WO2016066180A1 - Transmyocardial insertion unit and its use - Google Patents
Transmyocardial insertion unit and its use Download PDFInfo
- Publication number
- WO2016066180A1 WO2016066180A1 PCT/EP2014/002915 EP2014002915W WO2016066180A1 WO 2016066180 A1 WO2016066180 A1 WO 2016066180A1 EP 2014002915 W EP2014002915 W EP 2014002915W WO 2016066180 A1 WO2016066180 A1 WO 2016066180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insertion unit
- shaft
- unit according
- heart
- catheter
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3423—Access ports, e.g. toroid shape introducers for instruments or hands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2478—Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
- A61F2/2487—Devices within the heart chamber, e.g. splints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2493—Transmyocardial revascularisation [TMR] devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/165—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
- A61M60/178—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/20—Type thereof
- A61M60/205—Non-positive displacement blood pumps
- A61M60/216—Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
- A61B2017/00247—Making holes in the wall of the heart, e.g. laser Myocardial revascularization
- A61B2017/00252—Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3423—Access ports, e.g. toroid shape introducers for instruments or hands
- A61B2017/3425—Access ports, e.g. toroid shape introducers for instruments or hands for internal organs, e.g. heart ports
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B17/3439—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable
- A61B2017/3441—Cannulas with means for changing the inner diameter of the cannula, e.g. expandable with distal sealing means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B2017/348—Means for supporting the trocar against the body or retaining the trocar inside the body
- A61B2017/3482—Means for supporting the trocar against the body or retaining the trocar inside the body inside
- A61B2017/3484—Anchoring means, e.g. spreading-out umbrella-like structure
- A61B2017/3488—Fixation to inner organ or inner body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/243—Deployment by mechanical expansion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M60/00—Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
- A61M60/10—Location thereof with respect to the patient's body
- A61M60/122—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
- A61M60/126—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
- A61M60/148—Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/056—Transvascular endocardial electrode systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/05—Electrodes for implantation or insertion into the body, e.g. heart electrode
- A61N1/0587—Epicardial electrode systems; Endocardial electrodes piercing the pericardium
Definitions
- the invention relates to an insertion unit that for the first time allows gaining access to the left ventricle of the heart, via the tissue forming the wall of the right ventricle and via the ventricular septum.
- Access to the left ventricle is a major concern both in the field of heart diagnostics and in heart therapy. Such an access would allow a great number of new therapies and diagnostic methods and/or would simplify the performing of well-known therapies and diagnostic methods. Therefore the invention also relates to devices using said insertion unit.
- VSD ventricular septum
- the problem underlying the present invention is to gain access to the left ventricle without injuring the tissue forming the wall of the left ventricle. Moreover, the insertion of trocars, catheters, electrodes and implantable medical devices of all kind both into the left as well as into the right ventricle shall be made possible or shall be simplified.
- the problem is solved by a new insertion unit allowing the above required access to the left ventricle.
- the access to the left ventricle via the muscle tissue of the right ventricle and the ventricular septum is particularly desirable because the pressure in the right ventricle is lower than in the left ventricle.
- the muscle tissue that makes up the wall of the left ventricle is about three times thicker than that of the right ventricle.
- the invention thus relates to an insertion unit comprising a tubular shaft (Fig.l) (5) with a lumen (8) extending there through, said shaft comprising distal, proximal and central sections, whereby the distal and proximal sections are disc-shaped extended thus forming each a double disc (1), (2) resp. (3) (4) and whereby the central section (50) links the distally placed double disc (1), (2) with the proximally placed double disc (3),(4), and whereby pressure valve (6) resp. (7) are fixed inside the shaft preferably on its distal and proximal end.
- disc-shaped also includes related structures like umbrella-shaped, discus-shaped or ellipsoid-shaped.
- the double disc serves as a fixation device like an occlusion member.
- the disc-shaped extensions (1), (2), (3) and (4) have a larger diameter than the tubular shaft (5), approximately five times to fifteen times greater.
- the distally placed double disc (1), (2) is suitable for being implanted in the ventricular septum.
- the proximally placed double disc (3), (4) is suitable for being implanted in the heart muscle tissue of the right ventricle.
- the double discs serve for placing and fixing the insertion unit into the ventricular septum resp. into the muscle tissue of the right ventricle. Due to its disc-shaped extensions, the insertion unit remains in position after its implantation and sliding is prevented.
- the dimensions of the tubular shaft (5) are adapted to the anatomical structure between left and right ventricle.
- the central section (50) has a lateral opening (Y-piece with valve).
- An access to the right ventricle or to the abdomen can also be achieved using an insertion unit comprising only double disc (1), (2) and a pressure valve fixed therein.
- the present insertion unit consists of a biocompatible and flexible material.
- biocompatible material is suitable that may form a tubular shaft with disc-shaped
- the insertion unit must be foldable so that it can be inserted by means of a trocar.
- Suitable materials are for example polymeric materials like silicone or polyurethane; metals like stainless steel, nickel-alloy MP35N or shape-memory materials like nitinol wires, nitinol strands, nitinol threads.
- the nitinol wires, strands and threads may be coated with polymeric material.
- shape-memory plastic threads, nitinol wires coated with other metals, e.g. nitinol wires coated with gold or platinum may also be suitable.
- the insertion unit is made of braided wires of shape-memory material (preferably nitinol) said wires and thus the whole insertion unit may form a common electrical pole, if connected to an Implantable Cardiac Defibrillator (ICD).
- ICD Implantable Cardiac Defibrillator
- the insertion unit is made of braided nitinol wires a tubular shaft is first braided, said shaft being deformed by heat or pressing in such a way that it forms disc-shaped extensions (1), (2), (3) and (4).
- These discs can be formed by braiding a single braid or a double braid lying on top of each other.
- Shaft (5) of the insertion unit may completely or partly be coated with biocompatible polymeric material, e.g. silicone. Such a coating prevents blood intrusion into the inner braided part.
- the coating can be inside or outside.
- the central section (50) of the shaft is coated with biocompatible polymeric material.
- coated with biocompatible polymeric material also includes a polymer tube being pulled over the braided central section.
- the proximal wire ends of the braided tubular shaft can be fixed by a sleeve or holder that has an opening too, so that lumen (8) is continuous.
- the insertion unit can also be braided in two parts and be welded in the central section. Such a direct welding is described in WO2012095314.
- the insertion unit can also consist of two pieces.
- the central section (50) of the tubular shaft (5) is made from another material or has another design than the distal and proximal sections.
- the central section (50) of the tubular shaft is completely or partly coil shaped, said coil serving as spring.
- Said coil may be coated inside and/or outside with silicone or with other suitable biocompatible material or the coil is covered with a silicone tube.
- the lumen (8) extends through the whole tubular shaft of the insertion unit in axial direction.
- At least two pressure valves are fixed inside the shaft preferably on its distal and proximal end. The distally placed pressure valve (6) is important in order to prevent the blood flow from the left to the right ventricle.
- the proximally placed pressure valve is important to prevent bleeding through the puncture of the right ventricle.
- the pressure valves are preferable silicone valves that are commercially available in many shapes and sizes. Suitable valves can be bought from the company Minivalve Int. B.V. for instance.
- the tubular shaft (5) may be longitudinally extended thus forming an extended shaft (51).
- Said extended shaft may also be coated with a biocompatible polymeric material.
- the extended shaft may also be coil shaped similar to the central section.
- the thus extended shaft comprises a further double disc (53),(54) with pressure valve (55) at its proximal end.
- the thus obtained insertion unit comprises three double discs being linked by the central section resp. the extended section of the shaft.
- the thus obtained insertion unit is suitable for gaining access to the left ventricle via the abdomen, the right ventricle and the ventricular septum.
- the insertion unit may be a permanent implant. It can grow into the surrounding tissue like already known septal Occluder.
- one or several sensors e.g. pressure sensors can additionally be fixed inside the shaft of the insertion unit.
- the insertion unit consists completely or partly of biocompatible synthetic material like silicone or polyurethane.
- the insertion unit consists completely or partly of a metal coil.
- the whole insertion unit is braided of nitinol wires.
- the insertion unit thus comprises a braided tubular shaft (5) of nitinol wires with a lumen (8) extending there through, said shaft comprising distal, proximal and central sections, whereby the distal and proximal sections are disc-shaped extended thus forming each a double disc (1), (2) resp. (3) (4) and whereby the central section (50) that links the distally placed double disc (1), (2) with the proximally placed double disc (3),(4) is coated with a biocompatible polymeric material, and whereby pressure valve (6) resp. (7) are fixed inside the shaft on its distal and proximal end.
- Surgical threads may be woven into the proximal braiding.
- the threads can be tied together with a knot and serve as additional fixing of the double disc and as sealing of the muscle tissue forming the heart wall.
- the insertion unit according to the invention can be used to insert a number of medical devices. Therefore the aim of the present invention is also to make devices available that are suitable for carrying out new therapies and diagnostic methods and/or that simplify carrying out well-known therapies and diagnostic methods. Examples of such devices are:
- the insertion unit which in this case must consist of a conducting material (e.g. nitinol), is connected to an ICD (Implantable Cardiac Defibrillator) to form one of the defibrillation electrodes or to form an indifferent electrode pole.
- ICD Implantable Cardiac Defibrillator
- the other stimulation or defibrillation poles can be standard implantable electrodes.
- the second defibrillation electrode can be an occlusion device placed in the atrial septum.
- the metal frame of the artificial valve may also serve as second
- the standard stimulation electrode or pace-sense electrode consisting of a lead provided with a pole at its distal end portion is inserted through the shaft of the insertion unit and guided to the left ventricle, fixed and connected to an ICD or pacemaker (Fig. 6).
- the lead runs inside the shaft.
- another stimulation electrode is inserted through the shaft of the insertion unit which in this case has a lateral opening.
- the electrode is guided to the right ventricle, fixed and connected to an ICD or pacemaker (Fig. 7).
- the number of stimulation electrodes is not limited. Depending of the number and the position of the pacing leads, one can use it as a one chamber pacing system or a biventricular stimulation system.
- Every known unipolar or bipolar stimulation electrode or ICD electrode can be used.
- the distal pole of the electrode can be a screw type, for instance.
- biventricular stimulation is possible without the need of introducing the electrodes via the coronary sinus vein.
- the difficult positioning and fixation within the coronary sinus can be avoided. It will therefore reduce the number of so called "non responder".
- the inventive insertion unit is combined with a trocar to push in a cardiac valve prosthesis.
- Standard procedure known as TAVi Trans catheter Aortic Valve Implantation
- a catheter (trocar) is inserted through the shaft of the insertion unit.
- the present old valve Before the new Aortic Valve can be placed, the present old valve has to be dilated with a balloon catheter in order to gain space for the new valve.
- a cardiac valve prosthesis is pushed through the trocar.
- the artificial valve mounted on a metal frame is fixed on a balloon and will be positioned directly inside the diseased valve.
- the standard TAVI procedure is normally carried out by entering through the tip of the left ventricle (the apex).
- Closing the opening of the left ventricle which has to be done when using the common left ventricular approach, is a big surgical problem.
- the tissue around the opening of the heart is especially for old patients very soft and therefore very sensitive to any suture manipulation.
- the inventive insertion unit one can eliminate this problem by entering the heart chamber through the right ventricle. If required the balloon is inserted via a guide wire with a distal filter to protect the brain arteries in order to avoid possible abrasion of calcified arterial plaque.
- balloon valvotomy In order to open a narrow heart valve balloon valvotomy is commonly performed.
- a balloon-free dilatation catheter can be used having at its distal end a cage like expander having elongated expanding element as shown in Fig. 22.
- the insertion unit according to the invention is modified by reducing the number of distally placed discs (1), (2) to one disc (1),
- the distally placed disc (1) has fixation hooks (60) that can be fixed in the muscle tissue forming the wall of the left ventricle resp. in the ventricular septum.
- the central section (50) between the fixed disc (1) and the braided double discs (3) and (4) is elastic, similar to a spring. In Fig. 11 the central section is formed as a spring (61).
- Electromechanical device (Fig. 5)
- a heart pump is inserted through the shaft of the inventive insertion unit and guided to the left ventricle and further to the ascending aorta.
- Suitable heart pumps are commercially available; for example the lmpella ® -Pump
- a pneumatic device is placed into an artificial blood vessel system, said system being combined with the present insertion unit as described in the following paragraph.
- a blood pump is placed into the artificial blood vessel in such a way that blood is sucked from the left ventricle and transported into the aorta (Fig. 17). This would provide benefits especially to patients waiting for a heart transplant.
- the combination of the inventive insertion unit with an artificial blood vessel system provides a device allowing a new and simplified bypass surgical technique.
- the artificial blood vessel system consists of an unbranched or branched tube. One end of said tube is placed and fixed (e.g. by bonding) within the shaft of the insertion unit. The other end of the tube can be arranged around the heart.
- the tube is variable in length and shape so that the artificial blood vessel can be put around the heart (around the ventricles and/or the atria) partly or completely or can be guided to other organs in the abdomen as well. Every anastomosis typically used in surgery can be considered for fixing the artificial blood vessel on the heart tissue.
- the artificial blood vessel has one or more small branches being connectable to a coronary artery and thus serving as bypass.
- the small branches are put over the blocked coronary artery and are sewed or bonded below the stenosis. These small branches serving as bypass have a smaller diameter than the tube of the artificial blood vessel system.
- the artificial blood vessel is fixed on the heart tissue. After puncturing said artificial blood vessel the blocked coronary arteries are supplied with blood.
- the stenosis can thus be treated without removing a leg vein for instance.
- the aorta does not have to be punctured. The operation is done without using a heart-lung- machine.
- Suitable artificial blood vessels must consist of elastic biocompatible material, e.g.
- polytetrafluoroethylene brand name Gore Tex
- polyester e.g., polytetrafluoroethylene (brand name Gore Tex) or polyester. Specialists are familiar with suitable materials and artificial blood vessels are commercially available (e.g. the product Dardik Biograft from the company Meadox Medical Inc. or products from the company Boston Scientific). Generally, each biocompatible elastic material is suitable.
- the tube member of the artificial blood vessel may have a number of cannula- or thorn-like branches being arranged around the vessel and extending up into the myocardium like an injection needle in order to supply the myocardium with blood. Furthermore the formation of coronary vessels is activated.
- the above mentioned device combining the inventive insertion unit with an artificial blood vessel system can be equipped with implantable pacemaker leads so this unit is also suitable for stimulation and defibrillation.
- the insertion unit which in this case must consist of a conducting material (e.g. nitinol), is connected with an ICD to form one of the defibrillation electrodes or to form an indifferent electrode pole.
- At least one pacemaker lead is inserted via said insertion unit and guided to the left resp. right ventricle in order to establish a stimulation unit.
- a defibrillation electrode is formed. The defibrillation shock is given between the insertion unit and the metallic coil each being connected to an ICD.
- the above mentioned device combining the inventive insertion unit with an artificial blood vessel system can be equipped with electrode poles or sensors that are in contact with a measuring unit and are suitable to monitor the blood flow in the bypass, e.g. by measuring the change of the electrical impedance between two sensors.
- the records can be saved and transferred by telemetry, if required. Any reduced blood flow is displayed immediately so that remedial action can be taken rapidly.
- sensors are: ultrasonic sensors and/or flow sensors for controlling the blood flow; pressure sensors for controlling the blood pressure.
- the insertion unit according to the invention can also be connected with a subcutaneous port.
- the insertion unit is connected with the port chamber via flexible tubing. Medicine can thus be given into the ventricle via said port or blood samples can be taken as well.
- Catheter type endoscopes with a video chip at the tip within a transparent balloon can be inserted through the shaft of the inventive insertion unit and guided to the inner part of the heart.
- the endoscope can inspect visually the inner parts of the heart.
- One or several electrodes connected with a RF generator can be inserted through the shaft of the inventive insertion unit and guided to the left and/or right heart chambers to start the ablation procedure.
- a steerable catheter with one or several mapping electrodes connected to a recording device can be inserted through the shaft of the inventive insertion unit and guided to the left and/or right heart chamber.
- VSD Ventricular Septum Defect
- a closing device is obtained by using enlarged braided occlusion discs (1), (2) as clamping means for closing ventricular septal defects or rupture.
- the inventive insertion unit allows gaining access to the pulmonary artery and right atrium via the right ventricle.
- the inventive insertion unit allows transmitting cell material into the heart chambers.
- a carrier containing said cell material is inserted through the shaft of the inventive insertion unit and guided to the heart chambers.
- FIG. 20 In order to reduce the amount of blood leaking backwards, the two leaflets of the mitral valve are - in known methods - partially clipped or sewn together.
- the inventive insertion unit allows a new mitral valve repair approach by using the insertion unit to insert a device for pushing anchors.
- a suitable device for pushing anchors is described in WO2007079952 corresponding to US20090012557.
- the new approach using the insertion unit results in reducing the size of the mitral (cardiac) valve as desired in a simplified procedure.
- a first impedance measuring electrodes is inserted through the shaft of the insertion unit and fixed in the tissue of the left ventricle.
- a second impedance measuring electrodes is inserted through the shaft of the insertion unit and fixed in the tissue of the right ventricle. Both electrodes are connected to an impedance measuring device thus forming an impedance measurement circuit.
- the cardiac synchronous impedance change which is temporally concordant with the stroke volume is determined.
- the present invention also refers to therapeutic and diagnostic methods that can be carried out with the above mentioned devices.
- ICD Plantable Cardiac Defibrillator
- Fig. 1 shows the insertion unit according to the invention.
- Fig. la shows the insertion unit consisting of a tubular shaft (5) braided of nitinol wire.
- the shaft has a lumen (8) extending through the whole shaft in axial direction.
- the central section (50) links the distally placed double discs (1), (2) with the proximal placed double discs (3), (4).
- Pressure valves (6) rep. (7) is fixed inside the shaft on its distal and proximal end.
- Fig. lb shows a longitudinally extended tubular shaft (51).
- Fig. lc surgical threads (52) are woven into the braiding proximally.
- the threads can be tied with a knot together and serve as additional fixing of the proximal double disc and as sealing of the heart-wall tissue.
- Fig Id shows an insertion unit where the central section (50) of the tubular shaft (5) has another design than the distal and proximal sections.
- the central section (50) of the tubular shaft is coil shaped, said coil (61) serving as spring. Said coil is covered with a silicone tube.
- the extended section is also coil shaped (62).
- the proximal wire ends of the braided double discs (1) (2) resp. (3), (4) are fixed by a sleeve (63) that has an opening too, so that lumen (8) is continuous.
- the following figures show the insertion unit implanted in the heart.
- Fig. 2 shows the insertion unit implanted in the heart chambers.
- the braided double discs (1), (2) are implanted in the ventricular septum.
- the braided double discs (3), (4) are implanted in the tissue forming the heart wall of the right ventricle.
- Double disc (1), (2) is linked to double disc (3), (4) by the central section (50) of the shaft (5).
- Valve (6) prevents the blood flow from the left to the right ventricle.
- Valve (7) prevents bleeding through the puncture of the right ventricle.
- a pressure sensor (9) can be fixed inside the shaft at its distal end for measuring the left ventricular pressure. The pressure sensor can either transfer the data according to the RFID principle, or can transfer the data to a measurement unit. If required, the data can be saved.
- Fig. 3 and Fig. 4 show a device for the cardiac valve replacement and/or the dilation of the replaced valves.
- a catheter (trocar) (10) is inserted through shaft (5) of the inventive insertion unit and guided to the left ventricle.
- Cardiac valve prosthesis comprising a metal frame (11) positioned on a balloon (12) is pushed through said catheter and guided to the aortic valve to be replaced.
- Fig. 4 shows the possible replacement of the mitral valve.
- Fig. 5 shows a device supporting the cardiac blood flow output consisting of the inventive insertion unit and heart pump (13) being inserted through the shaft (5) of the insertion unit and guided via the left ventricle to the ascending aorta.
- the device pumps blood from the left ventricle into the ascending aorta.
- the heart pump (13) is driven by a motor (30) to which the propeller shaft is connected, said propeller shaft (31) running inside the insertion unit (5).
- Fig. 6 shows a biventricular stimulation device. Depending of the number and the position of the pacing leads, one can use it as a one chamber pacing system or a biventricular stimulation system.
- the stimulation electrodes (screw tip) (14) from the left ventricle and (15) from the right ventricle are connected to the pacemaker (34).
- the electrical connection line (24) leads to the proximally placed disc (4) of the insertion unit.
- the insertion unit is braided of nitinol wires and the whole insertion unit with the discs 1,2,3,4, thus serves as the indifferent pole (20).
- Fig.7 shows the inventive insertion unit with a DDD stimulation device.
- the position of one screw tip lead (14a) is within the right atrium, the other electrode (15a) is fixed within the right ventricle.
- Fig. 8, 9, 10 and 15 show a stimulation/defibrillation device.
- Fig. 8 shows a device for stimulation and defibrillation.
- an occluder implanted in the atrial septum is connected to the ICD via electrical connection line (25).
- the occluder serves as defibrillation electrode (21).
- the electrical connection line (24) leads to the ICD.
- the insertion unit is braided of nitinol wires and the whole unit with the discs 1,2,3,4, thus serves as the second defibrillation electrode (20).
- the shock is given between the defibrillation electrodes (20) and (21).
- the stimulation electrodes (14) and (15) each consisting of a lead provided with a pole at its distal end are also connected to the ICD.
- the field strength distribution is marked. One can see a homogenous electrical field over the right and over the left ventricle which may reduce the necessary defibrillation shock energy.
- Fig. 9a also shows another possible device for stimulation and defibrillation for patients which have already an implanted artificial valve.
- Fig. 9a the metal frame (11) of the artificial valve is connected to the ICD via electrical connection line (26).
- the valve prosthesis thus forms one of the defibrillation electrodes
- the shock is applied between the defibrillation electrodes (20) (disc (1), (2), (3), (4) of the insertion unit and the metal frame (11) forming the electrode (22) .
- the stimulation electrodes (14) and (15) are connected to the ICD as described above.
- a coil-shaped pole (23) may also serve as second defibrillation electrode.
- the coil is placed below the cardiac apex and is connected to the ICD. The shock is applied between the valve prosthesis (22) and the coil (23) or between the valve prosthesis (22) and the coil and parallel to the insertion unit (20).
- the field strength distribution is marked. One can see a homogenous electrical field over the right and over the left ventricle.
- Fig. 9b also shows another possible device for stimulation and defibrillation of the heart.
- One of the defibrillation pole is a flexible coil (23), which is placed on left side of the heart. The shock is given between insertion unit serving as the defibrillation electrode (20) and
- the ICD is implanted within the abdomen.
- the battery of the ICD can be exchanged without disconnecting the electrical circuitry from the electrodes.
- the special program for pacing and defibrillation of those patients can be saved and continued to use without any new programming.
- a further advantage is that the capacity of the battery can be enlarged and the exchange of the battery can be done by any surgeon without any special experience in ICDs.
- Fig.10 shows a port device.
- the insertion unit according to the invention is connected with a port catheter (41) and thus creates a unit that allows gaining access to the left and right ventricle and to the abdominal cavity, if required.
- the subcutaneously implanted hollow chamber with silicone membrane (port chamber) (40) is connected with the insertion unit by a port catheter (41).
- the port chamber can be filled up through a membrane by means of an injection through the abdomen. A direct access to the ventricles is thus achieved by which medicine, contrast agents, blood thinners, stem cells etc. can be applied or blood samples can be withdrawn.
- Fig. 11 shows a device for reducing the ventricle size in case of a pathological ventricle enlargement.
- the inventive insertion unit is modified by reducing the number of distally placed discs. There is only one distally placed disc (1) having fixation hooks (60) so that an unit is created that can be fixed in the heart muscle tissue resp. in the ventricular septum.
- the central section (50) is formed as a spring (61)
- Fig. 12 shows the insertion unit implanted in the heart chambers, as shown in Fig. 2 for the access to the abdomen, right ventricle and left ventricle of the heart at any time.
- the tubular shaft (5) is longitudinally extended to form an extended shaft (51).
- Shaft (51) is guided through the chest wall (70) resp. through the abdominal wall.
- the extended shaft (51) comprises double disc (53), (54) with pressure valve (55) sealing the chest wall.
- Double disc (53), (54) is equivalent to double disc (1), (2) resp. (3), (4).
- Fig. 13 shows a device for taking blood from the left ventricle and for supplying the heart muscle tissue with blood via the coronary arteries.
- the insertion unit implanted in the heart chambers as shown in Fig. 2 is combined with an artificial blood vessel (80) being a tube.
- an artificial blood vessel (80) being a tube.
- One end of the tube is placed and fixed within the shaft (5) of the insertion unit.
- the artificial blood vessel (80) has direct access to the left ventricle (LV).
- the artificial vessel (80) is placed over the heart and fixed on the heart tissue above the ventricles.
- the artificial vessel has several small branches (81) serving as bypasses.
- Fig. 14 also shows a device in which the insertion unit according to the invention is combined with an artificial blood vessel (80) (83) being a tube. Contrary to the device described in Fig. 13, the artificial blood vessel is arranged in a circle around the heart. The tubular body of the artificial blood vessel has small branches (81) serving as bypasses.
- cannula-like branches (82) are arranged along the circular vessel that extend up into the myocardium like an injection needle and supply the myocardium with more blood in order to initiate some new arteries.
- Fig. 15 shows a device for taking blood from the left ventricle, said device can
- the tubular body of the artificial blood vessel (80) is wrapped in part with a metallic coil (90) to form an electrical defibrillation pole.
- the coil (90) is connected to an ICD via one of the electrical connection lines (28). If desired, the defibrillation shock is given between coil (90) and the insertion unit (20)
- the insertion unit is connected to the ICD via the electrical connection line (24) that leads to the proximally placed disc (4).
- the whole insertion unit (the discs 1,2,3,4) thus serves as second
- defibrillation electrode or as indifferent pole.
- Said second defibrillation electrode is equivalent to the defibrillation electrode described in Fig. 8 and 9.
- FIG. 16 Further electrical connection lines (28) lead from the measurement device (32) to the small branches (81) and to the electrodes (91) placed around the branches (81).
- the detailed positioning of the control electrodes (sensors) is shown in Fig. 16.
- the screw electrode (15), which is monitoring the ECG is connected to an ICD. In case of ventricular fibrillation the shock process starts.
- Analogue to the device shown in Fig. 8 a further screw electrode can be fixed in the left ventricle.
- Fig. 15 also shows the field strength distribution during the defibrillation. The positioning of the defibrillation electrodes results an optimal field strength distribution so that less shock energy is required.
- Fig. 16 shows a device for the bypass control.
- the control electrodes (91) consist of two electrodes (92, 93) spaced circularly around the artificial blood vessel and being in contact with an electrical impedance measurement unit (32).
- the electrodes (92), (93) are suitable to monitor the blood flow in the bridged coronary artery (CA, bypass).
- Fig. 17 shows a device for the support of the cardiac output.
- the inventive insertion unit is connected to an artificial blood vessel system consisting of a tube (80), one end of the tube being placed and fixed within the shaft of the insertion unit and the other end is configured to be disposed in the aorta (A).
- a blood pump (hose pump) (100) is placed into the tube (80). The hose pump sucks blood from the left ventricle and transports it into the aorta.
- the connection from the pump (100) to the control unit (33) is lead through the chest wall.
- Fig. 18 shows a device for detecting and inspecting changes in the inner heart tissue.
- Catheter type endoscopes having a shaft (112) and a tip (113) with a video chip and a light fiber at the tip within a transparent balloon (111) can be inserted through the shaft of the inventive insertion unit and guided to the inner part of the heart.
- the endoscope By inflating the transparent balloon with C02 gas or saline solution and pushing it to the desired area, the endoscope can inspect visually structural defects in the interior parts of the heart and vessels.
- Fig. 19 shows a closing device using enlarged braided occlusion discs (1), (2) being equivalent to the braided discs (1), (2) as described in Fig. 2 as clamping means for closing ventricular septal defects (VSD) or rupture.
- the occlusion discs (1), (2) are covered with special tissue growing material (120).
- Fig. 20 shows a device for improving the mitral cardiac valve geometry by reducing the valve area.
- a catheter (122) is inserted through the shaft of the inventive insertion unit.
- a device for pushing anchors (121) like T-bars with attached surgical sutures are pushed through said catheter and guided to the cardiac valve and knot together.
- a device for pushing suitable anchors is described in WO2007079952 corresponding to US20090012557.
- Fig. 21 shows a device for calculating and monitoring the cardiac output.
- a first impedance measuring electrode (18) resp. (19) is inserted through the shaft of the insertion unit and fixed in the tissue of the left ventricle resp. the right ventricle.
- the electrode (18) in the left ventricle is one pole; the electrode (19) in the right ventricle is the other pole. Both poles are connected to an impedance measuring device (32) thus forming an impedance measurement circuit.
- the cardiac synchronous impedance change which is temporally concordant with the stroke volume is determined.
- Fig. 22 shows a device for the cardiac valve replacement and/or the dilation of the replaced valves.
- Fig. 22a shows the device implanted in the heart. Similar to the device shown in Fig. 3 and 4 a catheter (trocar) (10) is inserted through shaft (5) of the inventive insertion unit and guided to the left ventricle. Cardiac valve prosthesis mounted on metal frame (11) said frame being positioned on a dilatation catheter (133) is pushed through said trocar (10) and guided to the aortic valve to be replaced.
- the dilation catheter (133) comprises elongated expanding formed metal elements (131) ; preferably made from Nitinol or stainless steel.
- Fig 22b shows the basket designed dilatation catheter in folded and unfolded position.
- the basket is expanded by using a handle actuation (133) by turning the handle.
- the turn mechanism enables precise adjusting of the diameter of the basket, which is especially important for post dilatation purposes, reducing any leakage problems.
- the advantage compared to the balloon catheter is, that during the procedure the blood can continue to flow.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Surgery (AREA)
- Mechanical Engineering (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Electrotherapy Devices (AREA)
- Prostheses (AREA)
Abstract
The invention relates to an insertion device that for the first time allows gaining access to the left ventricle of the heart, via the tissue forming the wall of the right ventricle and via the ventricular septum. The insertion unit comprises a tubular shaft (5) with a lumen (8) extending there through, said shaft comprising distal, proximal and central sections, whereby the distal and proximal sections are disc-shaped extended thus forming each a double disc (1), (2) resp. (3) (4) and whereby the central section (50) links the distally placed double disc (1), (2) with the proximally placed double disc (3), (4), and whereby pressure valve (6) resp. (7) are fixed inside the shaft preferably on its distal and proximal end. The invention also relates to devices using said insertion unit.
Description
Transmyocardial insertion unit and its use
The invention relates to an insertion unit that for the first time allows gaining access to the left ventricle of the heart, via the tissue forming the wall of the right ventricle and via the ventricular septum.
Access to the left ventricle is a major concern both in the field of heart diagnostics and in heart therapy. Such an access would allow a great number of new therapies and diagnostic methods and/or would simplify the performing of well-known therapies and diagnostic methods. Therefore the invention also relates to devices using said insertion unit.
Examples for suitable devices are given below. The listed devices are by no means exhaustive.
• Device for gaining access to all Chambers of the heart and to the abdominal region.
• Device for stimulation and defibrillation of the heart.
• Device for cardiac valve replacement and/or the "dilatation of the replaced valves.
• Device for repairing cardiac valves and for improving the mitral valve geometry.
• Device for ventricle size reduction in case of a pathological ventricle enlargement.
• Ventricular assist device (Heart pump)
• Device for taking blood from the left ventricle and for supplying the heart muscle tissue with blood via the coronary arteries (Therapy of coronary stenosis, bypass operation).
• Device for improving the myocardial blood flow.
• Device for gaining access to the aortic valve by avoiding abrasion of calcified arterial plaque.
• Device for monitoring post operation bypass blood flow.
• Device suitable as a port to the heart chambers.
• Device for mapping a heart chamber.
• Device for treating atrial fibrillation with RF ablation.
• Device for examining the inner walls of the heart chamber and of blood vessels
• Device for repairing the ventricular septum (VSD) after pathological sudden rupture.
• Device for gaining access to the pulmonary and aortic artery.
Device for transmitting cell material into the heart chambers
Device for monitoring the cardiac output by measuring impedance changes.
Access to the left and right ventricle
The problem underlying the present invention is to gain access to the left ventricle without injuring the tissue forming the wall of the left ventricle. Moreover, the insertion of trocars, catheters, electrodes and implantable medical devices of all kind both into the left as well as into the right ventricle shall be made possible or shall be simplified.
The problem is solved by a new insertion unit allowing the above required access to the left ventricle. The access to the left ventricle via the muscle tissue of the right ventricle and the ventricular septum is particularly desirable because the pressure in the right ventricle is lower than in the left ventricle. Moreover the muscle tissue that makes up the wall of the left ventricle is about three times thicker than that of the right ventricle.
The invention thus relates to an insertion unit comprising a tubular shaft (Fig.l) (5) with a lumen (8) extending there through, said shaft comprising distal, proximal and central sections, whereby the distal and proximal sections are disc-shaped extended thus forming each a double disc (1), (2) resp. (3) (4) and whereby the central section (50) links the distally placed double disc (1), (2) with the proximally placed double disc (3),(4), and whereby pressure valve (6) resp. (7) are fixed inside the shaft preferably on its distal and proximal end.
The used expression "disc-shaped" also includes related structures like umbrella-shaped, discus-shaped or ellipsoid-shaped. The double disc serves as a fixation device like an occlusion member.
The disc-shaped extensions (1), (2), (3) and (4) have a larger diameter than the tubular shaft (5), approximately five times to fifteen times greater.
The distally placed double disc (1), (2) is suitable for being implanted in the ventricular septum. The proximally placed double disc (3), (4) is suitable for being implanted in the heart muscle tissue of the right ventricle.
The double discs serve for placing and fixing the insertion unit into the ventricular septum resp. into the muscle tissue of the right ventricle. Due to its disc-shaped extensions, the insertion unit remains in position after its implantation and sliding is prevented.
The dimensions of the tubular shaft (5) are adapted to the anatomical structure between left and right ventricle.
For accessing the right ventricle the central section (50) has a lateral opening (Y-piece with valve). An access to the right ventricle or to the abdomen can also be achieved using an insertion unit comprising only double disc (1), (2) and a pressure valve fixed therein.
The present insertion unit consists of a biocompatible and flexible material. Each
biocompatible material is suitable that may form a tubular shaft with disc-shaped
extensions. It must be possible to fix at least two pressure valves, e.g. silicone valves, inside the shaft. The insertion unit must be foldable so that it can be inserted by means of a trocar.
Suitable materials are for example polymeric materials like silicone or polyurethane; metals like stainless steel, nickel-alloy MP35N or shape-memory materials like nitinol wires, nitinol strands, nitinol threads. The nitinol wires, strands and threads may be coated with polymeric material. Furthermore, shape-memory plastic threads, nitinol wires coated with other metals, e.g. nitinol wires coated with gold or platinum may also be suitable.
In a preferred embodiment the insertion unit is made of braided wires of shape-memory material (preferably nitinol) said wires and thus the whole insertion unit may form a common electrical pole, if connected to an Implantable Cardiac Defibrillator (ICD).
If the insertion unit is made of braided nitinol wires a tubular shaft is first braided, said shaft being deformed by heat or pressing in such a way that it forms disc-shaped extensions (1), (2), (3) and (4). These discs can be formed by braiding a single braid or a double braid lying on top of each other.
Shaft (5) of the insertion unit may completely or partly be coated with biocompatible polymeric material, e.g. silicone. Such a coating prevents blood intrusion into the inner braided part. The coating can be inside or outside. Preferably the central section (50) of the shaft is coated with biocompatible polymeric material. The term "coated with biocompatible polymeric material" also includes a polymer tube being pulled over the braided central section.
The proximal wire ends of the braided tubular shaft can be fixed by a sleeve or holder that has an opening too, so that lumen (8) is continuous.
However, the insertion unit can also be braided in two parts and be welded in the central section. Such a direct welding is described in WO2012095314.
The insertion unit can also consist of two pieces. In a two-piece design the central section (50) of the tubular shaft (5) is made from another material or has another design than the distal and proximal sections. In one embodiment the central section (50) of the tubular shaft is completely or partly coil shaped, said coil serving as spring. Said coil may be coated inside and/or outside with silicone or with other suitable biocompatible material or the coil is covered with a silicone tube.
The lumen (8) extends through the whole tubular shaft of the insertion unit in axial direction. At least two pressure valves are fixed inside the shaft preferably on its distal and proximal end. The distally placed pressure valve (6) is important in order to prevent the blood flow from the left to the right ventricle. The proximally placed pressure valve is important to prevent bleeding through the puncture of the right ventricle. The pressure valves are preferable silicone valves that are commercially available in many shapes and sizes. Suitable valves can be bought from the company Minivalve Int. B.V. for instance.
The tubular shaft (5) may be longitudinally extended thus forming an extended shaft (51). Said extended shaft may also be coated with a biocompatible polymeric material. The extended shaft may also be coil shaped similar to the central section.
The thus extended shaft comprises a further double disc (53),(54) with pressure valve (55) at its proximal end. The thus obtained insertion unit comprises three double discs being linked by the central section resp. the extended section of the shaft. The thus obtained insertion unit is suitable for gaining access to the left ventricle via the abdomen, the right ventricle and the ventricular septum.
The insertion unit may be a permanent implant. It can grow into the surrounding tissue like already known septal Occluder.
If desired, one or several sensors e.g. pressure sensors can additionally be fixed inside the shaft of the insertion unit.
In one embodiment, the insertion unit consists completely or partly of biocompatible synthetic material like silicone or polyurethane.
In another embodiment, the insertion unit consists completely or partly of a metal coil.
In a preferred embodiment the whole insertion unit is braided of nitinol wires. The insertion unit thus comprises a braided tubular shaft (5) of nitinol wires with a lumen (8) extending there through, said shaft comprising distal, proximal and central sections, whereby the distal and proximal sections are disc-shaped extended thus forming each a double disc (1), (2) resp. (3) (4) and whereby the central section (50) that links the distally placed double disc (1), (2) with the proximally placed double disc (3),(4) is coated with a biocompatible polymeric material, and whereby pressure valve (6) resp. (7) are fixed inside the shaft on its distal and proximal end.
Surgical threads may be woven into the proximal braiding. The threads can be tied together with a knot and serve as additional fixing of the double disc and as sealing of the muscle tissue forming the heart wall.
The insertion unit according to the invention can be used to insert a number of medical devices. Therefore the aim of the present invention is also to make devices available that are
suitable for carrying out new therapies and diagnostic methods and/or that simplify carrying out well-known therapies and diagnostic methods. Examples of such devices are:
Devices for stimulation and defibrillation of the heart (Fig. 6,7,8,9)
If the stimulation/defibrillation of the right and/or left ventricle is desired, the insertion unit according to the invention, which in this case must consist of a conducting material (e.g. nitinol), is connected to an ICD (Implantable Cardiac Defibrillator) to form one of the defibrillation electrodes or to form an indifferent electrode pole. The other stimulation or defibrillation poles can be standard implantable electrodes.
As shown in Fig. 8 the second defibrillation electrode can be an occlusion device placed in the atrial septum. The metal frame of the artificial valve may also serve as second
defibrillation electrode (Fig. 9). The standard stimulation electrode or pace-sense electrode consisting of a lead provided with a pole at its distal end portion is inserted through the shaft of the insertion unit and guided to the left ventricle, fixed and connected to an ICD or pacemaker (Fig. 6). The lead runs inside the shaft.
If biventricular stimulation is desired, another stimulation electrode is inserted through the shaft of the insertion unit which in this case has a lateral opening. The electrode is guided to the right ventricle, fixed and connected to an ICD or pacemaker (Fig. 7). The number of stimulation electrodes is not limited. Depending of the number and the position of the pacing leads, one can use it as a one chamber pacing system or a biventricular stimulation system.
Every known unipolar or bipolar stimulation electrode or ICD electrode can be used. The distal pole of the electrode can be a screw type, for instance.
For the first time, biventricular stimulation is possible without the need of introducing the electrodes via the coronary sinus vein. The difficult positioning and fixation within the coronary sinus can be avoided. It will therefore reduce the number of so called "non responder".
Device for cardiac valve replacement and/or the dilation of the replaced valve (Fig. 3, 4, 22) The inventive insertion unit is combined with a trocar to push in a cardiac valve prosthesis. Standard procedure known as TAVi (Trans catheter Aortic Valve Implantation) is carried out. A catheter (trocar) is inserted through the shaft of the insertion unit. Before the new Aortic Valve can be placed, the present old valve has to be dilated with a balloon catheter in order to gain space for the new valve. A cardiac valve prosthesis is pushed through the trocar. The artificial valve mounted on a metal frame is fixed on a balloon and will be positioned directly inside the diseased valve. The standard TAVI procedure is normally carried out by entering through the tip of the left ventricle (the apex). Closing the opening of the left ventricle, which has to be done when using the common left ventricular approach, is a big surgical problem. The tissue around the opening of the heart is especially for old patients very soft and therefore very sensitive to any suture manipulation. With the inventive insertion unit one can eliminate this problem by entering the heart chamber through the right ventricle. If
required the balloon is inserted via a guide wire with a distal filter to protect the brain arteries in order to avoid possible abrasion of calcified arterial plaque.
In order to open a narrow heart valve balloon valvotomy is commonly performed. Instead of a balloon a balloon-free dilatation catheter can be used having at its distal end a cage like expander having elongated expanding element as shown in Fig. 22.
Device for ventricle size reduction (Fig. 11)
In order to reduce the ventricle size in case of a pathological ventricle enlargement, the insertion unit according to the invention is modified by reducing the number of distally placed discs (1), (2) to one disc (1), The distally placed disc (1) has fixation hooks (60) that can be fixed in the muscle tissue forming the wall of the left ventricle resp. in the ventricular septum. The central section (50) between the fixed disc (1) and the braided double discs (3) and (4) is elastic, similar to a spring. In Fig. 11 the central section is formed as a spring (61).
Device for improving or increasing the cardiac output
Electromechanical device (Fig. 5)
A heart pump is inserted through the shaft of the inventive insertion unit and guided to the left ventricle and further to the ascending aorta. Suitable heart pumps are commercially available; for example the lmpella®-Pump
Pneumatic device (Fig. 17)
A pneumatic device is placed into an artificial blood vessel system, said system being combined with the present insertion unit as described in the following paragraph. A blood pump is placed into the artificial blood vessel in such a way that blood is sucked from the left ventricle and transported into the aorta (Fig. 17). This would provide benefits especially to patients waiting for a heart transplant.
Device for taking blood from the left ventricle and for supplying the heart muscle tissue with blood via the coronary arteries (Fig. 13, 14)
The combination of the inventive insertion unit with an artificial blood vessel system provides a device allowing a new and simplified bypass surgical technique.
The artificial blood vessel system consists of an unbranched or branched tube. One end of said tube is placed and fixed (e.g. by bonding) within the shaft of the insertion unit. The other end of the tube can be arranged around the heart. The tube is variable in length and shape so that the artificial blood vessel can be put around the heart (around the ventricles and/or the atria) partly or completely or can be guided to other organs in the abdomen as well. Every anastomosis typically used in surgery can be considered for fixing the artificial blood vessel on the heart tissue.
The artificial blood vessel has one or more small branches being connectable to a coronary artery and thus serving as bypass. The small branches are put over the blocked coronary
artery and are sewed or bonded below the stenosis. These small branches serving as bypass have a smaller diameter than the tube of the artificial blood vessel system.
For treating coronary stenosis the artificial blood vessel is fixed on the heart tissue. After puncturing said artificial blood vessel the blocked coronary arteries are supplied with blood. The stenosis can thus be treated without removing a leg vein for instance. Moreover, the aorta does not have to be punctured. The operation is done without using a heart-lung- machine.
Suitable artificial blood vessels must consist of elastic biocompatible material, e.g.
polytetrafluoroethylene (brand name Gore Tex) or polyester. Specialists are familiar with suitable materials and artificial blood vessels are commercially available (e.g. the product Dardik Biograft from the company Meadox Medical Inc. or products from the company Boston Scientific). Generally, each biocompatible elastic material is suitable.
Improvement of the myocardial blood flow (Fig 14 )
The tube member of the artificial blood vessel may have a number of cannula- or thorn-like branches being arranged around the vessel and extending up into the myocardium like an injection needle in order to supply the myocardium with blood. Furthermore the formation of coronary vessels is activated.
Device for taking blood from the left ventricle and for the simultaneous stimulation and defibrillation (Fig. 15. 16)
The above mentioned device combining the inventive insertion unit with an artificial blood vessel system can be equipped with implantable pacemaker leads so this unit is also suitable for stimulation and defibrillation.
As described above, the insertion unit, which in this case must consist of a conducting material (e.g. nitinol), is connected with an ICD to form one of the defibrillation electrodes or to form an indifferent electrode pole. At least one pacemaker lead is inserted via said insertion unit and guided to the left resp. right ventricle in order to establish a stimulation unit. By wrapping parts of the artificial blood vessel with a metallic coil a defibrillation electrode is formed. The defibrillation shock is given between the insertion unit and the metallic coil each being connected to an ICD.
Device for monitoring post operated bypass blood flow (Fig. 16)
The above mentioned device combining the inventive insertion unit with an artificial blood vessel system can be equipped with electrode poles or sensors that are in contact with a measuring unit and are suitable to monitor the blood flow in the bypass, e.g. by measuring the change of the electrical impedance between two sensors. The records can be saved and transferred by telemetry, if required. Any reduced blood flow is displayed immediately so that remedial action can be taken rapidly.
Examples for sensors are: ultrasonic sensors and/or flow sensors for controlling the blood flow; pressure sensors for controlling the blood pressure.
Device being suitable as port catheter (Fig. 10)
The insertion unit according to the invention can also be connected with a subcutaneous port. For this purpose, the insertion unit is connected with the port chamber via flexible tubing. Medicine can thus be given into the ventricle via said port or blood samples can be taken as well.
Device for inspecting the inner part of the heart (Fig.18)
Catheter type endoscopes with a video chip at the tip within a transparent balloon can be inserted through the shaft of the inventive insertion unit and guided to the inner part of the heart. By inflating the transparent balloon with C02 gas or saline solution and pushing it to the desired area, the endoscope can inspect visually the inner parts of the heart.
Device for RF ablation of heart tissue
One or several electrodes connected with a RF generator can be inserted through the shaft of the inventive insertion unit and guided to the left and/or right heart chambers to start the ablation procedure.
Device for mapping a heart chamber
A steerable catheter with one or several mapping electrodes connected to a recording device can be inserted through the shaft of the inventive insertion unit and guided to the left and/or right heart chamber.
Device for repairing the Ventricular Septum Defect (VSD) after pathological sudden rupture (FiR. 19)
The immediate surgical closing of a sudden rupture of the ventricular septum is in most cases not possible, due to the tissue characteristic after the rupture.
A closing device is obtained by using enlarged braided occlusion discs (1), (2) as clamping means for closing ventricular septal defects or rupture. By adding some new tissue obtained by tissue engineering and/or nanotechnology developed or own harvested tissue material, the healing process could be improved.
Device for gaining access to the pulmonary artery and right atrium
The inventive insertion unit allows gaining access to the pulmonary artery and right atrium via the right ventricle.
Device for transmitting cell material into the heart chambers
The inventive insertion unit allows transmitting cell material into the heart chambers. A carrier containing said cell material is inserted through the shaft of the inventive insertion unit and guided to the heart chambers.
Device for improving the mitral valve geometry by reducing the valve area. (Fig. 20)
In order to reduce the amount of blood leaking backwards, the two leaflets of the mitral valve are - in known methods - partially clipped or sewn together. The inventive insertion unit allows a new mitral valve repair approach by using the insertion unit to insert a device for pushing anchors. A suitable device for pushing anchors is described in WO2007079952 corresponding to US20090012557. Instead of the presently used "clipping" procedure, or the presently used suture methods with one or more knots with the sutures, the new approach using the insertion unit results in reducing the size of the mitral (cardiac) valve as desired in a simplified procedure.
Device for calculating and monitoring the cardiac output. (Fig. 21)
A first impedance measuring electrodes is inserted through the shaft of the insertion unit and fixed in the tissue of the left ventricle. A second impedance measuring electrodes is inserted through the shaft of the insertion unit and fixed in the tissue of the right ventricle. Both electrodes are connected to an impedance measuring device thus forming an impedance measurement circuit. The cardiac synchronous impedance change which is temporally concordant with the stroke volume is determined.
An apparatus and a method for determining an approximate value for the stroke volume and the cardiac output of a person's heart is described in US 6511438.
The present invention also refers to therapeutic and diagnostic methods that can be carried out with the above mentioned devices.
Many aspects of the invention can be better understood with reference to the following figures showing the insertion unit in detail and number devices using the insertion device. reference numbers represent:
A Aorta
CV Coronary vein
LV left ventricle
RV right ventricle
RF radio frequency
ICD (Implantable Cardiac Defibrillator)
(1,2), (3,4), (53, 54) double discs
5 tubular shaft
6, 7, 55 pressure valves
8 lumen
9 pressure sensor
10 catheter (trocar)
11 metal frame of the artificial valve
12 balloon
13 heart pump
14, 15 stimulation electrodes , pace sense electrodes (lead and pole)
16, 17 electrode lead
18, 19 impedance measuring electrodes
20, 21, 22, 23 defibrillation electrodes
24, 25, 26, 27, 28, 31electrical connection line
30 pump motor
31 propeller shaft
32 electrical impedance measurement unit
33 pump control unit
34 pacemaker
40 port chamber
41 port catheter
50 central section of the tubular shaft
51 extended tubular shaft
52 surgical threads
60 fixing hook
61, 62 spring
63 sleeve
70 abdomen (abdominal wall, chest wall)
80 artificial blood vessel , tube member
81 small vessel branch,
82 cannula-like branches
83 tube member branch
90 electrode pole
91 control electrode (sensor)
92, 93 pair of electrodes, pair of sensors
100 hose pump
110 endoscope
111 endoscope-balloon
112 endoscope shaft
113 endoscope tip
120 new tissue material
121 anchor pusher
122 feed catheter for anchor pusher
130 dilation catheter
131 elongated expanding elements
Fig. 1 shows the insertion unit according to the invention.
In Fig. la all the discs (1),(2),(3),(4) are formed by braiding two discs braids that lie on top of each other. In Fig. lb and lc one of the discs (disc 1) is formed by braiding only one disc braid.
Fig. la shows the insertion unit consisting of a tubular shaft (5) braided of nitinol wire. The shaft has a lumen (8) extending through the whole shaft in axial direction. The central section (50) links the distally placed double discs (1), (2) with the proximal placed double discs (3), (4). Pressure valves (6) rep. (7) is fixed inside the shaft on its distal and proximal end.
Fig. lb shows a longitudinally extended tubular shaft (51).
In Fig. lc surgical threads (52) are woven into the braiding proximally. The threads can be tied with a knot together and serve as additional fixing of the proximal double disc and as sealing of the heart-wall tissue.
Fig Id shows an insertion unit where the central section (50) of the tubular shaft (5) has another design than the distal and proximal sections. The central section (50) of the tubular shaft is coil shaped, said coil (61) serving as spring. Said coil is covered with a silicone tube. The extended section is also coil shaped (62).
The proximal wire ends of the braided double discs (1) (2) resp. (3), (4) are fixed by a sleeve (63) that has an opening too, so that lumen (8) is continuous.
The following figures show the insertion unit implanted in the heart.
Fig. 2 shows the insertion unit implanted in the heart chambers. The braided double discs (1), (2) are implanted in the ventricular septum. The braided double discs (3), (4) are implanted in the tissue forming the heart wall of the right ventricle. Double disc (1), (2) is linked to double disc (3), (4) by the central section (50) of the shaft (5). Valve (6) prevents the blood flow from the left to the right ventricle. Valve (7) prevents bleeding through the puncture of the right ventricle. A pressure sensor (9) can be fixed inside the shaft at its distal end for measuring the left ventricular pressure. The pressure sensor can either transfer the data according to the RFID principle, or can transfer the data to a measurement unit. If required, the data can be saved.
Fig. 3 and Fig. 4 show a device for the cardiac valve replacement and/or the dilation of the replaced valves. A catheter (trocar) (10) is inserted through shaft (5) of the inventive insertion unit and guided to the left ventricle. Cardiac valve prosthesis comprising a metal frame (11) positioned on a balloon (12) is pushed through said catheter and guided to the aortic valve to be replaced. Fig. 4 shows the possible replacement of the mitral valve.
Fig. 5 shows a device supporting the cardiac blood flow output consisting of the inventive insertion unit and heart pump (13) being inserted through the shaft (5) of the insertion unit and guided via the left ventricle to the ascending aorta. The device pumps blood from the left ventricle into the ascending aorta. The heart pump (13) is driven by a motor (30) to which the propeller shaft is connected, said propeller shaft (31) running inside the insertion unit (5).
Fig. 6 shows a biventricular stimulation device. Depending of the number and the position of the pacing leads, one can use it as a one chamber pacing system or a biventricular stimulation system. The stimulation electrodes (screw tip) (14) from the left ventricle and (15) from the right ventricle are connected to the pacemaker (34). The electrical connection line (24) leads to the proximally placed disc (4) of the insertion unit. The insertion unit is braided of nitinol wires and the whole insertion unit with the discs 1,2,3,4, thus serves as the indifferent pole (20).
Fig.7 shows the inventive insertion unit with a DDD stimulation device. The position of one screw tip lead (14a) is within the right atrium, the other electrode (15a) is fixed within the right ventricle.
The following Fig. 8, 9, 10 and 15 show a stimulation/defibrillation device.
Fig. 8 shows a device for stimulation and defibrillation. In Fig. 8 an occluder implanted in the atrial septum, is connected to the ICD via electrical connection line (25). The occluder serves as defibrillation electrode (21). The electrical connection line (24) leads to the ICD. The insertion unit is braided of nitinol wires and the whole unit with the discs 1,2,3,4, thus serves as the second defibrillation electrode (20). The shock is given between the defibrillation
electrodes (20) and (21). The stimulation electrodes (14) and (15) each consisting of a lead provided with a pole at its distal end are also connected to the ICD.
The field strength distribution is marked. One can see a homogenous electrical field over the right and over the left ventricle which may reduce the necessary defibrillation shock energy.
Fig. 9a also shows another possible device for stimulation and defibrillation for patients which have already an implanted artificial valve.
In Fig. 9a the metal frame (11) of the artificial valve is connected to the ICD via electrical connection line (26). The valve prosthesis thus forms one of the defibrillation electrodes
(22) . The shock is applied between the defibrillation electrodes (20) (disc (1), (2), (3), (4) of the insertion unit and the metal frame (11) forming the electrode (22) . The stimulation electrodes (14) and (15) are connected to the ICD as described above.
If desired, a coil-shaped pole (23) may also serve as second defibrillation electrode. The coil is placed below the cardiac apex and is connected to the ICD. The shock is applied between the valve prosthesis (22) and the coil (23) or between the valve prosthesis (22) and the coil and parallel to the insertion unit (20).
The field strength distribution is marked. One can see a homogenous electrical field over the right and over the left ventricle.
Fig. 9b also shows another possible device for stimulation and defibrillation of the heart. One of the defibrillation pole is a flexible coil (23), which is placed on left side of the heart. The shock is given between insertion unit serving as the defibrillation electrode (20) and
(23) . The ICD is implanted within the abdomen. The battery of the ICD can be exchanged without disconnecting the electrical circuitry from the electrodes. Thus the special program for pacing and defibrillation of those patients can be saved and continued to use without any new programming. A further advantage is that the capacity of the battery can be enlarged and the exchange of the battery can be done by any surgeon without any special experience in ICDs.
Fig.10 shows a port device. The insertion unit according to the invention is connected with a port catheter (41) and thus creates a unit that allows gaining access to the left and right ventricle and to the abdominal cavity, if required. The subcutaneously implanted hollow chamber with silicone membrane (port chamber) (40) is connected with the insertion unit by a port catheter (41). The port chamber can be filled up through a membrane by means of an injection through the abdomen. A direct access to the ventricles is thus achieved by which medicine, contrast agents, blood thinners, stem cells etc. can be applied or blood samples can be withdrawn.
Fig. 11 shows a device for reducing the ventricle size in case of a pathological ventricle enlargement. The inventive insertion unit is modified by reducing the number of distally placed discs. There is only one distally placed disc (1) having fixation hooks (60) so that an
unit is created that can be fixed in the heart muscle tissue resp. in the ventricular septum. The central section (50) is formed as a spring (61)
Fig. 12 shows the insertion unit implanted in the heart chambers, as shown in Fig. 2 for the access to the abdomen, right ventricle and left ventricle of the heart at any time. However, the tubular shaft (5) is longitudinally extended to form an extended shaft (51). Shaft (51) is guided through the chest wall (70) resp. through the abdominal wall. The extended shaft (51) comprises double disc (53), (54) with pressure valve (55) sealing the chest wall. Double disc (53), (54) is equivalent to double disc (1), (2) resp. (3), (4).
Fig. 13 shows a device for taking blood from the left ventricle and for supplying the heart muscle tissue with blood via the coronary arteries.
The insertion unit implanted in the heart chambers as shown in Fig. 2 is combined with an artificial blood vessel (80) being a tube. One end of the tube is placed and fixed within the shaft (5) of the insertion unit. Thus the artificial blood vessel (80) has direct access to the left ventricle (LV). The artificial vessel (80) is placed over the heart and fixed on the heart tissue above the ventricles. The artificial vessel has several small branches (81) serving as bypasses.
Fig. 14 also shows a device in which the insertion unit according to the invention is combined with an artificial blood vessel (80) (83) being a tube. Contrary to the device described in Fig. 13, the artificial blood vessel is arranged in a circle around the heart. The tubular body of the artificial blood vessel has small branches (81) serving as bypasses.
Furthermore, cannula-like branches (82) are arranged along the circular vessel that extend up into the myocardium like an injection needle and supply the myocardium with more blood in order to initiate some new arteries.
Fig. 15 shows a device for taking blood from the left ventricle, said device can
simultaneously be used for the stimulation and defibrillation of the heart.
In addition to the device shown in Fig. 13 the tubular body of the artificial blood vessel (80) is wrapped in part with a metallic coil (90) to form an electrical defibrillation pole. The coil (90) is connected to an ICD via one of the electrical connection lines (28). If desired, the defibrillation shock is given between coil (90) and the insertion unit (20) The insertion unit is connected to the ICD via the electrical connection line (24) that leads to the proximally placed disc (4). The whole insertion unit (the discs 1,2,3,4) thus serves as second
defibrillation electrode or as indifferent pole. Said second defibrillation electrode is equivalent to the defibrillation electrode described in Fig. 8 and 9.
Further electrical connection lines (28) lead from the measurement device (32) to the small branches (81) and to the electrodes (91) placed around the branches (81). By measuring individually the electrical impedance between each of the electrodes (91) the blood flow in each bypass can be controlled. The detailed positioning of the control electrodes (sensors) is shown in Fig. 16.
The screw electrode (15), which is monitoring the ECG is connected to an ICD. In case of ventricular fibrillation the shock process starts. Analogue to the device shown in Fig. 8 a further screw electrode can be fixed in the left ventricle. Fig. 15 also shows the field strength distribution during the defibrillation. The positioning of the defibrillation electrodes results an optimal field strength distribution so that less shock energy is required.
Fig. 16 shows a device for the bypass control. In addition to the device shown in Fig. 15, the positioning of the control electrodes/sensors is shown in detail. The control electrodes (91) consist of two electrodes (92, 93) spaced circularly around the artificial blood vessel and being in contact with an electrical impedance measurement unit (32). The electrodes (92), (93) are suitable to monitor the blood flow in the bridged coronary artery (CA, bypass).
Fig. 17 shows a device for the support of the cardiac output. The inventive insertion unit is connected to an artificial blood vessel system consisting of a tube (80), one end of the tube being placed and fixed within the shaft of the insertion unit and the other end is configured to be disposed in the aorta (A). A blood pump (hose pump) (100) is placed into the tube (80). The hose pump sucks blood from the left ventricle and transports it into the aorta. The connection from the pump (100) to the control unit (33) is lead through the chest wall.
Fig. 18 shows a device for detecting and inspecting changes in the inner heart tissue.
Catheter type endoscopes having a shaft (112) and a tip (113) with a video chip and a light fiber at the tip within a transparent balloon (111) can be inserted through the shaft of the inventive insertion unit and guided to the inner part of the heart. By inflating the transparent balloon with C02 gas or saline solution and pushing it to the desired area, the endoscope can inspect visually structural defects in the interior parts of the heart and vessels.
Fig. 19 shows a closing device using enlarged braided occlusion discs (1), (2) being equivalent to the braided discs (1), (2) as described in Fig. 2 as clamping means for closing ventricular septal defects (VSD) or rupture. The occlusion discs (1), (2) are covered with special tissue growing material (120).
Fig. 20 shows a device for improving the mitral cardiac valve geometry by reducing the valve area.
A catheter (122) is inserted through the shaft of the inventive insertion unit. A device for pushing anchors (121) like T-bars with attached surgical sutures are pushed through said catheter and guided to the cardiac valve and knot together. A device for pushing suitable anchors is described in WO2007079952 corresponding to US20090012557.
Fig. 21 shows a device for calculating and monitoring the cardiac output.
A first impedance measuring electrode (18) resp. (19) is inserted through the shaft of the insertion unit and fixed in the tissue of the left ventricle resp. the right ventricle. The electrode (18) in the left ventricle is one pole; the electrode (19) in the right ventricle is the other pole. Both poles are connected to an impedance measuring device (32) thus forming
an impedance measurement circuit. The cardiac synchronous impedance change which is temporally concordant with the stroke volume is determined.
An apparatus and a method for determining an approximate value for the stroke volume and the cardiac output of a person's heart is described in US 6511438.
Fig. 22 shows a device for the cardiac valve replacement and/or the dilation of the replaced valves.
Fig. 22a shows the device implanted in the heart. Similar to the device shown in Fig. 3 and 4 a catheter (trocar) (10) is inserted through shaft (5) of the inventive insertion unit and guided to the left ventricle. Cardiac valve prosthesis mounted on metal frame (11) said frame being positioned on a dilatation catheter (133) is pushed through said trocar (10) and guided to the aortic valve to be replaced. The dilation catheter (133) comprises elongated expanding formed metal elements (131); preferably made from Nitinol or stainless steel.
Fig 22b shows the basket designed dilatation catheter in folded and unfolded position. The basket is expanded by using a handle actuation (133) by turning the handle. The turn mechanism enables precise adjusting of the diameter of the basket, which is especially important for post dilatation purposes, reducing any leakage problems. The advantage compared to the balloon catheter is, that during the procedure the blood can continue to flow.
Claims
1. Insertion unit according to claim 1 consisting Insertion unit comprising a tubular shaft (5) with a lumen (8) extending there through, said shaft comprising distal, proximal and central sections, whereby the distal and proximal sections are disc-shaped extended thus forming each a double disc (1), (2) resp. (3) (4) and whereby the central section (50) links the distally placed double disc (1), (2) with the proximally placed double disc (3),(4), and whereby pressure valve (6) resp. (7) are fixed inside the shaft preferably on its distal and proximal end.
2. Insertion unit according to claim 1 consisting of braided wires of memory material, preferably nitinol.
3. Insertion unit according to claim 1 consisting in part or in total of Silikon,
Polyurethan, PTFE, Polyester, biokompatible fibers, Nitinol, Titanium or Stainless Steel.
4. Insertion unit according to claim 1 or 2 whereby the inner and/or outer central
section (50) of shaft (5) is covered by a biocompatible synthetic material.
5. Insertion unit according to any one of claims 1-3, whereby the central section (50) is coil shaped.
6. Insertion unit according to any one of claims 1-4, whereby the tubular shaft (5) is longitudinally extended thus forming an extended shaft (51), the thus extended shaft (51) comprising a further double disc (53),(54) with pressure valve (55) at its proximal end.
7. Device for stimulation and/or defibrillation consisting of an insertion unit according to any one of claims 1-5 and of at least one stimulation electrodes (14) and/or (15) connected to a pacemaker, each electrode consisting of a lead provided with a pole at its distal end whereby the insertion unit is conductive and is connected to an ICD to form one of the defibrillation electrodes or to form an indifferent pole and whereby the lead of the stimulation electrode runs inside the shaft (5) of the insertion unit.
8. Device for the cardiac valve replacement, consisting of an insertion unit according to any one of claims 1-5 and a catheter or trocar, whereby the catheter or trocar (10) runs inside the shaft (5) of the insertion unit, whereby a cardiac valve prosthesis is insertable via that catheter or trocar (10).
9. Device for improving the cardiac output, consisting of an insertion unit according to any one of claims 1-5 and a heart pump, whereby the heart pump (13) is insertable through the shaft of the insertion unit, said heart pump being driven by a motor (30)
to which the propeller shaft (31) is connected said shaft (31) running inside the shaft (5).
10. Device for the ventricle reduction, consisting of an insertion unit according to any ones of claims 1-5, whereby the number of distally placed discs (1), (2) is reduced to be one disc (1) having fixation hooks (60) and whereby the central section (50) is elastic.
11. Device suitable as port catheter consisting of an insertion unit according to any one of claim 1-5 whereby the proximally placed disc (4) of the double disc (3), (4) is connected to a port chamber (40) by a port catheter (41).
12. Device for taking blood from the left ventricle and for supplying the heart muscle tissue with blood via the coronary arteries consisting of an insertion unit according to any one of claims 1-5 and an artificial blood vessel system whereby the insertion unit is connected to an artificial blood vessel system consisting of a tube (80), one end of the tube (80) being placed and fixed within the shaft (5) of the insertion unit and the other end can be placed around the heart and whereby the tube has one or more small branches (81) being connectable to an coronary artery and thus serving as bypass and/or whereby the tube has cannula-like branches (82).
13. Device for bypass control comprising a device according to claim 11, whereby one or more sensors (92), (93) are placed around the small branches (81), said sensors being connected to an electrical impedance measurement device (32).
14. Device for taking blood from the left ventricle and for the simultaneous stimulation and defibrillation, consisting of a device according to claim 11 or 12 whereby the tube (80) is wrapped in part with a metallic coil (90) said coil being connected to an ICD thus serving as defibrillation electrode.
15. Device for the support of the cardiac output, consisting of an insertion unit according to any one of claims 1-5 and an artificial blood vessel system whereby the insertion unit is connected to an artificial blood vessel system consisting of a tube (80), one end of the tube (80) being placed and fixed within the shaft (5) of the insertion unit and the other end is configured to be disposed in the aorta and whereby a pump (100) is placed into the tube (80).
16. Device for detecting and inspecting structural defects in the inner heart tissue
consisting of an insertion unit according to any one of claims 1-5 and an endoscope (110) having a shaft (112) and a tip (113) with a video chip and a light fiber at the tip whereby the endoscope tip is surrounded by a transparent balloon (111) and whereby the shaft (112) runs through the insertion unit.
7. Device for repairing cardiac valves consisting of an insertion unit according to any one of claims 1-5 and a device for pushing anchors comprising a feed catheter (122) and an anchor pusher (121) whereby the feed catheter (122) runs through the shaft.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/002915 WO2016066180A1 (en) | 2014-10-30 | 2014-10-30 | Transmyocardial insertion unit and its use |
US15/517,088 US10456168B2 (en) | 2014-10-30 | 2014-10-30 | Transmyocardial insertion unit and its use |
EP14808826.3A EP3212097B1 (en) | 2014-10-30 | 2014-10-30 | Transmyocardial insertion unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/002915 WO2016066180A1 (en) | 2014-10-30 | 2014-10-30 | Transmyocardial insertion unit and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2016066180A1 true WO2016066180A1 (en) | 2016-05-06 |
WO2016066180A8 WO2016066180A8 (en) | 2017-07-13 |
Family
ID=52013989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/002915 WO2016066180A1 (en) | 2014-10-30 | 2014-10-30 | Transmyocardial insertion unit and its use |
Country Status (3)
Country | Link |
---|---|
US (1) | US10456168B2 (en) |
EP (1) | EP3212097B1 (en) |
WO (1) | WO2016066180A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018008019A3 (en) * | 2016-07-03 | 2018-03-22 | Tel Hashomer Medical Research, Infrastructure And Services Ltd. | Apparatus for delivering electrical signals to the heart |
WO2019032816A1 (en) * | 2017-08-10 | 2019-02-14 | St. Jude Medical, Cardiology Division, Inc. | Collapsible medical device for atrial sealing and trans-septal access |
WO2019234148A1 (en) * | 2018-06-06 | 2019-12-12 | Kardion Gmbh | Implantable ventricular assist system and method for operating same |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
CN108601645B (en) | 2015-12-15 | 2021-02-26 | 内奥瓦斯克迪亚拉公司 | Transseptal delivery system |
EP4183372A1 (en) | 2016-01-29 | 2023-05-24 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
EP3541462A4 (en) | 2016-11-21 | 2020-06-17 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
WO2018226991A1 (en) | 2017-06-07 | 2018-12-13 | Shifamed Holdings, Llc | Intravascular fluid movement devices, systems, and methods of use |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
CN111556763B (en) | 2017-11-13 | 2023-09-01 | 施菲姆德控股有限责任公司 | Intravascular fluid movement device and system |
EP4085965A1 (en) | 2018-02-01 | 2022-11-09 | Shifamed Holdings, LLC | Intravascular blood pumps and methods of use and manufacture |
FR3079404B1 (en) * | 2018-03-29 | 2020-03-06 | Electroducer | REPLACEMENT ASSEMBLY OF A HEART VALVE WITH ASSISTANCE OF STIMULATION BY ARTERIAL OR PERIPHERAL VENOUS |
AU2019262094A1 (en) * | 2018-05-03 | 2020-11-19 | Northern Development AS | Implantable device and delivery method |
US20190343996A1 (en) * | 2018-05-10 | 2019-11-14 | Safwan Kassas | Percutaneous left ventricular assist device and non-invasive method for implanting same |
AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
CN113811265A (en) | 2019-04-01 | 2021-12-17 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve deployable in a controlled manner |
AU2020271896B2 (en) | 2019-04-10 | 2022-10-13 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
WO2020236931A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
WO2020257643A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
JP2022540616A (en) | 2019-07-12 | 2022-09-16 | シファメド・ホールディングス・エルエルシー | Intravascular blood pump and methods of manufacture and use |
US11654275B2 (en) | 2019-07-22 | 2023-05-23 | Shifamed Holdings, Llc | Intravascular blood pumps with struts and methods of use and manufacture |
WO2021062270A1 (en) | 2019-09-25 | 2021-04-01 | Shifamed Holdings, Llc | Catheter blood pumps and collapsible pump housings |
EP4034192A4 (en) | 2019-09-25 | 2023-11-29 | Shifamed Holdings, LLC | Intravascular blood pump systems and methods of use and control thereof |
US11559690B2 (en) * | 2020-04-30 | 2023-01-24 | Medtronic, Inc. | Ventricular assist system and method |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5924424A (en) * | 1993-02-22 | 1999-07-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US20020161378A1 (en) * | 2000-06-20 | 2002-10-31 | Downing Stephen W. | Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart |
US6511438B2 (en) | 2001-04-03 | 2003-01-28 | Osypka Medical Gmbh | Apparatus and method for determining an approximation of the stroke volume and the cardiac output of the heart |
US20060074484A1 (en) * | 2004-10-02 | 2006-04-06 | Huber Christoph H | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
WO2007079952A1 (en) | 2005-12-28 | 2007-07-19 | Peter Osypka | Device for closing an opening located in a heart septum |
US20080109069A1 (en) * | 2006-11-07 | 2008-05-08 | Coleman James E | Blood perfusion graft |
US20080147184A1 (en) * | 2001-12-08 | 2008-06-19 | Lattouf Omar M | Treatments for a patient with congestive heart failure |
WO2008109408A2 (en) * | 2007-03-02 | 2008-09-12 | Moenning Stephen P | Devices and methods for performing minimally invasive surgery |
US20090287240A1 (en) * | 2008-05-16 | 2009-11-19 | Ken Yamatani | Medical instrument introduction device and method of introducing medical device |
US20120130391A1 (en) * | 2009-08-06 | 2012-05-24 | Mayo Foundation For Medical Education And Research | Implanting organ ports |
WO2012095314A1 (en) | 2011-01-12 | 2012-07-19 | Peter Osypka | Occlusion device for undesired openings in the heart |
US20130178908A1 (en) * | 2012-01-09 | 2013-07-11 | Endoheart Ag | Electrophysiological endocardiology tool |
US20130331920A1 (en) * | 2012-06-11 | 2013-12-12 | Peter Osypka | Implantable indifferent reference electrode pole |
US20140039375A1 (en) * | 2011-02-01 | 2014-02-06 | Georgia Tech Research Corporation | Systems for implanting and using a conduit within a tissue wall |
-
2014
- 2014-10-30 EP EP14808826.3A patent/EP3212097B1/en not_active Not-in-force
- 2014-10-30 WO PCT/EP2014/002915 patent/WO2016066180A1/en active Application Filing
- 2014-10-30 US US15/517,088 patent/US10456168B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5924424A (en) * | 1993-02-22 | 1999-07-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US20020161378A1 (en) * | 2000-06-20 | 2002-10-31 | Downing Stephen W. | Apparatuses and methods for performing minimally invasive diagnostic and surgical procedures inside of a beating heart |
US6511438B2 (en) | 2001-04-03 | 2003-01-28 | Osypka Medical Gmbh | Apparatus and method for determining an approximation of the stroke volume and the cardiac output of the heart |
US20080147184A1 (en) * | 2001-12-08 | 2008-06-19 | Lattouf Omar M | Treatments for a patient with congestive heart failure |
US20060074484A1 (en) * | 2004-10-02 | 2006-04-06 | Huber Christoph H | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
WO2007079952A1 (en) | 2005-12-28 | 2007-07-19 | Peter Osypka | Device for closing an opening located in a heart septum |
US20090012557A1 (en) | 2005-12-28 | 2009-01-08 | Peter Osypka | Device for closing an opening located in a heart septum |
US20080109069A1 (en) * | 2006-11-07 | 2008-05-08 | Coleman James E | Blood perfusion graft |
WO2008109408A2 (en) * | 2007-03-02 | 2008-09-12 | Moenning Stephen P | Devices and methods for performing minimally invasive surgery |
US20090287240A1 (en) * | 2008-05-16 | 2009-11-19 | Ken Yamatani | Medical instrument introduction device and method of introducing medical device |
US20120130391A1 (en) * | 2009-08-06 | 2012-05-24 | Mayo Foundation For Medical Education And Research | Implanting organ ports |
WO2012095314A1 (en) | 2011-01-12 | 2012-07-19 | Peter Osypka | Occlusion device for undesired openings in the heart |
US20140039375A1 (en) * | 2011-02-01 | 2014-02-06 | Georgia Tech Research Corporation | Systems for implanting and using a conduit within a tissue wall |
US20130178908A1 (en) * | 2012-01-09 | 2013-07-11 | Endoheart Ag | Electrophysiological endocardiology tool |
US20130331920A1 (en) * | 2012-06-11 | 2013-12-12 | Peter Osypka | Implantable indifferent reference electrode pole |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018008019A3 (en) * | 2016-07-03 | 2018-03-22 | Tel Hashomer Medical Research, Infrastructure And Services Ltd. | Apparatus for delivering electrical signals to the heart |
WO2019032816A1 (en) * | 2017-08-10 | 2019-02-14 | St. Jude Medical, Cardiology Division, Inc. | Collapsible medical device for atrial sealing and trans-septal access |
US11006938B2 (en) | 2017-08-10 | 2021-05-18 | St. Jude Medical, Cardiology Division, Inc. | Collapsible medical device for atrial sealing and trans-septal access |
AU2018316225B2 (en) * | 2017-08-10 | 2023-09-28 | St. Jude Medical, Cardiology Division, Inc. | Collapsible medical device for atrial sealing and trans-septal access |
EP4397258A3 (en) * | 2017-08-10 | 2024-08-14 | St. Jude Medical, Cardiology Division, Inc. | Collapsible medical device for atrial sealing and trans-septal access |
WO2019234148A1 (en) * | 2018-06-06 | 2019-12-12 | Kardion Gmbh | Implantable ventricular assist system and method for operating same |
CN112584890A (en) * | 2018-06-06 | 2021-03-30 | 开迪恩有限公司 | Implantable ventricular assist system and method of operation thereof |
Also Published As
Publication number | Publication date |
---|---|
EP3212097A1 (en) | 2017-09-06 |
US10456168B2 (en) | 2019-10-29 |
WO2016066180A8 (en) | 2017-07-13 |
EP3212097B1 (en) | 2018-07-11 |
US20170296227A1 (en) | 2017-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3212097B1 (en) | Transmyocardial insertion unit | |
EP3672532B1 (en) | Implantable cardiac pacing system | |
US20220117736A1 (en) | Annuloplasty procedures, related devices and methods | |
US11039923B2 (en) | Annuloplasty procedures, related devices and methods | |
EP2063823B1 (en) | Devices, system, kit and method for epicardial access | |
JP5844406B2 (en) | Heart valve downsizing apparatus and method | |
US7740638B2 (en) | Apparatuses and methods for heart valve repair | |
CN104203341B (en) | Tie the deployment of implantable medical device | |
JP4348338B2 (en) | Tissue penetration catheter system | |
US6171251B1 (en) | Method and apparatus for optimizing direct vessel implants for myocardial revascularization | |
CN108472148A (en) | Through catheter insertion system | |
US20130226285A1 (en) | Percutaneous heart bypass graft surgery apparatus and method | |
CN109982655A (en) | Replace the sub-assembly of valvular sub-assembly or coronary angioplasty | |
JP2016521633A (en) | Mitral valve spacer and implantation system and method thereof | |
JP2003512884A (en) | Method and apparatus for demand part injury in stimulating angiogenesis | |
US11007059B2 (en) | Annuloplasty procedures, related devices and methods | |
CN109789255A (en) | For deliver vivo devices through conduit device and system | |
US20210045879A1 (en) | Cardiac annuloplasty procedures, related devices and methods | |
US9579224B2 (en) | Vessel remodeling methods and devices for use in a graft device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14808826 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15517088 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014808826 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014808826 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |