the observation image are synthesized.
 再び図2において、その後、表示制御部154は、ステップS103で生成した投影画像(つまり、検査画像と観察画像とを合成することで得られる画像)を表示するように、表示素子111を制御する(ステップS104)。その結果、表示素子111は、投影画像(つまり、検査画像と観察画像とを合成することで得られる画像)を表示する(ステップS104)。 In FIG. 2 again, after that, the display control unit 154 controls the display element 111 so as to display the projection image generated in step S103 (that is, an image obtained by combining the inspection image and the observation image). (Step S104). As a result, the display element 111 displays a projection image (that is, an image obtained by combining the inspection image and the observation image) (step S104).
 表示素子111が投影画像を表示すると、表示面111aのうちの第1表示領域111a1からは、検査画像を眼に投影する(より具体的には、検査画像を拡散板120に投影する)ための照明光L11が出射される。このため、上述したように、拡散板120は、投影部110が投影している検査画像に応じた明暗パターンで眼を照明する照明板として機能する。 When the display element 111 displays the projection image, the inspection image is projected onto the eye from the first display area 111a1 of the display surface 111a (more specifically, the inspection image is projected onto the diffusion plate 120). Illumination light L11 is emitted. For this reason, as described above, the diffusion plate 120 functions as an illumination plate that illuminates the eyes with a light / dark pattern corresponding to the inspection image projected by the projection unit 110.
 一方で、表示素子111が投影画像を表示すると、表示面111aのうちの第2表示領域111a2からは、観察画像を眼に投影する(より具体的には、観察画像を網膜上に結像させる)ための照明光L12が出射される。照明光L12は、投影レンズ112、投影絞り113、ケーラー照明用レンズ131、ビームスプリッタ132及び接眼レンズ124を介して、被験者の角膜に入射する。その結果、照明光L12は、被験者の網膜上で結像する。従って、被験者は、検査画像が投影されている角膜の表面の画像である観察画像を視認することができる。 On the other hand, when the display element 111 displays the projection image, the observation image is projected onto the eye from the second display area 111a2 of the display surface 111a (more specifically, the observation image is formed on the retina). Illumination light L12 is emitted. The illumination light L12 enters the subject's cornea via the projection lens 112, the projection stop 113, the Koehler illumination lens 131, the beam splitter 132, and the eyepiece lens 124. As a result, the illumination light L12 forms an image on the retina of the subject. Accordingly, the subject can visually recognize an observation image that is an image of the surface of the cornea on which the inspection image is projected.
 その後、画像解析部151は、ステップS102で撮像部140が取得した観察画像を解析する(ステップS111)。 Thereafter, the image analysis unit 151 analyzes the observation image acquired by the imaging unit 140 in step S102 (step S111).
 例えば、観察装置1が油層の厚さを推定する場合には、撮像部140は、撮像レンズ142のピントを角膜の表面に合わせた上で、角膜の表面を撮像する。このため、観察画像は、全白色の画像である検査画像によって照明されている角膜の表面の画像となる。この場合、画像解析部151は、観察画像に含まれる検査画像に生ずる干渉色(つまり、観察画像に現れる干渉色)を識別するように、観察画像を解析する。但し、画像解析部151は、観察画像に含まれる検査画像の特徴のうち干渉色とは異なる特徴を推定するように、観察画像を解析してもよい。 For example, when the observation apparatus 1 estimates the thickness of the oil layer, the imaging unit 140 images the surface of the cornea after the focus of the imaging lens 142 is matched to the surface of the cornea. For this reason, an observation image turns into an image of the surface of the cornea illuminated by the test | inspection image which is an all-white image. In this case, the image analysis unit 151 analyzes the observation image so as to identify interference colors generated in the inspection image included in the observation image (that is, interference colors appearing in the observation image). However, the image analysis unit 151 may analyze the observation image so as to estimate a feature different from the interference color among the features of the inspection image included in the observation image.
 例えば、観察装置1がBUTを推定する場合には、撮像部140は、撮像レンズ142のピントを角膜に写った拡散板120に合わせた上で、拡散板120の表面122を撮像する。このため、観察画像は、多重リング状パターンである検査画像が投影されている拡散板120の角膜反射像となる。この場合、画像解析部151は、観察画像に含まれる複数のリングの経時的な変化(言い換えれば、時間的な変化)を判定するように、観察画像を解析する。特に、画像解析部151は、観察画像に含まれる複数のリングの経時的な破壊状況を判定するように、観察画像を解析する。尚、表示素子111がストライプ状パターン又は格子状パターンである検査画像を表示している場合においても、画像解析部151は、観察画像に含まれる複数のライン又は格子の経時的な変化(特に、破壊状況)を推定するように、観察画像を解析する。但し、画像解析部151は、観察画像に含まれる検査画像の特徴のうち複数の線の経時的な変化(特に、破壊状況)とは異なる特徴を推定するように、観察画像を解析してもよい。 For example, when the observation apparatus 1 estimates the BUT, the imaging unit 140 images the surface 122 of the diffusion plate 120 after matching the focus of the imaging lens 142 with the diffusion plate 120 reflected on the cornea. For this reason, the observation image becomes a cornea reflection image of the diffusion plate 120 on which the inspection image which is a multiple ring pattern is projected. In this case, the image analysis unit 151 analyzes the observation image so as to determine temporal changes (in other words, temporal changes) of the plurality of rings included in the observation image. In particular, the image analysis unit 151 analyzes the observation image so as to determine the temporal destruction status of the plurality of rings included in the observation image. Even when the display element 111 displays an inspection image having a stripe pattern or a lattice pattern, the image analysis unit 151 changes over time in a plurality of lines or lattices included in the observation image (in particular, The observation image is analyzed so as to estimate the destruction state. However, the image analysis unit 151 may analyze the observation image so as to estimate a feature different from the temporal change (particularly, the destruction state) of the plurality of lines among the features of the inspection image included in the observation image. Good.
 その後、状態推定部152は、ステップS111における画像解析部151の解析結果に基づいて、涙液層の状態を推定する(ステップS112)。 Thereafter, the state estimation unit 152 estimates the state of the tear film based on the analysis result of the image analysis unit 151 in step S111 (step S112).
 例えば、観察装置1が油層の厚さを推定する場合には、画像解析部151は、観察画像に含まれる検査画像に生ずる干渉色を識別するように、観察画像を解析している。この場合、状態推定部152は、画像解析部151の解析結果に相当する干渉色に基づいて、油層の厚さを推定する。具体的には、全白色の画像である検査画像が投影されている拡散板120によって照明されている角膜を撮像することで得られる観察画像に現れる干渉色は、油層の厚さに固有の色となる傾向にある。従って、状態推定部152は、画像解析部151の解析結果に相当する干渉色に基づいて、油層の厚さを推定することができる。但し、状態推定部152は、油層の厚さとは異なる涙液層の状態を推定してもよい。 For example, when the observation apparatus 1 estimates the thickness of the oil layer, the image analysis unit 151 analyzes the observation image so as to identify the interference color generated in the inspection image included in the observation image. In this case, the state estimation unit 152 estimates the thickness of the oil layer based on the interference color corresponding to the analysis result of the image analysis unit 151. Specifically, the interference color that appears in the observation image obtained by imaging the cornea illuminated by the diffuser plate 120 onto which the inspection image that is an all-white image is projected is a color unique to the thickness of the oil layer. It tends to be. Therefore, the state estimation unit 152 can estimate the thickness of the oil layer based on the interference color corresponding to the analysis result of the image analysis unit 151. However, the state estimation unit 152 may estimate a tear film state different from the thickness of the oil layer.
 例えば、観察装置1がBUTを推定する場合には、画像解析部151は、観察画像に含まれる検査画像に含まれる複数のリングの経時的な変化(特に、破壊状況)を判定するように、観察画像を解析している。この場合、状態推定部152は、画像解析部151の解析結果に相当する複数のリングの経時的な変化(特に、破壊状況)に基づいて、BUTを推定する。具体的には、涙液層の表面に亀裂が入ると、観察画像に含まれる複数のリングの形状が乱れる。従って、状態推定部152は、被験者の眼が開いてから観察画像に含まれる複数のリングの形状が乱れる(例えば、複数のリングのうちの少なくとも一つのリングの形状が所定態様で乱れる)までの時間を推定することで、BUTを推定することができる。但し、状態推定部152は、BUTとは異なる涙液層の状態を推定してもよい。 For example, when the observation apparatus 1 estimates a BUT, the image analysis unit 151 determines a change with time (particularly, a destruction state) of a plurality of rings included in an inspection image included in the observation image. The observation image is analyzed. In this case, the state estimation unit 152 estimates the BUT based on changes over time of the plurality of rings corresponding to the analysis result of the image analysis unit 151 (particularly, the destruction state). Specifically, when a crack is formed on the surface of the tear film, the shapes of a plurality of rings included in the observation image are disturbed. Therefore, the state estimation unit 152 starts from the time when the subject's eyes are opened until the shapes of the plurality of rings included in the observation image are disturbed (for example, the shape of at least one of the plurality of rings is disturbed in a predetermined manner). By estimating the time, the BUT can be estimated. However, the state estimation unit 152 may estimate a tear film state different from the BUT.
 尚、BUTは、上述したように、被験者の眼がドライアイであるか否かを診断するための指標の1つとして用いられる。従って、観察装置1は、状態推定部152が推定したBUTをユーザ(例えば、眼科医や被験者等)に提示することで、被験者の眼がドライアイであるか否かの診断をサポートしてもよい。 Note that, as described above, the BUT is used as one of indices for diagnosing whether or not the eye of the subject is dry eye. Therefore, the observation apparatus 1 supports diagnosis of whether or not the eye of the subject is dry eye by presenting the BUT estimated by the state estimation unit 152 to the user (for example, an ophthalmologist or a subject). Good.
 一方で、油層の厚さは、BUTと一定の相関があることが知られている。従って、観察装置1は、状態推定部152が推定した油層の厚さをユーザに提示することで、被験者の眼がドライアイであるか否かの診断をサポートしてもよい。観察装置1は、状態推定部152が推定した油層の厚さに基づいてBUTを推定すると共に当該推定したBUTをユーザに提示することで、被験者の眼がドライアイであるか否かの診断をサポートしてもよい。 On the other hand, it is known that the thickness of the oil layer has a certain correlation with BUT. Therefore, the observation apparatus 1 may support diagnosis of whether or not the eye of the subject is dry eye by presenting the thickness of the oil layer estimated by the state estimation unit 152 to the user. The observation apparatus 1 estimates the BUT based on the thickness of the oil layer estimated by the state estimation unit 152 and presents the estimated BUT to the user, thereby diagnosing whether or not the eye of the subject is dry eye. May be supported.
 第1実施例では更に、ステップS111における観察画像の解析動作及びステップS112における涙液層の状態の推定動作と並行して、表示制御部154は、瞳孔検出部153の検出結果に基づいて、表示素子111の表示面111a上における観察画像の表示位置を調整する。 In the first example, in addition to the observation image analysis operation in step S111 and the tear film state estimation operation in step S112, the display control unit 154 displays based on the detection result of the pupil detection unit 153. The display position of the observation image on the display surface 111a of the element 111 is adjusted.
 具体的には、瞳孔検出部153は、撮像部140が取得した観察画像中に現れる被験者の瞳孔の位置を検出する(ステップS121)。例えば、瞳孔検出部153は、撮像部140が取得した観察画像を解析することで、観察画像中に現れる瞳孔の位置を検出する。 Specifically, the pupil detection unit 153 detects the position of the subject's pupil that appears in the observation image acquired by the imaging unit 140 (step S121). For example, the pupil detection unit 153 detects the position of the pupil appearing in the observation image by analyzing the observation image acquired by the imaging unit 140.
 瞳孔検出部153は、瞳孔(或いは、瞳孔を取り囲む虹彩又は瞳孔を含む眼の少なくとも一部)のパターンを観察画像中から検出するパターンマッチング処理を行うことで、観察画像中に現れる瞳孔の位置を検出してもよい。尚、パターンマッチング処理そのものは公知であるため、パターンマッチング処理の詳細な説明は省略する。 The pupil detection unit 153 performs pattern matching processing for detecting the pattern of the pupil (or at least a part of the eye including the pupil or the pupil that surrounds the pupil) from the observation image, thereby determining the position of the pupil appearing in the observation image. It may be detected. Since the pattern matching process itself is publicly known, detailed description of the pattern matching process is omitted.
 或いは、例えば、検査画像として多重リング状パターンが角膜の表面に投影されている場合には、典型的には、ステップS101で表示素子111が検査画像を表示した段階で、アライメント動作が行われる。アライメント動作は、例えば、多重リング状パターンを構成する複数のリングの中心と瞳孔の中心とが一致するように、被験者の眼の位置又は検査画像若しくは投影画像の投影位置を調整する動作である。つまり、アライメント動作により、複数のリングと瞳孔との間の位置関係は、所定の位置関係となっている。この場合、瞳孔検出部153は、観察画像中の複数のリングの位置に基づいて、瞳孔の位置を検出してもよい。 Alternatively, for example, when a multiple ring pattern is projected on the surface of the cornea as an inspection image, typically, an alignment operation is performed when the display element 111 displays the inspection image in step S101. The alignment operation is, for example, an operation of adjusting the eye position of the subject or the projection position of the examination image or the projection image so that the centers of the plurality of rings constituting the multiple ring pattern coincide with the center of the pupil. That is, the positional relationship between the plurality of rings and the pupil is a predetermined positional relationship by the alignment operation. In this case, the pupil detection unit 153 may detect the position of the pupil based on the positions of a plurality of rings in the observation image.
 或いは、表示制御部154は、瞳孔の位置を検出するためのマーカが検査画像中に含まれるように表示素子111を制御してもよい。この場合、瞳孔検出部153は、観察画像中のマーカの位置に基づいて、瞳孔の位置を検出してもよい。 Alternatively, the display control unit 154 may control the display element 111 such that a marker for detecting the position of the pupil is included in the examination image. In this case, the pupil detection unit 153 may detect the position of the pupil based on the position of the marker in the observation image.
 いずれにせよ、瞳孔検出部153は、何らかの公知な又は新規の方法を用いて、観察画像中に現れる被験者の瞳孔の位置を検出する。 In any case, the pupil detection unit 153 detects the position of the pupil of the subject appearing in the observation image using any known or novel method.
 その後、表示制御部154は、ステップS121における瞳孔検出部153の検出結果(つまり、検出された瞳孔の位置)に基づいて、観察画像を網膜上に結像させるための照明光L12が瞳孔を通過することが可能か否かを判定する(ステップS122)。 Thereafter, the display control unit 154 passes the illumination light L12 for forming an observation image on the retina based on the detection result of the pupil detection unit 153 in step S121 (that is, the position of the detected pupil). It is determined whether or not it is possible (step S122).
 例えば、表示制御部154は、以下に示す動作を行うことで、照明光L12が瞳孔を通過することが可能か否かを判定してもよい。まず、表示制御部154は、第2表示領域111a2に表示された観察画像を網膜上に結像させるための照明光L12の光路を算出する。その結果、表示制御部154は、角膜上における照明光L12の通過位置を特定することができる。その後、表示制御部154は、角膜上における照明光L12の通過位置が、瞳孔検出部153が検出した瞳孔の位置と一致するか否かを判定する。つまり、表示制御部154は、角膜上における照明光L12の通過位置が、瞳孔検出部153が検出した瞳孔の位置に包含されるか否かを判定する。角膜上における照明光L12の通過位置が、瞳孔検出部153が検出した瞳孔の位置と一致する(つまり、瞳孔検出部153が検出した瞳孔の位置に包含される)場合には、表示制御部154は、照明光L12が瞳孔を通過することが可能であると判定する。但し、表示制御部154は、上に述べた方法とは異なる公知な又は新規の方法を用いて、照明光L12が瞳孔を通過することが可能か否かを判定してもよい。 For example, the display control unit 154 may determine whether or not the illumination light L12 can pass through the pupil by performing the following operation. First, the display control unit 154 calculates an optical path of the illumination light L12 for forming an observation image displayed in the second display area 111a2 on the retina. As a result, the display control unit 154 can specify the passage position of the illumination light L12 on the cornea. Thereafter, the display control unit 154 determines whether or not the passage position of the illumination light L12 on the cornea matches the position of the pupil detected by the pupil detection unit 153. That is, the display control unit 154 determines whether the passage position of the illumination light L12 on the cornea is included in the position of the pupil detected by the pupil detection unit 153. When the passage position of the illumination light L12 on the cornea matches the position of the pupil detected by the pupil detection unit 153 (that is, included in the position of the pupil detected by the pupil detection unit 153), the display control unit 154 Determines that the illumination light L12 can pass through the pupil. However, the display control unit 154 may determine whether or not the illumination light L12 can pass through the pupil using a known or new method different from the method described above.
 ステップS122の判定の結果、照明光L12が瞳孔を通過することが可能でないと判定される場合には(ステップS122:No)、表示制御部154は、照明光L12が瞳孔を通過するように、表示面111a上における観察画像の表示位置を調整する(ステップS123)。つまり、表示制御部154は、照明光L12が瞳孔を通過するように、表示面111a上における第2表示領域111a2の分布位置を調整する(ステップS123)。 As a result of the determination in step S122, when it is determined that the illumination light L12 cannot pass through the pupil (step S122: No), the display control unit 154 causes the illumination light L12 to pass through the pupil. The display position of the observation image on the display surface 111a is adjusted (step S123). That is, the display control unit 154 adjusts the distribution position of the second display region 111a2 on the display surface 111a so that the illumination light L12 passes through the pupil (step S123).
 ここで、図6(a)から図6(d)及び図7(a)から図7(e)を参照しながら、表示面111a上における観察画像の表示位置の調整動作について説明する。尚、以下では、多重リング状パターンである検査画像が眼に投影されている例を用いて説明を進める。 Here, the operation of adjusting the display position of the observation image on the display surface 111a will be described with reference to FIGS. 6 (a) to 6 (d) and FIGS. 7 (a) to 7 (e). In the following, description will be given using an example in which an inspection image that is a multiple ring pattern is projected onto the eye.
 図6(a)は、表示面111aの中心部である表示基準位置に観察画像が表示されている例を示している。つまり、図6(a)は、観察画像の中心が検査画像の中心(つまり、複数のリングの中心)と一致するように、観察画像が表示面111a上の表示基準位置に表示されている例を示している。 FIG. 6A shows an example in which the observation image is displayed at the display reference position that is the center of the display surface 111a. That is, FIG. 6A shows an example in which the observation image is displayed at the display reference position on the display surface 111a so that the center of the observation image matches the center of the inspection image (that is, the centers of the plurality of rings). Is shown.
 表示面111a上の表示基準位置に表示されている観察画像は、瞳孔が瞳孔基準位置に位置する場合に網膜に結像するものとする。瞳孔が瞳孔基準位置に位置するという状態は、図6(b)に示すように、瞳孔が被験者の真正面を向いているという状態であるものとする。この場合、図6(c)に示すように、観察画像中において、表示基準位置に表示されている観察画像を構成する複数のリングの中心は、瞳孔基準位置に位置する瞳孔の中心と一致するものとする。つまり、瞳孔が瞳孔基準位置に位置するという状態は、観察画像中において表示基準位置に表示されている観察画像を構成する複数のリングの中心が瞳孔の中心に一致する状態であるものとする。 Suppose that the observation image displayed at the display reference position on the display surface 111a forms an image on the retina when the pupil is located at the pupil reference position. The state in which the pupil is located at the pupil reference position is a state in which the pupil is facing directly in front of the subject as shown in FIG. In this case, as shown in FIG. 6C, in the observation image, the centers of the plurality of rings constituting the observation image displayed at the display reference position coincide with the centers of the pupils positioned at the pupil reference position. Shall. That is, the state where the pupil is located at the pupil reference position is a state where the centers of a plurality of rings constituting the observation image displayed at the display reference position in the observation image coincide with the center of the pupil.
 この場合には、図6(d)に示すように、観察画像を網膜に結像させるための照明光L12は、瞳孔基準位置に位置する瞳孔を通過することができる。その結果、照明光L12は、網膜上で結像する。つまり、観察画像は、網膜上で結像する。従って、被験者は、観察画像を視認することができる。 In this case, as shown in FIG. 6D, the illumination light L12 for forming the observation image on the retina can pass through the pupil located at the pupil reference position. As a result, the illumination light L12 forms an image on the retina. That is, the observation image is formed on the retina. Accordingly, the subject can visually recognize the observation image.
 このような図6(a)から図6(d)に示す状態を基準として、図7(a)に示すように、被験者が眼を動かした場合を想定する。具体的には、図7(a)に示すように、瞳孔が瞳孔基準位置から所定ずれ量s0だけずれた位置に位置する場合を想定する。図7(a)に示す例では、被験者が眼を左側(但し、被験者から見て左側であり、投影部110から見て右側)に向けて動かしている。つまり、図7(a)に示す例では、瞳孔は、瞳孔基準位置から左側に向かって所定ずれ量s0だけずれた位置に位置している。 Suppose that the subject moves his / her eyes as shown in FIG. 7 (a) with reference to the state shown in FIGS. 6 (a) to 6 (d). Specifically, as shown in FIG. 7A, it is assumed that the pupil is located at a position shifted by a predetermined shift amount s0 from the pupil reference position. In the example shown in FIG. 7A, the subject moves his / her eyes toward the left side (however, the left side when viewed from the subject and the right side when viewed from the projection unit 110). That is, in the example shown in FIG. 7A, the pupil is located at a position shifted by a predetermined shift amount s0 toward the left side from the pupil reference position.
 図7(b)は、図7(a)に示す眼を撮像する(言い換えれば、図7(a)に示す眼による拡散板120の反射像を撮像する)ことで取得される観察画像を示す。図7(b)に示すように、瞳孔が瞳孔基準位置からずれると、観察画像中において、表示基準位置に表示されている観察画像を構成する複数のリングの中心が瞳孔の中心に一致しなくなる。具体的には、瞳孔の中心は、表示基準位置に表示されている観察画像を構成する複数のリングの中心から所定ずれ量s1だけずれた位置に位置する。図7(b)に示す例では、瞳孔の中心は、表示基準位置に表示されている観察画像を構成する複数のリングの中心から右側(但し、観察画像に向かって右側)に向かって所定ずれ量s1だけずれた位置に位置する。尚、所定ずれ量s1は、典型的には所定ずれ量s0に比例する。 FIG. 7B shows an observation image acquired by imaging the eye shown in FIG. 7A (in other words, imaging a reflection image of the diffusion plate 120 by the eye shown in FIG. 7A). . As shown in FIG. 7B, when the pupil deviates from the pupil reference position, the centers of the plurality of rings constituting the observation image displayed at the display reference position in the observation image do not coincide with the pupil center. . Specifically, the center of the pupil is located at a position shifted by a predetermined shift amount s1 from the centers of the plurality of rings constituting the observation image displayed at the display reference position. In the example shown in FIG. 7B, the center of the pupil is shifted from the center of the plurality of rings constituting the observation image displayed at the display reference position to the right side (however, right side toward the observation image). It is located at a position shifted by an amount s1. The predetermined deviation amount s1 is typically proportional to the predetermined deviation amount s0.
 この場合には、図7(c)に示すように、表示基準位置に表示されている観察画像を網膜に結像させるための照明光L12は、瞳孔基準位置からずれた位置に位置する瞳孔を通過することができない。その結果、照明光L12は、網膜上で結像することはない。つまり、観察画像は、網膜上で結像することはない。従って、被験者は、観察画像を視認することができない。 In this case, as shown in FIG. 7C, the illumination light L12 for forming the observation image displayed at the display reference position on the retina has a pupil located at a position shifted from the pupil reference position. Can't pass. As a result, the illumination light L12 does not form an image on the retina. That is, the observation image is not formed on the retina. Therefore, the subject cannot visually recognize the observation image.
 そこで、第1実施例では、表示制御部154は、照明光L12が瞳孔を通過するように、表示面111a上における観察画像の表示位置(つまり、第2表示領域111a2の位置)を調整する。具体的には、図7(d)に示すように、表示制御部154は、観察画像の表示位置が表示基準位置から所定ずれ量s2だけずれた位置と一致するように、観察画像の表示位置を調整する。尚、所定ずれ量s2は、典型的には所定ずれ量s0に比例する。 Therefore, in the first embodiment, the display control unit 154 adjusts the display position of the observation image on the display surface 111a (that is, the position of the second display area 111a2) so that the illumination light L12 passes through the pupil. Specifically, as illustrated in FIG. 7D, the display control unit 154 displays the display position of the observation image so that the display position of the observation image coincides with a position shifted by a predetermined shift amount s2 from the display reference position. Adjust. The predetermined deviation amount s2 is typically proportional to the predetermined deviation amount s0.
 尚、図7(d)に示す例では、表示制御部154は、観察画像の表示位置が表示基準位置から左側(但し、投影部110から見て左側であり、被験者から見て右側、以下同じ)に向かって所定ずれ量s2だけずれた位置と一致するように、観察画像の表示位置を調整している。つまり、図7(d)に示す例では、表示制御部154は、観察画像の表示位置が表示基準位置から瞳孔のずれ方向(つまり、基準位置に対する瞳孔のずれ方向)とは逆の方向に向かって所定ずれ量s2だけずれた位置と一致するように、観察画像の表示位置を調整する。但し、照明光L12を眼に導く光学系の設計によっては、表示制御部154は、観察画像の表示位置が表示基準位置から瞳孔のずれ方向と同じ方向に向かって所定ずれ量s2だけずれた位置と一致するように、観察画像の表示位置を調整してもよい。 In the example shown in FIG. 7D, the display control unit 154 has the display position of the observation image on the left side from the display reference position (however, the left side when viewed from the projection unit 110, the right side when viewed from the subject, and so on. ), The display position of the observation image is adjusted so as to coincide with the position shifted by the predetermined shift amount s2. That is, in the example shown in FIG. 7D, the display control unit 154 moves the observation image display position in the direction opposite to the pupil shift direction from the display reference position (that is, the pupil shift direction with respect to the reference position). The display position of the observation image is adjusted so as to coincide with the position shifted by the predetermined shift amount s2. However, depending on the design of the optical system that guides the illumination light L12 to the eye, the display control unit 154 causes the display position of the observation image to be shifted from the display reference position by the predetermined shift amount s2 in the same direction as the pupil shift direction. The display position of the observation image may be adjusted so as to coincide with.
 このため、図7(e)に示すように、照明光L12の光路が変化する。その結果、図7(e)に示すように、表示基準位置からずれた位置に表示されている観察画像を網膜に結像させるための照明光L12は、瞳孔基準位置からずれた位置に位置する瞳孔を通過することができる。その結果、照明光L12は、網膜上で結像する。つまり、観察画像は、網膜上で結像する。従って、被験者は、眼(特に、瞳孔)を動かした場合であっても、観察画像を視認することができる。 For this reason, as shown in FIG. 7E, the optical path of the illumination light L12 changes. As a result, as shown in FIG. 7E, the illumination light L12 for forming an observation image displayed at a position shifted from the display reference position on the retina is positioned at a position shifted from the pupil reference position. Can pass through the pupil. As a result, the illumination light L12 forms an image on the retina. That is, the observation image is formed on the retina. Therefore, the subject can visually recognize the observation image even when the eye (particularly the pupil) is moved.
 再び図2において、他方で、ステップS122の判定の結果、照明光L12が瞳孔を通過することが可能であると判定される場合には(ステップS122:Yes)、表示制御部154は、表示面111a上における観察画像の表示位置を調整しなくてもよい。 In FIG. 2 again, on the other hand, as a result of the determination in step S122, when it is determined that the illumination light L12 can pass through the pupil (step S122: Yes), the display control unit 154 displays the display surface. It is not necessary to adjust the display position of the observation image on 111a.
 以降は、観察装置1による観察動作が終了するまでの間、ステップS102からステップS104、ステップS111からステップS112及びステップS121からステップS213の動作が繰り返し行われる(ステップS131)。 Thereafter, the operations from step S102 to step S104, from step S111 to step S112, and from step S121 to step S213 are repeated until the observation operation by the observation apparatus 1 is completed (step S131).
 以上説明したように、第1実施例の観察装置1は、被験者の瞳孔の位置に基づいて、表示面111a上における観察画像の表示位置を調整することができる。従って、被験者は、眼(特に、瞳孔)を動かした場合であっても、観察画像を視認することができる。つまり、被験者は、眼(特に、瞳孔)の位置が変わる場合であっても、観察画像を視認することができる。 As described above, the observation apparatus 1 of the first embodiment can adjust the display position of the observation image on the display surface 111a based on the position of the pupil of the subject. Therefore, the subject can visually recognize the observation image even when the eye (particularly the pupil) is moved. That is, the subject can visually recognize the observation image even when the position of the eye (particularly the pupil) changes.
 加えて、第1実施例の観察装置1は、観察画像を解析することで、被験者の瞳孔の位置を検出することができる。従って、観察装置1は、被験者の瞳孔の位置を比較的容易に検出することができる。 In addition, the observation apparatus 1 of the first embodiment can detect the position of the pupil of the subject by analyzing the observation image. Therefore, the observation apparatus 1 can detect the position of the pupil of the subject relatively easily.
 加えて、第1実施例の観察装置1は、検査画像が観察画像を取り囲むように(言い換えれば、検査画像の中心部又は当該中心部の近傍に観察画像が位置するように)観察画像と検査画像とを合成することで得られる投影画像を投影することができる。ここで、瞳孔が眼の中心(つまり、眼の表面、前眼部の表面又は角膜の表面の中心)に位置する可能性が高い。そうすると、投影画像の中心部に観察画像が位置する場合には、投影画像の中心部に観察画像が位置しない場合と比較して、照明光L12が瞳孔を通過する可能性が高くなる。従って、観察装置1は、照明光L12が瞳孔を通過する可能性が相対的に高くなるように、観察画像を好適に投影することができる。 In addition, the observation apparatus 1 according to the first embodiment allows the observation image and the inspection so that the inspection image surrounds the observation image (in other words, the observation image is located at or near the center of the inspection image). A projected image obtained by combining the image can be projected. Here, there is a high possibility that the pupil is located at the center of the eye (that is, the center of the surface of the eye, the surface of the anterior eye portion, or the surface of the cornea). Then, when the observation image is located at the center of the projection image, the possibility that the illumination light L12 passes through the pupil is higher than when the observation image is not located at the center of the projection image. Therefore, the observation apparatus 1 can preferably project the observation image so that the possibility that the illumination light L12 passes through the pupil is relatively high.
 一方で、投影画像の中心部の周辺に検査画像が位置する場合には、投影画像の中心部に検査画像が位置する場合と比較して、照明光L11が瞳孔を通過する可能性が低くなる。つまり、照明光L11が瞳孔の周囲に投影される可能性が高くなる。その結果、被験者は、観察画像を好適に視認する一方で、視認する必要性が相対的に小さい検査画像の一部又は全部を視認することはなくなる。従って、被験者は、観察画像と共に眼に投影される検査画像に煩わされることなく、観察画像を好適に視認することができる。 On the other hand, when the inspection image is located around the center of the projection image, the possibility that the illumination light L11 passes through the pupil is lower than when the inspection image is located at the center of the projection image. . That is, the possibility that the illumination light L11 is projected around the pupil increases. As a result, the subject does not visually recognize a part or all of the inspection image whose necessity for visual recognition is relatively small while appropriately viewing the observation image. Therefore, the subject can appropriately view the observation image without being bothered by the inspection image projected onto the eye together with the observation image.
 尚、表示制御部154は、表示面111a上における観察画像の表示位置を調整することに加えて、表示面111a上における検査画像の表示位置を調整してもよい。このとき、表示制御部154は、表示面111a上における観察画像の表示位置の調整態様と同様の調整態様で、表示面111a上における検査画像の表示位置を調整してもよい。例えば、多重リング状パターンである検査画像が眼に投影されている場合には、表示制御部154は、角膜の表面に投影される複数のリングの中心が瞳孔の中心に一致するように、表示面111a上における検査画像の表示位置を調整してもよい。或いは、任意の検査画像が眼に投影されている場合には、表示制御部154は、角膜の表面に投影される検査画像と瞳孔との間の位置関係が瞳孔の位置の変化に係らず所定の位置関係となるように、表示面111a上における検査画像の表示位置を調整してもよい。 The display control unit 154 may adjust the display position of the inspection image on the display surface 111a in addition to adjusting the display position of the observation image on the display surface 111a. At this time, the display control unit 154 may adjust the display position of the inspection image on the display surface 111a in an adjustment manner similar to the adjustment manner of the display position of the observation image on the display surface 111a. For example, when an inspection image that is a multiple ring pattern is projected on the eye, the display control unit 154 displays the center of a plurality of rings projected on the surface of the cornea so that it matches the center of the pupil. The display position of the inspection image on the surface 111a may be adjusted. Alternatively, when an arbitrary examination image is projected on the eye, the display control unit 154 determines that the positional relationship between the examination image projected on the surface of the cornea and the pupil is predetermined regardless of the change in the position of the pupil. The display position of the inspection image on the display surface 111a may be adjusted so that the positional relationship is satisfied.
 また、表示制御部154は、瞳孔の位置に基づいて観察画像の表示位置を調整することに加えて又は代えて、照明光L12が瞳孔を通過するか否かを直接的に又は間接的に示すその他の特性に基づいて観察画像の表示位置を調整してもよい。 In addition to or instead of adjusting the display position of the observation image based on the position of the pupil, the display control unit 154 directly or indirectly indicates whether or not the illumination light L12 passes through the pupil. The display position of the observation image may be adjusted based on other characteristics.
 また、表示制御部154は、観察画像を第2表示領域111a2に表示するように表示素子111を制御することに加えて又は代えて、観察画像とは異なる任意の画像を第2表示領域111a2に表示するように表示素子111を制御してもよい。例えば、表示制御部154は、眼の状態の観察にとって有用な情報を示す画像を第2表示領域111a2に表示するように表示素子111を制御してもよい。その結果、被験者は、観察装置1が眼の状態を観察している間においても、様々な情報を好適に認識することができる。つまり、被験者は、拡散板120の接眼レンズ124から眼を離すことなく、様々な情報を好適に認識することができる。 In addition to or instead of controlling the display element 111 to display the observation image in the second display region 111a2, the display control unit 154 displays an arbitrary image different from the observation image in the second display region 111a2. The display element 111 may be controlled to display. For example, the display control unit 154 may control the display element 111 such that an image indicating information useful for observation of the eye state is displayed in the second display area 111a2. As a result, the subject can appropriately recognize various information even while the observation apparatus 1 is observing the eye state. That is, the subject can appropriately recognize various information without taking his eyes off the eyepiece 124 of the diffusion plate 120.
 (2)第2実施例
 続いて、図8を参照しながら、第2実施例の観察装置2について説明する。図8は、第2実施例の観察装置2の構成を示すブロック図である。尚、第1実施例の観察装置1が備える構成要件と同一の構成要件については、同一の参照番号を付することでその詳細な説明を省略する。
(2) Second Example Next, the observation apparatus 2 of the second example will be described with reference to FIG. FIG. 8 is a block diagram showing the configuration of the observation apparatus 2 of the second embodiment. In addition, about the structural requirement same as the structural requirement with which the observation apparatus 1 of 1st Example is provided, the detailed description is abbreviate | omitted by attaching | subjecting the same reference number.
 図8に示すように、第2実施例の観察装置2は、第1実施例の観察装置1と比較して、拡散板120及び接眼レンズ124に代えて、上述した実施形態中の「投影手段」の一具体例である対物レンズ220を備えているという点において異なっている。第2実施例の観察装置2が備えるその他の構成要件は、第1実施例の観察装置1が備えるその他の構成要件と同一であってもよい。 As shown in FIG. 8, the observation device 2 of the second example is different from the observation device 1 of the first example in place of the diffuser plate 120 and the eyepiece lens 124 in the above-described embodiment. It is different in that it includes an objective lens 220 that is a specific example. Other configuration requirements provided in the observation device 2 of the second embodiment may be the same as other configuration requirements provided in the observation device 1 of the first embodiment.
 対物レンズ220は、投影レンズ112と共に、対物レンズ220に入射してくる照明光L11を被験者の角膜(或いは、その近傍、以下同じ)上に結像させる。具体的には、対物レンズ220は、投影レンズ112と共に、対物レンズ220に入射してくる照明光L11を、角膜に接する(特に、角膜の中心部又はその近傍に接する)又は角膜の近傍に位置する仮想的な結像面上に結像させる。 The objective lens 220 forms the illumination light L11 incident on the objective lens 220 together with the projection lens 112 on the subject's cornea (or its vicinity, the same applies hereinafter). Specifically, the objective lens 220 is, together with the projection lens 112, the illumination light L11 incident on the objective lens 220 in contact with the cornea (particularly in contact with the central portion of the cornea or the vicinity thereof) or in the vicinity of the cornea. The image is formed on a virtual imaging plane.
 対物レンズ220は更に、投影レンズ112及びケーラー照明用レンズ131と共に、対物レンズ220に入射してくる照明光L12を被験者の網膜上に結像させる。尚、典型的には、ケーラー照明用レンズ131と対物レンズ220との間には、照明光L12が結像する中間結像面が位置する。例えば、照明光L12は、ケーラー照明用レンズ131と対物レンズ220との間に位置する対物レンズ220の前側焦点と一致する中間結像面上で結像する。 The objective lens 220 forms an image of the illumination light L12 incident on the objective lens 220 on the retina of the subject together with the projection lens 112 and the Koehler illumination lens 131. Typically, an intermediate imaging plane on which the illumination light L12 forms an image is positioned between the Koehler illumination lens 131 and the objective lens 220. For example, the illumination light L12 forms an image on an intermediate image plane that coincides with the front focal point of the objective lens 220 located between the Koehler illumination lens 131 and the objective lens 220.
 その結果、第2実施例においても、第1実施例と同様に、投影部110が投影している検査画像に応じた明暗パターンで眼を照明する照明板として対物レンズ220が機能すると共に、投影部110が投影している観察画像が網膜上で結像する。 As a result, also in the second embodiment, as in the first embodiment, the objective lens 220 functions as an illuminating plate that illuminates the eyes with a light / dark pattern corresponding to the inspection image projected by the projection unit 110, and the projection An observation image projected by the unit 110 is formed on the retina.
 一方で、角膜によって反射された照明光L11である反射光L31は、対物レンズ220を介してビームスプリッタ132の反射面に入射する。このため、第2実施例においても、角膜によって反射された照明光L11である反射光L31は、撮像部140に入射する。その結果、撮像部140は、観察画像を取得することができる。 On the other hand, the reflected light L31, which is the illumination light L11 reflected by the cornea, enters the reflecting surface of the beam splitter 132 via the objective lens 220. For this reason, also in the second embodiment, the reflected light L31, which is the illumination light L11 reflected by the cornea, enters the imaging unit 140. As a result, the imaging unit 140 can acquire an observation image.
 第2実施例では、投影絞り113と角膜の曲率中心とは、共役の関係にあることが好ましい。この場合、照明光L11は、角膜に対してほぼ垂直に入射する。その結果、角膜によって反射された照明光L11である反射光L31は、照明光L11の光路とほぼ同一の光路を通って対物レンズ220を通過し且つビームスプリッタ132に入射する。但し、図8では、角膜によって反射された照明光L11が反射光L31であることを明確に説明するという説明の便宜上、照明光L11の光路と反射光L31の光路とが大きく区別して記載されている。 In the second embodiment, it is preferable that the projection stop 113 and the center of curvature of the cornea have a conjugate relationship. In this case, the illumination light L11 is incident substantially perpendicular to the cornea. As a result, the reflected light L31, which is the illumination light L11 reflected by the cornea, passes through the objective lens 220 through the optical path substantially the same as the optical path of the illumination light L11 and enters the beam splitter 132. However, in FIG. 8, for the convenience of explanation that clearly explains that the illumination light L11 reflected by the cornea is the reflected light L31, the optical path of the illumination light L11 and the optical path of the reflected light L31 are largely distinguished and described. Yes.
 第2実施例の観察装置2は、上述した第1実施例の観察装置1が行う動作(つまり、図2に示す動作)を行うことができる。その結果、第2実施例の観察装置2は、上述した第1実施例の観察装置1が享受することができる効果を好適に享受することができる。 The observation device 2 of the second embodiment can perform the operation (that is, the operation shown in FIG. 2) performed by the observation device 1 of the first embodiment described above. As a result, the observation apparatus 2 of the second embodiment can preferably enjoy the effects that the observation apparatus 1 of the first embodiment described above can enjoy.
 尚、観察装置2は、ケーラー照明用レンズ131を備えていなくてもよい。この場合、観察装置2は、投影レンズ112を投影レンズ112の光軸に沿って移動させてもよい。例えば、投影レンズ112は、投影レンズ112が第1位置に位置する場合に、対物レンズ220と共に照明光L11を角膜上に結像させることができる。同様に、例えば、投影レンズ112は、投影レンズ112が第1位置とは異なる第2位置に位置する場合に、対物レンズ220と共に照明光L12を網膜上に結像させることができる。従って、観察装置2は、投影レンズ112を移動させることで、検査画像が角膜の表面に投影され且つ観察画像が網膜上で結像するように、検査画像及び観察画像を含む投影画像を投影することができる。加えて、投影レンズ112の移動に同期して表示素子111が投影画像を表示するように、制御部150が表示素子111を制御してもよい。投影レンズ112が第1位置に位置する場合、照明光L11が角膜上に結像するがゆえに、撮像部140は観察画像を好適に取得することができる。しかしながら、照明光L12は網膜上に結像しないがゆえに、被験者は観察画像を視認することができない。一方、投影レンズ112が第2位置に位置する場合、照明光L12が網膜上に結像するがゆえに、被験者は観察画像を視認することができる。しかしながら、照明光L11は角膜上に結像しないがゆえに、検査画像にぼけが生じる。このため、投影レンズ112が第1位置に位置する場合に撮像部140が得た観察画像を、投影レンズ112が第2位置に位置する場合に表示素子111が表示すれば、フレームレートは落ちるもののケーラー照明用レンズ113を備えなくても被験者が観察画像を視認することができる。ここで、投影レンズ112が第1位置に位置する場合、表示素子111が表示する投影画像は被験者が視認できないので、観察画像を検査画像と合成する必要はなく、投影画像が検査画像と一致していてもよい。 Note that the observation apparatus 2 may not include the Koehler illumination lens 131. In this case, the observation apparatus 2 may move the projection lens 112 along the optical axis of the projection lens 112. For example, the projection lens 112 can image the illumination light L11 on the cornea together with the objective lens 220 when the projection lens 112 is located at the first position. Similarly, for example, when the projection lens 112 is located at a second position different from the first position, the projection lens 112 can image the illumination light L12 together with the objective lens 220 on the retina. Therefore, the observation apparatus 2 projects the projection image including the inspection image and the observation image by moving the projection lens 112 so that the inspection image is projected onto the surface of the cornea and the observation image is formed on the retina. be able to. In addition, the control unit 150 may control the display element 111 such that the display element 111 displays a projection image in synchronization with the movement of the projection lens 112. When the projection lens 112 is located at the first position, the imaging unit 140 can preferably acquire an observation image because the illumination light L11 forms an image on the cornea. However, since the illumination light L12 does not form an image on the retina, the subject cannot visually recognize the observation image. On the other hand, when the projection lens 112 is positioned at the second position, the subject can visually recognize the observation image because the illumination light L12 forms an image on the retina. However, since the illumination light L11 does not form an image on the cornea, the inspection image is blurred. Therefore, if the display element 111 displays the observation image obtained by the imaging unit 140 when the projection lens 112 is located at the first position and the display element 111 is displayed when the projection lens 112 is located at the second position, the frame rate is lowered. The subject can view the observed image without the Koehler illumination lens 113. Here, when the projection lens 112 is located at the first position, the projection image displayed by the display element 111 cannot be visually recognized by the subject, so it is not necessary to combine the observation image with the inspection image, and the projection image matches the inspection image. It may be.
 或いは、観察装置2がケーラー照明用レンズ131を備えていない場合には、対物レンズ220は、照明光L11が通過すると共に照明光L11を角膜に結像させるレンズ部分と、照明光L12が通過すると共に照明光L12を網膜に結像させるレンズ部分を備えていてもよい。或いは、対物レンズ220は、照明光L11が通過すると共に照明光L11を角膜に結像させるレンズ部分を備える一方で、照明光L12が通過する開口が対物レンズ220に形成されていてもよい。その結果、観察装置2は、検査画像が角膜の表面に投影され且つ観察画像が網膜上で結像するように、検査画像及び観察画像を含む投影画像を投影することができる。 Alternatively, when the observation apparatus 2 does not include the Koehler illumination lens 131, the objective lens 220 passes the illumination light L11 and the lens portion that forms the illumination light L11 on the cornea and the illumination light L12. In addition, a lens portion that focuses the illumination light L12 on the retina may be provided. Alternatively, the objective lens 220 may include a lens portion through which the illumination light L11 passes and the illumination light L11 forms an image on the cornea, while an opening through which the illumination light L12 passes may be formed in the objective lens 220. As a result, the observation apparatus 2 can project a projection image including the inspection image and the observation image so that the inspection image is projected onto the surface of the cornea and the observation image is formed on the retina.
 (3)第3実施例
 続いて、図9を参照しながら、第3実施例の観察装置3について説明する。図9は、第3実施例の観察装置3の構成を示すブロック図である。尚、第1実施例の観察装置1が備える構成要件と同一の構成要件については、同一の参照番号を付することでその詳細な説明を省略する。
(3) Third Example Next, the observation device 3 of the third example will be described with reference to FIG. FIG. 9 is a block diagram illustrating a configuration of the observation apparatus 3 according to the third embodiment. In addition, about the structural requirement same as the structural requirement with which the observation apparatus 1 of 1st Example is provided, the detailed description is abbreviate | omitted by attaching | subjecting the same reference number.
 図9に示すように、第3実施例の観察装置3は、上述した実施形態中の「投影手段」の一具体例である投影部310と、上述した実施形態中の「投影手段」の一具体例であるプラチド板320と、上述した実施形態中の「投影手段」の一具体例である接眼レンズ324と、ビームスプリッタ332と、撮像部140と、制御部350とを備えている。 As shown in FIG. 9, the observation apparatus 3 of the third example includes a projection unit 310 that is a specific example of the “projection unit” in the above-described embodiment and one of the “projection unit” in the above-described embodiment. A platide plate 320 that is a specific example, an eyepiece 324 that is a specific example of the “projection unit” in the above-described embodiment, a beam splitter 332, an imaging unit 140, and a control unit 350 are provided.
 投影部310は、第1実施例の投影部110と比較して、リレーレンズ314を備えているという点において異なっている。投影部310は、第1実施例の投影部110と比較して、検査画像を投影しない(つまり、照明光L11を出射しない)という点において異なっている。第3実施例の投影部310が備えるその他の構成要件は、第1実施例の投影部110が備えるその他の構成要件と同一であってもよい。 The projection unit 310 is different from the projection unit 110 of the first embodiment in that a relay lens 314 is provided. The projection unit 310 is different from the projection unit 110 of the first embodiment in that the inspection image is not projected (that is, the illumination light L11 is not emitted). Other configuration requirements of the projection unit 310 of the third embodiment may be the same as other configuration requirements of the projection unit 110 of the first embodiment.
 リレーレンズ314は、投影レンズ112及び接眼レンズ324と共に、観察画像を網膜上に結像させるための照明光L12を被験者の網膜上に結像させる。尚、典型的には、リレーレンズ314と対物レンズ220との間には、照明光L12が結像する中間結像面が位置する。例えば、照明光L12は、リレーレンズ314と接眼レンズ324との間に位置する接眼レンズ324の前側焦点と一致する中間結像面上で結像する。このため、リレーレンズ314は、実質的には、上述したケーラー照明用レンズ131と同様の機能を有するレンズであるとも言える。 The relay lens 314, together with the projection lens 112 and the eyepiece lens 324, forms illumination light L12 for forming an observation image on the retina on the subject's retina. Typically, an intermediate image plane on which the illumination light L12 forms an image is located between the relay lens 314 and the objective lens 220. For example, the illumination light L12 forms an image on an intermediate image plane that coincides with the front focal point of the eyepiece lens 324 located between the relay lens 314 and the eyepiece lens 324. Therefore, it can be said that the relay lens 314 is a lens having substantially the same function as the Koehler illumination lens 131 described above.
 プラチド板320は、検査画像に対応する明暗パターン(照明パターン)で角膜の表面を照明する板である。プラチド板320の一例である多重リング状パターンを投影するプラチド板320の構成例について説明する。被験者側(角膜側)を向いているプラチド板320の表面322は、凹面となっている。被験者側(角膜側)を向いているプラチド板320の表面322には、所定幅のリングパターンを構成する透光部が形成されている。表面322のうち透光部以外の領域は、遮光部となる。プラチド板320は、その内部に不図示の光源を備えている。光源が発した照明光L11は、透光部を通過することで、角膜の表面に照射される。その結果、角膜の表面は、多重リング状パターンである検査画像に対応する明暗パターンで照明される。 The platide plate 320 is a plate that illuminates the surface of the cornea with a bright and dark pattern (illumination pattern) corresponding to the inspection image. A configuration example of the platide plate 320 that projects a multiple ring pattern, which is an example of the platide plate 320, will be described. A surface 322 of the platide plate 320 facing the subject (corneal side) is a concave surface. A light transmitting portion constituting a ring pattern having a predetermined width is formed on the surface 322 of the platide plate 320 facing the subject side (corneal side). A region other than the light transmitting portion of the surface 322 becomes a light shielding portion. The platide plate 320 includes a light source (not shown) therein. The illumination light L11 emitted from the light source passes through the light transmitting part and is irradiated on the surface of the cornea. As a result, the surface of the cornea is illuminated with a light / dark pattern corresponding to the inspection image which is a multiple ring pattern.
 第3実施例では、プラチド板320には、開口323が形成されている。被験者の眼は、角膜が開口323に対向することが可能な位置に位置している。開口323は、表面322からプラチド板320の他方の表面に向かってプラチド板320を貫通する開口である。開口323は、角膜によって反射された照明光L11である反射光L31が通過する開口である。開口323には、反射光L31をビームスプリッタ132に導く接眼レンズ324が配置されている。 In the third embodiment, an opening 323 is formed in the platide plate 320. The eye of the subject is located at a position where the cornea can face the opening 323. The opening 323 is an opening that penetrates the platide plate 320 from the surface 322 toward the other surface of the platide plate 320. The opening 323 is an opening through which the reflected light L31 that is the illumination light L11 reflected by the cornea passes. An eyepiece 324 that guides the reflected light L31 to the beam splitter 132 is disposed in the opening 323.
 ビームスプリッタ332は、投影部310から出射する照明光L12を、プラチド板320(特に、接眼レンズ324)に向けて反射する。一方で、ビームスプリッタ332は、角膜によって反射された照明光L11である反射光L31を透過する。 The beam splitter 332 reflects the illumination light L12 emitted from the projection unit 310 toward the placido plate 320 (particularly, the eyepiece lens 324). On the other hand, the beam splitter 332 transmits the reflected light L31 that is the illumination light L11 reflected by the cornea.
 制御部350は、上述した第1実施例の制御部150と比較して、検査画像を表示するように表示制御部154が表示素子111を制御しなくてもよいという点において異なっている。第3実施例の制御部350が備えるその他の構成要件は、第1実施例の制御部150が備えるその他の構成要件と同一であってもよい。 The control unit 350 is different from the control unit 150 of the first embodiment described above in that the display control unit 154 does not have to control the display element 111 so as to display an inspection image. Other configuration requirements provided in the control unit 350 of the third embodiment may be the same as other configuration requirements provided in the control unit 150 of the first embodiment.
 第3実施例の観察装置3は、上述した第1実施例の観察装置1が行う動作(つまり、図2に示す動作)を行うことができる。但し、第3実施例では、表示素子111が観察画像を表示する(つまり、眼に投影する)一方で、プラチド板320が検査画像に応じた明暗パターンで眼を照明する。その結果、第3実施例の観察装置3は、上述した第1実施例の観察装置1が享受することができる効果を好適に享受することができる。 The observation device 3 of the third embodiment can perform the operation (that is, the operation shown in FIG. 2) performed by the observation device 1 of the first embodiment described above. However, in the third embodiment, the display element 111 displays the observation image (that is, projects the image on the eye), while the platide plate 320 illuminates the eye with a light / dark pattern corresponding to the inspection image. As a result, the observation apparatus 3 of the third embodiment can preferably enjoy the effects that the observation apparatus 1 of the first embodiment described above can enjoy.
 本発明は、上述した実施例に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能である。そのような変更を伴なう観察装置及び観察方法並びにコンピュータプログラムもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the scope or spirit of the invention which can be read from the claims and the entire specification. An observation apparatus, an observation method, and a computer program with such a change are also included in the technical scope of the present invention.
 1、2、3 観察装置
 110 投影部
 111 表示素子
 112 投影レンズ
 113 投影絞り
 120 拡散板
 124 接眼レンズ
 131 ケーラー照明用レンズ
 132 ビームスプリッタ
 140 撮像部
 141 撮像絞り
 142 撮像レンズ
 143 撮像素子
 150 制御部
 151 画像解析部
 152 状態推定部
 153 瞳孔検出部
 154 表示制御部
 220 対物レンズ
 310 投影部
 320 プラチド板
 332 ビームスプリッタ
1, 2, 3 Observation apparatus 110 Projection unit 111 Display element 112 Projection lens 113 Projection stop 120 Diffusion plate 124 Eyepiece lens 131 Koehler illumination lens 132 Beam splitter 140 Imaging unit 141 Imaging stop 142 Imaging lens 143 Imaging element 150 Control unit 151 Image Analysis unit 152 State estimation unit 153 Pupil detection unit 154 Display control unit 220 Objective lens 310 Projection unit 320 Placido plate 332 Beam splitter

Claims (8)

  1.  被験者の眼の状態を観察する観察装置であって、
     前記眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、
     前記眼を撮像することで観察画像を取得する撮像手段と
     を備え、
     前記投影手段は、前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する
     ことを特徴とする観察装置。
    An observation device for observing the eye condition of a subject,
    Projecting means capable of projecting onto the eye a first image to be projected onto the cornea surface of the eye and a second image to be imaged on the retina of the eye;
    Imaging means for acquiring an observation image by imaging the eye, and
    The projection unit uses the observation image as the second image, and adjusts the projection position of the second image so that light that forms the second image on the retina passes through the pupil of the eye. An observation apparatus characterized by:
  2.  前記瞳孔の位置を検出する検出手段を更に備え、
     前記投影手段は、前記検出手段が検出した前記瞳孔の位置に基づいて、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する
     ことを特徴とする請求項1に記載の観察装置。
    Further comprising detecting means for detecting the position of the pupil;
    The projection means determines the projection position of the second image based on the position of the pupil detected by the detection means so that light for forming the second image on the retina passes through the pupil of the eye. The observation device according to claim 1, wherein the observation device is adjusted.
  3.  前記投影手段は、前記検出手段が検出した前記瞳孔の現在位置の瞳孔基準位置からのずれ量に応じた量だけ前記第2画像の投影位置が投影基準位置からずれるように、前記第2画像の投影位置を調整する
     ことを特徴とする請求項2に記載の観察装置。
    The projection unit is configured to adjust the second image so that the projection position of the second image is shifted from the projection reference position by an amount corresponding to the shift amount of the current position of the pupil detected by the detection unit from the pupil reference position. The observation apparatus according to claim 2, wherein the projection position is adjusted.
  4.  前記検出手段は、前記観察画像に基づいて、前記瞳孔の位置を検出する
     ことを特徴とする請求項2又は3に記載の観察装置。
    The observation device according to claim 2, wherein the detection unit detects a position of the pupil based on the observation image.
  5.  前記投影手段は、前記第1画像を前記角膜の表面に投影する光が前記瞳孔の周囲に投影されるように前記第1画像の投影位置を調整する
     ことを特徴とする請求項1から4のいずれか一項に記載の観察装置。
    5. The projection unit according to claim 1, wherein the projection unit adjusts a projection position of the first image so that light for projecting the first image onto a surface of the cornea is projected around the pupil. The observation device according to any one of the above.
  6.  前記投影手段は、前記角膜の表面において前記第2画像の投影位置の周囲に前記第1画像の投影位置が分布するように、前記第1画像及び前記第2画像を投影する
     ことを特徴とする請求項1から5のいずれか一項に記載の観察装置。
    The projection unit projects the first image and the second image so that the projection position of the first image is distributed around the projection position of the second image on the surface of the cornea. The observation apparatus according to any one of claims 1 to 5.
  7.  被験者の眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを用いて前記眼の状態を観察する観察方法であって、
     前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する
     ことを特徴とする観察方法。
    A projection unit capable of projecting a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye, and an observation image obtained by imaging the eye An observation method for observing the state of the eye using an imaging means for
    The observation image is used as the second image, and the projection position of the second image is adjusted so that light that forms the second image on the retina passes through the pupil of the eye. To observe.
  8.  被験者の眼の角膜の表面に投影するべき第1画像及び前記眼の網膜上で結像するべき第2画像を前記眼に投影可能な投影手段と、前記眼を撮像することで観察画像を取得する撮像手段とを用いて前記眼の状態を観察する観察装置を動作させるコンピュータプログラムであって、
     前記観察画像を前記第2画像として用い、且つ、前記第2画像を前記網膜上で結像させる光が前記眼の瞳孔を通過するように前記第2画像の投影位置を調整する動作を前記観察装置に実行させることを特徴とするコンピュータプログラム。
    A projection unit capable of projecting a first image to be projected onto the cornea surface of a subject's eye and a second image to be imaged on the retina of the eye, and an observation image obtained by imaging the eye A computer program for operating an observation device for observing the state of the eye using an imaging means,
    The operation of using the observation image as the second image and adjusting the projection position of the second image so that light that forms the second image on the retina passes through the pupil of the eye A computer program that is executed by an apparatus.
PCT/JP2014/078613 2014-10-28 2014-10-28 Observation device, observation method, and computer program WO2016067365A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016556083A JP6293299B2 (en) 2014-10-28 2014-10-28 Observation apparatus, observation method, and computer program
PCT/JP2014/078613 WO2016067365A1 (en) 2014-10-28 2014-10-28 Observation device, observation method, and computer program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078613 WO2016067365A1 (en) 2014-10-28 2014-10-28 Observation device, observation method, and computer program

Publications (1)

Publication Number Publication Date
WO2016067365A1 true WO2016067365A1 (en) 2016-05-06

Family

ID=55856756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078613 WO2016067365A1 (en) 2014-10-28 2014-10-28 Observation device, observation method, and computer program

Country Status (2)

Country Link
JP (1) JP6293299B2 (en)
WO (1) WO2016067365A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2688742A1 (en) * 2017-05-05 2018-11-06 Universitat Politécnica de Catalunya Method to determine the dynamics of the tear film and computer program products of the same (Machine-translation by Google Translate, not legally binding)
JP2019155011A (en) * 2018-03-16 2019-09-19 株式会社トプコン Portable terminal and method of controlling portable terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245907A (en) * 1993-02-26 1994-09-06 Canon Inc Ophthalmologic examining device
JPH07136119A (en) * 1993-11-19 1995-05-30 Canon Inc Ophthalmologic apparatus
JPH0966027A (en) * 1995-08-31 1997-03-11 Canon Inc Opthalmologic system
JP2002131693A (en) * 2000-10-26 2002-05-09 Mixed Reality Systems Laboratory Inc Image observing device
JP2014518720A (en) * 2011-05-24 2014-08-07 カール ツアイス メディテック アクチエンゲゼルシャフト System for determining the topography of the cornea of the eye

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245907A (en) * 1993-02-26 1994-09-06 Canon Inc Ophthalmologic examining device
JPH07136119A (en) * 1993-11-19 1995-05-30 Canon Inc Ophthalmologic apparatus
JPH0966027A (en) * 1995-08-31 1997-03-11 Canon Inc Opthalmologic system
JP2002131693A (en) * 2000-10-26 2002-05-09 Mixed Reality Systems Laboratory Inc Image observing device
JP2014518720A (en) * 2011-05-24 2014-08-07 カール ツアイス メディテック アクチエンゲゼルシャフト System for determining the topography of the cornea of the eye

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2688742A1 (en) * 2017-05-05 2018-11-06 Universitat Politécnica de Catalunya Method to determine the dynamics of the tear film and computer program products of the same (Machine-translation by Google Translate, not legally binding)
JP2019155011A (en) * 2018-03-16 2019-09-19 株式会社トプコン Portable terminal and method of controlling portable terminal
JP7096020B2 (en) 2018-03-16 2022-07-05 株式会社トプコン Mobile terminal and control method of mobile terminal

Also Published As

Publication number Publication date
JPWO2016067365A1 (en) 2017-07-20
JP6293299B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6354979B2 (en) Fundus photographing device
EP2786699A1 (en) Ophthalmologic apparatus
GB2524655A (en) Ophthalmologic imaging apparatus and optical unit attachable to the same
JP5850292B2 (en) Ophthalmic equipment
GB2478040A (en) Image capture apparatus and method
JP6349878B2 (en) Ophthalmic photographing apparatus, ophthalmic photographing method, and ophthalmic photographing program
JP5830264B2 (en) Ophthalmic imaging equipment
JP2016185192A (en) Ophthalmologic apparatus, and control method of ophthalmologic apparatus
JP7096392B2 (en) Ophthalmic equipment
JP6407631B2 (en) Ophthalmic equipment
JP6293299B2 (en) Observation apparatus, observation method, and computer program
JP6003234B2 (en) Fundus photographing device
JP6293300B2 (en) Observation apparatus, observation method, and computer program
JP7080075B2 (en) Ophthalmic device and its control method
JP6788445B2 (en) Ophthalmic equipment
JP6713297B2 (en) Ophthalmic equipment
WO2020250922A1 (en) Ophthalmic device
JP2014094114A (en) Ophthalmologic apparatus, and ophthalmologic photography method
JP4164199B2 (en) Ophthalmic measuring device
JP2017143919A (en) Ophthalmologic apparatus
JP7096391B2 (en) Ophthalmic equipment
US20220117486A1 (en) Ophthalmic apparatus, method for controlling ophthalmic apparatus, and storage medium
JP7231366B2 (en) Ophthalmic device and control method for the ophthalmic device
JP6761519B2 (en) Ophthalmologic imaging equipment
US20200288973A1 (en) Ophthalmologic apparatus and method of controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904858

Country of ref document: EP

Kind code of ref document: A1