WO2016058310A1 - Oled背板及其制作方法、对位系统及其对位方法 - Google Patents

Oled背板及其制作方法、对位系统及其对位方法 Download PDF

Info

Publication number
WO2016058310A1
WO2016058310A1 PCT/CN2015/073349 CN2015073349W WO2016058310A1 WO 2016058310 A1 WO2016058310 A1 WO 2016058310A1 CN 2015073349 W CN2015073349 W CN 2015073349W WO 2016058310 A1 WO2016058310 A1 WO 2016058310A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
transparent substrate
layer
oled backplane
fmm
Prior art date
Application number
PCT/CN2015/073349
Other languages
English (en)
French (fr)
Inventor
张金中
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/785,346 priority Critical patent/US9620567B2/en
Priority to EP15777596.6A priority patent/EP3211665B1/en
Publication of WO2016058310A1 publication Critical patent/WO2016058310A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/191Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited

Definitions

  • Embodiments of the present invention relate to the field of OLED display technologies, and in particular, to an OLED backplane, a manufacturing method thereof, a aligning system, and a aligning method thereof.
  • OLED organic light emitting diode
  • existing OLED display devices generally include an OLED backplane and an organic light emitting material layer disposed on the OLED backplane, and the organic light emitting material layer is generally formed by an evaporation process, specifically, a fine metal mask (Fine Metal) Mask (hereinafter referred to as FMM) mask, the organic material is evaporated into each pixel unit of the pixel region of the OLED back sheet by an evaporation process, thereby forming a desired organic light-emitting material layer on the OLED back sheet.
  • FMM fine metal mask
  • the OLED backplane In the process of fabricating the above-mentioned organic light-emitting material layer, it is necessary to ensure accurate alignment of the FMM and the OLED backplane, so as to ensure that the organic material is accurately evaporated into each pixel unit of the pixel region of the OLED backplane.
  • a more commonly used alignment method is to set a plurality of alignment holes on the FMM and a plurality of alignment pins on the OLED backplane.
  • the OLED backplane generally includes a transparent substrate 10 , and a polysilicon layer 16 and a gate insulating layer 11 disposed on the upper surface of the transparent substrate 10 are disposed on the upper surface of the gate insulating layer 11 .
  • the gate electrode 17 and the dielectric layer 12 are provided on the source and drain electrodes 18 and the planarization layer 13 on the upper surface of the dielectric layer 12.
  • the planarization layer 13 is provided with an anode 19 for preparing an organic light-emitting structure, and in the planarization layer 13
  • a plurality of alignment holes are provided on the FMM.
  • the size of the OLED display device increases, the size of the corresponding FMM increases, and the thickness of the FMM is thinner.
  • the FMM is easily deformed during the alignment process between the FMM and the OLED backplane, resulting in adoption.
  • the above-mentioned alignment method is difficult, and it is necessary to perform multiple adjustments to achieve accurate alignment of the FMM and the OLED backplane, which seriously affects the efficiency of fabricating the organic light-emitting material layer on the OLED backplane.
  • An object of the present invention is to provide an OLED backplane, a manufacturing method thereof, a aligning system, and a aligning method for improving the efficiency of fabricating an organic luminescent material layer on an OLED backplane.
  • an OLED backplane comprising: a transparent substrate, at least two functional layers disposed on an upper surface of the transparent substrate, and the at least two functional layers are sequentially up and down Superimposing; at least two via holes formed in a set region of the at least two functional layers and extending through at least an upper functional layer of the at least two functional layers; and at least two alignment modules, one-to-one correspondence Separatingly located in the at least two via holes, each of the alignment modules includes at least three first alignment structures arranged according to a set track, according to each of the first ones of each of the alignment modules The relative positions between the alignment structures may define a virtual pair of sites, and each of the alignment modules is adapted to reflect light incident from a lower surface of the transparent substrate.
  • each of the via holes penetrates the thickness of each of the functional layers and one end communicates with the upper surface of the transparent substrate; the at least two alignment modules are directly disposed on the transparent substrate On the surface.
  • each of the alignment modules includes three of the first alignment structures arranged in a rectangular trajectory, and a center of each of the first alignment structures and the rectangular trajectory One inflection point corresponds.
  • each of the alignment modules includes four of the first alignment structures arranged in a circular trajectory, and the centers of the four of the first alignment structures are the circles
  • the shape trajectory is divided into four equal parts.
  • each of the first alignment structures includes a reflective layer that is formed in synchronization with an anode over the transparent substrate.
  • the number of the functional layers is three, wherein the functional layer disposed on the upper surface of the transparent substrate is a gate insulating layer disposed on the gate insulating layer
  • the functional layer on the surface is a dielectric layer
  • the functional layer provided on the upper surface of the dielectric layer is a planarization layer.
  • the number of the via holes and the alignment module are respectively four, and four of the virtual pair sites determined by the four of the alignment modules are sequentially connected to form a rectangle.
  • a method of fabricating an OLED backplane including the steps of:
  • each of the alignment modules including according to the set track Arranging at least three first alignment structures, a virtual pair of pixels can be determined according to a relative position between each of the first alignment structures in each alignment module, and each alignment module is adapted to reflect Light incident from the lower surface of the transparent substrate.
  • the at least two via holes are formed in a set region of each functional layer through a thickness of each functional layer to an upper surface of the transparent substrate by a patterning process; A layer is formed on an upper surface of the transparent substrate located in each of the via holes.
  • the number of the functional layers is three, wherein a functional layer formed on an upper surface of the transparent substrate is a gate insulating layer formed on the gate
  • the functional layer on the upper surface of the insulating layer is a dielectric layer
  • the functional layer formed on the upper surface of the dielectric layer is a planarization layer.
  • the manufacturing method of each of the via holes specifically includes the following steps:
  • a pattern including at least two second via portions is formed on the dielectric layer by a patterning process, and the second via portion is The first via portions are in one-to-one correspondence;
  • a pattern including at least two third via portions is formed on the planarization layer by one patterning process, and the third via portion is The second via portions are in one-to-one correspondence;
  • a corresponding one of the first via portion, one of the second via portion, and one of the third via portions constitute one of the via holes.
  • first via portion and the second via portion are formed by one patterning process, and specifically include the steps of:
  • At least two of the first via portions of the thickness of the gate insulating layer, and the second via portion and the first via portion are in one-to-one correspondence;
  • the mask used in the patterning process includes a full-tone mask region for forming the second via portion and the first via portion, and a halftone mask corresponding to the pixel region of the transparent substrate Membrane area.
  • each of the first alignment structures includes a reflective layer formed in synchronization with an anode located above the transparent substrate.
  • the manufacturing method of each of the via holes specifically includes the following steps:
  • the dielectric layer and the planarization layer After sequentially forming the gate insulating layer, the dielectric layer and the planarization layer on the upper surface of the transparent substrate, forming a through-insulation through the gate insulating layer by one patterning process and extending the etching time And the dielectric layer and the planarization layer to at least two of the via holes of the upper surface of the transparent substrate.
  • a positioning system for determining whether an OLED backplane and a fine metal mask FMM are accurately aligned including:
  • a charge coupled device CCD camera for capturing an alignment picture of the OLED backplane and the FMM, the alignment picture comprising: each first alignment structure in each alignment module of the OLED backplane a pattern, and a pattern representing each of the second alignment structures on the FMM;
  • a picture processor connected to the CCD camera signal, the picture processor processing the alignment picture fed back by the CCD camera to determine a virtual pair position corresponding to each of the alignment modules, And determining a pattern center of each of the second alignment structures, and determining whether each of the virtual pair sites coincides with a pattern center of each of the corresponding second alignment structures, and each of the virtual pair sites respectively corresponds to When the pattern centers of the second alignment structures overlap, it is determined that accurate alignment between the OLED backplane and the FMM is achieved.
  • a method for aligning an accurate alignment between an OLED backplane and an FMM by using the alignment system provided by the above technical solution including the steps of:
  • the aligning picture includes: each pair representing the OLED backplane a pattern of each of the first alignment structures in the bit module, and a pattern representing each of the second alignment structures on the FMM;
  • each alignment module is disposed on the upper surface of the transparent substrate, and when the FMM mask is used, the second alignment structures on the FMM are respectively opposite to the respective via holes. Therefore, when the CCD camera takes a picture from the lower surface side of the transparent substrate, the light reflected by each of the first alignment structure and each of the second alignment structures can be directly reflected from the transparent substrate to the CCD camera, thereby greatly reducing the number of reflections and refraction of the light.
  • the number of times makes the difference between the pattern gray of the first bit structure and the second bit structure in the alignment picture and the pattern gray level of the FMM, so that the pattern representing the FMM, the pattern of the first alignment structure, and the like can be clearly distinguished.
  • the pattern of the second alignment structure greatly reduces the number of alignments between the FMM and the OLED backplane, thereby significantly improving the efficiency of fabricating the organic light-emitting material layer on the OLED backplane.
  • FIG. 1 is a schematic structural view of an OLED backplane in the prior art
  • FIG. 2 is a partial schematic view of an OLED backplane according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG. 5 is a layout diagram of each first alignment structure in each alignment module of FIG. 2;
  • FIG. 6 is a flowchart of manufacturing an OLED backplane according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a registration system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for aligning according to an embodiment of the present invention.
  • FIG. 2 is a partial schematic view of an OLED backplane according to an embodiment of the present invention, that is, a schematic view of a aligning area; and FIG. 3 is a cross-sectional view taken along line A-A of FIG.
  • the OLED backplane provided by the embodiment of the present invention includes: a transparent substrate 10, at least two functional layers disposed on an upper surface of the transparent substrate 10, and the at least two functional layers are sequentially stacked one on another, penetrating through the functional layers.
  • At least two via holes 15 having a thickness and one end communicating with the upper surface of the transparent substrate 10, and at least two alignment modules disposed on the upper surface of the transparent substrate 10 and correspondingly located in the at least two via holes 15
  • Each of the alignment modules includes at least three first alignment structures 14 arranged according to the set trajectory, and a virtual alignment site can be determined according to the relative position between each of the first alignment structures 14 in each alignment module.
  • FIG. 4 is a positional relationship between the OLED backplane and the FMM when photographing with a CCD camera.
  • the second alignment structure 31 on the FMM 30 is aligned with the via 15 in the OLED backplane to complete the preliminary alignment; the CCD camera 40 captures the side of the OLED backplane facing away from the FMM 30 to obtain the FMM 30 and the OLED backplane.
  • the shooting range of the CCD camera 40 is required to include at least two alignment modules during shooting, and the relative position between the CCD camera 40 and the OLED backplane is guaranteed to be constant each time.
  • a virtual pair of points corresponding to each of the alignment modules is determined; and the second alignment structure 31 is represented according to the alignment picture.
  • the pattern determines the center of the pattern corresponding to each of the second alignment structures 31.
  • the backplanes are accurately aligned, and the organic material may be evaporated into each pixel unit of the pixel area of the OLED backplane; if the virtual centering points and the corresponding pattern centers of the respective second alignment structures 31 are not Coincident, or only one virtual pair of points coincides with the center of the pattern of the corresponding second alignment structure 31, indicating that there is no accurate alignment between the FMM and the OLED backplane, and it is necessary to according to the second alignment structure 31 in the alignment picture. Adjusting the relative position between the center of the pattern and the corresponding virtual pair of points, adjusting the FMM 30 relative to the OLED backplane Position, repeat the above photographing, comparison and adjustment process until each virtual pair of points coincides with the center of the pattern of the corresponding second alignment structure 31.
  • each alignment module is disposed on the upper surface of the transparent substrate 10, and the second alignment structure 31 is opposite to the via 15 when the CCD camera 40 is
  • the light reflected by each of the first alignment structures 14 and the respective second alignment structures 31 can be directly reflected from the transparent substrate 10 to the CCD camera 40, thereby greatly reducing the number of times of light reflection and the number of refractions. Therefore, the pattern gradation of the first alignment structure 14 and the second alignment structure 31 in the alignment picture is different from the pattern gradation of the FMM 30, so that the pattern representing the FMM 30 and the first alignment structure 14 can be clearly distinguished.
  • the pattern and the pattern of the second alignment structure 31 can further accurately determine whether the FMM and the OLED backplane are accurately aligned, and accurately obtain the displacement of the FMM 30 relative to the OLED backplane when the position of the FMM 30 relative to the OLED backplane needs to be adjusted. Therefore, compared with the prior art, the number of alignments between the FMM 30 and the OLED backplane is greatly reduced, thereby significantly improving the efficiency of fabricating the organic light-emitting material layer on the OLED backplane.
  • the transparent substrate 10 may be a glass substrate or a plastic substrate.
  • the transparent substrate 10 is optionally used for preparing low temperature polysilicon (Low Temperature Poly- Si, hereinafter referred to as LTPS) substrate.
  • LTPS Low Temperature Poly- Si
  • Each via 15 is located at the periphery of the OLED backplane, that is, in the non-display area (non-pixel area) of the OLED backplane, so the via 15 described above and hereinafter is a functional layer that penetrates the non-display area of the OLED backplane.
  • the thickness of the non-display area of the OLED backplane is usually three, and the functional layer disposed on the upper surface of the transparent substrate 10 is a gate insulating layer 11 disposed on the upper surface of the gate insulating layer 11.
  • the upper functional layer is the dielectric layer 12, and the functional layer provided on the upper surface of the dielectric layer 12 is the planarization layer 13. It should be noted that, in some OLED backplanes, the planarization layer 13 is not provided, or a buffer layer is disposed between the transparent substrate and the gate insulating layer.
  • the via 15 for accommodating the alignment module may also penetrate only the thickness of the upper functional layer.
  • the gate insulating layer 11 and the dielectric layer 12 are superposed one time over the transparent substrate 10.
  • the via 15 may penetrate only the thickness of the dielectric layer 12 and the thickness of the planarization layer 13 to the upper surface of the gate insulating layer 11, or the via 15 may only penetrate the thickness of the planarization layer 13 to the dielectric layer
  • the upper surface of 12, at this time, each of the alignment modules is adapted to reflect light incident from a lower surface of the transparent substrate, in other words, a functional layer located below that is not penetrated by the vias needs to be transparent to allow light to pass through Arrived at the alignment module.
  • the phase between each of the first alignment structures 14 in each of the alignment modules is utilized. For the location, determine the virtual pairing point to determine whether the FMM and the OLED backplane are correctly aligned.
  • the first alignment structure 14 may specifically be a cylindrical structure, a square structure or a crisscross structure, or may be a cylinder structure, a square structure or a crisscross structure, respectively.
  • Each of the first alignment structures 14 includes a reflective layer formed in synchronization with an anode located above the transparent substrate 10; specifically, when an anode is formed on the OLED backplane, first on the planarization layer 14 and at each via A metal film layer is formed on the upper surface of the transparent substrate 10, and then the anode pattern and the respective reflection layer patterns are formed by one patterning process, that is, the first alignment structures 14 are formed simultaneously with the anode, because the anode has high reflectivity,
  • the reflective layer also has a high reflectivity; likewise, the second alignment structure also includes a reflective layer having a high reflectivity.
  • the pattern has a large gray scale difference from the pattern representing the FMM, so that it is convenient to judge whether the FMM and the OLED backplane are accurately aligned.
  • each first aligning structure 14 in each aligning module is arranged according to a set trajectory, and the specific arrangement manner is as follows:
  • each of the alignment modules includes three first alignment structures 14 arranged in a rectangular trajectory, the centers of the three first alignment structures 14 and the inflection point B1 of the rectangular trajectories respectively B2 and B3 coincide, that is, the center of each first alignment structure 14 corresponds to one inflection point of the rectangular track. Therefore, when the alignment picture is obtained by the CCD camera, the pattern representing the three first alignment structures 14 can be first found, thereby determining that the centers of the three first alignment structures 14 are points B1, B2, and B3, respectively, according to the points. The relative position between B1, B2 and B3, a rectangle can be drawn, and the inflection point B4 of the rectangle is the virtual pair.
  • each of the alignment modules includes four first alignment structures 14 arranged in a circular trajectory, and the centers of the four first alignment structures 14 equally divide the circular trajectories .
  • the halving points are C1, C2, C3, and C4, respectively.
  • a pattern representing the four first alignment structures 14 can be found first, thereby determining the four first alignment structures 14.
  • the centers are points C1, C2, C3, and C4, respectively. According to the relative positions between points C1, C2, C3, and C4, the position of the center D of the circular track can be determined, and the point D is the virtual pair.
  • the number of the first alignment structures 14 may be greater than or equal to six, and the set trajectory may also be a regular polygon having a number of sides greater than or equal to six and an even number of sides, and a unique virtual pair of points may also be determined.
  • the number of the first alignment structures 14 is six, and six inflection points of a regular hexagon are respectively set, and the intersection of the three diagonals of the regular hexagon is a virtual pair.
  • the relative position between each of the first alignment structures 31 in each alignment module is used to determine the virtual alignment point, and the FMM 30 is determined.
  • the alignment between the OLED backplane and the OLED backplane ensures that at least two virtual alignment sites coincide with the center of the pattern of the corresponding second alignment structure 31. Therefore, two or more OLED backplanes are provided.
  • the via 15 and the alignment module for example, are provided with four vias 15 in the OLED backplane.
  • the number of alignment modules is four, and the four virtual alignment sites determined by the four alignment modules are sequentially Connected to form a rectangle. It should be noted that, during the specific shooting process, the alignment module in the two via holes at the diagonal position is generally taken.
  • an embodiment of the present invention further provides a method for fabricating an OLED backplane, including:
  • Step 101 sequentially forming at least two functional layers on the upper surface of the transparent substrate, and forming at least two via holes penetrating the thickness of each functional layer to the upper surface of the transparent substrate in a set region of each functional layer by a patterning process;
  • Step 102 forming a metal film layer on the upper surface of the transparent substrate located in each via hole, and forming a pattern including at least two alignment modules by one patterning process, each of the alignment modules including at least arranged according to the set track
  • the three first alignment structures determine a virtual pair of sites according to the relative positions between the first alignment structures in each of the alignment modules.
  • a metal film layer is first formed on the upper surface of the uppermost functional layer by depositing a plating film, and then formed by a process such as photoresist, mask, exposure, development, etching, etc., including an OLED back plate.
  • the pattern of the anode required, as well as the pattern of the alignment module, ie the alignment module is formed with the anode.
  • each alignment module is disposed on the upper surface of the transparent substrate, and when the FMM mask is used, the second alignment structures on the FMM are respectively opposite to the respective via holes. Therefore, when the CCD camera takes a picture from the lower surface side of the transparent substrate, the light reflected by each of the first alignment structure and each of the second alignment structures can be directly reflected from the transparent substrate to the CCD camera, thereby greatly reducing the number of reflections and refraction of the light.
  • the number of times makes the difference between the pattern gray of the first bit structure and the second bit structure in the alignment picture and the pattern gray level of the FMM, so that the pattern representing the FMM, the pattern of the first alignment structure, and the like can be clearly distinguished.
  • the pattern of the second alignment structure greatly reduces the number of alignments between the FMM and the OLED backplane, thereby significantly improving the efficiency of fabricating the organic light-emitting material layer on the OLED backplane.
  • each via hole can be configured once after each functional layer on the transparent substrate is completed.
  • the pattern process is formed, and after forming one of the functional layers, before forming the next functional layer, at least two via holes including one-to-one correspondence with at least two alignment modules are formed on the current functional layer by one patterning process.
  • the corresponding via portions on each functional layer constitute at least two vias extending through the thickness of each functional layer to the upper surface of the transparent substrate, and each of the alignment modules is located in one of the via holes.
  • the number of the functional layers in the OLED backplane is usually three, wherein the functional layer formed on the upper surface of the transparent substrate is a gate insulating layer, and the functional layer formed on the upper surface of the gate insulating layer is a medium.
  • the layer, the functional layer formed on the upper surface of the dielectric layer is a planarization layer.
  • the manufacturing method of each via hole specifically includes:
  • a pattern including at least two first via portions is formed on the gate insulating layer by one patterning process
  • a pattern including at least two second via portions is formed on the dielectric layer by one patterning process, and the second via portion corresponds to the first via portion one by one. ;
  • a pattern including at least two third via portions is formed on the planarization layer by one patterning process, and the third via portion corresponds to the second via portion one by one. ;
  • a corresponding first through hole portion, a second through hole portion and a third through hole portion constitute a through hole.
  • the second via portion formed on the dielectric layer and the first via portion formed on the gate insulating layer can also be formed by sequentially forming a gate on the upper surface of the transparent substrate.
  • the mask used in the patterning process includes: a full-tone mask region for forming the second via portion and the first via portion, and corresponding to the pixel region of the transparent substrate Halftone mask area. Specifically, first, the via hole for accommodating the alignment module is etched, the functional layers are completely etched, and then ashing is performed to etch away the gate insulating layer and the planarization layer of the pixel region to form a pixel via.
  • Each of the via holes may be formed by sequentially forming a gate insulating layer, a dielectric layer, and a planarization layer on the upper surface of the transparent substrate, and forming a pass through the gate by a patterning process and an extended etching time.
  • a minimum insulating layer, the dielectric layer, and the planarization layer to at least two of the vias of the upper surface of the transparent substrate.
  • a mask hole for masking the via hole of the alignment module is provided on the mask for the mask planarization layer, and the etching time is extended by masking the planarization layer.
  • Each of the desired vias is formed through the planarization layer, the dielectric layer, and the gate insulating layer.
  • each of the first alignment structures may include a reflective layer formed in synchronization with the anode above the transparent substrate, and each of the first alignment structures is made of the same material as the anode.
  • the first alignment structure is formed synchronously with the anode and has the same material. Specifically, in When the anode of the organic light-emitting structure is formed on the planarization layer, the metal film layer is first formed on the planarization layer and the upper surface of the transparent substrate located in each via hole, and then the desired anode and each of the layers are formed by one patterning process.
  • each of the first alignment structures formed also has a high reflectance, so that the reflectance of each first alignment structure to light can be improved, thereby
  • the pattern representing the first alignment structure in the obtained alignment picture has a large gray scale difference from the pattern representing the FMM, thereby conveniently determining whether the FMM and the OLED backplane are accurately aligned.
  • an embodiment of the present invention further provides a registration system for determining whether an OLED backplane and an FMM are accurately aligned according to the foregoing technical solutions, including:
  • a charge coupled device CCD camera 40 for capturing an OLED backplane and an alignment picture of the FMM 30, the alignment picture comprising: a pattern representing each of the first alignment structures 14 in each of the alignment modules of the OLED backplane, and a pattern representing each of the second alignment structures 31 on the FMM 30;
  • the picture processor 50 processes the alignment picture fed back by the CCD camera 40 to determine a virtual pair of points corresponding to each of the alignment modules, and each second pair of bits The center of the pattern of the structure 31, and determining whether each of the virtual pair sites coincides with the center of the pattern of the corresponding second alignment structures 31, and each of the virtual pair sites and the corresponding pattern center of each of the second alignment structures When coincident, it is determined that accurate alignment between the OLED backplane and the FMM is achieved.
  • each alignment module can be obtained by the CCD camera 40.
  • the pattern of the alignment structure 14 and the pattern of the second alignment structure 31 corresponding to the alignment module are then processed by the picture processor 50 to process the alignment pictures fed back by the CCD camera 40 to determine three first alignment bits.
  • the center of the pattern of the structure 14 is B1, B2, and B3, respectively, and according to the coordinates (abscissa and ordinate) of the center of the pattern of the three first alignment structures 14, the rectangles passing through B1, B2, and B3 can be fictitious.
  • the inflection point B4 is a virtual counter point; similarly, the pattern center of the second alignment structure 31 is determined according to the pattern of the second alignment structure 31 in the FMM 30.
  • the picture processor 50 determines the pattern center of the virtual pair position and the corresponding second bit structure in each of the alignment modules, it is determined whether the pattern center of each of the virtual pair of points B4 and the corresponding second alignment structure 31 is Coincident, or determining whether the coordinates of each virtual pair of points B4 and the coordinates of the center of the pattern of the corresponding second alignment structure 31 are the same, when each virtual pair of points B4 and the corresponding pattern center of each of the second alignment structures 31 When coincident, it is determined that accurate alignment between the OLED backplane and the FMM30 is achieved.
  • the OLED backplane proposed by the above technical solution is adopted by using the alignment system provided in this embodiment.
  • the number of alignments between the OLED backplane and the FMM 30 is greatly reduced, thereby improving the efficiency of fabricating the organic light-emitting material layer on the OLED backplane.
  • an embodiment of the present invention also provides an alignment method for implementing accurate alignment between an OLED backplane and an FMM 30 by using the alignment system provided by the foregoing technical solution, including:
  • step 301 the second alignment structure 31 on the FMM 30 is aligned with the via hole in the OLED backplane of the foregoing technical solution to achieve a preliminary alignment between the OLED backplane and the FMM 30.
  • Step 302 The alignment image of the OLED backplane and the FMM 30 is captured by the CCD camera 40 from the side of the OLED backplane facing the FMM 30.
  • the alignment image includes: each of the alignment modules of the OLED backplane. a pattern of a pair of bit structures 14, and a pattern representing each of the second alignment structures 31 on the FMM;
  • Step 303 The image processor 50 is processed by the image processor 50 to determine a virtual pair of points corresponding to each of the alignment modules, and a pattern center of each of the second alignment structures 31;
  • Step 304 Determine whether each virtual pair of points coincides with a pattern center of each corresponding second alignment structure 31.
  • Step 305 When each virtual pair of points overlaps with the center of the pattern of each corresponding second alignment structure 31, it is determined that an accurate alignment between the OLED backplane and the FMM 30 is achieved;
  • Step 306 When each virtual pair of points does not coincide with or has only one coincidence with the center of the pattern of each corresponding second alignment structure 31, according to each virtual pair of points in the alignment picture and the corresponding second alignment structure The relative position between the center of the pattern of 31, the relative position between the OLED backplane and the FMM 30 is adjusted, and then step 302 is repeated until it is determined that accurate alignment between the OLED backplane and the FMM 30 is achieved.
  • the alignment method provided by the embodiment is used to align the OLED backplane and the FMM 30 of the foregoing technical solution, the number of alignment between the OLED backplane and the FMM 30 is greatly reduced, thereby improving the OLED backplane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机发光二极管(OLED)背板及其制作方法、对位系统及其对位方法,涉及OLED显示技术领域,为解决在OLED背板上制作有机发光材料层的效率低的问题。所述OLED背板包括:透明基板(10),设置在透明基板(10)的上表面上的至少两个功能层,且各功能层依次上下叠加设置,贯穿各功能层的厚度且一端与透明基板(10)的上表面相通的至少两个过孔(15),以及设于透明基板(10)的上表面上且与至少两个过孔一一对应的至少两个对位模块,每个对位模块包括按照设定轨迹排布的至少三个第一对位结构(14),根据每个对位模块中的各第一对位结构(14)之间的相对位置可确定一虚拟对位点。采用本发明提供的OLED背板,可提高在OLED背板上制作有机发光材料层的效率。

Description

OLED背板及其制作方法、对位系统及其对位方法 技术领域
本发明的实施例涉及OLED显示技术领域,尤其涉及一种OLED背板及其制作方法、对位系统及其对位方法。
背景技术
近年来,有机发光二极管(Organic Light Emitting Diode,简称为OLED)显示装置因具有自发光、广视角、响应快、功耗低以及可柔性显示等优点而广泛应用在显示领域中。现有的OLED显示装置通常包括OLED背板和设于OLED背板上有机发光材料层,而有机发光材料层一般是通过蒸镀工艺制成的,具体地,使用精细金属掩膜板(Fine Metal Mask,以下简称FMM)掩膜,利用蒸镀工艺将有机材料蒸镀到OLED背板的像素区的各像素单元中,从而在OLED背板上形成所需的有机发光材料层。
在上述有机发光材料层的制作过程中,要保证FMM和OLED背板准确对位,如此才可以确保有机材料准确地蒸镀到OLED背板的像素区的各像素单元中。目前,较常用的一种对位手段是通过在FMM上设置数个对位孔、在OLED背板上设置数个对位销。具体地,如图1所示,OLED背板通常包括:透明基板10,设于透明基板10的上表面上的多晶硅层16和栅极绝缘层11,设于栅极绝缘层11的上表面上的栅极17和介质层12,设于介质层12的上表面上的源漏极18和平坦化层13,平坦化层13上设有制备有机发光结构的阳极19,且在平坦化层13的四周边缘上设有数个对位销20,相应的,在FMM上设有数个对位孔,当各对位销20分别插入对应的对位孔中后,便可实现FMM和OLED背板的准确对位。
不过,随着OLED显示装置的尺寸的增大,相应的所使用的FMM的尺寸也随之增大,而FMM的厚度较薄,在将FMM和OLED背板对位过程FMM易变形,导致采用上述对位方法的难度较大,需要进行多次调整才可能实现FMM和OLED背板的准确对位,严重影响了在OLED背板上制作有机发光材料层的效率。
发明内容
本发明的目的在于提供一种OLED背板及其制作方法、对位系统及对位方法,用于提高在OLED背板上制作有机发光材料层的效率。
根据本发明的实施例的一个方面,提出了一种OLED背板,包括:透明基板,设置在所述透明基板的上表面上的至少两个功能层,且所述至少两个功能层依次上下叠加设置;至少两个过孔,形成在所述至少两个功能层的设定区域且贯穿所述至少两个功能层中的至少上功能层;以及至少两个对位模块,一一对应的分别位于所述至少两个过孔内,每个所述对位模块包括按照设定轨迹排布的至少三个第一对位结构,根据每个所述对位模块中的各所述第一对位结构之间的相对位置可确定一虚拟对位点,且每个所述对位模块适于反射自透明基板的下表面入射的光线。
在一个可选的实施例中,每一个过孔贯穿各所述功能层的厚度且一端与所述透明基板的上表面相通;所述至少两个对位模块直接设于所述透明基板的上表面上。
在一个可选的实施例中,每个所述对位模块包括按照矩形轨迹排布的三个所述第一对位结构,且每个所述第一对位结构的中心与所述矩形轨迹的一个拐点对应。
在一个可选的实施例中,每个所述对位模块包括按照圆形轨迹排布的四个所述第一对位结构,且四个所述第一对位结构的中心将所述圆形轨迹四等分。
在一个可选的实施例中,每个所述第一对位结构包括反射层,所述反射层与位于所述透明基板上方的阳极同步形成。
在一个可选的实施例中,所述功能层的数量为三个,其中,设于所述透明基板的上表面上的功能层为栅极绝缘层,设于所述栅极绝缘层的上表面上的功能层为介质层,设于所述介质层的上表面上的功能层为平坦化层。
在一个可选的实施例中,所述过孔和所述对位模块的数量分别为四个,且四个所述对位模块确定的四个所述虚拟对位点依次相连构成一个矩形。
根据本发明的实施例的另一方面,提出了一种OLED背板的制作方法,包括步骤:
在透明基板的上表面上依次叠加形成至少两个功能层,通过构图工艺在所述至少两个功能层的设定区域形成贯穿所述至少两个功能层中的至少上功能层的至少两个过孔;
在所述至少两个过孔内分别形成金属膜层,然后通过一次构图工艺在所述至少两个过孔内分别形成至少两个对位模块的图形,每个对位模块包括按照设定轨迹排布的至少三个第一对位结构,根据每个对位模块中的各所述第一对位结构之间的相对位置能够确定一虚拟对位点,且每个对位模块适于反射自透明基板的下表面入射的光线。
在一个可选的实施例中,上述方法中,所述至少两个过孔通过构图工艺在各功能层的设定区域形成为贯穿各功能层的厚度至所述透明基板的上表面;金属膜层形成在位于各所述过孔内的所述透明基板的上表面上。
在一个可选的实施例中,上述方法中,所述功能层的数量为三个,其中,形成在所述透明基板的上表面上的功能层为栅极绝缘层,形成在所述栅极绝缘层的上表面上的功能层为介质层,形成在所述介质层的上表面上的功能层为平坦化层。
进一步地,各所述过孔的制作方法具体包括步骤:
在所述透明基板的上表面上形成所述栅极绝缘层后,通过一次构图工艺在所述栅极绝缘层上形成包括至少两个第一过孔部的图形;
在所述栅极绝缘层的上表面上形成所述介质层后,通过一次构图工艺在所述介质层上形成包括至少两个第二过孔部的图形,且所述第二过孔部与所述第一过孔部一一对应;
在所述介质层的上表面上形成所述平坦化层后,通过一次构图工艺在所述平坦化层上形成包括至少两个第三过孔部的图形,且所述第三过孔部与所述第二过孔部一一对应;
对应的一个所述第一过孔部、一个所述第二过孔部和一个所述第三过孔部构成一个所述过孔。
更进一步地,所述第一过孔部和所述第二过孔部由一次构图工艺形成,具体包括步骤:
在所述透明基板的上表面上依次叠加形成所述栅极绝缘层和所述介质层后,通过一次构图工艺形成包括贯穿所述介质层厚度的至少两个所述第二过孔部和贯穿所述栅极绝缘层厚度的至少两个所述第一过孔部,且所述第二过孔部和所述第一过孔部一一对应;
该次构图工艺所使用的掩膜板包括用于形成所述第二过孔部和所述第一过孔部的全色调掩膜区,以及与所述透明基板的像素区对应的半色调掩膜区。
在一个可选的实施例中,上述方法中,每个所述第一对位结构包括反射层,所述反射层与位于所述透明基板上方的阳极同步形成。
在一个可选的实施例中,上述方法中,各所述过孔的制作方法具体包括步骤:
在所述透明基板的上表面上依次叠加形成所述栅极绝缘层、所述介质层和所述平坦化层后,通过一次构图工艺以及延长刻蚀时间,形成包括贯穿所述栅极绝缘层、所述介质层和所述平坦化层至所述透明基板的上表面的至少两个所述过孔。
根据本发明的实施例的再一方面,提出了一种确定上述技术方案所提的OLED背板与精细金属掩膜板FMM是否准确对位的对位系统,包括:
用于拍摄所述OLED背板和所述FMM的对位图片的电荷耦合元件CCD相机,所述对位图片包括:表示所述OLED背板的每个对位模块中的各第一对位结构的图案,以及表示所述FMM上的各第二对位结构的图案;
与所述CCD相机信号连接的图片处理器,所述图片处理器对所述CCD相机所反馈的所述对位图片进行处理,以确定每个所述对位模块对应的一个虚拟对位点,以及各所述第二对位结构的图案中心,并判断各所述虚拟对位点是否与对应的各所述第二对位结构的图案中心重合,当各所述虚拟对位点分别与对应的各所述第二对位结构的图案中心重合时,确定所述OLED背板和所述FMM之间实现准确对位。
根据本发明的实施例的还一方面,提出了一种采用上述技术方案所提的对位系统实现OLED背板和FMM之间的准确对位的对位方法,包括步骤:
将FMM上的第二对位结构对准上述的OLED背板中的过孔,实现所述OLED背板和所述FMM之间的初步对位;
从所述OLED背板背向所述FMM的一侧,通过CCD相机拍摄所述OLED背板和所述FMM的对位图片,所述对位图片包括:表示所述OLED背板的每个对位模块中的各第一对位结构的图案,以及表示所述FMM上的各第二对位结构的图案;
通过图片处理器对所述CCD相机所反馈的所述对位图片进行处理,以确定每个所述对位模块对应的一个虚拟对位点,以及各所述第二对位结构的图案中心,并判断各所述虚拟对位点是否与对应的各所述第二对位结构的图案中心重合,当各所述虚拟对位点分别与对应的各所述第二对位结构的图案中心重合 时,确定所述OLED背板和所述FMM之间实现准确对位。
本发明提供的OLED背板中,各对位模块设置在透明基板的上表面上,并在采用FMM掩膜时,FMM上的各第二对位结构分别与各过孔正对。因此,当CCD相机从透明基板的下表面侧拍照时,各第一对位结构和各第二对位结构反射的光可以直接从透明基板反射到CCD相机,大大减少了光的反射次数和折射次数,使得对位图片中第一对位结构、第二对位结构的图案灰度与FMM的图案灰度相差较大,从而能够明显的区分表示FMM的图案、第一对位结构的图案和第二对位结构的图案,大大减少FMM和OLED背板之间的对位次数,从而显著提高了在OLED背板上制作有机发光材料层的效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为现有技术中OLED背板的结构示意图;
图2为本发明实施例提供的OLED背板的局部示意图;
图3为图1中A-A方向的剖视图;
图4为采用CCD相机拍摄时OLED背板与FMM之间的位置关系图;
图5为图2中每个对位模块中各第一对位结构的一种排布图;
图6为本发明实施例提供的OLED背板的制作流程图;
图7为本发明实施例提供的对位系统的示意图;
图8为本发明实施例提供的对位方法的流程图。
附图标记:
10-透明基板,        11-栅极绝缘层,
12-介质层,          13-平坦化层,
14-第一对位结构,    15-过孔,
16-多晶硅层,        17-栅极,
18-源漏极,          19-阳极,
20-对位销,          30-FMM
31-第二对位结构,    40-CCD相机,
50-图片处理器。
具体实施方式
为了进一步说明本发明实施例提供的OLED背板及及其制作方法、对位系统及其对位方法,下面结合说明书附图进行详细描述。
请参阅图2和图3,其中,图2为本发明实施例提供的OLED背板的局部示意图,即为对位区域的示意图;图3为图2中A-A方向的剖视图。本发明实施例提供的OLED背板,包括:透明基板10,设置在透明基板10的上表面上的至少两个功能层,且所述至少两个功能层依次上下叠加设置,贯穿各功能层的厚度且一端与透明基板10的上表面相通的至少两个过孔15,以及设于透明基板10的上表面上且一一对应的位于至少两个过孔15内的至少两个对位模块,每个对位模块包括按照设定轨迹排布的至少三个第一对位结构14,根据每个对位模块中的各第一对位结构14之间的相对位置可确定一虚拟对位点。
当需要在上述OLED背板上制作有机发光材料层时,请参阅图4,为采用CCD相机拍摄时OLED背板与FMM之间的位置关系图。首先将FMM30上的第二对位结构31对准OLED背板中的过孔15,完成初步对位;CCD相机40在OLED背板背向FMM30的一侧进行拍摄,获取FMM30与OLED背板的对位图片,需要注意的是,拍摄时要保证CCD相机40的拍摄范围至少包括两个对位模块,且每次拍摄时,要保证CCD相机40和OLED背板之间的相对位置不变。
然后,根据对位图片中表示每个对位模块中的各第一对位结构的图案,确定每个对位模块对应的一个虚拟对位点;根据对位图片中表示第二对位结构31的图案,确定每个第二对位结构31对应的图案中心。接下来判断各虚拟对位点是否与对应的各第二对位结构31的图案中心重合,如果各虚拟对位点与对应的各第二对位结构31的图案中心重合,则表明FMM30和OLED背板之间已经准确对位,可以进行将有机材料蒸镀到OLED背板的像素区的各像素单元中;如果各虚拟对位点与对应的各第二对位结构31的图案中心都不重合,或只有一个虚拟对位点与对应的第二对位结构31的图案中心重合,则表明FMM和OLED背板之间没有准确对位,需要根据对位图片中第二对位结构31的图案中心与对应的虚拟对位点之间的相对位置,调整FMM30相对OLED背板的 位置,重复上述拍照、对比和调整过程,直到各虚拟对位点与对应的各第二对位结构31的图案中心重合为止。
从上述方案可知,在本发明实施例提供的OLED背板中,各对位模块设置在透明基板10的上表面上,且第二对位结构31与过孔15正对,当CCD相机40从透明基板10的下表面侧拍照时,各第一对位结构14和各第二对位结构31反射的光可以直接从透明基板10反射到CCD相机40,大大减少了光的反射次数和折射次数,使得对位图片中第一对位结构14、第二对位结构31的图案灰度与FMM30的图案灰度相差较大,从而能够明显的区分表示FMM30的图案、第一对位结构14的图案和第二对位结构31的图案,进而能够准确地判断FMM和OLED背板是否准确对位,以及在需要调整FMM30相对OLED背板的位置时,准确地获得FMM30相对OLED背板的位移。因此,与现有技术相比,大大减少FMM30和OLED背板之间的对位次数,从而显著提高了在OLED背板上制作有机发光材料层的效率。
具体实施时,上述透明基板10可选用玻璃基板或塑料基板,为了减小OLED背板的厚度和降低OLED背板的功耗,可选地,透明基板10为制备低温多晶硅用(Low Temperature Poly-Si,以下简称LTPS)基板。各过孔15位于OLED背板的周边,即位于OLED背板的非显示区(非像素区),因此上文和下文所说的过孔15是贯穿OLED背板的非显示区的各功能层的厚度;OLED背板的非显示区的功能层数量通常为三个,其中,设于透明基板10的上表面上的功能层为栅极绝缘层11,设于栅极绝缘层11的上表面上的功能层为介质层12,设于介质层12的上表面上的功能层为平坦化层13。需要说明的是,在一些OLED背板中,没有上述平坦化层13,或,在透明基板和栅极绝缘层之间还会设有缓冲层(Buffer)。
作为上述实施例的一种改进或者变形,上述容纳对位模块的过孔15还可以仅贯穿上层功能层的厚度,例如,在透明基板10上方一次叠加设有栅极绝缘层11、介质层12和平坦化层13时,过孔15可以仅贯穿介质层12的厚度和平坦化层13的厚度至栅极绝缘层11的上表面,或过孔15仅贯穿平坦化层13的厚度至介质层12的上表面,此时,每个所述对位模块适于反射自透明基板的下表面入射的光线,换言之,位于下方的没有被过孔穿过的功能层需要透明以允许光线穿过而到达对位模块。
在上述实施例中,是利用每个对位模块中的各第一对位结构14之间的相 对位置,确定虚拟对位点,从而判断FMM和OLED背板之间是否准确对位。具体地,如图2所示,第一对位结构14具体可以同为圆柱体结构、正方体结构或十字交叉结构,或,分别为圆柱体结构、正方体结构或十字交叉结构。每个第一对位结构14包括反射层,该反射层与位于透明基板10上方的阳极同步形成;具体地,在OLED背板上制作阳极时,首先在平坦化层14上和位于各过孔内的透明基板10的上表面上形成金属膜层,然后通过一次构图工艺形成阳极图形和各反射层图形,即与阳极同时形成各第一对位结构14,因阳极具有高反射率,因此上述反射层也具有高反射率;同样,第二对位结构也包括具有高反射率的反射层。如此设计,可以提高各第一对位结构14和各第二对位结构31对光的反射率,从而使所获得的对位图片中表示第一对位结构14、第二对位结构31的图案与表示FMM的图案具有较大灰度差别,从而方便判断FMM和OLED背板之间是否准确对位。
为了便于获得该虚拟对位点,每个对位模块中的各第一对位结构14按照设定轨迹排布,具体排布方式如下:
排布方式一,请继续参阅图2,每个对位模块包括按照矩形轨迹排布的三个第一对位结构14,三个第一对位结构14的中心分别与矩形轨迹的拐点B1、B2和B3重合,即每个第一对位结构14的中心与矩形轨迹的一个拐点对应。因此,当通过CCD相机获得对位图片后,首先可以找到表示三个第一对位结构14的图案,从而确定三个第一对位结构14的中心分别为点B1、B2和B3,根据点B1、B2和B3之间的相对位置,可绘制一个矩形,该矩形的拐点B4即为虚拟对位点。
排布方式二,请参阅图5,每个对位模块包括按照圆形轨迹排布的四个第一对位结构14,且四个第一对位结构14的中心将圆形轨迹四等分。等分点分别为C1、C2、C3和C4,当通过CCD相机40获得对位图片后,首先可以找到表示四个第一对位结构14的图案,从而确定四个第一对位结构14的中心分别为点C1、C2、C3和C4,根据点C1、C2、C3和C4之间的相对位置,可确定该圆形轨迹的圆心D的位置,而点D即为虚拟对位点。
值得一提的是,在上述两种排布方式中,分别列举了第一对位结构14的数量分别为三个和四个的情况,以及设定轨迹为矩形和圆形的情况,但不限于此,第一对位结构14的数量可以大于等于六个,设定轨迹也可以为边数大于等于六且边数为偶数的正多边形,同样也可以确定唯一的一个虚拟对位点,例 如,第一对位结构14的数量六个,并分别设置一个正六边形的六个拐点位置,该正六边形的三条对角线的交点即为虚拟对位点。
在判断FMM30和OLED背板之间是否准确对位的过程中,是利用每个对位模块中的各第一对位结构31之间的相对位置来确定虚拟对位点的,而要判断FMM30和OLED背板之间是否准确对位,需要保证有至少两个虚拟对位点与对应的第二对位结构31的图案中心重合,因此,在OLED背板中设有两个或两个以上过孔15和对位模块,例如,在OLED背板中设有四个过孔15,相应的,对位模块的数量分别为四个,四个对位模块确定的四个虚拟对位点依次相连构成一个矩形。需要说明的是,在具体拍摄过程中,一般拍摄处于对角线位置的两个过孔中的对位模块。
请参阅图6,本发明实施例同时还提供了一种OLED背板的制作方法,包括:
步骤101、在透明基板的上表面上依次叠加形成至少两个功能层,通过构图工艺在各功能层的设定区域形成贯穿各功能层的厚度至透明基板的上表面的至少两个过孔;
步骤102、在位于各过孔内的透明基板的上表面上形成金属膜层,通过一次构图工艺形成包括至少两个对位模块的图形,每个对位模块包括按照设定轨迹排布的至少三个第一对位结构,根据每个对位模块中的各第一对位结构之间的相对位置可确定一虚拟对位点。具体地,首先通过沉积镀膜的方式在最上层的功能层的上表面上形成一层金属膜层,然后通过涂光刻胶、掩膜、曝光、显影、刻蚀等工艺形成包括OLED背板所需的阳极的图形,以及对位模块的图形,即对位模块与阳极一起形成。
采用上述方法制作形成的OLED背板中,各对位模块设置在透明基板的上表面上,并在采用FMM掩膜时,FMM上的各第二对位结构分别与各过孔正对。因此,当CCD相机从透明基板的下表面侧拍照时,各第一对位结构和各第二对位结构反射的光可以直接从透明基板反射到CCD相机,大大减少了光的反射次数和折射次数,使得对位图片中第一对位结构、第二对位结构的图案灰度与FMM的图案灰度相差较大,从而能够明显的区分表示FMM的图案、第一对位结构的图案和第二对位结构的图案,大大减少FMM和OLED背板之间的对位次数,从而显著提高了在OLED背板上制作有机发光材料层的效率。
具体实施时,各过孔可以在透明基板上的各功能层制作完成后通过一次构 图工艺形成,也可以在形成一个所述功能层后、在形成下一个功能层之前,通过一次构图工艺在当前功能层上形成包括与至少两个对位模块一一对应的至少两个过孔部,各功能层上对应的各过孔部构成贯穿各功能层的厚度至透明基板的上表面的至少两个过孔,每个对位模块对应的位于一个所述过孔内。而上述OLED背板中的功能层的数量通常为三个,其中,形成在透明基板的上表面上的功能层为栅极绝缘层,形成在栅极绝缘层的上表面上的功能层为介质层,形成在介质层的上表面上的功能层为平坦化层。各过孔的制作方法具体包括:
在透明基板的上表面上形成栅极绝缘层后,通过一次构图工艺在栅极绝缘层上形成包括至少两个第一过孔部的图形;
在栅极绝缘层的上表面上形成介质层后,通过一次构图工艺在介质层上形成包括至少两个第二过孔部的图形,且第二过孔部与第一过孔部一一对应;
在介质层的上表面上形成平坦化层后,通过一次构图工艺在平坦化层上形成包括至少两个第三过孔部的图形,且第三过孔部与第二过孔部一一对应;
对应的一个第一过孔部、一个第二过孔部和一个第三过孔部构成一个过孔。
值得一提的是,形成在介质层上的第二过孔部和形成在栅极绝缘层上的第一过孔部还可以通过如下方法形成:在透明基板的上表面上依次叠加形成栅极绝缘层和介质层后,通过一次构图工艺形成包括贯穿介质层厚度的至少两个第二过孔部和贯穿栅极绝缘层厚度的至少两个第一过孔部,且第二过孔部和第一过孔部一一对应;该次构图工艺所使用的掩膜板包括:用于形成第二过孔部和第一过孔部的全色调掩膜区,以及与透明基板的像素区对应的半色调掩膜区。具体地,首先刻蚀用于容纳对位模块的过孔,完全刻蚀各功能层,然后进行灰化处理,刻蚀掉像素区域的栅绝缘层和平坦化层,形成像素过孔。
上述各过孔还可以通过如下方法制作:在透明基板的上表面上依次叠加形成栅极绝缘层、介质层和平坦化层后,通过一次构图工艺以及延长刻蚀时间,形成包括贯穿所述栅极绝缘层、所述介质层和所述平坦化层至所述透明基板的上表面的至少两个所述过孔。具体地,在用于掩膜平坦化层的掩膜板上设有用于掩膜容纳对位模块的过孔的掩膜孔,在对平坦化层进行掩膜时,通过延长刻蚀时间,来形成贯穿平坦化层、介质层和栅极绝缘层的各所需过孔。
采用上述方法制作形成的OLED背板中,每个第一对位结构可以包括反射层,该反射层与透明基板上方的阳极同步形成,且每个第一对位结构的材质与阳极的材质相同;即第一对位结构与阳极同步形成,且材质相同。具体地,在 平坦化层上形成有机发光结构的阳极时,首先在平坦化层和在位于各过孔内的透明基板的上表面上同时形成金属膜层,然后通过一次构图工艺形成所需的阳极以及各第一对位结构;因阳极的材料具有较高的反射率,因此,形成的各第一对位结构也具有较高的反射率,如此可以提高各第一对位结构对光的反射率,从而使所获得的对位图片中表示第一对位结构的图案与表示FMM的图案具有较大灰度差别,从而方便判断FMM和OLED背板之间是否准确对位。
请参阅图7,本发明实施例同时还提供了一种确定上述技术方案所提的OLED背板与FMM是否准确对位的对位系统,包括:
用于拍摄OLED背板和FMM30的对位图片的电荷耦合元件CCD相机40,所述对位图片包括:表示OLED背板的每个对位模块中的各第一对位结构14的图案,以及表示FMM30上的各第二对位结构31的图案;
与CCD相机40信号连接的图片处理器50,图片处理器50对CCD相机40所反馈的对位图片进行处理,以确定每个对位模块对应的一个虚拟对位点,以及各第二对位结构31的图案中心,并判断各虚拟对位点是否与对应的各第二对位结构31的图案中心重合,当各虚拟对位点分别与对应的各所述第二对位结构的图案中心重合时,确定所述OLED背板和所述FMM之间实现准确对位。
举例来说,当采用本实施例提供的对位系统来判断图2所示的OLED背板与FMM30是否准确对位时,首先通过CCD相机40可以获得每个对位模块中的三个第一对位结构14的图案,以及与该对位模块对应的第二对位结构31的图案,然后利用图片处理器50对CCD相机40所反馈的对位图片进行处理,确定三个第一对位结构14的图案中心分别为B1、B2和B3,并根据三个第一对位结构14的图案中心的坐标(横坐标和纵坐标),可以虚构通过B1、B2和B3的矩形,该矩形的拐点B4即为虚拟对位点;同理,根据FMM30中的第二对位结构31的图案,确定第二对位结构31的图案中心。当图片处理器50确定每个对位模块中的虚拟对位点和对应的第二对位结构的图案中心后,判断各虚拟对位点B4和对应的第二对位结构31的图案中心是否重合,或判断各虚拟对位点B4的坐标和对应的第二对位结构31的图案中心的坐标是否相同,当各虚拟对位点B4分别与对应的各第二对位结构31的图案中心重合时,确定OLED背板和FMM30之间实现准确对位。
因此,采用本实施例提供的对位系统来上述技术方案所提的OLED背板与 FMM30是否准确对位时,大大减少了OLED背板与FMM30之间的对位次数,从而提高了在OLED背板上制作有机发光材料层的效率。
请参阅图8,本发明实施例同时还提供了一种采用上述技术方案所提的对位系统实现OLED背板和FMM30之间的准确对位的对位方法,包括:
步骤301、将FMM30上的第二对位结构31对准上述技术方案所提的OLED背板中的过孔,实现OLED背板和FMM30之间的初步对位;
步骤302、从OLED背板背向FMM30的一侧,通过CCD相机40拍摄OLED背板和FMM30的对位图片,所述对位图片包括:表示OLED背板的每个对位模块中的各第一对位结构14的图案,以及表示FMM上的各第二对位结构31的图案;
步骤303、通过图片处理器50对CCD相机所反馈的对位图片进行处理,以确定每个对位模块对应的一个虚拟对位点,以及各第二对位结构31的图案中心;
步骤304、判断各虚拟对位点是否与对应的各第二对位结构31的图案中心重合,
步骤305、当各虚拟对位点分别与对应的各第二对位结构31的图案中心重合时,确定OLED背板和FMM30之间实现准确对位;
步骤306、当各虚拟对位点分别与对应的各第二对位结构31的图案中心不重合或只有一个重合时,根据对位图片中各虚拟对位点和各自对应的第二对位结构31的图案中心之间的相对位置,调整OLED背板和FMM30之间的相对位置,然后重复步骤302,直到确定OLED背板和FMM30之间实现准确对位。
当采用本实施例提供的对位方法来对上述技术方案所提的OLED背板和FMM30进行对位时,大大减少了OLED背板与FMM30之间的对位次数,从而提高了在OLED背板上制作有机发光材料层的效率。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种OLED背板,包括:
    透明基板;
    设置在所述透明基板的上表面上的至少两个功能层,且所述至少两个功能层依次上下叠加设置;
    至少两个过孔,形成在所述至少两个功能层的设定区域且贯穿所述至少两个功能层中的至少上功能层;以及
    至少两个对位模块,一一对应的分别位于所述至少两个过孔内,每个所述对位模块包括按照设定轨迹排布的至少三个第一对位结构,根据每个所述对位模块中的各所述第一对位结构之间的相对位置能够确定一虚拟对位点,且每个所述对位模块适于反射自透明基板的下表面入射的光线。
  2. 根据权利要求1所述的OLED背板,其中:
    每一个过孔贯穿各所述功能层的厚度且一端与所述透明基板的上表面相通;
    所述至少两个对位模块直接设于所述透明基板的上表面上。
  3. 根据权利要求1或2所述的OLED背板,其中:
    每个所述对位模块包括按照矩形轨迹排布的三个所述第一对位结构,且每个所述第一对位结构的中心与所述矩形轨迹的一个拐点对应。
  4. 根据权利要求1或2所述的OLED背板,其中:
    每个所述对位模块包括按照圆形轨迹排布的四个所述第一对位结构,且四个所述第一对位结构的中心将所述圆形轨迹四等分。
  5. 根据权利要求1至4任一所述的OLED背板,其中:
    每个所述第一对位结构包括反射层,所述反射层与位于所述透明基板上方的阳极同步形成。
  6. 根据权利要求1-5中任一项所述的OLED背板,其中:
    所述功能层的数量为三个,其中,设于所述透明基板的上表面上的功能层为栅极绝缘层,设于所述栅极绝缘层的上表面上的功能层为介质层,设于所述介质层的上表面上的功能层为平坦化层。
  7. 根据权利要求1-6中任一项所述的OLED背板,其中:
    所述过孔和所述对位模块的数量分别为四个,且四个所述对位模块确定的 四个所述虚拟对位点依次相连构成一个矩形。
  8. 一种OLED背板的制作方法,包括步骤:
    在透明基板的上表面上依次叠加形成至少两个功能层,通过构图工艺在所述至少两个功能层的设定区域形成贯穿所述至少两个功能层中的至少上功能层的至少两个过孔;
    在所述至少两个过孔内分别形成金属膜层,然后通过一次构图工艺在所述至少两个过孔内分别形成至少两个对位模块的图形,每个对位模块包括按照设定轨迹排布的至少三个第一对位结构,根据每个对位模块中的各所述第一对位结构之间的相对位置能够确定一虚拟对位点,且每个对位模块适于反射自透明基板的下表面入射的光线。
  9. 根据权利要求8所述的方法,其中:
    所述至少两个过孔通过构图工艺在各功能层的设定区域形成为贯穿各功能层的厚度至所述透明基板的上表面;
    金属膜层形成在位于各所述过孔内的所述透明基板的上表面上。
  10. 根据权利要求8或9所述的OLED背板的制作方法,其中:
    所述功能层的数量为三个,其中,形成在所述透明基板的上表面上的功能层为栅极绝缘层,形成在所述栅极绝缘层的上表面上的功能层为介质层,形成在所述介质层的上表面上的功能层为平坦化层。
  11. 根据权利要求10所述的OLED背板的制作方法,其中:
    各所述过孔的制作方法具体包括步骤:
    在所述透明基板的上表面上形成所述栅极绝缘层后,通过一次构图工艺在所述栅极绝缘层上形成包括至少两个第一过孔部的图形;
    在所述栅极绝缘层的上表面上形成所述介质层后,通过一次构图工艺在所述介质层上形成包括至少两个第二过孔部的图形,且所述第二过孔部与所述第一过孔部一一对应;
    在所述介质层的上表面上形成所述平坦化层后,通过一次构图工艺在所述平坦化层上形成包括至少两个第三过孔部的图形,且所述第三过孔部与所述第二过孔部一一对应;
    对应的一个所述第一过孔部、一个所述第二过孔部和一个所述第三过孔部构成一个所述过孔。
  12. 根据权利要求11所述的OLED背板的制作方法,其中:
    所述第一过孔部和所述第二过孔部由一次构图工艺形成,具体包括步骤:
    在所述透明基板的上表面上依次叠加形成所述栅极绝缘层和所述介质层后,通过一次构图工艺形成包括贯穿所述介质层厚度的至少两个所述第二过孔部和贯穿所述栅极绝缘层厚度的至少两个所述第一过孔部,且所述第二过孔部和所述第一过孔部一一对应;
    该次构图工艺所使用的掩膜板包括用于形成所述第二过孔部和所述第一过孔部的全色调掩膜区,以及与所述透明基板的像素区对应的半色调掩膜区。
  13. 根据权利要求10所述的OLED背板的制作方法,其中:
    各所述过孔的制作方法具体包括步骤:
    在所述透明基板的上表面上依次叠加形成所述栅极绝缘层、所述介质层和所述平坦化层后,通过一次构图工艺以及延长刻蚀时间,形成包括贯穿所述栅极绝缘层、所述介质层和所述平坦化层至所述透明基板的上表面的至少两个所述过孔。
  14. 根据权利要求8或9所述的OLED背板的制作方法,其中:
    每个所述第一对位结构包括反射层,所述反射层与位于所述透明基板上方的阳极同步形成。
  15. 一种对位系统,用于确定权利要求1-7任一所述的OLED背板与精细金属掩膜板FMM是否准确对位,所述对位系统包括:
    用于拍摄所述OLED背板和所述FMM的对位图片的电荷耦合元件CCD相机,所述对位图片包括:表示所述OLED背板的每个对位模块中的各第一对位结构的图案,以及表示所述FMM上的各第二对位结构的图案;
    与所述CCD相机信号连接的图片处理器,所述图片处理器对所述CCD相机所反馈的所述对位图片进行处理,以确定每个所述对位模块对应的一个虚拟对位点,以及各所述第二对位结构的图案中心,并判断各所述虚拟对位点是否与对应的各所述第二对位结构的图案中心重合,当各所述虚拟对位点分别与对应的各所述第二对位结构的图案中心重合时,确定所述OLED背板和所述FMM之间实现准确对位。
  16. 一种对位方法,采用权利要求15所述的对位系统实现OLED背板和FMM之间的准确对位,所述方法包括步骤:
    将FMM上的第二对位结构对准权利要求1-7任一所述的OLED背板中的过孔,实现所述OLED背板和所述FMM之间的初步对位;
    从所述OLED背板背向所述FMM的一侧,通过CCD相机拍摄所述OLED背板和所述FMM的对位图片,所述对位图片包括:表示所述OLED背板的每个对位模块中的各第一对位结构的图案,以及表示所述FMM上的各第二对位结构的图案;
    通过图片处理器对所述CCD相机所反馈的所述对位图片进行处理,以确定每个所述对位模块对应的一个虚拟对位点,以及各所述第二对位结构的图案中心,并判断各所述虚拟对位点是否与对应的各所述第二对位结构的图案中心重合,当各所述虚拟对位点分别与对应的各所述第二对位结构的图案中心重合时,确定所述OLED背板和所述FMM之间实现准确对位。
PCT/CN2015/073349 2014-10-17 2015-02-27 Oled背板及其制作方法、对位系统及其对位方法 WO2016058310A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/785,346 US9620567B2 (en) 2014-10-17 2015-02-27 OLED backboard, method of manufacturing the same, alignment system and alignment method thereof
EP15777596.6A EP3211665B1 (en) 2014-10-17 2015-02-27 Oled backplate and manufacturing method therefor, and aligning system and an aligning method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410555507.3 2014-10-17
CN201410555507.3A CN104282623B (zh) 2014-10-17 2014-10-17 Oled背板及其制作方法、对位系统及其对位方法

Publications (1)

Publication Number Publication Date
WO2016058310A1 true WO2016058310A1 (zh) 2016-04-21

Family

ID=52257390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073349 WO2016058310A1 (zh) 2014-10-17 2015-02-27 Oled背板及其制作方法、对位系统及其对位方法

Country Status (4)

Country Link
US (1) US9620567B2 (zh)
EP (1) EP3211665B1 (zh)
CN (1) CN104282623B (zh)
WO (1) WO2016058310A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282623B (zh) 2014-10-17 2016-02-17 京东方科技集团股份有限公司 Oled背板及其制作方法、对位系统及其对位方法
CN107256839A (zh) * 2017-05-22 2017-10-17 深圳市华星光电技术有限公司 一种掩膜板及显示面板蒸镀用对位检测系统
CN108666299A (zh) * 2018-05-07 2018-10-16 京东方科技集团股份有限公司 制造对位标识的方法和显示面板
US10878747B1 (en) * 2018-07-12 2020-12-29 Apple Inc. Optical uniformity compensation
CN111876726B (zh) * 2020-08-04 2022-12-20 京东方科技集团股份有限公司 金属掩膜板和蒸镀方法,显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131728A (ja) * 2011-12-22 2013-07-04 Dainippon Printing Co Ltd 反射型マスク用基板、反射型マスクブランクス、反射型マスク、および、それらの製造方法
CN103943651A (zh) * 2013-08-29 2014-07-23 上海天马微电子有限公司 一种oled显示装置及相应的柔性电路板
CN104078404A (zh) * 2013-03-27 2014-10-01 Tdk株式会社 电子部件的制造装置及其制造方法
CN104103629A (zh) * 2013-04-03 2014-10-15 株式会社迪思科 板状物
CN104282623A (zh) * 2014-10-17 2015-01-14 京东方科技集团股份有限公司 Oled背板及其制作方法、对位系统及其对位方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303559A (ja) * 2003-03-31 2004-10-28 Tohoku Pioneer Corp アライメント装置及び方法、並びにこれを用いて製造される有機el素子
JP4705526B2 (ja) * 2006-06-27 2011-06-22 トッキ株式会社 アライメント装置及び方法
JP2008293798A (ja) * 2007-05-24 2008-12-04 Toyota Industries Corp 有機el素子の製造方法
CN103597625B (zh) * 2011-06-17 2017-07-11 应用材料公司 用于有机发光二极管处理的化学气相沉积掩模对准

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131728A (ja) * 2011-12-22 2013-07-04 Dainippon Printing Co Ltd 反射型マスク用基板、反射型マスクブランクス、反射型マスク、および、それらの製造方法
CN104078404A (zh) * 2013-03-27 2014-10-01 Tdk株式会社 电子部件的制造装置及其制造方法
CN104103629A (zh) * 2013-04-03 2014-10-15 株式会社迪思科 板状物
CN103943651A (zh) * 2013-08-29 2014-07-23 上海天马微电子有限公司 一种oled显示装置及相应的柔性电路板
CN104282623A (zh) * 2014-10-17 2015-01-14 京东方科技集团股份有限公司 Oled背板及其制作方法、对位系统及其对位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3211665A4 *

Also Published As

Publication number Publication date
EP3211665A4 (en) 2018-06-27
EP3211665A1 (en) 2017-08-30
US20160254321A1 (en) 2016-09-01
US9620567B2 (en) 2017-04-11
CN104282623B (zh) 2016-02-17
EP3211665B1 (en) 2019-09-04
CN104282623A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
US20210376003A1 (en) Display Panel, Manufacturing Method Thereof, and Display Apparatus
WO2016058310A1 (zh) Oled背板及其制作方法、对位系统及其对位方法
US11476309B2 (en) Display panel and method of manufacturing the same, display device
US11228014B2 (en) OLED display panel and manufacturing method thereof
US10418421B2 (en) Silicon-based OLED image transceiving device and manufacture method thereof
WO2016107311A1 (zh) Amoled阵列基板及其制造方法、显示装置
CN106783883B (zh) 显示基板及其制备方法
WO2015180381A1 (zh) 一种有机电致发光显示面板及显示装置
CN103966546B (zh) 一种金属掩膜板
US9999943B2 (en) Method of manufacturing a mask
KR20070097218A (ko) 박막 증착 방법 및 유기 발광 표시장치의 제조방법
US11257868B2 (en) Display substrate, fabricating method thereof and display device
US11502135B2 (en) Display substrate, display panel and display device
CN103824865B (zh) 一种阵列基板及其制备方法和显示装置
WO2019109692A1 (zh) 电子装置基板及制造方法、显示装置
US11665919B2 (en) Display panel, manufacturing method thereof, and intelligent terminal
US11227839B2 (en) Display substrate motherboard and method for manufacturing the same
WO2016026248A1 (zh) 无源矩阵有机发光二极管阵列基板及其制作方法、显示装置和掩模板
WO2019196798A1 (zh) 像素界定层、像素结构、显示面板及显示装置
TWI553852B (zh) 有機發光二極體陣列的製備方法
CN111564485B (zh) 显示基板及其制作方法、显示装置
US20210408506A1 (en) Display panel and method of manufacturing same
US11641761B2 (en) Black matrix and method for manufacturing the same, and color filter substrate and method for manufacturing the same
US20220320188A1 (en) Display panel, preparation method thereof and display device
WO2023168580A1 (zh) 显示面板、显示母板及显示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015777596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015777596

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14785346

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE