WO2016062319A1 - An assembly comprising an end-fitting and an unbonded flexible pipe - Google Patents

An assembly comprising an end-fitting and an unbonded flexible pipe Download PDF

Info

Publication number
WO2016062319A1
WO2016062319A1 PCT/DK2015/050318 DK2015050318W WO2016062319A1 WO 2016062319 A1 WO2016062319 A1 WO 2016062319A1 DK 2015050318 W DK2015050318 W DK 2015050318W WO 2016062319 A1 WO2016062319 A1 WO 2016062319A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
fitting
assembly according
flexible pipe
unbonded flexible
Prior art date
Application number
PCT/DK2015/050318
Other languages
French (fr)
Inventor
Tom Larsen
Thorsten Holst
Original Assignee
National Oilwell Varco Denmark I/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Oilwell Varco Denmark I/S filed Critical National Oilwell Varco Denmark I/S
Priority to CA2963588A priority Critical patent/CA2963588C/en
Priority to BR112017007938-0A priority patent/BR112017007938B1/en
Priority to EP15852520.4A priority patent/EP3209922B1/en
Priority to AU2015335367A priority patent/AU2015335367B2/en
Priority to US15/516,695 priority patent/US10655772B2/en
Publication of WO2016062319A1 publication Critical patent/WO2016062319A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/35Ohmic-resistance heating
    • F16L53/38Ohmic-resistance heating using elongate electric heating elements, e.g. wires or ribbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/047Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts for flexible profiles, e.g. sealing or decorating strips in grooves or on other profiles by devices moving along the flexible profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L25/00Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means
    • F16L25/01Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means specially adapted for realising electrical conduction between the two pipe ends of the joint or between parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/01Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses adapted for hoses having a multi-layer wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L53/00Heating of pipes or pipe systems; Cooling of pipes or pipe systems
    • F16L53/30Heating of pipes or pipe systems
    • F16L53/34Heating of pipes or pipe systems using electric, magnetic or electromagnetic fields, e.g. using induction, dielectric or microwave heating

Definitions

  • the present invention relates to an assembly comprising an end-fitting and an unbonded flexible pipe, where the end-fitting comprises means for establishing an electrical connection to a least one electrical heating system in the unbonded flexible pipe.
  • End-fittings and unbonded flexible pipes are used for transport of
  • the unbonded flexible pipe e.g. conveys the hydrocarbons from a subsea installation to a vessel floating on the sea surface.
  • the unbonded flexible pipe is terminated at each end in an end-fitting which connects the unbonded flexible pipe to the subsea installation and the vessel, respectively.
  • the unbonded flexible pipes usually comprise an internal pressure sheath - often referred to as an innermost sealing sheath or inner liner, which forms a barrier against the outflow of the fluid which is conveyed in the bore of the pipe, and one or usually a plurality of armour layers.
  • the pipe further comprises an outer protection layer, often referred to as the outer sheath, which provides mechanical protection of the armour layers.
  • the outer protection layer may be a sealing layer sealing against ingress of sea water.
  • one or more intermediate sealing layers are arranged between armor layers.
  • the different layers are terminated in the end-fitting, meaning that the layers are fastened and locked in the end-fitting by use of e.g. mechanical means, welding, or potting using e.g. a filled epoxy resin.
  • the end-fitting forms a transition between the unbonded flexible pipe and a connection on the vessel or the subsea installation.
  • the known pipe normally comprises at least two armour layers located outside the internal pressure sheath and optionally an armour structure located inside the internal pressure sheath, which inner armour structure normally is referred to as the carcass.
  • These armour layers are terminated in the end-fitting, which is normally made from a metal alloy.
  • the carcass is normally terminated by a ring comprising a screw lock which is mechanical attached to the end-fitting.
  • the armour layers outside the internal pressure sheath are usually terminated in cavities in the end-fitting and locked by use of e.g. epoxy resin.
  • the armour layers on the outer side of the internal pressure sheath are normally constituted by one or two pressure armour layers and one or two tensile armour layers.
  • the outer sheath may be terminated and attached to the end-fitting by mechanical means.
  • the termination of an unbonded flexible pipe in an end-fitting is normally a manual process which is carried out according to the customers need.
  • the electric connections between the electric power source providing the electric power for heating and the heating element will be established in the end-fitting.
  • the unbonded flexible pipes may have a substantial length of several hundred meters or more, it is required to use rather high currents (300 A or more) to obtain a satisfactory heating in the pipes.
  • high voltages are required (1000 V or more).
  • An end-fitting cladding of the end-fitting components is normal procedure, to enhance nobility of the surface and to increase resistance towards wear, abrasion and corrosion.
  • a commonly used material for internal cladding of end-fitting components is the super alloy Inconel (trademark of Special Metals Corporation) which has good properties in respect of resisting wear, abrasion and corrosion.
  • Inconel also has good electrically conductive properties.
  • Other means to protect internal parts of the end-fitting comprises seals and gaskets.
  • the international patent application PCT/DK2014/050109 discloses an offshore system comprising an unbonded flexible pipe terminated in end- fittings at each end.
  • the offshore system includes an electrical heating system utilizing the carcass and the armour layers in the unbonded flexible pipe.
  • an electrical heating system utilizing the carcass and the armour layers in the unbonded flexible pipe.
  • the through-going opening in the end-fitting is electrically insulated, e.g. by an extension of the internal pressure sheath of the unbonded flexible pipe or by application of a layer insulating material, such as rubber.
  • unbonded flexible pipes comprise electrical heating systems electric wiring is required to establish electrical contact between a power source and the electrical heating system.
  • the electric wiring in the end-fitting and the connections to the heating means i.e.
  • the wires or armour layer in the pipe are well insulated, e.g. by means of electrical insulating seals and gaskets.
  • the layers of the polymer material in the unbonded flexible pipe, i.e. the internal pressure sheath, the outer sheath and optionally thermal insulating layers may also function as electrical insulating layers.
  • Stray current refers to the electricity flow via structures, ground or equipment due to electrical supply system imbalances or wiring flaws. It refers to an existence of electrical potential that can be found between objects that should not be subjected to voltage.
  • the occurrence of stray currents is highly undesirable as they may cause sparks to be formed, which is highly undesired.
  • the stray currents may lead to galvanic corrosion in parts of the end-fitting which is also undesired.
  • An object of the present invention is to obtain an assembly comprising and end-fitting connected with an unbonded flexible pipe which comprises an electric heating system where the assembly has improved properties in respect of eliminating undesired effects of stray currents.
  • a further object is to provide an end-fitting adapted for electric heating of an unbonded flexible pipe which end-fitting has good resistance towards galvanic corrosion.
  • the present invention relates to an assembly comprising an end-fitting and an unbonded flexible pipe, said end-fitting being adapted for connecting the unbonded flexible pipe to a connector, said end-fitting having a through- going opening with a centerline and a front end and a rear end, said end- fitting further comprises means for establishing an electrical connection to a least one electrical heating system in said unbonded flexible pipe, said end- fitting comprises at least one first metallic part having a first surface contacting a second surface of at least one second part in the end-fitting , wherein the first surface of the first metallic part, at least in the vicinity of the through-going opening, comprises a coating having a high electrically resistivity.
  • unbonded means in this text that at least two of the layers including the armour layers and polymer layers are not bonded to each other.
  • high electrically resistivity means that electrically resistivity is at least 10 7 ⁇ -m
  • the term "in the vicinity of the through-going opening” means an area surrounding the through-going opening, which do not necessarily include the entire end-fitting.
  • the area may be considered to be an area which is comprised within an imaginary cylindrical body having top and bottom coincident with the rear end and the front end of the end-fitting, respectively, and an axis coincident with the centerline of the through-going opening and a radius which is between one and a quarter and one and a half time larger than the radius of the through-going opening at the rear end of the through- going opening.
  • the vicinity of the through-going opening is an area which is found between 1 R to 1 Vi R into the material surrounding the through-going opening, when measured from the center-line and in a plane perpendicular to the centerline of the through-going opening.
  • surface contacting a surface means that the surfaces of two different parts are so close that there is a physical contact between the surfaces, and if the parts are electrically conductive and their surfaces are electrically conductive, there will be electrical connection between the two parts.
  • the through-going opening of the end-fitting is connected with the bore of the unbonded flexible pipe so the through-going opening may be seen as acting as an extension of the bore, and fluid conveyed in the bore passes through the through-going opening from the bore to a connector.
  • the connector provides a leak-tight structural connection between the end-fitting and adjacent piping.
  • the through-going opening can in principal be seen as a substantially cylindrical shaped passageway through the end-fitting. However, this is not entirely true.
  • the through-going opening comprises parts with recesses, necks, and indentations for terminating the unbonded flexible pipe. In this context all these parts are included in the term "through-going opening".
  • the through-going opening of the end-fitting and the bore of the unbonded pipe form a substantial cylindrical shaped passageway through the end- fitting.
  • the unbonded flexible pipe enters the end-fitting at the front end and is terminated in the end-fitting by use of well-known methods.
  • the centerline of the end-fitting may be construed as an extension of the axis of the pipe.
  • the rear end of the end-fitting comprises means for connecting the end-fitting to the connector.
  • the end-fitting comprises metallic parts and these parts are in a conventional end-fitting mainly the inner casing and the outer casing (using the nomenclature of "Recommended Practice for Flexible Pipe", ANSI/API 17 B, fourth Edition, July 2008).
  • the end-fitting may comprise other metallic parts, such as e.g.
  • ring-shaped members serving to fix layers of the unbonded flexible pipe in the end-fitting.
  • alternative materials are available for the manufacture of end-fittings e.g. polymer materials, metallic materials are, however, still preferred due to the mechanical properties, workability, and cost.
  • the end-fitting according to the invention is adapted with electric wiring for establishing electrical contact between an electric power source and an electric heating system in the unbonded flexible pipe.
  • the wiring may be copper wires which are led through one or more passageways in the end- fitting to connection points on the electric heating element.
  • the wiring may also be aluminium wires and also comprise rods, such a copper or aluminium rod.
  • stray currents were not expected to appear in the end-fittings, due to the proper use of electric insulation.
  • stray current may appear and a non-binding theory is that when the unbonded flexible pipe is pressurized, which will happen when the pipe conveys oil and gas, very thin films may be formed from water or other electrically conductive fluids on surfaces or between contacting surfaces in the end-fitting.
  • the water and other electrically conductive fluids originates from the fluid conveyed in the bore of the unbonded flexible pipe and it is almost impossible to avoid formation of such films during use of the unbonded flexible pipe when the fluid conveyed in the pipe is pressurized.
  • the thin films formed from water or other electrically conductive fluids i.e.
  • conductive films may be able to penetrate between interfaces between different parts in the end- fitting and get into contact with electrical conductive parts and then function as paths for stray current, and this stray currents may result in galvanic corrosion in the metallic parts of the end-fitting.
  • the end-fitting generally is made from a metallic alloy, such as e.g. AISI 4130 low alloy steel which may conduct an electric current
  • this metallic alloy is also sensitive to differences in electric potentials, and, thus, sensitive to galvanic corrosion. Consequently, the stray currents may cause galvanic corrosion.
  • stray current resulting in galvanic corrosion may by significant reduced or even avoided in the end-fitting if the surfaces of metallic parts, at least in the vicinity of the through-going opening, comprises a coating having a high electrically resistivity.
  • the stray currents is mainly caused be electrical conductive films spreading from the fluid in the through-going opening into interfaces in the end-fitting, and it is believed that the conductive films are only able to penetrate a limited distance into the interfaces, and, thus, it is assumed that normally it will only be required to treat metallic surfaces in the vicinity of the through-going opening to avoid damage caused be stray current.
  • the coating is an electrically insulating coating having an electrically resistivity of at least 10 7 ⁇ -m. More preferred an electrically resistivity of at least 10 8 ⁇ -m, such as an electrically resistivity of at least 10 9 ⁇ -m, conveniently an electrically resistivity of at least 10 10 ⁇ -m.
  • At least a part of the coating comprises a bushing.
  • a bushing is very easy to mount in the through-going opening of the end-fitting and may not require as much work as other types of coatings.
  • the bushing is preferably manufactured from a material which is electrically insulating and having an electrically resistivity of at least 10 7 ⁇ -m or more.
  • the bushing is made from a polymer material such as epoxy, polyethylene, polyvinyl chloride, polyetheretherketone,
  • the first part is a metallic part
  • the second part is a metallic part and each of the surfaces between the first and the second metallic parts comprise a coating having a high electrically resistivity.
  • This embodiment is particular suitable if a conductive film penetrates into the interface between the two interconnected surfaces, i.e. the first and the second surface of metallic parts. If the first and the second surface are coated with a coating having a high electrically resistivity, the coating will function as an electric insulator and the conductive film will not be able to transfer current to the metallic parts.
  • the second part is a non-metallic part, e.g. the second part is an insulating part.
  • the second part may be an insulating part, such as a gasket, e.g. serving to insulate the electric contact point in the end-fitting, i.e. the points where the electric wiring is connected to the heating element in the unbonded flexible pipe.
  • the metallic surfaces of the through-going opening is protected by an insulating layer, e.g. by the internal pressure sheath of the unbonded flexible pipe or an insulating layer of e.g. rubber or polymer material.
  • the metallic surfaces in the through-going opening comprises a coating having a high electrically resistivity.
  • This embodiment may be useful in case there is an opening in the insulating layer which may form a passageway from the fluid convoyed in the bore to the metallic surface of the through-going opening. If the passageway has a sufficient size a conductive film may be able to pass through the passageway and into to the interface between the insulating layer and the surface of the through-going opening. In this interface between the insulating layer and the metallic surface of the through-going opening the conductive film may lead to galvanic corrosion if the surface of the through-going opening is not protected by a coating having a high electrically resistivity.
  • all metallic surfaces in the end-fitting is coated with a coating having a high electrically resistivity.
  • This embodiment provides a very good protection against the risk of galvanic corrosion.
  • the metallic surface of a metallic part in the end-fitting in contact with an insulating material comprises a coating having a high electrically resistivity.
  • coating material Several materials, in particular insulating materials will be suitable as coating material according to the invention, and advantageously the coating is selected from an epoxy coating, a polyurethane coating, a
  • polytetrafluoroethylene coating a fluorinated ethylene propylene coating, a polyvinyl chloride coating, an enamel coating a ceramic coating, a glass coating and combinations thereof.
  • Such coating will all have an electrically resistivity of at least 10 7 ⁇ -m and may serve to reduce the presence of stray currents and the risk of galvanic corrosion on metallic surface of the end- fitting.
  • a ceramic coating may be applied as a powder or paste which is then heated to form the ceramic coating.
  • a glass coating may be applied as liquid material at high temperature and subsequently cooled to form the glass coating.
  • the thickness of the applied coating depends on the nature of the coating material and will normally be decided by a skilled person.
  • the coating is advantageously applied with a thickness from about 0,05 mm to about 5 mm, suitable with a thickness from about 0,1 mm to about 4 mm, and
  • the through-going opening in the end-fitting may also comprise insulating members such as seals or gaskets, e.g. made from a rubber or polymer material.
  • insulating members such as seals or gaskets, e.g. made from a rubber or polymer material.
  • Other parts than e.g. the through-going opening in the end-fitting may also be coated with an electrical insulating material, i.e. the outer surface of the end-fitting may e.g. be coated with an epoxy coating or other suitable electrical insulating material.
  • the outer surface of the end-fitting is the surface which is in contact with the surrounding environment, e.g. the atmosphere or sea water.
  • a cladding e.g. a cladding of the alloy Inconel
  • these claddings are like Inconel electrically conductive.
  • the claddings have not been applied for the purpose of increasing electric resistance, but rather for the purpose of improving the mechanical properties, such as resistance towards wear.
  • coatings with high electrical resistance also may resist wear and in fact are suitable for use in the through-going opening in an end-fitting.
  • the end-fitting according to the invention comprises means for establishing an electrical connection to a least one electrical heating system in the unbonded flexible pipe serving to provide electric heating in the unbonded flexible pipe.
  • the unbonded flexible pipe comprises only one electrical heating system.
  • the unbonded flexible pipe comprises two or more electrical heating systems. Thus, if one heating system fails a second heating system may be operative.
  • the electrical heating system comprises one or more wires. Electrical conductive wires can be included in the structure of the unbonded flexible pipe without causing any major impact on the structure, and the wires will function well as a heating element.
  • the electrical heating system comprises one or more of the armour layers in the unbonded flexible pipe.
  • the armour layers are made from metallic alloys which are electrically conductive, and, therefore, suitable for use as an electric heating element in the unbonded flexible pipe. Consequently, the electric heating system may comprise a carcass, a tensile armour and/or a pressure armour.
  • utilizing the one or more of the armour layer provides a very simple and cost-effective way of providing electric heating in an unbonded flexible pipe.
  • the carcass serves as the heating element.
  • the first end of the unbonded flexible pipe is terminated in a first end-fitting according to the invention and the carcass is connected with electric wiring from a power source, e.g. at the carcass ring.
  • the unbonded flexible pipe is terminated in a second end-fitting according to the invention, and the carcass is electrical connected with the tensile armour in the pipe via electric wiring in the second end-fitting.
  • the tensile armour is connected with to the power source via wiring in the end-fitting.
  • an electrical circuit is established between the first and the second end-fitting by means of wiring in the two end-fittings and the carcass and the tensile armour in the unbonded flexible pipe.
  • one or more thermal insulating layers which will also function as electrically insulating layers may be placed between the carcass and the pressure armour. Electrically insulating layers may also be located between the pressure armour and the tensile armour.
  • the electrical circuit is adjusted so the carcass will function as a heating element.
  • the end-fitting comprises a protective sleeve.
  • the protective sleeve is mainly used when the end-fitting is
  • the protective sleeve may be made from metallic material, such as e.g. stainless steel or polymer material, such as e.g. polyethylene or polyvinylidene fluoride.
  • the protective sleeve may be re-usable.
  • the end-fitting is housed in an electrical insulating housing.
  • the housing may be a barrel shaped housing encapsulating the end- fitting, thus, the housing not necessarily have to fit with the end-fitting shape.
  • the main purpose of the housing is serve to inhibit stray current from the end-fitting to reach the environment, e.g. when the end-fitting is mounted for operation in sea water.
  • the electrically insulating housing is preferably manufactured from polymer material with electrical insulating properties, such as epoxy, polyurethane, polytetrafluoroethylene, fluorinated ethylene propylene, or polyvinyl chloride.
  • the housing may also be adapted to serve as a protective cover for the end-fitting during transport.
  • the present invention also relates to a method for reducing the risk of galvanic corrosion in an end-fitting for connecting an unbonded flexible pipe comprising electrical heating means to a connector.
  • the method comprises:
  • said end-fitting comprises at least one first metallic part having a first surface adapted for contacting a second surface of at least one second part in the end-fitting;
  • an end-fitting is made from material, of which a major part is a metallic material, e.g. a metallic alloy such as e.g. AISI 4130 low steel alloy.
  • a minor part of the end-fitting may be other materials, such as e.g. coating material and rubber used for gaskets and insulation.
  • the metallic parts such as the inner casing and the outer casing, is capable of conducting an electric current.
  • an end-fitting with good properties in respect of electrically insulation, whereby galvanic corrosion due to stray currents may be significantly reduced.
  • an end-fitting having means, such as electric wiring for connecting electric heating means in the unbonded flexible pipe with a source for electric power. The source for electric power is connected to the electric heating means in the unbonded flexible pipe via the end-fitting.
  • the through-going opening is not a smooth bore as such, but also comprises recesses, indentations, cavities, packing and clamps serving to terminate the unbonded flexible pipe, and these parts, when being metallic and electrically conductive parts, may also be treated according to the invention.
  • the electric wiring and contact points are insulated, it is, however, possible that stray currents may appear in the metallic material of the end- fitting.
  • the method provides a coating on the metallic surfaces of the through-going opening, which coating has a high electrically resistivity and will function as an insulating coating, which will prevent an electric current in being transferred to or from the metallic material below the coating.
  • the coating may be applied to the entire metallic surfaces of the end-fitting or only to parts of the metallic surfaces in the end- fitting. In the latter case it is preferred to apply the coating to the surface of metallic parts where the surface may be vulnerable to corrosion.
  • a first surface of a first metallic part is coating with a coating having a high electrically resistivity.
  • the coating may serve as an electrically insulator serving to reduce the
  • the second part is a metallic part and the second surface of the second part is subjected to a treatment to obtain a substantially clean second surface and applying the clean second surface with a coating having a high electrical resistance.
  • both the first and the second surfaces are applied with a coating providing an electrically insulation an preventing electrically contact between the first and the second metallic part, thereby reducing the possible of stray currents in the metallic parts.
  • the coating is an electrically insulating coating having an electrically resistivity of at least 10 7 ⁇ -m. More preferred an electrically resistivity of at least 10 8 ⁇ -m, such as an electrically resistivity of at least 10 9 ⁇ -m, conveniently an electrically resistivity of at least 10 10 ⁇ - ⁇ .
  • any material which can be applied as a coating and having an electrically resistivity of at least 10 7 ⁇ -m is suitable for use in the present method.
  • the coating is selected from an epoxy coating, a polyurethane coating, a polytetrafluoroethylene coating, a fluorinated ethylene propylene coating, an enamel coating and combinations thereof. These materials have a high electrically resistivity and also acceptable mechanical properties for use in an end-fitting.
  • the applied coating may be cured simply be contact with atmospheric air, or by use of a curing aid, such as e.g. heat or light.
  • a curing aid such as e.g. heat or light.
  • the thickness of the coating should be in a range which ensure proper electrically resistivity and sufficient resistance towards wear and in an embodiment of the method the coating is applied with a thickness from about 0,05 mm to about 5 mm, such as with a thickness from about 0,1 mm to about 4 mm, and suitable with a thickness from about 0,2 mm to about 3 mm.
  • the coating may e.g. be applied by spraying, powder coating, fusing or by application by brush. Before the coating is applied, the surface on which the coating is to be applied is treated to provide a clean surface on which the coating may adhere.
  • the treatment of the surface is a sand blasting, a mechanical cleaning, a chemical etching, an electro polishing or a
  • the method comprises the further step of applying an adhesive layer to the cleaned surface.
  • the purpose of the adhesive layer is to improve the adhesion of the coating to the surface of the through-going opening.
  • the adhesive layer may be based on epoxy or polyurethane or similar compounds .
  • the coating is bond to the adhesive layer by cross-linking.
  • the adhesive will be selected so it is suitable for cross-linking, such as a polyurethane-based adhesive.
  • the cross- linking may e.g. be initiated by heat, light-emission, such as from a laser or by peroxides, and other know methods for cross-linking polymer materials.
  • Figure 1 shows an unbonded flexible pipe for use in an assemble according to the invention
  • Figure 2 shows an end-fitting for use in an assemble according to the invention
  • Figure 3 shows a section of the assembly.
  • FIG. 1 shows an unbonded flexible pipe 1.
  • the pipe 1 comprises a carcass 2 which constitutes an inner armour layer inside the internal pressure sheath 3, which is fluid tight.
  • a pressure armour 4 which surround and protect the internal pressure sheath.
  • the pressure armour is surrounded by an electrical insulating layer 5.
  • Around the electrical insulating layer 5 are wound two tensile armour layers 6 and 7.
  • the tensile armour layers 6 and 7 are surrounded by an outer sheath 8.
  • the internal pressure sheath 3 defines the bore of the pipe with the axis 9.
  • the internal pressure sheath 3 is an extruded layer made from a polyethylene (PE) or a polyvinylidene fluoride (PVDF) material.
  • the insulating layer 5 is also a fluid-tight layer made from polyethylene (PE) or polyvinylidene fluoride (PVDF) material.
  • the outer sheath 8 is a fluid-tight layer, which should protect the pipe from e.g. ingress of water into the armour layers.
  • the outer sheath is made from polyethylene or polypropylene (PP)
  • the carcass 2, the pressure armour 4 and the tensile armour layers 6, 7 are made from a metallic material which are electrically conductive, such as stainless steel.
  • Figure 2 shows an unbonded flexible pipe 1 and an end-fitting 10 forming an assembly where the unbonded flexible 1 enters the end-fitting at front end 11 and is terminated in the end-fitting 10.
  • the end-fitting comprises a flange by which the end-fitting may be attached to a connector.
  • Figure 3 shows a section of the end-fitting 10 and the principles of how the unbonded flexible pipe 1 is terminated in the end-fitting 10.
  • the end-fitting 10 has a rear end 12 comprising a flange with holes 14 adapted for receiving bolts which may attach the end-fitting 10 to a connector.
  • the end-fitting further comprise an inner casing 13 and an outer casing 15.
  • the flexible unbonded pipe 1 enters the end-fitting 10 at the front end 11 and the carcass 2 and the internal pressure sheath 3 continue into the though-going opening 17 until the carcass 2 is terminated at the carcass ring 18.
  • the carcass ring 18 is embedded in an insulating member 19 made from rubber material.
  • the insulating member 19 is also adjacent to the termination of the internal pressure sheath 3.
  • the carcass ring 18 fixates the carcass 2 in the end-fitting by means of lock-nuts (not visible).
  • the internal pressure sheath 3 is fixed in the end-fitting 10 by means of a ring-shaped member 20 and a further device 21 which is pressed into the surface of the internal pressure sheath 3.
  • the pressure armour 4 and the electrically insulating layer 5 are terminated adjacent to the ring-shaped member 20 and the further device 21.
  • the pressure armour 4 and the electrically insulating layer 5 are held by a ring- shaped fixing device 22
  • the tensile armours 6 and 7 are terminated in a cavity 23 formed between the inner casing 13 and the outer casing 15.
  • the cavity 23 is filled with epoxy which fixes the tensile armours 6 and 7, but also functions as insulating material.
  • the outer sheath 8 is terminated in a recess in the outer casing 15.
  • the end- fitting 10 is equipped with electric wiring.
  • One electric wire 24 connects the carcass ring 18 with a contact point on the surface of the end-fitting.
  • a second electric wire 25 connects the tensile armour 6, 7 with a contact point on the surface of the end-fitting.
  • the two contact points 24 and 25 may be connected to a power source, or alternatively the two contact points 24 and 25 may be mutually connected.
  • the wiring and the contact points are properly insulated by use of suitable insulating material.
  • the dotted line 9 indicates the center line of the through-going opening 17 and the radius of the through-going opening is indicated by letter R.
  • figure 3 only shows a half part of the through-going opening and the end- fitting.
  • the inner casing 13 and the outer casing 15 are made from metallic material.
  • the parts 20 and 22 are made from a metallic material.
  • the surface 26 of the inner casing 13 facing the through-going opening 17 is coated with a coating 27 having a high electrically resistivity.
  • the surface 28 of the outer casing 15 facing the through-going opening 17 is coated with a coating 29 having a high electrically resistivity.
  • the surfaces of the 20 and 22 are coated with a coating 30 having a high electrically resistivity.
  • the coating having a high electrically resistivity is an epoxy coating having an electrically resistivity of more than 10 10 ⁇ -m and applied with a thickness of approximately 1 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Resistance Heating (AREA)
  • Pipe Accessories (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

An assembly comprising an end-fitting (10) and an unbonded flexible pipe (1) is disclosed, where the end-fitting (10) is adapted for connecting the unbonded flexible pipe (1) to a connector. The end-fitting (10) has a through-going opening (17) with a centreline (9) and a front end (11) and a rear end (12), and the end-fitting (10) further comprises means (24, 25) for establishing an electrical connection to a least one electrical heating system in said unbonded flexible pipe (1). Moreover, the end-fitting (10) comprises at least one first metallic part having a first surface contacting a second surface of at least one second part in the end-fitting (10) wherein the first surface of the first metallic part, at least in the vicinity of the through-going opening (17), comprises a coating (27, 29, 30) having a high electrically resistivity. The invention also discloses a method for providing an end-fitting (10) having good properties in respect of reducing galvanic corrosion.

Description

AN ASSEMBLY COMPRISING AN END-FITTING AND AN UNBONDED FLEXIBLE PIPE
The present invention relates to an assembly comprising an end-fitting and an unbonded flexible pipe, where the end-fitting comprises means for establishing an electrical connection to a least one electrical heating system in the unbonded flexible pipe.
TECHNICAL FIELD
End-fittings and unbonded flexible pipes are used for transport of
hydrocarbons such as oil and gas, and in particular the end-fittings and the unbonded flexible pipes are used for off-shore transport of oil and gases. The unbonded flexible pipe e.g. conveys the hydrocarbons from a subsea installation to a vessel floating on the sea surface. The unbonded flexible pipe is terminated at each end in an end-fitting which connects the unbonded flexible pipe to the subsea installation and the vessel, respectively.
End-fittings and unbonded flexible pipes of the present type are for example described in the standard "Recommended Practice for Flexible Pipe",
ANSI/API 17 B, fourth Edition, July 2008, and the standard "Specification for Unbonded Flexible Pipe", ANSI/API 17J, Third edition, July 2008. The unbonded flexible pipes usually comprise an internal pressure sheath - often referred to as an innermost sealing sheath or inner liner, which forms a barrier against the outflow of the fluid which is conveyed in the bore of the pipe, and one or usually a plurality of armour layers. Normally the pipe further comprises an outer protection layer, often referred to as the outer sheath, which provides mechanical protection of the armour layers. The outer protection layer may be a sealing layer sealing against ingress of sea water. In certain unbonded flexible pipes one or more intermediate sealing layers are arranged between armor layers. The different layers are terminated in the end-fitting, meaning that the layers are fastened and locked in the end-fitting by use of e.g. mechanical means, welding, or potting using e.g. a filled epoxy resin. Thus, the end-fitting forms a transition between the unbonded flexible pipe and a connection on the vessel or the subsea installation.
In practice the known pipe normally comprises at least two armour layers located outside the internal pressure sheath and optionally an armour structure located inside the internal pressure sheath, which inner armour structure normally is referred to as the carcass. These armour layers are terminated in the end-fitting, which is normally made from a metal alloy. The carcass is normally terminated by a ring comprising a screw lock which is mechanical attached to the end-fitting. The armour layers outside the internal pressure sheath are usually terminated in cavities in the end-fitting and locked by use of e.g. epoxy resin. The armour layers on the outer side of the internal pressure sheath are normally constituted by one or two pressure armour layers and one or two tensile armour layers. The outer sheath may be terminated and attached to the end-fitting by mechanical means. The termination of an unbonded flexible pipe in an end-fitting is normally a manual process which is carried out according to the customers need.
One problem which frequently arises when the unbonded flexible pipe is used offshore for transport of fluids of hydrocarbons is that the fluid is cooled by the surrounding sea water to a degree so the fluid becomes highly viscous and difficult to transport. In some situations the bore of the pipe may be blocked by solidified hydrocarbons, which may eventually block the pipe. This problem is normally addressed by applying thermal insulation layers or active heating, such as electric heating
Both the solution of applying thermal insulation layers and the solution using electric heating function quite well. However, due to the high flexibility of electric heating this solution tends to become more and more widespread for use in unbonded flexible pipes. The electric heating is realized by having electric wires along the length of the pipe and sending a current through the wires. In a recent developed method for electric heating of unbonded flexible pipes it has been found that one or more of the metallic armour layer may be used for heating, by passing a current through the armour layer. Due to the inherent electric resistance in the metallic armour layers a heating effect may be achieved.
Normally, the electric connections between the electric power source providing the electric power for heating and the heating element will be established in the end-fitting. As the unbonded flexible pipes may have a substantial length of several hundred meters or more, it is required to use rather high currents (300 A or more) to obtain a satisfactory heating in the pipes. Moreover, to force these currents through the pipes high voltages are required (1000 V or more).
To protect internal parts of an end-fitting cladding of the end-fitting components is normal procedure, to enhance nobility of the surface and to increase resistance towards wear, abrasion and corrosion. A commonly used material for internal cladding of end-fitting components is the super alloy Inconel (trademark of Special Metals Corporation) which has good properties in respect of resisting wear, abrasion and corrosion. However, Inconel also has good electrically conductive properties. Other means to protect internal parts of the end-fitting comprises seals and gaskets.
The international patent application PCT/DK2014/050109 discloses an offshore system comprising an unbonded flexible pipe terminated in end- fittings at each end. The offshore system includes an electrical heating system utilizing the carcass and the armour layers in the unbonded flexible pipe. To avoid damage caused by galvanic corrosion and spark formation in the end-fitting the through-going opening in the end-fitting is electrically insulated, e.g. by an extension of the internal pressure sheath of the unbonded flexible pipe or by application of a layer insulating material, such as rubber. When unbonded flexible pipes comprise electrical heating systems electric wiring is required to establish electrical contact between a power source and the electrical heating system. The electric wiring in the end-fitting and the connections to the heating means, i.e. the wires or armour layer in the pipe, are well insulated, e.g. by means of electrical insulating seals and gaskets. The layers of the polymer material in the unbonded flexible pipe, i.e. the internal pressure sheath, the outer sheath and optionally thermal insulating layers may also function as electrical insulating layers. However, in operation it has been found that stray currents may occur. Stray current refers to the electricity flow via structures, ground or equipment due to electrical supply system imbalances or wiring flaws. It refers to an existence of electrical potential that can be found between objects that should not be subjected to voltage. The occurrence of stray currents is highly undesirable as they may cause sparks to be formed, which is highly undesired. Moreover, the stray currents may lead to galvanic corrosion in parts of the end-fitting which is also undesired.
DISCLOSURE OF INVENTION
An object of the present invention is to obtain an assembly comprising and end-fitting connected with an unbonded flexible pipe which comprises an electric heating system where the assembly has improved properties in respect of eliminating undesired effects of stray currents.
A further object is to provide an end-fitting adapted for electric heating of an unbonded flexible pipe which end-fitting has good resistance towards galvanic corrosion.
The present invention relates to an assembly comprising an end-fitting and an unbonded flexible pipe, said end-fitting being adapted for connecting the unbonded flexible pipe to a connector, said end-fitting having a through- going opening with a centerline and a front end and a rear end, said end- fitting further comprises means for establishing an electrical connection to a least one electrical heating system in said unbonded flexible pipe, said end- fitting comprises at least one first metallic part having a first surface contacting a second surface of at least one second part in the end-fitting , wherein the first surface of the first metallic part, at least in the vicinity of the through-going opening, comprises a coating having a high electrically resistivity.
The term "unbonded" means in this text that at least two of the layers including the armour layers and polymer layers are not bonded to each other.
The term "high electrically resistivity" means that electrically resistivity is at least 107 Ω-m
The term "in the vicinity of the through-going opening" means an area surrounding the through-going opening, which do not necessarily include the entire end-fitting. In practice the area may be considered to be an area which is comprised within an imaginary cylindrical body having top and bottom coincident with the rear end and the front end of the end-fitting, respectively, and an axis coincident with the centerline of the through-going opening and a radius which is between one and a quarter and one and a half time larger than the radius of the through-going opening at the rear end of the through- going opening. Thus, if the through-going opening has a radius R at the rear end, the vicinity of the through-going opening is an area which is found between 1 R to 1 Vi R into the material surrounding the through-going opening, when measured from the center-line and in a plane perpendicular to the centerline of the through-going opening.
The term "surface contacting a surface" means that the surfaces of two different parts are so close that there is a physical contact between the surfaces, and if the parts are electrically conductive and their surfaces are electrically conductive, there will be electrical connection between the two parts. In operation the through-going opening of the end-fitting is connected with the bore of the unbonded flexible pipe so the through-going opening may be seen as acting as an extension of the bore, and fluid conveyed in the bore passes through the through-going opening from the bore to a connector. The connector provides a leak-tight structural connection between the end-fitting and adjacent piping.
The through-going opening can in principal be seen as a substantially cylindrical shaped passageway through the end-fitting. However, this is not entirely true. The through-going opening comprises parts with recesses, necks, and indentations for terminating the unbonded flexible pipe. In this context all these parts are included in the term "through-going opening". However, when the unbonded flexible pipe is terminated in the end-fitting, the through-going opening of the end-fitting and the bore of the unbonded pipe form a substantial cylindrical shaped passageway through the end- fitting.
The term "substantially" should herein be taken to mean that ordinary product variances and tolerances are comprised.
The unbonded flexible pipe enters the end-fitting at the front end and is terminated in the end-fitting by use of well-known methods. When the unbonded flexible pipe is terminated in the end-fitting the centerline of the end-fitting may be construed as an extension of the axis of the pipe. The rear end of the end-fitting comprises means for connecting the end-fitting to the connector. The end-fitting comprises metallic parts and these parts are in a conventional end-fitting mainly the inner casing and the outer casing (using the nomenclature of "Recommended Practice for Flexible Pipe", ANSI/API 17 B, fourth Edition, July 2008). Moreover, the end-fitting may comprise other metallic parts, such as e.g. ring-shaped members serving to fix layers of the unbonded flexible pipe in the end-fitting. Although alternative materials are available for the manufacture of end-fittings e.g. polymer materials, metallic materials are, however, still preferred due to the mechanical properties, workability, and cost.
The end-fitting according to the invention is adapted with electric wiring for establishing electrical contact between an electric power source and an electric heating system in the unbonded flexible pipe. The wiring may be copper wires which are led through one or more passageways in the end- fitting to connection points on the electric heating element. The wiring may also be aluminium wires and also comprise rods, such a copper or aluminium rod. Although the wires and connection points are regulatory insulated, it has, however, been found that stray currents may appear in the end-fitting. The stray currents may be very weak, but they may still be able to cause corrosion on unprotected metallic surfaces.
The stray currents were not expected to appear in the end-fittings, due to the proper use of electric insulation. However, it has been found that stray current may appear and a non-binding theory is that when the unbonded flexible pipe is pressurized, which will happen when the pipe conveys oil and gas, very thin films may be formed from water or other electrically conductive fluids on surfaces or between contacting surfaces in the end-fitting. The water and other electrically conductive fluids originates from the fluid conveyed in the bore of the unbonded flexible pipe and it is almost impossible to avoid formation of such films during use of the unbonded flexible pipe when the fluid conveyed in the pipe is pressurized. The thin films formed from water or other electrically conductive fluids, i.e. conductive films, may be able to penetrate between interfaces between different parts in the end- fitting and get into contact with electrical conductive parts and then function as paths for stray current, and this stray currents may result in galvanic corrosion in the metallic parts of the end-fitting.
As the end-fitting generally is made from a metallic alloy, such as e.g. AISI 4130 low alloy steel which may conduct an electric current, this metallic alloy is also sensitive to differences in electric potentials, and, thus, sensitive to galvanic corrosion. Consequently, the stray currents may cause galvanic corrosion.
It has been found that occurrence of stray current resulting in galvanic corrosion may by significant reduced or even avoided in the end-fitting if the surfaces of metallic parts, at least in the vicinity of the through-going opening, comprises a coating having a high electrically resistivity. As it is assumed that the stray currents is mainly caused be electrical conductive films spreading from the fluid in the through-going opening into interfaces in the end-fitting, and it is believed that the conductive films are only able to penetrate a limited distance into the interfaces, and, thus, it is assumed that normally it will only be required to treat metallic surfaces in the vicinity of the through-going opening to avoid damage caused be stray current.
In an embodiment the coating is an electrically insulating coating having an electrically resistivity of at least 107 Ω-m. More preferred an electrically resistivity of at least 108 Ω-m, such as an electrically resistivity of at least 109 Ω-m, conveniently an electrically resistivity of at least 1010 Ω-m.
In an embodiment of the assembly at least a part of the coating comprises a bushing. A bushing is very easy to mount in the through-going opening of the end-fitting and may not require as much work as other types of coatings. The bushing is preferably manufactured from a material which is electrically insulating and having an electrically resistivity of at least 107 Ω-m or more. Preferably the bushing is made from a polymer material such as epoxy, polyethylene, polyvinyl chloride, polyetheretherketone,
polytetrafluoroethylene, fluorinated ethylene propylene or combinations thereof.
In an embodiment of the end-fitting according to the invention the first part is a metallic part, and also the second part is a metallic part and each of the surfaces between the first and the second metallic parts comprise a coating having a high electrically resistivity. This embodiment is particular suitable if a conductive film penetrates into the interface between the two interconnected surfaces, i.e. the first and the second surface of metallic parts. If the first and the second surface are coated with a coating having a high electrically resistivity, the coating will function as an electric insulator and the conductive film will not be able to transfer current to the metallic parts.
In an embodiment of the end-fitting according to the invention the second part is a non-metallic part, e.g. the second part is an insulating part. In this embodiment the second part may be an insulating part, such as a gasket, e.g. serving to insulate the electric contact point in the end-fitting, i.e. the points where the electric wiring is connected to the heating element in the unbonded flexible pipe.
Generally, the metallic surfaces of the through-going opening is protected by an insulating layer, e.g. by the internal pressure sheath of the unbonded flexible pipe or an insulating layer of e.g. rubber or polymer material.
However, in an embodiment the metallic surfaces in the through-going opening comprises a coating having a high electrically resistivity. This embodiment may be useful in case there is an opening in the insulating layer which may form a passageway from the fluid convoyed in the bore to the metallic surface of the through-going opening. If the passageway has a sufficient size a conductive film may be able to pass through the passageway and into to the interface between the insulating layer and the surface of the through-going opening. In this interface between the insulating layer and the metallic surface of the through-going opening the conductive film may lead to galvanic corrosion if the surface of the through-going opening is not protected by a coating having a high electrically resistivity.
In an embodiment all metallic surfaces in the end-fitting is coated with a coating having a high electrically resistivity. This embodiment provides a very good protection against the risk of galvanic corrosion. Moreover, in an embodiment of the assembly according to the invention, the metallic surface of a metallic part in the end-fitting in contact with an insulating material comprises a coating having a high electrically resistivity. Thus, if it should happen that a conductive film penetrates into the interface between the metallic surface and the surface of the insulating material the coating on the metallic surface will protect against galvanic corrosion.
Several materials, in particular insulating materials will be suitable as coating material according to the invention, and advantageously the coating is selected from an epoxy coating, a polyurethane coating, a
polytetrafluoroethylene coating, a fluorinated ethylene propylene coating, a polyvinyl chloride coating, an enamel coating a ceramic coating, a glass coating and combinations thereof. Such coating will all have an electrically resistivity of at least 107 Ω-m and may serve to reduce the presence of stray currents and the risk of galvanic corrosion on metallic surface of the end- fitting. A ceramic coating may be applied as a powder or paste which is then heated to form the ceramic coating. A glass coating may be applied as liquid material at high temperature and subsequently cooled to form the glass coating.
The thickness of the applied coating depends on the nature of the coating material and will normally be decided by a skilled person. The coating is advantageously applied with a thickness from about 0,05 mm to about 5 mm, suitable with a thickness from about 0,1 mm to about 4 mm, and
conveniently with a thickness from about 0,2 mm to about 3 mm.
Besides a coating with high electrically resistivity, the through-going opening in the end-fitting may also comprise insulating members such as seals or gaskets, e.g. made from a rubber or polymer material. Other parts than e.g. the through-going opening in the end-fitting may also be coated with an electrical insulating material, i.e. the outer surface of the end-fitting may e.g. be coated with an epoxy coating or other suitable electrical insulating material. The outer surface of the end-fitting is the surface which is in contact with the surrounding environment, e.g. the atmosphere or sea water.
Although it hitherto has been a normal procedure to cover the surface of the through-going opening with a cladding, e.g. a cladding of the alloy Inconel, these claddings are like Inconel electrically conductive. The claddings have not been applied for the purpose of increasing electric resistance, but rather for the purpose of improving the mechanical properties, such as resistance towards wear. However, it has been found that coatings with high electrical resistance also may resist wear and in fact are suitable for use in the through-going opening in an end-fitting.
The end-fitting according to the invention comprises means for establishing an electrical connection to a least one electrical heating system in the unbonded flexible pipe serving to provide electric heating in the unbonded flexible pipe. In an embodiment the unbonded flexible pipe comprises only one electrical heating system.
In an embodiment the unbonded flexible pipe comprises two or more electrical heating systems. Thus, if one heating system fails a second heating system may be operative.
In an embodiment the electrical heating system comprises one or more wires. Electrical conductive wires can be included in the structure of the unbonded flexible pipe without causing any major impact on the structure, and the wires will function well as a heating element.
In an embodiment the electrical heating system comprises one or more of the armour layers in the unbonded flexible pipe. In the majority of unbonded flexible pipes, the armour layers are made from metallic alloys which are electrically conductive, and, therefore, suitable for use as an electric heating element in the unbonded flexible pipe. Consequently, the electric heating system may comprise a carcass, a tensile armour and/or a pressure armour. Thus, utilizing the one or more of the armour layer provides a very simple and cost-effective way of providing electric heating in an unbonded flexible pipe.
In an embodiment the carcass serves as the heating element. The first end of the unbonded flexible pipe is terminated in a first end-fitting according to the invention and the carcass is connected with electric wiring from a power source, e.g. at the carcass ring. At the second end the unbonded flexible pipe is terminated in a second end-fitting according to the invention, and the carcass is electrical connected with the tensile armour in the pipe via electric wiring in the second end-fitting. In the first end-fitting the tensile armour is connected with to the power source via wiring in the end-fitting. Thus, an electrical circuit is established between the first and the second end-fitting by means of wiring in the two end-fittings and the carcass and the tensile armour in the unbonded flexible pipe. There will be at least one insulating layer between the carcass and the pressure armour in the pipe, namely the internal pressure sheath. Optionally one or more thermal insulating layers which will also function as electrically insulating layers may be placed between the carcass and the pressure armour. Electrically insulating layers may also be located between the pressure armour and the tensile armour. The electrical circuit is adjusted so the carcass will function as a heating element. By use of an assembly according to the invention undesired stray currents and optionally short cuts may be avoided.
In an embodiment of the assembly the end-fitting comprises a protective sleeve. The protective sleeve is mainly used when the end-fitting is
transported and may be removed when the end-fitting is installed for operation. The protective sleeve may be made from metallic material, such as e.g. stainless steel or polymer material, such as e.g. polyethylene or polyvinylidene fluoride. The protective sleeve may be re-usable.
In an embodiment the end-fitting is housed in an electrical insulating housing. The housing may be a barrel shaped housing encapsulating the end- fitting, thus, the housing not necessarily have to fit with the end-fitting shape. The main purpose of the housing is serve to inhibit stray current from the end-fitting to reach the environment, e.g. when the end-fitting is mounted for operation in sea water. The electrically insulating housing is preferably manufactured from polymer material with electrical insulating properties, such as epoxy, polyurethane, polytetrafluoroethylene, fluorinated ethylene propylene, or polyvinyl chloride.
In an embodiment the housing may also be adapted to serve as a protective cover for the end-fitting during transport.
In an embodiment the present invention also relates to a method for reducing the risk of galvanic corrosion in an end-fitting for connecting an unbonded flexible pipe comprising electrical heating means to a connector. The method comprises:
- providing an end-fitting having a through-going opening with a centerline and a front end and a rear end, and comprising means for establishing an electrical connection to the heating means in said unbonded flexible pipe, said end-fitting comprises at least one first metallic part having a first surface adapted for contacting a second surface of at least one second part in the end-fitting;
- subjecting the first surface of the first metallic part for a treatment to obtain a substantially clean first surface;
- applying a coating having a high electrically resistivity to the cleaned first surface; and
- curing the applied coating to obtain a coating on the first surface having a high electrically resistivity.
Normally an end-fitting is made from material, of which a major part is a metallic material, e.g. a metallic alloy such as e.g. AISI 4130 low steel alloy. A minor part of the end-fitting may be other materials, such as e.g. coating material and rubber used for gaskets and insulation. Thus, a major part of the end-fitting, the metallic parts, such as the inner casing and the outer casing, is capable of conducting an electric current. However, by use of the method there is provided an end-fitting with good properties in respect of electrically insulation, whereby galvanic corrosion due to stray currents may be significantly reduced. In particular there is provided an end-fitting having means, such as electric wiring for connecting electric heating means in the unbonded flexible pipe with a source for electric power. The source for electric power is connected to the electric heating means in the unbonded flexible pipe via the end-fitting.
As previously mentioned the through-going opening is not a smooth bore as such, but also comprises recesses, indentations, cavities, packing and clamps serving to terminate the unbonded flexible pipe, and these parts, when being metallic and electrically conductive parts, may also be treated according to the invention.
Although the electric wiring and contact points are insulated, it is, however, possible that stray currents may appear in the metallic material of the end- fitting. To counter the effect of stray currents the method provides a coating on the metallic surfaces of the through-going opening, which coating has a high electrically resistivity and will function as an insulating coating, which will prevent an electric current in being transferred to or from the metallic material below the coating. The coating may be applied to the entire metallic surfaces of the end-fitting or only to parts of the metallic surfaces in the end- fitting. In the latter case it is preferred to apply the coating to the surface of metallic parts where the surface may be vulnerable to corrosion.
According to the method according to the invention a first surface of a first metallic part is coating with a coating having a high electrically resistivity. The coating may serve as an electrically insulator serving to reduce the
dissemination of stray current. In an embodiment of the method the second part is a metallic part and the second surface of the second part is subjected to a treatment to obtain a substantially clean second surface and applying the clean second surface with a coating having a high electrical resistance. In this embodiment both the first and the second surfaces are applied with a coating providing an electrically insulation an preventing electrically contact between the first and the second metallic part, thereby reducing the possible of stray currents in the metallic parts.
According to an embodiment of the method the coating is an electrically insulating coating having an electrically resistivity of at least 107 Ω-m. More preferred an electrically resistivity of at least 108 Ω-m, such as an electrically resistivity of at least 109 Ω-m, conveniently an electrically resistivity of at least 1010 Ω-πι.
In principle any material which can be applied as a coating and having an electrically resistivity of at least 107 Ω-m is suitable for use in the present method. However in an embodiment of the method the coating is selected from an epoxy coating, a polyurethane coating, a polytetrafluoroethylene coating, a fluorinated ethylene propylene coating, an enamel coating and combinations thereof. These materials have a high electrically resistivity and also acceptable mechanical properties for use in an end-fitting.
The applied coating may be cured simply be contact with atmospheric air, or by use of a curing aid, such as e.g. heat or light.
The thickness of the coating should be in a range which ensure proper electrically resistivity and sufficient resistance towards wear and in an embodiment of the method the coating is applied with a thickness from about 0,05 mm to about 5 mm, such as with a thickness from about 0,1 mm to about 4 mm, and suitable with a thickness from about 0,2 mm to about 3 mm. The coating may e.g. be applied by spraying, powder coating, fusing or by application by brush. Before the coating is applied, the surface on which the coating is to be applied is treated to provide a clean surface on which the coating may adhere. Advantageous the treatment of the surface is a sand blasting, a mechanical cleaning, a chemical etching, an electro polishing or a
combination of two or more of the mentioned treatments.
In an embodiment the method comprises the further step of applying an adhesive layer to the cleaned surface. The purpose of the adhesive layer is to improve the adhesion of the coating to the surface of the through-going opening. The adhesive layer may be based on epoxy or polyurethane or similar compounds . In some embodiments the coating is bond to the adhesive layer by cross-linking. Thus, the adhesive will be selected so it is suitable for cross-linking, such as a polyurethane-based adhesive. The cross- linking may e.g. be initiated by heat, light-emission, such as from a laser or by peroxides, and other know methods for cross-linking polymer materials.
DETAILED DESCRIPTION OF THE INVENTION
The invention will now be described in further details with reference to embodiments shown in the drawing in which:
Figure 1 shows an unbonded flexible pipe for use in an assemble according to the invention;
Figure 2 shows an end-fitting for use in an assemble according to the invention; and
Figure 3 shows a section of the assembly.
The figures are not accurate in every detail but only sketches intended to the show the principles of the invention. Details which are not a part of the invention may have been omitted. In the figures the same reference signs are used for the same parts. Figure 1 shows an unbonded flexible pipe 1. The pipe 1 comprises a carcass 2 which constitutes an inner armour layer inside the internal pressure sheath 3, which is fluid tight. On the outer surface of the internal pressure sheath 3 is found a pressure armour 4 which surround and protect the internal pressure sheath. The pressure armour is surrounded by an electrical insulating layer 5. Around the electrical insulating layer 5 are wound two tensile armour layers 6 and 7. The tensile armour layers 6 and 7 are surrounded by an outer sheath 8.
The internal pressure sheath 3 defines the bore of the pipe with the axis 9. The internal pressure sheath 3 is an extruded layer made from a polyethylene (PE) or a polyvinylidene fluoride (PVDF) material. The insulating layer 5 is also a fluid-tight layer made from polyethylene (PE) or polyvinylidene fluoride (PVDF) material. The outer sheath 8 is a fluid-tight layer, which should protect the pipe from e.g. ingress of water into the armour layers. The outer sheath is made from polyethylene or polypropylene (PP)
The carcass 2, the pressure armour 4 and the tensile armour layers 6, 7 are made from a metallic material which are electrically conductive, such as stainless steel.
Figure 2 shows an unbonded flexible pipe 1 and an end-fitting 10 forming an assembly where the unbonded flexible 1 enters the end-fitting at front end 11 and is terminated in the end-fitting 10. At the rear end 12 the end-fitting comprises a flange by which the end-fitting may be attached to a connector.
Figure 3 shows a section of the end-fitting 10 and the principles of how the unbonded flexible pipe 1 is terminated in the end-fitting 10.
The end-fitting 10 has a rear end 12 comprising a flange with holes 14 adapted for receiving bolts which may attach the end-fitting 10 to a connector. The end-fitting further comprise an inner casing 13 and an outer casing 15. The flexible unbonded pipe 1 enters the end-fitting 10 at the front end 11 and the carcass 2 and the internal pressure sheath 3 continue into the though-going opening 17 until the carcass 2 is terminated at the carcass ring 18. The carcass ring 18 is embedded in an insulating member 19 made from rubber material. The insulating member 19 is also adjacent to the termination of the internal pressure sheath 3. The carcass ring 18 fixates the carcass 2 in the end-fitting by means of lock-nuts (not visible).
The internal pressure sheath 3 is fixed in the end-fitting 10 by means of a ring-shaped member 20 and a further device 21 which is pressed into the surface of the internal pressure sheath 3.
The pressure armour 4 and the electrically insulating layer 5 are terminated adjacent to the ring-shaped member 20 and the further device 21. The pressure armour 4 and the electrically insulating layer 5 are held by a ring- shaped fixing device 22
The tensile armours 6 and 7 are terminated in a cavity 23 formed between the inner casing 13 and the outer casing 15. The cavity 23 is filled with epoxy which fixes the tensile armours 6 and 7, but also functions as insulating material.
The outer sheath 8 is terminated in a recess in the outer casing 15. The end- fitting 10 is equipped with electric wiring. One electric wire 24 connects the carcass ring 18 with a contact point on the surface of the end-fitting. A second electric wire 25 connects the tensile armour 6, 7 with a contact point on the surface of the end-fitting. The two contact points 24 and 25 may be connected to a power source, or alternatively the two contact points 24 and 25 may be mutually connected. The wiring and the contact points are properly insulated by use of suitable insulating material.
The dotted line 9 indicates the center line of the through-going opening 17 and the radius of the through-going opening is indicated by letter R. Thus, figure 3 only shows a half part of the through-going opening and the end- fitting.
In the particular embodiment of the end-fitting 1 the inner casing 13 and the outer casing 15 are made from metallic material. Moreover, the parts 20 and 22 are made from a metallic material. The surface 26 of the inner casing 13 facing the through-going opening 17 is coated with a coating 27 having a high electrically resistivity. Also the surface 28 of the outer casing 15 facing the through-going opening 17 is coated with a coating 29 having a high electrically resistivity. Moreover, the surfaces of the 20 and 22 are coated with a coating 30 having a high electrically resistivity. In this embodiment, the coating having a high electrically resistivity is an epoxy coating having an electrically resistivity of more than 1010 Ω-m and applied with a thickness of approximately 1 mm.
In the embodiment depicted in figure 3, all metallic surfaces in the internal part of the end-fitting having an interface to other surfaces have been applied with the epoxy coating, e.g. the interface between the outer casing 15 and the outer sheath 8. Moreover, the surface of the inner casing 13 facing the through-going opening has been applied with a coating 27. Thus, it will not be necessary to cover the surface of the through-going opening with a layer of insulating material. The coating of the metallic surfaces serves to reduce occurrence of stray currents and, thereby, galvanic corrosion of the metallic material in the end-fitting.

Claims

1. An assembly comprising an end-fitting and an unbonded flexible pipe, said end-fitting being adapted for connecting the unbonded flexible pipe to a connector, said end-fitting having a through-going opening with a centerline and a front end and a rear end, said end-fitting further comprises means for establishing an electrical connection to a least one electrical heating system in said unbonded flexible pipe, said end-fitting comprises at least one first metallic part having a first surface contacting a second surface of at least one second part in the end-fitting , wherein the first surface of the first metallic part, at least in the vicinity of the through-going opening, comprises a coating having a high electrically resistivity.
2. An assembly according to claim 1, wherein the coating has an electrically resistivity of at least 107 Ω-m.
3. An assembly according to claim 1 or 2, wherein the second part is a metallic part and said second surface comprises a coating having a high electrically resistivity.
4. An assembly according to any one of the preceding claims, wherein at least a part of the coating comprises a bushing.
5. An assembly according to any one of the preceding claims, wherein the second part is a non-metallic part.
6. An assembly according to any one of the preceding claims, wherein the second part is an electrical insulating part.
7. An assembly according to any one of the preceding claims, wherein the metallic surfaces in the through-going opening comprises a coating having a high electrically resistivity.
8. An assembly according to any one of the preceding claims, wherein the surfaces of metallic parts in the end-fitting comprise a coating having a high electrically resistivity.
9. An assembly according to any one of the preceding claims, wherein the electrical heating system comprises one or more armour layers.
10. An assembly according to any one of the preceding claims, wherein the electric heating system comprises a carcass
11. An assembly according to any one of the preceding claims, wherein the electric heating system comprises a tensile armour and/or a pressure armour.
12. An assembly according to any one of the preceding claims, wherein the electrical heating system comprises one or more wires.
13. An assembly according to any one of the preceding claims, wherein the coating is selected from an epoxy coating, a polyurethane coating, a polytetrafluoroethylene coating, a fluorinated ethylene propylene coating, a polyvinyl chloride coating, an enamel coating, a ceramic coating, a glass coating and combinations thereof.
14. An assembly according to any one of the preceding claims, wherein the coating is applied with a thickness from about 0,05 mm to about 5 mm
15. An assembly according to any one of the preceding claims, wherein the end-fitting comprises further parts comprising insulating material.
16. An assembly according to any one of the preceding claims, wherein the end-fitting comprises an insulating coating on the outer surface.
17. An assembly according to any one of the preceding claims, wherein the end-fitting comprises a protective sleeve.
18. An assembly according to any one of the preceding claims, wherein the end-fitting is housed in an electrical insulating housing.
19. A method for reducing the risk of galvanic corrosion in an end-fitting for connecting an unbonded flexible pipe comprising electrical heating means to a connector, said method comprises: providing an end-fitting having a through-going opening with a centerline and a front end and a rear end, and comprising means for establishing an electrical connection to the heating means in said unbonded flexible pipe, said end-fitting comprises at least one first metallic part having a first surface adapted for contacting a second surface of at least one second part in the end-fitting; subjecting the first surface of the first metallic part for a treatment to obtain a substantially clean surface; applying a coating having a high electrical resistance to the cleaned first surface; and curing the applied coating to obtain a coating having a high electrically resistivity.
20. A method according to claim 18, wherein the coating is an electrically insulating coating having an electrically resistivity of at least 107 Ω-m.
21. A method according to claim 18 or 19, wherein the second surface of the second part is subjected to a treatment to obtain a substantially clean second surface and applying the clean second surface with a coating having a high electrical resistance.
22. A method according to any one of the claims 18 to 20, wherein the coating is selected from an epoxy coating, a polyurethane coating, a polytetrafluoroethylene coating, a fluorinated ethylene propylene coating, an enamel coating and combinations thereof.
23. A method according to any one of the claims 18 to 21, wherein the coating is applied with a thickness from about 0,05 mm to about 5 mm
24. A method according to any one of the claims 18 to 22, wherein treatment of the surface is a sand blasting, a mechanical cleaning, a chemical etching, an electro polishing or a combination of two or more of the mentioned treatments.
25. A method according to any one of the claims 18 to 23, comprising the further step of applying an adhesive layer to the cleaned surface.
26. A method according to any one of the claims 18 to 24, wherein the coating is bond to the adhesive layer by cross-linking.
PCT/DK2015/050318 2014-10-20 2015-10-14 An assembly comprising an end-fitting and an unbonded flexible pipe WO2016062319A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2963588A CA2963588C (en) 2014-10-20 2015-10-14 An assembly comprising an end-fitting and an unbonded flexible pipe
BR112017007938-0A BR112017007938B1 (en) 2014-10-20 2015-10-14 ASSEMBLY AND METHOD TO REDUCE THE RISK OF GALVANIC CORROSION
EP15852520.4A EP3209922B1 (en) 2014-10-20 2015-10-14 An assembly comprising an end-fitting and an unbonded flexible pipe
AU2015335367A AU2015335367B2 (en) 2014-10-20 2015-10-14 An assembly comprising an end-fitting and an unbonded flexible pipe
US15/516,695 US10655772B2 (en) 2014-10-20 2015-10-14 Assembly comprising an end-fitting and an unbonded flexible pipe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA201400596 2014-10-20
DKPA201400596 2014-10-20
DKPA201570510 2015-08-10
DKPA201570510 2015-08-10

Publications (1)

Publication Number Publication Date
WO2016062319A1 true WO2016062319A1 (en) 2016-04-28

Family

ID=55760320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2015/050318 WO2016062319A1 (en) 2014-10-20 2015-10-14 An assembly comprising an end-fitting and an unbonded flexible pipe

Country Status (6)

Country Link
US (1) US10655772B2 (en)
EP (1) EP3209922B1 (en)
AU (1) AU2015335367B2 (en)
BR (1) BR112017007938B1 (en)
CA (1) CA2963588C (en)
WO (1) WO2016062319A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076412A1 (en) 2015-11-03 2017-05-11 National Oilwell Varco Denmark I/S An unbonded flexible pipe
WO2018149462A1 (en) * 2017-02-20 2018-08-23 National Oilwell Varco Denmark I/S An assembly comprising an end-fitting and an unbonded flexible pipe
EP3334970A4 (en) * 2015-08-10 2019-02-13 National Oilwell Varco Denmark I/S An unbonded flexible pipe
EP3334969A4 (en) * 2015-08-10 2019-02-13 National Oilwell Varco Denmark I/S An unbonded flexible pipe
US10352107B2 (en) 2015-02-03 2019-07-16 Acergy France SAS Sealing arrangements for subsea pipe-in-pipe systems
US11339902B2 (en) 2018-01-12 2022-05-24 National Oilwell Varco Denmark I/S Assembly of an end-fitting and an unbonded flexible pipe

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2727323C (en) 2008-06-09 2014-06-03 Prime Flexible Products, Inc. Flexible pipe joint
EA030167B1 (en) 2011-10-04 2018-06-29 Флексстил Пайплайн Текнолоджиз, Инк. Pipe end fitting with improved venting
BR112016030024A2 (en) * 2014-06-30 2017-08-22 Nat Oilwell Varco Denmark Is offshore pipe system and method for pipe heating
EP3201509B1 (en) 2014-09-30 2020-01-01 Flexsteel Pipeline Technologies, Inc. Connector for pipes
CA2995257C (en) * 2015-08-10 2023-08-22 National Oilwell Varco Denmark I/S An assembly comprising an end-fitting and an unbonded flexible pipe
AU2015413844B2 (en) 2015-11-02 2019-05-30 Trinity Bay Equipment Holdings, LLC Real time integrity monitoring of on-shore pipes
BR112018016426B1 (en) 2016-02-15 2022-08-30 National Oilwell Varco Denmark I/S SET AND METHOD FOR REDUCING LEAKAGE CURRENT
US10981765B2 (en) 2016-06-28 2021-04-20 Trinity Bay Equipment Holdings, LLC Half-moon lifting device
US11208257B2 (en) 2016-06-29 2021-12-28 Trinity Bay Equipment Holdings, LLC Pipe coil skid with side rails and method of use
CN113086775A (en) 2016-10-10 2021-07-09 圣三一海湾设备控股有限公司 Roller assembly
US10723254B2 (en) 2016-10-10 2020-07-28 Trinity Bay Equipment Holdings, LLC Installation trailer for coiled flexible pipe and method of utilizing same
US10526164B2 (en) 2017-08-21 2020-01-07 Trinity Bay Equipment Holdings, LLC System and method for a flexible pipe containment sled
AU2018357973A1 (en) 2017-11-01 2020-05-21 Trinity Bay Equipment Holdings, LLC System and method for handling reel of pipe
SG11202007329YA (en) 2018-02-01 2020-08-28 Trinity Bay Equipment Holdings Llc Pipe coil skid with side rails and method of use
AU2019224091A1 (en) 2018-02-22 2020-09-17 Trinity Bay Equipment Holdings, LLC System and method for deploying coils of spoolable pipe
WO2020077201A1 (en) 2018-10-12 2020-04-16 Trinity Bay Equipment Holdings, LLC Installation trailer for coiled flexible pipe and method of utilizing same
AR118122A1 (en) 2019-02-15 2021-09-22 Trinity Bay Equipment Holdings Llc FLEXIBLE TUBE HANDLING SYSTEM AND METHOD TO USE THE SAME
US10753512B1 (en) 2019-03-28 2020-08-25 Trinity Bay Equipment Holdings, LLC System and method for securing fittings to flexible pipe
GB201915705D0 (en) * 2019-10-30 2019-12-11 Ge Oil & Gas Uk Ltd Wire securement
US10926972B1 (en) 2019-11-01 2021-02-23 Trinity Bay Equipment Holdings, LLC Mobile cradle frame for pipe reel
EP4058709A4 (en) 2019-11-22 2024-03-27 Trinity Bay Equipment Holdings, LLC Swaged pipe fitting systems and methods
BR112022010003A2 (en) 2019-11-22 2022-08-16 Trinity Bay Equipment Holdings Llc SYSTEMS AND METHODS OF VESSEL TUBE FITTINGS
US11204114B2 (en) 2019-11-22 2021-12-21 Trinity Bay Equipment Holdings, LLC Reusable pipe fitting systems and methods
US10822194B1 (en) 2019-12-19 2020-11-03 Trinity Bay Equipment Holdings, LLC Expandable coil deployment system for drum assembly and method of using same
US10844976B1 (en) 2020-02-17 2020-11-24 Trinity Bay Equipment Holdings, LLC Methods and apparatus for pulling flexible pipe
US11629801B2 (en) * 2021-02-26 2023-04-18 Polyflow Llc Unbonded reinforced plastic pipe
CN114484133A (en) * 2022-03-14 2022-05-13 胜利油田兴达高祥新材料有限责任公司 Electric heating composite pipeline

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289561A (en) * 1990-11-07 1994-02-22 Petroleo Brasileiro S.A. Subsea pipeline system with electrically heated flexible pipeline
WO1999019656A1 (en) * 1997-10-14 1999-04-22 Nkt Flexibles I/S An assembly of a flexible pipe and an end-fitting
WO1999019655A1 (en) 1997-10-14 1999-04-22 Nkt Flexibles I/S An assembly of an end-fitting and a flexible pipe
US6039083A (en) * 1998-10-13 2000-03-21 Wellstream, Inc. Vented, layered-wall deepwater conduit and method
EP1867907A1 (en) 2006-06-16 2007-12-19 Wellstream International Limited Extended collar
FR3006032A1 (en) 2013-05-21 2014-11-28 Technip France FLEXIBLE TUBULAR DRIVER HEATED BY PASSING AN ELECTRIC CURRENT WITHIN CARBON COMPOSITE ARMS
EP3040593A1 (en) 2013-08-26 2016-07-06 Símeros Projetos Eletromecânicos Ltda. Sealing assembly for hose connector

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2883513A (en) 1957-11-21 1959-04-21 Resistoflex Corp Heated hose assembly
JPS53111916U (en) 1977-02-16 1978-09-06
FR2381229A1 (en) * 1977-02-21 1978-09-15 Kleber Colombes ELECTRICAL INSULATION OF METAL PIPE FLANGES
US4950001A (en) * 1987-12-11 1990-08-21 Simplex Wire & Cable Graduated friction anchor
US6142707A (en) * 1996-03-26 2000-11-07 Shell Oil Company Direct electric pipeline heating
US6315497B1 (en) * 1995-12-29 2001-11-13 Shell Oil Company Joint for applying current across a pipe-in-pipe system
US5975119A (en) * 1997-08-12 1999-11-02 Transdigm, Inc. Ice-proof fluid line assemblies
ATE224027T1 (en) 1997-10-14 2002-09-15 Nkt Flexibles Is FLEXIBLE PIPING WITH AN ASSOCIATED CONNECTION PART
FR2816389B1 (en) * 2000-11-08 2003-05-30 Coflexip FLEXIBLE CONDUIT TIP
HU224141B1 (en) * 2001-06-13 2005-05-30 Phoenix Rubber Gumiipari Kft. Post-mountable, high-pressure hose with clammed hose coupling
DE10309562A1 (en) * 2003-03-04 2004-09-16 Phoenix Ag Hose with built-in coupling and process for its manufacture
FR2915552B1 (en) * 2007-04-27 2009-11-06 Technip France FLEXIBLE TUBULAR DRIVING FOR THE TRANSPORT OF GASEOUS HYDROCARBONS.
US8944471B2 (en) * 2009-06-04 2015-02-03 Gary Rodenburg Electrically conductive hydraulic hose
NO334353B1 (en) 2011-02-24 2014-02-17 Nexans Low voltage direct electric heating for flexible pipes / risers
WO2014005064A2 (en) * 2012-06-29 2014-01-03 Eaton Corporation Abrasion monitoring system for hose assembly
GB201221034D0 (en) * 2012-11-22 2013-01-09 Mantaray Innovations Ltd Flexible pipe coupling
AU2014261820B2 (en) * 2013-05-02 2018-07-26 National Oilwell Varco Denmark I/S An assembly of a flexible pipe and an end-fitting
BR112016001932B1 (en) 2013-08-02 2020-09-24 National Oilwell Varco Denmark I/S FLEXIBLE TUBE NOT UNITED FOR FLUID TRANSPORT, AND OUTSIDE COAST SYSTEM
WO2015070871A1 (en) * 2013-11-12 2015-05-21 National Oilwell Varco Denmark I/S An assembly comprising an unbonded flexible pipe and an end-fitting
CA2995257C (en) 2015-08-10 2023-08-22 National Oilwell Varco Denmark I/S An assembly comprising an end-fitting and an unbonded flexible pipe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289561A (en) * 1990-11-07 1994-02-22 Petroleo Brasileiro S.A. Subsea pipeline system with electrically heated flexible pipeline
WO1999019656A1 (en) * 1997-10-14 1999-04-22 Nkt Flexibles I/S An assembly of a flexible pipe and an end-fitting
WO1999019655A1 (en) 1997-10-14 1999-04-22 Nkt Flexibles I/S An assembly of an end-fitting and a flexible pipe
US6039083A (en) * 1998-10-13 2000-03-21 Wellstream, Inc. Vented, layered-wall deepwater conduit and method
EP1867907A1 (en) 2006-06-16 2007-12-19 Wellstream International Limited Extended collar
FR3006032A1 (en) 2013-05-21 2014-11-28 Technip France FLEXIBLE TUBULAR DRIVER HEATED BY PASSING AN ELECTRIC CURRENT WITHIN CARBON COMPOSITE ARMS
EP3040593A1 (en) 2013-08-26 2016-07-06 Símeros Projetos Eletromecânicos Ltda. Sealing assembly for hose connector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3209922A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10352107B2 (en) 2015-02-03 2019-07-16 Acergy France SAS Sealing arrangements for subsea pipe-in-pipe systems
EP3254010B1 (en) * 2015-02-03 2019-09-25 Acergy France SAS Sealing arrangements for subsea pipe-in-pipe systems
EP3334970A4 (en) * 2015-08-10 2019-02-13 National Oilwell Varco Denmark I/S An unbonded flexible pipe
EP3334969A4 (en) * 2015-08-10 2019-02-13 National Oilwell Varco Denmark I/S An unbonded flexible pipe
US10851918B2 (en) 2015-08-10 2020-12-01 National Oilwell Varco Denmark I/S Unbonded flexible pipe
WO2017076412A1 (en) 2015-11-03 2017-05-11 National Oilwell Varco Denmark I/S An unbonded flexible pipe
EP3371502A4 (en) * 2015-11-03 2019-03-27 National Oilwell Varco Denmark I/S An unbonded flexible pipe
US11054067B2 (en) 2015-11-03 2021-07-06 NATIONAL OILWELL VARCO DENMARK l/S Unbonded flexible pipe
WO2018149462A1 (en) * 2017-02-20 2018-08-23 National Oilwell Varco Denmark I/S An assembly comprising an end-fitting and an unbonded flexible pipe
EP3583344A4 (en) * 2017-02-20 2020-10-28 National Oilwell Varco Denmark I/S An assembly comprising an end-fitting and an unbonded flexible pipe
US11300237B2 (en) 2017-02-20 2022-04-12 National Oilwell Varco Denmark I/S Unbonded flexible pipe and an end-fitting
US11339902B2 (en) 2018-01-12 2022-05-24 National Oilwell Varco Denmark I/S Assembly of an end-fitting and an unbonded flexible pipe

Also Published As

Publication number Publication date
CA2963588C (en) 2023-05-23
AU2015335367B2 (en) 2019-10-03
US10655772B2 (en) 2020-05-19
AU2015335367A1 (en) 2017-04-13
CA2963588A1 (en) 2016-04-28
US20170299092A1 (en) 2017-10-19
EP3209922B1 (en) 2022-01-19
BR112017007938B1 (en) 2021-07-06
EP3209922A4 (en) 2018-05-23
EP3209922A1 (en) 2017-08-30
BR112017007938A2 (en) 2018-01-23

Similar Documents

Publication Publication Date Title
AU2015335367B2 (en) An assembly comprising an end-fitting and an unbonded flexible pipe
EP3417199B1 (en) Assembly comprising an end-fitting for terminating an unbonded flexible pipe and an unbonded flexible pipe, and method for preventing stray current in an end-fitting
EP3334967B1 (en) An assembly comprising an end-fitting and an unbonded flexible pipe
US9989183B2 (en) Unbonded flexible pipe and an offshore system comprising an unbonded flexible pipe
AU2018222217B2 (en) An assembly comprising an end-fitting and an unbonded flexible pipe
US20170159866A1 (en) An offshore pipe system and a method of heating unbonded flexible pipes in an offshore pipe system
BR112019018980A2 (en) cathodic assembly and protection
WO2018052311A1 (en) Umbilical fluid line, umbilical, and method
US20240071653A1 (en) High voltage electric power feed-through apparatus
RU2333415C1 (en) Current-protective pipe union safety control
RU2587735C2 (en) Method for protection of nonconductive connection of two sections of pipeline against internal corrosion
RU2331013C1 (en) Device to protect pipeline current-insulator joint
Berti et al. Steel Flowlines Anticorrosion And Insulation Coating For Ultra Deep Water (Case Study Of Application For Roncador Extra Field Development Project-Brazil)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852520

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015852520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015852520

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2963588

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15516695

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015335367

Country of ref document: AU

Date of ref document: 20151014

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017007938

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017007938

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170418