WO2016056152A1 - 端末間直接通信のための制御装置及び方法 - Google Patents

端末間直接通信のための制御装置及び方法 Download PDF

Info

Publication number
WO2016056152A1
WO2016056152A1 PCT/JP2015/003570 JP2015003570W WO2016056152A1 WO 2016056152 A1 WO2016056152 A1 WO 2016056152A1 JP 2015003570 W JP2015003570 W JP 2015003570W WO 2016056152 A1 WO2016056152 A1 WO 2016056152A1
Authority
WO
WIPO (PCT)
Prior art keywords
prose
wireless
control device
terminals
public land
Prior art date
Application number
PCT/JP2015/003570
Other languages
English (en)
French (fr)
Inventor
洋明 網中
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201580054641.8A priority Critical patent/CN106797637B/zh
Priority to KR1020177008326A priority patent/KR102146355B1/ko
Priority to EP15849341.1A priority patent/EP3206449B1/en
Priority to JP2016552804A priority patent/JPWO2016056152A1/ja
Priority to US15/514,760 priority patent/US10687232B2/en
Publication of WO2016056152A1 publication Critical patent/WO2016056152A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • This application relates to Proximity Service (ProSe) communication (direct between terminals) of a wireless terminal, and particularly to allocation of wireless resources to wireless terminals that perform direct communication between terminals.
  • ProSe Proximity Service
  • ProSe includes ProSe discovery (ProSe discovery) and ProSe direct communication.
  • ProSe discovery enables detection of the proximity of wireless terminals (ProSe-enabled UEs) capable of ProSe direct communication (in Proximity).
  • ProSe-Discovery discovers using only the capabilities of ProSe-enabled UEs that have other ProSe-enabled UEs that have these two UEs (eg, Evolved Universal Universal Terrestrial Radio Access (E-UTRA) technology) Can be performed by the following procedure.
  • ProSe discovery can be performed by a radio access network (E-UTRA Network (E-UTRAN)) or a core network (Evolved Packet Core (EPC)).
  • E-UTRA Network E-UTRAN
  • EPC Evolved Packet Core
  • ProSe direct communication enables establishment of a communication path between two or more ProSe-enabled UEs existing in the direct communication range after the ProSe discovery procedure.
  • ProSe direct communication allows ProSe-enabled UEs to communicate directly with other ProSe-enabled UEs without going through the base station (eNodeB).
  • ProSe direct communication may be performed using the same wireless communication technology (E-UTRA technology) as that used to access the base station (eNodeB), or wireless local area network (WLAN) wireless technology (ie, IEEE 802.11 (radio technology) may be used.
  • E-UTRA technology wireless communication technology
  • WLAN wireless local area network
  • ProSe function communicates with ProSe-enabled UE via the public land mobile network (Public Land Mobile Network (PLMN)) to support ProSe discovery and ProSe direct communication (assist).
  • PLMN Public Land Mobile Network
  • ProSe function is a logical function used for operations related to PLMN necessary for ProSe.
  • the functionality provided by ProSe function is, for example, (a) communication with third-party applications (ProSe Application Server), (b) UE authentication for ProSe discovery and ProSe direct communication, (c) ProSe Including transmission of setting information (for example, designation of radio resources and transmission power) for discovery and ProSe direct communication to the UE, and (d) provision of EPC-level ProSe discovery.
  • ProSe function may be implemented in one or more network nodes or entities. In this specification, one or a plurality of network nodes or entities that execute a ProSe function are referred to as “ProSe function functions” or “ProSe function servers”.
  • ProSe direct communication is one specific example of direct communication between terminals.
  • Direct communication between terminals in a public land mobile communication network includes a discovery phase and a direct communication phase supported by functions or nodes (for example, ProSe function) arranged in the network, as in 3GPPSeRelease 12 ProSe. .
  • the inter-terminal direct communication is communication performed without passing through any network node (for example, a base station) between two or more adjacent wireless terminals.
  • the direct communication between terminals is sometimes called device-to-device (D2D) communication or peer-to-peer communication.
  • D2D device-to-device
  • ProSe direct communication is an example of direct communication between terminals, and is sometimes referred to as ProSe communication.
  • the term “public land mobile communication network” used in this specification is a wide-area wireless infrastructure network, and means a multiple access mobile communication system.
  • a multiple access mobile communication system shares wireless resources including at least one of time, frequency, and transmission power among multiple mobile terminals, so that multiple mobile terminals can perform wireless communication substantially simultaneously. It is possible to do.
  • Typical multiple access methods are Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple Access (CDMA), Orthogonal Frequency Division Multiple Access (OFDMA), or a combination thereof.
  • the public land mobile communication network includes a radio access network and a core network.
  • Public ground mobile communication networks include, for example, 3GPP Universal Mobile Telecommunications System (UMTS), 3GPP Evolved Packet System (EPS), 3GPP2 CDMA2000 System, Global System Mobile Communications (GSM (registered trademark)) / General Packet Radio Service (GPRS) System, WiMAX system, or mobile WiMAX system.
  • UMTS Universal Mobile Telecommunications System
  • EPS Evolved Packet System
  • GSM Global System Mobile Communications
  • GPRS General Packet Radio Service
  • WiMAX Wireless Fidelity
  • EPS includes Long Term Evolution (LTE) system and LTE-Advanced system.
  • Patent Document 1 selects a terminal group to be shifted to direct communication between terminals in response to detection of network congestion or network device (for example, base station) failure by a server arranged in the network, It describes that the direct communication permission information and the communication environment setting information for direct communication are transmitted to the wireless terminals belonging to the terminal group.
  • the direct communication permission information indicates, for example, identifiers of wireless terminals belonging to the same terminal group.
  • the setting information of the communication environment indicates, for example, a frequency band used for direct communication between terminals, transmission power, and an identifier of a receiving terminal.
  • a network failure for example, a base station stops or malfunctions, or a control plane entity such as Mobility Management Entity (MME) and Home Subscriber Server (HSS) stops or malfunctions
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • One of the objects that the embodiments disclosed herein intend to achieve is to provide an apparatus, a method, and a program that contribute to facilitate direct communication between terminals. It should be noted that this object is only one of the objects that the embodiments disclosed herein intend to achieve. Other objects or problems and novel features will become apparent from the description of the present specification or the accompanying drawings.
  • the method performed by the control device includes a dedicated radio resource for Proximity Service (ProSe) communication performed without going through a public land mobile communication network within a terminal group including a plurality of wireless terminals. Allocating to the plurality of radio terminals and allocating a shared radio resource to the plurality of radio terminals for ProSe communication between a radio terminal belonging to the terminal group and a radio terminal not belonging to the terminal group.
  • ProSe Proximity Service
  • the control device includes a memory and a processor coupled to the memory.
  • the processor allocates dedicated radio resources to the plurality of radio terminals for Proximity Service (ProSe) communication performed without going through a public land mobile communication network in a terminal group including a plurality of radio terminals, and It operates to allocate a shared radio resource to the plurality of radio terminals for ProSe communication between a radio terminal belonging to a terminal group and a radio terminal not belonging to the terminal group.
  • ProSe Proximity Service
  • the program includes a group of instructions (software code) for causing the computer to perform the method according to the first aspect when read by the computer.
  • the above-described aspect can provide an apparatus, a method, and a program that contribute to facilitating direct communication between terminals.
  • EPS Evolved Packet System
  • 3GPP UMTS 3GPP2 CDMA2000 systems
  • GSM / GPRS systems 3GPP2 CDMA2000 systems
  • WiMAX systems WiMAX systems
  • UE1 and UE2 show a configuration example of the PLMN 100 according to the present embodiment.
  • Both UE1 and UE2 are ProSe-capable wireless terminals (ProSe-enabled UEs), and establish a ProSe communication path 103 between them and perform ProSe direct communication (ProSe communication, direct communication between terminals, D2D communication). It can.
  • ProSe direct communication between UE1 and UE2 may be performed using the same wireless communication technology (E-UTRA technology) as when accessing the base station (eNodeB), or WLAN wireless technology (IEEE 802.11 radio). technology).
  • the eNodeB 31 is an entity arranged in the radio access network (that is, E-UTRAN) 3, manages the cell 32, and communicates with UE1 and UE2 on a frequency licensed to E-UTRAN3 using E-UTRA technology. (101 and 102).
  • the core network (ie, EPC) 4 includes a plurality of user plane entities (eg, Serving Gateway (S-GW) 41 and Packet Data Network Gateway (P-GW) in FIG. 2), and a plurality of control plane entities ( For example, it includes Mobility Management Entity (MME) 43 and Home Subscriber Server (HSS) 44) of FIG.
  • MME Mobility Management Entity
  • HSS Home Subscriber Server
  • a plurality of user plane entities relay user data of UE 1 and UE 2 between E-UTRAN 3 and an external network (Packet Data Network (PDN)).
  • the control plane entity performs various controls including mobility management, session management (bearer management), and charging management for UE1 and UE2.
  • UE1 and UE2 attach to core network (ie, EPC) 4 via eNodeB31 and communicate with ProSe function function entity 9 (Packet Data Data Network (PDN)).
  • EPC core network
  • ProSe function function entity 9 Packet Data Data Network (PDN)
  • PDN Packet Data Data Network
  • the UE1 and UE2 may use, for example, the ProSe discovery service provided by the ProSe function entity 9, and send a message indicating that the ProSe discovery or ProSe direct communication is enabled in the UE1 and UE2 to the ProSe function function entity 9 or setting information related to ProSe discovery or ProSe direct communication in the cell 32 may be received from the ProSe function entity 9.
  • the interface (PC3 reference point) between UE1 and UE2 and ProSe function depends on the user plane of E-UTRAN3 and EPC4, and ProSe control signal is transferred on the user plane.
  • the ProSe function entity 9 is connected to the EPC 4 (that is, the P-GW 42) via the SGi reference point that is a reference point between the PDN gateway 22 (P-GW) 42 and the PDN. connect.
  • UE1 and UE2 can perform ProSe direct communication within a UE group including a plurality of UEs. Although FIG.1 and FIG.2 has shown only two UE1 and UE2, UE1 and UE2 may perform ProSe direct communication within UE group containing three or more UE.
  • the control apparatus 5 allocates the radio
  • the radio resource for ProSe direct communication is referred to as “ProSe radio resource”.
  • the ProSe radio resource includes at least one of time, frequency, and transmission power. That is, the control apparatus 5 allocates a dedicated radio resource for ProSe direct communication (103) and permits the UE group including UE1 and UE2 to use the radio resource.
  • the dedicated ProSe radio resource has a frequency different from the frequency allocated to ProSe direct communication of another UE group in the cell 32 or the vicinity thereof.
  • the dedicated ProSe radio resource is preferably set to a frequency that is effective (permitted) only for ProSe direct communication of the UE group to which UE1 and UE2 belong in the cell 32 or the vicinity thereof. Thereby, interference between UE groups can be suppressed and the quality of ProSe direct communication can be improved.
  • Dedicated ProSe radio resources may be allocated from the frequency band licensed for E-UTRAN3 (licensed frequency band) or allocated from the frequency band not licensed to E-UTRAN3 (unlicensed frequency band) May be.
  • the frequency band licensed to E-UTRAN 3 means a band occupied by E-UTRAN 3, and is generally licensed to an operator of E-UTRAN 3 by a government agency in each country.
  • the license frequency is, for example, a 700 MHz band, an 800 MHz band, a 1.8 GHz band, a 2.1 GHz band, or a 2.6 GHz band.
  • a frequency band that is not licensed for E-UTRAN 3 is licensed for another system (for example, a TV broadcasting system), or is a frequency that is not licensed for any other system (for example, 2.4).
  • the control device 5 may be disposed in a radio access network (for example, E-UTRAN 3), and is integrally disposed with a radio resource control entity (for example, a base station or a base station controller) in the radio access network. May be.
  • a radio resource control entity for example, a base station or a base station controller
  • the control device 5 may be arranged in the eNodeB 31.
  • the control device 5 may be arranged in a radio network controller (RNC).
  • RNC radio network controller
  • the control device 5 may be disposed in a core network (for example, EPC 4) or may be disposed integrally with an existing core network entity (for example, MME 43 or HSS 44).
  • the control device 5 may be disposed outside the E-UTRAN 3 and the EPC 4.
  • the control device 5 may be arranged integrally with the ProSe function entity 9.
  • the control device 5 further operates to allocate an additional ProSe radio resource in addition to the normal ProSe radio resource at the normal time.
  • the control device 5 performs ProSe direct between UE groups in addition to dedicated ProSe radio resources. Shared ProSe radio resources may be allocated for communication.
  • FIG. 3 is a flowchart showing an example (300) of processing performed by the control device 5.
  • the control device 5 allocates dedicated radio resources to the plurality of UEs for ProSe direct communication within the UE group including the plurality of UEs (UE1 and UE2).
  • a shared radio resource is allocated to the UEs for ProSe direct communication between UEs belonging to the UE group and UEs not belonging to the UE group. That is, the shared ProSe radio resource is used for ProSe direct communication between a plurality of UE groups or ProSe direct communication between any UEs that do not depend on the UE group.
  • Shared ProSe radio resources may be allocated from the frequency band licensed for E-UTRAN3 (licensed frequency band) or allocated from the frequency band not licensed to E-UTRAN3 (unlicensed frequency band) May be.
  • UE1 and UE2 can perform the high quality ProSe direct communication by which interference was suppressed in UE group to which these belong, for example at the time of a network failure, and between UE groups ( Or a wide range of ProS direct communication between any UEs not depending on the UE group).
  • the process of allocating shared radio resources for ProSe communication between UE groups is performed regardless of whether or not there is a network failure. Also good.
  • the control device 5 responds to an event associated with a network failure in addition to a dedicated radio resource for UE group Prose communication, as well as a shared Prose radio for UE group ProSe communication. Allows wireless terminals to use resources.
  • a configuration example of the public land mobile communication network according to the present embodiment is the same as that shown in FIGS.
  • FIG. 4 is a flowchart showing an example (400) of processing performed by the control device 5.
  • the control device 5 detects the occurrence of the first event associated with the failure of the PLMN 100.
  • the first event is, for example, detection of a failure or performance degradation of the PLMN 100, reception of a message indicating occurrence or warning of the PLMN 100, or message indicating occurrence or warning of a disaster in the area where the PLMN 100 is provided (for example, Earthquake early warning, tsunami warning, or power failure warning).
  • the control device 5 uses the dedicated radio resources for ProSe direct communication in the UE group including the plurality of UEs (UE1 and UE2).
  • the UE is allowed to use a shared radio resource for ProSe direct communication between UEs belonging to the UE group and UEs not belonging to the UE group. That is, the shared ProSe radio resource is used for ProSe direct communication between a plurality of UE groups or ProSe direct communication between any UEs that do not depend on the UE group.
  • the shared ProSe radio resource is used for ProSe direct communication between a plurality of UE groups or ProSe direct communication between any UEs that do not depend on the UE group.
  • UE1 and UE2 can perform high-quality ProSe direct communication in which interference is suppressed in the UE group to which they belong, and between UE groups (or Extensive ProS direct communication can be further performed between any UEs that do not depend on the UE group.
  • FIG. 5 is a flowchart showing another example (500) of processing performed by the control device 5.
  • the process 500 shown in FIG. 5 is a modification of the process 400 shown in FIG.
  • the processing in block 501 is the same as the processing in block 401 shown in FIG.
  • the control device 5 allocates a dedicated radio resource for the UE group to which UE1 and UE2 belong, and allocates a shared radio resource for ProSe direct communication between UE groups.
  • the ProSe direct communication setting information shown is transmitted to at least one of UE1 and UE2.
  • the setting information transmitted from the control device 5 to one of UE1 and UE2 may be transmitted to the other UE (for example, UE2) via the ProSe communication path 103.
  • the control device 5 may transmit the ProSe direct communication setting information using broadcast information that can be received by a plurality of UEs (that is, System Information Block (SIB)). Alternatively, transmission may be performed using control signaling (that is, Radio Resource Control (RRC)) signaling for each UE.
  • SIB System Information Block
  • RRC Radio Resource Control
  • the control device 5 may transmit setting information for ProSe direct communication using a Non-Access Stratum (NAS) message.
  • NAS Non-Access Stratum
  • the control device 5 may transmit setting information of ProSe direct communication as user plane data.
  • FIG. 6 is a flowchart showing an example (600) of processing performed by UE1.
  • the process 600 of FIG. 6 may be performed by UE2, and may be performed by both UE1 and UE2.
  • UE1 receives the setting information of ProSe direct communication which shows the allocation of a dedicated ProSe radio resource and the allocation of a shared ProSe radio resource from the control apparatus 5.
  • UE1 performs ProSe direct communication within a UE group including UE1 and UE2 in a dedicated radio resource according to the received ProSe direct communication setting information, and ProSe direct communication with a UE that does not belong to the UE group. Is performed on a shared radio resource.
  • UE1 and UE2 may start ProSe direct communication in response to detecting the stop of the communication service by PLMN 100.
  • the control apparatus 5 may notify UE1 and UE2 of allocation of dedicated ProSe radio resources and allocation of shared ProSe radio resources at different timings and different control messages.
  • the control device 5 may allocate dedicated ProSe radio resources to the UE group to which the UE1 and UE2 belong in response to another event (second event) before the first event.
  • the second event is a normal ProSe direct communication activation event that is not associated with a network failure, and may be the reception of a request message from UE1, UE2, or ProSe function entity 9.
  • the control device 5 permits the UE1 and UE2 to use dedicated radio resources for direct communication within the UE group.
  • UE1 and UE2 are not allowed to use shared radio resources for inter-ProSe direct communication.
  • the control device 5 may notify at least one of the UE1 and the UE2 only of the allocation of the shared radio resource for the UE group ProSe direct communication.
  • ⁇ Third Embodiment> a specific example of the ProSe radio resource allocation process at the time of a network failure described in the second embodiment will be described. Specifically, an example in which the control device 5 is arranged in the eNodeB 31 and the first event is detected in the eNodeB 31 will be described. A configuration example of the public land mobile communication network according to the present embodiment is the same as that shown in FIGS.
  • FIG. 7 is a sequence diagram showing a process 700 according to this embodiment.
  • the eNodeB 31 (control device 5) detects a failure of the E-UTRAN 3 (for example, malfunction of the eNodeB 31) as a first event.
  • the eNodeB 31 (the control device 5) may receive a message indicating the occurrence or warning of the PLMN 100 from the Operation, Administration and Maintenance (OAM) system as the first event.
  • OAM Operation, Administration and Maintenance
  • the eNodeB 31 (the control device 5) may receive a message indicating the occurrence of a disaster or a warning from the EPC 4 or the OAM system as the first event.
  • the eNodeB 31 (control device 5) transmits setting information indicating the allocation of ProSe radio resources to UE1 and UE2.
  • the said setting information shows allocation of the shared radio
  • UE1 and UE2 perform ProSe direct communication according to the received setting information. According to the process 700, UE1 and UE2 can perform extensive ProSe direct communication between UE groups (or between arbitrary UEs not depending on the UE group) at the time of a network failure.
  • ⁇ Fourth Embodiment> a specific example of the ProSe radio resource allocation process at the time of a network failure described in the second embodiment will be described. Specifically, an example in which the control device 5 is arranged in the ProSe function entity 9 and the first event is detected in the eNodeB 31 will be described. A configuration example of the public land mobile communication network according to the present embodiment is the same as that shown in FIGS.
  • FIG. 8 is a sequence diagram showing a process 800 according to the present embodiment.
  • the eNodeB 31 detects a failure of the E-UTRAN 3 (for example, a malfunction of the eNodeB 31) as a first event.
  • the first event may be reception of a message indicating the occurrence or warning of the PLMN 100 by the eNodeB 31 or reception of a message indicating the occurrence or warning of the disaster by the eNodeB 31.
  • the eNodeB 31 notifies the detection of the first event to the ProSe function entity 9 (the control device 5).
  • the notification in block 802 may be sent to the ProSe function entity 9 via one or more control plane nodes (eg, MME 43 and HSS 44) in the core network.
  • MME 43 and HSS 44 control plane nodes
  • the ProSe function entity 9 (the control device 5) transmits setting information indicating the allocation of the ProSe radio resource to the UE1 and the UE2.
  • the said setting information shows allocation of the shared radio
  • UE1 and UE2 perform ProSe direct communication according to the received setting information. According to the process 800, UE1 and UE2 can perform extensive ProSe direct communication between UE groups (or between arbitrary UEs that do not depend on the UE group) during a network failure.
  • ⁇ Fifth Embodiment> a specific example of the ProSe radio resource allocation process at the time of a network failure described in the second embodiment will be described. Specifically, an example in which the control device 5 is arranged in the ProSe function entity 9 and the first event is detected in the eNodeB 31 will be described. A configuration example of the public land mobile communication network according to the present embodiment is the same as that shown in FIGS.
  • FIG. 9 is a sequence diagram showing a process 900 according to the present embodiment.
  • the processing in block 901 is the same as the processing in block 801 shown in FIG.
  • the eNodeB 31 notifies the detection of the first event to the ProSe function entity 9 (the control device 5) via the UE 1 (blocks 902 and 903). That is, the eNodeB 31 notifies the detection of the first event to the UE 1 (block 902), and the UE 1 notifies the detection of the first event to the ProSe function entity 9 (the control device 5) (block 903).
  • the processing in blocks 904 to 906 is the same as the processing in blocks 803 to 805 shown in FIG. According to the process 900, UE1 and UE2 can perform extensive ProSe direct communication between UE groups (or between arbitrary UEs not depending on the UE group) at the time of a network failure.
  • a specific example of the ProSe radio resource allocation process at the time of a network failure described in the second embodiment will be described. Specifically, even when a plurality of UEs (UE1 and UE2) belong to different cells 32, the control device 5 allocates ProSe radio resources to these UEs.
  • the plurality of cells 32 to which UE1 and UE2 belong may be neighboring cells or may be included in the same neighboring cell group determined based on proximity.
  • a configuration example of the public land mobile communication network according to the present embodiment is the same as that shown in FIGS.
  • FIG. 10 is a sequence diagram showing a process 1000 according to the present embodiment.
  • UE1 is located in a cell 32A managed by eNodeB 31A
  • UE2 is located in a cell 32B managed by eNodeB 31B.
  • the eNodeB 31A detects the first event.
  • the eNodeB 31A notifies the detection of the first event to the eNodeB 31B (control device 5B).
  • the notification at block 1002 may include an indication to identify a shared ProSe radio resource.
  • the eNodeB 31A (control device 5A) transmits setting information indicating allocation of the shared ProSe radio resource to the UE1 in the cell 32A (block 1003), and the eNodeB 31B (control device 5B) transmits the UE2 in the cell 32B.
  • Configuration information indicating allocation of shared ProSe radio resources is transmitted (block 1004).
  • UE1 and UE2 perform ProSe direct communication according to the setting information in blocks 1003 and 1004.
  • the process 1000 shown in FIG. 10 can be changed as appropriate in the same manner as the ProSe radio resource allocation process described in the second to fifth embodiments.
  • the control device 5 may be arranged in a control plane entity in the EPC 4 or in a ProSe function entity 9.
  • the detection of the first event may be performed by the control plane entity in the EPC 4 or may be performed by the ProSe function entity 9.
  • the UE1 communicates with the UE2 via the PLMN 100 via the ProSe communication path 103. It can be performed.
  • UE1 and UE2 can perform UE group ProSe direct communication and UE group ProSe direct communication.
  • FIG. 11 shows a configuration example of the control device 5.
  • the control device 5 includes a network interface 51, a processor 52, and a memory 53.
  • the network interface 51 is used to communicate with a network node (e.g., MME 43, ProSe function entity 9).
  • the network interface 51 may include, for example, a network interface card (NIC) compliant with IEEE 802.3 series.
  • NIC network interface card
  • the processor 52 reads out the software (computer program) from the memory 53 and executes it, thereby executing the processing of the control device 5 related to the processing 300, 400, 500, 700, 800, 900, or 1000 described in the above embodiment. Do.
  • the processor 52 may be, for example, a microprocessor, a Micro Processing Unit (MPU), or a Central Processing Unit (CPU).
  • the processor 52 may include a plurality of processors.
  • the memory 53 is composed of a combination of a volatile memory and a nonvolatile memory.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the nonvolatile memory is, for example, a mask Read Only Memory (MROM), Programmable ROM (PROM), flash memory, hard disk drive, or a combination thereof.
  • the memory 53 may include a storage arranged away from the processor 52. In this case, the processor 52 may access the memory 53 via the network interface 51 or an I / O interface not shown.
  • the memory 53 is used to store a software module group including the ProSe module 54.
  • the ProSe module 54 includes a group of instructions and data for executing the processing of the control device 5 related to the processing 300, 400, 500, 700, 800, 900, or 1000 described in the above embodiment.
  • the processor 52 reads the software module group including the ProSe module 54 from the memory 53 and executes the software module group, so that the processing of the control device 5 described in the above embodiment can be performed.
  • FIG. 12 shows a configuration example of UE1.
  • UE2 may also have the same configuration as UE1.
  • UE1 includes a wireless transceiver 11, a processor 12, and a memory 13.
  • the wireless transceiver 11 is used for communication with E-UTRAN 3 (eNodeB 31) (101 in FIGS. 1 and 2) and for ProSe direct communication (103 in FIGS. 1 and 2).
  • the wireless transceiver 11 may include a plurality of transceivers, for example, an E-UTRA (Long Term Evolution (LTE)) transceiver and a WLAN transceiver.
  • E-UTRA Long Term Evolution
  • the processor 12 reads the software (computer program) from the memory 13 and executes it, thereby performing the process of UE1 related to the process 600, 700, 800, 900, or 1000 described in the above-described embodiment.
  • the processor 12 may be a microprocessor, MPU, or CPU, for example.
  • the processor 12 may include a plurality of processors.
  • the memory 13 is composed of a combination of a volatile memory and a nonvolatile memory.
  • the volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is, for example, an MROM, PROM, flash memory, hard disk drive, or a combination thereof.
  • the memory 13 may include a storage disposed away from the processor 12. In this case, the processor 12 may access the memory 13 via an I / O interface (not shown).
  • the memory 13 is used to store a software module group including the ProSe module 14.
  • the ProSe module 14 includes a group of instructions and data for executing the processing of UE1 related to the processing 600, 700, 800, 900, or 1000 described in the above-described embodiment.
  • the processor 12 reads the software module group including the ProSe module 14 from the memory 13 and executes the software module group, thereby performing the processing of the UE 1 described in the above embodiment.
  • each of the processors included in the control device 5 and UE ⁇ b> 1 and UE ⁇ b> 2 is a group of instructions for causing a computer to execute the algorithm described with reference to the drawings.
  • the program can be stored and supplied to a computer using various types of non-transitory computer readable media.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium).
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a signaling procedure for allocating dedicated ProSe radio resources and shared ProSe radio resources to UE1 and UE2 is executed in response to a first event related to a failure of PLMN 100 is performed. Indicated. However, the signaling procedures described in the third to sixth embodiments may be executed in response to other events not related to the failure of the PLMN 100.
  • EPS Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • HRPD High Rate Packet Data
  • GSM Global System Mobile for Communications
  • GPRS radio service

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

制御装置(5)は、複数の無線端末(1、2)を含む端末グループ内で行われるProximity Service(ProSe)通信(103)のために専用の無線リソースを当該複数の無線端末(1、2)に割り当てるとともに、当該端末グループに属する無線端末(1、2)と当該端末グループに属さない無線端末との間のProse通信のために共用の無線リソースを当該複数の無線端末(1、2)に割り当てる。これにより、例えば、端末間直接通信を円滑にすることに寄与できる。

Description

端末間直接通信のための制御装置及び方法
 本出願は、無線端末のProximity Service (ProSe)通信(端末間直接)に関し、特に端末間直接通信を行う無線端末への無線リソースの割り当てに関する。
 3GPP Release 12は、Proximity-based services(ProSe)について規定している(例えば、非特許文献1及び2を参照)。ProSeは、ProSeディスカバリ(ProSe discovery)及びProSeダイレクト通信(ProSe direct communication)を含む。ProSeディスカバリは、ProSeダイレクト通信が可能な無線端末(ProSe-enabled UEs)が近接していること(in proximity)の検出を可能にする。一例において、ProSeディスカバリは、ProSe-enabled UEが他のProSe-enabled UEをこれら2つのUEが有する無線通信技術(例えば、Evolved Universal Terrestrial Radio Access (E-UTRA) technology)の能力だけを用いて発見する手順により行われることができる。他の例において、ProSeディスカバリは、無線アクセスネットワーク(E-UTRA Network (E-UTRAN))又はコアネットワーク(Evolved Packet Core (EPC))によって行われることができる。
 ProSeダイレクト通信は、ProSeディスカバリ手順の後に、ダイレクト通信レンジ内に存在する2以上のProSe-enabled UEsの間の通信パスの確立を可能にする。言い換えると、ProSeダイレクト通信は、ProSe-enabled UEが他のProSe-enabled UEと基地局(eNodeB)を経由せずに直接的に通信することを可能にする。ProSeダイレクト通信は、基地局(eNodeB)にアクセスする場合と同様の無線通信技術(E-UTRA technology)を用いて行われてもよいし、wireless local area network (WLAN)の無線技術(つまり、IEEE 802.11 radio technology)を用いて行われてもよい。
 3GPP Release 12では、ProSe functionが公衆地上移動通信ネットワーク(Public Land Mobile Network (PLMN))を介してProSe-enabled UEと通信し、ProSeディスカバリ及びProSeダイレクト通信を支援(assist)する。ProSe functionは、ProSeのために必要なPLMNに関連した動作に用いられる論理的な機能(logical function)である。ProSe functionによって提供される機能(functionality)は、例えば、(a)third-party applications(ProSe Application Server)との通信、(b)ProSeディスカバリ及びProSeダイレクト通信のためのUEの認証、(c)ProSeディスカバリ及びProSeダイレクト通信のための設定情報(例えば、無線リソース及び送信電力の指定)のUEへの送信、並びに(d)EPC-level ProSe discoveryの提供、を含む。ProSe functionは、1又は複数のネットワークノード又はエンティティに実装されてもよい。本明細書では、ProSe functionを実行する1又は複数のネットワークノード又はエンティティを“ProSe function エンティティ”又は“ProSe functionサーバ”と呼ぶ。
 3GPP Release 12のProSeダイレクト通信は、端末間直接通信の1つの具体例である。公衆地上移動通信ネットワーク(PLMN)における端末間直接通信は、3GPP Release 12のProSeと同様に、ネットワークに配置された機能又はノード(例えば、ProSe function)によって支援されるディスカバリフェーズ及びダイレクト通信フェーズを含む。端末間直接通信は、近接する2又は複数の無線端末の間でいずれのネットワークノード(例えば、基地局)も介さずに行われる通信である。端末間直接通信は、device-to-device (D2D) 通信、又はpeer-to-peer通信と呼ばれることもある。ProSeダイレクト通信は、端末間直接通信の一例であり、ProSe通信と呼ばれることもある。
 本明細書で使用する公衆地上移動通信ネットワークとの用語は、広域な無線インフラストラクチャネットワークであり、多元接続方式の移動通信システムを意味する。多元接続方式の移動通信システムは、時間、周波数、及び送信電力のうち少なくとも1つを含む無線リソースを複数の移動端末の間で共有することで、複数の移動端末が実質的に同時に無線通信を行うことを可能としている。代表的な多元接続方式は、Time Division Multiple Access(TDMA)、Frequency Division Multiple Access(FDMA)、Code Division Multiple Access(CDMA)、若しくはOrthogonal Frequency Division Multiple Access(OFDMA)又はこれらの組み合わせである。公衆地上移動通信ネットワークは、無線アクセスネットワークおよびコアネットワークを含む。公衆地上移動通信ネットワークは、例えば、3GPP Universal Mobile Telecommunications System(UMTS)、3GPP Evolved Packet System(EPS)、3GPP2 CDMA2000システム、Global System for Mobile communications(GSM(登録商標))/ General packet radio service(GPRS)システム、WiMAXシステム、又はモバイルWiMAXシステムである。EPSは、Long Term Evolution(LTE)システム及びLTE-Advancedシステムを含む。
 特許文献1は、ネットワークに配置されたサーバが、ネットワークの輻輳又はネットワーク装置(例えば、基地局)の故障を検出したことに応答して、端末間直接通信に移行するべき端末グループを選択し、当該端末グループに属する無線端末に対して直接通信の許可情報および直接通信のための通信環境の設定情報を送信することを記載している。直接通信の許可情報は、例えば、同一端末グループに属する無線端末の識別子を示す。通信環境の設定情報は、例えば、端末間直接通信に用いられる周波数帯域、送信電力、及び着信側端末の識別子を示す。
 無線端末は、ネットワーク障害(例えば、基地局の停止若しくは機能不良、又はMobility Management Entity(MME)及びHome Subscriber Server(HSS)等のコントロールプレーン・エンティティの停止若しくは機能不良)が発生した場合、PLMNを介した通信を利用できないおそれがある。例えば、地震、津波、火災、及び停電などの自然災害(natural disasters)または人為的災害(man-made disasters)を原因として、PLMNを介した通信が利用できなくなるようなネットワーク障害が発生するかもしれない。特許文献1は、ネットワーク障害が発生した場合に、サーバが、予め定められた端末グループに属する複数の無線端末に対して端末間直接通信のための無線リソースを割り当て、当該端末グループ内での端末間直接通信を許可することを記載している。しかしながら、例えば大規模な災害のためにPLMNを介した通信が利用できない期間が長引く場合、特定の端末グループ内での端末間直接通信だけでは無線端末にとって不十分であり、グループ外の端末とも端末間直接通信を行えることが好ましいかもしれない。
 本明細書に開示される実施形態が達成しようとする目的の1つは、端末間直接通信を円滑にする(facilitate)ことに寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
 第1の態様では、制御装置により行われる方法は、複数の無線端末を含む端末グループ内で公衆地上移動通信ネットワークを経由せずに行われるProximity Service (ProSe)通信のために専用の無線リソースを前記複数の無線端末に割り当てるとともに、前記端末グループに属する無線端末と前記端末グループに属さない無線端末との間のProSe通信のために共用の無線リソースを前記複数の無線端末に割り当てることを含む。
 第2の態様では、制御装置は、メモリ、及び前記メモリに結合されたプロセッサを含む。前記プロセッサは、複数の無線端末を含む端末グループ内で公衆地上移動通信ネットワークを経由せずに行われるProximity Service (ProSe)通信のために専用の無線リソースを前記複数の無線端末に割り当てるとともに、前記端末グループに属する無線端末と前記端末グループに属さない無線端末との間のProSe通信のために共用の無線リソースを前記複数の無線端末に割り当てるよう動作する。
 第3の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第1の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様は、端末間直接通信を円滑にすることに寄与する装置、方法、及びプログラムを提供できる。
いくつかの実施形態に係る公衆地上移動通信ネットワークの構成例を示す図である。 いくつかの実施形態に係る公衆地上移動通信ネットワークの構成例を示す図である。 第1の実施形態に係る、ProSe通信(端末間直接通信)にリソースを割り当てるための制御装置による動作例を示すフローチャートである。 第2の実施形態に係る、ProSe通信にリソースを割り当てるための制御装置による動作例を示すフローチャートである。 第2の実施形態に係る、ProSe通信にリソースを割り当てるための制御装置による動作例を示すフローチャートである。 第2の実施形態に係る、ProSe通信にリソースを割り当てるための無線端末による動作例を示すフローチャートである。 第3の実施形態に係る、ProSe通信にリソースを割り当てる処理の一例を示すシーケンス図である。 第4の実施形態に係る、ProSe通信にリソースを割り当てる処理の一例を示すシーケンス図である。 第5の実施形態に係る、ProSe通信にリソースを割り当てる処理の一例を示すシーケンス図である。 第6の実施形態に係る、ProSe通信にリソースを割り当てる処理の一例を示すシーケンス図である。 制御装置の構成例を示すブロック図である。 無線端末の構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
 以下に示される複数の実施形態は、Evolved Packet System(EPS)を主な対象として説明される。しかしながら、これらの実施形態は、EPSに限定されるものではなく、他のモバイル通信ネットワーク又はシステム、例えば3GPP UMTS、3GPP2 CDMA2000システム、GSM/GPRSシステム、及びWiMAXシステム等に適用されてもよい。
<第1の実施形態>
 図1及び図2は、本実施形態に係るPLMN100の構成例を示している。UE1及びUE2は共にProSeが可能な無線端末(ProSe-enabled UE)であり、互いの間でProSe通信パス103を確立しProSeダイレクト通信(ProSe通信、端末間直接通信、D2D通信)を行うことができる。UE1とUE2の間のProSeダイレクト通信は、基地局(eNodeB)にアクセスする場合と同様の無線通信技術(E-UTRA technology)を用いて行われてもよいし、WLANの無線技術(IEEE 802.11 radio technology)を用いて行われてもよい。
 eNodeB31は、無線アクセスネットワーク(つまり、E-UTRAN)3内に配置されたエンティティであり、セル32を管理し、E-UTRA technologyを用いてE-UTRAN3にライセンスされた周波数においてUE1及びUE2と通信(101及び102)することができる。
 コアネットワーク(つまり、EPC)4は、複数のユーザープレーン・エンティティ(例えば、図2のServing Gateway (S-GW)41及びPacket Data Network Gateway (P-GW))、及び複数のコントロールプレーン・エンティティ(例えば、図2のMobility Management Entity(MME)43及びHome Subscriber Server(HSS)44)を含む。複数のユーザープレーン・エンティティは、E-UTRAN3と外部ネットワーク(Packet Data Network (PDN))との間でUE1及びUE2のユーザデータを中継する。コントロールプレーン・エンティティは、UE1及びUE2のモビリティ管理、セッション管理(ベアラ管理)、及び課金管理を含む様々な制御を行う。
 セル32においてProSeダイレクト通信(103)を開始するために、UE1及びUE2は、eNodeB31を介してコアネットワーク(つまり、EPC)4にアタッチし、ProSe function エンティティ9と通信するためのPacket Data Network (PDN) connectionを確立し、E-UTRAN3及びEPC4を介してProSe function エンティティ9との間でProSe 制御シグナリングを送受信する。UE1及びUE2は、例えば、ProSe function エンティティ9によって提供されるProSeディスカバリサービスを利用してもよいし、ProSeディスカバリ又はProSeダイレクト通信のUE1及びUE2における有効化を許可することを示すメッセージをProSe function エンティティ9から受信してもよいし、セル32におけるProSeディスカバリ又はProSeダイレクト通信に関する設定情報をProSe function エンティティ9から受信してもよい。なお、UE1及びUE2とProSe functionとの間のインタフェース(PC3参照点(reference point))はE-UTRAN3及びEPC4のユーザープレーンに依存しており、ProSe 制御シグナリングは当該ユーザープレーン上で転送される。したがって、図2に示されているように、ProSe function エンティティ9は、PDN Gateway (P-GW)42とPDNの間の参照点であるSGi参照点を介してEPC4(つまり、P-GW42)と通信する。
 UE1及びUE2は、複数のUEを含むUEグループ内においてProSeダイレクト通信を行うことができる。図1及び図2は、2つのUE1及びUE2のみを示しているが、UE1及びUE2は、3つ以上のUEを含むUEグループ内においてProSeダイレクト通信を行ってもよい。制御装置5は、UE1及びUE2を含むUEグループのProSeダイレクト通信(103)のための無線リソースを割り当てる。以下では、ProSeダイレクト通信のための無線リソースを「ProSe無線リソース」と呼ぶ。ProSe無線リソースは、時間、周波数、及び送信電力のうち少なくとも1つを含む。すなわち、制御装置5は、ProSeダイレクト通信(103)のために専用の(dedicated)無線リソースを割り当て、当該無線リソースの使用をUE1及びUE2を含むUEグループに許可する。
 専用のProSe無線リソースは、セル32又はその周辺において他のUEグループのProSeダイレクト通信に割り当てられる周波数とは異なる周波数とされることが好ましい。言い換えると、専用のProSe無線リソースは、セル32又はその周辺において、UE1及びUE2が属するUEグループのProSeダイレクト通信にのみ有効な(許可された)周波数とされることが好ましい。これにより、UEグループ間の干渉を抑制することができ、ProSeダイレクト通信の品質を向上できる。専用のProSe無線リソースは、E-UTRAN3にライセンスされた周波数帯域(licensed frequency band)の中から割り当てられてもよいし、E-UTRAN3にライセンスされていない周波数帯域(unlicensed frequency bands)の中から割り当てられてもよい。E-UTRAN3にライセンスされた周波数帯域は、E-UTRAN3が占有する帯域を意味し、一般的には各国の政府機関によってE-UTRAN3のオペレータにライセンスされる。E-UTRAN(LTE)の場合、ライセンス周波数は、例えば、700MHz帯、800 MHz帯、1.8 GHz帯、2.1 GHz帯、又は2.6GHz帯である。これに対して、E-UTRAN3にライセンスされていない周波数帯域は、他のシステム(例えば、TV放送システム)にライセンスされているか、いずれにもライセンスされておらず自由に使用できる周波数(例えば、2.4 GHz帯、5 GHz帯)を意味する。
 制御装置5は、一例において、無線アクセスネットワーク(例えば、E-UTRAN3)内に配置されてもよく、無線アクセスネットワーク内の無線リソース制御エンティティ(例えば、基地局または基地局コントローラ)と一体的に配置されてもよい。E-UTRANの場合、図1及び図2に示されるように、制御装置5はeNodeB31に配置されてもよい。UTRANの場合、制御装置5はRadio Network Controller(RNC)に配置されてもよい。他の例において、制御装置5は、コアネットワーク(例えば、EPC4)内に配置されてもよく、既存のコアネットワーク・エンティティ(例えば、MME43又はHSS44)と一体的に配置されてもよい。さらに他の例において、制御装置5は、E-UTRAN3及びEPC4の外部に配置されてもよい。制御装置5は、ProSe functionエンティティ9と一体的に配置されてもよい。
 制御装置5は、さらに、通常時の専用のProSe無線リソースに加えて追加のProSe無線リソースを割り当てるよう動作する。一例において、制御装置5は、UE1及びUE2がPLMN100を介した通信を利用できなくなるような重度のネットワーク障害の発生が予想される場合に、専用のProSe無線リソースに加えて、UEグループ間ProSeダイレクト通信のために共用のProSe無線リソースの割り当てを行ってもよい。
 図3は、制御装置5によって行われる処理の一例(300)を示すフローチャートである。ブロック301では、制御装置5は、複数のUE(UE1及びUE2)を含むUEグループ内でのProSeダイレクト通信のために専用の(dedicated)無線リソースを当該複数のUEに割り当てる。ブロック302では、当該UEグループに属するUEと当該UEグループに属さないUEとの間のProSeダイレクト通信のために共用の(shared)無線リソースを当該複数のUEに割り当てる。つまり、共用のProSe無線リソースは、複数のUEグループの間でのProSeダイレクト通信、又はUEグループに依らない任意のUE間でのProSeダイレクト通信に利用される。共用のProSe無線リソースは、E-UTRAN3にライセンスされた周波数帯域(licensed frequency band)の中から割り当てられてもよいし、E-UTRAN3にライセンスされていない周波数帯域(unlicensed frequency bands)の中から割り当てられてもよい。
 図3に示された処理300によれば、UE1及びUE2は、例えばネットワーク障害時に、これらが属するUEグループ内において干渉が抑制された高品質のProSeダイレクト通信を行うことができ、UEグループ間(又はUEグループに依らない任意のUE間)での広範囲なProSダイレクト通信をさらに行うことができる。なお、UEグループ内Prose通信のための専用の無線リソースの割り当てに加えて、UEグループ間ProSe通信のために共用の無線リソースを割り当てる処理は、ネットワーク障害又はそのおそれの有無に関わらず行われてもよい。
<第2の実施形態>
 本実施形態では、第1の実施形態で説明された、ProSe無線リソースの割り当て処理の具体例について説明する。本実施形態では、制御装置5は、ネットワーク障害に関連付けられたイベントに応答して、UEグループ内Prose通信のための専用の無線リソースに加えて、UEグループ間ProSe通信のために共用のProse無線リソースの使用を無線端末に許可する。本実施形態に係る公衆地上移動通信ネットワークの構成例は図1及び図2と同様である。
 図4は、制御装置5によって行われる処理の一例(400)を示すフローチャートである。ブロック401では、制御装置5は、PLMN100の障害に関連付けられた第1のイベントの発生を検出する。第1のイベントは、例えば、PLMN100の障害又は性能劣化の検出、PLMN100の障害の発生若しくは警告を示すメッセージの受信、又はPLMN100が設けられた地域での災害の発生若しくは警告を示すメッセージ(例えば、地震速報、津波警報、又は停電警報)の受信である。
 ブロック402では、制御装置5は、第1のイベントに応答して、複数のUE(UE1及びUE2)を含むUEグループ内でのProSeダイレクト通信のために専用の無線リソースを使用することを当該複数のUEに許可するとともに、当該UEグループに属するUEと当該UEグループに属さないUEとの間のProSeダイレクト通信のために共用の無線リソースを使用することを当該複数のUEに許可する。つまり、共用のProSe無線リソースは、複数のUEグループの間でのProSeダイレクト通信、又はUEグループに依らない任意のUE間でのProSeダイレクト通信に利用される。図4に示された処理400によれば、ネットワーク障害時に、UE1及びUE2は、これらが属するUEグループ内において干渉が抑制された高品質のProSeダイレクト通信を行うことができ、UEグループ間(又はUEグループに依らない任意のUE間)での広範囲なProSダイレクト通信をさらに行うことができる。
 図5は、制御装置5によって行われる処理の他の例(500)を示すフローチャートである。図5に示された処理500は、図4に示された処理400の変形例である。ブロック501における処理は、図4に示されたブロック401における処理と同様である。ブロック502では、制御装置5は、第1のイベントに応答して、UE1及びUE2が属するUEグループに対する専用の無線リソースの割り当て、及びUEグループ間ProSeダイレクト通信のための共用の無線リソースの割り当てを示すProSeダイレクト通信の設定情報を、UE1及びUE2の少なくとも1つに送信する。制御装置5からUE1及びUE2のうちの一方(例えば、UE1)に送信された設定情報は、ProSe通信パス103を介して他方のUE(例えば、UE2)に送信されてもよい。
 制御装置5がeNodeB31に配置される場合、制御装置5は、ProSeダイレクト通信の設定情報を、複数のUEが受信可能な報知情報(つまり、System Information Block(SIB))を用いて送信してもよいし、UE毎の制御シグナリング(つまり、Radio Resource Control (RRC))シグナリングを用いて送信してもよい。制御装置5がEPC4に配置される場合、制御装置5は、Non-Access Stratum(NAS)メッセージを用いてProSeダイレクト通信の設定情報を送信してもよい。制御装置5がProSe functionエンティティ9に配置される場合、制御装置5は、ProSeダイレクト通信の設定情報をユーザープレーン・データとして送信してもよい。
 図6は、UE1によって行われる処理の一例(600)を示すフローチャートである。図6の処理600は、UE2によって行われてもよいし、UE1及びUE2の両方によって行われてもよい。ブロック601では、UE1は、専用のProSe無線リソースの割り当て及び共用のProSe無線リソースの割り当てを示すProSeダイレクト通信の設定情報を制御装置5から受信する。ブロック602では、UE1は、受信したProSeダイレクト通信の設定情報に従って、UE1及びUE2を含むUEグループ内でのProSeダイレクト通信を専用の無線リソースにおいて行い、当該UEグループに属さないUEとのProSeダイレクト通信を共用の無線リソースにおいて行う。UE1及びUE2は、例えば、PLMN100による通信サービスの停止を検出したことに応答してProSeダイレクト通信を開始してもよい。
 なお、図4~図6に示された処理は、一例に過ぎない。制御装置5は、専用のProSe無線リソースの割り当てと共用ProSe無線リソースの割り当てを異なるタイミング及び異なる制御メッセージでUE1及びUE2に通知してもよい。例えば、制御装置5は、第1のイベントの前に、他のイベント(第2のイベント)に応答して、UE1及びUE2が属するUEグループに対する専用のProSe無線リソースの割り当てを行ってもよい。第2のイベントは、ネットワーク障害と関連付けられていない通常のProSeダイレクト通信の起動イベントであり、UE1、UE2、又はProSe functionエンティティ9からの要求メッセージの受信であってもよい。すなわち、制御装置5は、障害に関連付けられていない第2のイベントが発生した場合に、UEグループ内でのダイレクト通信のために専用の無線リソースの使用をUE1及びUE2に許可するが、UEグループ間ProSeダイレクト通信のための共用の無線リソースの使用をUE1及びUE2に許可しない。この場合、制御装置5は、第1のイベントに応答して、UEグループ間ProSeダイレクト通信のための共用の無線リソースの割り当てのみをUE1及びUE2の少なくとも一方に通知してもよい。
<第3の実施形態>
 本実施形態では、第2の実施形態で説明された、ネットワーク障害時におけるProSe無線リソースの割り当て処理の具体例について説明する。具体的には、制御装置5がeNodeB31に配置されるとともに、第1のイベントの検出がeNodeB31において行われる例が説明される。本実施形態に係る公衆地上移動通信ネットワークの構成例は図1及び図2と同様である。
 図7は、本実施形態に係る処理700を示すシーケンス図である。ブロック701では、eNodeB31(制御装置5)は、E-UTRAN3の故障(例えば、eNodeB31の機能不良)を第1のイベントとして検出する。これに代えて、eNodeB31(制御装置5)は、第1のイベントとして、PLMN100の障害の発生若しくは警告を示すメッセージをOperation, Administration and Maintenance (OAM) システムから受信してもよい。これに代えて、eNodeB31(制御装置5)は、第1のイベントとして、災害の発生若しくは警告を示すメッセージをEPC4又はOAMシステムから受信してもよい。
 ブロック702及び703では、第1のイベントに応答して、eNodeB31(制御装置5)は、ProSe無線リソースの割り当てを示す設定情報をUE1及びUE2に送信する。当該設定情報は、UEグループ間ProSeダイレクト通信(又はUEグループに依らない任意のUE間のProSeダイレクト通信)に使用可能な共用の無線リソースの割り当てを示す。ブロック704では、UE1及びUE2は、受信した設定情報に従って、ProSeダイレクト通信を行う。処理700によれば、ネットワーク障害時に、UE1及びUE2は、UEグループ間(又はUEグループに依らない任意のUE間)での広範囲なProSeダイレクト通信を行うことができる。
<第4の実施形態>
 本実施形態では、第2の実施形態で説明された、ネットワーク障害時におけるProSe無線リソースの割り当て処理の具体例について説明する。具体的には、制御装置5がProSe functionエンティティ9に配置されるとともに、第1のイベントの検出がeNodeB31において行われる例が説明される。本実施形態に係る公衆地上移動通信ネットワークの構成例は図1及び図2と同様である。
 図8は、本実施形態に係る処理800を示すシーケンス図である。ブロック801では、eNodeB31は、E-UTRAN3の故障(例えば、eNodeB31の機能不良)を第1のイベントとして検出する。これに代えて、第1のイベントは、PLMN100の障害の発生若しくは警告を示すメッセージのeNodeB31による受信であってもよいし、災害の発生若しくは警告を示すメッセージのeNodeB31による受信であってもよい。ブロック802では、eNodeB31は、第1のイベントの検出をProSe functionエンティティ9(制御装置5)に通知する。ブロック802における通知は、コアネットワーク内の1又は複数のコントロールプレーン・ノード(例えば、MME43及びHSS44)を介してProSe functionエンティティ9に送られてもよい。
 ブロック803及び804では、第1のイベントに応答して、ProSe functionエンティティ9(制御装置5)は、ProSe無線リソースの割り当てを示す設定情報をUE1及びUE2に送信する。当該設定情報は、UEグループ間ProSeダイレクト通信(又はUEグループに依らない任意のUE間のProSeダイレクト通信)に使用可能な共用の無線リソースの割り当てを示す。ブロック805では、UE1及びUE2は、受信した設定情報に従って、ProSeダイレクト通信を行う。処理800によれば、ネットワーク障害時に、UE1及びUE2は、UEグループ間(又はUEグループに依らない任意のUE間)での広範囲なProSeダイレクト通信を行うことができる。
<第5の実施形態>
 本実施形態では、第2の実施形態で説明された、ネットワーク障害時におけるProSe無線リソースの割り当て処理の具体例について説明する。具体的には、制御装置5がProSe functionエンティティ9に配置されるとともに、第1のイベントの検出がeNodeB31において行われる例が説明される。本実施形態に係る公衆地上移動通信ネットワークの構成例は図1及び図2と同様である。
 図9は、本実施形態に係る処理900を示すシーケンス図である。ブロック901における処理は、図8に示されたブロック801における処理と同様である。eNodeB31は、第1のイベントの検出をProSe functionエンティティ9(制御装置5)にUE1を介して通知する(ブロック902及び903)。すなわち、eNodeB31は第1のイベントの検出をUE1に通知し(ブロック902)、UE1は第1のイベントの検出をProSe functionエンティティ9(制御装置5)に通知する(ブロック903)。ブロック904~906における処理は、図8に示されたブロック803~805における処理と同様である。処理900によれば、ネットワーク障害時に、UE1及びUE2は、UEグループ間(又はUEグループに依らない任意のUE間)での広範囲なProSeダイレクト通信を行うことができる。
<第6の実施形態>
 本実施形態では、第2の実施形態で説明された、ネットワーク障害時におけるProSe無線リソースの割り当て処理の具体例について説明する。具体的には、制御装置5は、複数のUE(UE1及びUE2)が互いに異なるセル32に属している場合であっても、これらのUEに対してProSe無線リソースの割り当てを行う。UE1及びUE2が属する複数のセル32は、隣接セルであってもよいし、近接性に基づいて定められた同一の周辺セルグループに含まれてもよい。本実施形態に係る公衆地上移動通信ネットワークの構成例は図1及び図2と同様である。
 図10は、本実施形態に係る処理1000を示すシーケンス図である。図10の例では、UE1はeNodeB31Aによって管理されるセル32A内に位置し、UE2はeNodeB31Bによって管理されるセル32B内に位置している。ブロック1001では、eNodeB31A(制御装置5A)は、第1のイベントを検出する。ブロック1002では、eNodeB31A(制御装置5A)は、第1のイベントの検出をeNodeB31B(制御装置5B)に通知する。ブロック1002での通知は、共用のProSe無線リソースを特定するための表示を含んでもよい。そして、eNodeB31A(制御装置5A)は、セル32A内のUE1に対して共用のProSe無線リソースの割り当てを示す設定情報を送信し(ブロック1003)、eNodeB31B(制御装置5B)は、セル32B内のUE2に対して共用のProSe無線リソースの割り当てを示す設定情報を送信する(ブロック1004)。ブロック1005では、UE1及びUE2は、ブロック1003及び1004での設定情報に従って、ProSeダイレクト通信を行う。
 図10に示された処理1000は、第2~第5の実施形態で説明されたProSe無線リソースの割り当て処理と同様に適宜変更されることができる。例えば、制御装置5は、EPC4内のコントロールプレーン・エンティティに配置されてもよいし、ProSe functionエンティティ9に配置さてもよい。第1のイベントの検出は、EPC4内のコントロールプレーン・エンティティによって行われてもよいし、ProSe functionエンティティ9によって行われてもよい。
 本実施形態によれば、例えば、eNodeB31A及びセル32Aが停止しているがeNodeB31B及びセル32Bが運用されている場合に、UE1は、UE2とのProSe通信パス103を介して、PLMN100を経由する通信を行うことができる。また、eNodeB31A及びeNodeB31Bが共に停止する広域の障害が発生した場合に、UE1及びUE2は、UEグループ内ProSeダイレクト通信およびUEグループ間ProSeダイレクト通信を行うことができる。
 最後に上述の複数の実施形態に係る制御装置5並びにUE1及びUE2の構成例について説明する。図11は、制御装置5の構成例を示している。図11を参照すると、制御装置5は、ネットワークインタフェース51、プロセッサ52、及びメモリ53を含む。ネットワークインタフェース51は、ネットワークノード(e.g., MME43、ProSe functionエンティティ9)と通信するために使用される。ネットワークインタフェース51は、例えば、IEEE 802.3 seriesに準拠したネットワークインタフェースカード(NIC)を含んでもよい。
 プロセッサ52は、メモリ53からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態で説明された処理300、400、500、700、800、900、又は1000に関する制御装置5の処理を行う。プロセッサ52は、例えば、マイクロプロセッサ、Micro Processing Unit(MPU)、又はCentral Processing Unit(CPU)であってもよい。プロセッサ52は、複数のプロセッサを含んでもよい。
 メモリ53は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、例えば、マスクRead Only Memory(MROM)、Programmable ROM(PROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。また、メモリ53は、プロセッサ52から離れて配置されたストレージを含んでもよい。この場合、プロセッサ52は、ネットワークインタフェース51又は図示されていないI/Oインタフェースを介してメモリ53にアクセスしてもよい。
 図11の例では、メモリ53は、ProSeモジュール54を含むソフトウェアモジュール群を格納するために使用される。ProSeモジュール54は、上述の実施形態で説明された処理300、400、500、700、800、900、又は1000に関する制御装置5の処理を実行するための命令群およびデータを含む。プロセッサ52は、ProSeモジュール54を含むソフトウェアモジュール群をメモリ53から読み出して実行することで、上述の実施形態で説明された制御装置5の処理を行うことができる。
 図12は、UE1の構成例を示している。UE2もUE1と同様の構成を有してもよい。図12を参照すると、UE1は、無線トランシーバ11、プロセッサ12、及びメモリ13を含む。無線トランシーバ11は、E-UTRAN3(eNodeB31)との通信(図1及び図2の101)のために使用され、ProSeダイレクト通信(図1及び図2の103)のために使用される。無線トランシーバ11は、複数のトランシーバ、例えば、E-UTRA(Long Term Evolution (LTE))トランシーバ及びWLANトランシーバを含んでもよい。
 プロセッサ12は、メモリ13からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態で説明された処理600、700、800、900、又は1000に関するUE1の処理を行う。プロセッサ12は、例えば、マイクロプロセッサ、MPU、又はCPUであってもよい。プロセッサ12は、複数のプロセッサを含んでもよい。
 メモリ13は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、例えば、MROM、PROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの組合せである。また、メモリ13は、プロセッサ12から離れて配置されたストレージを含んでもよい。この場合、プロセッサ12は、図示されていないI/Oインタフェースを介してメモリ13にアクセスしてもよい。
 図12の例では、メモリ13は、ProSeモジュール14を含むソフトウェアモジュール群を格納するために使用される。ProSeモジュール14は、上述の実施形態で説明された処理600、700、800、900、又は1000に関するUE1の処理を実行するための命令群およびデータを含む。プロセッサ12は、ProSeモジュール14を含むソフトウェアモジュール群をメモリ13から読み出して実行することで、上述の実施形態で説明されたUE1の処理を行うことができる。
 図11及び図12を用いて説明したように、上述の実施形態に係る制御装置5並びにUE1及びUE2が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<その他の実施形態>
 上述の複数の実施形態は、各々独立に実施されてもよいし、適宜組み合わせて実施されてもよい。
 第3~第6の実施形態では、専用ProSe無線リソース及び共用ProSe無線リソースをUE1及びUE2に割り当てるためのシグナリング手順が、PLMN100の障害に関連した第1のイベントに応答して実行される例を示した。しかしながら、第3~第6の実施形態で説明されたシグナリング手順は、PLMN100の障害に関連に関連付けられていない他のイベントに応答して実行されてもよい。
 上述の実施形態では、主にEPSに関する具体例を用いて説明を行った。しかしながら、これらの実施形態は、その他の移動通信システム、例えば、Universal Mobile Telecommunications System(UMTS)、3GPP2 CDMA2000システム(1xRTT、High Rate Packet Data(HRPD))、Global System for Mobile communications(GSM)/General packet radio service(GPRS)システム、及びモバイルWiMAXシステム等に適用されてもよい。
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 この出願は、2014年10月7日に出願された日本出願特願2014-206190を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 UE
2 UE
3 E-UTRAN
4 EPC
5 制御装置
9 ProSe functionエンティティ
31 eNodeB
32 セル
100 PLMN
103 ProSe通信パス

Claims (21)

  1.  制御装置により行われる方法であって、
     複数の無線端末を含む端末グループ内で公衆地上移動通信ネットワークを経由せずに行われるProximity Service (ProSe)通信のために専用の無線リソースを前記複数の無線端末に割り当てるとともに、前記端末グループに属する無線端末と前記端末グループに属さない無線端末との間のProSe通信のために共用の無線リソースを前記複数の無線端末に割り当てることを備える、方法。
  2.  前記割り当てることは、前記公衆地上移動通信ネットワークの障害に関連付けられた第1のイベントが発生した場合に、前記専用の無線リソース及び前記共用の無線リソースの使用を前記複数の無線端末に許可することを含む、
    請求項1に記載の方法。
  3.  前記障害に関連付けられていない第2のイベントが発生した場合に、前記端末グループ内でのProSe通信のために前記専用の無線リソースの使用を前記複数の無線端末に許可するが、前記共用の無線リソースの使用を前記複数の無線端末に許可しないことをさらに備える、
    請求項2に記載の方法。
  4.  前記許可することは、前記第1のイベントに応答して、前記端末グループ内でのProSe通信のための前記専用の無線リソースの割り当てと、前記端末グループに属する無線端末と前記端末グループに属さない無線端末との間のProSe通信のための前記共用の無線リソースの割り当てを含む第1の設定情報を前記複数の無線端末のうちの少なくとも1つに送信することを含む、
    請求項2に記載の方法。
  5.  前記障害に関連付けられていない第2のイベントに応答して、前記専用の無線リソースの割り当てを含むが前記共用の無線リソースの割り当てを含まない第2の設定情報を前記複数の無線端末のうちの少なくとも1つに送信することをさらに備える、
    請求項4に記載の方法。
  6.  前記第1の設定情報を送信することは、前記公衆地上移動通信ネットワーク内の第1のセルを利用する第1の無線端末、及び前記第1のセルの周辺に位置する第2のセルを利用する第2の無線端末に、前記第1の設定情報を送信することを含む、
    請求項4又は5に記載の方法。
  7.  前記第1のイベントは、前記障害又は前記公衆地上移動通信ネットワークの性能劣化の検出、前記公衆地上移動通信ネットワークの障害の発生若しくは警告を示すメッセージの受信、又は前記公衆地上移動通信ネットワークが設けられた地域での災害の発生若しくは警告を示すメッセージの受信を含む、
    請求項2~6のいずれか1項に記載の方法。
  8.  前記制御装置は、前記公衆地上移動通信ネットワーク内の基地局に配置される、
    請求項1~7のいずれか1項に記載の方法。
  9.  前記公衆地上移動通信ネットワークは、無線アクセスネットワーク及びコアネットワークを含み、
     前記制御装置は、前記無線アクセスネットワーク及び前記コアネットワークを介して前記無線端末と通信する、
    請求項1~7のいずれか1項に記載の方法。
  10.  前記専用の無線リソース及び前記共用の無線リソースは、前記公衆地上移動通信ネットワークにライセンスされた周波数帯域に含まれる、
    請求項1~9のいずれか1項に記載の方法。
  11.  メモリと、
     前記メモリに結合されたプロセッサと
    を備え、
     前記プロセッサは、複数の無線端末を含む端末グループ内で公衆地上移動通信ネットワークを経由せずに行われるProximity Service (ProSe)通信のために専用の無線リソースを前記複数の無線端末割り当てるとともに、前記端末グループに属する無線端末と前記端末グループに属さない無線端末との間のProSe通信のために共用の無線リソースを前記複数の無線端末に割り当てるよう動作する、
    制御装置。
  12.  前記プロセッサは、前記公衆地上移動通信ネットワークの障害に関連付けられた第1のイベントが発生した場合に、前記専用の無線リソース及び前記共用の無線リソースの使用を前記複数の無線端末に許可する、
    請求項11に記載の制御装置。
  13.  前記プロセッサは、さらに、前記障害に関連付けられていない第2のイベントが発生した場合に、前記端末グループ内でのProSe通信のために前記専用の無線リソースの使用を前記複数の無線端末に許可するが、前記共用の無線リソースの使用を前記複数の無線端末に許可しないよう動作する、
    請求項12に記載の制御装置。
  14.  前記プロセッサは、前記複数の無線端末にProSe通信のための無線リソースの使用を許可するために、前記第1のイベントに応答して、前記端末グループ内でのProSe通信のための前記専用の無線リソースの割り当てと、前記端末グループに属する無線端末と前記端末グループに属さない無線端末との間のProSe通信のための前記共用の無線リソースの割り当てを含む第1の設定情報を前記複数の無線端末のうちの少なくとも1つに送信するよう動作する、
    請求項12に記載の制御装置。
  15.  前記プロセッサは、さらに、前記障害に関連付けられていない第2のイベントに応答して、前記専用の無線リソースの割り当てを含むが前記共用の無線リソースの割り当てを含まない第2の設定情報を前記複数の無線端末のうちの少なくとも1つに送信するよう動作する、
    請求項14に記載の制御装置。
  16.  前記プロセッサは、前記公衆地上移動通信ネットワーク内の第1のセルを利用する第1の無線端末、及び前記第1のセルの周辺に位置する第2のセルを利用する第2の無線端末に、前記第1の設定情報を送信する、
    請求項14又は15に記載の制御装置。
  17.  前記第1のイベントは、前記障害又は前記公衆地上移動通信ネットワークの性能劣化の検出、前記公衆地上移動通信ネットワークの障害の発生若しくは警告を示すメッセージの受信、又は前記公衆地上移動通信ネットワークが設けられた地域での災害の発生若しくは警告を示すメッセージの受信を含む、
    請求項12~16のいずれか1項に記載の制御装置。
  18.  前記制御装置は、前記公衆地上移動通信ネットワーク内の基地局に配置される、
    請求項11~17のいずれか1項に記載の制御装置。
  19.  前記公衆地上移動通信ネットワークは、無線アクセスネットワーク及びコアネットワークを含み、
     前記制御装置は、前記無線アクセスネットワーク及び前記コアネットワークを介して前記無線端末と通信する、
    請求項11~17のいずれか1項に記載の制御装置。
  20.  前記専用の無線リソース及び前記共用の無線リソースは、前記公衆地上移動通信ネットワークにライセンスされた周波数帯域に含まれる、
    請求項11~19のいずれか1項に記載の制御装置。
  21.  請求項1~10のいずれか1項に記載の方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体。
PCT/JP2015/003570 2014-10-07 2015-07-15 端末間直接通信のための制御装置及び方法 WO2016056152A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580054641.8A CN106797637B (zh) 2014-10-07 2015-07-15 用于终端间直接通信的控制装置和方法
KR1020177008326A KR102146355B1 (ko) 2014-10-07 2015-07-15 단말간 직접 통신을 위한 제어 장치 및 방법
EP15849341.1A EP3206449B1 (en) 2014-10-07 2015-07-15 Control device and method for inter-terminal direct communication
JP2016552804A JPWO2016056152A1 (ja) 2014-10-07 2015-07-15 端末間直接通信のための制御装置及び方法
US15/514,760 US10687232B2 (en) 2014-10-07 2015-07-15 Control apparatus and method for inter-terminal direct communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-206190 2014-10-07
JP2014206190 2014-10-07

Publications (1)

Publication Number Publication Date
WO2016056152A1 true WO2016056152A1 (ja) 2016-04-14

Family

ID=55652800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003570 WO2016056152A1 (ja) 2014-10-07 2015-07-15 端末間直接通信のための制御装置及び方法

Country Status (6)

Country Link
US (1) US10687232B2 (ja)
EP (1) EP3206449B1 (ja)
JP (1) JPWO2016056152A1 (ja)
KR (1) KR102146355B1 (ja)
CN (1) CN106797637B (ja)
WO (1) WO2016056152A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187308A1 (ja) * 2018-03-27 2019-10-03 株式会社Kddi総合研究所 移動通信ネットワーク及び基地局

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120977A1 (ja) * 2015-01-26 2016-08-04 富士通株式会社 無線通信システム、基地局および端末
CN109587790A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 资源配置方法及装置
WO2023132613A1 (en) * 2022-01-04 2023-07-13 Samsung Electronics Co., Ltd. Method and device for quick switch from disaster roaming service to normal service

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531769A (ja) * 2009-06-30 2012-12-10 ノキア シーメンス ネットワークス オサケユキチュア ピアツーピア通信のためのページングメッセージを送信する装置及び方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011105271T5 (de) 2011-05-25 2014-03-06 Renesas Mobile Corporation Ressourcenzuordnung für eine D2D-Kommunikation
GB2494460B (en) * 2011-09-12 2013-10-23 Renesas Mobile Corp Methods and apparatus for controlling device-to-device discovery procedure
WO2013089452A1 (ko) * 2011-12-13 2013-06-20 엘지전자 주식회사 무선 통신 시스템에서 근접 서비스 제공 방법 및 장치
US9185690B2 (en) 2012-02-29 2015-11-10 Sharp Kabushiki Kaisha Allocating and determining resources for a device-to-device link
JP5849012B2 (ja) 2012-04-25 2016-01-27 株式会社Nttドコモ 内線システム、内線サーバ及び通信方法
EP2843982A4 (en) 2012-04-27 2015-12-30 Nec Corp CONTROL DEVICE, WIRELESS STATION, WIRELESS TERMINAL, AND METHOD FOR CONTROLLING USE OF SHARED FREQUENCY
TWI626855B (zh) * 2012-04-27 2018-06-11 內數位專利控股公司 最佳化鄰近資料路徑設置方法及裝置
CN103686753B (zh) 2012-09-10 2016-11-02 华为技术有限公司 设备到设备通信中资源共享方法和设备
US20140094212A1 (en) * 2012-09-28 2014-04-03 Electronics And Telecommunications Research Institute Method of device to device discovery and apparatus thereof
WO2014075299A1 (zh) 2012-11-16 2014-05-22 华为技术有限公司 资源分配方法、基站及d2d设备
US9504090B2 (en) * 2013-01-17 2016-11-22 Lg Electronics Inc. Method and apparatus for group communication in proximity-based service
US9479342B2 (en) 2013-03-14 2016-10-25 Htc Corporation Charging method and apparatus for proximity-based service
US9456330B2 (en) * 2013-08-09 2016-09-27 Alcatel Lucent Two-stage device-to-device (D2D) discovery procedures
EP3057368B1 (en) * 2013-10-11 2019-07-17 Kyocera Corporation Communication control method, user terminal, and communication device
WO2015055257A1 (en) * 2013-10-18 2015-04-23 Nokia Solutions And Networks Oy Selection and use of a security agent for device-to-device (d2d) wireless communications
TW201526680A (zh) * 2013-11-01 2015-07-01 Innovative Sonic Corp 在無線通訊系統中改善裝置間搜尋的方法及裝置
EP3085182A4 (en) * 2013-12-20 2017-06-21 Kyocera Corporation Management of device-to-device communiction resources
CN104509133B (zh) * 2014-05-26 2018-10-30 华为技术有限公司 设备到设备临近服务中传输信号的方法、基站和用户设备
US10172098B2 (en) * 2014-05-29 2019-01-01 Telefonaktiebolaget L M Ericsson (Publ) Power control for mitigating device-to-device interference to adjacent networks
US9713179B2 (en) * 2014-06-27 2017-07-18 Alcatel Lucent Configuration of layer-1 destination address for device-to-device communications

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012531769A (ja) * 2009-06-30 2012-12-10 ノキア シーメンス ネットワークス オサケユキチュア ピアツーピア通信のためのページングメッセージを送信する装置及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EADS: "Radio resource sharing between Public Safety groups using D2D", 3GPP TSG RAN WG1 MEETING #76 R1-140516, XP050751684 *
See also references of EP3206449A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187308A1 (ja) * 2018-03-27 2019-10-03 株式会社Kddi総合研究所 移動通信ネットワーク及び基地局
JP2019176241A (ja) * 2018-03-27 2019-10-10 株式会社Kddi総合研究所 移動通信ネットワーク及び基地局
JP7099844B2 (ja) 2018-03-27 2022-07-12 株式会社Kddi総合研究所 移動通信ネットワーク及び基地局

Also Published As

Publication number Publication date
US10687232B2 (en) 2020-06-16
CN106797637A (zh) 2017-05-31
EP3206449A4 (en) 2018-05-30
JPWO2016056152A1 (ja) 2017-07-27
EP3206449B1 (en) 2019-12-18
CN106797637B (zh) 2020-04-14
KR102146355B1 (ko) 2020-08-20
US20170230847A1 (en) 2017-08-10
KR20170048456A (ko) 2017-05-08
EP3206449A1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
US10327163B2 (en) User equipment and protocol and methods for device-to-device communication
US11425578B2 (en) Base station, virtual cell, user equipment
KR102061436B1 (ko) 자원 할당 방법과 기기
KR102180492B1 (ko) 데이터 통신에서의 경량 ota 시그널링 메카니즘을 위한 시스템, 장치, 및 방법
JP6610656B2 (ja) 近接サービス通信のための装置及び方法
US10568154B2 (en) Apparatus and method for proximity-based service communication
WO2016142973A1 (ja) 近接サービス通信のための装置及び方法
WO2017017890A1 (ja) 無線端末、基地局、及びこれらの方法
CN110622565A (zh) 接入类别和建立原因
JP6381685B2 (ja) デバイス間通信のためのレイヤ1宛先アドレスの設定
US20170094495A1 (en) Method for supporting proximity-based service configuring for ue
KR20200080318A (ko) 긴급 서비스 지원
US20190297562A1 (en) Mobile telecommunications system method, user equipment and base station for transmitting on demand system information
WO2016056152A1 (ja) 端末間直接通信のための制御装置及び方法
US11399333B2 (en) Apparatus and method for a mobile telecommunications system
WO2016125213A1 (ja) 近接サービス通信のための装置及び方法
WO2016165383A1 (zh) 接入控制方法、通信节点和计算机存储介质
WO2016075848A1 (ja) 制御装置、無線通信デバイス、及びこれらの方法
KR101896393B1 (ko) 무선 단말, 제어 장치, 및 이들의 방법
US20160143081A1 (en) Method for configuring dual connectivity for terminal by base station in wireless communication system and apparatus for same
WO2015013911A1 (en) Methods and apparatus for device to device communication
WO2021031044A1 (zh) Iab节点的接入方法、iab节点和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552804

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177008326

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015849341

Country of ref document: EP