WO2016066011A1 - 一种散热板及动力电池系统 - Google Patents

一种散热板及动力电池系统 Download PDF

Info

Publication number
WO2016066011A1
WO2016066011A1 PCT/CN2015/091856 CN2015091856W WO2016066011A1 WO 2016066011 A1 WO2016066011 A1 WO 2016066011A1 CN 2015091856 W CN2015091856 W CN 2015091856W WO 2016066011 A1 WO2016066011 A1 WO 2016066011A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
heat sink
power battery
battery system
cover
Prior art date
Application number
PCT/CN2015/091856
Other languages
English (en)
French (fr)
Inventor
仝志伟
赖庆
朱建华
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020177012924A priority Critical patent/KR101940577B1/ko
Priority to JP2017523435A priority patent/JP2018503934A/ja
Priority to EP15853875.1A priority patent/EP3214690A4/en
Publication of WO2016066011A1 publication Critical patent/WO2016066011A1/zh
Priority to US15/499,503 priority patent/US10396409B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6562Gases with free flow by convection only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of power battery packs, and more particularly to the field of heat dissipation structures in power battery packs.
  • the existing comb-shaped heat sink When the comb-shaped heat sink is loaded on the battery module, the two are only in contact with the metal shell of the single battery through the insulating layer. .
  • the comb radiator forms an open air duct with the inner cavity of the battery system cabinet, and the existing comb radiator has low structural strength, is easily deformed by pressure, and cannot be subjected to gravity, stamping, etc. as a bearing member; the conventional hollow radiator
  • the thickness of the fins is generally thicker, more than 5mm, the width of the air duct formed between the fins is more than 10mm, and the number of air ducts is also limited.
  • the volume and weight of the heat exchanger are relatively large.
  • the battery module itself is of high quality, and the comb radiator cannot be used as a carrier to withstand the gravity and impact force of the battery module, so it cannot be effectively applied in the field of power battery systems.
  • its air duct is open, the effective utilization rate of the cooling medium is low, and the heat dissipation effect is not very good.
  • the present invention provides a Heat sink and power battery system.
  • An embodiment of the present invention provides a heat dissipation plate including a heat sink and a cover plate.
  • the heat sink includes a bottom plate and a plurality of fins arranged in a comb shape on the negative film; the cover plate and the heat sink Fixedly connected, a fin on the heat sink is located between the backsheet and the cover; a wind tunnel is formed between the backsheet, the fin and the cover.
  • the heat dissipation plate provided by the embodiment of the present invention is used in a power battery system
  • the heat sink is molded by a mold
  • the thickness of the fin can be further reduced, and the heat dissipation area of the heat sink is increased, so that the heat dissipation plate is internally
  • the high-density hollow structure improves the heat dissipation efficiency, maximizes the heat dissipation surface and heat dissipation effect of the heat sink in a limited volume, and improves the charge and discharge rate of the battery module. It also effectively reduces the volume of the heat sink.
  • the cover plate since the cover plate is added, the force can be distributed to each fin, which effectively improves the structural strength of the entire heat dissipation plate. In the case of gravity, vibration, shock, etc., it can be used as part of the power battery system casing to protect the battery module from damage.
  • the heat sink and the cover plate are fixedly connected by one or a combination of welding, thermal adhesive bonding or mechanical fixing. Thereby, the reliability of the fixed connection of the heat sink and the cover plate can be effectively ensured.
  • the cover plate includes an inner surface and an outer surface, and the inner surface of the cover plate is formed with a plurality of grooves matching the fins; the free end of the fin is inserted into the groove on the cover plate .
  • the fixing method of the above-mentioned groove and the fin connection can further strengthen the fixed connection effect.
  • the left and right sides of the negative film on the heat sink are bent upward, and the lower side is formed on both sides; the left and right sides of the cover plate are bent downward, and the upper side is formed on both sides;
  • the lower side of the side is coupled to the lower side of the left and right sides of the cover to form a hollow structure, and the fins on the heat sink are placed in the hollow structure.
  • the back surface of the heat sink of the heat sink is provided with a plurality of heat pipes in a longitudinal direction.
  • the temperature of the air inlet and the air outlet on the battery module can be consistent.
  • a plurality of semiconductor heating and cooling chips are disposed on the back surface of the heat sink.
  • the above semiconductor heating and cooling chip can be used to adjust the temperature of the single cell under extreme conditions, such as heating the battery pack under low temperature conditions and enhancing air cooling under extreme high temperature conditions.
  • the back surface of the heat sink is coated with an insulating protective coating.
  • the insulating protective coating has a thickness of 0.05-1 mm.
  • the fins have a thickness of 0.8-1.5 mm and a distance between adjacent two of the fins is 2-4 mm.
  • a second aspect of the present invention provides a power battery system including a battery module and a heat dissipation module, wherein the heat dissipation module includes the heat dissipation plate.
  • the heat dissipation plate since the heat dissipation plate is used therein, the excellent performance of the heat dissipation plate is inherited, the heat dissipation efficiency of the power battery system is effectively improved, and the charge and discharge rate of the battery module is improved. It also effectively reduces the volume of the heat sink.
  • the cover plate since the cover plate is added in the heat dissipation plate, the force can be dispersed to each of the fins, thereby effectively improving the structural strength of the entire heat dissipation plate. In the case of gravity, vibration, shock, etc., it can be used as part of the power battery system casing to protect the battery module from damage.
  • the battery module includes a frame and a plurality of unit cells mounted in the frame; the battery module includes an upper large surface, a lower large surface, a left side surface, a right side surface, a front end surface, and a rear surface An end surface; the heat dissipation plate is mounted on both the upper surface and the lower surface of the battery module.
  • the heat dissipation module further includes a fan protection cover, the fan protection cover is mounted on the front end surface of the battery module, and the fan protection cover is mounted with a cooling fan.
  • the frame includes two side frames on the left side and the right side of the battery module, and two end frames mounted on the front end surface and the rear end surface of the battery module;
  • the side frame encloses a mouth shape;
  • the unit cell is laterally disposed between the two side frames, and the electrode terminals thereon extend into the side frame.
  • the side frame is formed by splicing a plurality of splicing units.
  • the splicing unit is provided with a buckle male end and a buckle female end, and the buckle male end on the adjacent splicing unit and the buckle female end are buckled with each other.
  • the splicing unit further includes a latch and a slot, and the latch on the adjacent splicing unit and the slot are mated with each other.
  • the splicing unit is in a central symmetry.
  • the heat dissipation module further includes a left air duct cover and a right air duct cover, wherein the left air duct cover and the right air duct cover are installed outside the side frame, and the left side frame is combined with the side frame to form a left Side duct and right side duct.
  • the unit cell is covered with an insulating protective film; the upper heat sink and the upper surface of the battery module, and the lower heat sink and the lower surface of the battery module There is a thermal insulation layer between them.
  • FIG. 1 is a perspective view showing the explosion of a heat dissipation plate provided in an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a heat dissipation plate provided in an embodiment of the present invention.
  • Figure 3 is an enlarged schematic view of A in Figure 1;
  • FIG. 4 is a front view of a heat dissipation plate provided in an embodiment of the present invention.
  • Figure 5 is an enlarged schematic view of a portion B in Figure 4.
  • FIG. 6 is a schematic view of a heat dissipation plate provided in an embodiment of the present invention.
  • FIG. 7 is a perspective view of a power battery system provided in an embodiment of the present invention.
  • FIG. 8 is a rear view of a power battery system provided in an embodiment of the present invention.
  • FIG. 9 is a schematic partial exploded view of a power battery system provided in an embodiment of the present invention.
  • Figure 10 is a perspective view of a frame provided in a specific embodiment of the present invention.
  • FIG. 11 is a perspective view of a splicing unit provided in an embodiment of the present invention.
  • FIG. 12 is a schematic view showing a center symmetry of a splicing unit provided in an embodiment of the present invention.
  • Figure 13 is a perspective view of a side panel provided in an embodiment of the present invention.
  • Figure 14 is a schematic view showing the center plate of the side panel provided in a specific embodiment of the present invention.
  • cover plate 111, top sheet; 112, upper side; 11a, groove;
  • heat sink; 120 film; 121, lower side; 122, avoidance gap; 12a, fins; 12c, heat pipe; 12d, semiconductor heating and cooling chip;
  • battery module 2a, first electrode; 2b, second electrode; 2c, insulating protective film; 2d, thermal insulation layer;
  • buckle male end a, buckle female end; c, latch; d, slot; a1, buckle groove; b1, card block.
  • the heat sink 12 includes a heat sink 12 and a cover plate 11; the heat sink 12 includes a bottom plate 120 and a comb-like arrangement on the negative film 120. a plurality of fins 12a;
  • the cover plate 11 is fixedly coupled to the heat sink 12, and the fins 12a on the heat sink 12 are located between the backsheet 120 and the cover plate 11; an air passage is formed between the backsheet 120, the fins 12a and the cover plate 11.
  • a cooling medium can flow through the air passage so that the cooling medium can exchange heat with the heat dissipation plate 1.
  • the heat sink 12 and the cover 11 may be made by one or a combination of welding, thermal adhesive bonding or mechanical fixing.
  • Fixed connection can be, but is not limited to, brazing, polymer diffusion welding, etc.; thermal adhesive bonding can use thermal conductivity bonding materials of various brands that meet the requirements of thermal conductivity, bonding strength, aging performance, etc., such as thermal silica gel; mechanical fixing scheme can For screws, rivets, interference fit and other programs.
  • the three fixing schemes may be used alone or in combination to ensure the reliability of the fixed connection of the fins 12 to the cover plate 11.
  • the thickness of the fin 12a can be 0.8-1.5 mm, the cavity width (or the width of the air passage), that is, the distance between the fin 12a and the fin 12a can be 2-4 mm, and the aspect ratio of the fin 12a can reach 25 Left and right, in the case where the wind resistance satisfies the requirements, the heat dissipation area of the fin 12a is maximized, and the inside of the heat dissipation plate 1 has a high-density hollow structure, and the maximum heat dissipation effect is achieved in a limited space.
  • the overall size of the heat dissipation plate 1 is not particularly limited, and generally has a thickness of about 30 to 60 mm; the length and width of the heat dissipation plate 1 depend on the size of the battery module 2.
  • junction temperature sampling point temperature is basically the same as the actual battery temperature.
  • the cover plate 11 includes an inner surface and an outer surface, and the inner surface of the cover plate 11 is formed with a plurality of grooves 11a matching the fins 12a. ;
  • the free end of the fin 12a is inserted into the recess 11a on the cover plate 11.
  • One end of the fin 12a is integrally connected to the negative film 120, and the end may be referred to as a root end, and the other end opposite to the root end may be referred to as a free end.
  • the fixing manner of the above-mentioned groove 11a and the fin 12a is further enhanced, and the fixing connection effect is further enhanced.
  • the left and right sides of the film 120 on the heat sink 12 are bent upward and formed on both sides.
  • the side surface 121 is a part of the backsheet 120, and the entire fin 12 is integrally formed.
  • the backsheet 120 can be understood as a flat body having a lower portion and a lower side 121 bent upwardly from both sides of the flat body.
  • the left and right sides of the cover 11 are bent downward, and the upper side 112 is formed on both sides; the cover 11 is an integral part, and the upper side 112 is also a part of the cover 11 for preventing misunderstanding of the reader, as shown in FIG. 1
  • the cover 11 can be understood as a flat body and the upper side 112 bent downward from both sides of the body.
  • the body on the board 11 is a top sheet 111, that is, two of the upper side surfaces 112 are located on both sides of the top sheet 111.
  • the lower side surface 121 of the left and right sides of the heat sink 12 is mated with the upper side surface 112 of the left and right sides of the cover plate 11 to form a hollow structure, and the fins 12a on the heat sink 12 are placed in the hollow structure.
  • the avoidance notches 122 for mounting with the battery module 2 are further provided at the four corners of the heat sink 12.
  • the heat pipes 12c in order to further enhance the heat dissipation effect, it is preferable to provide a plurality of heat pipes 12c in the longitudinal direction on the back surface of the film 120 of the heat sink 12.
  • the temperature of the air inlet and the air outlet of the battery module 2 is consistent.
  • the heat pipes 12c extend in the left and right directions in the figure, and are disposed in parallel on the back surface of the film 120 of the heat sink 12.
  • the temperature of the unit cell 20 is assisted under extreme conditions, such as heating the battery pack under low temperature conditions and enhancing air cooling under extreme high temperature conditions. It is also possible to provide a plurality of semiconductor heating and cooling chips 12d on the back surface of the film 120 of the heat sink 12.
  • the above-described semiconductor heating and cooling chip 12d is shown by the public, and is preferably distributed on the back surface of the film 120 of the heat sink 12 in an array distribution manner. It can also be adjusted according to the temperature field distribution of the battery pack.
  • the above-mentioned semiconductor heating and cooling chip 12d can take power from the unit cell 20, and control the power of start-stop and cooling/heating through the BMS (battery management system); when the unit cell 20 passes through the series-parallel application In the large system, the semiconductor heating and cooling chip 12d can be powered by the auxiliary power source of the BMS harness to control the start-stop state and the cooling/heating power.
  • BMS battery management system
  • the back surface of the heat sink 1 of the heat sink 1 is coated with an insulating protective coating 13.
  • the insulating protective coating 13 has a thickness of 0.05-1 mm, and further preferably 0.1-0.5 mm.
  • the insulating protective coating 13 may be the following coating: a ceramic sintered layer, a thermal conductive insulating coating (normal temperature spraying or thermal spraying). ), thermal insulating rubber immersion, etc.; because the back surface of the heat sink 12 of the film 120 (in this case, the film 120 if the package
  • the lower side 121 which is formed by bending the two sides of the bottom surface upward, also includes the back surface of the lower side 121 which is bent upward from both sides of the bottom surface.
  • the surface of the backsheet 120 connected to the fin 12a is an inner surface
  • the other surface of the backsheet 120 opposite to the inner surface is an outer surface, also referred to as a back surface, which may be in contact with the casing of the unit cell 20.
  • a ceramic sintered layer can be formed on the back surface of the negative film 120 by ceramic spraying and sintering process, or by thermal conductive glue spraying (normal temperature spraying or thermal spraying), thermal insulating insulating glue immersion and the like, Forming an insulating protective coating 13 having excellent properties such as high thermal conductivity, high strength (wear resistance, adhesion, impact strength, excellent aging resistance), and ensuring sufficient space between the heat sink 1 and the casing of the unit cell 20. Reliable insulation performance minimizes thermal resistance and improves heat dissipation efficiency. The risk of leakage of the battery module 2 and the short circuit of the heat dissipation plate 1 is effectively avoided, and the reliability of the power battery system is improved.
  • the thickness is 0.2-1 mm
  • the thermal conductivity is >4 w/mK (Watt/(m ⁇ K))
  • the withstand voltage is >AC5000V.
  • the heat dissipating plate 1 provided in this embodiment is used in a power battery system, when the heat dissipating fin 12 is molded by a mold, the thickness of the fin 12a can be further reduced, and the heat dissipating area of the heat sink 12 can be increased to dissipate heat.
  • the inside of the panel 1 has a high-density hollow structure, which improves the heat dissipation efficiency, maximizes the heat dissipation surface of the heat sink 12 and the heat dissipation effect in an effective volume, and improves the charge and discharge rate of the battery module 2.
  • the volume of the heat sink 1 is also effectively reduced.
  • the cover plate 11 since the cover plate 11 is added, the force can be dispersed to each of the fins 12a, effectively improving the structural strength of the entire heat dissipation plate 1. In the case of gravity, vibration, impact, etc., it can be used as a part of the outer casing of the power battery system to protect the battery module 2 from damage.
  • the power battery system of one embodiment of the present invention is specifically explained below, and includes a battery module 2 and a heat dissipation module, wherein the heat dissipation module 1 is the heat dissipation plate 1 described in Embodiment 1.
  • the battery module 2 includes a frame and a plurality of unit cells 20 mounted in the frame; the battery module 2 includes an upper large surface, a lower large surface, a left side surface, a right side surface, a front end surface, and a rear end surface;
  • the upper and lower faces of the group 2 are respectively provided with a heat dissipation plate 1; respectively, referred to as an upper heat dissipation plate 1a and a lower heat dissipation plate 1b;
  • the heat dissipation module further includes a fan protection cover 3, and the fan protection cover 3 is mounted on the battery module
  • a cooling fan 31 is attached to the fan cover 3 on the front end surface of the second cover.
  • the heat dissipation plate 1 is made of a metal material such as an aluminum alloy AL 6061 or AL6063 or copper.
  • a lithium ion battery may be employed, and still further, a lithium iron phosphate battery may be employed.
  • the fan protection cover 3 communicates with the upper heat dissipation plate 1a and the lower heat dissipation plate 1b, and the cooling medium can flow in the air passage between the upper heat dissipation plate 1a and the fins 12a in the lower heat dissipation plate 1b.
  • the upper side, the lower side, the left side, and the right side are The side surface, the front end surface, and the rear end surface are not labeled, but do not hinder the understanding of the battery module 2 by those skilled in the art.
  • one side of the battery module 2 on which the fan protection cover 3 is attached is a front end surface, and the opposite side of the front end surface is a rear end surface, and the surface along the upper surface of the paper is a large surface along the paper surface.
  • the lower surface is the lower surface; the left and right surfaces on the front surface are the left side and the right side.
  • the heat generated in the unit cell 20 of the battery module 2 can be sucked away, and the air is driven in the heat dissipating plate 1 by the cooling fan 31 to form heat exchange, and the single cell is used. Most of the heat generated in 20 is dissipated and can act as a cooling unit.
  • the unit cell 20 is provided with electrode terminals, that is, a positive electrode terminal and a negative electrode terminal.
  • electrode terminals that is, a positive electrode terminal and a negative electrode terminal.
  • Cooling ducts are formed on the left and right sides of the battery module 2, that is, a left air duct and a right air duct, and the electrode terminals are placed in the left air duct or the right air duct or the left and right air ducts; the setting of the left and right air ducts depends on The position of the electrode terminals.
  • the first electrode 2a and the second electrode 2b are finally drawn from the side of the fan protection cover 3, wherein the first electrode 2a is a positive electrode, and then The second electrode 2b is a negative electrode, whereas the first electrode 2a is a negative electrode, and the second electrode 2b is a positive electrode.
  • the flow direction of the cooling medium is not particularly limited.
  • air may be blown into the battery module 2, or by the rotation of the fan 31, in the battery.
  • a negative pressure is formed in the module 2, and the air inlet is disposed on the back surface (ie, the rear end surface) of the battery module 2, and the cooling medium is sucked into the air passage for heat exchange, and the latter is preferably used for heat exchange.
  • a left air inlet 41 is provided on the left air duct cover 4, and a right air inlet 51 is provided in the right air duct cover 5.
  • An upper air inlet and a lower air inlet are provided on the rear side of the upper heat dissipation plate 1a and the lower heat dissipation plate 1b.
  • the unit cell 20 is covered with an insulating protective film 2c; the upper heat dissipating plate 1a and the upper surface of the battery module 2, and the lower heat dissipating plate 1b and the battery module 2; A thermal conductive insulating layer 2d is provided between the lower faces.
  • the above solution is adopted to add a triple insulation structure between the heat dissipation plate 1 of the heat dissipation module and the unit cell 20, that is, the insulation protection film 2c wrapped around the unit cell 20, the heat dissipation plate 1 and the battery module.
  • An insulating insulating coating 13 is disposed on the back surface of the thermal conductive insulating layer 2d disposed between the groups 2 and the negative film 120 of the heat radiating plate 1. Each heavy pressure is above AC5000V. The battery module 2 is protected to the greatest extent.
  • the frame includes two side frames 22 on the left side and the right side of the battery module 2, and two end frames 21 mounted on the front end surface and the rear end surface of the battery module 2;
  • the frame 21 and the side frame 22 are enclosed in a square shape.
  • the unit cell 20 is laterally disposed between the two side frames 22, and the electrode terminals thereon extend into the side frames 22.
  • the heat dissipation module further includes a left air duct cover 4 and a right air duct cover 5, and the left air duct cover 4 and the right air duct cover 5 are installed outside the side frame 22, and combined with the side frame 22 to form a left side wind. Road and right side wind tunnel.
  • the side frame 22 is formed by splicing a plurality of splicing units 220 .
  • the splicing unit 220 is provided with a buckle male end a and a buckle female end b; the buckle male end a and the buckle female end b of the adjacent splicing unit 220 are snap-connected to each other.
  • the splicing unit 220 is further provided with a latch c and a slot d; the latch c and the slot d of the adjacent splicing unit 220 are mated with each other.
  • the pin c and the slot d mainly function to position the anti-rotation.
  • the side frame 22 which is assembled by the above-mentioned splicing unit 220 has an unlimited number of modules in series, so that the side frames 22 of different sizes can be combined without changing the mold or adding structural members, that is, Different frames can be combined without changing the mold and without adding structural members.
  • the end frame 21 is also provided with a buckle male end a, a buckle female end b, a latch c and a slot d.
  • the latching male end a of the end frame 21 is snap-connected with the latching female end b of the splicing unit 220; the latching female end b of the end frame 21 is snap-connected with the latching male end a of the splicing unit 220.
  • the latch c on the end frame 21 is inserted into the slot d on the splicing unit 220; the slot d on the end frame 21 is inserted into the latch c on the splicing unit 220.
  • the battery unit 20 has a reliable fixing effect.
  • a buckle groove a1 may be disposed on the buckle male end a, and the buckle b1 is disposed on the buckle female end b.
  • the splicing unit 220 may be center symmetrical.
  • the end frame 21 can be centrally symmetrical. Both the side frame 22 and the end frame 21 have a central symmetrical structure, which can minimize the number of main structural members and has strong interchangeability.
  • Each of the mounting faces between the side frame 22 and the end frame 21 and the splicing unit 220 of the side frame 22 has a pair of snap fixing structures (the buckle male end a and the buckle female end b) and a pair of positioning pins
  • the structure of the turn (and the above-mentioned plug c and the slot d) forms a four-point positioning and fixing, so as to avoid the battery pack from falling apart due to handling and turning before the strap is tightened.
  • the fan 31 rotates at a high speed to form a negative pressure in the fan protection cover 3.
  • the pressure difference between the fan protection cover 3 and the air inlet allows external cold air to enter from the four air passages, respectively flowing through the upper heat dissipation plate. 1a, the air duct in the lower heat sink 1b and the left side air duct and the right side air duct.
  • the cooling medium in the left side air channel and the right side air channel exchange heat with the electrode connecting piece, and the heat radiated from the metal case of the single cell 20 is heat exchanged with the cooling medium in the air channel in the heat dissipation plate 1 through the heat sink 12 to reach sufficient
  • the heat dissipation ensures that the temperature sampling point of the electrode connection piece is close to the real temperature of the single cell 20, thereby ensuring the validity of the temperature data.
  • the 200A power battery system without the heat dissipation module is in the 1C uninterrupted cycle under the constant temperature environment of 23 ° C ambient temperature.
  • the highest equilibrium temperature is up to 58 °C, and the maximum temperature of the cooling module is 48 °C when the 2C uninterrupted cycle is completed.
  • the maximum equilibrium temperature of 2.5C uninterrupted cycle is 55 °C, and the charge and discharge rate can be increased by one. More than double, up to 2.5 Magnification, 4C frequency modulation condition
  • the maximum temperature of the single cell 20 can be maintained within 40 ° C, and the module has better temperature uniformity inside. Therefore, the heat dissipation module can be directly applied to the field of large-rate frequency modulation power station, ensuring that the battery works within a controllable temperature range and improving the service life of the energy storage system.
  • the above-mentioned power battery system inherits the excellent performance of the heat dissipation plate 1 by using the heat dissipation plate 1 therein, thereby effectively improving the heat dissipation efficiency of the power battery system, and improving the battery module 2
  • the charge and discharge rate also effectively reduces the volume of the heat sink 1.
  • the cover plate 11 is added to the heat dissipation plate 1, the force can be dispersed to each of the fins 12a, and the structural strength of the entire heat dissipation plate 1 is effectively improved.
  • the heat sink 1 can be used as a part of the outer casing of the power battery system to protect the battery module 2 from damage.

Abstract

一种散热板(1)和动力电池系统,所述散热板(1)包括散热片(12)和盖板(11);所述散热片(12)包括底片(120)及呈梳状排列在所述底片(120)上的若干翅片(12a);所述盖板(11)与所述散热片(12)固定连接,所述散热片(12)上的翅片(12a)位于所述底片(120)和所述盖板(11)之间;所述底片(120)、所述翅片(12a)和所述盖板(11)之间形成风道。

Description

一种散热板及动力电池系统 技术领域
本发明涉及一种动力电池组领域,尤其指在动力电池组中的散热结构领域。
背景技术
众所周知,很多领域通过梳状散热器进行散热,该梳状散热器包括若干呈梳状分布的翅片,其上的翅片可加强与冷却介质的接触面积。
然而在动力电池系统领域中,现有梳状散热器的效果还存在一些不足,该梳状散热器装载电池模组上时,两者之间仅通过绝缘层与单体电池的金属壳体接触。同时,该梳状散热器与电池系统机柜内腔形成开放式的风道,现有梳状散热器结构强度较低,受压易变形,不能作为承载部件承受重力、冲压等;传统空心散热器,翅片的厚度一般较厚,5mm以上,翅片间形成的风道宽度在10mm以上,而且风道数量也有限制,在相同散热表面的情况下,该热器的体积、重量都相对较大。而在储能和电动车领域中,其上的电池模组本身质量较重,梳状散热器无法作为承载体承受电池模组的重力和冲击力,因此不能有效地应用在动力电池系统领域中。同时,其风道开放,冷却介质的有效利用率较低,散热效果不是很好。
发明内容
为克服相关技术中现有梳状散热器散热效果不是很好,体积较大,同时,无法作为动力电池系统上的承载体承受电池模组的重力和冲击力的问题,本发明提供了一种散热板和动力电池系统。
本发明实施例一方面提供了一种散热板,包括散热片和盖板;所述散热片包括底片及呈梳状排列在所述底片上的若干翅片;所述盖板与所述散热片固定连接,所述散热片上的翅片位于所述底片和所述盖板之间;所述底片、所述翅片和所述盖板之间形成风道。
采用本发明实施例提供的上述散热板,将其用于动力电池系统时,通过模具成型该散热片时,可以进一步将翅片的厚度做小,增加散热片的散热面积,使散热板内部呈高密度的空心结构,提高散热效率,在有限的体积内最大限度地提高散热片的散热表面和散热效果,提高了电池模组的充放电倍率。也有效地减小了散热板的体积。同时,由于增加了盖板,因此可以将力分散到每个翅片,有效提高了散热板整体的结构强度。在受到重力、振动、冲击等情况下,可以作为动力电池系统外壳的一部分,保护电池模组不受破坏。
可选地,所述散热片和所述盖板通过焊接、导热胶粘结或机械固定中的一种或几种组合进行固定连接。由此,可有效保证散热片与盖板的固定连接的可靠性。
可选地,所述盖板包括内表面和外表面,所述盖板内表面上形成有若干与翅片匹配的凹槽;所述翅片的自由端插入所述盖板上的凹槽内。采用上述凹槽与翅片连接的固定方式,可进一步加强其固定连接效果。
可选地,所述散热片上的底片左右两侧向上弯折,在两侧形成下侧面;所述盖板的左右两侧向下弯折,在两侧形成上侧面;所述散热片左右两侧的下侧面与所述盖板左右两侧的下侧面配合连接,形成中空状结构,所述散热片上的翅片置于所述中空状结构内。
可选地,所述散热片的底片背面沿纵向设有若干热管。通过上述热管,可实现电池模组上进风口和出风口温度的一致性。
可选地,所述散热片的底片背面上设有若干半导体加热制冷芯片。采用上述半导体加热制冷芯片,可在极限条件下辅助调节单体电池的温度,比如实现低温条件下对电池组的加热,极限高温条件下加强风冷的功能。
可选地,所述散热板的底片背面涂有绝缘保护涂层。
可选地,所述绝缘保护涂层的厚度为0.05-1mm。
可选地,所述翅片的厚度为0.8-1.5mm,相邻两个所述翅片之间的距离为2-4mm。
本发明实施例第二方面提供了一种动力电池系统,包括电池模组和散热模组,其中,所述散热模组包括上述散热板。
本发明实施例提供的上述动力电池系统,由于其内使用了上述散热板,继承了散热板的优异性能,有效的提高了其动力电池系统的散热效率,提高了电池模组的充放电倍率。也有效地减小了散热板的体积。同时,由于散热板内增加了盖板,因此可以将力分散到每个翅片,有效提高了散热板整体的结构强度。在受到重力、振动、冲击等情况下,可以作为动力电池系统外壳的一部分,保护电池模组不受破坏。
可选地,所述电池模组包括框架和安装于所述框架内的若干单体电池;所述电池模组包括上大面、下大面、左侧面、右侧面、前端面和后端面;所述电池模组的上大面和下大面上均安装有所述散热板。
可选地,所述散热模组还包括风扇保护盖,所述风扇保护盖安装于所述电池模组的前端面上,所述风扇保护盖上安装有冷却风扇。
可选地,所述框架包括位于所述电池模组左侧面、右侧面的两块侧框和安装于所述电池模组前端面和后端面的两块端框;所述端框和侧框围成口字形;所述单体电池横向置于两块所述侧框之间,其上的电极端子伸入所述侧框内。
可选地,所述侧框由若干拼接单元拼接而成。
可选地,所述拼接单元上设有卡扣公端、卡扣母端,相邻的所述拼接单元上的所述卡扣公端和所述卡扣母端相互卡扣连接。
可选地,所述拼接单元上还设有插销和插槽,相邻的所述拼接单元上的所述插销和所述插槽相互配合插接。
可选地,所述拼接单元为呈中心对称状。
可选地,所述散热模组还包括左风道盖和右风道盖,所述左风道盖和所述右风道盖安装在所述侧框外,与所述侧框组合形成左侧风道和右侧风道。
可选地,所述单体电池外包裹有绝缘保护膜;所述上散热板和所述电池模组的上大面之间、以及所述下散热板和所述电池模组的下大面之间均设有导热绝缘层。
附图说明
图1是本发明具体实施方式中提供的散热板爆炸立体示意图;
图2是本发明具体实施方式中提供的散热板立体示意图;
图3是图1中A处放大示意图;
图4是本发明具体实施方式中提供的散热板前视示意图;
图5是图4中B处放大示意图;
图6是本发明具体实施方式中提供的散热板示意图;
图7是本发明具体实施方式中提供的动力电池系统立体示意图;
图8是本发明具体实施方式中提供的动力电池系统后视示意图;
图9是本发明具体实施方式中提供的动力电池系统局部爆炸示意图;
图10是本发明具体实施方式中提供的框架立体示意图;
图11是本发明具体实施方式中提供的拼接单元立体示意图;
图12是本发明具体实施方式中提供的拼接单元中心对称示意图;
图13是本发明具体实施方式中提供的侧板立体示意图;
图14是本发明具体实施方式中提供的侧板呈中心对称示意图。
其中,
1、散热板;1a、上散热板;1b、下散热板;
11、盖板;111、顶片;112、上侧面;11a、凹槽;
12、散热片;120、底片;121、下侧面;122、避位缺口;12a、翅片;12c、热管;12d、半导体加热制冷芯片;
13、绝缘保护涂层;
2、电池模组;2a、第一电极;2b、第二电极;2c、绝缘保护膜;2d、导热绝缘层;
20、单体电池;21、端框;22、侧框;220、拼接单元;
3、风扇保护盖;31、风扇;
4、左风道盖;41、左进风口;
5、右风道盖;51、右进风口;
a、卡扣公端;b、卡扣母端;c、插销;d、插槽;a1、扣槽;b1、卡块。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
本例用于对本发明公开的散热板1进行具体解释说明,如图1、图2所示,包括散热片12和盖板11;散热片12包括底片120及呈梳状排列在底片120上的若干翅片12a;
盖板11与散热片12固定连接,散热片12上的翅片12a位于底片120和盖板11之间;底片120、翅片12a和盖板11之间形成风道。
冷却介质可从该风道中流过,以使冷却介质可与该散热板1进行热交换。
关于盖板11和散热片12之间的固定连接方式,可以有多种方式,比如,散热片12和盖板11可以通过焊接、导热胶粘结或机械固定中的一种或几种组合进行固定连接。焊接可以但不限于钎焊、高分子扩散焊等;导热胶粘结可以采用满足热导率、粘结强度、老化性能等要求的各品牌的导热粘结材料,比如导热硅胶;机械固定方案可以为螺钉、铆钉、过盈配合等方案。三种固定方案可以单独使用也可以组合使用,以保证散热片12与盖板11的固定连接的可靠性。
翅片12a的厚度可以做到0.8-1.5mm,空腔宽度(或风道宽度),即翅片12a与翅片12a之间的距离可以为2-4mm,翅片12a高宽比可达到25左右,在风阻满足要求的情况下,最大限度的提高翅片12a的散热面积,使散热板1内部呈高密度的空心结构,在有限的空间实现最大的散热效果。
一般散热板1的总体尺寸并无特别限定,一般其厚度大约为30-60mm;该散热板1的长度和宽度则根据电池模组2的大小而定。
本领域技术人员在理解本发明的实质技术方案后,无需付出创造性的劳动,即可通过合理设计散热板1的外形及内部翅片12a和风道尺寸,在有限的空间内最大限度提高散热效率,并且使连接片温度采样点温度与电池实际温度基本一致。
为进一步加强其连接强度,作为优选的实施方式,如图3-图5所示,盖板11包括内表面和外表面,盖板11内表面上形成有若干与翅片12a匹配的凹槽11a;
翅片12a的自由端插入盖板11上的凹槽11a内。翅片12a的一端与该底片120一体连接,该端可称为根端,与根端相对的另一端则称为自由端。
采用上述凹槽11a与翅片12a连接的固定方式,可进一步加强其固定连接效果,同时,该翅片12a插入该凹槽11a中时,还优选组合使用导热胶粘结,该凹槽11a有利于提高导热粘结剂的附着力,提高盖板11与翅片12a之间的粘结可靠性。
关于该散热片12和盖板11的具体形状,作为优选的实施方式,如图1、图2、图4所示,散热片12上的底片120左右两侧向上弯折,在两侧形成下侧面121;该下侧面121是底片120的一部分,整个散热片12一体成型。该底片120可以理解成下部为一平板状的本体,和从该平板状本体两侧向上弯折伸出的下侧面121。
盖板11的左右两侧向下弯折,在两侧形成上侧面112;其盖板11为一体件,其上侧面112也为盖板11的一部分,为防阅读者出现误解,如图1、图2中所示,该盖板11可以理解成平板状的本体和从其本体两侧向下弯折的上述上侧面112,为使该本体与底片120上的本体相区别,称该盖板11上的本体为顶片111,即两个上述上侧面112位于顶片111两侧。
散热片12左右两侧的下侧面121与盖板11左右两侧的上侧面112配合连接,形成中空状结构,散热片12上的翅片12a置于中空状结构内。
同时,在图1、图2中所示,其散热片12上的4个角处还设有用于与电池模组2配合安装的避位缺口122。
如图6所示,为进一步加强其散热效果,优选在散热片12的底片120背面沿纵向设有若干热管12c。实现电池模组2上进风口和出风口温度的一致性;具体的,若干热管12c沿图中左右向延伸,平行设置在该散热片12的底片120背面上。
如图6所示,为再进一步加强其散热效果,在极限条件下辅助调节单体电池20的温度,比如实现低温条件下对电池组的加热,极限高温条件下加强风冷的功能。还可以在散热片12的底片120背面上设有若干半导体加热制冷芯片12d。上述半导体加热制冷芯片12d为公众所示,优选采用阵列分布的方式分布在该散热片12的底片120背面。还可根据电池组温度场分布,适当调整。当电池模组2单独使用时,上述半导体加热制冷芯片12d可从单体电池20取电,通过BMS(电池管理系统)控制启停和制冷/加热的功率;当单体电池20通过串并联应用于大系统中时,半导体加热制冷芯片12d可通过BMS线束用辅助电源供电,控制启停状态和制冷/加热的功率。
作为进一步优选的实施方式,请参考图9所示,散热板1的底片120背面涂有绝缘保护涂层13。其中,绝缘保护涂层13的厚度为0.05-1mm,进一步优选0.1-0.5mm,其中,上述绝缘保护涂层13可以为以下涂层:陶瓷烧结层、导热绝缘胶喷涂层(常温喷涂或热喷涂)、导热绝缘胶沉浸等;因为散热片12的底片120背面(本例中所说的底片120如果包 括其底面两侧向上弯折形成的下侧面121,则背面也包括从其底面两侧向上弯折的下侧面121的背面。
也可以这么理解,该底片120与翅片12a连接的面为内表面,则底片120上与该内表面相对的另一面为外表面,又称为背面,)可能与单体电池20壳体接触,易出现短路、漏电等现象,因此可在其底片120的背面,通过陶瓷喷涂烧结工艺形成一层陶瓷烧结层、或通过导热胶喷涂(常温喷涂或热喷涂)、导热绝缘胶沉浸等工艺,形成一层具有高热导率、高强度(耐磨、附着力、冲击强度、抗老化性能优良)等优异性能的绝缘保护涂层13,保证散热板1与单体电池20壳体之间有足够可靠的绝缘性能,最大限度的降低热阻,提高散热效率。有效的避免了电池模组2漏电和散热板1短路的风险,提高了动力电池系统的可靠性。优选其厚度0.2-1mm、热导率>4w/mK(瓦/(米·K)),耐压>AC5000V。
采用本实施例提供的上述散热板1,将其用于动力电池系统时,通过模具成型该散热片12时,可以进一步将翅片12a的厚度做小,增加散热片12的散热面积,使散热板1内部呈高密度的空心结构,提高散热效率,在有效地体积内最大限度地提高散热片12的散热表面和散热效果,提高了电池模组2的充放电倍率。也有效地减小了散热板1的体积。同时,由于增加了盖板11,因此可以将力分散到每个翅片12a,有效提高了散热板1整体的结构强度。在受到重力、振动、冲击等情况下,可以作为动力电池系统外壳的一部分,保护电池模组2不受破坏。
实施例2
下面将对本发明提供的一个实施例的动力电池系统进行具体解释说明,其包括电池模组2和散热模组,其中,散热模组上述实施例1中描述的散热板1。
具体的,电池模组2包括框架和安装于框架内的若干单体电池20;电池模组2包括上大面、下大面、左侧面、右侧面、前端面和后端面;电池模组2的上大面和下大面上均安装有散热板1;分别称为上散热板1a和下散热板1b;散热模组还包括风扇保护盖3,风扇保护盖3安装于电池模组2的前端面上,风扇保护盖3上安装有冷却风扇31。
为了提高散热效率,该散热板1的材质为金属材质,比如铝合金AL 6061或AL6063或者铜等。
关于上述单体电池20,可选地,可以采用锂离子电池,更进一步可选地,可以采用其中的磷酸铁锂电池。
上述风扇保护盖3内与上述上散热板1a和下散热板1b相通,冷却介质可在上散热板1a和下散热板1b内的翅片12a之间的风道流动。
因电池模组2外部被各散热模组的部件包裹,因此上述上大面、下大面、左侧面、右 侧面、前端面和后端面均未做标注,但不妨碍本领域技术人员对本电池模组2的理解。如图7中所示,电池模组2上安装有风扇保护盖3的一面为前端面,与该前端面相反的一面为后端面,则沿纸面上部的面为上大面,沿纸面下部的面为下大面;在前端面左右侧的面为左侧面和右侧面。
采用上述上散热板1a和下散热板1b,可以将电池模组2中单体电池20中产生的热量吸走,并通过冷却风扇31在散热板1内驱动空气形成热交换,将单体电池20中产生的大部分热量散发出去,可以起到冷却的作用。
众所周知,单体电池20上设有电极端子,即正极端子和负极端子,在电池模组2工作的过程中,也会散发出大量的热,这部分的热量也需要散发出去,因此,还可在电池模组2的左右侧面形成冷却风道,即左风道和右风道,电极端子置于该左风道或者右风道或者左、右风道内;左、右风道的设置取决于电极端子的位置。若干单体电池20经串联或者并联或者混连后,如图7所示,最终从其风扇保护盖3一侧引出第一电极2a和第二电极2b,其中第一电极2a为正极,则第二电极2b为负极,反之,第一电极2a为负极,则第二电极2b为正极。
如图8所示,冷却介质(本例中即空气或俗称风)的流向不用具体限制,根据风扇31的工作状态,可以向电池模组2内送风,或者通过风扇31的转动,在电池模组2内形成负压,通过置于电池模组2背面(即后端面)设置进风口,将冷却介质吸进风道内进行热交换,优选采用后者的方式进行热交换。比如,在其左风道盖4上盖设置左进风口41,在其右风道盖5上设置右进风口51。在其上散热板1a、下散热板1b的后侧设置上进风口、下进风口。
作为优选的实施方式,如图9所示,单体电池20外包裹有绝缘保护膜2c;上散热板1a和电池模组2的上大面之间、以及下散热板1b和电池模组2的下大面之间均设有导热绝缘层2d。
如图9所示,采用上述方案,在散热模组的散热板1与单体电池20之间增加了三重绝缘结构,即单体电池20外包裹的绝缘保护膜2c、散热板1和电池模组2之间设置的导热绝缘层2d、以及散热板1的底片120背面设置绝缘保护涂层13。每重耐压都在AC5000V以上。最大程度地对电池模组2进行保护。
具体的,如图10所示,框架包括位于电池模组2左侧面、右侧面的两块侧框22和安装于电池模组2前端面和后端面的两块端框21;上述端框21和侧框22围成口字形。单体电池20横向置于两块侧框22之间,其上的电极端子伸入侧框22内。
如图7所示,散热模组还包括左风道盖4和右风道盖5,左风道盖4和右风道盖5安装在侧框22外,与侧框22组合形成左侧风道和右侧风道。
具体的,如图10、图11所示,侧框22由若干拼接单元220拼接而成。拼接单元220上设有卡扣公端a、卡扣母端b;相邻的拼接单元220上的卡扣公端a和卡扣母端b相互卡扣连接。拼接单元220上还设有插销c和插槽d;相邻的拼接单元220上的插销c和插槽d相互配合插接。该插销c和插槽d主要起定位防转的作用。
通过上述拼接单元220拼合而成的侧框22,其模组串联单体数量不受限制,因此可以在不改动模具、不增添结构件的情况下,组合成不同大小的侧框22,也即在不改动模具、不增添结构件的情况下,可以组合出不同的框架。
具体的,如图13所示,端框21上也设有卡扣公端a、卡扣母端b、插销c和插槽d。端框21上的卡扣公端a与拼接单元220上的卡扣母端b卡扣连接;端框21上的卡扣母端b与拼接单元220上的卡扣公端a卡扣连接。端框21上的插销c与拼接单元220上的插槽d插接;端框21上的插槽d与拼接单元220上的插销c插接。采用上述端框21及经若干拼装单元拼合而成的侧框22,所有部件之间均可通过卡扣和插接的方式装配在一起,最后侧框22与端框21之间用扎带收紧,对单体电池20起可靠的固定作用。
其中,为进一步加强其卡扣连接的效果,还可以在卡扣公端a上设置扣槽a1,在卡扣母端b上设置于该扣槽a1适配的卡块b1。
其中,更进一步地,如图12所示,拼接单元220可以呈中心对称。如图14所示,端框21可以呈中心对称。上述侧框22和端框21均采用中心对称结构,该结构可以将主体结构件数量降低到最少,具有很强的互换性。侧框22和端框21、侧框22中各拼接单元220之间的每个装配面上均有一对卡扣固定结构(卡扣公端a和卡扣母端b)和一对定位销防转(及上述插销c和插槽d)结构,形成四点定位固定,避免在扎带收紧之前由于搬运、翻转造成电池组散架。
下面描述其散热模组的具体工作过程。
如图8所示,风扇31高速旋转在风扇保护盖3内中形成负压,风扇保护盖3与进风口之间的压差使外部冷空气从四个风道口进入,分别流经上散热板1a、下散热板1b内的风道和左侧风道、右侧风道。左侧风道和右侧风道内冷却介质与电极连接片进行热交换,同时单体电池20金属壳体上散发的热量通过散热片12与散热板1内风道内的冷却介质热交换,达到充分散热,保证电极连接片温度采样点与单体电池20真实温度接近,从而保证温度采数据的有效性。
在相同测试条件下,通过具有该散热模组与无散热模组的动力电池系统的对比测试,在环境温度23℃恒温环境下,无散热模组的200A动力电池系统在进行1C不间断循环时,平衡温度最高值高达58℃,而具备该散热模组在2C不间断循环时,其平衡温度最高值才48℃,2.5C不间断循环平衡温度最高值为55℃,充放电倍率可提高一倍以上,可高达2.5 倍率,4C调频工况单体电池20最高温度可维持在40℃以内,同时模组内部具有更好的温度一致性。因此该散热模组可直接应用于大倍率调频电站领域,保证电池工作在可控的温度范围内,提高储能系统的使用寿命。
综上,本实施例提供的上述动力电池系统,由于其内使用了上述散热板1,继承了散热板1的优异性能,有效地提高了其动力电池系统的散热效率,提高了电池模组2的充放电倍率,也有效地减小了散热板1的体积。同时,由于散热板1内增加了盖板11,因此可以将力分散到每个翅片12a,有效提高了散热板1整体的结构强度。这样,在受到重力、振动、冲击等情况下,散热板1可以作为动力电池系统外壳的一部分,保护电池模组2不受破坏。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种散热板,其特征在于,包括散热片和盖板;所述散热片包括底片及呈梳状排列在所述底片上的若干翅片;
    所述盖板与所述散热片固定连接,所述散热片上的翅片位于所述底片和所述盖板之间;所述底片、所述翅片和所述盖板之间形成风道。
  2. 根据权利要求1所述的散热板,其特征在于,所述散热片和所述盖板通过焊接、导热胶粘结或机械固定中的一种或几种组合进行固定连接。
  3. 根据权利要求1-2中任一项所述的散热板,其特征在于,所述盖板包括内表面和外表面,所述盖板内表面上形成有若干与翅片匹配的凹槽,所述翅片的自由端插入所述盖板上的凹槽内。
  4. 根据权利要求1-3中任一项所述的散热板,其特征在于,所述散热片上的底片左右两侧向上弯折,以在两侧形成下侧面;所述盖板的左右两侧向下弯折,以在两侧形成上侧面;
    所述散热片左右两侧的下侧面与所述盖板左右两侧的上侧面配合连接,形成中空状结构,所述散热片上的翅片置于所述中空状结构内。
  5. 根据权利要求1-4中任一项所述的散热板,其特征在于,所述散热片的底片背面沿纵向设有若干热管。
  6. 根据权利要求1-5中任一项所述的散热板,其特征在于,所述散热片的底片背面上设有若干半导体加热制冷芯片。
  7. 根据权利要求1-6中任一项所述的动力电池系统,其特征在于,所述散热片的底片背面涂有绝缘保护涂层。
  8. 根据权利要求7所述的动力电池系统,其特征在于,所述绝缘保护涂层的厚度为0.05-1mm。
  9. 根据权利要求1-8中任一项所述的动力电池系统,其特征在于,所述翅片的厚度为0.8-1.5mm,相邻两个所述翅片之间的距离为2-4mm。
  10. 一种动力电池系统,包括电池模组和散热模组,其特征在于,所述散热模组包括权利要求1-9中任意一项所述散热板。
  11. 根据权利要求10所述的动力电池系统,其特征在于,所述电池模组包括框架和安装于所述框架内的若干单体电池;
    所述电池模组包括上大面、下大面、左侧面、右侧面、前端面和后端面;
    所述电池模组的上大面和下大面上均安装有所述散热板;分别称为上散热板和下散热 板。
  12. 根据权利要求11所述的动力电池系统,其特征在于,所述散热模组还包括风扇保护盖,所述风扇保护盖安装于所述电池模组的前端面上,所述风扇保护盖上安装有冷却风扇。
  13. 根据权利要求11所述的动力电池系统,其特征在于,所述框架包括位于所述电池模组左侧面、右侧面的两块侧框和安装于所述电池模组前端面和后端面的两块端框;所述端框和侧框围成口字形;
    所述单体电池横向置于两块所述侧框之间,其上的电极端子伸入所述侧框内。
  14. 根据权利要求13所述的动力电池系统,其特征在于,所述散热模组还包括左风道盖和右风道盖,所述左风道盖和所述右风道盖安装在所述侧框外,与所述侧框组合形成左侧风道和右侧风道。
  15. 根据权利要求13所述的动力电池系统,其特征在于,所述侧框由若干拼接单元拼接而成。
  16. 根据权利要求15所述的动力电池系统,其特征在于,所述拼接单元上设有卡扣公端、卡扣母端,相邻的所述拼接单元上的所述卡扣公端和所述卡扣母端相互卡扣连接。
  17. 根据权利要求15或16所述的动力电池系统,其特征在于,所述拼接单元上还设有插销和插槽,相邻的所述拼接单元上的所述插销和所述插槽相互配合插接。
  18. 根据权利要求15-17中任一项所述的动力电池系统,其特征在于,所述拼接单元呈中心对称状。
  19. 根据权利要求11-18中任一项所述的动力电池系统,其特征在于,所述单体电池外包裹有绝缘保护膜。
  20. 根据权利要求11-19中任一项所述的动力电池系统,其特征在于,所述上散热板和所述电池模组的上大面之间、以及所述下散热板和所述电池模组的下大面之间均设有导热绝缘层。
PCT/CN2015/091856 2014-10-31 2015-10-13 一种散热板及动力电池系统 WO2016066011A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177012924A KR101940577B1 (ko) 2014-10-31 2015-10-13 히트싱크 및 파워 배터리 시스템
JP2017523435A JP2018503934A (ja) 2014-10-31 2015-10-13 放熱板及び動力電池システム
EP15853875.1A EP3214690A4 (en) 2014-10-31 2015-10-13 Heat sink and power battery system
US15/499,503 US10396409B2 (en) 2014-10-31 2017-04-27 Heat sink and power battery system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420645806.1U CN204230382U (zh) 2014-10-31 2014-10-31 一种散热板及动力电池系统
CN201420645806.1 2014-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/499,503 Continuation US10396409B2 (en) 2014-10-31 2017-04-27 Heat sink and power battery system

Publications (1)

Publication Number Publication Date
WO2016066011A1 true WO2016066011A1 (zh) 2016-05-06

Family

ID=52928439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091856 WO2016066011A1 (zh) 2014-10-31 2015-10-13 一种散热板及动力电池系统

Country Status (6)

Country Link
US (1) US10396409B2 (zh)
EP (1) EP3214690A4 (zh)
JP (1) JP2018503934A (zh)
KR (1) KR101940577B1 (zh)
CN (1) CN204230382U (zh)
WO (1) WO2016066011A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479445A (zh) * 2020-04-13 2020-07-31 扬州乐军电子科技有限公司 一种车载综合电源的降温结构

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204230382U (zh) 2014-10-31 2015-03-25 比亚迪股份有限公司 一种散热板及动力电池系统
JP6304566B2 (ja) * 2015-12-24 2018-04-04 株式会社オートネットワーク技術研究所 接続モジュール
KR102086127B1 (ko) * 2016-10-31 2020-03-06 주식회사 엘지화학 배터리의 엣지 면에 직접 냉각 방식이 적용된 배터리 팩
CN106784441A (zh) * 2017-01-11 2017-05-31 长沙理工大学 一种用于电动汽车电池箱的散热箱盖及其应用
DE102017206165A1 (de) * 2017-04-11 2018-10-11 Robert Bosch Gmbh Batteriemodul und Verfahren zur Herstellung eines Batteriemoduls sowie Batterie
WO2019045365A1 (ko) * 2017-08-29 2019-03-07 주식회사 엘지화학 열전달 부재를 포함하는 파우치형 이차전지
KR102630853B1 (ko) 2017-08-29 2024-01-30 주식회사 엘지에너지솔루션 열전달 부재를 포함하는 파우치형 이차전지
CN207099513U (zh) * 2017-09-05 2018-03-13 陈庆洪 一种散热功能良好的防护等级达65级及以上的电气机箱
CN109599620B (zh) * 2017-09-30 2021-09-03 比亚迪股份有限公司 车载电池的温度调节系统
CN109599625B (zh) * 2017-09-30 2021-06-18 比亚迪股份有限公司 基于半导体的车载电池温度调节方法和温度调节系统
KR20190054300A (ko) * 2017-11-13 2019-05-22 현대자동차주식회사 배터리
US10263302B1 (en) * 2017-12-06 2019-04-16 National Chung Shan Institute Of Science And Technology Baffle structure for heat dissipation
CN108091960B (zh) * 2017-12-07 2024-02-09 珠海格力精密模具有限公司 一种电池箱的风道结构及电池箱
DE102018208473B4 (de) * 2018-05-29 2022-09-15 Hanon Systems Wärmetauscher sowie Verfahren zum Herstellen eines Wärmetauschers
US20210408620A1 (en) * 2018-11-08 2021-12-30 Tvs Motor Company Limited Heat dissipating structure
CN209183612U (zh) * 2018-12-29 2019-07-30 宁德时代新能源科技股份有限公司 电池箱
CN112117398B (zh) * 2019-06-21 2022-03-18 比亚迪股份有限公司 车辆
KR20210152238A (ko) * 2020-06-08 2021-12-15 주식회사 엘지에너지솔루션 배터리 모듈이 다단으로 적층된 전지 팩
KR20220023366A (ko) * 2020-08-21 2022-03-02 주식회사 엘지에너지솔루션 냉각성능이 향상된 전지 모듈 및 이의 제조방법
CN112259861A (zh) * 2020-10-16 2021-01-22 康帅冷链设备科技江苏有限公司 一种电池模组固定储能柜
CN112739156A (zh) * 2020-12-09 2021-04-30 阳光电源股份有限公司 散热模块、散热器及功率设备
KR20220157263A (ko) * 2021-05-20 2022-11-29 주식회사 엘지에너지솔루션 배터리 모듈 및 이를 포함하는 배터리 팩

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2507055Y (zh) * 2001-09-04 2002-08-21 英志企业股份有限公司 中央处理器散热器
CN1665021A (zh) * 2004-03-06 2005-09-07 鸿富锦精密工业(深圳)有限公司 散热装置及其制备方法
CN201285784Y (zh) * 2008-11-12 2009-08-05 同济大学 一种基于半导体热电效应的蓄电池热管理装置
DE102008034885A1 (de) * 2008-07-26 2010-01-28 Daimler Ag Kühlvorrichtung für eine Batterie mit mehreren Batteriezellen
CN102792512A (zh) * 2009-10-14 2012-11-21 江森自控帅福得先进能源动力系统有限责任公司 具有热管理特征的方形蓄电池系统
US20130273829A1 (en) * 2012-04-12 2013-10-17 Johnson Controls Technology Llc Air cooled thermal management system for hev battery pack
CN204230383U (zh) * 2014-10-31 2015-03-25 惠州比亚迪实业有限公司 一种动力电池系统
CN204230382U (zh) * 2014-10-31 2015-03-25 比亚迪股份有限公司 一种散热板及动力电池系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1864751A (en) * 1929-04-27 1932-06-28 Wellington W Muir Radiator core for automobile cooling systems
JPH08273706A (ja) * 1995-03-30 1996-10-18 Clover Eng Kk 二次電池の放熱用アダプター
JPH08316389A (ja) * 1995-05-24 1996-11-29 Sumitomo Metal Ind Ltd ヒートシンク冷却装置
US5937517A (en) * 1997-11-12 1999-08-17 Eastman Kodak Company Method of manufacturing bonded dual extruded, high fin density heat sinks
DE10045175A1 (de) * 1999-09-16 2001-05-17 Denso Corp Wärmetauscher und Verfahren zur Herstellung desselben
US20050072563A1 (en) * 2003-10-03 2005-04-07 Wang Chin Wen Heat sink structure
US7288840B2 (en) * 2005-01-18 2007-10-30 International Business Machines Corporation Structure for cooling a surface
KR100648698B1 (ko) * 2005-03-25 2006-11-23 삼성에스디아이 주식회사 이차 전지 모듈
JP2007018307A (ja) 2005-07-08 2007-01-25 Yasunari Matsuo 後援会名簿の住所データの更新システム
US20070017660A1 (en) * 2005-07-12 2007-01-25 Stefan Kienitz Heatsink with adapted backplate
JP4605009B2 (ja) * 2005-12-28 2011-01-05 三菱マテリアル株式会社 パワーモジュールの製造方法
JP5137480B2 (ja) * 2007-06-29 2013-02-06 三洋電機株式会社 車両用の電源装置
JP3140755U (ja) * 2008-01-21 2008-04-10 水谷電機工業株式会社 コルゲートフィン型放熱器
US9701177B2 (en) * 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
TWM363192U (en) * 2009-04-17 2009-08-11 chong-xian Huang Heat dissipating device
KR101173055B1 (ko) * 2010-08-23 2012-08-13 현대자동차일본기술연구소 배터리 균일 냉각 장치
JP5546481B2 (ja) * 2011-03-09 2014-07-09 三菱重工業株式会社 電池ユニット
CN202308222U (zh) 2011-09-08 2012-07-04 北汽福田汽车股份有限公司 电池组散热结构
KR20140142269A (ko) 2012-03-30 2014-12-11 쿄세라 코포레이션 유로 부재 및 이것을 사용한 열교환기와 반도체 장치
CN202616367U (zh) 2012-08-30 2012-12-19 富奥汽车零部件股份有限公司 动力电池封装结构
CN202997007U (zh) 2012-12-20 2013-06-12 中国东方电气集团有限公司 一种锂离子电池模块散热结构
JP2014128889A (ja) * 2012-12-28 2014-07-10 Nippon Steel & Sumitomo Metal ラミネート塗装金属板
JP5574309B1 (ja) * 2013-12-02 2014-08-20 サーチウェア株式会社 組電池およびこれを搭載した移動体
CN203607513U (zh) 2013-12-03 2014-05-21 湖北美标汽车制冷系统有限公司 一种应用于电动汽车电池热管理系统的散热器
CN203800110U (zh) * 2013-12-31 2014-08-27 上海比亚迪有限公司 用于电池模组的隔板和具有其的电池容纳组件及动力电池模组
CN203826514U (zh) 2014-04-17 2014-09-10 华南理工大学 带液体冷却板的纯电动汽车动力电池冷却与加热装置
US10317142B2 (en) * 2014-08-25 2019-06-11 Hanon Systems Heat exchanger having a mechanically assembled header

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2507055Y (zh) * 2001-09-04 2002-08-21 英志企业股份有限公司 中央处理器散热器
CN1665021A (zh) * 2004-03-06 2005-09-07 鸿富锦精密工业(深圳)有限公司 散热装置及其制备方法
DE102008034885A1 (de) * 2008-07-26 2010-01-28 Daimler Ag Kühlvorrichtung für eine Batterie mit mehreren Batteriezellen
CN201285784Y (zh) * 2008-11-12 2009-08-05 同济大学 一种基于半导体热电效应的蓄电池热管理装置
CN102792512A (zh) * 2009-10-14 2012-11-21 江森自控帅福得先进能源动力系统有限责任公司 具有热管理特征的方形蓄电池系统
US20130273829A1 (en) * 2012-04-12 2013-10-17 Johnson Controls Technology Llc Air cooled thermal management system for hev battery pack
CN204230383U (zh) * 2014-10-31 2015-03-25 惠州比亚迪实业有限公司 一种动力电池系统
CN204230382U (zh) * 2014-10-31 2015-03-25 比亚迪股份有限公司 一种散热板及动力电池系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214690A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479445A (zh) * 2020-04-13 2020-07-31 扬州乐军电子科技有限公司 一种车载综合电源的降温结构

Also Published As

Publication number Publication date
EP3214690A1 (en) 2017-09-06
JP2018503934A (ja) 2018-02-08
CN204230382U (zh) 2015-03-25
US20170294693A1 (en) 2017-10-12
KR20170057465A (ko) 2017-05-24
EP3214690A4 (en) 2018-01-03
KR101940577B1 (ko) 2019-01-22
US10396409B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2016066011A1 (zh) 一种散热板及动力电池系统
CN108140914B (zh) 电池模块以及电池组和包括该电池组的车辆
WO2020140336A1 (zh) 一种电池包
US20180248238A1 (en) Graphene enhanced cooling fin
TW201115812A (en) Battery set with heat conducting jelly
CN107004919A (zh) 电池及具有该电池的无人飞行器
WO2023274311A1 (zh) 一种电池包及用电设备
WO2020192196A1 (zh) 一种电池模组和动力电池包
CN210607368U (zh) 一种恒温电池模组
KR20130104165A (ko) 열전소자를 이용한 배터리 냉각시스템
CN115917837A (zh) 电池模块及包括该电池模块的电池组
CN204230383U (zh) 一种动力电池系统
CN109786885B (zh) 电池模组
CN114709544A (zh) 一种电池包及用电设备
US9742044B2 (en) Battery cell
CN210576139U (zh) 一种软包电池模组
CN110828922A (zh) 一种bms散热结构
CN217182330U (zh) 电池模组、电池包以及电子设备
CN220172221U (zh) 电池组和用电设备
CN211088443U (zh) 一种bms散热结构
CN220652131U (zh) 一种散热装置及电池箱
CN219419158U (zh) 电池热管理系统
CN219778989U (zh) 电池模组及储能设备
CN217426895U (zh) 一种电池包及汽车
CN218101452U (zh) 电池包及储能电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017523435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177012924

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015853875

Country of ref document: EP