WO2016065516A1 - 一种自适应调制编码的方法及装置 - Google Patents

一种自适应调制编码的方法及装置 Download PDF

Info

Publication number
WO2016065516A1
WO2016065516A1 PCT/CN2014/089592 CN2014089592W WO2016065516A1 WO 2016065516 A1 WO2016065516 A1 WO 2016065516A1 CN 2014089592 W CN2014089592 W CN 2014089592W WO 2016065516 A1 WO2016065516 A1 WO 2016065516A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
cell
sinr
information
resource block
Prior art date
Application number
PCT/CN2014/089592
Other languages
English (en)
French (fr)
Inventor
唐志华
顾春颖
朱伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14904681.5A priority Critical patent/EP3214884B1/en
Priority to JP2017517281A priority patent/JP6604378B2/ja
Priority to PCT/CN2014/089592 priority patent/WO2016065516A1/zh
Priority to CN201480029672.3A priority patent/CN105745985B/zh
Priority to KR1020167016871A priority patent/KR20160089486A/ko
Publication of WO2016065516A1 publication Critical patent/WO2016065516A1/zh
Priority to US15/498,187 priority patent/US10230489B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for adaptive modulation and coding.
  • Adaptive Modulation and Coding (AMC) technology is an adaptive modulation and coding scheme (MCS) based on the state of the wireless channel to ensure the reliability of the wireless communication system.
  • MCS adaptive modulation and coding scheme
  • an evolved NodeB receives a reference signal sent by a user equipment (User Equipment, UE), such as a channel sounding reference signal (Sounding). a reference signal (SRS) or a demodulation reference signal (DMRS), and measuring an uplink signal to interference plus noise ratio (SINR) according to the reference signal, and smoothing the SINR, Obtaining an uplink SINR smoothing filter value; when scheduling the UE, the base station uses the uplink SINR smoothing filter value as a SINR prediction value when the UE performs actual data transmission after a plurality of transmission time intervals (TTIs), and adjusts by SINR.
  • the SINR prediction value is modified to obtain the SINR measurement value, and the MCS to be used for the output is obtained according to the SINR measurement value and the correspondence between the uplink SINR and the uplink MCS.
  • the data transmission of the UE is not only continuous in the time domain but also frequently changes in the frequency domain, so that the neighboring area interference received by the UE changes very sharply, and there is no any in the time domain. Correlation.
  • Embodiments of the present invention provide a method and apparatus for adaptive modulation coding, which can improve the accuracy of MCS selection and thereby improve system throughput.
  • a method for adaptive modulation coding comprising:
  • scheduling information of the first user equipment in the first cell where the scheduling information includes a resource block and a transmission power allocated by the first user equipment;
  • scheduling information of the second user equipment of the second cell where the scheduling information includes a resource block and a transmit power allocated to the second user equipment;
  • the MCS corresponding to the SINR adjustment value of the first user equipment is determined according to the correspondence between the SINR and the modulation and coding mode MCS.
  • the scheduling information according to the first user equipment in the first cell, and the second Obtaining, by the scheduling information of the second user equipment of the cell, the signal to interference plus noise ratio SINR prediction value of the first user equipment includes:
  • the measurement information of the first user equipment to the first cell is obtained on the resource block, and Interference prediction information of the first user equipment;
  • the calculating, according to the measurement information of the first user equipment to the first cell and the interference prediction information of the first user equipment, The SINR predictions include:
  • the SINR prediction value is calculated, the channel information including a channel response estimate.
  • the calculating, according to the measurement information of the first user equipment to the first cell and the interference prediction information of the first user equipment, The SINR predictions include:
  • the channel information of the first user equipment to the first cell the transmit power of the first user equipment, the channel information of the second user equipment to the first cell, and the second user equipment Transmitting the power and the interference noise estimate for the first user equipment except the first cell and the second cell, modifying the SINR historical measurement value of the first user equipment, and calculating the SINR prediction value
  • the channel information includes reference signal received power and/or reference signal received quality.
  • the first user equipment is a coordinated multi-point CoMP user equipment and the non-multi-user multiple input multiple output MU-MIMO user equipment ,
  • the first user equipment is a MU-MIMO user equipment and is not a CoMP user equipment
  • the first user equipment is both a CoMP user equipment and a MU-MIMO user equipment.
  • the first user equipment is neither a CoMP user equipment nor a MU-MIMO user equipment.
  • the noise-to-noise ratio SINR prediction value includes:
  • the resource block used by the second cell is the same as the resource block used by the first cell, acquiring measurement information of the first cell to the first user equipment and the first The interference prediction information of the user equipment, where the first cell is a cell that the base station sends information to the first user equipment;
  • the calculating, according to the measurement information of the first cell to the first user equipment, and the interference prediction information of the first user equipment, The SINR predictions include:
  • the noise estimate corrects the SINR historical measurement value of the first user equipment, and calculates the SINR prediction value, where the channel information includes reference signal received power and/or reference signal received quality.
  • a base station including:
  • An acquiring unit configured to acquire scheduling information of the first user equipment in the first cell, where the scheduling information includes a resource block and a transmit power allocated to the first user equipment;
  • the acquiring unit is further configured to acquire scheduling information of the second user equipment of the second cell, where the scheduling information includes a resource block and a transmit power allocated by the second user equipment;
  • a processing unit configured to send, according to the scheduling information of the first user equipment in the first cell Obtaining, by the scheduling information of the second user equipment of the second cell, a signal and interference plus noise ratio SINR predicted value of the first user equipment;
  • the processing unit is further configured to obtain an SINR adjustment value of the first user equipment according to the SINR prediction value and the SINR adjustment amount;
  • the processing unit is further configured to determine, according to a correspondence between the SINR and the modulation and coding mode MCS, an MCS corresponding to the SINR adjustment value of the first user equipment.
  • the processing unit when the first user equipment needs to perform uplink data transmission, the processing unit is specifically configured to:
  • the measurement information of the first user equipment to the first cell is obtained on the resource block, and Interference prediction information of the first user equipment;
  • the processing unit is specifically configured to:
  • the SINR prediction value is calculated, the channel information including a channel response estimate.
  • the processing unit is specifically configured to:
  • the transmit power of the first user equipment, the channel information of the second user equipment to the first cell, and the second user equipment Transmitting the power and the interference noise estimate for the first user equipment except the first cell and the second cell, modifying the SINR historical measurement value of the first user equipment, and calculating the SINR prediction value, Channel information packet Reference signal received power and/or reference signal received quality.
  • the first user equipment is a coordinated multi-point CoMP user equipment and the non-multi-user multiple input multiple output MU-MIMO user equipment ,
  • the first user equipment is a MU-MIMO user equipment and is not a CoMP user equipment
  • the first user equipment is both a CoMP user equipment and a MU-MIMO user equipment.
  • the first user equipment is neither a CoMP user equipment nor a MU-MIMO user equipment.
  • the processing unit when the first user equipment needs to perform downlink data transmission, is specifically configured to:
  • the resource block used by the second cell is the same as the resource block used by the first cell, acquiring measurement information of the first cell to the first user equipment and the first The interference prediction information of the user equipment, where the first cell is a cell that the base station sends information to the first user equipment;
  • the processing unit is specifically configured to:
  • the noise estimate corrects the SINR historical measurement value of the first user equipment, and calculates the SINR prediction value, where the channel information includes reference signal received power and/or reference signal received quality.
  • a base station including:
  • a memory for storing program code
  • the processor performs the following method: acquiring scheduling information of the first user equipment in the first cell, where the scheduling information includes resource blocks and transmissions allocated by the first user equipment power;
  • the method executed by the processor further includes:
  • scheduling information of the second user equipment of the second cell where the scheduling information includes a resource block and a transmit power allocated to the second user equipment;
  • the processor is further configured to: acquire the signal, the interference, and the noise of the first user equipment according to the scheduling information of the first user equipment in the first cell and the scheduling information of the second user equipment of the second cell Specific SINR predicted value;
  • the processor is further configured to: obtain an SINR adjustment value of the first user equipment according to the SINR prediction value and the SINR adjustment amount;
  • the processor is further configured to: determine, according to a correspondence between the SINR and the modulation and coding mode MCS, an MCS corresponding to the SINR adjustment value of the first user equipment.
  • the processor when the first user equipment needs to perform uplink data transmission, the processor is specifically configured to:
  • the measurement information of the first user equipment to the first cell is obtained on the resource block, and Interference prediction information of the first user equipment;
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • the channel information of the first user equipment to the first cell the transmit power of the first user equipment, the channel information of the second user equipment to the first cell, and the second user equipment Transmitting the power and the interference noise estimate for the first user equipment except the first cell and the second cell, modifying the SINR historical measurement value of the first user equipment, and calculating the SINR prediction value
  • the channel information includes reference signal received power and/or reference signal received quality.
  • the first user equipment is a coordinated multi-point CoMP user equipment and the non-multi-user multiple input multiple output MU-MIMO user equipment ,
  • the first user equipment is a MU-MIMO user equipment and is not a CoMP user equipment
  • the first user equipment is both a CoMP user equipment and a MU-MIMO user equipment.
  • the first user equipment is neither a CoMP user equipment nor a MU-MIMO user equipment.
  • the processor when the first user equipment needs to perform downlink data transmission, the processor is specifically configured to:
  • the resource block used by the second cell is the same as the resource block used by the first cell, acquiring measurement information of the first cell to the first user equipment and the first The interference prediction information of the user equipment, where the first cell is a cell that the base station sends information to the first user equipment;
  • the processor is specifically configured to:
  • the noise estimate corrects the SINR historical measurement value of the first user equipment, and calculates the SINR prediction value, where the channel information includes reference signal received power and/or reference signal received quality.
  • the embodiments of the present invention provide a method and an apparatus for adaptive modulation and coding.
  • Compared with the prior art by acquiring scheduling information of other user equipments, it is possible to consider interference factors of other user equipments on the current user equipment, and improve the calculation of the current cell by the base station.
  • FIG. 1 is a schematic structural diagram of an LTE communication system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for adaptive modulation and coding according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another method for adaptive modulation coding according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of still another method for adaptive modulation and coding according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of still another method for adaptive modulation and coding according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the embodiments of the present invention can be applied to multiple application scenarios consisting of a transmitting end and a receiving end, where the transmitting end is a user equipment and the receiving end is a base station; in the downlink transmission, the transmitting end is a base station, and the receiving end is a user. device.
  • the methods described in the embodiments of the present invention can be used in both the uplink transmission and the downlink transmission.
  • a schematic structural diagram of an LTE communication system includes a first base station 11, a first user equipment 12, a second user equipment 13, a third user equipment 14, a second base station 15, and a fourth user equipment 16, Five user devices 17 and sixth user devices 18.
  • the coverage of the first base station 11 may be a solid line as shown in FIG. 1 , and the dotted line indicates that the first base station 11 divides the coverage into the first cell 111, the second cell 112, and the third cell 113.
  • One cell 111, the second cell 112, and the third cell 113 are adjacent to each other.
  • the first user equipment 12 is registered in the first cell 111
  • the second user equipment 13 is registered in the second cell 112
  • the third user equipment 14 is registered in the third cell 113.
  • the first user equipment 12, the second user equipment 13, and the third user equipment 14 are in wireless communication with the first base station, respectively.
  • the coverage of the second base station 15 may be a solid circle as shown in FIG. 1 , and the dotted line indicates that the second base station 15 divides the coverage into the fourth cell 151, the fifth cell 152, and the sixth cell 153, and the fourth cell. 151.
  • the fifth cell 152 and the sixth cell 153 are adjacent to each other.
  • the fourth user equipment 16 is registered in the fourth cell 151, and the fifth The subscriber device 17 is registered in the fifth cell 152, and the sixth user equipment 18 is registered in the sixth cell 153.
  • the fourth user equipment 16, the fifth user equipment 17, and the sixth user equipment 18 are in wireless communication with the second base station, respectively.
  • At least two of the first cell 111, the second cell 112, the third cell 113, the fourth cell 151, the fifth cell 152, and the sixth cell 153 form a coordinated cell set.
  • An embodiment of the present invention provides a method for adaptive modulation and coding, which is applied to a base station, as shown in FIG. 2, and includes:
  • Step 201 Obtain scheduling information of the first user equipment in the first cell.
  • the first user equipment is registered in the first cell, the first UE communicates with the base station by using the first cell, and the base station allocates scheduling information to the scheduled first UE, where the scheduling information includes, by the base station, the first UE is allocated in the first cell. Resource block and transmit power, the first cell belongs to the base station.
  • Step 202 Acquire scheduling information of the second user equipment of the second cell.
  • the second UE in the second cell has interference with the first UE in the first cell.
  • the second cell may be the same base station as the first cell, and the base station may directly acquire the scheduling information of the second UE of the second cell.
  • the base station to which the second cell belongs is different from the base station to which the first cell belongs, and the first The base station to which the cell belongs and the base station to which the second cell belongs may perform scheduling information interaction through the X2 interface or the S1 interface.
  • the scheduling information of the second UE of the second cell includes a resource block and a transmission power allocated by the base station to which the second cell belongs to the second UE of the second cell.
  • at least one second user equipment of the second cell is included.
  • the base station may acquire scheduling information of the second user equipment of the at least one second cell in a Transmission Time Interval (TTI).
  • TTI Transmission Time Interval
  • Step 203 Acquire a signal and interference plus noise ratio SINR prediction value of the first user equipment according to the scheduling information of the first user equipment in the first cell and the scheduling information of the second user equipment of the second cell.
  • Step 204 Obtain an SINR adjustment value of the first user equipment according to the SINR prediction value and the SINR adjustment amount.
  • the base station counts an uplink block error rate (BLER) to calculate an adjustment amount of the SINR, and adjusts the SINR prediction value by the adjustment amount of the SINR to obtain an SINR adjustment value of the UE. If the uplink BLER does not meet the preset BLER target value, the adjustment amount of the adjustment period will be adjusted according to the preset adjustment amount on the basis of the adjustment amount of the previous period; if the uplink BLER is greater than the BLER target value, the adjustment period of the adjustment period is The adjustment amount will be adjusted according to the preset adjustment range based on the adjustment amount of the previous period.
  • BLER block error rate
  • Step 205 Determine, according to the correspondence between the SINR and the modulation and coding mode MCS, the MCS corresponding to the SINR adjustment value of the first user equipment.
  • the base station schedules the first UE of the first cell by using the MCS corresponding to the SINR adjustment value of the first UE.
  • the interference factors of the other user equipments on the current user equipment can be considered, and the accuracy of the base station calculating the SINR prediction value of the user equipment scheduled by the current cell is improved, thereby The SINR prediction value selects the MCS, which improves the accuracy of the MCS selection, thereby improving the throughput of the wireless communication system.
  • the embodiment of the present invention provides a method for adaptive modulation and coding, which is applied to the LTE communication system shown in FIG. 1 , and assumes that the first user equipment and the second user equipment need to perform uplink data transmission with the first base station, and the fourth user equipment The fifth user equipment and the sixth user equipment need to perform uplink data transmission with the second base station, and the first user equipment is taken as an example. As shown in Figure 3, it includes:
  • Step 301 The first base station acquires scheduling information of the first user equipment in the first cell.
  • the first base station allocates a resource block and a transmit power to the first user equipment in the first cell, where the scheduling information of the first cell includes a resource block and a transmit power of the first user equipment.
  • Step 302 The first base station acquires scheduling information of user equipments of other cells.
  • the first base station allocates a resource block and a transmit power to the second user equipment in the second cell, where the scheduling information of the second cell includes a resource block and a transmit power of the second user equipment.
  • the second base station allocates a resource block and a transmit power to the fourth user equipment in the fourth cell, where the scheduling information of the fourth cell includes a resource block and a transmit power of the fourth user equipment, and the second base station is a
  • the fifth user equipment allocates a resource block and a transmit power
  • the scheduling information of the fifth cell includes a resource block and a transmit power of the fifth user equipment
  • the second base station allocates a resource block and a transmit power to the sixth user equipment in the sixth cell
  • the scheduling information of the sixth cell includes a resource block and a transmission power of the sixth user equipment.
  • the first base station acquires scheduling information of the second cell by using the internal interface
  • the first base station acquires scheduling information of the fourth cell, scheduling information of the fifth cell, and scheduling information of the sixth cell from the second base station by
  • other cells also acquire scheduling information of the user equipment of the cell other than the current cell, that is, the cell can acquire the scheduling information of the local user equipment and the user equipment of the cell registered in the other base station in one TTI. Scheduling information.
  • the first cell, the second cell, and the third cell are cells of the same coordinated cell set, and the first cell acquires the first between the nth TTI and the n+1th TTI.
  • the first cell, the second cell, and the third cell acquire the scheduling information of the cell and the scheduling information of the other cell
  • the first cell, the second cell, and the third cell respectively perform cooperative interference prediction, and obtain the SINR prediction value.
  • the first cell and other cells in the present invention may be a cell in a coordinated cell set, and the coordinated cell set includes at least two cells, which may be statically set or dynamic.
  • the cells included in the coordinated cell set may also be cells of different base stations, and the scheduling information is exchanged between multiple base stations through optical fibers or Ethernet (such as the interconnection protocol radio access network IPRAN), but the cells in the coordinated cell set must be ensured. Same Step by step.
  • Step 303 The first base station acquires the SINR prediction value of the first user equipment according to the scheduling information of the first user equipment in the first cell and the scheduling information of the user equipment of the other cell.
  • the first cell performs the resource block in the resource information (RB) allocated by the first user equipment and the received resource information of the other cells. Compared. If the resource block used by the second user equipment in the second cell also includes the resource block allocated by the first user equipment, the second user equipment is set as the interference of the first user equipment in the first cell on the resource block. a source, the same, if the resource block used by the fourth user equipment in the fourth cell also includes the resource block allocated by the first user equipment, the fourth user equipment is set as the first user equipment in the first cell. The source of interference on the resource block. Whether the interference source of the fifth cell and the sixth cell is the first cell is the same as the method of determining the first cell.
  • RB resource information
  • the resource block allocated by the first user equipment in the first cell includes an nth resource block (RB) 41, and the resource block allocated by the second user equipment in the second cell is used.
  • the resource block n is also included, and the resource block allocated by the third user equipment in the third cell also includes the resource block n. Since the frequency reuse factor of the LTE communication system is 1, and the user equipments occupying the same resource block use the same resource block to interfere with each other at the same time, on the resource block n, the second user equipment and the third cell in the second cell
  • the third user equipment is the interference source of the first user equipment in the first cell.
  • the first cell may sort all the interference sources according to the strength of the signal, and select an interference source whose interference strength reaches a certain preset threshold or a preset number of interference sources.
  • the first cell acquires measurement information of the first user equipment to the first cell and interference prediction information for the first user equipment on the resource block; according to the first user equipment to the The SINR prediction value is calculated by the measurement information of the first cell and the interference prediction information of the first user equipment.
  • the first cell of the first base station acquires channel information of the first user equipment to the first cell, the transmit power of the first user equipment, and the channel information of the user equipment that uses the same resource block by the first user equipment to the first cell.
  • the channel information includes channel response estimates.
  • the SINR prediction value of each subcarrier allocated for the user equipment may be calculated according to the formula (1.1a), and then the SINR prediction value of each subcarrier is combined into the SINR prediction value of the user equipment on the scheduling bandwidth. :
  • ⁇ n,j is the SINR on the RB n subcarrier j
  • p n,j is the transmit power of the user equipment on the RB n subcarrier j
  • w n,j is the signal of the user equipment on the RB n subcarrier j
  • the detection weight vector, h n,j is the channel response vector of the user equipment on the RB n subcarrier j
  • R zz,n,j is the interference noise covariance matrix
  • ( ⁇ ) H represents the conjugate transpose.
  • the SINR of the subcarriers is combined into SINR ⁇ n of the RB level, and then combined into the SINR prediction value of the user equipment, and the combining formula depends on the receiver used.
  • minimum mean square error Minimum Mean Square Error, MMSE
  • MMSE Minimum Mean Square Error
  • L is the number of merged set elements, that is, the number of subcarriers or the number of RBs.
  • the channel information includes the reference signal received power and/or the reference signal
  • the channel information of the first user equipment to the first cell the transmission power of the first user equipment, the channel information of the user equipment that uses the same resource block with the first user equipment to the first cell, and the first
  • the transmit power of the user equipment using the same resource block by the user equipment and the interference noise estimate for the first user equipment other than the first cell and other cells for each subcarrier of each RB allocated for the user equipment The SINR historical measurement is corrected, and the SINR predicted value is calculated, as in the formula (1.1b):
  • the ⁇ measure (tT) represents the measured SINR historical value at the tT time, the reference signal received by the first user equipment to the first cell, and/or the reference signal received quality, the transmit power of the first user equipment, and the first The SINR history measurement value of the user equipment, the channel information of the user equipment that uses the same resource block by the first user equipment to the first cell, the transmission power of the user equipment that uses the same resource block as the first user equipment, and the first cell and Obtained by the interference noise estimation of the first user equipment outside the second cell, I(tT) represents the measured interference strength information at time tT, and I(t) represents the actual number of time t predicted at the current scheduling.
  • the interference intensity information corresponding to the transmission time, ⁇ (t) is the currently maintained SINR correction weight, and ⁇ (t)>0. If the interference received at the time t is higher than the time tT, that is, I(t)>I(tT), the SINR prediction value is lowered. If the interference at the time t is lower than the time tT, the SINR prediction value is increased.
  • the SINR of the subcarriers is combined into SINR ⁇ n of the RB level, and then combined into the SINR prediction value of the user equipment, and the combining formula depends on the receiver used. For example, the formula (1.2) is used for calculation.
  • the measurement information may include channel information of the first user equipment to the first cell and transmit power of the first user equipment
  • the interference prediction information may include a user equipment that uses the same resource block as the first user equipment to the first Channel information of the cell, transmission power of the user equipment using the same resource block as the first user equipment, and the first small
  • the channel information of the user equipment to multiple cells can be measured by using a DeModulation Reference Signal (DMRS) or a Sounding Reference Signal (SRS) sent by the user equipment.
  • DMRS DeModulation Reference Signal
  • SRS Sounding Reference Signal
  • the channel information includes reference signal received power, reference signal received quality, and/or channel response estimate.
  • the tracking history value may be used for estimation, thereby obtaining more accurate cooperative interference prediction.
  • the filtered value can be used as the estimated value of the residual interference noise outside the cell set at the actual data transmission time. For example, interference from interference sources and background noise outside the set of coordinated cells to the first user equipment.
  • Step 304 Obtain an SINR adjustment value of the first user equipment according to the SINR prediction value and the SINR adjustment amount.
  • Step 305 Determine, according to the correspondence between the SINR and the MCS, the MCS corresponding to the SINR adjustment value of the first user equipment.
  • the first base station uses the SINR adjustment value to query the correspondence between the SINR and the MCS, and selects the MCS to be used by the first user equipment, and then the first cell sends the selected MCS to the first user equipment, so that the first user equipment adopts the MCS.
  • the modulation coding method represented by the transmission performs uplink data transmission. It should be noted that the correspondence between the SINR adjustment mechanism, the SINR, and the MCS is identical to the existing solution.
  • the 3GPP protocol defines a 19-order modulation and coding scheme for MCS0 to MCS18, which respectively represent different modulation modes and channel coding rate, and selects an appropriate MCS according to different channel conditions.
  • the wireless communication system maximizes throughput.
  • the interference source is determined according to multiple points of cooperation.
  • the coordinated multi-point of the first user equipment is the first cell and the second cell
  • the interference source of the first user equipment includes not only the interfering user equipment for the first cell but also the interfering user equipment for the second cell.
  • the second user equipment and the third user equipment are not only the interference source of the first user equipment in the first cell, but also the interference source of the first user equipment in the second cell.
  • CoMP coordinated multi-point transmission refers to multiple transmission points separated geographically, and cooperates to jointly receive data sent by one terminal.
  • the user equipment paired by the current cell and the user equipment of the coordinated cell set are all used as interference sources.
  • the first user equipment and the second user equipment are both registered in the first cell
  • the third user equipment is registered in the second cell
  • the first cell and the second cell are the cells in the coordinated cell set
  • the first user equipment is allocated the RB.
  • the RBn is allocated by the second user equipment and the third user equipment
  • the first user equipment needs to set the second user equipment and the third user equipment as interference sources of the first user equipment on the RBn.
  • the method for adaptive modulation and coding according to the embodiment of the present invention can improve the interference of the other user equipments on the current user equipment by using the scheduling information of other user equipments, and improve the calculation of the current cell by the base station.
  • the accuracy of the SINR prediction value of the user equipment, so that the MCS is selected according to the SINR prediction value improves the accuracy of the MCS selection, thereby improving the throughput of the wireless communication system.
  • the first base station may obtain the scheduling information according to the method for the user equipment and the base station to perform uplink data transmission, and obtain the method.
  • the scheduling information of the user equipment for downlink data transmission in other cells is not described in detail in the present invention, and reference may be made to the method in the uplink data transmission.
  • the first base station compares each resource block (RB) used by the first cell to send information to the first user equipment with a resource block (RB) used by other cells to send information to the user equipment under the cell, if If the resource block used by the second cell also includes the resource block used by the first cell, the second cell is set as the interference source of the first cell on the resource block, and if there is a resource block used by the third cell, Including the resource block used by the first cell, the third cell is set as the interference source of the first cell on the resource block.
  • RB resource block
  • the measurement information of the first cell to the first user equipment and the interference prediction information of the first user equipment are obtained on the same resource block that is used by the first cell, according to the first cell to the The SINR prediction value is calculated by the measurement information of the first user equipment and the interference prediction information of the first user equipment.
  • the channel information includes reference signal received power and/or reference signal received quality
  • the first base station may obtain the first cell to the first user according to the received
  • the channel information of the device the transmit power of the first user equipment to the first user equipment, the channel quality indicator reported by the first user equipment, the channel information of the cell that uses the same resource block to the first cell to the first user equipment, and the first cell
  • the SINR historical measurement values of the subcarriers are corrected to calculate the SINR prediction value.
  • the SINR prediction value of each subcarrier per RB can be calculated according to the formula (1.1b), and the formula (1.1b) is:
  • ⁇ measure (tT) represents the measured SINR predicted value at tT time
  • I(tT) represents the measured interference strength information at time tT
  • I(t) represents the interference corresponding to the actual digital transmission at the time t predicted at the current scheduling.
  • the intensity information, ⁇ (t) is the currently maintained SINR correction weight, ⁇ (t)>0. If the interference received at the time t is higher than the time tT, that is, I(t)>I(tT), the SINR prediction value is lowered. If the interference at the time t is lower than the time tT, the SINR prediction value is increased.
  • the SINR of the subcarriers is combined into SINR ⁇ n of the RB level, and then combined into the SINR prediction value of the user equipment, and the combining formula depends on the receiver used. For example, the formula (1.2) is used for calculation.
  • the first base station obtains the SINR adjustment value of the first user equipment according to the SINR prediction value and the SINR adjustment amount, and determines the MCS corresponding to the SINR adjustment value of the first user equipment according to the correspondence between the SINR and the MCS.
  • the method for adaptive modulation and coding according to the embodiment of the present invention can improve the interference of the other user equipments on the current user equipment by using the scheduling information of other user equipments, and improve the calculation of the current cell by the base station.
  • the accuracy of the SINR prediction value of the user equipment, so that the MCS is selected according to the SINR prediction value improves the accuracy of the MCS selection, thereby improving the throughput of the wireless communication system.
  • the embodiment of the present invention provides a base station 40, as shown in FIG. 6, including:
  • the obtaining unit 401 is configured to acquire scheduling information of the first user equipment in the first cell, where the scheduling information includes a resource block and a transmit power allocated by the first user equipment.
  • the acquiring unit 401 is further configured to acquire scheduling information of the second user equipment of the second cell, where the scheduling information includes a resource block and a transmit power allocated by the second user equipment.
  • the second UE in the second cell has interference with the first UE in the first cell.
  • the second cell may be the same base station as the first cell, and the base station may directly acquire the scheduling information of the second UE of the second cell.
  • the base station to which the second cell belongs is different from the base station to which the first cell belongs, and the first The base station to which the cell belongs and the base station to which the second cell belongs may perform scheduling information interaction through the X2 interface or the S1 interface.
  • the scheduling information of the second UE of the second cell includes the base station to which the second cell belongs and is allocated by the second UE of the second cell. Resource block and transmit power.
  • at least one user equipment of the second cell is included.
  • the base station may acquire scheduling information of the second user equipment of the at least one second cell in one TTI. It should be noted that other cells also acquire the scheduling information of the user equipment of the first cell at the same time, that is, the cell can acquire the scheduling information of the local user equipment and the scheduling information of the user equipment of the cell registered in the other base station in one TTI.
  • the processing unit 402 is configured to acquire, according to the scheduling information of the first user equipment in the first cell and the scheduling information of the second user equipment of the second cell, the signal to interference plus noise ratio (SINR) of the first user equipment. Predictive value.
  • SINR signal to interference plus noise ratio
  • the processing unit 402 is further configured to obtain an SINR adjustment value of the first user equipment according to the SINR prediction value and the SINR adjustment amount.
  • the processing unit 402 is further configured to determine, according to the correspondence between the SINR and the modulation and coding mode MCS, the MCS corresponding to the SINR adjustment value of the first user equipment.
  • the base station schedules the first UE of the first cell by using the MCS corresponding to the SINR adjustment value of the first UE.
  • the interference factors of the other user equipments on the current user equipment can be considered, and the accuracy of the base station calculating the SINR prediction value of the user equipment scheduled by the current cell is improved, thereby The SINR prediction value selects the MCS, which improves the accuracy of the MCS selection, thereby improving the throughput of the wireless communication system.
  • the processing unit 402 is specifically configured to:
  • the measurement information of the first user equipment to the first cell is obtained on the resource block, and Interference prediction information of the first user equipment;
  • the processing unit 402 is specifically configured to:
  • the SINR prediction value is calculated, the channel information including a channel response estimate.
  • the SINR prediction value of each sub-carrier allocated for the user equipment can be calculated according to the formula (1.1a), and the SINR prediction value of the user equipment is calculated according to the formula (1.2):
  • the processing unit 402 is specifically configured to:
  • the channel information of the first user equipment to the first cell the transmit power of the first user equipment, the channel information of the second user equipment to the first cell, and the second user equipment Transmitting the power and the interference noise estimate for the first user equipment except the first cell and the second cell, modifying the SINR historical measurement value of the first user equipment, and calculating the SINR prediction value
  • the channel information includes reference signal received power and/or reference signal received quality.
  • Equation (1.1b) modifies the SINR prediction value for each subcarrier per RB allocated for the user equipment:
  • the first user equipment when the first user equipment needs to perform uplink data transmission, the first user equipment is a coordinated multi-point user equipment and the non-multi-user multiple input multiple output MU-MIMO user equipment, or the A user equipment is a MU-MIMO user equipment and is not a CoMP user equipment, or the first user equipment is both a CoMP user equipment and a MU-MIMO user equipment, or the first user equipment is neither a CoMP user equipment nor a MU-MIMO user equipment.
  • the interference source is determined according to multiple points of cooperation.
  • the coordinated multi-point of the first user equipment is the first cell and the second cell
  • the interference source of the first user equipment includes not only the interfering user equipment for the first cell but also the interfering user equipment for the second cell.
  • the second user equipment and the third user equipment are not only the interference source of the first user equipment in the first cell, but also the interference source of the first user equipment in the second cell.
  • CoMP coordinated multi-point transmission refers to multiple transmission points separated geographically, and cooperates to jointly receive data sent by one terminal.
  • the current cell predicts the SINR prediction value, and needs to use the user equipment paired by the current cell and the user equipment of the coordinated cell set as the interference source.
  • the first user equipment and the second user equipment are both registered in the first cell
  • the third user equipment is registered in the second cell
  • the first cell and the second cell are the cells in the coordinated cell set
  • the first user equipment is allocated the RB.
  • the RBn is allocated by the second user equipment and the third user equipment
  • the first user equipment needs to set the second user equipment and the third user equipment as interference sources of the first user equipment on the RBn.
  • the processing unit 402 is specifically configured to:
  • the measurement of the first cell to the first user equipment is obtained on the resource block.
  • the processing unit 402 is specifically configured to:
  • the noise estimate corrects the SINR historical measurement value of the first user equipment, and calculates the SINR prediction value, where the channel information includes reference signal received power and/or reference signal received quality.
  • Equation (1.1b) modifies the SINR prediction value for each subcarrier per RB allocated for the user equipment:
  • An embodiment of the present invention provides a base station 50, as shown in FIG. 7, including:
  • a memory 501 configured to store program code
  • the processor 502 configured to invoke the program code stored in the memory, to perform the following method: acquiring scheduling information of the first user equipment in the first cell, where the scheduling information includes resource blocks allocated for the first user equipment Transmit power
  • the method performed by the processor 502 further includes:
  • scheduling information of the second user equipment of the second cell where the scheduling information includes a resource block and a transmit power allocated to the second user equipment;
  • the second UE in the second cell has interference with the first UE in the first cell.
  • the second cell may be the same base station as the first cell, and the base station may directly acquire the scheduling information of the second UE of the second cell.
  • the base station to which the second cell belongs is different from the base station to which the first cell belongs, and the first The base station to which the cell belongs and the base station to which the second cell belongs may perform scheduling information interaction through the X2 interface or the S1 interface.
  • the scheduling information of the second UE of the second cell includes a resource block and a transmission power allocated by the base station to which the second cell belongs to the second UE of the second cell.
  • at least one user equipment of the second cell is included.
  • the base station may acquire scheduling information of the second user equipment of the at least one second cell in one TTI. It should be noted that other cells also acquire the scheduling information of the user equipment of the first cell at the same time, that is, the cell can acquire the scheduling information of the local user equipment and the scheduling information of the user equipment of the cell registered in the other base station in one TTI.
  • the processor 502 is further configured to: acquire the signal and the interference of the first user equipment according to the scheduling information of the first user equipment in the first cell and the scheduling information of the second user equipment of the second cell Noise ratio SINR prediction value;
  • the processor 502 is further configured to: obtain an SINR adjustment value of the first user equipment according to the SINR prediction value and the SINR adjustment amount;
  • the processor 502 is further configured to: determine, according to a correspondence between the SINR and the modulation and coding mode MCS, an MCS corresponding to the SINR adjustment value of the first user equipment.
  • the base station schedules the first UE of the first cell by using the MCS corresponding to the SINR adjustment value of the first UE.
  • the interference factors of the other user equipments on the current user equipment can be considered, and the accuracy of the base station calculating the SINR prediction value of the user equipment scheduled by the current cell is improved, thereby The SINR prediction value selects the MCS, which improves the accuracy of the MCS selection, thereby improving the throughput of the wireless communication system.
  • the processor is further configured to perform uplink data that is required by the user equipment. For specific steps of transmission or downlink data transmission, refer to the description on the method side.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供一种自适应调制编码的方法及装置,涉及通信领域,能够提高MCS选择的准确性,进而提高系统吞吐率。获取第一用户设备在第一小区中的调度信息;获取第二小区的第二用户设备的调度信息;根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的SINR预测值;根据SINR预测值与SINR调整量获得第一用户设备的SINR调整值;根据SINR与调制编码方式MCS的对应关系,确定第一用户设备的SINR调整值所对应的MCS。本发明实施例提供的自适应调制编码的方法及装置用于自适应调制编码。

Description

一种自适应调制编码的方法及装置 技术领域
本发明涉及通信领域,尤其涉及一种自适应调制编码的方法及装置。
背景技术
自适应调制编码(Adaptive Modulation and Coding,AMC)技术是一种在保证无线通信系统可靠性的前提下,根据无线信道状态自适应地选择调制编码方式(Modulation and Coding Scheme,MCS),以提高无线通信系统吞吐率的自适应技术。
以长期演进(Long Term Evolution,LTE)系统为例,现有技术中,演进基站(evolved NodeB,eNB)接收到用户设备(User Equipment,UE)发送的参考信号后,如信道探测参考信号(Sounding Reference Signal,SRS)或解调参考信号(Demodulation Reference Signal,DMRS),根据所述参考信号测量上行信号与干扰加噪声比(Signal to Interference and Noise Ratio,SINR),并对该SINR进行平滑滤波,获得上行SINR平滑滤波值;在调度该UE时,基站将该上行SINR平滑滤波值作为该UE在若干传输时间间隔(Transmission Time Interval,TTI)后进行实际数传时的SINR预测值,并用SINR调整量对所述SINR预测值进行修正以获得SINR测量值,根据所述SINR测量值以及上行SINR与上行MCS之间的对应关系,获取输出需要采用的MCS。
但是,由于UE业务的非持续性,UE的数据传输既在时域上不连续,又在频域上经常发生变化,导致UE受到的邻区干扰的变化非常剧烈,且在时域上没有任何相关性。
因此,仅仅根据历史时刻的SINR测量值,无法对相对当前 TTI在若干TTI之后的数传子帧上的SINR进行准确预测,现有技术存在MCS选择不准确进而导致系统吞吐率降低的问题。
发明内容
本发明的实施例提供一种自适应调制编码的方法及装置,能够提高MCS选择的准确性,进而提高系统吞吐率。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种自适应调制编码的方法,包括:
获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率;
获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率;
根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值;
根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值;
根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
结合第一方面,在第一种可实现方式中,当所述第一用户设备需要进行上行数据传输时,所述根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值包括:
若所述第二用户设备使用的资源块与所述第一用户设备使用的资源块相同,在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;
根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
结合第一种可实现方式,在第二种可实现方式中,所述根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值包括:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
结合第一种可实现方式,在第三种可实现方式中,所述根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值包括:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
结合第二种可实现方式或第三种可实现方式,在第四种可实现方式中,所述第一用户设备为协作多点CoMP用户设备且非多用户多输入多输出MU-MIMO用户设备,
或者,所述第一用户设备为MU-MIMO用户设备且非CoMP用户设备,
或者,所述第一用户设备既是CoMP用户设备又是MU-MIMO用户设备,
或者,所述第一用户设备既不是CoMP用户设备又不是MU-MIMO用户设备。
结合第一方面,在第五种可实现方式中,当所述第一用户设备 需要进行下行行数据传输时,所述根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值包括:
若所述第二小区使用的资源块与所述第一小区使用的资源块相同,在所述资源块上获取所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息,所述第一小区为所述基站向所述第一用户设备发送信息的小区;
根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
结合第五种可实现方式,在第六种可实现方式中,所述根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值包括:
根据所述第一小区到所述第一用户设备的信道信息、所述第一小区对所述第一用户设备的发射功率、所述第一用户设备上报的信道质量指示、所述第二小区到所述第一用户设备的信道信息、所述第二小区在所述资源块上的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
第二方面,提供一种基站,包括:
获取单元,用于获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率;
所述获取单元还用于获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率;
处理单元,用于根据所述第一用户设备在第一小区中的调度信 息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值;
所述处理单元还用于根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值;
所述处理单元还用于根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
结合第二方面,在第一种可实现方式中,当所述第一用户设备需要进行上行数据传输时,所述处理单元具体用于:
若所述第二用户设备使用的资源块与所述第一用户设备使用的资源块相同,在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;
根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
结合第一种可实现方式,在第二种可实现方式中,所述处理单元具体用于:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
结合第一种可实现方式,在第三种可实现方式中,所述处理单元具体用于:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包 括参考信号接收功率和/或参考信号接收质量。
结合第二种可实现方式或第三种可实现方式,在第四种可实现方式中,所述第一用户设备为协作多点CoMP用户设备且非多用户多输入多输出MU-MIMO用户设备,
或者,所述第一用户设备为MU-MIMO用户设备且非CoMP用户设备,
或者,所述第一用户设备既是CoMP用户设备又是MU-MIMO用户设备,
或者,所述第一用户设备既不是CoMP用户设备又不是MU-MIMO用户设备。
结合第二方面,在第五种可实现方式中,当所述第一用户设备需要进行下行行数据传输时,所述处理单元具体用于:
若所述第二小区使用的资源块与所述第一小区使用的资源块相同,在所述资源块上获取所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息,所述第一小区为所述基站向所述第一用户设备发送信息的小区;
根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
结合第五种可实现方式,在第六种可实现方式中,所述处理单元具体用于:
根据所述第一小区到所述第一用户设备的信道信息、所述第一小区对所述第一用户设备的发射功率、所述第一用户设备上报的信道质量指示、所述第二小区到所述第一用户设备的信道信息、所述第二小区在所述资源块上的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
第三方面,提供一种基站,包括:
存储器,用于存储程序代码;
处理器,用于调用所述存储器存储的程序代码执行如下方法:获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率;
所述处理器执行的方法还包括:
获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率;
所述处理器还用于:根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值;
所述处理器还用于:根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值;
所述处理器还用于:根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
结合第三方面,在第一种可实现方式中,当所述第一用户设备需要进行上行数据传输时,所述处理器具体用于:
若所述第二用户设备使用的资源块与所述第一用户设备使用的资源块相同,在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;
根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
结合第一种可实现方式,在第二种可实现方式中,所述处理器具体用于:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二 小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
结合第一种可实现方式,在第三种可实现方式中,所述处理器具体用于:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
结合第二种可实现方式或第三种可实现方式,在第四种可实现方式中,所述第一用户设备为协作多点CoMP用户设备且非多用户多输入多输出MU-MIMO用户设备,
或者,所述第一用户设备为MU-MIMO用户设备且非CoMP用户设备,
或者,所述第一用户设备既是CoMP用户设备又是MU-MIMO用户设备,
或者,所述第一用户设备既不是CoMP用户设备又不是MU-MIMO用户设备。
结合第三方面,在第五种可实现方式中,当所述第一用户设备需要进行下行行数据传输时,所述处理器具体用于:
若所述第二小区使用的资源块与所述第一小区使用的资源块相同,在所述资源块上获取所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息,所述第一小区为所述基站向所述第一用户设备发送信息的小区;
根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
结合第五种可实现方式,在第六种可实现方式中,所述处理器具体用于:
根据所述第一小区到所述第一用户设备的信道信息、所述第一小区对所述第一用户设备的发射功率、所述第一用户设备上报的信道质量指示、所述第二小区到所述第一用户设备的信道信息、所述第二小区在所述资源块上的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
本发明的实施例提供自适应调制编码的方法及装置,相对于现有技术,通过获取其他用户设备的调度信息,能够考虑其他用户设备对当前用户设备的干扰因素,提高了基站计算当前小区被调度的用户设备的SINR预测值的精度,从而根据所述SINR预测值选择MCS,提高了MCS选择的准确性,进而提高了无线通信系统吞吐率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供一种LTE通信系统结构示意图;
图2为本发明实施例提供一种自适应调制编码的方法流程图;
图3为本发明实施例提供另一种自适应调制编码的方法流程图;
图4为本发明实施例提供又一种自适应调制编码的方法流程图;
图5为本发明实施例提供再一种自适应调制编码的方法流程图;
图6为本发明实施例提供一种基站结构示意图;
图7为本发明实施例提供另一种基站结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明各实施例可以应用在由发送端和接收端组成的多种应用场景中,其中,上行传输时发送端为用户设备,接收端为基站;下行传输时发送端为基站,接收端为用户设备。显然,在上行传输和下行传输过程中均可以采用本发明各实施例中所述的方法。
如图1所示,一种LTE通信系统结构示意图,包括第一基站11、第一用户设备12、第二用户设备13、第三用户设备14、第二基站15、第四用户设备16、第五用户设备17和第六用户设备18。其中,第一基站11的覆盖范围可以如图1中所示的圆实线,虚线所示为第一基站11将覆盖范围划分为第一小区111、第二小区112和第三小区113,第一小区111、第二小区112和第三小区113之间两两相邻。第一用户设备12注册在第一小区111,第二用户设备13注册在第二小区112,第三用户设备14注册在第三小区113。第一用户设备12、第二用户设备13和第三用户设备14分别与第一基站进行无线通信。第二基站15的覆盖范围可以如图1中所示的圆实线,虚线所示为第二基站15将覆盖范围划分为第四小区151、第五小区152和第六小区153,第四小区151、第五小区152和第六小区153之间两两相邻。第四用户设备16注册在第四小区151,第五用 户设备17注册在第五小区152,第六用户设备18注册在第六小区153。第四用户设备16、第五用户设备17和第六用户设备18分别与第二基站进行无线通信。
可选的,第一小区111、第二小区112、第三小区113、第四小区151、第五小区152和第六小区153中至少两个小区组成协作小区集。
本发明实施例提供一种自适应调制编码的方法,应用于基站,如图2所示,包括:
步骤201、获取第一用户设备在第一小区中的调度信息。
第一用户设备注册在第一小区,第一UE通过第一小区与基站进行通信,基站为被调度的第一UE分配调度信息,该调度信息包括基站为该第一UE在第一小区分配的资源块和发射功率,第一小区所属该基站。
步骤202、获取第二小区的第二用户设备的调度信息。
第二小区中的第二UE对第一小区中的第一UE有干扰。第二小区可以与第一小区所属同一个基站,该基站可以直接获取第二小区的第二UE的调度信息;可选的,第二小区所属的基站与第一小区所属的基站不同,第一小区所属的基站与第二小区所属的基站可以通过X2接口或者S1接口进行调度信息交互。第二小区的第二UE的调度信息包括第二小区所属的基站为第二小区的第二UE分配的资源块和发射功率。在本发明所述的该方法中,至少包含一个第二小区的第二用户设备。
基站可以在一个传输时间间隔(Transmission Time Interval,TTI)内,获取至少一个第二小区的第二用户设备的调度信息。
步骤203、根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值。
步骤204、根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值。
基站统计上行误块率(Block Error Rate,BLER)计算SINR的调整量,通过该SINR的调整量对该SINR预测值进行调整,获得该UE的SINR调整值。若上行BLER不满足预设的BLER目标值,则本调整周期的调整量将在上一周期的调整量基础上按照预设的调整幅度上调;若上行BLER大于BLER目标值,则本调整周期的调整量将在上一周期的调整量基础上按照预设的调整幅度下调。
步骤205、根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
基站利用第一UE的SINR调整值所对应的MCS对第一小区的第一UE进行调度。
相对于现有技术,通过获取其他用户设备的调度信息,能够考虑其他用户设备对当前用户设备的干扰因素,提高了基站计算当前小区被调度的用户设备的SINR预测值的精度,从而根据所述SINR预测值选择MCS,提高了MCS选择的准确性,进而提高了无线通信系统吞吐率。
本发明实施例提供一种自适应调制编码的方法,应用于如图1所示的LTE通信系统,假设第一用户设备和第二用户设备需要与第一基站进行上行数据传输,第四用户设备、第五用户设备和第六用户设备需要与第二基站进行上行数据传输,以第一用户设备为例。如图3所示,包括:
步骤301、第一基站获取第一用户设备在第一小区中的调度信息。
第一基站为第一小区中的第一用户设备分配资源块和发射功率,所述第一小区的调度信息包括第一用户设备的资源块和发射功率。
步骤302、第一基站获取其他小区的用户设备的调度信息。
第一基站为第二小区中的第二用户设备分配资源块和发射功率,所述第二小区的调度信息包括第二用户设备的资源块和发射功率。第二基站为第四小区中的第四用户设备分配资源块和发射功率,所述第四小区的调度信息包括第四用户设备的资源块和发射功率;第二基站为第五小区中的第五用户设备分配资源块和发射功率,所述第五小区的调度信息包括第五用户设备的资源块和发射功率;第二基站为第六小区中的第六用户设备分配资源块和发射功率,所述第六小区的调度信息包括第六用户设备的资源块和发射功率。然后,第一基站通过内部接口获取第二小区的调度信息,第一基站通过X2接口从第二基站获取第四小区的调度信息、第五小区的调度信息和第六小区的调度信息。
需要说明的是,其他小区也同时获取除当前小区之外的小区的用户设备的调度信息,即在一个TTI内小区可以获取到本地的用户设备的调度信息和注册在其他基站的小区的用户设备的调度信息。
示例的,如图4所示,第一小区,第二小区和第三小区为同一个协作小区集的小区,在第n个TTI开始至第n+1个TTI之间,第一小区获取第二小区和第三小区的调度信息,第二小区获取第一小区和第三小区的调度信息,第三小区获取第一小区和第二小区的调度信息。在第一小区,第二小区和第三小区中每个小区获取自身的调度信息和其他小区的调度信息后,第一小区,第二小区和第三小区分别进行协作干扰预测,获取SINR预测值。
需要说明的是,本发明所述的第一小区和其他小区可以是一个协作小区集内的小区,协作小区集包括至少两个小区,可以是静态设定的,也可以是动态的。协作小区集包括的小区也可以是不同基站的小区,通过光纤或以太网(如互连协议无线接入网IPRAN)在多个基站之间交互调度信息,但必须保证协作小区集内的小区是同 步的。
步骤303、第一基站根据第一用户设备在第一小区中的调度信息以及其他小区的用户设备的调度信息获取所述第一用户设备的SINR预测值。
首先,所有小区中的用户设备的资源块和发射功率交互完成后,第一小区将第一用户设备所分配的每个资源块(RB)与接收到的其他小区的调度信息中的资源块进行对比。若存在第二小区中第二用户设备使用的资源块中也包括第一用户设备所分配的资源块,则将第二用户设备设置为第一小区中第一用户设备在该资源块上的干扰源,同理,若存在第四小区中第四用户设备使用的资源块中也包括第一用户设备所分配的资源块,则将第四用户设备设置为第一小区中第一用户设备在该资源块上的干扰源。第五小区和第六小区是否为第一小区的干扰源与第一小区的判断方法相同。
示例的,如图5所示,假设第一小区中第一用户设备分配的资源块中包含第n个资源块(Resource Block,RB)41,第二小区中第二用户设备分配的资源块中也包含资源块n,第三小区中第三用户设备分配的资源块中也包含资源块n。由于LTE通信系统的频率复用因子为1,占用相同资源块的用户设备在同一时间使用相同的资源块互为干扰,则在资源块n上,第二小区中第二用户设备和第三小区中第三用户设备为第一小区中第一用户设备的干扰源。
需要说明的是,当获取到用户设备的调度信息较多时,第一小区可以对所有的干扰源按照信号强弱排序,选择干扰强度达到一定预设门限的干扰源或预设数量的干扰源。
然后,第一小区在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
具体的,第一基站的第一小区获取第一用户设备到第一小区的信道信息、第一用户设备的发射功率、与第一用户设备使用相同资源块的用户设备到第一小区的信道信息、与第一用户设备使用相同资源块的用户设备的发射功率以及除所述第一小区和其他小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
示例的,可以按照公式(1.1a)计算为用户设备所分配的每RB的每个子载波的SINR预测值,然后,将每个子载波的SINR预测值合并为用户设备在调度带宽上的SINR预测值:
Figure PCTCN2014089592-appb-000001
其中,γn,j为RB n子载波j上的SINR,pn,j为用户设备在RB n子载波j上的发射功率,wn,j为用户设备在RB n子载波j上的信号检测权向量,hn,j为用户设备在RB n子载波j上的信道响应向量,Rzz,n,j为干扰噪声协方差矩阵,(·)H表示共轭转置。
然后,将子载波的SINR合并为RB级的SINRγn,再合并为用户设备的SINR预测值,合并公式取决于采用的接收机。例如采用最小均方误差(Minimum Mean Square Error,MMSE)接收机时,可以利用公式(1.2)先将子载波的SINR合并为RB级的SINRγn,再利用公式(1.2)将RB级的SINRγn合并为用户设备的SINR预测值,公式(1.2)为:
Figure PCTCN2014089592-appb-000002
其中,L为合并集合元素个数,即子载波的个数或RB的个数。
可选的,当信道信息包括参考信号接收功率和/或参考信号接 收质量时,也可以基于第一用户设备到第一小区的信道信息、第一用户设备的发射功率、与第一用户设备使用相同资源块的用户设备到第一小区的信道信息、与第一用户设备使用相同资源块的用户设备的发射功率以及除所述第一小区和其他小区之外的对所述第一用户设备的干扰噪声估计对为用户设备所分配的每RB的每个子载波的SINR历史测量值进行修正,计算所述SINR预测值,如公式(1.1b):
γ(t)=γmeasure(t-T)+λ(t)·[I(t-T)-I(t)]  (1.1b)
其中,γmeasure(t-T)表示测量的t-T时刻的SINR历史测量值,通过第一用户设备到第一小区的参考信号接收功率和/或参考信号接收质量、第一用户设备的发射功率、第一用户设备的SINR历史测量值、与第一用户设备使用相同资源块的用户设备到第一小区的信道信息、与第一用户设备使用相同资源块的用户设备的发射功率以及所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计获得的,I(t-T)表示测量的t-T时刻的干扰强度信息,I(t)表示当前调度时预测的t时刻实际数传时对应的干扰强度信息,λ(t)为当前维护的SINR修正权值,λ(t)>0。如预测t时刻所受干扰比t-T时刻高,即I(t)>I(t-T),则降低SINR预测值,如预测t时刻所受干扰比t-T时刻低,则提高SINR预测值。
然后,将子载波的SINR合并为RB级的SINRγn,再合并为用户设备的SINR预测值,合并公式取决于采用的接收机。例如采用公式(1.2)计算。
测量信息可以包括所述第一用户设备到所述第一小区的信道信息和所述第一用户设备的发射功率,干扰预测信息可以包括与第一用户设备使用相同资源块的用户设备到第一小区的信道信息、与第一用户设备使用相同资源块的用户设备的发射功率以及所述第一小 区和其他小区之外的对所述第一用户设备的干扰噪声估计,所述第一用户设备为所述第一小区中被调度的用户设备中的任意一个用户设备。
需要说明的是,LTE通信系统中,可以通过用户设备发送的解调参考信号(DeModulation Reference Signal,DMRS)或是探测参考信号(Sounding Reference Signal,SRS)测量用户设备到多个小区的信道信息,所述信道信息包括参考信号接收功率、参考信号接收质量和/或信道响应估计。
更进一步的,对于第一小区和其他小区之外的对所述第一用户设备的干扰噪声估计,则可以通过跟踪历史值进行估计,从而获得更准确的协作干扰预测。为了估计第一小区和其他小区之外的对所述第一用户设备的干扰噪声估计,需要对实际接收到的总干扰噪声进行测量,并减去测量的小区的干扰信息。由于无法获得小区外的调度信息,因此可以使用滤波值作为实际数传时刻小区集外的剩余干扰噪声的估计值。例如,协作小区集之外的干扰源和背景噪声对所述第一用户设备的干扰。
步骤304、根据SINR预测值与SINR调整量调整获得第一用户设备的SINR调整值。
步骤305、根据SINR与MCS的对应关系,确定第一用户设备的SINR调整值所对应的MCS。
第一基站使用SINR调整值查询SINR与MCS的对应关系,选择第一用户设备需要使用的MCS,进而,第一小区将选择的MCS发送至第一用户设备,以使第一用户设备采用该MCS所代表的调制编码方式进行上行数据的传输。需要说明的是,SINR调整机制、SINR和MCS之间的对应关系和现有方案完全相同。3GPP协议定义了MCS0~MCS18共19阶的调制编码方式,分别代表不同的调制方式和信道编码码率,根据不同的信道条件选择合适的MCS,使 无线通信系统吞吐率最大化。
特别的,在协作多点(Coordinated Multiple Points,CoMP)的场景下,干扰源按照协作多点确定。例如,第一用户设备的协作多点是第一小区和第二小区,那么第一用户设备的干扰源就不仅包括对第一小区的干扰用户设备,还包括对第二小区的干扰用户设备,在资源块n上,第二用户设备和第三用户设备不仅是第一用户设备在第一小区的干扰源,也是第一用户设备在第二小区的干扰源。CoMP协作多点传输是指地理位置上分离的多个传输点,协同参与联合接收一个终端发送的数据。
在多用户多输入多输出(Multi-User Multiple Input Multiple Output,MU-MIMO)的场景下,当前小区预测SINR预测值时需要将当前小区配对的用户设备和协作小区集的用户设备都当做干扰源。例如,第一用户设备与第二用户设备都注册在第一小区,第三用户设备注册在第二小区,第一小区和第二小区为协作小区集中的小区,当第一用户设备分配了RB n,第二用户设备和第三用户设备都分配了RB n时,第一小区需要将第二用户设备和第三用户设备设置为第一用户设备在RB n上的干扰源。
本发明实施例所述的自适应调制编码的方法,相对于现有技术,通过获取其他用户设备的调度信息,能够考虑其他用户设备对当前用户设备的干扰因素,提高了基站计算当前小区被调度的用户设备的SINR预测值的精度,从而根据所述SINR预测值选择MCS,提高了MCS选择的准确性,进而提高了无线通信系统吞吐率。
需要说明的是,以第一用户设备为例,当第一用户设备需要与第一基站进行下行数据传输时,第一基站可以根据用户设备与基站进行上行数据传输时获取调度信息的方法,获取其他小区中进行下行数据传输的用户设备的调度信息,本发明对此不再赘述,可参考上行数据传输时的方法。
然后,第一基站将第一小区向第一用户设备发送信息所使用的每个资源块(RB)与其他小区向该小区下的用户设备发送信息所使用的资源块(RB)进行对比,若存在第二小区使用的资源块中也包括第一小区所使用的资源块,则将第二小区设置为第一小区在该资源块上的干扰源,若存在第三小区使用的资源块中也包括第一小区所使用的资源块,则将第三小区设置为第一小区在该资源块上的干扰源。
进一步的,在与第一小区使用相同的资源块上获取该第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息,根据该第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
具体的,由于第一用户设备需要与第一基站进行下行数据传输时,信道信息包括参考信号接收功率和/或参考信号接收质量,第一基站可以根据获取到的该第一小区到第一用户设备的信道信息、第一小区对第一用户设备的发射功率、第一用户设备上报的信道质量指示、与第一小区使用相同资源块的小区到第一用户设备的信道信息、与第一小区使用相同资源块的小区在所述资源块上的发射功率以及除所述第一小区和其他小区之外的对所述第一用户设备的干扰噪声估计对为用户设备所分配的每RB的每个子载波的SINR历史测量值进行修正,计算SINR预测值。
示例的,可以按照公式(1.1b)计算每RB的每个子载波的SINR预测值,公式(1.1b)为:
γ(t)=γmeasure(t-T)+λ(t)·[I(t-T)-I(t)]    (1.1b)
其中,γmeasure(t-T)表示测量的t-T时刻的SINR预测值,I(t-T)表示测量的t-T时刻的干扰强度信息,I(t)表示当前调度时预测的t时刻实际数传时对应的干扰强度信息,λ(t)为当前维护的SINR修正权 值,λ(t)>0。如预测t时刻所受干扰比t-T时刻高,即I(t)>I(t-T),则降低SINR预测值,如预测t时刻所受干扰比t-T时刻低,则提高SINR预测值。
然后,将子载波的SINR合并为RB级的SINRγn,再合并为用户设备的SINR预测值,合并公式取决于采用的接收机。例如采用公式(1.2)计算。
最后,第一基站根据SINR预测值与SINR调整量调整获得第一用户设备的SINR调整值,再根据SINR与MCS的对应关系,确定第一用户设备的SINR调整值所对应的MCS。
本发明实施例所述的自适应调制编码的方法,相对于现有技术,通过获取其他用户设备的调度信息,能够考虑其他用户设备对当前用户设备的干扰因素,提高了基站计算当前小区被调度的用户设备的SINR预测值的精度,从而根据所述SINR预测值选择MCS,提高了MCS选择的准确性,进而提高了无线通信系统吞吐率。
本发明实施例提供一种基站40,如图6所示,包括:
获取单元401,用于获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率。
所述获取单元401还用于获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率。
第二小区中的第二UE对第一小区中的第一UE有干扰。第二小区可以与第一小区所属同一个基站,该基站可以直接获取第二小区的第二UE的调度信息;可选的,第二小区所属的基站与第一小区所属的基站不同,第一小区所属的基站与第二小区所属的基站可以通过X2接口或者S1接口进行调度信息交互。第二小区的第二UE的调度信息包括第二小区所属的基站为第二小区的第二UE分配的 资源块和发射功率。在本发明所述的该方法中,至少包含一个第二小区的用户设备。基站可以在一个TTI内,获取至少一个第二小区的第二用户设备的调度信息。需要说明的是,其他小区也同时获取第一小区的用户设备的调度信息,即在一个TTI内小区可以获取到本地的用户设备的调度信息和注册在其他基站的小区的用户设备的调度信息。
处理单元402,用于根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值。
所述处理单元402还用于根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值。
所述处理单元402还用于根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
基站利用第一UE的SINR调整值所对应的MCS对第一小区的第一UE进行调度。
相对于现有技术,通过获取其他用户设备的调度信息,能够考虑其他用户设备对当前用户设备的干扰因素,提高了基站计算当前小区被调度的用户设备的SINR预测值的精度,从而根据所述SINR预测值选择MCS,提高了MCS选择的准确性,进而提高了无线通信系统吞吐率。
当所述第一用户设备需要进行上行数据传输时,所述处理单元402具体用于:
若所述第二用户设备使用的资源块与所述第一用户设备使用的资源块相同,在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;
根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
所述处理单元402具体用于:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
示例的,可以根据公式(1.1a)计算得到为用户设备所分配的每RB的每个子载波的SINR预测值,再根据公式(1.2)计算得到用户设备的SINR预测值:
Figure PCTCN2014089592-appb-000003
Figure PCTCN2014089592-appb-000004
所述处理单元402具体用于:
根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
例如,公式(1.1b)对为用户设备所分配的每RB的每个子载波的SINR预测值进行修正:
γ(t)=γmeasure(t-T)+λ(t)·[I(t-T)-I(t)]   (1.1b)
再根据公式(1.2)计算得到用户设备的SINR预测值:
Figure PCTCN2014089592-appb-000005
需要说明的是,当所述第一用户设备需要进行上行数据传输时,所述第一用户设备为协作多点用户设备且非多用户多输入多输出MU-MIMO用户设备,或者,所述第一用户设备为MU-MIMO用户设备且非CoMP用户设备,或者,所述第一用户设备既是CoMP用户设备又是MU-MIMO用户设备,或者,所述第一用户设备既不是CoMP用户设备又不是MU-MIMO用户设备。
特别的,在协作多点的场景下,干扰源按照协作多点确定。例如,第一用户设备的协作多点是第一小区和第二小区,那么第一用户设备的干扰源就不仅包括对第一小区的干扰用户设备,还包括对第二小区的干扰用户设备,在资源块n上,第二用户设备和第三用户设备不仅是第一用户设备在第一小区的干扰源,也是第一用户设备在第二小区的干扰源。CoMP协作多点传输是指地理位置上分离的多个传输点,协同参与联合接收一个终端发送的数据。
在多用户多输入多输出的场景下,当前小区预测SINR预测值时需要将当前小区配对的用户设备和协作小区集的用户设备都当做干扰源。例如,第一用户设备与第二用户设备都注册在第一小区,第三用户设备注册在第二小区,第一小区和第二小区为协作小区集中的小区,当第一用户设备分配了RB n,第二用户设备和第三用户设备都分配了RB n时,第一小区需要将第二用户设备和第三用户设备设置为第一用户设备在RB n上的干扰源。
当所述第一用户设备需要进行下行行数据传输时,所述处理单元402具体用于:
若所述第二小区使用的资源块与所述第一小区使用的资源块相同,在所述资源块上获取所述第一小区到所述第一用户设备的测量 信息和对所述第一用户设备的干扰预测信息,所述第一小区为所述基站向所述第一用户设备发送信息的小区;
根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
所述处理单元402具体用于:
根据所述第一小区到所述第一用户设备的信道信息、所述第一小区对所述第一用户设备的发射功率、所述第一用户设备上报的信道质量指示、所述第二小区到所述第一用户设备的信道信息、所述第二小区在所述资源块上的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
例如,公式(1.1b)对为用户设备所分配的每RB的每个子载波的SINR预测值进行修正:
γ(t)=γmeasure(t-T)+λ(t)·[I(t-T)-I(t)]   (1.1b)
再根据公式(1.2)计算得到用户设备的SINR预测值:
Figure PCTCN2014089592-appb-000006
本发明实施例提供一种基站50,如图7所示,包括:
存储器501,用于存储程序代码;
处理器502,用于调用所述存储器存储的程序代码执行如下方法:获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率;
所述处理器502执行的方法还包括:
获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率;
第二小区中的第二UE对第一小区中的第一UE有干扰。第二小区可以与第一小区所属同一个基站,该基站可以直接获取第二小区的第二UE的调度信息;可选的,第二小区所属的基站与第一小区所属的基站不同,第一小区所属的基站与第二小区所属的基站可以通过X2接口或者S1接口进行调度信息交互。第二小区的第二UE的调度信息包括第二小区所属的基站为第二小区的第二UE分配的资源块和发射功率。在本发明所述的该方法中,至少包含一个第二小区的用户设备。基站可以在一个TTI内,获取至少一个第二小区的第二用户设备的调度信息。需要说明的是,其他小区也同时获取第一小区的用户设备的调度信息,即在一个TTI内小区可以获取到本地的用户设备的调度信息和注册在其他基站的小区的用户设备的调度信息。
所述处理器502还用于:根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值;
所述处理器502还用于:根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值;
所述处理器502还用于:根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
基站利用第一UE的SINR调整值所对应的MCS对第一小区的第一UE进行调度。
相对于现有技术,通过获取其他用户设备的调度信息,能够考虑其他用户设备对当前用户设备的干扰因素,提高了基站计算当前小区被调度的用户设备的SINR预测值的精度,从而根据所述SINR预测值选择MCS,提高了MCS选择的准确性,进而提高了无线通信系统吞吐率。
需要说明的是,处理器还用于执行用户设备需要进行上行数据 传输或下行数据传输的具体步骤,可以参考方法侧的描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围 并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种自适应调制编码的方法,其特征在于,包括:
    获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率;
    获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率;
    根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值;
    根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值;
    根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
  2. 根据权利要求1所述的自适应调制编码的方法,其特征在于,当所述第一用户设备需要进行上行数据传输时,所述根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的SINR预测值包括:
    若所述第二用户设备使用的资源块与所述第一用户设备使用的资源块相同,在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;
    根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
  3. 根据权利要求2所述的自适应调制编码的方法,其特征在于,所述根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值包括:
    根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信 息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
  4. 根据权利要求2所述的自适应调制编码的方法,其特征在于,所述根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值包括:
    根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
  5. 根据权利要求3或4所述的自适应调制编码的方法,其特征在于,所述第一用户设备为协作多点CoMP用户设备且非多用户多输入多输出MU-MIMO用户设备,
    或者,所述第一用户设备为MU-MIMO用户设备且非CoMP用户设备,
    或者,所述第一用户设备既是CoMP用户设备又是MU-MIMO用户设备,
    或者,所述第一用户设备既不是CoMP用户设备又不是MU-MIMO用户设备。
  6. 根据权利要求1所述的自适应调制编码的方法,其特征在于,当所述第一用户设备需要进行下行行数据传输时,所述根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的SINR预测值包括:
    若所述第二小区使用的资源块与所述第一小区使用的资源块相同,在所述资源块上获取所述第一小区到所述第一用户设备的测量 信息和对所述第一用户设备的干扰预测信息,所述第一小区为所述基站向所述第一用户设备发送信息的小区;
    根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
  7. 根据权利要求6所述的自适应调制编码的方法,其特征在于,所述根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值包括:
    根据所述第一小区到所述第一用户设备的信道信息、所述第一小区对所述第一用户设备的发射功率、所述第一用户设备上报的信道质量指示、所述第二小区到所述第一用户设备的信道信息、所述第二小区在所述资源块上的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
  8. 一种基站,其特征在于,包括:
    获取单元,用于获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率;
    所述获取单元还用于获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率;
    处理单元,用于根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值;
    所述处理单元还用于根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值;
    所述处理单元还用于根据SINR与调制编码方式MCS的对应关 系,确定所述第一用户设备的SINR调整值所对应的MCS。
  9. 根据权利要求8所述的基站,其特征在于,当所述第一用户设备需要进行上行数据传输时,所述处理单元具体用于:
    若所述第二用户设备使用的资源块与所述第一用户设备使用的资源块相同,在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;
    根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
  10. 根据权利要求9所述的基站,其特征在于,所述处理单元具体用于:
    根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
  11. 根据权利要求9所述的基站,其特征在于,所述处理单元具体用于:
    根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
  12. 根据权利要求10或11所述的基站,其特征在于,所述第一用户设备为协作多点CoMP用户设备且非多用户多输入多输出MU-MIMO用户设备,
    或者,所述第一用户设备为MU-MIMO用户设备且非CoMP用 户设备,
    或者,所述第一用户设备既是CoMP用户设备又是MU-MIMO用户设备,
    或者,所述第一用户设备既不是CoMP用户设备又不是MU-MIMO用户设备。
  13. 根据权利要求8所述的基站,其特征在于,当所述第一用户设备需要进行下行行数据传输时,所述处理单元具体用于:
    若所述第二小区使用的资源块与所述第一小区使用的资源块相同,在所述资源块上获取所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息,所述第一小区为所述基站向所述第一用户设备发送信息的小区;
    根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
  14. 根据权利要求13所述的基站,其特征在于,所述处理单元具体用于:
    根据所述第一小区到所述第一用户设备的信道信息、所述第一小区对所述第一用户设备的发射功率、所述第一用户设备上报的信道质量指示、所述第二小区到所述第一用户设备的信道信息、所述第二小区在所述资源块上的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
  15. 一种基站,其特征在于,包括:
    存储器,用于存储程序代码;
    处理器,用于调用所述存储器存储的程序代码执行如下方法:获取第一用户设备在第一小区中的调度信息,所述调度信息包括为所述第一用户设备所分配的资源块和发射功率;
    所述处理器执行的方法还包括:
    获取第二小区的第二用户设备的调度信息,所述调度信息包括为所述第二用户设备所分配的资源块和发射功率;
    所述处理器还用于:根据所述第一用户设备在第一小区中的调度信息以及所述第二小区的第二用户设备的调度信息获取所述第一用户设备的信号与干扰加噪声比SINR预测值;
    所述处理器还用于:根据所述SINR预测值与SINR调整量获得所述第一用户设备的SINR调整值;
    所述处理器还用于:根据SINR与调制编码方式MCS的对应关系,确定所述第一用户设备的SINR调整值所对应的MCS。
  16. 根据权利要求15所述的基站,其特征在于,当所述第一用户设备需要进行上行数据传输时,所述处理器具体用于:
    若所述第二用户设备使用的资源块与所述第一用户设备使用的资源块相同,在所述资源块上获取所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息;
    根据所述第一用户设备到所述第一小区的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
  17. 根据权利要求16所述的基站,其特征在于,所述处理器具体用于:
    根据所述第一用户设备到所述第一小区的信道信息、所述第一用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计,计算所述SINR预测值,所述信道信息包括信道响应估计。
  18. 根据权利要求16所述的基站,其特征在于,所述处理器具体用于:
    根据所述第一用户设备到所述第一小区的信道信息、所述第一 用户设备的发射功率、所述第二用户设备到所述第一小区的信道信息、所述第二用户设备的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
  19. 根据权利要求17或18所述的基站,其特征在于,所述第一用户设备为协作多点CoMP用户设备且非多用户多输入多输出MU-MIMO用户设备,
    或者,所述第一用户设备为MU-MIMO用户设备且非CoMP用户设备,
    或者,所述第一用户设备既是CoMP用户设备又是MU-MIMO用户设备,
    或者,所述第一用户设备既不是CoMP用户设备又不是MU-MIMO用户设备。
  20. 根据权利要求15所述的基站,其特征在于,当所述第一用户设备需要进行下行行数据传输时,所述处理器具体用于:
    若所述第二小区使用的资源块与所述第一小区使用的资源块相同,在所述资源块上获取所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息,所述第一小区为所述基站向所述第一用户设备发送信息的小区;
    根据所述第一小区到所述第一用户设备的测量信息和对所述第一用户设备的干扰预测信息计算所述SINR预测值。
  21. 根据权利要求20所述的基站,其特征在于,所述处理器具体用于:
    根据所述第一小区到所述第一用户设备的信道信息、所述第一小区对所述第一用户设备的发射功率、所述第一用户设备上报的信道质量指示、所述第二小区到所述第一用户设备的信道信息、所述 第二小区在所述资源块上的发射功率以及除所述第一小区和所述第二小区之外的对所述第一用户设备的干扰噪声估计修正所述第一用户设备的SINR历史测量值,计算所述SINR预测值,所述信道信息包括参考信号接收功率和/或参考信号接收质量。
PCT/CN2014/089592 2014-10-27 2014-10-27 一种自适应调制编码的方法及装置 WO2016065516A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14904681.5A EP3214884B1 (en) 2014-10-27 2014-10-27 Method and device for adaptive modulation and coding
JP2017517281A JP6604378B2 (ja) 2014-10-27 2014-10-27 適応変調コーディングの方法および装置
PCT/CN2014/089592 WO2016065516A1 (zh) 2014-10-27 2014-10-27 一种自适应调制编码的方法及装置
CN201480029672.3A CN105745985B (zh) 2014-10-27 2014-10-27 一种自适应调制编码的方法及装置
KR1020167016871A KR20160089486A (ko) 2014-10-27 2014-10-27 적응적 변조 및 코딩 방법과 장치
US15/498,187 US10230489B2 (en) 2014-10-27 2017-04-26 Adaptive modulation and coding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/089592 WO2016065516A1 (zh) 2014-10-27 2014-10-27 一种自适应调制编码的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/498,187 Continuation US10230489B2 (en) 2014-10-27 2017-04-26 Adaptive modulation and coding method and apparatus

Publications (1)

Publication Number Publication Date
WO2016065516A1 true WO2016065516A1 (zh) 2016-05-06

Family

ID=55856340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089592 WO2016065516A1 (zh) 2014-10-27 2014-10-27 一种自适应调制编码的方法及装置

Country Status (6)

Country Link
US (1) US10230489B2 (zh)
EP (1) EP3214884B1 (zh)
JP (1) JP6604378B2 (zh)
KR (1) KR20160089486A (zh)
CN (1) CN105745985B (zh)
WO (1) WO2016065516A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629757A (zh) * 2020-12-14 2022-06-14 中国科学院上海高等研究院 用于非正交传输的调制策略选择方法、系统、存储介质及终端

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018224133A1 (en) 2017-06-07 2018-12-13 Huawei Technologies Co., Ltd. Client device, network node and methods thereof
CN109309932A (zh) * 2017-07-27 2019-02-05 普天信息技术有限公司 一种专网无线通信系统通信终端监控方法和装置
CN110611900B (zh) * 2018-06-14 2021-03-12 大唐移动通信设备有限公司 一种mpdcch调度方法及装置
CN111954309A (zh) * 2019-05-17 2020-11-17 株式会社Ntt都科摩 终端和基站
EP4128560A1 (en) * 2020-03-31 2023-02-08 Telefonaktiebolaget LM Ericsson (publ.) Channel quality indication (cqi) saturation mitigation
CN113242064B (zh) * 2021-05-12 2022-06-21 上海科技大学 基于用户空域特征和信道预测的多小区调度方法
WO2023075562A1 (ko) * 2021-11-01 2023-05-04 삼성전자 주식회사 기지국 협력 통신 시스템의 링크 적응을 수행하는 기지국 및 그 동작

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101711058A (zh) * 2009-12-15 2010-05-19 中兴通讯股份有限公司 一种资源分配方法和系统
CN101895994A (zh) * 2010-07-21 2010-11-24 华为技术有限公司 多点协作集更新方法及装置、基站
CN102036393A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 多小区信道信息的确定方法和设备
CN103475450A (zh) * 2013-08-29 2013-12-25 上海华为技术有限公司 一种下行自适应调制编码的方法及装置
CN103718635A (zh) * 2013-03-14 2014-04-09 华为技术有限公司 一种调度用户设备的方法及基站
WO2014175793A1 (en) * 2013-04-24 2014-10-30 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for link adaptation in a wireless communications network

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2501175B1 (en) * 2011-03-17 2015-11-25 Nokia Technologies Oy Distributed capacity based channel assignment for communication systems
EP2692076B1 (en) * 2011-03-31 2019-01-23 Telefonaktiebolaget LM Ericsson (publ) Method and network node for determining channel state information in an upcoming time slot
KR20140021676A (ko) * 2011-06-29 2014-02-20 후지쯔 가부시끼가이샤 간섭층들의 표시를 위한 다운링크 제어 시그널링
US8848560B2 (en) * 2011-11-04 2014-09-30 Blackberry Limited Apparatus and method for adaptive transmission during almost blank subframes in a wireless communication network
US9049730B2 (en) * 2011-11-14 2015-06-02 Qualcomm Incorporated Uplink data transmission with interference mitigation
US9319928B2 (en) * 2012-01-18 2016-04-19 Texas Instruments Incorporated Link adaptation for LTE uplink
US8717927B2 (en) * 2012-03-15 2014-05-06 Telefonaktiebolaget L M Ericsson (Publ) Combining channel quality measurements based on sounding reference signals and demodulation reference signals
TW201351940A (zh) * 2012-06-07 2013-12-16 Ericsson Telefon Ab L M 用於協調多點下行鏈路傳輸之網路中心連接調適
CN103731923B (zh) * 2012-10-12 2017-12-26 电信科学技术研究院 多用户调度方法和设备
CN103404188B (zh) 2012-12-27 2017-06-16 华为技术有限公司 频谱资源共享方法及基站
KR102006746B1 (ko) * 2013-01-08 2019-08-05 삼성전자 주식회사 이동통신 시스템에서 상향링크 amc 운용을 위한 방법 및 장치
JP5875540B2 (ja) * 2013-02-12 2016-03-02 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム、及び無線通信方法
EP2787670A1 (en) * 2013-04-05 2014-10-08 Panasonic Intellectual Property Corporation of America MCS table adaptation for 256-QAM
US10356623B2 (en) * 2013-09-24 2019-07-16 Qualcomm Incorporated Techniques for performing carrier sense adaptive transmission in unlicensed spectrum
US20170222773A1 (en) * 2014-08-11 2017-08-03 Nokia Solutions And Networks Oy Inter-Cell Interference Coordination in Heterogeneous Networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036393A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 多小区信道信息的确定方法和设备
CN101711058A (zh) * 2009-12-15 2010-05-19 中兴通讯股份有限公司 一种资源分配方法和系统
CN101895994A (zh) * 2010-07-21 2010-11-24 华为技术有限公司 多点协作集更新方法及装置、基站
CN103718635A (zh) * 2013-03-14 2014-04-09 华为技术有限公司 一种调度用户设备的方法及基站
WO2014175793A1 (en) * 2013-04-24 2014-10-30 Telefonaktiebolaget L M Ericsson (Publ) Method and network node for link adaptation in a wireless communications network
CN103475450A (zh) * 2013-08-29 2013-12-25 上海华为技术有限公司 一种下行自适应调制编码的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214884A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629757A (zh) * 2020-12-14 2022-06-14 中国科学院上海高等研究院 用于非正交传输的调制策略选择方法、系统、存储介质及终端
CN114629757B (zh) * 2020-12-14 2023-03-21 中国科学院上海高等研究院 用于非正交传输的调制策略选择方法、系统、存储介质及终端

Also Published As

Publication number Publication date
EP3214884B1 (en) 2019-06-19
JP2017536003A (ja) 2017-11-30
US10230489B2 (en) 2019-03-12
KR20160089486A (ko) 2016-07-27
EP3214884A4 (en) 2017-11-22
EP3214884A1 (en) 2017-09-06
CN105745985A (zh) 2016-07-06
US20170230137A1 (en) 2017-08-10
JP6604378B2 (ja) 2019-11-13
CN105745985B (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
US10536952B2 (en) Method and apparatus for transmitting and receiving feedback for cooperative communication system
WO2016065516A1 (zh) 一种自适应调制编码的方法及装置
EP2557834B1 (en) Base station device, mobile station device and reference signal transmission method
KR101548577B1 (ko) 채널 품질 지시자의 보고 방법, 장치 및 시스템
KR101368840B1 (ko) 협력 멀티 포인트 전송 시스템의 다운 링크 전송 제어 방법 및 장치
KR102199653B1 (ko) 간섭 제거 및 억제 수신기를 이용한 csi 강화를 위한 사용자 장치 및 방법
JP6006332B2 (ja) 基地局、プロセッサ、通信制御方法及びユーザ端末
US10390316B2 (en) Methods of enabling measurements for handling of a device-to-device D2D side link in a cellular system
EP2779781B1 (en) Wireless communication system, interferometry method, wireless base station device, and user terminal
US9794818B2 (en) Method for acquiring channel quality indicator, user equipment, evolved node B and system
EP2795825A1 (en) Method, apparatus and computer program for providing sounding reference signals for coordinated multipoint transmissions
JP2015104133A (ja) Ueの送信電力を決定するデバイス及び方法
KR101799475B1 (ko) 데이터 송신 방법 및 장치
CN104471887A (zh) 用于指派探测资源的方法和接入点
US9930688B2 (en) Method and device for enabling downlink coordinated multipoint communication
WO2016149923A1 (zh) 一种数据传输方法及装置
WO2016082085A1 (zh) 一种自适应调制编码的方法及装置
TW201739306A (zh) 使用者裝置及基地台
WO2015188876A1 (en) Network assisted interference cancellation and suppression for cqi reports in communication network
CN111385861A (zh) 下行业务信道干扰协调方法和装置
JP2018011189A (ja) 基地局装置、無線通信システム及び基地局装置制御方法
WO2013091215A1 (en) Methods and apparatus for feedback and signaling management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167016871

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014904681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014904681

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017517281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE