WO2016056686A1 - Signal transmission method for inter-cell interference - Google Patents

Signal transmission method for inter-cell interference Download PDF

Info

Publication number
WO2016056686A1
WO2016056686A1 PCT/KR2014/009416 KR2014009416W WO2016056686A1 WO 2016056686 A1 WO2016056686 A1 WO 2016056686A1 KR 2014009416 W KR2014009416 W KR 2014009416W WO 2016056686 A1 WO2016056686 A1 WO 2016056686A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
transmission sequence
cell
signal
symbol
Prior art date
Application number
PCT/KR2014/009416
Other languages
French (fr)
Korean (ko)
Inventor
박경민
조희정
고현수
최혜영
변일무
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2014/009416 priority Critical patent/WO2016056686A1/en
Priority to US15/517,511 priority patent/US10230506B2/en
Publication of WO2016056686A1 publication Critical patent/WO2016056686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present invention relates to wireless communication, and more particularly, to a signal transmission method and apparatus for inter-cell interference.
  • a transmission scheme based on orthogonal frequency division multiplexing access may allocate one or more subcarriers independently to each terminal. Therefore, according to the request of the terminal, frequency resources can be efficiently allocated without intra-cell frequency interference.
  • OFDMA orthogonal frequency division multiplexing access
  • the performance of the system may vary greatly depending on the position of the terminal in the cell.
  • inter-cell interference can greatly degrade the performance of the UE located at the cell boundary.
  • the higher the frequency reuse efficiency the higher the data rate can be obtained in the cell center, but the inter-cell interference is more severe. Therefore, at the cell boundary, the signal-to-interference plus noise ratio (SINR) of the terminal may be more severely received due to the large interference from the adjacent cells.
  • SINR signal-to-interference plus noise ratio
  • Inter-cell interference may occur between the moving cell and the fixed cell.
  • One embodiment of the present invention provides a method and apparatus for mitigating intercell interference.
  • Another object of the present invention is to provide a method for generating a sequence for mitigating interference between cells and an apparatus using the same.
  • a signal transmission method for mitigating intercell interference includes determining a rank based on feedback information received from a terminal; Generating a transmission sequence according to the rank; Repeating the transmission sequence to generate a repeating transmission sequence and shifting a position of a symbol within the repeating transmission sequence; And transmitting the transmission sequence and the repetitive transmission sequence.
  • the method may further include generating orthogonality between the transmission sequence and the repetitive transmission sequence by changing a phase of the repetitive transmission sequence with respect to the transmission sequence.
  • the pattern of repeated symbols in the repetitive transmission sequence may be determined according to a cell ID.
  • a method and apparatus for mitigating intercell interference are provided.
  • inter-cell interference between moving cells whose channel state changes rapidly based on precoding of a transmitting end can be alleviated.
  • the averaging of the interference signal included in the reception signal of the receiver may be performed and faded out based on precoding of the transmitter, without performing an averaging for the interference at the receiver.
  • interference for each of the plurality of received symbols may be randomized.
  • a method for generating a sequence for mitigating intercell interference and an apparatus using the same are provided.
  • a downlink closed-loop MIMO transmission technique that overcomes randomization of unknown or unmeasured inter-cell interference.
  • 1 is a diagram for a method of eliminating interference in a closed loop MIMO.
  • FIG. 2 is a conceptual diagram illustrating a movement of a moving cell.
  • FIG. 3 is a conceptual diagram illustrating a problem that occurs when interference between a moving cell and a fixed cell is controlled by a conventional inter-cell interference control scheme.
  • FIG. 4 is a diagram illustrating an interference mitigation method according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an interference mitigation method according to another embodiment of the present invention.
  • 6 is a diagram illustrating repeatedly transmitting a signal through another channel.
  • FIG. 7 is a diagram illustrating a symbol and an interference signal received through a quasi-static channel.
  • FIG 8 illustrates received symbols and interference signals according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating interference randomization according to a transmission signal of FIG. 8.
  • FIG. 10 is a diagram illustrating the structure of a transmission stage according to an embodiment of the present invention.
  • 11A illustrates a repeated transmission sequence according to an embodiment of the present invention.
  • 11b illustrates a repeated transmission sequence according to an embodiment of the present invention.
  • 11C is a diagram illustrating a repeated transmission sequence according to one embodiment of the present invention.
  • FIG. 12 illustrates a transmission sequence in which a phase is changed according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating the structure of a transmission stage according to another embodiment of the present invention.
  • FIG. 14 is a diagram for describing a repetition pattern allocated to a cell type according to one embodiment of the present invention.
  • 15 is a diagram illustrating a signaling process for pattern change between base stations according to an embodiment of the present invention.
  • FIG. 16 illustrates a signaling process for pattern change between base stations according to another embodiment of the present invention.
  • 17 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • the wireless device may be fixed or mobile and may be called other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and the like.
  • the terminal may be a portable device having a communication function such as a mobile phone, a PDA, a smart phone, a wireless modem, a laptop, or the like, or a non-portable device such as a PC or a vehicle-mounted device.
  • a base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • LTE includes LTE and / or LTE-A.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • the LTE system is spreading more quickly after the need to support high-quality services for high-quality services as well as voice services while ensuring the activity of terminal users.
  • the LTE system provides low transmission delay, high data rate, system capacity and coverage improvement.
  • the transceiver is equipped with a plurality of antennas to obtain additional spatial area for resource utilization to obtain diversity gain or transmit data in parallel through each antenna.
  • the so-called multi-antenna transmission and reception technology for increasing the capacity has been actively developed recently with great attention.
  • beamforming and precoding may be used as a method for increasing signal to noise ratio (SNR), and beamforming and precoding may use feedback information at a transmitter.
  • SNR signal to noise ratio
  • the feedback information is used to maximize the signal-to-noise ratio.
  • 1 is a diagram for a method of eliminating interference in a closed loop MIMO.
  • the base station 1 may receive a feedback signal for a channel from each terminal 2 in the process of transmitting signals to the plurality of terminals 2.
  • each terminal 2 measures the CSI (S120), and the measured CSI is measured by the base station 1 (S130).
  • CSI channel state information
  • the base station 1 may select a precoder for a signal based on the feedback information (S140) and transmit the precoded signal to the terminal 2.
  • the base station 1 may transmit a signal generated in a spatial orthogonal manner to the terminal 2 (S150).
  • the terminal 2 may estimate a virtual channel with respect to the signal transmitted from the base station 1 (S160) and restore the signal (S170).
  • a signal in a closed loop MIMO system, a signal may be adjusted and transmitted so that a signal is transmitted only to a specific terminal desired based on channel information, and through this, internal interference and inter cell interference (ICI) may be eliminated.
  • ICI inter cell interference
  • interference cancellation method interference by a plurality of user accesses (Multiple Access Interference, MAI) can be mitigated, and also interference can be minimized toward the antenna direction desired by the terminal through coordinated communication (Coordinated Multipoint, CoMP).
  • MAI Multiple Access Interference
  • CoMP Coordinated Multipoint
  • the inter-cell interference avoidance technique using the closed loop CoMP technique described above is difficult to apply. This is the case in which inter-cell interference occurs in a moving cell where a fast interface with a neighboring cell cannot be established at a fast time, or a femto cell in which information sharing with other cells is limited.
  • FIG. 2 is a conceptual diagram illustrating a movement of a moving cell.
  • the moving cell may indicate a base station moving
  • a fixed cell may indicate a base station not moving at a fixed position.
  • the moving cell may be expressed in other terms as the moving base station, and the fixed cell in other terms as the fixed base station.
  • the moving cell 100 may be a base station installed in a moving object such as a bus. There may be about 2000 moving cells 100 based on the buses in Seoul. Therefore, there is a high possibility of interference between the moving cell 100 and the fixed cell 150 in the current cellular network system.
  • resource division may be performed in consideration of the distance between the base station and the terminal to mitigate inter-cell interference.
  • interference may be mitigated by dynamic resource division or cooperative communication by sharing channel information between cells.
  • FIG. 3 is a conceptual diagram illustrating a problem that occurs when interference between a moving cell and a fixed cell is controlled by a conventional inter-cell interference control scheme.
  • the moving cell may be connected to another cell based on a wireless backhaul. Therefore, it may be difficult to perform dynamic resource partitioning by sharing channel information or use an inter-cell interference mitigation method based on cooperative communication.
  • JT joint transmission
  • DPS dynamic point selection
  • data to be transmitted to a terminal through a wired backhaul between base stations should be shared.
  • data sharing between the moving cell and the fixed cell through the wireless backhaul not only requires additional use of radio resources, but also stable sharing of data may be difficult depending on radio channel conditions. Therefore, interference mitigation between the fixed cell and the moving cell based on cooperative communication may be difficult.
  • the channel between the moving cell and the fixed cell may change rapidly due to the movement of the moving cell. Therefore, there is a need to develop a technique for interference control and reduction in a situation in which signal and interference channel information sharing between cells is not smooth.
  • a technique of whitening may be used instead of interference avoidance through interference randomization or inter-cell interference averaging.
  • Inter-cell interference randomization is a method of randomizing interference from adjacent cells to approximate inter-cell interference to additive white Gaussian noise (AWGN).
  • AWGN additive white Gaussian noise
  • Inter-cell interference randomization may reduce the influence of the channel decoding process by another user's signal, for example, based on cell-specific scrambling, cell-specific interleaving, and the like.
  • Inter-cell interference averaging is a method of averaging all interferences by adjacent cells or averaging inter-cell interference at the channel coding block level through symbol hopping.
  • the interference randomization scheme when a desired signal is transmitted through a time / frequency / spatial resource, some resources may simultaneously receive a desired signal and an interference signal, and some resources may receive only a desired signal.
  • the ratio between the desired signal and the interference signal for each resource is adjusted differently.
  • the channel coding gain may be obtained by changing the signal-to-interference / noise ratio (SINR) for each resource.
  • SINR signal-to-interference / noise ratio
  • 4 and 5 illustrate an interference mitigation method according to an embodiment of the present invention.
  • first base station A and the second base station B transmit signals to the first terminal a and the second terminal b, respectively.
  • the signal transmitted from the first base station A may act as an interference signal to the second terminal b
  • the signal transmitted from the second base station B may act as an interference signal to the first terminal a.
  • the first base station A and the second base station B may generate and transmit a signal in a resource pattern as shown by assigning a signal to be transmitted to time and frequency resources.
  • the first base station A allocates resources in the first pattern and transmits them to the first terminal a
  • the second base station B allocates resources in the second pattern and transmits the resources to the second terminal b.
  • the resource allocation pattern received by the first terminal a by the signal generated by the second base station B is shown in FIG. Becomes pattern I of. Further, even when the second base station B transmits a signal by allocating a resource in the second pattern, the resource allocation pattern received by the second terminal b by the signal generated by the first base station A is shown in FIG. 4. Becomes pattern II at the bottom of.
  • Patterns I and II of FIG. 3 include a portion where a signal is received without interference and a portion where a signal and interference are simultaneously received.
  • a method of randomizing interference by changing transmission energy for each resource has a disadvantage in that some resources cannot be used.
  • 5 shows a signal transmission from two base stations to a terminal using a spatial domain.
  • the first base station A and the second base station B are transmitting signals using spatial diversity, and the signals transmitted from the first base station A and the second base station B are transmitted.
  • the signal may be received as a desired signal instead of interference to each terminal (a, b), or may act as an interference signal.
  • the interference randomization scheme as shown in FIG. 5 consumes more energy than necessary, thereby degrading signal transmission efficiency.
  • Such an interference randomization technique is applicable to the transmitters performing spatial diversity transmission.
  • the interference randomization is performed by differently setting a repetitive transmission pattern of repeated symbols for each base station in order to obtain spatial diversity gain. This is how it is done.
  • the improved interference randomization technique of the present invention diversifies the interference signals affecting the de-precoding of each symbol, and the signal to interference rate of the signal in quasi-static channel intervals. ) And to obtain interference diversity in the quasi-static channel interval in order to obtain diversity gain.
  • signal diversity means equalization of reception power of a signal by repeatedly transmitting and receiving the same information through various channels.
  • SINR signal to interference plus noise rate
  • the interference diversity according to the present invention is similar in concept to signal diversity, and by receiving a plurality of interferences simultaneously through various channels, the reception power of the interference is leveled and the SINR variation due to the interference is reduced. As a result, the diversity gain of the signal is increased when the reception power of the interference signal is large.
  • 6 is a diagram illustrating repeatedly transmitting a signal through another channel.
  • the transmitting end receives one transmission symbol (S, first symbol) and the modified symbol (S *, second symbol) through different channels, for example, through a different antenna, such as a receiving end.
  • S transmission symbol
  • S * modified symbol
  • the second symbol indicates that a complex conjugate operation is performed on the first symbol.
  • h0 represents a channel for a symbol between an antenna transmitting a first symbol and a receiving end
  • h0 represents a channel for a symbol between an antenna transmitting a second symbol and a receiving end
  • I represents an interference signal
  • I * represents an interference signal calculated by complex conjugate.
  • q0 represents a channel for the interference signal between the antenna and the receiving end transmitting the first symbol
  • q1 represents a channel for the interference signal between the antenna and the receiving end transmitting the q1 second symbol.
  • the first symbol and the second symbol may be allocated to a time, space or frequency resource and repeatedly transmitted, and the transmitting end may receive interference with a signal.
  • the receiving end together with the interference signal Receives the second symbol for the second symbol. Can be received.
  • Equation 1 the symbol received by the receiver and the interference signal may be represented by Equation 1.
  • the channel state is a quasi-static state in which the channel hardly fluctuates, the interference diversity effect is reduced.
  • FIG. 7 is a diagram illustrating a symbol and an interference signal received through a quasi-static channel.
  • the terminal Rx which is a receiving end, may receive a symbol S transmitted through two antennas, and may receive a signal transmitted through two antennas as an interference signal Z.
  • the first antenna 10 and the second antenna 20 may be antennas of a cell (hereinafter, referred to as a first cell) that provides a service to the terminal Rx, and the third antenna 30 and the fourth antenna 40. May be an antenna of a cell (hereinafter, referred to as a second cell) that transmits a symbol Z that may act as an interference signal to the terminal Rx.
  • the first cell when a fixed cell serves as an interference source for a terminal serviced by a moving cell, the first cell may be a moving cell and the second cell may be a fixed cell. In contrast, the moving cell is served by the fixed cell. In the case of an interference source for the terminal, the first cell may be fixed and the second cell may be a cell moving cell.
  • a row for a symbol may mean a resource for transmitting a symbol such as time, space, or frequency.
  • the symbols S0 and S1... are transmitted through the first antenna 10, and the modified symbols of the symbols transmitted through the first antenna 10 through the second antenna 20.
  • the symbols S 0 *, S 1 * .. are transmitted.
  • the symbol Z 0 , Z 1 .. is transmitted through the third antenna 30, and the modified symbols Z 0 *, Z 1 * of the symbol transmitted through the third antenna 30 through the fourth antenna 40. .. is sent.
  • the transmission symbol S transmitted in the first cell may be a received signal
  • the transmission symbol Z transmitted in the second cell may be an interference signal
  • h 0 is a channel between the first antenna 10 of the first cell and the terminal Rx serviced by the first cell
  • h 1 is the second antenna 20 and the first antenna of the first cell.
  • the channel between the terminal Rx serviced by one cell, q 0 is the channel between the third antenna 30 and the terminal Rx of the second cell, q 1 is the fourth antenna 40 of the second cell and Represents a channel between the terminals (Rx).
  • Equation 2 the reception symbol received by the terminal ( ) May be represented by Equation 2.
  • Equation 2 the coefficient of the interference signal acting as interference to the received symbol ( ) Are two symbols ( ), The SIR is the same for each symbol.
  • the UE may continue to receive strong interference.
  • FIG 8 illustrates received symbols and interference signals according to an embodiment of the present invention.
  • the symbols S 0 , S 1 , S 2 , S 3 .. are transmitted through the first antenna 10, and the second through the second antenna 20.
  • the modified symbols S 0 *, S 1 *, S 2 *, and S 3 * .. of the symbol transmitted through one antenna are transmitted.
  • the symbol Z 0 , Z 1 , Z 2 , Z 3 .. is transmitted through the third antenna 30, and the modified symbol Z 1 *, of the symbol transmitted through the third antenna through the fourth antenna 40.
  • Z 2 *, Z 3 *, Z 0 * .. are transmitted.
  • the symbol transmitted through the fourth antenna is a cyclic shift (Cyclic shift) of the pattern in the existing Z 0 *, Z 1 *, Z 2 *, Z 3 *, Z 1 *, Z 2 *, Z 3 *, Z 0 * .. That is, the repetition pattern of symbols that may be interference signals to the terminal may be changed in a certain order.
  • the change of the repetition pattern may be implemented by using different precoders between the first cell and the second cell, which are transmission terminals.
  • the received symbol (received by the terminal) ) May be represented by Equation 3.
  • the received symbol In the equation that acts as interference in), different interference symbols are included, which indicates that the interference changes for each symbol in the quasi-static period. Through this, it is possible to secure interference diversity for packets and to improve diversity performance.
  • FIG. 9 is a diagram illustrating interference randomization according to a transmission signal of FIG. 8.
  • the base station may perform precoding by using different repetition patterns during symbol repetition.
  • the upper left of FIG. 9 shows a pattern of a symbol generated by the first base station A as a precoding matrix, which can be expressed as Equation 4 or Equation 5 below.
  • the first base station A sequentially transmits a symbol S and a transform symbol S * thereof for the same signal through different antennas. That is, when symbol S 0 is transmitted through one antenna, symbol S 0 * is transmitted through another antenna. In addition, when the symbol S 1 is transmitted through the antenna that transmits the symbol S0 sequentially, the symbol S 1 * is transmitted through another antenna.
  • the generated symbol pattern in the second base station B may be modified as shown in the upper right of FIG. 9.
  • the second base station (B) has a period of 3 through two antennas, and may repeatedly transmit a symbol pattern by setting an offset in the order of transmitted symbols.
  • the number of symbols in which the pattern is repeated is 3, that is, the period is 3, and the offset of the transmission symbol sequence is set to one. That is, the symbols Z 0 , Z 1 , Z 2 , Z 3 .. are sequentially transmitted through one antenna, and the converted symbols for the symbols are Z 0 , Z 1 , Z 2 , Z 3 . Z 1 *, Z 2 *, Z 0 *, Z 4 *... It may be transmitted through other antennas in the same sequence.
  • Equation 6 If this is expressed as a precoding matrix, it can be expressed as in Equation 6.
  • the second base station B may generate a signal by applying a precoding in which the number of symbols in which the pattern is repeated is 3, that is, the period is 3, and the offset is set to 2 in the transmission symbol order. That is, the symbols Y 0 , Y 1 , Y 2 , Y 3 .. are sequentially transmitted through one of the antennas, and the converted symbols for the same are Y 0 , Y 1 , Y 2 , Y 3 . Y 2 *, Y 0 *, Y 1 *, Y 5 *... It may be transmitted through other antennas in the same sequence.
  • Equation (7) If this is expressed as a precoding matrix, it can be expressed as Equation (7).
  • the same or different offset may be applied for each cell, and the same or different period may be applied for each cell.
  • cells using the same transmit antenna port may use different sizes of precoder.
  • the period of the cyclic shift in which the symbol is repeated is 3, but this may be 4 or more, and when the period is set, the offset value may be set to a maximum “period-1” value. have.
  • a precoder matrix such as Equations 4 to 7 may be set in advance to variously change a pattern of a repeated symbol.
  • the first terminal (a) may receive an interference randomization effect by receiving Zn and Zmod (n + 1, 3), which are Sn and an interference signal, and the second terminal (b), Sn and Smod, which are Zn and an interference signal
  • the interference randomization effect can be obtained by receiving (n + 2, 3) together.
  • the closed loop MIMO technique described with reference to FIG. 1 has a disadvantage in that it does not operate when there is no information on interference or information on a channel through which an interference signal is propagated, and the interference random described with reference to FIGS. 8 and 9. This technique is disadvantageous when the closed-loop MIMO technique is used to transmit the desired signal.
  • Aha proposes a transmission scheme and a transmitter structure for using inter-cell interference randomization in a closed loop MIMO scheme for transmitting a desired signal.
  • the interference randomization technique described below may be applied to a moving cell or a closed femto cell performing downlink transmission between a small cell suitable for use of closed loop MIMO and a low speed mobile user. That is, according to an embodiment of the present invention, it is possible to overcome the interference between downlink cells caused by downlink transmission of a cell limited in information exchange with the small cell.
  • FIG. 10 is a diagram illustrating the structure of a transmission stage according to an embodiment of the present invention.
  • a high probability of generating a line of sight is generated, which may mean that closed-loop MIMO transmission in the form of single layer beamforming occurs frequently.
  • the inter-cell interference randomization described above is not suitable for the existing transmission end structure in which symbol repetitive transmission does not occur.
  • the transmission end structure proposed in this embodiment is shown in FIG.
  • the transmitter includes a channel encoder 1010, a rank determiner 1015, a layer mapping unit 1020, a layer repeat and layer shift (LR & LS 1030), and a phase changer. (phase modifier 1040) and precoders 1050, 1060.
  • the channel encoder 1010 encodes the input information bits according to a predetermined coding scheme to generate a codeword.
  • the channel encoder 1010 may further include a mapping unit for modulating each codeword according to a modulation scheme and mapping the codewords to modulation symbols having demodulation values.
  • the modulation scheme is not limited, and may be m-PK (m-Phase Shift Keying) or m-Quadrature Amplitude Modulation (m-QAM).
  • m-PSK may be BPSK, QPSK or 8-PSK.
  • m-QAM may be 16-QAM, 64-QAM or 256-QAM.
  • the mapping unit generates modulation symbols for the codeword.
  • the rank determiner 1015 may determine the number of ranks based on the feedback information transmitted from the terminal.
  • the layer mapping unit 1020 maps modulation symbols of input codewords to each layer according to the number of layers.
  • the layer may be referred to as an information path input to the precoders 1050 and 1060 and may correspond to a value of rank.
  • the layer mapping unit 140 may map modulation symbols of each codeword to each layer in correspondence to the number of layers determined from the rank determination unit 1015 (ie, rank).
  • the transmission sequence corresponding to this may be generated in the layer mapping unit 1020, and as shown, a transmission sequence for one layer L0 may be generated based on feedback information.
  • the generated transmission sequence is input to the LR & LS 1030, and the LR & LS 1030 repeatedly outputs the transmission sequence.
  • the rank is set to 1, the effect may be as if two layers are generated.
  • the LR & LS 1030 may repeat the transmission sequence for inter-cell interference randomization before the transmission sequence is mapped to the antenna port through precoding.
  • the symbols of the transmission sequence may be repeated by the number of antenna port groups used for transmission diversity implementation and allocated to individual antenna port groups.
  • the antenna port group may include a plurality of antennas, and the number of antenna port groups may mean a number corresponding to the number of precoders or the number of layers.
  • 11A to 11C are diagrams for describing layer repetition and layer shift according to an embodiment of the present invention.
  • 11A to 11C show a transmission sequence repeated according to this embodiment.
  • the transmission sequence S 1N ,... S 12 , S 11 , S 2N ... S 22 , S 21 generated by the channel encoder is as if two layers S are input to the LR & LS 1030. 1N ,... S 12 , S 11 and S 2N ... S 22 , S 21 ) can be expressed as being generated.
  • the transmission sequence represented by two layers (S 1N ,... S 12 , S 11 and S 21 ,... S 22 , S 21 ) is repeated in the LR & LS 1030, and the repeated symbols are shifted at regular intervals within the transmission sequence. Can be.
  • the transmission sequence may be repeated by the number of antenna port groups.
  • the order in which the repeated symbols are allocated to each antenna port group may be allocated to be mapped to an adjacent neighbor RE as shown in cell A at the top of FIG. 11A, or may be allocated to be spaced apart by one RE as shown in cell B at the bottom of FIG. 11A. . That is, the symbols in the repeated transmission sequence may be allocated to REs spaced apart by a predetermined number (K K is an integer).
  • a repetition pattern allocated to an antenna port group for each cell may be set differently to implement inter-cell interference randomization. Through this, inter-cell interference randomization can be obtained even in closed loop MIMO.
  • a repeating pattern is allocated to cell A to be mapped to an adjacent neighbor RE, and one of the transmission sequences represented by two layers is input to cell B of the lower part of FIG. 11B.
  • the transmission sequence Z 1N ,... Z 12 , Z 11 retain the first transmission pattern that was entered, and the other transmission sequences are Z 2N .
  • Z 22 and Z 21 change a symbol's repetitive transmission pattern.
  • the repeating pattern has period 3 and is cyclically shifted to offset 1.
  • a repetitive pattern is assigned to a cell A on the top so that a repetitive pattern is mapped to an adjacent neighbor RE, and one of the transmission sequences represented by two layers is maintained on the bottom cell B.
  • the transmission sequence Z 1N ,... Z 12 , Z 11 maintain the first transmission pattern that was entered, and the other remaining transmission sequences Z 2N ...
  • the repeated transmission pattern of the symbol is changed as shown in FIG. 11B.
  • Transmission sequence Z 2N ... Z 22 and Z 21 change the mapping of some symbols in the same pattern as the bottom of FIG. 11B. That is, in the pattern at the bottom of FIG. 11B, the position of the symbol Z12 is changed to Z22.
  • the transmission pattern of the cell B of FIG. 11C may be an example in which the layer mapping is changed in units of symbols.
  • the phase change unit 1040 changes the phase of the repeated and shifted transmission sequence. As shown in the drawing, in order to obtain an effect of outputting two layers in a situation where the rank is determined as 1, orthogonality between layers should be guaranteed.
  • the phase change unit 1040 generates an orthogonal sequence by changing the phase of the transmission sequence output to the two layers for orthogonality between the two layers.
  • FIG. 12 illustrates a transmission sequence in which a phase is changed according to an embodiment of the present invention.
  • phase of the transmission sequence input to the first precoder 1050 is not changed, the phase of the transmission sequence input to the second precoder 1060 may be changed.
  • This orthogonal sequence may be allocated to time, frequency or spatial resources, and the phase changer 1040 may be implemented as an Alamouti transmitter.
  • a transmission sequence input to the second precoder 1060 of FIG. 12 may be complexly computed or reversed in phase and allocated to spatial resources.
  • the precoders 1050 and 1060 process the mapping symbols mapped to the respective layers by the MIMO method according to the plurality of antenna ports, and output antenna specific symbols. As shown, according to the present embodiment, there are two antenna port groups, and two layers are generated and output for a signal having a rank of one.
  • FIG. 13 is a diagram illustrating the structure of a transmission stage according to another embodiment of the present invention.
  • a single antenna port group when transmitting a repeated transmission sequence, may be transmitted in the same manner as a single layer transmission without using different antenna ports.
  • phase change unit 1040 ensures orthogonality between the two layers.
  • the interference randomization scheme of the present invention guarantees a performance gain in the presence of unmeasured or unpredictable cell interference, and the existing scheme operates in the absence of such unknown inter-cell interference. Does not affect anything. That is, according to the present invention, the proposed scheme is applied only when the occurrence of unknown inter-cell interference is expected, otherwise it is not necessary to control the proposed scheme not to be applied.
  • the system may be designed to always use the interference randomization technique for signal transmission, or may be dynamically determined whether the technique is applied to be applied only in a specific case.
  • layer repetition and layer shift pattern in order to simplify the layer repetition and layer shift pattern of each cell, that is, to avoid signaling overhead of going through complex negotiations between cells so that each cell has a different repetition pattern from neighboring cells.
  • the symbol repetition pattern is preferably set in advance.
  • the layer repetition and layer shift pattern may be set according to the cell type.
  • a repeating pattern is set according to a cell size such as a small cell or a micro cell, or a coverage overlapping with other cells such as a first layer and a second layer in a heterogeneous network. Accordingly, the repeating pattern may be set. Alternatively, a repeating pattern may be set according to the mobility of a cell, such as a moving cell and a fixed cell, or a repeating pattern may be set by a combination of the above examples.
  • the symbol repetition pattern is set according to the cell size or the cell layer, continuous interference randomization is applied between cells that are likely to generate strong inter-cell interference in consideration of the magnitude of the inter-cell interference, which cannot be controlled by conventional interference avoidance. You can be prepared.
  • the symbol repetition pattern is set according to the mobility of the cell, it may correspond to the occurrence of unexpected inter-cell interference.
  • FIG. 14 is a diagram for describing a repetition pattern allocated to a cell type according to one embodiment of the present invention.
  • the first base station (A) and the second base station (B) each of the repeated symbols (repeated symbol) in the cells (1, 2) that are managed by each of the consecutive resource element (RE) Mapping.
  • Repeated symbols may be shifted to an offset 2 and mapped to resources allocated to the moving cell 6.
  • the repetition pattern of the symbol may vary according to the size of the cell or the mobility of the cell, and the symbol pattern may be changed or newly set due to the offset adjustment of the repetition pattern.
  • the layer repetition and layer shift pattern may be set according to the cell ID.
  • This means a method in which cells may have different symbol repetition patterns and may be implemented, for example, "repetitive offset mod (PCID, K)".
  • the layer repetition and layer shift patterns when the layer repetition and layer shift patterns are set according to the above-mentioned cell type or cell ID, the layer repetition and layer shift patterns may be used in combination or after setting the layer repetition and layer shift pattern through these methods.
  • a method of negotiating this may apply. That is, adjacent cells may negotiate a precoder to be used by each cell through higher layer signaling.
  • each base station After setting an initial pattern to be used by each base station according to a cell type or a cell ID, if interference ranging between adjacent cells having the same pattern is required, negotiation between base stations is required. For example, if it is necessary to change the repetition pattern of a specific cell after the repetition pattern for each cell is set, each base station determines the repetition pattern change and notifies the base station of the neighboring cell by signaling the changed pattern, or A repeating pattern change may be requested by one base station to another base station through inter-base station signaling.
  • 15 is a diagram illustrating a signaling process for pattern change between base stations according to an embodiment of the present invention.
  • the first base station A may signal a recommended pattern list to the second base station B (S1520).
  • the second base station B Upon receiving the recommendation pattern list, the second base station B determines whether to change the pattern (S1530), and notifies the first base station A of a response to whether the pattern is changed (S1540). The second base station B may transmit a response to the pattern change to the first base station A and information on the new pattern to the first base station A when it is determined that the pattern is to be changed (S1550).
  • the first base station A may select a precoder based on the new pattern (S1560) and perform pattern change according to the selected precoder.
  • the first base station A having changed the pattern may transmit a message confirming this to the second base station B (S1570).
  • FIG. 16 illustrates a signaling process for pattern change between base stations according to another embodiment of the present invention.
  • the first base station A may signal the changed new pattern to the second base station B (S1620).
  • the second base station B may recognize the pattern change of the first base station A (S1630) and perform a confirmation on the pattern change (S1640). )
  • 17 is a block diagram of a wireless communication system according to an embodiment of the present invention.
  • the base station 800 includes a processor 810, a memory 820, and an RF unit 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.
  • the present invention provides a method and apparatus for allowing a terminal to select a wireless node for uplink according to a predetermined condition when wireless connection is possible through different wireless networks.

Abstract

A signal transmission method for reducing inter-cell interference according to the present invention may comprise the steps of: determining a rank on the basis of feedback information received from a terminal; generating a transmission sequence according to the rank; generating a repetitive transmission sequence by repeating the transmission sequence, and shifting a position of a symbol within the repetitive transmission sequence; and transmitting the transmission sequence and the repetitive transmission sequence. As a result, the present invention can implement an inter-cell interference randomization even in a closed-loop MINO.

Description

셀 간 간섭을 위한 신호 전송 방법Signal transmission method for intercell interference
본 발명은 무선 통신에 관한 것으로 보다 상세하게는 셀 간 간섭을 위한 신호 전송 방법 및 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a signal transmission method and apparatus for inter-cell interference.
OFDMA(orthogonal frequency division multiplexing access)를 기반으로 한 전송 방식은 하나 이상의 부반송파를 독립적으로 각 단말에 할당할 수 있다. 따라서, 단말의 요구에 따라 셀 내 주파수 간섭이 없이 주파수 자원이 효율적으로 할당될 수 있다.A transmission scheme based on orthogonal frequency division multiplexing access (OFDMA) may allocate one or more subcarriers independently to each terminal. Therefore, according to the request of the terminal, frequency resources can be efficiently allocated without intra-cell frequency interference.
셀룰러 네트워크 시스템에서 셀 내의 단말의 위치에 따라 시스템의 성능이 크게 변할 수 있다. 특히, 셀 간 간섭은 셀 경계에 위치하는 단말의 성능을 크게 열화시킬 수 있다. 또한, 주파수 재사용 효율이 높아질수록 셀 중앙에서는 높은 데이터 전송률을 얻을 수 있지만, 셀 간 간섭은 더 심해진다. 따라서 셀 경계에서는 인접 셀로부터 큰 간섭을 받아 단말의 신호 대 간섭 및 잡음비(signal to interference plus noise ratio, SINR)의 저하가 더 심하게 나타날 수 있다. In a cellular network system, the performance of the system may vary greatly depending on the position of the terminal in the cell. In particular, inter-cell interference can greatly degrade the performance of the UE located at the cell boundary. In addition, the higher the frequency reuse efficiency, the higher the data rate can be obtained in the cell center, but the inter-cell interference is more severe. Therefore, at the cell boundary, the signal-to-interference plus noise ratio (SINR) of the terminal may be more severely received due to the large interference from the adjacent cells.
OFDMA 기반의 셀룰러 네트워크 시스템에서 셀 간 간섭을 완화하기 위해 셀 간 간섭을 회피하는 기법, 셀 간 간섭의 영향을 평균하는 기법, 셀 간 간섭을 제거하는 기법 등에 대한 연구가 수행되고 있다.In order to alleviate inter-cell interference in OFDMA-based cellular network systems, researches on avoiding inter-cell interference, averaging effects of inter-cell interference, and removing inter-cell interference have been conducted.
현재 셀룰러 네트워크 시스템에서는 많은 무빙 셀들이 존재하고 있다. 무빙 셀과 고정 셀 사이에서 셀 간 간섭이 발생할 수 있다. 이러한 무빙 셀들과 고정 셀 간의 간섭을 완화하기 위한 방법이 필요하다.Currently, many moving cells exist in a cellular network system. Inter-cell interference may occur between the moving cell and the fixed cell. There is a need for a method for mitigating interference between moving cells and fixed cells.
본 발명의 일 실시예는 셀 간 간섭을 완화하는 방법 및 장치를 제공한다.One embodiment of the present invention provides a method and apparatus for mitigating intercell interference.
본 발명의 또 다른 목적은 셀 간 간섭을 완화하기 위한 시퀀스 생성 방법 및 이를 이용하는 장치를 제공한다. Another object of the present invention is to provide a method for generating a sequence for mitigating interference between cells and an apparatus using the same.
본 발명의 일 실시예에 따른 셀간 간섭을 완화하기 위한 신호 전송 방법은 단말로부터 수신된 피드백 정보에 기초하여 랭크를 결정하는 단계와; 상기 랭크에 따라 전송 시퀀스를 생성하는 단계와; 상기 전송 시퀀스를 반복하여 반복 전송 시퀀스를 생성하고, 상기 반복 전송 시퀀스 내의 심볼의 위치를 시프트 하는 단계와; 상기 전송 시퀀스와 상기 반복 전송 시퀀스를 전송하는 단계를 포함할 수 있다. According to an embodiment of the present invention, a signal transmission method for mitigating intercell interference includes determining a rank based on feedback information received from a terminal; Generating a transmission sequence according to the rank; Repeating the transmission sequence to generate a repeating transmission sequence and shifting a position of a symbol within the repeating transmission sequence; And transmitting the transmission sequence and the repetitive transmission sequence.
전송 시퀀스에 대하여 상기 반복 전송 시퀀스의 위상을 변경하여 상기 전송 시퀀스와 상기 반복 전송 시퀀스의 직교성을 생성하는 단계를 더 포함할 수 있다. The method may further include generating orthogonality between the transmission sequence and the repetitive transmission sequence by changing a phase of the repetitive transmission sequence with respect to the transmission sequence.
상기 반복 전송 시퀀스 내 반복되는 심볼의 패턴은 셀 ID에 따라 결정될 수 있다.The pattern of repeated symbols in the repetitive transmission sequence may be determined according to a cell ID.
본 발명에 따르면 셀 간 간섭을 완화하는 방법 및 장치가 제공된다.According to the present invention, a method and apparatus for mitigating intercell interference are provided.
본 발명에 따르면, 전송단의 프리코딩을 기반으로 채널 상태가 빠르게 변하는 무빙 셀 간의 셀 간 간섭을 완화할 수 있다. 구체적으로 수신단에서 별도의 간섭에 대한 평균화가 수행되지 않고도 전송단의 프리코딩을 기반으로 수신단의 수신 신호에 포함된 간섭 신호를 에버리징(averaging)하여 페이드아웃(fade out)시킬 수 있다. 또한, 복수의 수신 심볼 각각에 대한 간섭이 랜더마이징(randomizing)될 수 있다.According to the present invention, inter-cell interference between moving cells whose channel state changes rapidly based on precoding of a transmitting end can be alleviated. In detail, the averaging of the interference signal included in the reception signal of the receiver may be performed and faded out based on precoding of the transmitter, without performing an averaging for the interference at the receiver. In addition, interference for each of the plurality of received symbols may be randomized.
본 발명의 일 실시예에 따르면 셀 간 간섭을 완화하기 위한 시퀀스 생성 방법 및 이를 이용하는 장치가 제공된다.According to an embodiment of the present invention, a method for generating a sequence for mitigating intercell interference and an apparatus using the same are provided.
또한, 본 발명에 따르면, 예측되지 않거나 측정되지 않은 셀간 간섭(unknown inter-cell interference)의 랜더마이제이션(randomization)을 통해 극복하는 다운 링크 폐루프(downlink closed-loop) MIMO 전송 기법이 제공된다. In addition, according to the present invention, a downlink closed-loop MIMO transmission technique is provided that overcomes randomization of unknown or unmeasured inter-cell interference.
도 1은 폐루프 MIMO에서 간섭을 해소하는 방법에 대한 도면이다.1 is a diagram for a method of eliminating interference in a closed loop MIMO.
도 2는 무빙 셀(moving cell)의 이동을 나타낸 개념도이다. 2 is a conceptual diagram illustrating a movement of a moving cell.
도 3은 기존의 셀 간 간섭 제어 방식에 의해 무빙 셀과 고정 셀 간의 간섭이 제어될 경우, 발생하는 문제점을 나타낸 개념도이다.3 is a conceptual diagram illustrating a problem that occurs when interference between a moving cell and a fixed cell is controlled by a conventional inter-cell interference control scheme.
도 4는 본 발명의 일 실시예에 따른 간섭 완화 방법을 도시한 도면이다.4 is a diagram illustrating an interference mitigation method according to an embodiment of the present invention.
도 5는 본 발명의 다른 실시예에 따른 간섭 완화 방법을 도시한 도면이다.5 is a diagram illustrating an interference mitigation method according to another embodiment of the present invention.
도 6은 다른 채널을 통해 신호를 반복적으로 전송하는 것을 도시한 도면이다. 6 is a diagram illustrating repeatedly transmitting a signal through another channel.
도 7은 준정적 채널을 통하여 수신되는 심볼 및 간섭 신호를 도시한 도면이다.7 is a diagram illustrating a symbol and an interference signal received through a quasi-static channel.
도 8은 본 발명의 일 실시예에 따른 수신 심볼 및 간섭 신호를 도시한 도면이다.8 illustrates received symbols and interference signals according to an embodiment of the present invention.
도 9는 도 8에 따른 전송 신호에 따른 간섭 랜덤화를 설명하고 있는 도면이다. 9 is a diagram illustrating interference randomization according to a transmission signal of FIG. 8.
도 10은 본 발명의 일 실시예에 따른 전송단의 구조를 도시한 도면이다.10 is a diagram illustrating the structure of a transmission stage according to an embodiment of the present invention.
도 11a는 본 발명의 일 실시예에 따라 반복되는 전송 시퀀스를 도시한 도면이다.11A illustrates a repeated transmission sequence according to an embodiment of the present invention.
도 11b는 본 발명의 일 실시예에 따라 반복되는 전송 시퀀스를 도시한 도면이다.11b illustrates a repeated transmission sequence according to an embodiment of the present invention.
도 11c는 본 발명의 일 실시예에 따라 반복되는 전송 시퀀스를 도시한 도면이다.11C is a diagram illustrating a repeated transmission sequence according to one embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따라 위상이 변경된 전송 시퀀스를 도시한 도면이다.12 illustrates a transmission sequence in which a phase is changed according to an embodiment of the present invention.
도 13은 본 발명의 다른 실시예에 따른 전송단의 구조를 도시한 도면이다.13 is a diagram illustrating the structure of a transmission stage according to another embodiment of the present invention.
도 14는 본 발명의 일 실시예에 따라 셀 타입에 대응하여 반복 패턴이 할당되는 것을 설명하기 위한 도면이다.14 is a diagram for describing a repetition pattern allocated to a cell type according to one embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따라 기지국 간에 패턴 변경에 대한 시그널링 과정을 설명하기 위한 도면이다.15 is a diagram illustrating a signaling process for pattern change between base stations according to an embodiment of the present invention.
도 16은 본 발명의 다른 실시예에 따라 기지국 간에 패턴 변경에 대한 시그널링 과정을 설명하기 위한 도면이다.FIG. 16 illustrates a signaling process for pattern change between base stations according to another embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.17 is a block diagram of a wireless communication system according to an embodiment of the present invention.
무선기기는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다. 또한, 상기 단말은 휴대폰, PDA, 스마트 폰(Smart Phone), 무선 모뎀(Wireless Modem), 노트북 등과 같이 통신 기능을 갖춘 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다. 기지국은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. The wireless device may be fixed or mobile and may be called other terms such as a user equipment (UE), a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and the like. The terminal may be a portable device having a communication function such as a mobile phone, a PDA, a smart phone, a wireless modem, a laptop, or the like, or a non-portable device such as a PC or a vehicle-mounted device. . A base station generally refers to a fixed station for communicating with a wireless device, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다. Hereinafter, the present invention will be applied based on 3rd Generation Partnership Project (3GPP) 3GPP long term evolution (LTE) or 3GPP LTE-A (LTE-Avanced). This is merely an example, and the present invention can be applied to various wireless communication systems. Hereinafter, LTE includes LTE and / or LTE-A.
본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다.The present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in
최근 차세대 무선 통신 시스템인 LTE(Long Term Evolution) 시스템의 상용화가 본격적으로 지원되고 있는 상황이다. 이러한 LTE 시스템은 단말 사용자의 활동성을 보장하면서 음성 서비스뿐만 아니라 사용자의 요구에 대한 대용량 서비스를 고품질로 지원하고자 하는 필요성이 인식된 후, 보다 빨리 확산되고 있는 추세이다. 상기 LTE 시스템은 낮은 전송 지연, 높은 전송율, 시스템 용량과 커버리지 개선을 제공한다.Recently, commercialization of the LTE (Long Term Evolution) system, which is the next generation wireless communication system, is being supported in earnest. The LTE system is spreading more quickly after the need to support high-quality services for high-quality services as well as voice services while ensuring the activity of terminal users. The LTE system provides low transmission delay, high data rate, system capacity and coverage improvement.
이러한 고품질 서비스의 출현등으로 인해 무선통신 서비스에 대한 요구가 급속히 증대되고 있다. 이에 능동적으로 대처하기 위해서는 무엇보다도 통신 시스템의 용량이 증대되어야 하는데, 무선통신 환경에서 통신 용량을 늘리기 위한 방안으로는 가용 주파수 대역을 새롭게 찾아내는 방법과, 한정된 자원에 대한 효율성을 높이는 방법을 생각해 볼 수 있다.Due to the emergence of such high quality services, the demand for wireless communication services is rapidly increasing. To cope with this actively, the capacity of the communication system must be increased.In order to increase the communication capacity in the wireless communication environment, a method of finding new available frequency bands and increasing the efficiency of limited resources can be considered. have.
이 중 한정된 자원에 대한 효율성을 높이는 방법으로 송수신기에 다수의 안테나를 장착하여 자원 활용을 위한 공간적인 영역을 추가로 확보함으로써 다이버시티 이득을 취하거나, 각각의 안테나를 통해 데이터를 병렬로 전송함으로써 전송 용량을 높이는 이른바 다중 안테나 송수신 기술이 최근 큰 주목을 받으며 활발하게 개발되고 있다.In order to increase the efficiency of the limited resources among them, the transceiver is equipped with a plurality of antennas to obtain additional spatial area for resource utilization to obtain diversity gain or transmit data in parallel through each antenna. The so-called multi-antenna transmission and reception technology for increasing the capacity has been actively developed recently with great attention.
다중 안테나 시스템(multiple-input multiple-output system)에서는 신호대 잡음비(Signal to Noise Ratio; SNR)를 높이기 위한 방법으로 빔 포밍 및 프리코딩이 사용될 수 있고, 빔 포밍 및 프리코딩은 송신단에서 피드백 정보를 이용할 수 있는 폐-루프 시스템에서 해당 피드백 정보를 통해 신호대 잡음비를 최대화하기 위해 사용된다. In a multiple-input multiple-output system, beamforming and precoding may be used as a method for increasing signal to noise ratio (SNR), and beamforming and precoding may use feedback information at a transmitter. In a closed-loop system, the feedback information is used to maximize the signal-to-noise ratio.
도 1은 폐루프 MIMO에서 간섭을 해소하는 방법에 대한 도면이다.1 is a diagram for a method of eliminating interference in a closed loop MIMO.
도시된 바와 같이, 기지국(1)은 복수의 단말(2)에 신호를 전달하는 과정에서 각 단말(2)로부터 채널에 대한 피드백 신호를 수신할 수 있다. As shown, the base station 1 may receive a feedback signal for a channel from each terminal 2 in the process of transmitting signals to the plurality of terminals 2.
기지국(1)이 채널 상태 정보(Channel State Information, CSI)에 대한 참조 신호(reference)를 전송하면(S110), 각 단말(2)은 CSI를 측정하고(S120), 측정된 CSI를 기지국(1)에 전송한다(S130). When the base station 1 transmits a reference signal for channel state information (CSI) (S110), each terminal 2 measures the CSI (S120), and the measured CSI is measured by the base station 1 (S130).
기지국(1)은 이러한 피드백 정보에 기초하여 신호에 대한 프리코더(precoder)를 선정하고(S140), 프리코딩된 신호를 단말(2)로 전송할 수 있다. The base station 1 may select a precoder for a signal based on the feedback information (S140) and transmit the precoded signal to the terminal 2.
기지국(1)은 도 1에 도시된 바와 같이, 공간적 직교 방식(spatial orthogonal)으로 생성된 신호를 단말(2)로 전송할 수 있다(S150).As illustrated in FIG. 1, the base station 1 may transmit a signal generated in a spatial orthogonal manner to the terminal 2 (S150).
단말(2)은 기지국(1)에서 전송한 신호에 대하여 가상(virtual) 채널을 추정하고(S160), 신호를 복원할 수 있다(S170).The terminal 2 may estimate a virtual channel with respect to the signal transmitted from the base station 1 (S160) and restore the signal (S170).
즉, 폐루프 MIMO 시스템에서는 채널 정보를 기반으로 원하는 특정 단말에게만 신호가 전달되도록 신호를 조정하여 전송할 수 있고, 이를 통해 샐 내부 간섭 및 셀 간 간섭(inter cell interference, ICI)을 해소할 수 있다.That is, in a closed loop MIMO system, a signal may be adjusted and transmitted so that a signal is transmitted only to a specific terminal desired based on channel information, and through this, internal interference and inter cell interference (ICI) may be eliminated.
이러한 간섭 해소 방법에 의하여 복수의 사용자 접속에 의한 간섭(Multiple Access Interference, MAI)이 완화될 수 있고, 또한 기지국간 협력 통신(Coordinated Multipoint, CoMP)을 통하여 단말이 원하는 안테나 방향으로 간섭을 최소화 할 수 있다. By the interference cancellation method, interference by a plurality of user accesses (Multiple Access Interference, MAI) can be mitigated, and also interference can be minimized toward the antenna direction desired by the terminal through coordinated communication (Coordinated Multipoint, CoMP). have.
한편, 인접 셀 간 채널 정보 공유가 원활하지 않으면 상기에서 설명한 폐루프 CoMP 기술을 통한 셀 간 간섭 회피 기술은 적용되기 어렵다. 고속으로 이동하기 때문에 주변 셀과 빠르게 인터페이스를 적시에 수립할 수 없는 무빙 셀, 또는 다른 셀과의 정보 공유가 제한되는 펨토셀(femto cell) 등에서 셀 간 간섭이 발생하는 상황이 이에 해당한다.On the other hand, if the sharing of channel information between adjacent cells is not smooth, the inter-cell interference avoidance technique using the closed loop CoMP technique described above is difficult to apply. This is the case in which inter-cell interference occurs in a moving cell where a fast interface with a neighboring cell cannot be established at a fast time, or a femto cell in which information sharing with other cells is limited.
도 2는 무빙 셀(moving cell)의 이동을 나타낸 개념도이다. 2 is a conceptual diagram illustrating a movement of a moving cell.
이하, 본 발명의 실시예에서 무빙 셀은 이동하는 기지국, 고정 셀(fixed cell)은 고정된 위치에서 이동하지 않는 기지국을 지시할 수 있다. 무빙 셀은 다른 용어로 무빙 기지국, 고정 셀은 다른 용어로 고정 기지국이라는 용어로 표현될 수 있다.Hereinafter, in the embodiment of the present invention, the moving cell may indicate a base station moving, and a fixed cell may indicate a base station not moving at a fixed position. The moving cell may be expressed in other terms as the moving base station, and the fixed cell in other terms as the fixed base station.
예를 들어, 무빙 셀(100)은 버스와 같은 이동하는 객체에 설치된 기지국일 수 있다. 서울시 버스를 기준으로 약 2000개의 무빙 셀(100)이 존재할 수 있다. 따라서, 현재 셀룰러 네트워크 시스템에서 무빙 셀(100)과 고정 셀(150) 간의 간섭의 발생 가능성이 높다.For example, the moving cell 100 may be a base station installed in a moving object such as a bus. There may be about 2000 moving cells 100 based on the buses in Seoul. Therefore, there is a high possibility of interference between the moving cell 100 and the fixed cell 150 in the current cellular network system.
고정 셀(150) 간의 셀 간 간섭의 경우, 셀 간 간섭을 완화하기 위해 기지국과 단말의 거리를 고려하여 자원 분할이 수행될 수 있다. 또는 셀 간의 채널 정보의 공유로 동적인 자원 분할을 수행하거나 협력 통신을 수행하여 간섭을 완화할 수 있다.In the case of inter-cell interference between the fixed cells 150, resource division may be performed in consideration of the distance between the base station and the terminal to mitigate inter-cell interference. Alternatively, interference may be mitigated by dynamic resource division or cooperative communication by sharing channel information between cells.
하지만, 무빙 셀(100)의 경우 고정 셀(150) 간의 간섭 제어 방법을 그대로 사용하기에는 어려운 점이 존재한다.However, in the case of the moving cell 100, it is difficult to use the interference control method between the fixed cells 150 as it is.
도 3은 기존의 셀 간 간섭 제어 방식에 의해 무빙 셀과 고정 셀 간의 간섭이 제어될 경우, 발생하는 문제점을 나타낸 개념도이다.3 is a conceptual diagram illustrating a problem that occurs when interference between a moving cell and a fixed cell is controlled by a conventional inter-cell interference control scheme.
무빙 셀에서는 실시간 트래픽(real-time traffic)을 통한 서비스가 제공되는 경우가 많다. 따라서, 반정적인(semi-static) 자원 분할을 기반으로 하는 간섭 제어는 무빙 셀에서 부적절할 수 있다.In moving cells, services through real-time traffic are often provided. Thus, interference control based on semi-static resource partitioning may be inappropriate in a moving cell.
도 3의 상단을 참조하면, 무빙 셀은 무선 백 홀(wireless backhaul)을 기반으로 다른 셀과 연결될 수 있다. 따라서, 채널 정보의 공유로 동적인 자원 분할을 수행하거나 협력 통신을 기반으로 한 셀 간 간섭 완화 방법의 사용이 어려울 수 있다. 구체적으로 JT(joint transmission)/DPS(dynamic point selection)의 경우, 기지국 간의 유선 백 홀을 통해 단말로 전송할 데이터가 공유되어야 한다. 하지만, 무선 백 홀을 통한 무빙 셀과 고정 셀 간의 데이터 공유는 무선 자원의 추가적인 사용을 필요로 할 뿐만 아니라, 무선 채널 상황에 따라 데이터의 안정적인 공유가 어려울 수 있다. 따라서, 협력 통신을 기반으로 한 고정 셀과 무빙 셀 간의 간섭 완화는 어려울 수 있다.Referring to the upper part of FIG. 3, the moving cell may be connected to another cell based on a wireless backhaul. Therefore, it may be difficult to perform dynamic resource partitioning by sharing channel information or use an inter-cell interference mitigation method based on cooperative communication. Specifically, in case of joint transmission (JT) / dynamic point selection (DPS), data to be transmitted to a terminal through a wired backhaul between base stations should be shared. However, data sharing between the moving cell and the fixed cell through the wireless backhaul not only requires additional use of radio resources, but also stable sharing of data may be difficult depending on radio channel conditions. Therefore, interference mitigation between the fixed cell and the moving cell based on cooperative communication may be difficult.
도 3의 하단을 참조하면, 무빙 셀의 이동으로 인해 무빙 셀과 고정 셀 간의 채널이 빠르게 변화할 수 있다. 따라서, 셀 간 신호 및 간섭 채널 정보 공유가 원활하지 않은 상황에서 간섭 제어 및 감소를 위한 기법 개발이 필요하다. Referring to the bottom of FIG. 3, the channel between the moving cell and the fixed cell may change rapidly due to the movement of the moving cell. Therefore, there is a need to develop a technique for interference control and reduction in a situation in which signal and interference channel information sharing between cells is not smooth.
이러한 환경에서, 간섭 회피 대신 간섭 랜덤화(randomization) 또는 셀 간 간섭 평균화(interference averaging)를 통해 간섭을 희석시키는 기법(whitening)의 사용될 수 있다. In such an environment, a technique of whitening may be used instead of interference avoidance through interference randomization or inter-cell interference averaging.
셀 간 간섭 랜덤화는 인접 셀로부터의 간섭을 랜덤화하여 셀 간 간섭을 AWGN(additive white Gaussian noise)으로 근사화하는 방법이다. 셀 간 간섭 랜덤화는 예를 들어, 셀 고유 스크램블링, 셀 고유 인터리빙 등을 기반으로 다른 사용자의 신호에 의한 채널 복호화 과정의 영향을 감소시킬 수 있다.Inter-cell interference randomization is a method of randomizing interference from adjacent cells to approximate inter-cell interference to additive white Gaussian noise (AWGN). Inter-cell interference randomization may reduce the influence of the channel decoding process by another user's signal, for example, based on cell-specific scrambling, cell-specific interleaving, and the like.
셀 간 간섭 평균화는 인접 셀에 의한 간섭들을 모두 평균화되도록 하거나 심볼 호핑을 통해 채널 코딩 블록 수준에서 셀 간 간섭을 평균화하는 방법이다. Inter-cell interference averaging is a method of averaging all interferences by adjacent cells or averaging inter-cell interference at the channel coding block level through symbol hopping.
본 발명의 일 실시예예 따른 간섭 랜덤화 기법은 시간/주파수/공간 자원을 통해 원하는(desired) 신호를 전송할 때, 일부 자원에서는 원하는 신호와 간섭 신호를 동시에 수신되도록하고, 일부 자원에서는 원하는 신호만 수신되도록 하여 자원 별 원하는 신호와 간섭 신호의 비율을 다르게 조정하는 것이다. 이처럼, 신호 대 간섭/잡음 비(SINR)가 자원 별로 달라짐으로써 채널 코딩 이득(channel coding gain)을 얻을 수 있다. In the interference randomization scheme according to an embodiment of the present invention, when a desired signal is transmitted through a time / frequency / spatial resource, some resources may simultaneously receive a desired signal and an interference signal, and some resources may receive only a desired signal. The ratio between the desired signal and the interference signal for each resource is adjusted differently. As such, the channel coding gain may be obtained by changing the signal-to-interference / noise ratio (SINR) for each resource.
도 4 및 도 5는 본 발명의 일 실시예에 따른 간섭 완화 방법을 도시한 도면이다. 4 and 5 illustrate an interference mitigation method according to an embodiment of the present invention.
도 4는 제1 기지국(A)과 제2 기지국(B)는 각각 제1 단말(a) 및 제2 단말(b)로 신호를 전송한다. 제1 기지국(A)에서 전송한 신호는 제2 단말(b)에 간섭 신호로 작용할 수 있고, 제2 기지국(B)에서 전송한 신호는 제1 단말(a)에 간섭 신호로 작용할 수 있다.4 shows that the first base station A and the second base station B transmit signals to the first terminal a and the second terminal b, respectively. The signal transmitted from the first base station A may act as an interference signal to the second terminal b, and the signal transmitted from the second base station B may act as an interference signal to the first terminal a.
제1 기지국(A)과 제2 기지국(B)은 시간 및 주파수 자원에 전송하고자 하는 신호를 할당하여 도시된 바와 같은 자원 패턴으로 신호를 생성 및 전송할 수 있다. The first base station A and the second base station B may generate and transmit a signal in a resource pattern as shown by assigning a signal to be transmitted to time and frequency resources.
제1 기지국(A)은 제1 패턴으로 자원을 할당하여 제1 단말(a)에 전송하고, 제2 기지국(B)은 제2 패턴으로 자원을 할당하여 제2 단말(b)에 전송한다. The first base station A allocates resources in the first pattern and transmits them to the first terminal a, and the second base station B allocates resources in the second pattern and transmits the resources to the second terminal b.
제1 기지국(A)에서 제1 패턴으로 자원을 할당하여 신호를 전송하여도, 제2 기지국(B)에서 생성된 신호에 의하여 제1 단말(a)로 수신되는 자원 할당 패턴은 도 4의 하단의 패턴 Ⅰ이 된다. 또한, 제2 기지국(B)에서 제2 패턴으로 자원을 할당하여 신호를 전송하여도, 제1 기지국(A)에서 생성된 신호에 의하여 제2 단말(b)로 수신되는 자원 할당 패턴은 도 4의 하단의 패턴 Ⅱ이 된다.Even when the first base station A transmits a signal by allocating a resource in the first pattern, the resource allocation pattern received by the first terminal a by the signal generated by the second base station B is shown in FIG. Becomes pattern I of. Further, even when the second base station B transmits a signal by allocating a resource in the second pattern, the resource allocation pattern received by the second terminal b by the signal generated by the first base station A is shown in FIG. 4. Becomes pattern II at the bottom of.
도 3의 패턴 Ⅰ및 패턴 Ⅱ에는 간섭 없이 신호가 수신되는 부분과, 신호와 간섭이 동시에 수신되는 부분이 포함되어 있다. 이와 같이 자원 별로 전송 에너지를 변화시켜 간섭을 랜덤화 하는 방법은 자원 중 일부를 사용하지 못하게 되는 단점이 존재한다. Patterns I and II of FIG. 3 include a portion where a signal is received without interference and a portion where a signal and interference are simultaneously received. As described above, a method of randomizing interference by changing transmission energy for each resource has a disadvantage in that some resources cannot be used.
도 5는 공간적 도메인을 이용하여 두 개의 기지국에서 단말로 신호를 전송하는 것을 나타낸다. 5 shows a signal transmission from two base stations to a terminal using a spatial domain.
도시된 바와 같이, 제1 기지국(A) 및 제2 기지국(B)은 공간 다이버시티를 이용하여 신호를 전송하고 있으며, 제1 기지국(A)에서 전송된 신호와 제2 기지국(B)에서 전송된 신호는 각 단말(a, b)에 간섭이 아닌 원하는 신호로 수신될 수도 있고, 간섭 신호로 작용할 수도 있다. As shown, the first base station A and the second base station B are transmitting signals using spatial diversity, and the signals transmitted from the first base station A and the second base station B are transmitted. The signal may be received as a desired signal instead of interference to each terminal (a, b), or may act as an interference signal.
도 5과 같은 간섭 랜덤화 방식은 필요 이상의 에너지를 소모하게 되어 신호 전송 효율이 저하될 있다. The interference randomization scheme as shown in FIG. 5 consumes more energy than necessary, thereby degrading signal transmission efficiency.
도 4 및 도 5의 간섭 랜덤화에 따른 단점을 개선하기 위하여 자원 사용에는 변화를 주지 않고 원하는 신호와 함께 수신되는 간섭 신호의 변화(variation)가 커지도록 하여 간섭 랜덤화를 수행하는 방법이 제안될 수 있다. In order to improve the disadvantages of the interference randomization of FIGS. 4 and 5, a method of performing interference randomization by increasing the variation of the interference signal received with the desired signal without changing the resource usage may be proposed. Can be.
이러한 간섭 랜덤화 기법은 공간적 다이버시티(spatial diversity) 전송을 수행하는 전송단 간에 적용 가능한 기법으로, 공간적 다이버시티 이득을 얻기 위해 반복 전송되는 심볼의 반복 전송 패턴을 기지국 별로 다르게 설정하여 간섭 랜덤화를 수행하는 방식이다.Such an interference randomization technique is applicable to the transmitters performing spatial diversity transmission. The interference randomization is performed by differently setting a repetitive transmission pattern of repeated symbols for each base station in order to obtain spatial diversity gain. This is how it is done.
본 발명의 개선된 간섭 랜덤화 기법은 각 심볼의 디 프리코딩(de-precoding)에 영향을 주는 간섭 신호를 다양화하고, 준정적(Quasi-static) 채널 구간에서 신호의 SIR(signal to interference rate)을 변화시키고, 다이버시티 이득을 얻기 위하여 준정적 채널 구간에서 간섭 다이버시티(interference diversity)를 확보하는 방법에 해당한다. The improved interference randomization technique of the present invention diversifies the interference signals affecting the de-precoding of each symbol, and the signal to interference rate of the signal in quasi-static channel intervals. ) And to obtain interference diversity in the quasi-static channel interval in order to obtain diversity gain.
통상적으로 시그널 다이버시티(Signal diversity)는 다양한 채널을 통하여 동일한 정보를 반복적으로 송수신함으로써 신호의 수신 전력을 평준화하는 것을 의미한다. 이러한 시그널 다이버시티의 경우, 패딩 채널(Fading channel)에서 SINR(signal to interference plus noise rate) 변동 감소하고, 이로 인하여 패딩 채널에서 정보를 복원할 가능성이 증가한다.In general, signal diversity means equalization of reception power of a signal by repeatedly transmitting and receiving the same information through various channels. In the case of such signal diversity, signal to interference plus noise rate (SINR) fluctuation is reduced in the padding channel, thereby increasing the possibility of recovering information in the padding channel.
본 발명에 따른 간섭 다이버시티는 시그널 다이버시티와 유사한 개념으로, 다양한 채널 통하여 다수의 간섭을 동시에 수신함으로써 간섭의 수신 전력이 평준화되고, 간섭에 의한 SINR 변동이 감소된다. 이를 통해 간섭 신호의 수신 전력이 큰 상황에서 신호의 다이버시티 게인이 높아지는 효과가 발생한다. The interference diversity according to the present invention is similar in concept to signal diversity, and by receiving a plurality of interferences simultaneously through various channels, the reception power of the interference is leveled and the SINR variation due to the interference is reduced. As a result, the diversity gain of the signal is increased when the reception power of the interference signal is large.
도 6은 다른 채널을 통해 신호를 반복적으로 전송하는 것을 도시한 도면이다. 6 is a diagram illustrating repeatedly transmitting a signal through another channel.
도시된 바와 같이, 송신단은 하나의 전송 심볼(S, 이하 제1 심볼) 및 변형된 심볼(S*, 이하 제2 심볼)을 서로 다른 채널을 통해, 예를 들어 다른 안테나를 통해 단말과 같은 수신단으로 전송할 수 있다. 이때 제2 심볼은 제1 심볼에 대하여 복소 켤레(complex conjugate) 연산이 수행된 것을 나타낸다.As shown, the transmitting end receives one transmission symbol (S, first symbol) and the modified symbol (S *, second symbol) through different channels, for example, through a different antenna, such as a receiving end. Can be sent. In this case, the second symbol indicates that a complex conjugate operation is performed on the first symbol.
h0는 제1 심볼을 전송하는 안테나와 수신단 사이의 심볼에 대한 채널을 나타내고, h1 제2 심볼을 전송하는 안테나와 수신단 사이의 심볼에 대한 채널을 나타낸다. h0 represents a channel for a symbol between an antenna transmitting a first symbol and a receiving end, and h0 represents a channel for a symbol between an antenna transmitting a second symbol and a receiving end.
이 때, I는 간섭 신호를 나타내고, I*는 복소 켤레 연산된 간섭 신호를 나타낸다. q0는 제1 심볼을 전송하는 안테나와 수신단 사이의 간섭 신호에 대한 채널을 나타내고, q1 제2 심볼을 전송하는 안테나와 수신단 사이의 간섭 신호에 대한 채널을 나타낸다.At this time, I represents an interference signal, and I * represents an interference signal calculated by complex conjugate. q0 represents a channel for the interference signal between the antenna and the receiving end transmitting the first symbol, q1 represents a channel for the interference signal between the antenna and the receiving end transmitting the q1 second symbol.
제1 심볼 및 제2 심볼은 시간, 공간 또는 주파수 자원에 할당되어 반복적으로 전송될 수 있고, 송신단은 신호와 간섭을 수신할 수 있다. The first symbol and the second symbol may be allocated to a time, space or frequency resource and repeatedly transmitted, and the transmitting end may receive interference with a signal.
도시된 바와 같이, 제1 심볼이 전송되면 간섭 신호와 함께 수신단은
Figure PCTKR2014009416-appb-I000001
를 수신하고, 제2 심볼에 대하여 수신단은
Figure PCTKR2014009416-appb-I000002
를 수신할 수 있다.
As shown, when the first symbol is transmitted, the receiving end together with the interference signal
Figure PCTKR2014009416-appb-I000001
Receives the second symbol for the second symbol.
Figure PCTKR2014009416-appb-I000002
Can be received.
최종적으로 수신단이 수신하는 심볼 및 간섭 신호는 수학식 1로 나타낼 수 있다. Finally, the symbol received by the receiver and the interference signal may be represented by Equation 1.
수학식 1
Figure PCTKR2014009416-appb-M000001
Equation 1
Figure PCTKR2014009416-appb-M000001
만약, 채널 상태가 채널이 거의 변동되지 않는 준정적 상태라면, 간섭 다이버시티 효과는 감소하게 된다. If the channel state is a quasi-static state in which the channel hardly fluctuates, the interference diversity effect is reduced.
도 7은 준정적 채널을 통하여 수신되는 심볼 및 간섭 신호를 도시한 도면이다. 7 is a diagram illustrating a symbol and an interference signal received through a quasi-static channel.
도시된 바와 같이, 수신단인 단말(Rx)은 두 개의 안테나를 통하여 전송되는 심볼(S)을 수신할 수 있고, 두 개의 안테나를 통하여 전송되는 신호를 간섭 신호(Z)로 수신할 수 있다. As shown, the terminal Rx, which is a receiving end, may receive a symbol S transmitted through two antennas, and may receive a signal transmitted through two antennas as an interference signal Z.
제1 안테나(10)와 제2 안테나(20)는 단말(Rx)에 서비스를 제공하는 셀(이하, 제1 셀)의 안테나 일 수 있고, 제3 안테나(30)와 제4 안테나(40)는 단말(Rx)에 간섭 신호로 작용할 수 있는 심볼(Z)을 전송하는 셀(이하, 제2 셀)의 안테나 일 수 있다. The first antenna 10 and the second antenna 20 may be antennas of a cell (hereinafter, referred to as a first cell) that provides a service to the terminal Rx, and the third antenna 30 and the fourth antenna 40. May be an antenna of a cell (hereinafter, referred to as a second cell) that transmits a symbol Z that may act as an interference signal to the terminal Rx.
예를 들어, 고정 셀이 무빙 셀에 의해 서비스되는 단말에 대한 간섭원으로 작용하는 경우 제1 셀은 무빙 셀, 제2 셀은 고정 셀이 될 수 있고, 반대로 무빙 셀이 고정 셀에 의해 서비스되는 단말에 대한 간섭원인 경우 제1 셀은 고정, 제2 셀은 셀무빙 셀이 될 수 있다.For example, when a fixed cell serves as an interference source for a terminal serviced by a moving cell, the first cell may be a moving cell and the second cell may be a fixed cell. In contrast, the moving cell is served by the fixed cell. In the case of an interference source for the terminal, the first cell may be fixed and the second cell may be a cell moving cell.
도 7에서 심볼에 대한 행은 시간, 공간 또는 주파수와 같은 심볼이 전송되는 자원을 의미할 수 있다.In FIG. 7, a row for a symbol may mean a resource for transmitting a symbol such as time, space, or frequency.
일정 구간 채널이 동일한 준정적 상태에서, 제1 안테나(10)를 통하여 심볼 S0, S1..이 전송되고, 제2 안테나(20)를 통하여 제1 안테나(10)를 통하여 전송되는 심볼의 변형된 심볼 S0*, S1*..이 전송된다. In a semi-static state in which a predetermined interval channel is the same, the symbols S0 and S1... Are transmitted through the first antenna 10, and the modified symbols of the symbols transmitted through the first antenna 10 through the second antenna 20. The symbols S 0 *, S 1 * .. are transmitted.
제3 안테나(30)를 통하여 심볼 Z0, Z1..이 전송되고, 제4 안테나(40)를 통하여 제3 안테나(30)를 통하여 전송되는 심볼의 변형된 심볼 Z0*, Z1*..이 전송된다.The symbol Z 0 , Z 1 .. is transmitted through the third antenna 30, and the modified symbols Z 0 *, Z 1 * of the symbol transmitted through the third antenna 30 through the fourth antenna 40. .. is sent.
단말의 입장에서 제1 셀에서 전송되는 전송 심볼(S)은 수신 신호가 되고, 제2 셀에서 전송되는 전송 심볼(Z)은 간섭 신호가 될 수 있다. From the terminal's point of view, the transmission symbol S transmitted in the first cell may be a received signal, and the transmission symbol Z transmitted in the second cell may be an interference signal.
따라서, 도 7에서, h0는 제1 셀의 제1 안테나(10)와 제1 셀에 의해 서비스되는 단말(Rx) 사이의 채널, h1는 제1 셀의 제2 안테나(20)와 제1 셀에 의해 서비스되는 단말(Rx) 사이의 채널, q0는 제2 셀의 제3 안테나(30)와 단말(Rx) 사이의 채널, q1은 제2 셀의 제4 안테나(40)와 단말(Rx) 사이의 채널을 나타낸다.Thus, in FIG. 7, h 0 is a channel between the first antenna 10 of the first cell and the terminal Rx serviced by the first cell, and h 1 is the second antenna 20 and the first antenna of the first cell. The channel between the terminal Rx serviced by one cell, q 0 is the channel between the third antenna 30 and the terminal Rx of the second cell, q 1 is the fourth antenna 40 of the second cell and Represents a channel between the terminals (Rx).
최종적으로 단말이 수신하는 수신 심볼(
Figure PCTKR2014009416-appb-I000003
)은 수학식 2로 표현될 수 있다.
Finally, the reception symbol received by the terminal (
Figure PCTKR2014009416-appb-I000003
) May be represented by Equation 2.
수학식 2
Figure PCTKR2014009416-appb-M000002
Equation 2
Figure PCTKR2014009416-appb-M000002
수학식 2와 같이, 수신 심볼에 간섭으로 작용하는 간섭 신호의 계수(
Figure PCTKR2014009416-appb-I000004
)가 두 개의 심볼(
Figure PCTKR2014009416-appb-I000005
)에서 동일하므로, 각 심볼에 대한 SIR이 동일하다고 볼 수 있다.
As shown in Equation 2, the coefficient of the interference signal acting as interference to the received symbol (
Figure PCTKR2014009416-appb-I000004
) Are two symbols (
Figure PCTKR2014009416-appb-I000005
), The SIR is the same for each symbol.
이는 전체 패킷의 다이버시티에 대한 이득이 제한되거나 감소하는 것을 나타낼 수 있다. 만약, 준정적 채널 상태에서 간섭이 크다면 단말이 계속해서 강한 간섭을 받는 상황이 지속될 수 있다. This may indicate that the gain for diversity of the entire packet is limited or reduced. If the interference is large in the quasi-static channel state, the UE may continue to receive strong interference.
이하에서는, 동일한 크기의 간섭이 아닌 간섭 심볼의 반복 패턴을 변화시킴으로써 간섭 다이버시티를 확보하는 방법에 대하여 설명한다.Hereinafter, a description will be given of a method of ensuring interference diversity by changing a repetition pattern of interference symbols instead of interference of the same magnitude.
도 8은 본 발명의 일 실시예에 따른 수신 심볼 및 간섭 신호를 도시한 도면이다. 8 illustrates received symbols and interference signals according to an embodiment of the present invention.
도시된 바와 같이, 일정 구간 채널이 동일한 준정적 상태에서, 제1 안테나(10)를 통하여 심볼 S0, S1, S2, S3..이 전송되고, 제2 안테나(20)를 통하여 제1 안테나를 통하여 전송되는 심볼의 변형된 심볼 S0*, S1*, S2*, S3*..이 전송된다. As shown in the figure, in a semi-static state in which the constant interval channel is the same, the symbols S 0 , S 1 , S 2 , S 3 .. are transmitted through the first antenna 10, and the second through the second antenna 20. The modified symbols S 0 *, S 1 *, S 2 *, and S 3 * .. of the symbol transmitted through one antenna are transmitted.
제3 안테나(30)를 통하여 심볼 Z0, Z1, Z2, Z3..이 전송되고, 제4 안테나(40)를 통하여 제3 안테나를 통하여 전송되는 심볼의 변형된 심볼 Z1*, Z2*, Z3*, Z0*..이 전송된다.The symbol Z 0 , Z 1 , Z 2 , Z 3 .. is transmitted through the third antenna 30, and the modified symbol Z 1 *, of the symbol transmitted through the third antenna through the fourth antenna 40. Z 2 *, Z 3 *, Z 0 * .. are transmitted.
본 발명의 일 실시예에 따를 경우, 제4 안테나를 통하여 전송되는 심볼은 기존의 Z0*, Z1*, Z2*, Z3*에서 그 패턴이 순환 시프트(Cyclic shift)되어, Z1*, Z2*, Z3*, Z0*..순으로 전송된다. 즉, 단말에 간섭 신호가 될 수 있는 심볼의 반복 패턴이 일정 순서에 따라 변경될 수 있다. According to an embodiment of the present invention, the symbol transmitted through the fourth antenna is a cyclic shift (Cyclic shift) of the pattern in the existing Z 0 *, Z 1 *, Z 2 *, Z 3 *, Z 1 *, Z 2 *, Z 3 *, Z 0 * .. That is, the repetition pattern of symbols that may be interference signals to the terminal may be changed in a certain order.
이러한 반복 패턴의 변경은 전송단인 제1 셀과 제2 셀이 서로 다른 프리코더를 사용함으로써 구현될 수 있다. The change of the repetition pattern may be implemented by using different precoders between the first cell and the second cell, which are transmission terminals.
이렇게 심볼이 반복되는 패턴이 변경되는 경우, 단말이 수신하는 수신 심볼(
Figure PCTKR2014009416-appb-I000006
)은 수학식 3으로 표현될 수 있다.
When the pattern in which the symbol is repeated is changed, the received symbol (received by the terminal)
Figure PCTKR2014009416-appb-I000006
) May be represented by Equation 3.
수학식 3
Figure PCTKR2014009416-appb-M000003
Equation 3
Figure PCTKR2014009416-appb-M000003
수학식 3과 같이, 수신 심볼(
Figure PCTKR2014009416-appb-I000007
)에서 간섭으로 작용하는 수식에는 서로 다른 간섭 심볼이 포함되어 있으며, 이는 준정적 구간 내 심볼 별로 간섭이 변하는 것을 나타낸다. 이를 통하여 패킷에 대한 간섭 다이버시티 확보가 가능하고 다이버시티 성능이 개선되는 효과가 발생한다.
As shown in Equation 3, the received symbol (
Figure PCTKR2014009416-appb-I000007
In the equation that acts as interference in), different interference symbols are included, which indicates that the interference changes for each symbol in the quasi-static period. Through this, it is possible to secure interference diversity for packets and to improve diversity performance.
도 9는 도 8에 따른 전송 신호에 따른 간섭 랜덤화를 설명하고 있는 도면이다. 9 is a diagram illustrating interference randomization according to a transmission signal of FIG. 8.
도 8에 따른 셀 간 간섭 완화 방법에 따를 경우, 기지국은 심볼 반복 시 서로 다른 반복 패턴을 이용하여 프리코딩을 수행할 수 있다. 도 9의 좌측 상단은 제1 기지국(A)에 의하여 생성된 심볼의 패턴을 프리코딩 매트릭스로 나타낸 것으로, 이를 수식으로 표현하면, 수학식 4 또는 수학식 5와 같이 표현할 수 있다. According to the inter-cell interference mitigation method of FIG. 8, the base station may perform precoding by using different repetition patterns during symbol repetition. The upper left of FIG. 9 shows a pattern of a symbol generated by the first base station A as a precoding matrix, which can be expressed as Equation 4 or Equation 5 below.
수학식 4
Figure PCTKR2014009416-appb-M000004
Equation 4
Figure PCTKR2014009416-appb-M000004
수학식 5
Figure PCTKR2014009416-appb-M000005
Equation 5
Figure PCTKR2014009416-appb-M000005
도시된 바와 같이, 제1 기지국(A)에서는 동일한 신호에 대하여 심볼 S 및 이에 대한 변환 심볼 S*을 상이한 안테나를 통하여 순차적으로 전송하고 있다. 즉, 하나의 안테나를 통하여 심볼 S0가 전송되면, 다른 안테나를 통하여 심볼 S0*이 전송된다. 또한, 순차적으로 심볼 S0를 전송한 안테나는 통하여 심볼 S1가 전송되면, 다른 안테나를 통하여 심볼 S1*이 전송된다.As shown, the first base station A sequentially transmits a symbol S and a transform symbol S * thereof for the same signal through different antennas. That is, when symbol S 0 is transmitted through one antenna, symbol S 0 * is transmitted through another antenna. In addition, when the symbol S 1 is transmitted through the antenna that transmits the symbol S0 sequentially, the symbol S 1 * is transmitted through another antenna.
이에 반하여 제2 기지국(B)에서는 생성된 심볼 패턴은 도 9의 우측 상단과 같이 변형될 수 있다. 제2 기지국(B)은 두 개의 안테나를 통하여 주기가 3이고, 전송되는 심볼의 순서에 오프셋을 설정하여 심볼 패턴을 반복 전송할 수 있다. In contrast, the generated symbol pattern in the second base station B may be modified as shown in the upper right of FIG. 9. The second base station (B) has a period of 3 through two antennas, and may repeatedly transmit a symbol pattern by setting an offset in the order of transmitted symbols.
제2 기지국(B)에서 생성되는 심볼 패턴의 경우, 패턴이 반복되는 심볼의 개수가 3, 즉 주기가 3이고, 전송 심볼 순서의 오프셋을 1로 설정한 것을 나타내고 있다. 즉, 하나의 안테나를을 통해 심볼 Z0, Z1, Z2, Z3..이 순차적으로 전송되고, 이에 대한 변환 심볼은 기존의 Z0, Z1, Z2, Z3… 순이 아닌 Z1*, Z2*, Z0*, Z4*…과 같은 시퀀스로 다른 안테나를 통해 전송될 수 있다. In the case of the symbol pattern generated by the second base station B, the number of symbols in which the pattern is repeated is 3, that is, the period is 3, and the offset of the transmission symbol sequence is set to one. That is, the symbols Z 0 , Z 1 , Z 2 , Z 3 .. are sequentially transmitted through one antenna, and the converted symbols for the symbols are Z 0 , Z 1 , Z 2 , Z 3 . Z 1 *, Z 2 *, Z 0 *, Z 4 *... It may be transmitted through other antennas in the same sequence.
이를 프리코딩 매트릭스로 나타내면, 수학식 6와 같이 표현할 수 있다. If this is expressed as a precoding matrix, it can be expressed as in Equation 6.
수학식 6
Figure PCTKR2014009416-appb-M000006
Equation 6
Figure PCTKR2014009416-appb-M000006
또는, 제2 기지국(B)은 패턴이 반복되는 심볼의 개수가 3, 즉 주기가 3이고, 전송 심볼 순서에 오프셋을 2로 설정한 프리코딩을 적용하여 신호를 생성할 수도 있다. 즉, 어느 하나의 안테나을 통해 심볼 Y0, Y1, Y2, Y3..이 순차적으로 전송되고, 이에 대한 변환 심볼은 기존의 Y0, Y1, Y2, Y3… 순이 아닌 Y2*, Y0*, Y1*, Y5*…과 같은 시퀀스로 다른 안테나를 통해 전송될 수 있다. Alternatively, the second base station B may generate a signal by applying a precoding in which the number of symbols in which the pattern is repeated is 3, that is, the period is 3, and the offset is set to 2 in the transmission symbol order. That is, the symbols Y 0 , Y 1 , Y 2 , Y 3 .. are sequentially transmitted through one of the antennas, and the converted symbols for the same are Y 0 , Y 1 , Y 2 , Y 3 . Y 2 *, Y 0 *, Y 1 *, Y 5 *... It may be transmitted through other antennas in the same sequence.
이를 프리코딩 매트릭스로 나타내면, 수학식 7와 같이 표현할 수 있다.If this is expressed as a precoding matrix, it can be expressed as Equation (7).
수학식 7
Figure PCTKR2014009416-appb-M000007
Equation 7
Figure PCTKR2014009416-appb-M000007
셀 별로 동일하거나 또는 서로 다른 오프셋이 적용될 수 있고, 셀 별로 동일하거나 다른 주기가 적용될 수 있다. The same or different offset may be applied for each cell, and the same or different period may be applied for each cell.
또한, 순환 시프트의 주기에 따라 동일한 전송 안테나 포트를 사용하는 셀이 다른 크기의 프리코더를 사용할 수 있다. In addition, according to the period of the cyclic shift, cells using the same transmit antenna port may use different sizes of precoder.
예를 들어, 수학식 6 또는 수학식 7에서는 심볼이 반복되는 순환 시프트의 주기가 3이지만, 이는 4이상이 될 수도 있고, 주기가 설정되면 오프셋 값은 최대 “주기-1”값으로 설정될 수 있다.For example, in Equation 6 or 7, the period of the cyclic shift in which the symbol is repeated is 3, but this may be 4 or more, and when the period is set, the offset value may be set to a maximum “period-1” value. have.
서로 간섭원이 될 수 있는 셀 간에는 신호에 대한 프리코딩을 수행할 때, 수학식 4 내지 7과 같은 프리코더 매트릭스를 미리 설정하여 반복되는 심볼의 패턴을 다양하게 변경할 수 있다. 이를 통하여 간섭 다이버시티가 확보될 수 있어 신호의 수신 능력이 향상되고, 강한 간섭에 의하여 수신 신호의 성능이 저하되는 상황을 방지할 수 있다. When precoding a signal is performed between cells which may be interference sources, a precoder matrix such as Equations 4 to 7 may be set in advance to variously change a pattern of a repeated symbol. Through this, interference diversity can be secured, thereby improving signal reception capability and preventing a situation in which performance of a received signal is degraded due to strong interference.
제1 단말(a)은 Sn과 간섭 신호인 Zn와 Zmod(n+1, 3)를 함께 수신하여 간섭 랜덤화 효과를 얻을 수 있고, 제2 단말(b)은 Zn과 간섭 신호인 Sn과 Smod(n+2, 3)를 함께 수신하여 간섭 랜덤화 효과를 얻을 수 있다.The first terminal (a) may receive an interference randomization effect by receiving Zn and Zmod (n + 1, 3), which are Sn and an interference signal, and the second terminal (b), Sn and Smod, which are Zn and an interference signal The interference randomization effect can be obtained by receiving (n + 2, 3) together.
한편, 도 1을 참조하여 설명된 폐루프 MIMO 기법은 간섭에 대한 정보 또는 간섭 신호가 전파되는 채널에 대한 정보가 없을 경우 동작하지 못하는 단점이 있으며, 도 8 및 도 9를 참조하여 설명된 간섭 랜덤화 기법은 원하는 신호 전송을 위해 폐루프 MIMO 기법이 사용되는 경우에는 사용되지 못하는 단점이 있다.Meanwhile, the closed loop MIMO technique described with reference to FIG. 1 has a disadvantage in that it does not operate when there is no information on interference or information on a channel through which an interference signal is propagated, and the interference random described with reference to FIGS. 8 and 9. This technique is disadvantageous when the closed-loop MIMO technique is used to transmit the desired signal.
아하에서는 원하는 신호 전송을 위해 폐루프 MIMO 기법이 사용되는 환경에서 셀 간 간섭 랜덤화 기법을 사용하기 위한 전송 기법 및 전송단 구조를 제안한다. Aha proposes a transmission scheme and a transmitter structure for using inter-cell interference randomization in a closed loop MIMO scheme for transmitting a desired signal.
이하 설명되는 간섭 랜덤화 기법은 폐루프 MIMO 사용이 적합한 스몰 셀(small cell)과 저속 이동 사용자 간 다운 링크 전송을 수행하는 무빙 셀 또는 닫힌 펨토 셀(closed femto cell)등에 적용될 수 있다. 즉, 본 발명의 일 실시예에 따르면 스몰 셀과 정보 교환이 제한된 셀의 다운 링크 전송에 의해 발생하는 다운 링크 셀 간 간섭을 극복할 수 있다.The interference randomization technique described below may be applied to a moving cell or a closed femto cell performing downlink transmission between a small cell suitable for use of closed loop MIMO and a low speed mobile user. That is, according to an embodiment of the present invention, it is possible to overcome the interference between downlink cells caused by downlink transmission of a cell limited in information exchange with the small cell.
도 10은 본 발명의 일 실시예에 따른 전송단의 구조를 도시한 도면이다. 10 is a diagram illustrating the structure of a transmission stage according to an embodiment of the present invention.
기지국과 단말 간 거리가 가까운 스몰 셀 환경에서는 높은 확률로 LoS(Line of Sight)가 생성되며, 이는 단일 레이어 빔 포밍(single layer beamforming) 형태의 폐루프 MIMO 전송이 빈번히 발생하는 것을 의미할 수 있다. 상술한 셀 간 간섭 랜덤화는 심볼 반복 전송이 발생하지 않는 기존의 전송단 구조에는 적합하지 않으로, 본 실시예에서 제안하는 전송단 구조는 도 10과 같다. In a small cell environment in which a distance between a base station and a terminal is close, a high probability of generating a line of sight (LoS) is generated, which may mean that closed-loop MIMO transmission in the form of single layer beamforming occurs frequently. The inter-cell interference randomization described above is not suitable for the existing transmission end structure in which symbol repetitive transmission does not occur. The transmission end structure proposed in this embodiment is shown in FIG.
도시된 바와 같이, 전송단은 채널 인코더(1010), 랭크 결정부(1015), 계층 매핑부(1020), 레이어 반복 및 레이어 시프트부(layer repeat and layer shift; 이하, LR&LS 1030), 위상 변경부(phase modifier, 1040) 및 프리코더(1050, 1060)를 포함한다. As shown, the transmitter includes a channel encoder 1010, a rank determiner 1015, a layer mapping unit 1020, a layer repeat and layer shift (LR & LS 1030), and a phase changer. (phase modifier 1040) and precoders 1050, 1060.
채널 인코더(1010)는 입력되는 정보 비트들을 정해진 코딩 방식에 따라 인코딩하여 코드워드(codword)를 생성한다. The channel encoder 1010 encodes the input information bits according to a predetermined coding scheme to generate a codeword.
채널 인코더(1010)는 각 코드워드를 변조 방식(modulation scheme)에 따라 변조하여 복조값을 갖는 변조심벌들로 매핑하는 매핑부를 더 포함할 수 있다. 변조 방식에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation)일 수 있다. 예를 들어, m-PSK는 BPSK, QPSK 또는 8-PSK 일 수 있다. m-QAM은 16-QAM, 64-QAM 또는 256-QAM 일 수 있다. 매핑부는 코드워드에 대한 변조 심벌들을 생성한다. The channel encoder 1010 may further include a mapping unit for modulating each codeword according to a modulation scheme and mapping the codewords to modulation symbols having demodulation values. The modulation scheme is not limited, and may be m-PK (m-Phase Shift Keying) or m-Quadrature Amplitude Modulation (m-QAM). For example, m-PSK may be BPSK, QPSK or 8-PSK. m-QAM may be 16-QAM, 64-QAM or 256-QAM. The mapping unit generates modulation symbols for the codeword.
랭크 결정부(1015)는 단말로부터 전송된 피드백 정보에 기초하여 계층(rank)의 수를 결정할 수 있다.The rank determiner 1015 may determine the number of ranks based on the feedback information transmitted from the terminal.
계층 매핑부(1020)는 입력되는 코드워드들의 변조 심벌들을 계층의 갯수에 따라 각 계층으로 매핑한다. 계층(layer)은 프리코더(1050, 1060)로 입력되는 정보 경로(information path)라 할 수 있으며, 랭크의 값에 대응할 수 있다. 계층 매핑부(140)는 랭크 결정부(1015)로부터 결정된 계층의 개수(즉, 랭크)에 대응하여 각 계층으로 각 코드워드의 변조 심벌들을 매핑할 수 있다.The layer mapping unit 1020 maps modulation symbols of input codewords to each layer according to the number of layers. The layer may be referred to as an information path input to the precoders 1050 and 1060 and may correspond to a value of rank. The layer mapping unit 140 may map modulation symbols of each codeword to each layer in correspondence to the number of layers determined from the rank determination unit 1015 (ie, rank).
만약, 랭크가 1이라면 계층 매핑부(1020)에 이에 대응하는 전송 시퀀스를 생성하고, 도시된 바와 같이 피드백 정보에 의하여 하나의 레이어(L0)에 대한 전송 시퀀스가 생성될 수 있다. If the rank is 1, the transmission sequence corresponding to this may be generated in the layer mapping unit 1020, and as shown, a transmission sequence for one layer L0 may be generated based on feedback information.
이렇게 생성된 전송 시퀀스는 LR&LS(1030)로 입력되고, LR&LS(1030)는 전송시퀀스를 반복하여 출력한다. 따라서, 랭크가 1로 설정되었지만 마치 레이어가 두 개 생성되는 효과가 발생할 수 있다. The generated transmission sequence is input to the LR & LS 1030, and the LR & LS 1030 repeatedly outputs the transmission sequence. Thus, although the rank is set to 1, the effect may be as if two layers are generated.
LR&LS(1030)는 전송 시퀀스가 프리코딩을 통하여 안테나 포트에 매핑되기 전에 셀 간 간섭 랜덤화를 위하여 전송 시퀀스에를 반복할 수 있다. 전송 시퀀스의 심볼은 전송 다이버시티 구현에 사용되는 안테나 포트 그룹 수만큼 반복되어 개별적인 안테나 포트 그룹에 할당될 수 있다. 안테나 포트 그룹에는 복수의 안테나가 포함될 수 있으며, 안테나 포트 그룹의 개수는 프리코더의 개수에 대응되는 수 또는 레이어의 개수를 의미할 수 있다.The LR & LS 1030 may repeat the transmission sequence for inter-cell interference randomization before the transmission sequence is mapped to the antenna port through precoding. The symbols of the transmission sequence may be repeated by the number of antenna port groups used for transmission diversity implementation and allocated to individual antenna port groups. The antenna port group may include a plurality of antennas, and the number of antenna port groups may mean a number corresponding to the number of precoders or the number of layers.
도 11a 내지 도 11c는 본 발명의 일 실시예에 따른 레이어 반복 및 레이어 시프트를 설명하기 위한 도면이다. 도 11a 내지 도 11c은 본 실시예에 따라 반복되는 전송 시퀀스를 나타내고 있다.11A to 11C are diagrams for describing layer repetition and layer shift according to an embodiment of the present invention. 11A to 11C show a transmission sequence repeated according to this embodiment.
도 11a에 도시된 바와 같이, 채널 인코더에서 생성된 전송 시퀀스(S1N,… S12, S11, S2N … S22, S21)는 LR&LS(1030)로 입력될 때 마치 두 개의 레이어(S1N,… S12, S11와 S2N … S22, S21)가 생성되는 것으로 표현될 수 있다. As shown in FIG. 11A, the transmission sequence S 1N ,... S 12 , S 11 , S 2N ... S 22 , S 21 generated by the channel encoder is as if two layers S are input to the LR & LS 1030. 1N ,... S 12 , S 11 and S 2N ... S 22 , S 21 ) can be expressed as being generated.
두 개의 레이어로 표현되는 전송 시퀀스(S1N,… S12, S11와 S21, … S22, S21)는 LR&LS(1030)에서 반복되고, 반복되는 심볼은 전송 시퀀스 내에서 일정한 간격으로 시프트될 수 있다. The transmission sequence represented by two layers (S 1N ,... S 12 , S 11 and S 21 ,... S 22 , S 21 ) is repeated in the LR & LS 1030, and the repeated symbols are shifted at regular intervals within the transmission sequence. Can be.
전송 시퀀스는 안테나 포트 그룹 수만큼 반복될 수 있다. 반복된 심볼이 각 안테나 포트 그룹에 할당되는 순서는 도 11a 상단의 셀 A와 같이 인접한 이웃 RE에 매핑되도록 할당될 수도 있고, 도 11a 하단의 셀 B와 같이 1개 RE만큼 이격되도록 할당될 수 있다. 즉, 반복된 전송 시퀀스 내 심볼은 기설정된 개수(K K는 정수)만큼 이격된 RE에 할당될 수 있다. The transmission sequence may be repeated by the number of antenna port groups. The order in which the repeated symbols are allocated to each antenna port group may be allocated to be mapped to an adjacent neighbor RE as shown in cell A at the top of FIG. 11A, or may be allocated to be spaced apart by one RE as shown in cell B at the bottom of FIG. 11A. . That is, the symbols in the repeated transmission sequence may be allocated to REs spaced apart by a predetermined number (K K is an integer).
또한, 도 11a과 같이 셀 별로 안테나 포트 그룹에 할당하는 반복 패턴을 다르게 설정하여 셀 간 간섭 랜덤화를 구현할 수 있다. 이를 통하여 폐루프 MIMO에서도 셀 간 간섭 랜덤화 효과를 얻을 수 있다.In addition, as shown in FIG. 11A, a repetition pattern allocated to an antenna port group for each cell may be set differently to implement inter-cell interference randomization. Through this, inter-cell interference randomization can be obtained even in closed loop MIMO.
도 11b에 의한 실시예에 따르면, 도 11b의 상단과 같이 셀 A에는 반복 패턴이 인접한 이웃 RE에 매핑되도록 할당되고, 도 11b의 하단의 셀 B에는 두 개의 레이어로 표현되는 전송 시퀀스 중 하나는 입력되는 패턴을 유지하고, 즉, 전송 시퀀스 Z1N,… Z12, Z11은 입력되었던 첫 전송 패턴을 유지하고, 나머지 다른 전송 시퀀스는 Z2N … Z22, Z21은 심볼의 반복 전송 패턴이 변경된다. 반복 패턴은 주기가 3이고 오프셋 1로 순환 시프트 된다. According to the embodiment of FIG. 11B, as shown in the upper part of FIG. 11B, a repeating pattern is allocated to cell A to be mapped to an adjacent neighbor RE, and one of the transmission sequences represented by two layers is input to cell B of the lower part of FIG. 11B. The transmission sequence Z 1N ,... Z 12 , Z 11 retain the first transmission pattern that was entered, and the other transmission sequences are Z 2N . Z 22 and Z 21 change a symbol's repetitive transmission pattern. The repeating pattern has period 3 and is cyclically shifted to offset 1.
또는, 도 11c에 대한 실시예에 따르면, 상단의 셀 A에는 반복 패턴이 인접한 이웃 RE에 매핑되도록 할당되고, 하단의 셀 B에는 두 개의 레이어로 표현되는 전송 시퀀스 중 하나는 입력되는 패턴을 유지하고, 즉, 전송 시퀀스 Z1N,… Z12, Z11은 입력되었던 첫 전송 패턴을 유지하고, 나머지 다른 전송 시퀀스 Z2N … Z22, Z21은 도 11b와 같이 심볼의 반복 전송 패턴이 변경된다. 전송 시퀀스 Z2N … Z22, Z21은 도 11b의 하단과 같은 패턴에서 일부 심볼의 매핑이 변경된다. 즉, 도 11b 하단의 패턴에서 심볼 Z12는 Z22와 위치가 바뀐다. 도 11c의 셀 B의 전송 패턴은 심볼 단위로 레이어 매핑이 변화를 준 예라고 할 수 있다.Alternatively, according to the embodiment of FIG. 11C, a repetitive pattern is assigned to a cell A on the top so that a repetitive pattern is mapped to an adjacent neighbor RE, and one of the transmission sequences represented by two layers is maintained on the bottom cell B. , That is, the transmission sequence Z 1N ,... Z 12 , Z 11 maintain the first transmission pattern that was entered, and the other remaining transmission sequences Z 2N ... In Z 22 and Z 21 , the repeated transmission pattern of the symbol is changed as shown in FIG. 11B. Transmission sequence Z 2N ... Z 22 and Z 21 change the mapping of some symbols in the same pattern as the bottom of FIG. 11B. That is, in the pattern at the bottom of FIG. 11B, the position of the symbol Z12 is changed to Z22. The transmission pattern of the cell B of FIG. 11C may be an example in which the layer mapping is changed in units of symbols.
위상 변경부(1040)는 반복 및 시프트된 전송 시퀀스의 위상을 변경한다. 도시된 바와 같이 랭크가 1로 결정된 상황에서 두 개의 레이어가 출력되는 효과를 얻기 위해서는 레이어 간 직교성(orthogonality)이 보장되어야 한다. 위상 변경부(1040)는 두 레이어 간 직교성을 위하여 두 개의 레이어로 출력되는 전송 시퀀스의 위상을 변경하여 직교 시퀀스를 생성한다. The phase change unit 1040 changes the phase of the repeated and shifted transmission sequence. As shown in the drawing, in order to obtain an effect of outputting two layers in a situation where the rank is determined as 1, orthogonality between layers should be guaranteed. The phase change unit 1040 generates an orthogonal sequence by changing the phase of the transmission sequence output to the two layers for orthogonality between the two layers.
도 12는 본 발명의 일 실시예에 따라 위상이 변경된 전송 시퀀스를 도시한 도면이다.12 illustrates a transmission sequence in which a phase is changed according to an embodiment of the present invention.
도시된 바와 같이, 제1 프리코더(1050)로 입력되는 전송 시퀀스의 위상은 변경되지 않고, 제2 프리코더(1060)로 입력되는 전송 시퀀스의 위상은 변경될 수 있다. As shown, the phase of the transmission sequence input to the first precoder 1050 is not changed, the phase of the transmission sequence input to the second precoder 1060 may be changed.
이러한 직교 시퀀스는 시간, 주파수 또는 공간 자원에 할당될 수 있으며, 위상 변경부(1040)는 알라무티 전송단(Alamouti transmitter)으로 구현될 수 있다. 도 12의 제2 프리코더(1060)로 입력되는 전송 시퀀스는 복소 연산되거나 위상이 반대로 변경되어 공간 자원에 할당될 수 있다.This orthogonal sequence may be allocated to time, frequency or spatial resources, and the phase changer 1040 may be implemented as an Alamouti transmitter. A transmission sequence input to the second precoder 1060 of FIG. 12 may be complexly computed or reversed in phase and allocated to spatial resources.
프리코더(1050, 1060)는 각 계층으로 매핑된 매핑 심벌을 복수의 안테나 포트에 따른 MIMO 방식으로 처리하여 안테나 특정 심벌(antenna specific symbol)을 출력한다. 도시된 바와 같이, 본 실시예에 따를 경우, 안테나 포트 그룹은 2개이고, 랭크가 1인 신호에 대하여 레이어가 2개 생성되어 출력되는 효과가 있다.The precoders 1050 and 1060 process the mapping symbols mapped to the respective layers by the MIMO method according to the plurality of antenna ports, and output antenna specific symbols. As shown, according to the present embodiment, there are two antenna port groups, and two layers are generated and output for a signal having a rank of one.
도 13은 본 발명의 다른 실시예에 따른 전송단의 구조를 도시한 도면이다.13 is a diagram illustrating the structure of a transmission stage according to another embodiment of the present invention.
도 13을 참조하면, 반복된 전송 시퀀스를 전송할 때 서로 다른 안테나 포트를 이용하여 전송하지 않고 단일 레이어 전송과 동일하게 하나의 안테나 포트 그룹을 사용하여 전송할 수 있다. Referring to FIG. 13, when transmitting a repeated transmission sequence, a single antenna port group may be transmitted in the same manner as a single layer transmission without using different antenna ports.
이는 위상 변경부(1040)가 두 개의 레이어 간 직교성을 보장해 주기 때문에 가능하다. This is possible because the phase change unit 1040 ensures orthogonality between the two layers.
본 발명이 제시하는 간섭 랜덤화 기법은 측정되지 않거나 예측되지 않는 셀간섭이 존재하는 상황에서는 성능 이득을 보장하며, 이러한 알 수 없는(unknown) 셀 간 간섭이 존재하지 않는 상황에서는 기존의 기법이 동작에 아무런 영향을 주지 않는다. 즉, 본 발명에 따를 경우, 알 수 없는 셀간 간섭의 발생이 예상되는 경우에만 제안된 방식을 적용하고, 그렇지 않는 경우에는 제안된 방식이 적용되지 않도록 제어할 필요가 없다.The interference randomization scheme of the present invention guarantees a performance gain in the presence of unmeasured or unpredictable cell interference, and the existing scheme operates in the absence of such unknown inter-cell interference. Does not affect anything. That is, according to the present invention, the proposed scheme is applied only when the occurrence of unknown inter-cell interference is expected, otherwise it is not necessary to control the proposed scheme not to be applied.
물론, 항상 간섭 랜덤화 기법을 신호 전송에 사용하도록 시스템을 설계하거나 또는 특정 경우에만 적용될 수 있도록 기법의 적용 여부를 동적으로 결정할 수 있다. Of course, the system may be designed to always use the interference randomization technique for signal transmission, or may be dynamically determined whether the technique is applied to be applied only in a specific case.
이런 경우, 각 셀의 레이어 반복 및 레이어 시프트 패턴을 단순화하기 위하여, 즉, 각 셀이 주변 셀들과 다른 반복 패턴을 가지기 위하여 셀 간 복잡한 협의를 거치는 시그널링 오버 헤드를 피하기 위하여, 레이어 반복 및 레이어 시프트 패턴 또는 심볼 반복 패턴은 미리 설정되는 것이 바람직하다. In this case, layer repetition and layer shift pattern in order to simplify the layer repetition and layer shift pattern of each cell, that is, to avoid signaling overhead of going through complex negotiations between cells so that each cell has a different repetition pattern from neighboring cells. Alternatively, the symbol repetition pattern is preferably set in advance.
본 발명의 일 실시예에 따르면, 레이어 반복 및 레이어 시프트 패턴은 셀의 타입에 따라 설정될 수 있다. According to an embodiment of the present invention, the layer repetition and layer shift pattern may be set according to the cell type.
예를 들어, 스몰셀, 마이크로 셀 등과 같이 셀 크기에 따라 반복 패턴이 설정되거나, 이종 네트워크(heterogeneous network)에서 제1 레이어 및 제2 레이어 등과 같이 다른 셀과 커버리지 오버랩핑(coverage overlapping)되는 방식에 따라 반복 패턴이 설정될 수 있다. 또는, 무빙 셀과 고정 셀과 같이 셀이 이동성에 따라 반복 패턴이 설정되거나 상기 예들을 조합한 조건에 의하여 반복 패턴이 설정될 수도 있다. For example, a repeating pattern is set according to a cell size such as a small cell or a micro cell, or a coverage overlapping with other cells such as a first layer and a second layer in a heterogeneous network. Accordingly, the repeating pattern may be set. Alternatively, a repeating pattern may be set according to the mobility of a cell, such as a moving cell and a fixed cell, or a repeating pattern may be set by a combination of the above examples.
셀 크기 또는 셀 레이어에 따라 심볼 반복 패턴이 설정되는 경우, 셀 간 간섭의 크기를 고려하여 강한 셀 간 간섭이 발생될 가능성이 높은 셀 간에는 지속적인 간섭 랜덤화를 적용하여 기존의 간섭 회피로 제어되지 못하는 경우를 대비할 수 있다. 또한, 셀의 이동성에 따라 심볼 반복 패턴이 설정되는 경우 예측하지 못한 셀 간 간섭의 발생에 대응할 수 있다. If the symbol repetition pattern is set according to the cell size or the cell layer, continuous interference randomization is applied between cells that are likely to generate strong inter-cell interference in consideration of the magnitude of the inter-cell interference, which cannot be controlled by conventional interference avoidance. You can be prepared. In addition, when the symbol repetition pattern is set according to the mobility of the cell, it may correspond to the occurrence of unexpected inter-cell interference.
도 14는 본 발명의 일 실시예에 따라 셀 타입에 대응하여 반복 패턴이 할당되는 것을 설명하기 위한 도면이다. 14 is a diagram for describing a repetition pattern allocated to a cell type according to one embodiment of the present invention.
도시된 바와 같이, 제1 기지국(A)과 제2 기지국(B)은 자신이 관장하는 셀(①, ②)에 각각 반복된 심볼(repeated symbol)을 연속된 자원 요소(resource element, RE)에 매핑시키고 있다. As shown, the first base station (A) and the second base station (B) each of the repeated symbols (repeated symbol) in the cells (①, ②) that are managed by each of the consecutive resource element (RE) Mapping.
스몰 셀에 해당하는 셀(③, ④, ⑤)에는 반복된 심볼이 오프셋 1로 시프트 되어 자원 요소에 할당된다. Repeated symbols are shifted to offset 1 and allocated to resource elements in cells corresponding to the small cells ③, ④, and ⑤.
무빙 셀(⑥)에 할당된 자원에는 반복된 심볼이 오프셋 2로 시프트되어 매핑될 수 있다. Repeated symbols may be shifted to an offset 2 and mapped to resources allocated to the moving cell ⑥.
이와 같이, 심볼의 반복 패턴은 셀의 크기 또는 셀이 이동성에 따라 달라질 수 있으며, 반복 패턴의 오프셋 조정으로 인하여 심볼 패턴이 변경되거나 새롭게 설정될 수 있다. As such, the repetition pattern of the symbol may vary according to the size of the cell or the mobility of the cell, and the symbol pattern may be changed or newly set due to the offset adjustment of the repetition pattern.
한편, 본 발명의 다른 실시예에 따르면, 레이어 반복 및 레이어 시프트 패턴은 셀 ID에 따라 설정될 수 있다. 이는 셀마다 서로 다른 심볼 반복 패턴을 가질 수 있는 방식을 의미하며 예를 들어 “반복 오프셋= mod(PCID, K)” 등과 같이 구현될 수 있다. Meanwhile, according to another embodiment of the present invention, the layer repetition and layer shift pattern may be set according to the cell ID. This means a method in which cells may have different symbol repetition patterns and may be implemented, for example, "repetitive offset = mod (PCID, K)".
또 다른 실시예에 따르면, 상기 언급된 셀 타입 또는 셀 ID에 따라 레이어 반복 및 레이어 시프트 패턴이 설정되는 경우, 이들을 조합하여 사용하거나 또는 이러한 방법들을 통하여 레이어 반복 및 레이어 시프트 패턴를 설정한 후 셀 간 패턴을 협의하는 방식이 적용될 수 있다. 즉, 인접한 셀들이 상위 레이어 시그널링을 통해 각 셀이 사용할 프리코더를 협의할 수 있다. According to another embodiment, when the layer repetition and layer shift patterns are set according to the above-mentioned cell type or cell ID, the layer repetition and layer shift patterns may be used in combination or after setting the layer repetition and layer shift pattern through these methods. A method of negotiating this may apply. That is, adjacent cells may negotiate a precoder to be used by each cell through higher layer signaling.
셀 타입 또는 셀 ID에 따라 각 기지국에서 사용할 초기 패턴을 설정한 후, 동일한 패턴을 갖는 인접 셀 간 간섭 랜덥화가 요구되는 경우, 기지국 간 협의가 필요하다. 예를 들어, 각 셀 별 반복 패턴이 설정된 후, 특정 셀의 반복 패턴을 변경 할 필요가 있을 경우, 각 기지국이 반복 패턴 변경을 결정하고 변경된 패턴을 주변 셀의 기지국에 시그널링을 통하여 통지하거나, 또는 반복 패턴 변경을 기지국 간 시그널링을 통해 하나의 기지국이 다른 기지국에 요청할 수도 있다. After setting an initial pattern to be used by each base station according to a cell type or a cell ID, if interference ranging between adjacent cells having the same pattern is required, negotiation between base stations is required. For example, if it is necessary to change the repetition pattern of a specific cell after the repetition pattern for each cell is set, each base station determines the repetition pattern change and notifies the base station of the neighboring cell by signaling the changed pattern, or A repeating pattern change may be requested by one base station to another base station through inter-base station signaling.
도 15는 본 발명의 일 실시예에 따라 기지국 간에 패턴 변경에 대한 시그널링 과정을 설명하기 위한 도면이다. 15 is a diagram illustrating a signaling process for pattern change between base stations according to an embodiment of the present invention.
도시된 바와 같이, 제1 기지국(A)에서 패턴 변경을 요청할 환경이 발생한 경우(S1510), 예를 들어 다른 기지국으로부터 패턴 변경 요청을 받았거나 변경 요청에 대하여 제2 기지국(B)에 전달해야할 필요가 있는 경우, 제1 기지국(A)은 제2 기지국(B)으로 추천 패턴 리스트(recommended pattern list)를 시그널링할 수 있다(S1520)As shown, when the environment for requesting a pattern change occurs in the first base station A (S1510), for example, a pattern change request has been received from another base station or needs to be delivered to the second base station B for the change request. If there is, the first base station A may signal a recommended pattern list to the second base station B (S1520).
추천 패턴 리스트를 수신한 제2 기지국(B)은 패턴 변경 여부를 결정하고(S1530), 패턴 변경 여부에 대한 회답을 제1 기지국(A)으로 통지한다(S1540). 제2 기지국(B)은 제1 기지국(A)으로 패턴 변경에 대한 응답과, 패턴을 변경할 것으로 결정한 경우 새로운 패턴에 대한 정보를 제1 기지국(A)으로 전송할 수 있다(S1550).Upon receiving the recommendation pattern list, the second base station B determines whether to change the pattern (S1530), and notifies the first base station A of a response to whether the pattern is changed (S1540). The second base station B may transmit a response to the pattern change to the first base station A and information on the new pattern to the first base station A when it is determined that the pattern is to be changed (S1550).
제1 기지국(A)은 새로운 패턴에 기초하여 프리코더를 선정하고(S1560), 선정된 프리코더에 따라 패턴 변경을 수행할 수 있다. 패턴을 변경한 제1 기지국(A)은 이를 확인(confirm)하는 메시지를 제2 기지국(B)으로 전송할 수 있다(S1570).The first base station A may select a precoder based on the new pattern (S1560) and perform pattern change according to the selected precoder. The first base station A having changed the pattern may transmit a message confirming this to the second base station B (S1570).
도 16은 본 발명의 다른 실시예에 따라 기지국 간에 패턴 변경에 대한 시그널링 과정을 설명하기 위한 도면이다.FIG. 16 illustrates a signaling process for pattern change between base stations according to another embodiment of the present invention.
제1 기지국(A)이 심볼의 반복 패턴을 변경한 경우(S1610), 제1 기지국(A)은 변경된 새로운 패턴을 제2 기지국(B)에 시그널링 할 수 있다(S1620).When the first base station A changes the repetition pattern of the symbol (S1610), the first base station A may signal the changed new pattern to the second base station B (S1620).
제1 기지국(A)의 패턴 변경에 대한 신호를 수신한 제2 기지국(B)은 제1 기지국(A)의 패턴 변경을 인지하고(S1630), 패턴 변경에 대한 컨펌을 수행할 수 있다(S1640)Upon receiving the signal for changing the pattern of the first base station A, the second base station B may recognize the pattern change of the first base station A (S1630) and perform a confirmation on the pattern change (S1640). )
도 17은 본 발명의 일 실시예에 따른 무선 통신 시스템의 블록도이다.17 is a block diagram of a wireless communication system according to an embodiment of the present invention.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; radio frequency unit)을 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.The base station 800 includes a processor 810, a memory 820, and an RF unit 830. Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810. The memory 820 is connected to the processor 810 and stores various information for driving the processor 810. The RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다. 프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다. The terminal 900 includes a processor 910, a memory 920, and an RF unit 930. Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910. The memory 920 is connected to the processor 910 and stores various information for driving the processor 910. The RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.The processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device. The RF unit may include a baseband circuit for processing a radio signal. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in memory and executed by a processor. The memory may be internal or external to the processor and may be coupled to the processor by various well known means.
이와 같이, 본 발명은 서로 다른 무선 네트워크를 통하여 무선 접속이 가능할 때, 단말이 업 링크를 위한 무선 노드를 소정 조건에 따라 선택할 수 있는 방법 및 장치를 제공한다.As described above, the present invention provides a method and apparatus for allowing a terminal to select a wireless node for uplink according to a predetermined condition when wireless connection is possible through different wireless networks.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.In the exemplary system described above, the methods are described based on a flowchart as a series of steps or blocks, but the invention is not limited to the order of steps, and certain steps may occur in a different order or concurrently with other steps than those described above. Can be. Also, one of ordinary skill in the art appreciates that the steps shown in the flowcharts are not exclusive, that other steps may be included, or that one or more steps in the flowcharts may be deleted without affecting the scope of the present invention. I can understand.

Claims (7)

  1. 신호 전송 방법에 있어서, In the signal transmission method,
    단말로부터 수신된 피드백 정보에 기초하여 랭크를 결정하는 단계와;Determining a rank based on feedback information received from a terminal;
    상기 랭크에 따라 전송 시퀀스를 생성하는 단계와;Generating a transmission sequence according to the rank;
    상기 전송 시퀀스를 반복하여 반복 전송 시퀀스를 생성하고, 상기 반복 전송 시퀀스 내의 심볼의 위치를 시프트 하는 단계와;Repeating the transmission sequence to generate a repeating transmission sequence and shifting a position of a symbol within the repeating transmission sequence;
    상기 전송 시퀀스와 상기 반복 전송 시퀀스를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.Transmitting the transmission sequence and the repetitive transmission sequence.
  2. 제1항에 있어서, The method of claim 1,
    상기 전송 시퀀스에 대하여 상기 반복 전송 시퀀스의 위상을 변경하여 상기 전송 시퀀스와 상기 반복 전송 시퀀스의 직교성을 생성하는 단계를 더 포함하는 것을 특징으로 하는 방법.Changing the phase of the repeating transmission sequence with respect to the transmission sequence to generate orthogonality of the transmission sequence and the repeating transmission sequence.
  3. 제1항에 있어서, The method of claim 1,
    상기 전송 시퀀스는 전송 안테나 포트 개수만큼 반복되는 것을 특징으로 하는 방법.And the transmission sequence is repeated by the number of transmit antenna ports.
  4. 제1항에 있어서, The method of claim 1,
    상기 반복 전송 시퀀스 내 반복되는 심볼은 서로 인접한 자원 요소에 할당되는 것을 특징으로 하는 방법.The repeated symbols in the repeated transmission sequence are assigned to resource elements adjacent to each other.
  5. 제1항에 있어서, The method of claim 1,
    상기 반복 전송 시퀀스 내 반복되는 심볼은 기설정된 개수로 이격된 자원 요소에 할당되는 것을 특징으로 하는 방법.The repeated symbols in the repetitive transmission sequence are allocated to resource elements spaced apart by a predetermined number.
  6. 제1항에 있어서, The method of claim 1,
    상기 반복 전송 시퀀스 내 반복되는 심볼의 패턴은 셀 ID에 따라 결정되는 것을 특징으로 하는 방법.The pattern of the repeated symbol in the repetitive transmission sequence is determined according to a cell ID.
  7. 신호 전송 장치는;The signal transmission device;
    신호 송수신부와;A signal transceiver;
    상기 신호 송수신부와 연결되어 있는 프로세서를 포함하고, A processor connected to the signal transceiver;
    상기 프로세서는 단말로부터 수신된 피드백 정보에 기초하여 랭크를 결정하고, 상기 랭크에 따라 전송 시퀀스를 생성하고, 상기 전송 시퀀스를 반복하여 반복 전송 시퀀스를 생성하고, 상기 반복 전송 시퀀스 내의 심볼의 위치를 시프트 하는 단계와; 상기 전송 시퀀스와 상기 반복 전송 시퀀스를 전송하것을 특징으로 하는 장치.The processor determines a rank based on feedback information received from a terminal, generates a transmission sequence according to the rank, generates a repeated transmission sequence by repeating the transmission sequence, and shifts the position of a symbol in the repeated transmission sequence. Making a step; And transmit the transmission sequence and the repetitive transmission sequence.
PCT/KR2014/009416 2014-10-07 2014-10-07 Signal transmission method for inter-cell interference WO2016056686A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2014/009416 WO2016056686A1 (en) 2014-10-07 2014-10-07 Signal transmission method for inter-cell interference
US15/517,511 US10230506B2 (en) 2014-10-07 2014-10-07 Signal transmission method for inter-cell interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/009416 WO2016056686A1 (en) 2014-10-07 2014-10-07 Signal transmission method for inter-cell interference

Publications (1)

Publication Number Publication Date
WO2016056686A1 true WO2016056686A1 (en) 2016-04-14

Family

ID=55653288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009416 WO2016056686A1 (en) 2014-10-07 2014-10-07 Signal transmission method for inter-cell interference

Country Status (2)

Country Link
US (1) US10230506B2 (en)
WO (1) WO2016056686A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11451272B2 (en) * 2018-03-21 2022-09-20 Qualcomm Incorporated Precoding patterns for shared channel transmission repetition
WO2021062354A1 (en) * 2019-09-26 2021-04-01 Cohere Technologies, Inc. Multi-layer multi-beam communication systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230600A1 (en) * 2006-03-27 2007-10-04 Texas Instruments Incorporated Random access structure for wireless networks
KR20080064756A (en) * 2007-01-05 2008-07-09 삼성전자주식회사 Method and apparatus for transmitting and receiving control signal while randomizing inter-cell interference in mobile telecommunications system
US20100284483A1 (en) * 2007-12-03 2010-11-11 Telefonaktiebolaget L M Ericsson (Publ) Precoder for spatial multiplexing, multiple antenna transmitter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920511B2 (en) * 2006-10-31 2011-04-05 Samsung Electronics Co., Ltd. Method and system for managing channels in a wireless communication system
PL2232726T3 (en) * 2008-01-14 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Open loop precoder cycling in mimo communications
KR101683115B1 (en) * 2009-06-15 2016-12-06 엘지전자 주식회사 Method and apparatus of uplink power control in a wireless system
WO2016004614A1 (en) * 2014-07-11 2016-01-14 华为技术有限公司 Data transmission method, user equipment and base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230600A1 (en) * 2006-03-27 2007-10-04 Texas Instruments Incorporated Random access structure for wireless networks
KR20080064756A (en) * 2007-01-05 2008-07-09 삼성전자주식회사 Method and apparatus for transmitting and receiving control signal while randomizing inter-cell interference in mobile telecommunications system
US20100284483A1 (en) * 2007-12-03 2010-11-11 Telefonaktiebolaget L M Ericsson (Publ) Precoder for spatial multiplexing, multiple antenna transmitter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AFIF OSSEIRAN ET AL.: "Interference Mitigation for MIMO Systems Employing User-specific, Linear Precoding", PIMRC 2008, 18 September 2008 (2008-09-18) *
LEE, HYUN - HO ET AL.: "Design on the Interference Alignment Transceiver for Multi- Cell MIMO Downlink Channels", THE JOURNAL OF KOREAN INSTITUTE OF COMMUNICATIONS AND INFORMATION SCIENCES (J-KICS, vol. 37 B, no. 10, 31 October 2012 (2012-10-31) *

Also Published As

Publication number Publication date
US20170324526A1 (en) 2017-11-09
US10230506B2 (en) 2019-03-12

Similar Documents

Publication Publication Date Title
WO2018026242A1 (en) Apparatus and method for transmitting and receiving phase compensation reference signal
WO2018199691A1 (en) Method and apparatus for power sharing in wireless communication system
WO2010087644A2 (en) Apparatus and method for transmitting a reference signal in a radio communication system
WO2016144050A1 (en) Method for transmitting signal in wireless communication system, and apparatus therefor
WO2016126063A1 (en) Method for reporting channel state in wireless communication system, and apparatus therefor
WO2011078571A2 (en) Apparatus for performing comp communication using a precoded sounding reference signal, and method for same
WO2016163847A1 (en) Method for transmitting or receiving sounding reference signal in wireless communication system and apparatus therefor
WO2015065087A1 (en) Apparatus and method for cancelling inter-cell interference in communication system
WO2010151092A2 (en) Method and apparatus for transmitting reference signals in uplink multiple input multiple output (mimo) transmission
WO2010018909A1 (en) Method of transmitting data in multi-cell cooperative wireless communication system
WO2016010379A1 (en) Method and device for estimating channel in wireless communication system
WO2016043352A1 (en) Method and device for mitigating inter-cell interference
WO2013151392A1 (en) Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo
WO2016186378A1 (en) Method for feeding back reference signal information in multi-antenna wireless communication system and apparatus therefor
WO2014157921A1 (en) Uplink demodulation reference signals in advanced wireless communication systems
WO2011122837A2 (en) Method and system for uplink acknowledgement signaling in carrier-aggregated wireless communication systems
WO2015170932A1 (en) Method and apparatus for transmitting data in d2d communication
WO2011090282A2 (en) Method and base station for transmitting downstream link data, and method and user device for receiving downstream link data
WO2016018094A1 (en) Method for supporting d2d communication to which mimo technology is applied and device therefor
WO2015141959A1 (en) Method and apparatus for transceiving channel state information
WO2013055136A2 (en) Method and apparatus for transmitting a reference signal in a wireless communication system
WO2010090415A2 (en) Apparatus and method for transmitting signal in wireless communication system
WO2014163430A1 (en) 256qam signal transmission/reception method and apparatus for use in mobile communication system
WO2015020505A1 (en) Method and device for transmitting reference signal in wireless communication system
WO2016036106A1 (en) Feedback method and apparatus for transmitting and receiving multicarrier signal in wireless mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15517511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14903504

Country of ref document: EP

Kind code of ref document: A1