WO2016063362A1 - Control system for air-conditioning device and control method for air-conditioning device - Google Patents

Control system for air-conditioning device and control method for air-conditioning device Download PDF

Info

Publication number
WO2016063362A1
WO2016063362A1 PCT/JP2014/078000 JP2014078000W WO2016063362A1 WO 2016063362 A1 WO2016063362 A1 WO 2016063362A1 JP 2014078000 W JP2014078000 W JP 2014078000W WO 2016063362 A1 WO2016063362 A1 WO 2016063362A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
usage
units
heat
control device
Prior art date
Application number
PCT/JP2014/078000
Other languages
French (fr)
Japanese (ja)
Inventor
大村 浩史
▲高▼田 茂生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/078000 priority Critical patent/WO2016063362A1/en
Priority to JP2016554990A priority patent/JP6223592B2/en
Priority to GB1706480.9A priority patent/GB2545872C/en
Publication of WO2016063362A1 publication Critical patent/WO2016063362A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps

Definitions

  • the present invention relates to an air conditioner control system and an air conditioner control method for controlling an air conditioner including a plurality of heat source units and a plurality of use side units.
  • an air conditioner including a plurality of heat source units and a plurality of use side units
  • a heat exchange between a primary side heat medium such as a refrigerant and a secondary side heat medium such as water is performed on the secondary side.
  • Such an air conditioner may be referred to as a fan coil air conditioner.
  • the conventional fan coil type air conditioner consolidates the operation signal of the use side unit (also referred to as fan coil unit), the status signal of the motor operated valve, the status signal of the secondary side pump, and the status signal of the heat source unit into a computer,
  • the number control of the heat source machines is realized (for example, refer to Patent Document 1).
  • the use side unit (fan coil unit) and the heat source equipment manufacturer may be different.
  • the control operation of the control unit that controls the use side unit and the heat source unit There is a problem that it is necessary to set the control operation of the control device to be controlled separately. For example, it is necessary to set each program of a computer that controls the use-side unit and a computer program that controls the heat source unit.
  • a centralized management device that centrally manages a plurality of heat source units and a plurality of usage-side units may be provided.
  • a program for the centralized management device according to a different system configuration for each property where the air conditioner is installed.
  • the operating capacity required for the heat source unit may change depending on the operating state of the plurality of use side units.
  • the operation efficiency of the plurality of heat source units is unbalanced, and the system efficiency of the entire system is lowered.
  • the present invention has been made to solve the above-described problems, and a first object is to integrate the control of the use side unit and the control of the heat source unit so as to be adapted to the system configuration of the air conditioner. It is possible to obtain an air conditioner control system and an air conditioner control method that can eliminate the need for adjustment of contents and can be constructed at low cost.
  • the 2nd objective is the control system of the air conditioning apparatus which can suppress the influence on the utilization side unit of the driving
  • the control system of the air conditioner according to the present invention includes a plurality of heat source units each having an intermediate heat exchanger for exchanging heat between a primary side heat medium and a secondary side heat medium, and pipe connection to the heat source unit, A plurality of usage-side units each having a usage-side heat exchanger for exchanging heat between the secondary-side heat medium and air, and a control system for the air-conditioning apparatus that controls the air-conditioning apparatus.
  • a plurality of use side control devices that are provided in each of the use side units and respectively control the plurality of use side units, and a plurality of heat sources that are provided in each of the plurality of heat source units and respectively control the plurality of heat source units.
  • a side control device wherein the use side control device communicates with each of the plurality of heat source side control devices, and the heat source side control device is the heat source side control device of the plurality of use side units.
  • the use side control device communicates with each of the plurality of heat source side control devices
  • the heat source side control device is the heat source side control device of the plurality of use side units.
  • the control method of the air conditioner according to the present invention includes a plurality of heat source units each having an intermediate heat exchanger for exchanging heat between the primary side heat medium and the secondary side heat medium, and pipe connection to the heat source unit, A plurality of usage-side units each having a usage-side heat exchanger that exchanges heat between the secondary-side heat medium and air, and a plurality of usage-side units that are provided in each of the plurality of usage-side units and control the plurality of usage-side units
  • a control method for an air conditioner comprising: the use side control device; and a plurality of heat source side control devices that are provided in each of the plurality of heat source units and control the plurality of heat source units, respectively.
  • a use-side control device communicating with each of the plurality of heat-source-side control devices to transmit information on an operating state of the use-side unit; and the heat-source-side control device is connected to the plurality of use-side units. Depending on the operating state of one or more of the use-side unit that work, those having, and controlling the operation of the heat source apparatus.
  • the present invention controls the operation of the heat source unit according to the operating state of one or a plurality of usage-side units that operate in cooperation among the plurality of usage-side units, the control content adapted to the system configuration of the air conditioner Therefore, the system can be constructed at low cost.
  • FIG. 1 is a diagram illustrating a configuration of a control system for an air-conditioning apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the structure of the heat source machine in Embodiment 1.
  • FIG. FIG. 3 is a diagram showing a configuration of a fan coil unit in the first embodiment.
  • 3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1.
  • 3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1.
  • 3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1.
  • 3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1.
  • 3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1.
  • 6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1.
  • 6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2.
  • 6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2.
  • 6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2.
  • 6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2.
  • FIG. (Constitution) 1 is a diagram illustrating a configuration of a control system for an air-conditioning apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a diagram showing a configuration of the heat source device in the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration of the fan coil unit according to the first embodiment. 1 to 3, the air conditioner 100 includes a plurality of heat source units 1 and a plurality of indoor units 3.
  • Each of the plurality of heat source units 1 includes an intermediate heat exchanger 11 that exchanges heat between a primary side heat medium (for example, a refrigerant) and a secondary side heat medium (for example, water).
  • a primary side heat medium for example, a refrigerant
  • a secondary side heat medium for example, water
  • Each of the plurality of indoor units 3 includes a use side heat exchanger 30 that exchanges heat between the secondary heat medium and the air.
  • a plurality of heat source units 1 are connected in parallel to a secondary refrigerant pipe 5 via a pump 2 for circulating a secondary refrigerant.
  • the plurality of indoor units 3 are connected in parallel to the secondary refrigerant pipe 5 via the electric valve 4.
  • the indoor unit 3 corresponds to a “use unit” in the present invention.
  • the indoor unit 3 is also referred to as a fan coil unit (FCU).
  • Each of the plurality of heat source units 1 includes a compressor 10, a four-way valve 15 that is a flow path switching device, a heat source side heat exchanger 13, a pressure reducing device 12 such as a throttle valve, and an intermediate heat exchanger 11 that are sequentially connected by piping.
  • a refrigerant circuit in which a refrigerant as a primary heat medium circulates is provided.
  • a blower 14 that blows air to the heat source side heat exchanger 13 is provided.
  • the intermediate heat exchanger 11 acts as a condenser and the heat source side heat exchanger 13 acts as an evaporator
  • the intermediate heat exchanger 11 serves as an evaporator.
  • Each of the plurality of indoor units 3 includes a use side heat exchanger 30 and a blower 31.
  • the secondary side heat medium (for example, water) flowing through the use side heat exchanger 30 and the indoor air blown by the blower 31 exchange heat.
  • the control system of the air conditioning apparatus 100 includes a plurality of heat source side control devices 50 provided in each of the plurality of heat source units 1 and a plurality of usage sides provided in each of the plurality of indoor units 3. And a control device 60.
  • remote controllers 7 are connected to the plurality of indoor units 3, respectively, and can be operated individually.
  • the plurality of heat source side control devices 50 and the plurality of use side control devices 60 are connected by a communication transmission line 6.
  • the integrated controller 8 that is a centralized management device that controls the entire air conditioning apparatus 100 may be connected to the communication transmission line 6.
  • the heat source side control device 50, the use side control device 60, and the integrated controller 8 can be realized by hardware such as a circuit device that realizes these functions, or are executed on an arithmetic device such as a microcomputer or a CPU. It can also be realized as software.
  • the use side control device 60 communicates with each of the plurality of heat source side control devices 50, and the heat source side control device 50 includes the plurality of indoor units 3.
  • the operation of the heat source unit 1 is controlled in accordance with the operation state of the one or more indoor units 3 that operate in cooperation. The details of such operation will be described below.
  • the control system of the air conditioning apparatus 100 determines the correspondence relationship between the heat source unit 1 that operates in cooperation with one or a plurality of indoor units 3, and communicates between the heat source side control device 50 and the use side control device 60. It is set (linked) from the relationship of the business address.
  • the integrated controller 8 is not an essential structure and may be abbreviate
  • the communication addresses of the heat source side control device 50 and the use side control device 60 are assigned according to preset assignment conditions. For example, an address number belonging to a preset first range is set as the communication address of the use-side control device 60, and the assignment condition is a second different from the first range as the communication address of the heat source-side control device 50. An address number belonging to the range is set. And the cooperation relationship between the heat source unit 1 and the indoor unit 3 is determined based on a preset search condition. As this search condition, for example, a preset value is added to or subtracted from the communication address of the heat source side control device 50. Specifically, an address in the range of “1” to “50” is assigned as the communication address of the use side control device 60 of the indoor unit 3.
  • FIG. 4 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. Hereinafter, a description will be given based on each step of FIG.
  • Steps S1 to S7 are steps for searching for another heat source unit 1.
  • the heat source side control device 50 confirms the communication address set to itself (hereinafter, self-address), and proceeds to step S2.
  • the heat source side control device 50 sets the search address to self address +1, and proceeds to step S3.
  • step S ⁇ b> 3 the heat source side control device 50 acquires the communication address of the device connected to the transmission line 6, and determines whether there is a heat source side control device 50 to which a communication address that matches the search address exists. To do. If the condition of step S3 is satisfied, the process proceeds to step S7. If not satisfied, the process proceeds to step S4.
  • step S4 the heat source side control device 50 determines whether or not the search address is the maximum value of the range of communication addresses given to the heat source side control device 50. For example, when an address in the range of “51” to “100” is assigned as the communication address of the heat source side control device 50, it is determined whether or not the search address is “100”. If the condition of step S4 is satisfied, the process proceeds to step S6. Otherwise, the process proceeds to step S5.
  • step S5 the heat source side control device 50 adds “1” to the search address and returns to step S3.
  • step S6 the heat source side control device 50 adds “1” to the search address, and proceeds to step S7.
  • Steps S8 to S12 are steps for searching for the indoor unit 3 to be linked.
  • the heat source side control device 50 sets the search address to self address -50, and proceeds to step S9. For example, when the self address is “51”, the search address is “1”.
  • step S9 the heat-source-side control device 50 acquires the communication address of the device connected to the transmission line 6, and determines whether there is a usage-side control device 60 to which a communication address that matches the search address exists. To do. If the condition of step S9 is satisfied, the process proceeds to step S10. If not satisfied, the process proceeds to step S11.
  • step S10 the heat-source-side control device 50 communicates with the use-side control device 60 to which the communication address that matches the search address is assigned, and stores the data acquired from the use-side control device 60, for example, in a storage area table.
  • the data acquired from the use side control device 60 includes, for example, a communication address, the driving capability of the indoor unit 3, and the operating mode of the indoor unit 3.
  • step S11 the heat source side control device 50 adds “1” to the search address, and proceeds to step S12.
  • step S12 the heat source side control device 50 determines whether or not the search address is equal to or less than the self address ⁇ 50 + the number of searches. If the condition of step S12 is satisfied, the process returns to step S9. If not satisfied, the operation process is terminated. For example, when the self address is “51” and the number of searches is “9”, the operation of searching for the linked indoor unit 3 is repeated until the search address exceeds “10”. This operation is performed by each of the plurality of heat source side control devices 50.
  • each of the plurality of heat source side control devices 50 can identify one or a plurality of indoor units 3 that cooperate with the heat source unit 1 that it controls. Further, in the heat source side control device 50 and the use side control device 60, it is not necessary to set the cooperation relationship between the heat source unit 1 and the indoor unit 3 in advance, and adjustment of the control content adapted to the system configuration of the air conditioner 100 is performed. It can be reduced and the system can be constructed at low cost. For example, even when the manufacturer of the indoor unit 3 (fan coil unit) and the heat source unit 1 are different, adjustment of the control content can be reduced.
  • FIG. 5 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. The operation of the remote controller 7 will be described based on the steps in FIG.
  • step S21 the remote controller 7 sets the operation mode setting as the initial state in the stopped state, and proceeds to step S22.
  • step S22 the remote controller 7 determines whether or not a driving operation has been performed by the user. If the driving operation has been performed, the process returns to step S23, and if not, the process returns to step S21.
  • step S23 the remote controller 7 transmits the instruction information instructing the operating state to the use side control device 60 of the indoor unit 3 that is the operation target of the remote controller 7, and the process proceeds to step S24.
  • step S24 it is determined whether or not a stop operation has been performed by the user. If the stop operation has been performed, the process returns to step S25, and if not, the process returns to step S24.
  • step S25 the remote controller 7 transmits the instruction information instructing the stop state to the use side control device 60 of the indoor unit 3 that is the operation target of the remote controller 7, and the process returns to step S21.
  • FIG. 6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. Based on each step of FIG. 6, the operation of the use side control device 60 of the indoor unit 3 will be described.
  • step S31 the use-side control device 60 confirms whether or not instruction information has been received from the remote controller 7, and if there is, proceeds to step S32, otherwise returns to step S31.
  • step S32 the use side control device 60 transmits state information corresponding to the instruction information to the heat source side control device 50 of the heat source unit 1 that cooperates with the indoor unit 3, and the process proceeds to step S33.
  • step S33 the use side control device 60 performs air volume control of the blower 31 of the indoor unit 3 and open / close control of the motor valve 4 of the secondary refrigerant corresponding to the indoor unit 3 according to the instruction information, and step Return to S31.
  • FIG. 7 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. Based on each step of FIG. 7, operation
  • the heat source side control device 50 confirms whether or not state information has been received from the use side control device 60 of the cooperating indoor unit 3, and if there is, proceeds to step S42, otherwise proceeds to step S44.
  • step S42 based on the received state information, the heat source side control device 50 extracts the indoor unit 3 whose operating state is the operating state from the one or more indoor units 3 that operate in cooperation, and The total driving ability which is the total value of the driving ability of the machine 3 is obtained, and the process proceeds to step S43.
  • step S43 the heat source side control device 50 transmits information on the total operating capacity to the integrated controller 8, and proceeds to step S44.
  • step S44 the heat source side control device 50 confirms whether or not information on the total operation capability for control described later has been received from the integrated controller 8, and if there is, proceeds to step S46, otherwise proceeds to step S45.
  • step S45 the heat-source-side control device 50 substitutes and uses the total operating capacity calculated in step S42 as the control total operating capacity, and proceeds to step S46.
  • step S46 the heat source side control device 50 controls the number of rotations of the compressor 10 of the heat source unit 1, the amount of blown air from the blower 14, and the rotation of the pump 2 of the secondary refrigerant according to the total operating capacity for control. Control the amount of energy supplied from the heat source unit 1 to the secondary refrigerant, such as the number, and return to step S41. That is, when the heat source side control device 50 receives information on the total operation capability for control from the integrated controller 8, the operation capability of the heat source apparatus 1 is controlled according to the total operation capability for control. On the other hand, when the information on the total operating capacity for control is not received from the integrated controller 8, the operating capacity of the heat source unit 1 is controlled according to the total operating capacity obtained by itself.
  • FIG. 8 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. The operation of the integrated controller 8 will be described based on the steps in FIG.
  • step S51 the integrated controller 8 confirms whether information on the total operating capacity has been received from the heat source side control device 50 of each heat source machine 1, and if there is, proceeds to step S53, and if not, proceeds to step S52.
  • step S52 the integrated controller 8 determines whether or not a predetermined period preset as a reception waiting period has elapsed. If the predetermined time has not elapsed, the process returns to step S51, and if it has elapsed, the process proceeds to step S53. .
  • step S53 the integrated controller 8 calculates the total capacity for control obtained by distributing the total of the total operation capacity acquired from each of the heat source side control devices 50 of each heat source apparatus 1 to each of the plurality of heat source apparatuses 1. Proceed to S54.
  • the calculation of the total operating capacity for control is, for example, distributed including the provision of the heat source unit 1 forcibly stopped so that the heat source unit 1 can operate as efficiently as possible, or during heating by defrost control.
  • the heating capacity + defrosting capacity shared by the heat source unit 1 in the defrosting operation so that the total heating capacity is satisfied Or distribute to 1.
  • the integrated controller 8 calculates the total of the total operation capacity and the operation mode is the heating operation.
  • the total operating capacity for control which is apportioned to the heat source unit 1, is obtained.
  • the calculation method of the total driving capability for control is not limited to this.
  • the total of the total operating capacity may be equally distributed to each of the plurality of heat source devices 1.
  • the total of the total driving ability may be prorated according to an arbitrarily set weighting coefficient or the like.
  • step S54 the integrated controller 8 transmits information on the total operation capability for control to the heat source side control device 50 of each heat source machine 1, and returns to step S51.
  • the control system of the air conditioning apparatus 100 is configured to provide the use-side control device 60 in the indoor unit 3 and perform control in cooperation with the heat source-side control device 50 of the heat source unit 1 through communication. I have to.
  • the fan coil type (water type) air conditioner 100 including the remote controller 7 and the integrated controller 8, the same system design as the conventional direct expansion type air conditioner 100 can be easily made possible.
  • the components such as the remote controller 7 and the integrated controller 8 developed for the direct expansion system be shared and effectively used, but it is also easy to construct a mixed system of the fan coil system and the direct expansion system. .
  • a simple system construction can be realized by defining the relationship of cooperation between the indoor unit 3 and the heat source unit 1. Furthermore, since the total operating capacity for control is obtained by the integrated controller 8 and the operating capacity of each heat source apparatus 1 is apportioned, efficient operation of the heat source apparatus 1 can be realized. In addition, the use-side control device 60 improves the degree of freedom in selecting the main body of the indoor unit 3 and makes it easy to combine those having a special shape and ability according to the property.
  • Embodiment 2 FIG. In the said Embodiment 1, the correspondence of the heat source machine 1 which operate
  • the control system of the air conditioner 100 according to the second embodiment includes, for example, the indoor unit 3 and the heat source based on the address arrangement, such as a large-scale property in which the number of the indoor units 3 and the heat source unit 1 exceeds the communication address setting range. This is effective when the cooperation rule of the machine 1 cannot be set.
  • the configuration of the control system of the air conditioning apparatus 100 in the second embodiment is the same as that in the first embodiment, and the same reference numerals are given to the same parts. Note that the communication address assignment condition and the cooperation setting operation described in the first embodiment may be omitted, and an arbitrary communication address may be set. In the second embodiment, the integrated controller 8 is an essential component requirement.
  • FIG. 9 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. Based on each step of FIG. 9, the operation of the remote controller 7 will be described.
  • step S61 the remote controller 7 is set to the stop state as the initial state of the operation mode setting, and proceeds to step S62.
  • step S62 the remote controller 7 determines whether or not a driving operation has been performed by the user. If the driving operation has been performed, the process returns to step S63, and if not, the process returns to step S61.
  • step S63 the remote controller 7 transmits instruction information for instructing an operation state to the use side control device 60 of the indoor unit 3 to be operated by the remote controller 7 and the integrated controller 8, and the process proceeds to step S64. move on.
  • step S64 it is determined whether or not a stop operation has been performed by the user. If the stop operation has been performed, the process returns to step S65, and if not, the process returns to step S64.
  • step S65 the remote controller 7 transmits the instruction information instructing the stop state to the use side control device 60 of the indoor unit 3 and the integrated controller 8 that are to be operated by the remote controller 7, and the process proceeds to step S61. Return.
  • FIG. 10 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. Based on each step of FIG. 10, operation
  • the use side control device 60 confirms whether or not the instruction information has been received from the remote controller 7, and if there is, proceeds to step S72, otherwise returns to step S71.
  • the use-side control device 60 performs the air volume control of the blower 31 of the indoor unit 3 and the opening / closing control of the motor valve 4 of the secondary refrigerant corresponding to the indoor unit 3 according to the instruction information. Return to S71.
  • FIG. 11 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. The operation of the integrated controller 8 will be described based on the steps in FIG. In step S81, the integrated controller 8 confirms whether instruction information has been received from the remote controller 7, and if there is, proceeds to step S82, otherwise returns to step S81.
  • step S82 the integrated controller 8 is a total value of the driving capabilities of the indoor units 3 whose operation state is the operating state among the plurality of indoor units 3 based on the instruction information acquired from each of the plurality of remote controllers 7. Find a certain grand total driving ability. Then, the integrated controller 8 calculates the total capacity for control obtained by apportioning the total meter operating capacity to each of the plurality of heat source units 1, and proceeds to Step S83.
  • the calculation of the total operating capacity for control is, for example, distributed including the provision of the heat source unit 1 forcibly stopped so that the heat source unit 1 can operate as efficiently as possible, or during heating by defrost control.
  • the heating capacity + defrosting capacity shared by the heat source unit 1 in the defrosting operation so that the total heating capacity is satisfied Or distribute to 1.
  • the integrated controller 8 has the total operation capacity and the heat source whose operation mode is the heating operation.
  • the total operating capacity for control which is apportioned to the machine 1, is obtained.
  • the calculation method of the total driving capability for control is not limited to this.
  • the total operation capacity may be equally distributed to each of the plurality of heat source units 1. Further, the total operation capacity may be apportioned at a ratio according to the heat exchange capacity of each heat source unit 1. Further, the total operation capacity may be prorated according to an arbitrarily set weighting coefficient or the like.
  • step S83 the integrated controller 8 transmits information on the total operation capability for control to the heat source side control device 50 of each heat source machine 1, and returns to step S81.
  • FIG. 12 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. Based on each step of FIG. 12, operation
  • the heat source side control device 50 confirms whether or not the information on the total operating capability for control has been received from the integrated controller 8, and if there is, proceeds to step S92, otherwise returns to step S91.
  • step S92 the heat source side control device 50 controls the number of rotations of the compressor 10 of the heat source unit 1, the amount of blown air of the blower 14, and the rotation of the pump 2 of the secondary refrigerant according to the total operating capacity for control. Control the amount of energy supplied from the heat source unit 1 to the secondary refrigerant, such as the number, and return to step S91.
  • the control system of the air conditioning apparatus 100 has the use-side control device 60 installed in the indoor unit 3 and the integrated controller 8 is appropriate according to the operating state of many indoor units 3.
  • the operation control of the heat source machine 1 is performed.
  • the conventional direct expansion including the remote controller 7 and the integrated controller 8 in the fan coil type (water type) air conditioner 100 without any restrictions on the number of connected indoor units 3 and the address setting of each device.
  • the system design similar to that of the air conditioner can be easily made possible.
  • the remote controller 7 and the integrated controller 8 developed for direct expansion can be shared and used effectively, and it is easy to build a mixed system of fan coil and direct expansion systems. Become.
  • the use-side control device 60 improves the degree of freedom in selecting the main body of the indoor unit 3 and makes it easy to combine those having a special shape and ability according to the property.
  • the configuration of the heat source unit 1 includes the refrigerant circuit in which the refrigerant circulates has been described.
  • the configuration of the heat source unit 1 is not limited to this. Needless to say, it can be used not only for the air-cooled heat pump chiller but also for other heat source devices 1 such as a water-cooled heat pump chiller and an absorption chiller.
  • the secondary heat medium is not limited to water.
  • the indoor unit 3 is applicable not only to a 2-tube type but also to a 4-pipe type.
  • Embodiment 1 and 2 demonstrated heating operation and defrosting operation, it cannot be overemphasized that it can comprise similarly in cooling operation.
  • 1 heat source machine 1 heat source machine, 2 pump, 3 indoor unit, 4 motorized valve, 5 secondary refrigerant piping, 6 transmission line, 7 remote controller, 8 integrated controller, 10 compressor, 11 intermediate heat exchanger, 12 decompression device, 13 heat source side Heat exchanger, 14 blower, 15 four-way valve, 30 usage side heat exchanger, 31 blower, 50 heat source side control device, 60 usage side control device, 100 air conditioner.

Abstract

A control system for an air-conditioning device controls an air-conditioning device provided with a plurality of heat source machines and a plurality of use-side units. The control system is provided with: a plurality of use-side control devices for controlling the plurality of use-side units, respectively; and a plurality of heat source-side control devices for controlling the plurality of heat source machines, respectively, wherein the use-side control devices respectively communicate with the plurality of heat source-side control devices, and the heat source-side control devices are configured to control the operation of the heat source machines according to the operating state of one or more of the plurality of use-side units that operate in conjunction with the heat source-side control device.

Description

空気調和装置の制御システム、及び空気調和装置の制御方法Control system for air conditioner and control method for air conditioner
 この発明は、複数の熱源機と複数の利用側ユニットとを備えた空気調和装置を制御する、空気調和装置の制御システム、及び空気調和装置の制御方法に関するものである。 The present invention relates to an air conditioner control system and an air conditioner control method for controlling an air conditioner including a plurality of heat source units and a plurality of use side units.
 従来、複数の熱源機と複数の利用側ユニットとを備えた空気調和装置では、熱源機において冷媒などの1次側熱媒体と水などの2次側熱媒体とを熱交換させ、2次側熱媒体を利用側ユニットの利用側熱交換器に循環するものがある。このような方式の空気調和装置は、ファンコイル方式の空気調和装置と称されることがある。
 従来のファンコイル方式の空気調和装置は、利用側ユニット(ファンコイルユニットともいう)の操作信号、電動弁の状態信号、2次側ポンプの状態信号、熱源機の状態信号をコンピュータに集約し、熱源機の台数制御を実現している(例えば、特許文献1参照)。
2. Description of the Related Art Conventionally, in an air conditioner including a plurality of heat source units and a plurality of use side units, a heat exchange between a primary side heat medium such as a refrigerant and a secondary side heat medium such as water is performed on the secondary side. Some circulate the heat medium to the use side heat exchanger of the use side unit. Such an air conditioner may be referred to as a fan coil air conditioner.
The conventional fan coil type air conditioner consolidates the operation signal of the use side unit (also referred to as fan coil unit), the status signal of the motor operated valve, the status signal of the secondary side pump, and the status signal of the heat source unit into a computer, The number control of the heat source machines is realized (for example, refer to Patent Document 1).
特開平5-196277号公報(要約、図1)Japanese Patent Laid-Open No. 5-196277 (summary, FIG. 1)
 従来のファンコイル方式の空気調和装置において、利用側ユニット(ファンコイルユニット)と、熱源機の提供メーカーが異なる場合がある。この場合には、空気調和装置を設置する物件ごとに異なる利用側ユニット及び熱源機の台数、設置条件などのシステム構成に応じて、利用側ユニットを制御する制御装置の制御動作と、熱源機を制御する制御装置の制御動作とをそれぞれ別個に設定する必要がある、という問題点があった。例えば、利用側ユニットを制御するコンピュータのプログラムと、熱源機を制御するコンピュータのプログラムのそれぞれのプログラムを設定する必要がある。 In a conventional fan coil type air conditioner, the use side unit (fan coil unit) and the heat source equipment manufacturer may be different. In this case, depending on the system configuration such as the number of use side units and heat source units, installation conditions, etc., which are different for each property where the air conditioner is installed, the control operation of the control unit that controls the use side unit and the heat source unit There is a problem that it is necessary to set the control operation of the control device to be controlled separately. For example, it is necessary to set each program of a computer that controls the use-side unit and a computer program that controls the heat source unit.
 また、複数の熱源機及び複数の利用側ユニットを集中管理する集中管理装置を設ける場合がある。この場合も同様に、空気調和装置を設置する物件ごとに異なるシステム構成に応じて、集中管理装置のプログラムを設定する必要がある、という問題点があった。 In some cases, a centralized management device that centrally manages a plurality of heat source units and a plurality of usage-side units may be provided. In this case as well, there is a problem that it is necessary to set a program for the centralized management device according to a different system configuration for each property where the air conditioner is installed.
 また、複数の熱源機及び複数の利用側ユニットを備えた空気調和装置においては、複数の利用側ユニットの動作状態によって、熱源機に必要となる運転能力が変化する場合がある。このような場合、複数の熱源機の運転能力にアンバランスが生じ、システム全体としてのシステム効率が低下する、という問題点があった。 Also, in an air conditioner equipped with a plurality of heat source units and a plurality of use side units, the operating capacity required for the heat source unit may change depending on the operating state of the plurality of use side units. In such a case, there has been a problem that the operation efficiency of the plurality of heat source units is unbalanced, and the system efficiency of the entire system is lowered.
 この発明は、上記のような課題を解決するためになされたもので、第1の目的は、利用側ユニットの制御と熱源機の制御を統合し、空気調和装置のシステム構成に適合させた制御内容の調整を不要とすることができ、安価にシステム構築することができる、空気調和装置の制御システム、及び空気調和装置の制御方法を得るものである。 The present invention has been made to solve the above-described problems, and a first object is to integrate the control of the use side unit and the control of the heat source unit so as to be adapted to the system configuration of the air conditioner. It is possible to obtain an air conditioner control system and an air conditioner control method that can eliminate the need for adjustment of contents and can be constructed at low cost.
 また、第2の目的は、複数の熱源機を連携制御することにより、霜取制御などの空調能力が変動する運転の利用側ユニットへの影響を抑制することができる、空気調和装置の制御システム、及び空気調和装置の制御方法を得るものである。 Moreover, the 2nd objective is the control system of the air conditioning apparatus which can suppress the influence on the utilization side unit of the driving | running | working in which air-conditioning capability fluctuates, such as defrosting control, by carrying out cooperative control of the several heat source machine And the control method of an air conditioning apparatus is obtained.
 この発明に係る空気調和装置の制御システムは、1次側熱媒体と2次側熱媒体とを熱交換する中間熱交換器をそれぞれ有する複数の熱源機と、前記熱源機と配管接続され、前記2次側熱媒体と空気とを熱交換する利用側熱交換器をそれぞれ有する複数の利用側ユニットと、を備えた空気調和装置を制御する、空気調和装置の制御システムであって、前記複数の利用側ユニットのそれぞれに設けられ、前記複数の利用側ユニットをそれぞれ制御する複数の利用側制御装置と、前記複数の熱源機のそれぞれに設けられ、前記複数の熱源機をそれぞれ制御する複数の熱源側制御装置と、を備え、前記利用側制御装置は、前記複数の熱源側制御装置のそれぞれと通信し、前記熱源側制御装置は、前記複数の利用側ユニットのうち当該熱源側制御装置と連携動作する1つまたは複数の前記利用側ユニットの動作状態に応じて、前記熱源機の動作を制御するように構成されたものである。 The control system of the air conditioner according to the present invention includes a plurality of heat source units each having an intermediate heat exchanger for exchanging heat between a primary side heat medium and a secondary side heat medium, and pipe connection to the heat source unit, A plurality of usage-side units each having a usage-side heat exchanger for exchanging heat between the secondary-side heat medium and air, and a control system for the air-conditioning apparatus that controls the air-conditioning apparatus. A plurality of use side control devices that are provided in each of the use side units and respectively control the plurality of use side units, and a plurality of heat sources that are provided in each of the plurality of heat source units and respectively control the plurality of heat source units. A side control device, wherein the use side control device communicates with each of the plurality of heat source side control devices, and the heat source side control device is the heat source side control device of the plurality of use side units. Depending on the operating state of one or more of the use-side unit that work, in which is configured to control the operation of the heat source apparatus.
 この発明に係る空気調和装置の制御方法は、1次側熱媒体と2次側熱媒体とを熱交換する中間熱交換器をそれぞれ有する複数の熱源機と、前記熱源機と配管接続され、前記2次側熱媒体と空気とを熱交換する利用側熱交換器をそれぞれ有する複数の利用側ユニットと、前記複数の利用側ユニットのそれぞれに設けられ、前記複数の利用側ユニットをそれぞれ制御する複数の利用側制御装置と、前記複数の熱源機のそれぞれに設けられ、前記複数の熱源機をそれぞれ制御する複数の熱源側制御装置と、を備えた、空気調和装置の制御方法であって、前記利用側制御装置が、前記複数の熱源側制御装置のそれぞれと通信して、前記利用側ユニットの動作状態の情報を送信するステップと、前記熱源側制御装置が、前記複数の利用側ユニットのうち連携動作する1つまたは複数の前記利用側ユニットの動作状態に応じて、前記熱源機の動作を制御するステップと、を有するものである。 The control method of the air conditioner according to the present invention includes a plurality of heat source units each having an intermediate heat exchanger for exchanging heat between the primary side heat medium and the secondary side heat medium, and pipe connection to the heat source unit, A plurality of usage-side units each having a usage-side heat exchanger that exchanges heat between the secondary-side heat medium and air, and a plurality of usage-side units that are provided in each of the plurality of usage-side units and control the plurality of usage-side units A control method for an air conditioner, comprising: the use side control device; and a plurality of heat source side control devices that are provided in each of the plurality of heat source units and control the plurality of heat source units, respectively. A use-side control device communicating with each of the plurality of heat-source-side control devices to transmit information on an operating state of the use-side unit; and the heat-source-side control device is connected to the plurality of use-side units. Depending on the operating state of one or more of the use-side unit that work, those having, and controlling the operation of the heat source apparatus.
 この発明は、複数の利用側ユニットのうち連携動作する1つまたは複数の利用側ユニットの動作状態に応じて、熱源機の動作を制御するので、空気調和装置のシステム構成に適合させた制御内容の調整を不要とすることができ、安価にシステム構築することができる。 Since the present invention controls the operation of the heat source unit according to the operating state of one or a plurality of usage-side units that operate in cooperation among the plurality of usage-side units, the control content adapted to the system configuration of the air conditioner Therefore, the system can be constructed at low cost.
実施の形態1における空気調和装置の制御システムの構成を示す図である。1 is a diagram illustrating a configuration of a control system for an air-conditioning apparatus according to Embodiment 1. FIG. 実施の形態1における熱源機の構成を示す図である。It is a figure which shows the structure of the heat source machine in Embodiment 1. FIG. 実施の形態1におけるファンコイルユニットの構成を示す図である。FIG. 3 is a diagram showing a configuration of a fan coil unit in the first embodiment. 実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. 実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. 実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. 実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. 実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。3 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. 実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. 実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. 実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. 実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2.
実施の形態1.
(構成)
 図1は、実施の形態1における空気調和装置の制御システムの構成を示す図である。
 図2は、実施の形態1における熱源機の構成を示す図である。
 図3は、実施の形態1におけるファンコイルユニットの構成を示す図である。
 図1~図3において、空気調和装置100は、複数の熱源機1と、複数の室内機3とを備えている。
 複数の熱源機1のそれぞれは、1次側熱媒体(例えば冷媒)と2次側熱媒体(例えば水)とを熱交換する中間熱交換器11を有する。複数の室内機3のそれぞれは、2次側熱媒体と空気とを熱交換する利用側熱交換器30を有する。複数の熱源機1が、各々2次冷媒循環用のポンプ2を介して、2次冷媒配管5に並列接続されている。複数の室内機3は電動弁4を介して、2次冷媒配管5に並列に接続されている。なお、室内機3は、本発明における「利用側ユニット」に相当する。なお、室内機3は、ファンコイルユニット(FCU)とも称される。
Embodiment 1 FIG.
(Constitution)
1 is a diagram illustrating a configuration of a control system for an air-conditioning apparatus according to Embodiment 1. FIG.
FIG. 2 is a diagram showing a configuration of the heat source device in the first embodiment.
FIG. 3 is a diagram illustrating a configuration of the fan coil unit according to the first embodiment.
1 to 3, the air conditioner 100 includes a plurality of heat source units 1 and a plurality of indoor units 3.
Each of the plurality of heat source units 1 includes an intermediate heat exchanger 11 that exchanges heat between a primary side heat medium (for example, a refrigerant) and a secondary side heat medium (for example, water). Each of the plurality of indoor units 3 includes a use side heat exchanger 30 that exchanges heat between the secondary heat medium and the air. A plurality of heat source units 1 are connected in parallel to a secondary refrigerant pipe 5 via a pump 2 for circulating a secondary refrigerant. The plurality of indoor units 3 are connected in parallel to the secondary refrigerant pipe 5 via the electric valve 4. The indoor unit 3 corresponds to a “use unit” in the present invention. The indoor unit 3 is also referred to as a fan coil unit (FCU).
 複数の熱源機1は、それぞれ、圧縮機10、流路切換装置である四方弁15、熱源側熱交換器13、絞り弁などの減圧装置12、中間熱交換器11を順次配管で接続し、1次側熱媒体である冷媒が循環する冷媒回路を備えている。また、熱源側熱交換器13へ空気を送風する送風機14が設けられている。冷媒回路は、四方弁15が切り換えられることにより、中間熱交換器11が凝縮器として作用すると共に、熱源側熱交換器13を蒸発器として作用する暖房運転と、中間熱交換器11が蒸発器として作用すると共に、熱源側熱交換器13が凝縮器として作用する霜取運転と、の何れかの運転モードに切り換えられるように構成されている。
 複数の室内機3は、それぞれ、利用側熱交換器30と送風機31とを有している。利用側熱交換器30を流通する2次側熱媒体(例えば水)と、送風機31により送風された室内の空気とが熱交換する。
Each of the plurality of heat source units 1 includes a compressor 10, a four-way valve 15 that is a flow path switching device, a heat source side heat exchanger 13, a pressure reducing device 12 such as a throttle valve, and an intermediate heat exchanger 11 that are sequentially connected by piping. A refrigerant circuit in which a refrigerant as a primary heat medium circulates is provided. Further, a blower 14 that blows air to the heat source side heat exchanger 13 is provided. In the refrigerant circuit, when the four-way valve 15 is switched, the intermediate heat exchanger 11 acts as a condenser and the heat source side heat exchanger 13 acts as an evaporator, and the intermediate heat exchanger 11 serves as an evaporator. And the heat source side heat exchanger 13 is configured to be switched to any one of operation modes of defrosting operation in which the heat source side heat exchanger 13 acts as a condenser.
Each of the plurality of indoor units 3 includes a use side heat exchanger 30 and a blower 31. The secondary side heat medium (for example, water) flowing through the use side heat exchanger 30 and the indoor air blown by the blower 31 exchange heat.
 本実施の形態1における空気調和装置100の制御システムは、複数の熱源機1のそれぞれに設けられた複数の熱源側制御装置50と、複数の室内機3のそれぞれに設けられた複数の利用側制御装置60とを備えている。また、複数の室内機3には、リモートコントローラー7がそれぞれ接続され、個別に運転操作が可能である。
 複数の熱源側制御装置50と、複数の利用側制御装置60とは、通信用の伝送線6で接続されている。
 なお、空気調和装置100の全体を制御する集中管理装置である統合コントローラー8を、通信用の伝送線6に接続しても良い。
The control system of the air conditioning apparatus 100 according to Embodiment 1 includes a plurality of heat source side control devices 50 provided in each of the plurality of heat source units 1 and a plurality of usage sides provided in each of the plurality of indoor units 3. And a control device 60. In addition, remote controllers 7 are connected to the plurality of indoor units 3, respectively, and can be operated individually.
The plurality of heat source side control devices 50 and the plurality of use side control devices 60 are connected by a communication transmission line 6.
Note that the integrated controller 8 that is a centralized management device that controls the entire air conditioning apparatus 100 may be connected to the communication transmission line 6.
 なお、熱源側制御装置50、利用側制御装置60、統合コントローラー8は、これらの機能を実現する回路デバイスなどのハードウェアで実現することもできるし、マイコンやCPUなどの演算装置上で実行されるソフトウェアとして実現することもできる。 The heat source side control device 50, the use side control device 60, and the integrated controller 8 can be realized by hardware such as a circuit device that realizes these functions, or are executed on an arithmetic device such as a microcomputer or a CPU. It can also be realized as software.
(連携設定動作)
 本実施の形態1における空気調和装置100の制御システムにおいては、利用側制御装置60は、複数の熱源側制御装置50のそれぞれと通信し、熱源側制御装置50は、複数の室内機3のうち連携動作する1つまたは複数の室内機3の動作状態に応じて、熱源機1の動作を制御するように構成されている。以下、このような動作の詳細を説明する。
(Cooperation setting operation)
In the control system of the air conditioner 100 according to the first embodiment, the use side control device 60 communicates with each of the plurality of heat source side control devices 50, and the heat source side control device 50 includes the plurality of indoor units 3. The operation of the heat source unit 1 is controlled in accordance with the operation state of the one or more indoor units 3 that operate in cooperation. The details of such operation will be described below.
 本実施の形態1の空気調和装置100の制御システムは、1つまたは複数の室内機3と連携して動作する熱源機1の対応関係を、熱源側制御装置50及び利用側制御装置60の通信用アドレスの関係から設定(紐付け)するものである。
 なお、以下に説明する熱源機1と室内機3との連携関係を特定する動作においては、統合コントローラー8は必須の構成ではなく省略しても良い。
The control system of the air conditioning apparatus 100 according to Embodiment 1 determines the correspondence relationship between the heat source unit 1 that operates in cooperation with one or a plurality of indoor units 3, and communicates between the heat source side control device 50 and the use side control device 60. It is set (linked) from the relationship of the business address.
In addition, in the operation | movement which specifies the cooperation relationship of the heat-source equipment 1 and the indoor unit 3 demonstrated below, the integrated controller 8 is not an essential structure and may be abbreviate | omitted.
 熱源側制御装置50および利用側制御装置60の通信用アドレスは、予め設定された付与条件に従い付与される。
 この付与条件は、例えば、利用側制御装置60の通信アドレスとして、予め設定された第1範囲に属するアドレス番号が設定され、熱源側制御装置50の通信アドレスとして、第1範囲とは異なる第2範囲に属するアドレス番号が設定される。そして、熱源機1と室内機3との連携関係は、予め設定された検索条件に基づいて決定される。この検索条件としては、例えば、熱源側制御装置50の通信アドレスに予め設定した値を加算または減算するなどの条件である。
 具体的には、室内機3の利用側制御装置60の通信アドレスとして、「1」~「50」の範囲のアドレスを付与する。また、熱源機1の熱源側制御装置50の通信アドレスとして、「51」~「100」の範囲のアドレスを付与する。
 また、検索条件として、熱源機1に連携する室内機3の最小アドレス=熱源側制御装置50の通信アドレス-50、を設定する。
 また、熱源機1に連携する室内機3の最大アドレス+50より大きなアドレスを、別の熱源機1(例えばアドレス範囲が隣接する熱源機1)の熱源側制御装置50の通信アドレスとして付与する。
The communication addresses of the heat source side control device 50 and the use side control device 60 are assigned according to preset assignment conditions.
For example, an address number belonging to a preset first range is set as the communication address of the use-side control device 60, and the assignment condition is a second different from the first range as the communication address of the heat source-side control device 50. An address number belonging to the range is set. And the cooperation relationship between the heat source unit 1 and the indoor unit 3 is determined based on a preset search condition. As this search condition, for example, a preset value is added to or subtracted from the communication address of the heat source side control device 50.
Specifically, an address in the range of “1” to “50” is assigned as the communication address of the use side control device 60 of the indoor unit 3. Further, an address in the range of “51” to “100” is given as a communication address of the heat source side control device 50 of the heat source device 1.
Further, as a search condition, the minimum address of the indoor unit 3 linked to the heat source unit 1 = the communication address−50 of the heat source side control device 50 is set.
Further, an address larger than the maximum address +50 of the indoor unit 3 linked to the heat source unit 1 is given as a communication address of the heat source side control device 50 of another heat source unit 1 (for example, the heat source unit 1 whose address range is adjacent).
 次に、熱源機1の熱源側制御装置50が、連携する室内機3を特定する動作を、図5を用いて説明する。
 図4は、実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。以下、図4の各ステップに基づき説明する。
Next, the operation in which the heat source side control device 50 of the heat source unit 1 specifies the indoor unit 3 to be linked will be described with reference to FIG.
FIG. 4 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. Hereinafter, a description will be given based on each step of FIG.
 ステップS1~S7は、他の熱源機1を検索するステップである。
 ステップS1で、熱源側制御装置50は、自己に設定された通信アドレス(以下、自己アドレス)を確認し、ステップS2へ進む。
 ステップS2で、熱源側制御装置50は、検索アドレスを、自己アドレス+1に設定し、ステップS3へ進む。
 ステップS3で、熱源側制御装置50は、伝送線6に接続された機器の通信アドレスを取得し、検索アドレスと一致する通信アドレスが付与された熱源側制御装置50が存在するか否かを判定する。ステップS3の条件を満たす場合はステップS7に進み、満たさない場合にはステップS4に進む。
Steps S1 to S7 are steps for searching for another heat source unit 1.
In step S1, the heat source side control device 50 confirms the communication address set to itself (hereinafter, self-address), and proceeds to step S2.
In step S2, the heat source side control device 50 sets the search address to self address +1, and proceeds to step S3.
In step S <b> 3, the heat source side control device 50 acquires the communication address of the device connected to the transmission line 6, and determines whether there is a heat source side control device 50 to which a communication address that matches the search address exists. To do. If the condition of step S3 is satisfied, the process proceeds to step S7. If not satisfied, the process proceeds to step S4.
 ステップS4で、熱源側制御装置50は、検索アドレスが、熱源側制御装置50に付与される通信アドレスの範囲の最大値であるか否かを判定する。例えば、熱源側制御装置50の通信アドレスとして、「51」~「100」の範囲のアドレスを付与した場合、検索アドレスが「100」であるか否かを判定する。ステップS4の条件を満たす場合はステップS6へ進み、満たさない場合はステップS5へ進む。 In step S4, the heat source side control device 50 determines whether or not the search address is the maximum value of the range of communication addresses given to the heat source side control device 50. For example, when an address in the range of “51” to “100” is assigned as the communication address of the heat source side control device 50, it is determined whether or not the search address is “100”. If the condition of step S4 is satisfied, the process proceeds to step S6. Otherwise, the process proceeds to step S5.
 ステップS5で、熱源側制御装置50は、検索アドレスに「1」を加算して、ステップS3に戻る。
 ステップS6で、熱源側制御装置50は、検索アドレスに「1」を加算して、ステップS7へ進む。
In step S5, the heat source side control device 50 adds “1” to the search address and returns to step S3.
In step S6, the heat source side control device 50 adds “1” to the search address, and proceeds to step S7.
 ステップS7で、熱源側制御装置50は、検索数=検索アドレス-自己アドレス-1の算出式により、検索数を特定し、ステップS8に進む。例えば、検索アドレスが「61」、自己アドレスが「51」の場合、検索数は「9」となる。 In step S7, the heat source side control device 50 specifies the number of searches by the calculation formula of the number of searches = search address−self address−1, and proceeds to step S8. For example, when the search address is “61” and the self address is “51”, the number of searches is “9”.
 ステップS8~S12は、連携する室内機3を検索するステップである。
 ステップS8で、熱源側制御装置50は、検索アドレスを自己アドレス-50に設定し、ステップS9に進む。例えば、自己アドレスが「51」の場合、検索アドレスは「1」となる。
Steps S8 to S12 are steps for searching for the indoor unit 3 to be linked.
In step S8, the heat source side control device 50 sets the search address to self address -50, and proceeds to step S9. For example, when the self address is “51”, the search address is “1”.
 ステップS9で、熱源側制御装置50は、伝送線6に接続された機器の通信アドレスを取得し、検索アドレスと一致する通信アドレスが付与された利用側制御装置60が存在するか否かを判定する。ステップS9の条件を満たす場合はステップS10に進み、満たさない場合にはステップS11に進む。 In step S9, the heat-source-side control device 50 acquires the communication address of the device connected to the transmission line 6, and determines whether there is a usage-side control device 60 to which a communication address that matches the search address exists. To do. If the condition of step S9 is satisfied, the process proceeds to step S10. If not satisfied, the process proceeds to step S11.
 ステップS10で、熱源側制御装置50は、検索アドレスと一致する通信アドレスが付与された利用側制御装置60と通信し、この利用側制御装置60から取得したデータを、例えば記憶領域のテーブルに保存する。利用側制御装置60から取得したデータとしては、例えば、通信アドレス、室内機3の運転能力、室内機3の運転モード、などである。 In step S10, the heat-source-side control device 50 communicates with the use-side control device 60 to which the communication address that matches the search address is assigned, and stores the data acquired from the use-side control device 60, for example, in a storage area table. To do. The data acquired from the use side control device 60 includes, for example, a communication address, the driving capability of the indoor unit 3, and the operating mode of the indoor unit 3.
 ステップS11で、熱源側制御装置50は、検索アドレスに「1」を加算して、ステップS12へ進む。
 ステップS12で、熱源側制御装置50は、検索アドレスが、自己アドレス-50+検索数、以下であるか否かを判定する。ステップS12の条件を満たす場合はステップS9へ戻り、満たさない場合は本動作処理を終了する。例えば、自己アドレスが「51」、検索数が「9」の場合、検索アドレスが「10」を超えるまで、連携する室内機3を検索する動作を繰り返す。
 この動作は、複数の熱源側制御装置50のそれぞれが実施する。
In step S11, the heat source side control device 50 adds “1” to the search address, and proceeds to step S12.
In step S12, the heat source side control device 50 determines whether or not the search address is equal to or less than the self address −50 + the number of searches. If the condition of step S12 is satisfied, the process returns to step S9. If not satisfied, the operation process is terminated. For example, when the self address is “51” and the number of searches is “9”, the operation of searching for the linked indoor unit 3 is repeated until the search address exceeds “10”.
This operation is performed by each of the plurality of heat source side control devices 50.
 このような動作により、複数の熱源側制御装置50のそれぞれは、自己が制御する熱源機1に連携する1つまたは複数の室内機3を特定することができる。
 また、熱源側制御装置50及び利用側制御装置60において、熱源機1と室内機3との連携関係を予め設定する必要が無くなり、空気調和装置100のシステム構成に適合させた制御内容の調整を軽減することができ、安価にシステム構築することができる。例えば、室内機3(ファンコイルユニット)と熱源機1の提供メーカーが異なる場合であっても、制御内容の調整を軽減することができる。
By such an operation, each of the plurality of heat source side control devices 50 can identify one or a plurality of indoor units 3 that cooperate with the heat source unit 1 that it controls.
Further, in the heat source side control device 50 and the use side control device 60, it is not necessary to set the cooperation relationship between the heat source unit 1 and the indoor unit 3 in advance, and adjustment of the control content adapted to the system configuration of the air conditioner 100 is performed. It can be reduced and the system can be constructed at low cost. For example, even when the manufacturer of the indoor unit 3 (fan coil unit) and the heat source unit 1 are different, adjustment of the control content can be reduced.
(運転能力制御動作)
 次に、複数の熱源機1のそれぞれについて運転能力を制御する動作を、リモートコントローラー7、室内機3、熱源機1、統合コントローラー8に分けて説明する。
(Driving capacity control operation)
Next, the operation for controlling the driving ability of each of the plurality of heat source units 1 will be described separately for the remote controller 7, the indoor unit 3, the heat source unit 1, and the integrated controller 8.
(リモートコントローラー7)
 図5は、実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。図5の各ステップに基づき、リモートコントローラー7の動作を説明する。
 ステップS21で、リモートコントローラー7は、運転モード設定の初期状態として停止状態とし、ステップS22へ進む。
 ステップS22では、リモートコントローラー7は、ユーザーからの運転操作がなされたか否かを判定し、運転操作されていればステップS23へ、されていなければステップS21へ戻る。
(Remote controller 7)
FIG. 5 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. The operation of the remote controller 7 will be described based on the steps in FIG.
In step S21, the remote controller 7 sets the operation mode setting as the initial state in the stopped state, and proceeds to step S22.
In step S22, the remote controller 7 determines whether or not a driving operation has been performed by the user. If the driving operation has been performed, the process returns to step S23, and if not, the process returns to step S21.
 ステップS23で、リモートコントローラー7は、当該リモートコントローラー7が操作対象とする室内機3の利用側制御装置60に対して、運転状態を指示する指示情報を送信し、ステップS24へ進む。
 ステップS24で、ユーザーからの停止操作がなされたか否かを判定し、停止操作されていればステップS25へ、されていなければステップS24へ戻る。
 ステップS25で、リモートコントローラー7は、当該リモートコントローラー7が操作対象とする室内機3の利用側制御装置60に対して、停止状態を指示する指示情報を送信し、ステップS21へ戻る。
In step S23, the remote controller 7 transmits the instruction information instructing the operating state to the use side control device 60 of the indoor unit 3 that is the operation target of the remote controller 7, and the process proceeds to step S24.
In step S24, it is determined whether or not a stop operation has been performed by the user. If the stop operation has been performed, the process returns to step S25, and if not, the process returns to step S24.
In step S25, the remote controller 7 transmits the instruction information instructing the stop state to the use side control device 60 of the indoor unit 3 that is the operation target of the remote controller 7, and the process returns to step S21.
(室内機3)
 図6は、実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。図6の各ステップに基づき、室内機3の利用側制御装置60の動作を説明する。
 ステップS31で、利用側制御装置60は、リモートコントローラー7からの指示情報の受信があったかどうかを確認し、あればステップS32へ進み、なければステップS31へ戻る。
 ステップS32で、利用側制御装置60は、当該室内機3と連携する熱源機1の熱源側制御装置50に対して、指示情報に応じた状態情報を送信し、ステップS33に進む。すなわち、利用側制御装置60は、指示情報が運転状態であれば、運転状態の状態情報を送信し、指示情報が停止状態であれば、停止状態の状態情報を送信する。
 ステップS33で、利用側制御装置60は、指示情報に応じて、室内機3の送風機31の風量制御、及び当該室内機3に対応する2次冷媒の電動弁4の開閉制御を実施し、ステップS31へ戻る。
(Indoor unit 3)
FIG. 6 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. Based on each step of FIG. 6, the operation of the use side control device 60 of the indoor unit 3 will be described.
In step S31, the use-side control device 60 confirms whether or not instruction information has been received from the remote controller 7, and if there is, proceeds to step S32, otherwise returns to step S31.
In step S32, the use side control device 60 transmits state information corresponding to the instruction information to the heat source side control device 50 of the heat source unit 1 that cooperates with the indoor unit 3, and the process proceeds to step S33. That is, if the instruction information is in the operating state, the usage-side control device 60 transmits the operating state information, and if the instruction information is in the stopped state, the usage-side control device 60 transmits the stopped state information.
In step S33, the use side control device 60 performs air volume control of the blower 31 of the indoor unit 3 and open / close control of the motor valve 4 of the secondary refrigerant corresponding to the indoor unit 3 according to the instruction information, and step Return to S31.
(熱源機1)
 図7は、実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。図7の各ステップに基づき、熱源機1の熱源側制御装置50の動作を説明する。
 ステップS41で、熱源側制御装置50は、連携する室内機3の利用側制御装置60から、状態情報の受信があったかどうかを確認し、あればステップS42へ進み、なければステップS44へ進む。
(Heat source machine 1)
FIG. 7 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. Based on each step of FIG. 7, operation | movement of the heat-source side control apparatus 50 of the heat-source equipment 1 is demonstrated.
In step S41, the heat source side control device 50 confirms whether or not state information has been received from the use side control device 60 of the cooperating indoor unit 3, and if there is, proceeds to step S42, otherwise proceeds to step S44.
 ステップS42で、熱源側制御装置50は、受信した状態情報に基づき、連携動作する1つまたは複数の室内機3のうち、動作状態が運転状態である室内機3を抽出し、運転状態の室内機3の運転能力の合計値である合計運転能力を求め、ステップS43へ進む。
 ステップS43で、熱源側制御装置50は、合計運転能力の情報を、統合コントローラー8に送信し、ステップS44へ進む。
In step S42, based on the received state information, the heat source side control device 50 extracts the indoor unit 3 whose operating state is the operating state from the one or more indoor units 3 that operate in cooperation, and The total driving ability which is the total value of the driving ability of the machine 3 is obtained, and the process proceeds to step S43.
In step S43, the heat source side control device 50 transmits information on the total operating capacity to the integrated controller 8, and proceeds to step S44.
 ステップS44で、熱源側制御装置50は、統合コントローラー8から、後述する制御用合計運転能力の情報の受信があったかどうかを確認し、あればステップS46へ進み、なければステップS45へ進む。
 ステップS45で、熱源側制御装置50は、制御用合計運転能力として、ステップS42で計算した合計運転能力を代入して用いることとし、ステップS46へ進む。
In step S44, the heat source side control device 50 confirms whether or not information on the total operation capability for control described later has been received from the integrated controller 8, and if there is, proceeds to step S46, otherwise proceeds to step S45.
In step S45, the heat-source-side control device 50 substitutes and uses the total operating capacity calculated in step S42 as the control total operating capacity, and proceeds to step S46.
 ステップS46で、熱源側制御装置50は、制御用合計運転能力に応じて、当該熱源機1の圧縮機10の回転数、送風機14の送風量の制御、および2次側冷媒のポンプ2の回転数など、熱源機1から2次冷媒へのエネルギー供給量制御を実施し、ステップS41へ戻る。
 すなわち、熱源側制御装置50が、統合コントローラー8から制御用合計運転能力の情報を受信した場合には、この制御用合計運転能力に応じて、当該熱源機1の運転能力を制御する。一方、統合コントローラー8から制御用合計運転能力の情報を受信していない場合には、自身が求めた合計運転能力に応じて、当該熱源機1の運転能力を制御する。
In step S46, the heat source side control device 50 controls the number of rotations of the compressor 10 of the heat source unit 1, the amount of blown air from the blower 14, and the rotation of the pump 2 of the secondary refrigerant according to the total operating capacity for control. Control the amount of energy supplied from the heat source unit 1 to the secondary refrigerant, such as the number, and return to step S41.
That is, when the heat source side control device 50 receives information on the total operation capability for control from the integrated controller 8, the operation capability of the heat source apparatus 1 is controlled according to the total operation capability for control. On the other hand, when the information on the total operating capacity for control is not received from the integrated controller 8, the operating capacity of the heat source unit 1 is controlled according to the total operating capacity obtained by itself.
(統合コントローラー8)
 図8は、実施の形態1における空気調和装置の制御システムの動作を説明するフローチャートである。図8の各ステップに基づき、統合コントローラー8の動作を説明する。
 ステップS51で、統合コントローラー8は、各熱源機1の熱源側制御装置50からの合計運転能力の情報の受信があったかどうかを確認し、あればステップS53へ進み、なければステップS52へ進む。
 ステップS52で、統合コントローラー8は、受信待ち周期として予め設定された所定期間を経過したかどうかを判定し、所定時間を経過していなければステップS51へ戻り、経過していればステップS53へ進む。
(Integrated controller 8)
FIG. 8 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 1. The operation of the integrated controller 8 will be described based on the steps in FIG.
In step S51, the integrated controller 8 confirms whether information on the total operating capacity has been received from the heat source side control device 50 of each heat source machine 1, and if there is, proceeds to step S53, and if not, proceeds to step S52.
In step S52, the integrated controller 8 determines whether or not a predetermined period preset as a reception waiting period has elapsed. If the predetermined time has not elapsed, the process returns to step S51, and if it has elapsed, the process proceeds to step S53. .
 ステップS53で、統合コントローラー8は、各熱源機1の熱源側制御装置50のそれぞれから取得した合計運転能力の合計を、複数の熱源機1のそれぞれに按分した制御用合計能力を計算し、ステップS54へ進む。
 この制御用合計運転能力の計算は、例えば、熱源機1が極力効率良い運転ができる能力になるように強制停止する熱源機1を設けることも含めて配分したり、霜取制御による暖房中に冷房状態の運転をする熱源機1の発生に対応して、トータルの暖房能力が充足するように霜取運転の熱源機1が分担している暖房能力+霜取用能力を、他の熱源機1に配分したりする。
In step S53, the integrated controller 8 calculates the total capacity for control obtained by distributing the total of the total operation capacity acquired from each of the heat source side control devices 50 of each heat source apparatus 1 to each of the plurality of heat source apparatuses 1. Proceed to S54.
The calculation of the total operating capacity for control is, for example, distributed including the provision of the heat source unit 1 forcibly stopped so that the heat source unit 1 can operate as efficiently as possible, or during heating by defrost control. Corresponding to the generation of the heat source unit 1 that operates in the cooling state, the heating capacity + defrosting capacity shared by the heat source unit 1 in the defrosting operation so that the total heating capacity is satisfied, Or distribute to 1.
 例えば、統合コントローラー8は、運転モードが暖房運転である熱源機1と、運転モードが霜取運転である熱源機1とが混在する場合、合計運転能力の合計を、運転モードが暖房運転である熱源機1に按分した、制御用合計運転能力を求める。
 なお、制御用合計運転能力の計算方法は、これに限定されない。例えば、合計運転能力の合計を、複数の熱源機1のそれぞれに均等に按分しても良い。また、各熱源機1の熱交換容量などに応じた比率で、合計運転能力の合計を按分しても良い。また、任意に設定した重み付け係数などに応じて、合計運転能力の合計を按分しても良い。
For example, when the heat source device 1 whose operation mode is the heating operation and the heat source device 1 whose operation mode is the defrosting operation are mixed, the integrated controller 8 calculates the total of the total operation capacity and the operation mode is the heating operation. The total operating capacity for control, which is apportioned to the heat source unit 1, is obtained.
In addition, the calculation method of the total driving capability for control is not limited to this. For example, the total of the total operating capacity may be equally distributed to each of the plurality of heat source devices 1. Moreover, you may apportion the sum total of total operation capability by the ratio according to the heat exchange capacity etc. of each heat source unit 1. Further, the total of the total driving ability may be prorated according to an arbitrarily set weighting coefficient or the like.
 ステップS54で、統合コントローラー8は、各熱源機1の熱源側制御装置50に対し、制御用合計運転能力の情報を送信し、ステップS51へ戻る。 In step S54, the integrated controller 8 transmits information on the total operation capability for control to the heat source side control device 50 of each heat source machine 1, and returns to step S51.
 以上のように、本実施の形態1の空気調和装置100の制御システムは、室内機3に利用側制御装置60を設けて熱源機1の熱源側制御装置50と通信で連携して制御するようにしている。このため、ファンコイル方式(水方式)の空気調和装置100において、リモートコントローラー7、及び統合コントローラー8も含めて、従来の直膨式の空気調和装置100と同様のシステム設計が容易に可能にできる。
 さらに、直膨式対応で開発されたリモートコントローラー7及び統合コントローラー8などの部材の共用化、有効利用が可能になるだけでなく、ファンコイル方式と直膨方式の混在システムの構築も容易になる。
 また、室内機3と熱源機1の連携の関係を定めることにより簡便なシステム構築を実現することができる。さらに、統合コントローラー8によって制御用合計運転能力を求め、各熱源機1の運転能力を按分するので、効率の良い熱源機1の運転を実現することができる。
 また、利用側制御装置60の活用により室内機3本体の選定の自由度が向上し、物件に合わせた特殊な形状、能力のものを組み合わせることも容易になる。
As described above, the control system of the air conditioning apparatus 100 according to Embodiment 1 is configured to provide the use-side control device 60 in the indoor unit 3 and perform control in cooperation with the heat source-side control device 50 of the heat source unit 1 through communication. I have to. For this reason, in the fan coil type (water type) air conditioner 100, including the remote controller 7 and the integrated controller 8, the same system design as the conventional direct expansion type air conditioner 100 can be easily made possible. .
Furthermore, not only can the components such as the remote controller 7 and the integrated controller 8 developed for the direct expansion system be shared and effectively used, but it is also easy to construct a mixed system of the fan coil system and the direct expansion system. .
Moreover, a simple system construction can be realized by defining the relationship of cooperation between the indoor unit 3 and the heat source unit 1. Furthermore, since the total operating capacity for control is obtained by the integrated controller 8 and the operating capacity of each heat source apparatus 1 is apportioned, efficient operation of the heat source apparatus 1 can be realized.
In addition, the use-side control device 60 improves the degree of freedom in selecting the main body of the indoor unit 3 and makes it easy to combine those having a special shape and ability according to the property.
実施の形態2.
 上記実施の形態1では、連携設定動作によって、室内機3と連携して動作する熱源機1の対応関係を設定した。本実施の形態2では、室内機3と熱源機1との連携関係を特定する動作を実施しない動作について説明する。
 本実施の形態2における空気調和装置100の制御システムは、例えば、室内機3及び熱源機1の台数が、通信アドレスの設定範囲を超えるような大規模物件など、アドレス配置による室内機3と熱源機1の連携ルールが設定できようできない場合に有効である。
Embodiment 2. FIG.
In the said Embodiment 1, the correspondence of the heat source machine 1 which operate | moves in cooperation with the indoor unit 3 was set by cooperation setting operation | movement. In this Embodiment 2, the operation | movement which does not implement the operation | movement which specifies the cooperation relationship between the indoor unit 3 and the heat-source unit 1 is demonstrated.
The control system of the air conditioner 100 according to the second embodiment includes, for example, the indoor unit 3 and the heat source based on the address arrangement, such as a large-scale property in which the number of the indoor units 3 and the heat source unit 1 exceeds the communication address setting range. This is effective when the cooperation rule of the machine 1 cannot be set.
 本実施の形態2における空気調和装置100の制御システムの構成は、上記実施の形態1と同様であり、同一部分には同一の符号を付する。
 なお、実施の形態1で説明した通信アドレスの付与条件および連携設定動作は、省略し、任意の通信アドレスを設定するようにしても良い。また、本実施の形態2においては、統合コントローラー8は必須の構成要件である。
The configuration of the control system of the air conditioning apparatus 100 in the second embodiment is the same as that in the first embodiment, and the same reference numerals are given to the same parts.
Note that the communication address assignment condition and the cooperation setting operation described in the first embodiment may be omitted, and an arbitrary communication address may be set. In the second embodiment, the integrated controller 8 is an essential component requirement.
(運転能力制御動作)
 以下、複数の熱源機1のそれぞれについて運転能力を制御する動作を、リモートコントローラー7、室内機3、統合コントローラー8、熱源機1に分けて説明する。
(Driving capacity control operation)
Hereinafter, the operation for controlling the driving ability of each of the plurality of heat source units 1 will be described separately for the remote controller 7, the indoor unit 3, the integrated controller 8, and the heat source unit 1.
(リモートコントローラー7)
 図9は、実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。図9の各ステップに基づき、リモートコントローラー7の動作を説明する。
 ステップS61で、リモートコントローラー7は、運転モード設定の初期状態として停止状態とし、ステップS62へ進む。
 ステップS62では、リモートコントローラー7は、ユーザーからの運転操作がなされたか否かを判定し、運転操作されていればステップS63へ、されていなければステップS61へ戻る。
(Remote controller 7)
FIG. 9 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. Based on each step of FIG. 9, the operation of the remote controller 7 will be described.
In step S61, the remote controller 7 is set to the stop state as the initial state of the operation mode setting, and proceeds to step S62.
In step S62, the remote controller 7 determines whether or not a driving operation has been performed by the user. If the driving operation has been performed, the process returns to step S63, and if not, the process returns to step S61.
 ステップS63で、リモートコントローラー7は、当該リモートコントローラー7が操作対象とする室内機3の利用側制御装置60、及び統合コントローラー8に対して、運転状態を指示する指示情報を送信し、ステップS64へ進む。
 ステップS64で、ユーザーからの停止操作がなされたか否かを判定し、停止操作されていればステップS65へ、されていなければステップS64へ戻る。
 ステップS65で、リモートコントローラー7は、当該リモートコントローラー7が操作対象とする室内機3の利用側制御装置60、及び統合コントローラー8に対して、停止状態を指示する指示情報を送信し、ステップS61へ戻る。
In step S63, the remote controller 7 transmits instruction information for instructing an operation state to the use side control device 60 of the indoor unit 3 to be operated by the remote controller 7 and the integrated controller 8, and the process proceeds to step S64. move on.
In step S64, it is determined whether or not a stop operation has been performed by the user. If the stop operation has been performed, the process returns to step S65, and if not, the process returns to step S64.
In step S65, the remote controller 7 transmits the instruction information instructing the stop state to the use side control device 60 of the indoor unit 3 and the integrated controller 8 that are to be operated by the remote controller 7, and the process proceeds to step S61. Return.
(室内機3)
 図10は、実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。図10の各ステップに基づき、室内機3の利用側制御装置60の動作を説明する。
 ステップS71で、利用側制御装置60は、リモートコントローラー7からの指示情報の受信があったかどうかを確認し、あればステップS72へ進み、なければステップS71へ戻る。
 ステップS72で、利用側制御装置60は、指示情報に応じて、室内機3の送風機31の風量制御、及び当該室内機3に対応する2次冷媒の電動弁4の開閉制御を実施し、ステップS71へ戻る。
(Indoor unit 3)
FIG. 10 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. Based on each step of FIG. 10, operation | movement of the utilization side control apparatus 60 of the indoor unit 3 is demonstrated.
In step S71, the use side control device 60 confirms whether or not the instruction information has been received from the remote controller 7, and if there is, proceeds to step S72, otherwise returns to step S71.
In step S72, the use-side control device 60 performs the air volume control of the blower 31 of the indoor unit 3 and the opening / closing control of the motor valve 4 of the secondary refrigerant corresponding to the indoor unit 3 according to the instruction information. Return to S71.
(統合コントローラー8)
 図11は、実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。図11の各ステップに基づき、統合コントローラー8の動作を説明する。
 ステップS81で、統合コントローラー8は、リモートコントローラー7から指示情報の受信があったかどうかを確認し、あればステップS82へ進み、なければステップS81へ戻る。
(Integrated controller 8)
FIG. 11 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. The operation of the integrated controller 8 will be described based on the steps in FIG.
In step S81, the integrated controller 8 confirms whether instruction information has been received from the remote controller 7, and if there is, proceeds to step S82, otherwise returns to step S81.
 ステップS82は、統合コントローラー8は、複数のリモートコントローラー7のそれぞれから取得した指示情報に基づき、複数の室内機3のうち、動作状態が運転状態である室内機3の運転能力の総合計値である総合計運転能力を求める。そして、統合コントローラー8は、総合計運転能力を、複数の熱源機1のそれぞれに按分した制御用合計能力を算出し、ステップS83へ進む。
 この制御用合計運転能力の計算は、例えば、熱源機1が極力効率良い運転ができる能力になるように強制停止する熱源機1を設けることも含めて配分したり、霜取制御による暖房中に冷房状態の運転をする熱源機1の発生に対応して、トータルの暖房能力が充足するように霜取運転の熱源機1が分担している暖房能力+霜取用能力を、他の熱源機1に配分したりする。
In step S82, the integrated controller 8 is a total value of the driving capabilities of the indoor units 3 whose operation state is the operating state among the plurality of indoor units 3 based on the instruction information acquired from each of the plurality of remote controllers 7. Find a certain grand total driving ability. Then, the integrated controller 8 calculates the total capacity for control obtained by apportioning the total meter operating capacity to each of the plurality of heat source units 1, and proceeds to Step S83.
The calculation of the total operating capacity for control is, for example, distributed including the provision of the heat source unit 1 forcibly stopped so that the heat source unit 1 can operate as efficiently as possible, or during heating by defrost control. Corresponding to the generation of the heat source unit 1 that operates in the cooling state, the heating capacity + defrosting capacity shared by the heat source unit 1 in the defrosting operation so that the total heating capacity is satisfied, Or distribute to 1.
 例えば、統合コントローラー8は、運転モードが暖房運転である熱源機1と、運転モードが霜取運転である熱源機1とが混在する場合、総合計運転能力を、運転モードが暖房運転である熱源機1に按分した、制御用合計運転能力を求める。
 なお、制御用合計運転能力の計算方法は、これに限定されない。例えば、総合計運転能力を、複数の熱源機1のそれぞれに均等に按分しても良い。また、各熱源機1の熱交換容量などに応じた比率で、総合計運転能力を按分しても良い。また、任意に設定した重み付け係数などに応じて、総合計運転能力を按分しても良い。
For example, when the heat source device 1 whose operation mode is the heating operation and the heat source device 1 whose operation mode is the defrosting operation coexist, the integrated controller 8 has the total operation capacity and the heat source whose operation mode is the heating operation. The total operating capacity for control, which is apportioned to the machine 1, is obtained.
In addition, the calculation method of the total driving capability for control is not limited to this. For example, the total operation capacity may be equally distributed to each of the plurality of heat source units 1. Further, the total operation capacity may be apportioned at a ratio according to the heat exchange capacity of each heat source unit 1. Further, the total operation capacity may be prorated according to an arbitrarily set weighting coefficient or the like.
 ステップS83で、統合コントローラー8は、各熱源機1の熱源側制御装置50に対し、制御用合計運転能力の情報を送信し、ステップS81へ戻る。 In step S83, the integrated controller 8 transmits information on the total operation capability for control to the heat source side control device 50 of each heat source machine 1, and returns to step S81.
(熱源機1)
 図12は、実施の形態2における空気調和装置の制御システムの動作を説明するフローチャートである。図12の各ステップに基づき、熱源機1の熱源側制御装置50の動作を説明する。
 ステップS91で、熱源側制御装置50は、統合コントローラー8から制御用合計運転能力の情報の受信があったかどうかを確認し、あればステップS92へ進み、なければステップS91へ戻る。
(Heat source machine 1)
FIG. 12 is a flowchart for explaining the operation of the control system for the air-conditioning apparatus according to Embodiment 2. Based on each step of FIG. 12, operation | movement of the heat-source side control apparatus 50 of the heat-source equipment 1 is demonstrated.
In step S91, the heat source side control device 50 confirms whether or not the information on the total operating capability for control has been received from the integrated controller 8, and if there is, proceeds to step S92, otherwise returns to step S91.
 ステップS92で、熱源側制御装置50は、制御用合計運転能力に応じて、当該熱源機1の圧縮機10の回転数、送風機14の送風量の制御、および2次側冷媒のポンプ2の回転数など、熱源機1から2次冷媒へのエネルギー供給量制御を実施し、ステップS91へ戻る。 In step S92, the heat source side control device 50 controls the number of rotations of the compressor 10 of the heat source unit 1, the amount of blown air of the blower 14, and the rotation of the pump 2 of the secondary refrigerant according to the total operating capacity for control. Control the amount of energy supplied from the heat source unit 1 to the secondary refrigerant, such as the number, and return to step S91.
 以上のように、本実施の形態2の空気調和装置100の制御システムは、室内機3に利用側制御装置60を設置し、統合コントローラー8で、多数の室内機3の運転状態に応じて適切な熱源機1の運転制御を行うようにしている。このため、室内機3の接続台数や各機器のアドレス設定に制約を設けることなく、ファンコイル方式(水方式)の空気調和装置100においてリモートコントローラー7、統合コントローラー8も含めて、従来の直膨式の空気調和装置と同様のシステム設計が容易に可能にできる。
 さらに、直膨式対応で開発されたリモートコントローラー7、及び統合コントローラー8などの部材の共用化、有効利用が可能になるだけでなく、ファンコイル方式と直膨方式の混在システムの構築も容易になる。
 また、統合コントローラー8による各熱源機1への能力の最適配分によって、効率の良い熱源機1の運転を実現することができる。
 また、利用側制御装置60の活用により室内機3本体の選定の自由度が向上し、物件に合わせた特殊な形状、能力のものを組み合わせることも容易になる。
As described above, the control system of the air conditioning apparatus 100 according to the second embodiment has the use-side control device 60 installed in the indoor unit 3 and the integrated controller 8 is appropriate according to the operating state of many indoor units 3. The operation control of the heat source machine 1 is performed. For this reason, the conventional direct expansion including the remote controller 7 and the integrated controller 8 in the fan coil type (water type) air conditioner 100 without any restrictions on the number of connected indoor units 3 and the address setting of each device. The system design similar to that of the air conditioner can be easily made possible.
In addition, the remote controller 7 and the integrated controller 8 developed for direct expansion can be shared and used effectively, and it is easy to build a mixed system of fan coil and direct expansion systems. Become.
In addition, efficient operation of the heat source unit 1 can be realized by the optimal allocation of the capability to each heat source unit 1 by the integrated controller 8.
In addition, the use-side control device 60 improves the degree of freedom in selecting the main body of the indoor unit 3 and makes it easy to combine those having a special shape and ability according to the property.
 なお、上記実施の形態1および2の説明では、熱源機1の構成において冷媒が循環する冷媒回路を有する場合を説明したが、熱源機1の構成はこれに限定されない。空冷のヒートポンプチラーに限らず、水冷ヒートポンプチラー、吸収式冷凍機などその他の熱源機1にも利用できることは、言うまでもない。また、2次側熱媒体は水に限るものではない。また、室内機3としても2管式だけでなく4管式でも同様の考え方の適用が可能であることは言うまでもない。
 なお、実施の形態1および2では暖房運転と霜取運転について説明したが、冷房運転でも同様に構成できることは言うまでもない。
In the description of the first and second embodiments, the case where the configuration of the heat source unit 1 includes the refrigerant circuit in which the refrigerant circulates has been described. However, the configuration of the heat source unit 1 is not limited to this. Needless to say, it can be used not only for the air-cooled heat pump chiller but also for other heat source devices 1 such as a water-cooled heat pump chiller and an absorption chiller. Further, the secondary heat medium is not limited to water. Needless to say, the indoor unit 3 is applicable not only to a 2-tube type but also to a 4-pipe type.
In addition, although Embodiment 1 and 2 demonstrated heating operation and defrosting operation, it cannot be overemphasized that it can comprise similarly in cooling operation.
 1 熱源機、2 ポンプ、3 室内機、4 電動弁、5 2次冷媒配管、6 伝送線、7 リモートコントローラー、8 統合コントローラー、10 圧縮機、11 中間熱交換器、12 減圧装置、13 熱源側熱交換器、14 送風機、15 四方弁、30 利用側熱交換器、31 送風機、50 熱源側制御装置、60 利用側制御装置、100 空気調和装置。 1 heat source machine, 2 pump, 3 indoor unit, 4 motorized valve, 5 secondary refrigerant piping, 6 transmission line, 7 remote controller, 8 integrated controller, 10 compressor, 11 intermediate heat exchanger, 12 decompression device, 13 heat source side Heat exchanger, 14 blower, 15 four-way valve, 30 usage side heat exchanger, 31 blower, 50 heat source side control device, 60 usage side control device, 100 air conditioner.

Claims (7)

  1.  1次側熱媒体と2次側熱媒体とを熱交換する中間熱交換器をそれぞれ有する複数の熱源機と、
     前記熱源機と配管接続され、前記2次側熱媒体と空気とを熱交換する利用側熱交換器をそれぞれ有する複数の利用側ユニットと、を備えた空気調和装置を制御する、空気調和装置の制御システムであって、
     前記複数の利用側ユニットのそれぞれに設けられ、前記複数の利用側ユニットをそれぞれ制御する複数の利用側制御装置と、
     前記複数の熱源機のそれぞれに設けられ、前記複数の熱源機をそれぞれ制御する複数の熱源側制御装置と、を備え、
     前記利用側制御装置は、前記複数の熱源側制御装置のそれぞれと通信し、
     前記熱源側制御装置は、前記複数の利用側ユニットのうち当該熱源側制御装置と連携動作する1つまたは複数の前記利用側ユニットの動作状態に応じて、前記熱源機の動作を制御するように構成された
     空気調和装置の制御システム。
    A plurality of heat source units each having an intermediate heat exchanger for exchanging heat between the primary side heat medium and the secondary side heat medium;
    A plurality of usage-side units each having a usage-side heat exchanger that is pipe-connected to the heat source unit and exchanges heat between the secondary-side heat medium and the air. A control system,
    A plurality of usage-side control devices that are provided in each of the plurality of usage-side units and control the plurality of usage-side units;
    A plurality of heat source side control devices that are provided in each of the plurality of heat source units and control the plurality of heat source units, respectively.
    The use side control device communicates with each of the plurality of heat source side control devices,
    The heat source side control device controls the operation of the heat source unit according to the operation state of one or a plurality of the use side units operating in cooperation with the heat source side control device among the plurality of use side units. A configured control system for an air conditioner.
  2.  前記利用側制御装置は、当該利用側制御装置の通信アドレスが予め設定され、
     前記熱源側制御装置は、当該熱源側制御装置の通信アドレスが予め設定され、
     当該熱源側制御装置の通信アドレスと、予め設定された検索条件とに基づき、前記複数の利用側ユニットのうち、当該熱源機と連動動作する前記利用側ユニットの前記利用側制御装置の通信アドレスを検索し、
     当該熱源機と連動動作する前記利用側ユニットの運転状態に応じて、当該熱源機の動作を制御するように構成された
     請求項1に記載の空気調和装置の制御システム。
    In the use side control device, a communication address of the use side control device is preset,
    In the heat source side control device, a communication address of the heat source side control device is preset,
    Based on the communication address of the heat source side control device and a preset search condition, the communication address of the usage side control device of the usage side unit that operates in conjunction with the heat source unit among the plurality of usage side units is set. Search
    The control system of the air conditioning apparatus of Claim 1 comprised so that operation | movement of the said heat-source unit might be controlled according to the driving | running state of the said utilization side unit which carries out the interlock | cooperation operation | movement with the said heat-source unit.
  3.  前記熱源側制御装置は、前記複数の利用側ユニットのうち連携動作する1つまたは複数の前記利用側ユニットの前記利用側制御装置から、前記利用側ユニットの動作状態の情報を取得し、
     連携動作する1つまたは複数の前記利用側ユニットのうち、前記動作状態が運転状態である前記利用側ユニットの運転能力の合計値である合計運転能力を求め、
     前記合計運転能力に応じて、当該熱源機の運転能力を制御するように構成された
     請求項1または2に記載の空気調和装置の制御システム。
    The heat source side control device acquires information on the operating state of the usage side unit from the usage side control device of one or a plurality of usage side units operating in cooperation among the plurality of usage side units,
    Among the one or more usage-side units that operate in cooperation, a total driving capability that is a total value of the driving capabilities of the usage-side units whose operation state is the driving state is obtained,
    The control system of the air conditioning apparatus of Claim 1 or 2 comprised so that the operation capability of the said heat source machine might be controlled according to the said total operation capability.
  4.  前記複数の熱源側制御装置のそれぞれと通信する集中管理装置を、さらに備え、
     前記集中管理装置は、前記複数の熱源側制御装置のそれぞれから取得した前記合計運転能力の合計を、前記複数の熱源機のそれぞれに按分した制御用合計運転能力を求めるように構成され、
     前記熱源側制御装置は、前記集中管理装置から前記制御用合計運転能力の情報を取得した場合、前記制御用合計運転能力に応じて、当該熱源機の運転能力を制御するように構成された
     請求項3に記載の空気調和装置の制御システム。
    A central management device that communicates with each of the plurality of heat source side control devices;
    The centralized management device is configured to obtain a total operation capability for control obtained by apportioning a total of the total operation capability acquired from each of the plurality of heat source side control devices to each of the plurality of heat source units,
    The heat source side control device is configured to control the operation capability of the heat source unit according to the total operation capability for control when the information of the total operation capability for control is acquired from the centralized management device. Item 4. A control system for an air conditioner according to Item 3.
  5.  前記複数の熱源機は、それぞれ、
     圧縮機、流路切換装置、熱源側熱交換器、減圧装置、前記中間熱交換器を順次配管で接続し、前記1次側熱媒体である冷媒が循環する冷媒回路を備え、
     前記熱源側制御装置は、前記流路切換装置を制御して、前記中間熱交換器を凝縮器として作用させると共に、前記熱源側熱交換器を蒸発器として作用させる暖房運転と、前記中間熱交換器を蒸発器として作用させると共に、前記熱源側熱交換器を凝縮器として作用させる霜取運転と、の何れかの運転モードに切り換えるように構成され、
     前記集中管理装置は、前記運転モードが前記暖房運転である前記熱源機と、前記運転モードが前記霜取運転である前記熱源機とが混在する場合、
     前記合計運転能力の合計を、前記運転モードが前記暖房運転である前記熱源機に按分した前記制御用合計運転能力を求めるように構成された
     請求項4に記載の空気調和装置の制御システム。
    Each of the plurality of heat source machines is
    A compressor, a flow path switching device, a heat source side heat exchanger, a decompression device, and the intermediate heat exchanger are sequentially connected by piping, and a refrigerant circuit in which a refrigerant as the primary heat medium circulates is provided.
    The heat source side control device controls the flow path switching device to cause the intermediate heat exchanger to act as a condenser, and to perform a heating operation in which the heat source side heat exchanger acts as an evaporator, and the intermediate heat exchange And a defrosting operation in which the heat source side heat exchanger acts as a condenser, and the operation mode is switched to any one of the operation modes.
    The centralized management device, when the heat source machine whose operation mode is the heating operation and the heat source machine whose operation mode is the defrosting operation are mixed,
    The control system for an air conditioner according to claim 4, wherein the control total operation capacity for control is obtained by apportioning the total of the total operation capacity to the heat source machine whose operation mode is the heating operation.
  6.  前記複数の熱源側制御装置のそれぞれと通信する集中管理装置と、
     前記複数の利用側ユニットのそれぞれに設けられ、前記利用側制御装置及び前記集中管理装置と通信する複数のリモートコントローラーと、を更に備え、
     前記複数のリモートコントローラーは、前記利用側ユニットの動作状態を指示する指示情報を、前記利用側制御装置及び前記集中管理装置に送信し、
     前記利用側制御装置は、前記指示情報に応じて前記利用側ユニットを制御し、
     前記集中管理装置は、前記複数のリモートコントローラーのそれぞれから取得した前記指示情報に基づき、前記複数の利用側ユニットのうち、前記動作状態が運転状態である前記利用側ユニットの運転能力の総合計値である総合計運転能力を求め、
     前記総合計運転能力を、前記複数の熱源機のそれぞれに按分した制御用合計運転能力を求め、
      前記熱源側制御装置は、前記集中管理装置から前記制御用合計運転能力の情報を取得した場合、前記制御用合計運転能力に応じて、当該熱源機の運転能力を制御するように構成された
     請求項1または2に記載の空気調和装置の制御システム。
    A centralized management device that communicates with each of the plurality of heat source side control devices;
    A plurality of remote controllers that are provided in each of the plurality of usage-side units and communicate with the usage-side control device and the centralized management device;
    The plurality of remote controllers transmit instruction information for instructing an operation state of the usage-side unit to the usage-side control device and the centralized management device,
    The usage-side control device controls the usage-side unit according to the instruction information,
    The centralized management device, based on the instruction information acquired from each of the plurality of remote controllers, of the plurality of usage-side units, the total value of the driving capacity of the usage-side unit whose operation state is the driving state Seeking total grand total driving ability,
    The total operation capacity for control is obtained by distributing the total operation capacity to each of the plurality of heat source units,
    The heat source side control device is configured to control the operation capability of the heat source unit according to the total operation capability for control when the information of the total operation capability for control is acquired from the centralized management device. Item 3. A control system for an air conditioner according to Item 1 or 2.
  7.  1次側熱媒体と2次側熱媒体とを熱交換する中間熱交換器をそれぞれ有する複数の熱源機と、
     前記熱源機と配管接続され、前記2次側熱媒体と空気とを熱交換する利用側熱交換器をそれぞれ有する複数の利用側ユニットと、
     前記複数の利用側ユニットのそれぞれに設けられ、前記複数の利用側ユニットをそれぞれ制御する複数の利用側制御装置と、
     前記複数の熱源機のそれぞれに設けられ、前記複数の熱源機をそれぞれ制御する複数の熱源側制御装置と、を備えた、空気調和装置の制御方法であって、
     前記利用側制御装置が、前記複数の熱源側制御装置のそれぞれと通信して、前記利用側ユニットの動作状態の情報を送信するステップと、
     前記熱源側制御装置が、前記複数の利用側ユニットのうち連携動作する1つまたは複数の前記利用側ユニットの動作状態に応じて、前記熱源機の動作を制御するステップと、を有する
     空気調和装置の制御方法。
    A plurality of heat source units each having an intermediate heat exchanger for exchanging heat between the primary side heat medium and the secondary side heat medium;
    A plurality of usage-side units each having a usage-side heat exchanger that is pipe-connected to the heat source unit and exchanges heat between the secondary side heat medium and air;
    A plurality of usage-side control devices that are provided in each of the plurality of usage-side units and control the plurality of usage-side units;
    A plurality of heat source side control devices that are provided in each of the plurality of heat source units and control the plurality of heat source units, respectively,
    The use side control device communicates with each of the plurality of heat source side control devices to transmit information on the operating state of the use side unit;
    The heat source side control device includes a step of controlling the operation of the heat source unit in accordance with an operation state of one or a plurality of the usage side units operating in cooperation among the plurality of usage side units. Control method.
PCT/JP2014/078000 2014-10-21 2014-10-21 Control system for air-conditioning device and control method for air-conditioning device WO2016063362A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/078000 WO2016063362A1 (en) 2014-10-21 2014-10-21 Control system for air-conditioning device and control method for air-conditioning device
JP2016554990A JP6223592B2 (en) 2014-10-21 2014-10-21 Control system for air conditioner and control method for air conditioner
GB1706480.9A GB2545872C (en) 2014-10-21 2014-10-21 Air-conditioning apparatus control system and air-conditioning apparatus control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078000 WO2016063362A1 (en) 2014-10-21 2014-10-21 Control system for air-conditioning device and control method for air-conditioning device

Publications (1)

Publication Number Publication Date
WO2016063362A1 true WO2016063362A1 (en) 2016-04-28

Family

ID=55760435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078000 WO2016063362A1 (en) 2014-10-21 2014-10-21 Control system for air-conditioning device and control method for air-conditioning device

Country Status (3)

Country Link
JP (1) JP6223592B2 (en)
GB (1) GB2545872C (en)
WO (1) WO2016063362A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029292B1 (en) * 2018-01-16 2019-11-08 주식회사 쏠리드벤투스 Module type outdoor unit for air conditioning apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828938A (en) * 1994-07-12 1996-02-02 Sanyo Electric Co Ltd Decentralized air conditioner
JPH0875229A (en) * 1994-08-31 1996-03-19 Sanyo Electric Co Ltd Dispersed arrangement type air conditioner
JPH11141957A (en) * 1997-11-06 1999-05-28 Sanyo Electric Co Ltd Air conditioner
JP2012068008A (en) * 2010-08-23 2012-04-05 Takasago Thermal Eng Co Ltd Air conditioning system of facilities having plural stories and method of operating the same
JP2012207869A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Heat source system and number-of-machines control method for heat source system
JP2013113445A (en) * 2011-11-25 2013-06-10 Mitsubishi Electric Corp Air conditioner
JP2014035102A (en) * 2012-08-07 2014-02-24 Daikin Ind Ltd Air conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828938A (en) * 1994-07-12 1996-02-02 Sanyo Electric Co Ltd Decentralized air conditioner
JPH0875229A (en) * 1994-08-31 1996-03-19 Sanyo Electric Co Ltd Dispersed arrangement type air conditioner
JPH11141957A (en) * 1997-11-06 1999-05-28 Sanyo Electric Co Ltd Air conditioner
JP2012068008A (en) * 2010-08-23 2012-04-05 Takasago Thermal Eng Co Ltd Air conditioning system of facilities having plural stories and method of operating the same
JP2012207869A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Heat source system and number-of-machines control method for heat source system
JP2013113445A (en) * 2011-11-25 2013-06-10 Mitsubishi Electric Corp Air conditioner
JP2014035102A (en) * 2012-08-07 2014-02-24 Daikin Ind Ltd Air conditioning system

Also Published As

Publication number Publication date
JP6223592B2 (en) 2017-11-01
GB2545872B (en) 2020-07-01
GB2545872C (en) 2020-08-12
GB2545872A (en) 2017-06-28
GB201706480D0 (en) 2017-06-07
JPWO2016063362A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5933031B2 (en) Air conditioner
WO2014136199A1 (en) Air-conditioning system
JP2013238376A (en) Air conditioning device
WO2011101892A1 (en) Air-conditioning system
JP2021042918A (en) Air conditioning system
WO2014132433A1 (en) Air conditioning device
EP1589294A1 (en) Unitary air conditioning system
JPWO2019142269A1 (en) Control method of air conditioner and air conditioner
EP2354688A2 (en) Hot water supply air conditioner
JP6223592B2 (en) Control system for air conditioner and control method for air conditioner
KR20160097566A (en) Air conditioner and a method for controlling the same
JP2010190484A (en) Electronic apparatus cooling device
EP2339267B1 (en) Refrigerating cycle apparatus, heat pump type hot water supply air conditioner and outdoor unit thereof
EP1628080A2 (en) Unitary air conditioning system
WO2020165992A1 (en) Air conditioning system, air conditioning apparatus, operation control method, and program
JP4809055B2 (en) Air conditioner and other function addition equipment
JP6305621B2 (en) Air conditioner and control method of air conditioner
KR20110138014A (en) Air conditioning system
JP2017110850A (en) Air conditioning facility and air conditioning facility construction method
JP6997396B2 (en) Air conditioning system
WO2024062536A1 (en) Heat source system, air conditioning system, control method, and control program
CN109764396A (en) A kind of control method and control device of energy resource system
CN109764391A (en) A kind of control method and control device of energy resource system
JP7086276B2 (en) Air conditioner
KR20070087542A (en) Cooling equipment using as the heat pump for water cooled

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016554990

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201706480

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141021

122 Ep: pct application non-entry in european phase

Ref document number: 14904223

Country of ref document: EP

Kind code of ref document: A1