WO2016055003A1 - Beam administration methods for cellualr or wireless networks - Google Patents

Beam administration methods for cellualr or wireless networks Download PDF

Info

Publication number
WO2016055003A1
WO2016055003A1 PCT/CN2015/091474 CN2015091474W WO2016055003A1 WO 2016055003 A1 WO2016055003 A1 WO 2016055003A1 CN 2015091474 W CN2015091474 W CN 2015091474W WO 2016055003 A1 WO2016055003 A1 WO 2016055003A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
procedure
training
beamforming
information
Prior art date
Application number
PCT/CN2015/091474
Other languages
French (fr)
Other versions
WO2016055003A9 (en
Inventor
Ju-Ya Chen
Original Assignee
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc. filed Critical Mediatek Inc.
Priority to EP15849639.8A priority Critical patent/EP3180870B1/en
Priority to BR112017006485-5A priority patent/BR112017006485B1/en
Priority to CN201580054761.8A priority patent/CN106797239B/en
Publication of WO2016055003A1 publication Critical patent/WO2016055003A1/en
Publication of WO2016055003A9 publication Critical patent/WO2016055003A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities

Definitions

  • the disclosed embodiments relate generally to wireless communication, and, more particularly, to beam administration methods in a Millimeter Wave (mmW) beamforming system.
  • mmW Millimeter Wave
  • the bandwidth shortage increasingly experienced by mobile carriers has motivated the exploration of the underutilized Millimeter Wave (mmWave) frequency spectrum between 3G and 300G Hz for the next generation broadband cellular communication networks.
  • the available spectrum of mmWave band is two hundred times greater than the conventional cellular system.
  • the mmWave wireless network uses directional communications with narrow beams and can support multi-gigabit data rate.
  • the underutilized bandwidth of the mmWave spectrum has wavelengths ranging from 1mm to 100mm.
  • the very small wavelengths of the mmWave spectrum enable large number of miniaturized antennas to be placed in a small area.
  • Such miniaturized antenna system can produce high beamforming gains through electrically steerable arrays generating directional transmissions.
  • mmWave wireless system has become a promising solution for real implementation.
  • the heavy reliance on directional transmissions and the vulnerability of the propagation environment present particular challenges for the mmWave network.
  • a cellular network system is designed to achieve the following goals: 1) Serve many users with widely dynamical operation conditions simultaneously; 2) Robust to the dynamics in channel variation, traffic loading and different QoS requirement; and 3) Efficient utilization of resources such as bandwidth and power. Beamforming adds to the difficulty in achieving these goals.
  • beam administration/training mechanism which includes both initial beam alignment and subsequent beam tracking, ensures that base station (BS) beam and user equipment (UE) beam are aligned for data communication.
  • BS base station
  • UE user equipment
  • Hierarchical level beam pattern is assumed in wireless or cellular networks. Different beamformers can have different spatial resolution. For example, a sector antenna can have shorter by wider spatial coverage, while a beamforming antenna can have longer by narrower spatial coverage. To provide moderate array gain, large number of array elements may be needed.
  • Adaptive beamforming means digital beamforming.
  • the complexity of adaptive beamforming is high with flexible beam patterns, while beam alignment time is acceptable.
  • Switched beamforming is analog or hybrid beamforming.
  • the complexity of switched beam forming is low, while beam patterns are not flexible and beam alignment time is long. Beam administration methods are sought to perform beam alignment and beam tracking for both BS and UE.
  • a method of beam administration in a cellular or wireless network is proposed.
  • Cellular/wireless networks operating at Ka or higher frequency band require the use of directional antenna (or through array-based beamforming) to compensate for sever pathloss. Maintaining antenna pointing and tracking accuracy is essential in many phases of the communication process.
  • uplink pilot signals for beam alignment/tracking combined with switched beamforming at the UE and adaptive beamforming at the BS, an effective beam administration is achieved with reduced overhead, complexity, and cost.
  • a base station provides beam training information to a UE in a wireless communication network.
  • the beam training information comprises a training period, a window size, and resource mapping information.
  • the base station receives an uplink pilot signal transmitted from the UE over one or more UE beams.
  • the base station performs adaptive beamforming using a plurality of BS beams for each UE beam.
  • the base station transmits a beam training complete command to the UE.
  • the beam training complete command comprises a selected UE beam ID, a selected BS beam ID, and a timing advance value associated with the selected UE beam for uplink transmission.
  • a user equipment obtains beam training information in a wireless communication network.
  • the beam training information comprises a training period, a window size, and resource mapping information.
  • the UE transmits an uplink pilot signal over one or more UE beams based on the received beam training information.
  • the UE receives a beam training complete command from the BS.
  • the beam training complete command comprises a selected UE beam ID, a selected BS beam ID, and a timing advance value associated with the selected UE beam for uplink transmission.
  • Figure 1 illustrates control beams and dedicated beams and beam administration between BS and UE in a beamforming wireless communication system in accordance with one novel aspect.
  • Figure 2 is a simplified block diagram of a base station and a user equipment that carry out certain embodiments of the present invention.
  • Figure 3 illustrates beam administration for beam alignment and beam tracking.
  • Figure 4 illustrates different options of beamforming for beam administration.
  • Figure 5 illustrates one embodiment of random access procedure followed by beam alignment.
  • Figure 6 illustrates one embodiment of contention based joint random access and beam administration process in a beamforming system.
  • Figure 7 illustrates one embodiment of non-contention based joint random access and beam administration process in a beamforming system.
  • Figure 8 illustrates a UE-initiated beam tracking procedure in a beamforming system.
  • Figure 9 illustrates a BS-initiated beam tracking procedure in a beamforming system.
  • Figure 10 is a flow chart of a method of beam administration from UE perspective in a beamforming system in accordance with one novel aspect.
  • Figure 11 is a flow chart of a method of beam administration from BS perspective in a beamforming system in accordance with one novel aspect.
  • FIG. 1 illustrates control beams and dedicated beams and beam administration between a base station and a user equipment in a beamforming Millimeter Wave (mmWave) cellular network 100 in accordance with one novel aspect.
  • Beamforming mmWave mobile communication network 100 comprises a base station BS 101 and a user equipment UE 102.
  • the mmWave cellular network uses directional communications with narrow beams and can support multi-gigabit data rate.
  • Directional communications are achieved via digital (adaptive) and/or analog (switched) beamforming, wherein multiple antenna elements are applied with multiple sets of beamforming weights to form multiple beams.
  • BS 101 is directionally configured with multiple cells, and each cell is covered by a set of coarse TX/RX control beams.
  • cell 110 is covered by a set of four control beams CB1, CB2, cB3, and CB4.
  • the collection of the control beams CB1-CB4 covers an entire service area of cell 110, and each control beam has a wider and shorter spatial coverage with smaller array gain.
  • Each control beam in turn is covered by a set of dedicated data beams.
  • CB2 is covered by a set of four dedicated data beams DB1, DB2, DB3, and DB4.
  • the collection of the dedicated data beams covers a service area of one control beam, and each dedicated data beam has a narrower and longer spatial coverage with larger array gain.
  • UE 102 may also apply beamforming to from multiple beams.
  • Hierarchical level beam patterns is assumed in wireless or cellular networks.
  • Level 0 beam pattern is omni-directional and used for macro cell stations.
  • the set of control beams are lower-level (Level 1) beams that provide low rate control signaling to facilitate high rate data communication on higher-level (Level 2) dedicated data beams.
  • the set of control beams may be periodically configured or occur indefinitely and repeatedly in order known to the UEs.
  • the set of control beams covers the entire cell coverage area with moderate beamforming gain.
  • Each control beam broadcasts minimum amount of cell-specific and beam-specific information similar to System Information Block (SIB) or Master Information Block (MIB) in LTE systems.
  • SIB System Information Block
  • MIB Master Information Block
  • the control beam and dedicated data beam architecture provides a robust control-signaling scheme to facilitate the beamforming operation in mmWave cellular network systems.
  • beam administration mechanism which includes both initial beam alignment and subsequent beam tracking, ensures that BS beam and UE beam are aligned for data communication.
  • BS DB#3 is aligned with UE beam #1 in Figure 1.
  • beamforming There are two types of beamforming: switched beamforming and adaptive beamforming.
  • Adaptive beamforming means digital beamforming.
  • the complexity of adaptive beamforming is high with flexible beam patterns, while beam alignment time is acceptable.
  • Switched beamforming is analog or hybrid beamforming.
  • the complexity of switched beam forming is low, while beam patterns are not flexible and beam alignment time is long. In general, the complexity of BS can be much higher than that of UE, especially in antenna design and baseband signaling processing.
  • UE 102 can use switched beamforming to reduce complexity and cost, while BS 101 can use adaptive or digital beamforming to obtain more degree of freedom in antenna beam patterns.
  • the number of RF chains at BS side can be larger than that at UE side.
  • the number of uplink pilot signals is less than that of downlink pilot signal with the same beam training performance.
  • FIG. 2 is a simplified block diagram of a base station and a user equipment that carry out certain embodiments of the present invention.
  • BS 201 has an antenna array 211 having multiple antenna elements that transmits and receives radio signals, one or more RF transceiver modules 212, coupled with the antenna array, receives RF signals from antenna 211, converts them to baseband signal, and sends them to processor 213.
  • RF transceiver 212 also converts received baseband signals from processor 213, converts them to RF signals, and sends out to antenna 211.
  • Processor 213 processes the received baseband signals and invokes different functional modules to perform features in BS 201.
  • Memory 214 stores program instructions and data 215 to control the operations of BS 201.
  • BS 201 also includes multiple function modules that carry out different tasks in accordance with embodiments of the current invention.
  • UE 202 has an antenna 231, which transmits and receives radio signals.
  • a RF transceiver module 232 coupled with the antenna, receives RF signals from antenna 231, converts them to baseband signals and sends them to processor 233.
  • RF transceiver 232 also converts received baseband signals from processor 233, converts them to RF signals, and sends out to antenna 231.
  • Processor 233 processes the received baseband signals and invokes different functional modules to perform features in UE 202.
  • Memory 234 stores program instructions and data 235 to control the operations of UE 202.
  • UE 202 also includes multiple function modules and circuits that carry out different tasks in accordance with embodiments of the current invention.
  • BS 201 comprises a beam training circuit 220, which further comprises a beamforming circuit 221, a beam monitor 222, and a beam training information circuit 223.
  • Beamforming circuit 221 may belong to part of the RF chain, which applies various beamforming weights to multiple antenna elements of antenna 211 and thereby forming various beams.
  • Beam monitor 222 monitors received radio signals and performs measurements of the radio signals over the various beams.
  • Beam training information circuit 223 provides beam training information including training period, window size, and resource mapping information to UE.
  • UE 202 comprises a beam training circuit 240, which further comprises a beamforming circuit 241, a beam monitor 242, a beam capability circuit 243, and a random access circuit 244.
  • Beamforming circuit 241 may belong to part of the RF chain, which applies various beamforming weights to multiple antenna elements of antenna 231 and thereby forming various beams. Beamforming circuit 241 is optional for UE side, because UE 202 can use omni beam instead.
  • Beam monitor 242 monitors received radio signals and performs measurements of the radio signals over the various beams.
  • Beam capability circuit 243 provides UE beamforming/antenna capability information and preferred beam patterns/codebook for beam training.
  • Random access circuit 244 performs contention-based and non-contention-based random access procedure with BS, which can be combined with the beam training procedure for beam alignment and beam tracking.
  • Figure 3 illustrates beam administration for beam alignment and beam tracking in a beamforming network 300.
  • Beam training includes initial beam alignment and subsequent beam tracking, which ensures that BS 301 and UE 302 are aligned for data transmission.
  • BS 301 transmits downlink pilot signals so that UE 302 can train the UE receiving beams.
  • UE 302 transmits uplink pilot signals so that BS 301 can train the BS receiving beams.
  • phased array reciprocity or channel reciprocity the same receiving antenna pattern can be used for transmitting antenna pattern. Different algorithms can be applied in choosing the best receiving beam, including (but not limited to) power maximization, SINR maximization, or interference minimization.
  • Figure 4 illustrates different options of beamforming for beam administration.
  • both BS and UE perform switched beamforming. Under this option, beam alignment time is long (assume BS antenna number is large) .
  • BS performs switched beamforming, while UE performs adaptive beamforming. Under this option, UE complexity is too high, and beam alignment time is long (assume BS antenna number is large) .
  • BS performs adaptive beamforming, while UE performs switched beamforming.
  • both BS and UE perform adaptive beamforming. Under this option, UE complexity is too high.
  • the complexity of BS can be much higher than that of UE, especially in antenna design and baseband signal processing.
  • the number of RF chains at BS side can be larger than that at UE side.
  • the BS can estimate different angle of arrival of uplink pilot signal simultaneously because several receiving beam patterns can be formed by adaptive beamforming. Therefore, among the different options, the third option is preferred.
  • UE can use switched beamforming to reduce complexity and cost.
  • BS can use adaptive or digital beamforming to obtain more degree of freedom in antenna beam patterns. Under this option, both UE and BS complexity is acceptable. Beam patterns for BS are more flexible. Beam alignment time is acceptable.
  • UL pilot signal is used for beam administration, including beam alignment and beam tracking.
  • FIG. 5 illustrates one embodiment of random access procedure followed by a UE-initiated beam alignment procedure.
  • UE 501 transmits a random access preamble with RA-RNTI and control beam ID.
  • UE 501 receives a random access response from BS 502 with timing advance (TA) , temporary C-RNTI, and UL grant.
  • TA timing advance
  • UE 501 transmits an RRC connection request with L2/L3 message.
  • UE 501 receives connection resolution with C-RNTI.
  • BS 502 sends an RRC connection setup with UE specific configuration.
  • UE 501 sends an RRC connection setup complete with PLMN ID and dedicated NAS info. The random access and RRC connection setup procedure are completed.
  • UE 501 sends a beam alignment request with C-RNTI, UE ID, and UE beam ID (e.g., the number of UE beams to be trained if multiple UE beams) . This can be sent before or after RRC connection completed. Note that before second the beam alignment request, UE 501 can align the receiving beam by using cell search or control signals first. Based on phased array reciprocity or channel reciprocity, UE 501 uses the same receiving antenna pattern as transmitting antenna pattern. In step 517, UE 501 receives beam alignment information command from BS 502. The beam alignment information command contains beam alignment period (how often) , window size (how long) , and resource mapping information. In step 518, UE 501 continuously sends uplink pilot signals based on the beam alignment information command over each to-be-trained UE beam using switched beamforming.
  • C-RNTI C-RNTI
  • UE ID e.g., the number of UE beams to be trained if multiple UE beams
  • UE beam ID e.
  • BS 502 uses the received pilot signal to choose the best receiving beam based on power maximization, SINR maximization, or interference minimization with angle of arrival (AoA) algorithm.
  • AoA the receiver employs multiple antennas to receive signal and resolves angle of arrival relative to its own antenna platform orientation. Note that the beam alignment procedure is not limited to exhaustive or hierarchical search for different level of beams.
  • BS 502 can simultaneously receive uplink pilot signal by different antenna or beam patterns based on BS RF and baseband processing capability.
  • step 519 after BS 502 has decided the best receiving beam, BS 502 sends a beam alignment complete message to UE 501 with an acknowledgement, a selected UE beam ID (if multiple UE beams are trained) , BS beam ID (optional) , and TA information. Note that it is optional to inform the BS beam ID to the UE because it is BS side decision only.
  • step 520 UE 501 and BS 502 perform data transmission accordingly.
  • UE 501 can adjust its timing advance for uplink synchronization based on the receiving TA value in step 519.
  • the beam alignment request and beam alignment information command can be omitted in some cases.
  • Either contention-based or non-contention-based random access procedure can be used and combined with beam administration procedure.
  • the random access preamble is used as the uplink pilot signal for beam alignment
  • the random access response (RAR) message is used as the beam alignment complete command.
  • FIG. 6 illustrates one embodiment of contention based joint random access and beam administration process in a beamforming system.
  • UE 601 transmits a random access preamble with RA-RNTI, control beam ID, and UE beam ID.
  • the random access preamble is equivalent to the uplink pilot signal for beam training.
  • UE 601 randomly selects a random access preamble and RACH resource for the transmission.
  • UE 601 receives a random access response (RAR) from BS 602 with timing advance (TA) , temporary C-RNTI, UE beam ID, BS beam ID (optional) , and UL grant.
  • the RAR is equivalent to the beam alignment complete command.
  • UE 601 transmits an RRC connection request with L2/L3 message.
  • UE 601 receives connection resolution with C-RNTI.
  • BS 602 sends an RRC connection setup with UE specific configuration.
  • UE 601 sends an RRC connection setup complete with PLMN ID and dedicated NAS info. The random access and RRC connection setup procedure are completed.
  • Figure 7 illustrates one embodiment of non-contention based joint random access and beam administration process in a beamforming system.
  • UE 701 and BS 702 perform initial beam alignment and beam tracking (optional) . This could be either UE-initiated or BS-initiated. If beam tracking is regarded as a regular process, then the rule for this process is transmitted in system information.
  • BS 702 sends a beam alignment/tracking information command.
  • the command includes training period, window size, resource mapping information, including random access sequence number.
  • UE 701 transmits random access preamble based on received beam alignment/tracking information.
  • the random access preamble is equivalent to the uplink pilot signal for beam alignment/tracking.
  • the random access preamble and RACH resource is already assigned by BS 702 via the resource mapping information.
  • BS 702 sends a random access response (RAR) to UE 701, which includes TA, ACK the selected UE beam or codebook, and BS beam ID (optional) .
  • RAR is equivalent to the beam alignment/tracking complete command.
  • FIG. 8 illustrates a UE-initiated beam tracking procedure in a beamforming system. Beam tracking procedure only operates under beam-aligned condition.
  • UE 801 sends a beam-tracking request to initialize beam-tracking procedure.
  • UE 801 reports the beamforming and antenna capability and preferred beam patterns or codebook for tracking. This step can be omitted or combined with other control signaling (such as UE capability reporting) .
  • BS 802 sends beam-tracking information to UE 801. The information can be sent in cell/beam-specific system information and then this step can be omitted. The information can also be sent in UE-specific. Beam tracking period, window size, and resource mapping information are carried in the beam tracking information command.
  • UE 801 continuously sends uplink pilot signal based on beam tracking information over each UE beam.
  • BS 802 uses received pilot signals to choose the best receiving beam based on power maximization, SINR maximization, or interference minimization with angle of arrival estimation algorithm. Note that the beam tracking procedure is not limited to exhaustive or hierarchical search for different level of beams.
  • BS 802 can simultaneously receive uplink pilot signal by different antenna or beam patterns based on BS RF and baseband processing capability.
  • BS 802 sends a beam ID indication command to UE 801 with an acknowledgement of the selected UE beam ID or codebook, BS beam ID (optional) , and TA information.
  • step 815 UE 801 performs data transmission and adjusts the transmitting beam pattern after receiving the beam ID indication. If beam ID indication is not received, UE 801 uses the current beam pattern for data transmission. UE 801 can adjust its timing advance for uplink synchronization based on the receiving TA value in step 814.
  • FIG. 9 illustrates a BS-initiated beam tracking procedure in a beamforming system.
  • Beam tracking procedure only operates under beam-aligned condition.
  • BS 902 uses beam-tracking request to initialize the beam tracking procedure. This step can be omitted or combined with other control signaling.
  • UE 901 reports the beamforming and antenna capability and preferred beam patterns or codebook for tracking. This step can be omitted or combined with other control signaling (such as UE capability reporting) .
  • BS 902 sends beam-tracking information to UE 901. The information can be sent in cell/beam-specific system information and then this step can be omitted. The information can also be sent in UE-specific.
  • Beam tracking period, window size, and resource mapping information are carried in the beam tracking information command.
  • UE 901 continuously sends uplink pilot signal based on beam tracking information over each UE beam.
  • BS 902 uses received pilot signals to choose the best receiving beam based on power maximization, SINR maximization, or interference minimization with angle of arrival estimation algorithm. Note that the beam tracking procedure is not limited to exhaustive or hierarchical search for different level of beams.
  • BS 902 can simultaneously receive uplink pilot signal by different antenna or beam patterns based on BS RF and baseband processing capability.
  • step 915 after BS 902 has decided the best receiving beam, BS 902 sends a beam ID indication command to UE 901 with an acknowledgement of the selected UE beam ID or codebook, BS beam ID (optional) , and TA information.
  • step 916 UE 901 performs data transmission and adjusts the transmitting beam pattern after receiving the beam ID indication. If beam ID indication is not received, UE 901 uses the current beam pattern for data transmission. UE 901 can adjust its timing advance for uplink synchronization based on the receiving TA value in step 915.
  • FIG. 10 is a flow chart of a method of beam administration from UE perspective in a beamforming system in accordance with one novel aspect.
  • a base station provides beam training information to a UE in a wireless communication network.
  • the beam training information comprises a training period, a window size, and resource mapping information.
  • the base station receives an uplink pilot signal transmitted from the UE over one or more UE beams.
  • the base station performs adaptive beamforming using a plurality of BS beams for each UE beam.
  • the base station transmits a beam training complete command to the UE.
  • the beam training complete command comprises a selected UE beam ID, a selected BS beam ID (optional) , and a timing advance value associated with the selected UE beam for uplink transmission.
  • FIG 11 is a flow chart of a method of beam administration from BS perspective in a beamforming system in accordance with one novel aspect.
  • a user equipment obtains beam training information in a wireless communication network.
  • the beam training information comprises a training period, a window size, and resource mapping information.
  • the UE transmits an uplink pilot signal over one or more UE beams based on the received beam training information.
  • the UE receives a beam training complete command from the BS.
  • the beam training complete command comprises a selected UE beam ID, a selected BS beam ID (optional) , and a timing advance value associated with the selected UE beam for uplink transmission.

Abstract

A method of beam administration in a cellular or wireless network is proposed. Cellular/wireless networks operating at Ka or higher frequency band require the use of directional antenna (or through array-based beamforming) to compensate for sever pathloss. Maintaining antenna pointing and tracking accuracy is essential in many phases of the communication process. By using uplink pilot signals for beam alignment/tracking, combined with switched beamforming at the UE and adaptive beamforming at the BS, an effective beam administration is achieved with reduced overhead, complexity, and cost.

Description

BEAM ADMINISTRATION METHODS FOR CELLUALR OR WIRELESS NETWORKS
CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application Number 62/060,786, entitled “Beam Administration Methods for Cellular/Wireless Networks, ” filed on October 7, 2014 and U.S. Provisional Application Number 14/868,705, filed on September 29, 2015, the subject matter of which is incorporated herein by reference.
TECHNICAL FIELD
The disclosed embodiments relate generally to wireless communication, and, more particularly, to beam administration methods in a Millimeter Wave (mmW) beamforming system.
BACKGROUND
The bandwidth shortage increasingly experienced by mobile carriers has motivated the exploration of the underutilized Millimeter Wave (mmWave) frequency spectrum between 3G and 300G Hz for the next generation broadband cellular communication networks. The available spectrum of mmWave band is two hundred times greater than the conventional cellular system. The mmWave wireless network uses directional communications with narrow beams and can support multi-gigabit data rate. The underutilized bandwidth of the mmWave spectrum has wavelengths ranging from 1mm to 100mm. The very small wavelengths of the mmWave spectrum enable large number of miniaturized antennas to be placed in a small area. Such miniaturized antenna system can produce high beamforming gains through electrically steerable arrays generating directional transmissions.
With recent advances in mmWave semiconductor circuitry, mmWave wireless system has become a promising solution for real implementation. However, the heavy reliance on directional transmissions and the vulnerability of the propagation environment present particular challenges for the mmWave network. In general, a cellular network system is designed to achieve the following goals: 1) Serve many users with widely dynamical operation conditions simultaneously; 2) Robust to the dynamics in channel variation, traffic loading and different QoS requirement; and 3) Efficient utilization of resources such as bandwidth and power. Beamforming adds to the difficulty in achieving these goals.
Maintaining antenna pointing and tracking accuracy is essential in many phases of the communication process. In principle, beam administration/training mechanism, which includes both initial beam alignment and subsequent beam tracking, ensures that base station (BS) beam and user equipment (UE) beam are aligned for data communication. Hierarchical level beam pattern is assumed in wireless or cellular networks. Different beamformers can have different spatial resolution. For example, a sector antenna can have shorter by wider spatial coverage, while a beamforming antenna can have longer by narrower spatial coverage. To provide moderate array gain, large number of array elements may be needed.
There are two types of beamforming: switched beamforming and adaptive beamforming. Adaptive beamforming means digital beamforming. The complexity of adaptive beamforming is high with flexible beam patterns, while beam alignment time is acceptable. Switched beamforming is analog or hybrid beamforming. The complexity of switched beam forming is low, while beam patterns are not flexible and beam alignment time is long. Beam administration methods are sought to perform beam alignment and beam tracking for both BS and UE.
SUMMARY
A method of beam administration in a cellular or wireless network is proposed. Cellular/wireless networks operating at Ka or higher frequency band require the use of directional antenna (or through array-based beamforming) to compensate for sever pathloss. Maintaining antenna pointing and tracking accuracy is essential in many phases of the communication process. By using uplink pilot signals  for beam alignment/tracking, combined with switched beamforming at the UE and adaptive beamforming at the BS, an effective beam administration is achieved with reduced overhead, complexity, and cost.
In one embodiment, a base station provides beam training information to a UE in a wireless communication network. The beam training information comprises a training period, a window size, and resource mapping information. The base station receives an uplink pilot signal transmitted from the UE over one or more UE beams. The base station performs adaptive beamforming using a plurality of BS beams for each UE beam. Finally, the base station transmits a beam training complete command to the UE. The beam training complete command comprises a selected UE beam ID, a selected BS beam ID, and a timing advance value associated with the selected UE beam for uplink transmission.
In another embodiment, a user equipment (UE) obtains beam training information in a wireless communication network. The beam training information comprises a training period, a window size, and resource mapping information. The UE transmits an uplink pilot signal over one or more UE beams based on the received beam training information. The UE receives a beam training complete command from the BS. The beam training complete command comprises a selected UE beam ID, a selected BS beam ID, and a timing advance value associated with the selected UE beam for uplink transmission.
Other embodiments and advantages are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
BRIEF DESCRIPTION OF DRAWINGS
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
Figure 1 illustrates control beams and dedicated beams and beam administration between BS and UE in a beamforming wireless communication system in accordance with one novel aspect.
Figure 2 is a simplified block diagram of a base station and a user equipment that carry out certain embodiments of the present invention.
Figure 3 illustrates beam administration for beam alignment and beam tracking.
Figure 4 illustrates different options of beamforming for beam administration.
Figure 5 illustrates one embodiment of random access procedure followed by beam alignment.
Figure 6 illustrates one embodiment of contention based joint random access and beam administration process in a beamforming system.
Figure 7 illustrates one embodiment of non-contention based joint random access and beam administration process in a beamforming system.
Figure 8 illustrates a UE-initiated beam tracking procedure in a beamforming system.
Figure 9 illustrates a BS-initiated beam tracking procedure in a beamforming system.
Figure 10 is a flow chart of a method of beam administration from UE perspective in a beamforming system in accordance with one novel aspect.
Figure 11 is a flow chart of a method of beam administration from BS perspective in a beamforming system in accordance with one novel aspect.
DETAILED DESCRIPTION
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Figure 1 illustrates control beams and dedicated beams and beam administration between a base station and a user equipment in a beamforming Millimeter Wave (mmWave) cellular network 100 in accordance with one novel aspect. Beamforming mmWave mobile communication network 100 comprises a base station BS 101 and a user equipment UE 102. The mmWave cellular network uses directional communications with narrow beams and can support multi-gigabit data rate. Directional communications are achieved via digital (adaptive) and/or analog (switched) beamforming, wherein multiple antenna elements are applied with multiple sets of beamforming weights to form multiple beams. In the example of Figure 1, BS 101 is directionally configured with multiple cells, and each cell is  covered by a set of coarse TX/RX control beams. For example, cell 110 is covered by a set of four control beams CB1, CB2, cB3, and CB4. The collection of the control beams CB1-CB4 covers an entire service area of cell 110, and each control beam has a wider and shorter spatial coverage with smaller array gain. Each control beam in turn is covered by a set of dedicated data beams. For example, CB2 is covered by a set of four dedicated data beams DB1, DB2, DB3, and DB4. The collection of the dedicated data beams covers a service area of one control beam, and each dedicated data beam has a narrower and longer spatial coverage with larger array gain. Similarly, UE 102 may also apply beamforming to from multiple beams.
Hierarchical level beam patterns is assumed in wireless or cellular networks. Level 0 beam pattern is omni-directional and used for macro cell stations. The set of control beams are lower-level (Level 1) beams that provide low rate control signaling to facilitate high rate data communication on higher-level (Level 2) dedicated data beams. The set of control beams may be periodically configured or occur indefinitely and repeatedly in order known to the UEs. The set of control beams covers the entire cell coverage area with moderate beamforming gain. Each control beam broadcasts minimum amount of cell-specific and beam-specific information similar to System Information Block (SIB) or Master Information Block (MIB) in LTE systems. The control beam and dedicated data beam architecture provides a robust control-signaling scheme to facilitate the beamforming operation in mmWave cellular network systems.
Maintaining antenna pointing and tracking accuracy is essential in many phases of the communication process. In principle, beam administration mechanism, which includes both initial beam alignment and subsequent beam tracking, ensures that BS beam and UE beam are aligned for data communication. For example, BS DB#3 is aligned with UE beam #1 in Figure 1. There are two types of beamforming: switched beamforming and adaptive beamforming. Adaptive beamforming means digital beamforming. The complexity of adaptive beamforming is high with flexible beam patterns, while beam alignment time is acceptable. Switched beamforming is analog or hybrid beamforming. The complexity of switched beam forming is low, while beam patterns are not flexible and beam alignment time is long. In general, the complexity of BS can be much higher than that of UE, especially in antenna design and baseband signaling processing.
In according with one novel aspect, UE 102 can use switched beamforming to reduce complexity and cost, while BS 101 can use adaptive or digital beamforming to obtain more degree of freedom in antenna beam patterns. In general, the number of RF chains at BS side can be larger than that at UE side. As a result, the number of uplink pilot signals is less than that of downlink pilot signal with the same beam training performance. This is because several receiving beam patterns can be formed by adaptive beamforming, which can estimate different angle of arrive simultaneously at BS side. Therefore, by using uplink pilot signals for beam training, combined with switched beamforming at the UE and adaptive beamforming at the BS, an effective beam administration is achieved with reduced overhead, complexity, and cost.
Figure 2 is a simplified block diagram of a base station and a user equipment that carry out certain embodiments of the present invention. BS 201 has an antenna array 211 having multiple antenna elements that transmits and receives radio signals, one or more RF transceiver modules 212, coupled with the antenna array, receives RF signals from antenna 211, converts them to baseband signal, and sends them to processor 213. RF transceiver 212 also converts received baseband signals from processor 213, converts them to RF signals, and sends out to antenna 211. Processor 213 processes the received baseband signals and invokes different functional modules to perform features in BS 201. Memory 214 stores program instructions and data 215 to control the operations of BS 201. BS 201 also includes multiple function modules that carry out different tasks in accordance with embodiments of the current invention.
Similarly, UE 202 has an antenna 231, which transmits and receives radio signals. A RF transceiver module 232, coupled with the antenna, receives RF signals from antenna 231, converts them to baseband signals and sends them to processor 233. RF transceiver 232 also converts received baseband signals from processor 233, converts them to RF signals, and sends out to antenna 231. Processor 233 processes the received baseband signals and invokes different functional modules to perform features in UE 202. Memory 234 stores program instructions and data 235 to control the operations of UE 202. UE 202 also includes multiple function modules and circuits that carry out different tasks in accordance with embodiments of the current invention.
The functional modules are circuits that can be implemented and configured by hardware, firmware, software, and any combination thereof. For example, BS 201 comprises a beam training circuit 220, which further comprises a beamforming circuit 221, a beam monitor 222, and a beam training information circuit 223. Beamforming circuit 221 may belong to part of the RF chain, which applies various beamforming weights to multiple antenna elements of antenna 211 and thereby forming various beams. Beam monitor 222 monitors received radio signals and performs measurements of the radio signals over the various beams. Beam training information circuit 223 provides beam training information including training period, window size, and resource mapping information to UE.
Similarly, UE 202 comprises a beam training circuit 240, which further comprises a beamforming circuit 241, a beam monitor 242, a beam capability circuit 243, and a random access circuit 244. Beamforming circuit 241 may belong to part of the RF chain, which applies various beamforming weights to multiple antenna elements of antenna 231 and thereby forming various beams. Beamforming circuit 241 is optional for UE side, because UE 202 can use omni beam instead. Beam monitor 242 monitors received radio signals and performs measurements of the radio signals over the various beams. Beam capability circuit 243 provides UE beamforming/antenna capability information and preferred beam patterns/codebook for beam training. Random access circuit 244 performs contention-based and non-contention-based random access procedure with BS, which can be combined with the beam training procedure for beam alignment and beam tracking.
Figure 3 illustrates beam administration for beam alignment and beam tracking in a beamforming network 300. Beam training includes initial beam alignment and subsequent beam tracking, which ensures that BS 301 and UE 302 are aligned for data transmission. For the downlink direction, BS 301 transmits downlink pilot signals so that UE 302 can train the UE receiving beams. For the uplink direction, UE 302 transmits uplink pilot signals so that BS 301 can train the BS receiving beams. Based on phased array reciprocity or channel reciprocity, the same receiving antenna pattern can be used for transmitting antenna pattern. Different algorithms can be applied in choosing the best receiving beam, including (but not limited to) power maximization, SINR maximization, or interference minimization.
Figure 4 illustrates different options of beamforming for beam administration. In a first option, both BS and UE perform switched beamforming.  Under this option, beam alignment time is long (assume BS antenna number is large) . In a second option, BS performs switched beamforming, while UE performs adaptive beamforming. Under this option, UE complexity is too high, and beam alignment time is long (assume BS antenna number is large) . In a third option, BS performs adaptive beamforming, while UE performs switched beamforming. In a fourth option, both BS and UE perform adaptive beamforming. Under this option, UE complexity is too high.
The complexity of BS can be much higher than that of UE, especially in antenna design and baseband signal processing. In other words, the number of RF chains at BS side can be larger than that at UE side. This implies the number of uplink pilot signal is less than that of downlink pilot signal with the same performance. By using adaptive beamforming, the BS can estimate different angle of arrival of uplink pilot signal simultaneously because several receiving beam patterns can be formed by adaptive beamforming. Therefore, among the different options, the third option is preferred. UE can use switched beamforming to reduce complexity and cost. BS can use adaptive or digital beamforming to obtain more degree of freedom in antenna beam patterns. Under this option, both UE and BS complexity is acceptable. Beam patterns for BS are more flexible. Beam alignment time is acceptable. UL pilot signal is used for beam administration, including beam alignment and beam tracking.
Figure 5 illustrates one embodiment of random access procedure followed by a UE-initiated beam alignment procedure. In step 511, UE 501 transmits a random access preamble with RA-RNTI and control beam ID. In step 512, UE 501 receives a random access response from BS 502 with timing advance (TA) , temporary C-RNTI, and UL grant. In step 513, UE 501 transmits an RRC connection request with L2/L3 message. In step 514a, UE 501 receives connection resolution with C-RNTI. In step 514b, BS 502 sends an RRC connection setup with UE specific configuration. In step 515, UE 501 sends an RRC connection setup complete with PLMN ID and dedicated NAS info. The random access and RRC connection setup procedure are completed.
In step 516, UE 501 sends a beam alignment request with C-RNTI, UE ID, and UE beam ID (e.g., the number of UE beams to be trained if multiple UE beams) . This can be sent before or after RRC connection completed. Note that before second the beam alignment request, UE 501 can align the receiving beam by using cell search or control signals first. Based on phased array reciprocity or channel reciprocity, UE 501 uses the same receiving antenna pattern as transmitting antenna pattern. In step  517, UE 501 receives beam alignment information command from BS 502. The beam alignment information command contains beam alignment period (how often) , window size (how long) , and resource mapping information. In step 518, UE 501 continuously sends uplink pilot signals based on the beam alignment information command over each to-be-trained UE beam using switched beamforming.
BS 502 uses the received pilot signal to choose the best receiving beam based on power maximization, SINR maximization, or interference minimization with angle of arrival (AoA) algorithm. In AoA, the receiver employs multiple antennas to receive signal and resolves angle of arrival relative to its own antenna platform orientation. Note that the beam alignment procedure is not limited to exhaustive or hierarchical search for different level of beams. BS 502 can simultaneously receive uplink pilot signal by different antenna or beam patterns based on BS RF and baseband processing capability. In step 519, after BS 502 has decided the best receiving beam, BS 502 sends a beam alignment complete message to UE 501 with an acknowledgement, a selected UE beam ID (if multiple UE beams are trained) , BS beam ID (optional) , and TA information. Note that it is optional to inform the BS beam ID to the UE because it is BS side decision only. In step 520, UE 501 and BS 502 perform data transmission accordingly. UE 501 can adjust its timing advance for uplink synchronization based on the receiving TA value in step 519.
The beam alignment request and beam alignment information command can be omitted in some cases. Either contention-based or non-contention-based random access procedure can be used and combined with beam administration procedure. During the random access procedure, the random access preamble is used as the uplink pilot signal for beam alignment, and the random access response (RAR) message is used as the beam alignment complete command.
Figure 6 illustrates one embodiment of contention based joint random access and beam administration process in a beamforming system. In step 611, UE 601 transmits a random access preamble with RA-RNTI, control beam ID, and UE beam ID. The random access preamble is equivalent to the uplink pilot signal for beam training. UE 601 randomly selects a random access preamble and RACH resource for the transmission. In step 612, UE 601 receives a random access response (RAR) from BS 602 with timing advance (TA) , temporary C-RNTI, UE beam ID, BS beam ID (optional) , and UL grant. The RAR is equivalent to the beam alignment complete command. In step 613, UE 601 transmits an RRC connection request with  L2/L3 message. In step 614a, UE 601 receives connection resolution with C-RNTI. In step 614b, BS 602 sends an RRC connection setup with UE specific configuration. In step 615, UE 601 sends an RRC connection setup complete with PLMN ID and dedicated NAS info. The random access and RRC connection setup procedure are completed.
Figure 7 illustrates one embodiment of non-contention based joint random access and beam administration process in a beamforming system. In step 711, UE 701 and BS 702 perform initial beam alignment and beam tracking (optional) . This could be either UE-initiated or BS-initiated. If beam tracking is regarded as a regular process, then the rule for this process is transmitted in system information. In step 712, BS 702 sends a beam alignment/tracking information command. The command includes training period, window size, resource mapping information, including random access sequence number. In step 713, UE 701 transmits random access preamble based on received beam alignment/tracking information. The random access preamble is equivalent to the uplink pilot signal for beam alignment/tracking. In addition, the random access preamble and RACH resource is already assigned by BS 702 via the resource mapping information. In step 714, BS 702 sends a random access response (RAR) to UE 701, which includes TA, ACK the selected UE beam or codebook, and BS beam ID (optional) . The RAR is equivalent to the beam alignment/tracking complete command.
Figure 8 illustrates a UE-initiated beam tracking procedure in a beamforming system. Beam tracking procedure only operates under beam-aligned condition. In step 811, UE 801 sends a beam-tracking request to initialize beam-tracking procedure. UE 801 reports the beamforming and antenna capability and preferred beam patterns or codebook for tracking. This step can be omitted or combined with other control signaling (such as UE capability reporting) . In step 812, BS 802 sends beam-tracking information to UE 801. The information can be sent in cell/beam-specific system information and then this step can be omitted. The information can also be sent in UE-specific. Beam tracking period, window size, and resource mapping information are carried in the beam tracking information command. In step 813, UE 801 continuously sends uplink pilot signal based on beam tracking information over each UE beam. BS 802 uses received pilot signals to choose the best receiving beam based on power maximization, SINR maximization, or interference minimization with angle of arrival estimation algorithm. Note that the  beam tracking procedure is not limited to exhaustive or hierarchical search for different level of beams. BS 802 can simultaneously receive uplink pilot signal by different antenna or beam patterns based on BS RF and baseband processing capability. In step 814, after BS 802 has decided the best receiving beam, BS 802 sends a beam ID indication command to UE 801 with an acknowledgement of the selected UE beam ID or codebook, BS beam ID (optional) , and TA information. In step 815, UE 801 performs data transmission and adjusts the transmitting beam pattern after receiving the beam ID indication. If beam ID indication is not received, UE 801 uses the current beam pattern for data transmission. UE 801 can adjust its timing advance for uplink synchronization based on the receiving TA value in step 814.
Figure 9 illustrates a BS-initiated beam tracking procedure in a beamforming system. Beam tracking procedure only operates under beam-aligned condition. In step 911, BS 902 uses beam-tracking request to initialize the beam tracking procedure. This step can be omitted or combined with other control signaling. In step 912, UE 901 reports the beamforming and antenna capability and preferred beam patterns or codebook for tracking. This step can be omitted or combined with other control signaling (such as UE capability reporting) . In step 913, BS 902 sends beam-tracking information to UE 901. The information can be sent in cell/beam-specific system information and then this step can be omitted. The information can also be sent in UE-specific. Beam tracking period, window size, and resource mapping information are carried in the beam tracking information command. In step 914, UE 901 continuously sends uplink pilot signal based on beam tracking information over each UE beam. BS 902 uses received pilot signals to choose the best receiving beam based on power maximization, SINR maximization, or interference minimization with angle of arrival estimation algorithm. Note that the beam tracking procedure is not limited to exhaustive or hierarchical search for different level of beams. BS 902 can simultaneously receive uplink pilot signal by different antenna or beam patterns based on BS RF and baseband processing capability. In step 915, after BS 902 has decided the best receiving beam, BS 902 sends a beam ID indication command to UE 901 with an acknowledgement of the selected UE beam ID or codebook, BS beam ID (optional) , and TA information. In step 916, UE 901 performs data transmission and adjusts the transmitting beam pattern after receiving the beam ID indication. If beam ID indication is not received,  UE 901 uses the current beam pattern for data transmission. UE 901 can adjust its timing advance for uplink synchronization based on the receiving TA value in step 915.
Figure 10 is a flow chart of a method of beam administration from UE perspective in a beamforming system in accordance with one novel aspect. In step 1001, a base station provides beam training information to a UE in a wireless communication network. The beam training information comprises a training period, a window size, and resource mapping information. In step 1002, the base station receives an uplink pilot signal transmitted from the UE over one or more UE beams. In step 1003, the base station performs adaptive beamforming using a plurality of BS beams for each UE beam. In step 1004, the base station transmits a beam training complete command to the UE. The beam training complete command comprises a selected UE beam ID, a selected BS beam ID (optional) , and a timing advance value associated with the selected UE beam for uplink transmission.
Figure 11 is a flow chart of a method of beam administration from BS perspective in a beamforming system in accordance with one novel aspect. In step 1101, a user equipment (UE) obtains beam training information in a wireless communication network. The beam training information comprises a training period, a window size, and resource mapping information. In step 1102, the UE transmits an uplink pilot signal over one or more UE beams based on the received beam training information. In step 1103, the UE receives a beam training complete command from the BS. The beam training complete command comprises a selected UE beam ID, a selected BS beam ID (optional) , and a timing advance value associated with the selected UE beam for uplink transmission.
Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.

Claims (22)

  1. A method comprising:
    providing beam training information by a base station (BS) to a user equipment (UE) in a wireless communication network, wherein the beam training information comprises a training period, a window size, and resource mapping information;
    receiving an uplink pilot signal transmitted from the UE over one or more UE beams;
    performing adaptive beamforming using a plurality of BS beams for each UE beam; and
    transmitting a beam training complete command by the base station, wherein the beam training complete command comprises a selected UE beam ID and a timing advance value associated with the selected UE beam for uplink transmission.
  2. The method of Claim 1, wherein the beam training information is provided via cell/beam-specific system information.
  3. The method of Claim 1, wherein the beam training involves either an initial beam alignment procedure or a subsequent beam tracking procedure.
  4. The method of Claim 3, wherein the base station initiates the beam tracking procedure by sending a beam-tracking request and in response receives a beam capability report comprising a number of UE beam patterns for tracking.
  5. The method of Claim 1, wherein the adaptive beamforming involves selecting a best BS beam based on one of a maximum signal power, a maximum signal to noise ration or signal to interference plus noise ratio (SNR/SINR) , a minimum interference, and an angle of arrival estimation.
  6. The method of Claim 1, wherein the uplink pilot signal is received as a random access preamble transmitted over a random access channel (RACH) during a RACH procedure.
  7. The method of Claim 6, wherein the RACH procedure is contention-based for initial beam alignment.
  8. The method of Claim 6, wherein the RACH procedure is non-contention-based for subsequent beam tracking, and wherein the BS assigns the random access preamble and allocates a RACH resource via the resource mapping information.
  9. A method comprising:
    obtaining beam training information by a user equipment (UE) in a wireless communication network, wherein the beam training information comprises a training period, a window size, and resource mapping information;
    transmitting an uplink pilot signal by the UE over one or more UE beams based on the received beam training information; and
    receiving a beam training complete command from a base station (BS) , wherein the beam training complete command comprises a selected UE beam ID and a timing advance value associated with the selected UE beam for uplink transmission.
  10. The method of Claim 9, wherein the UE applies switched beamforming over the one or more UE beams for the uplink pilot signal transmission.
  11. The method of Claim 9, wherein the beam training involves either an initial beam alignment procedure or a subsequent beam tracking procedure.
  12. The method of Claim 9, wherein the uplink pilot signal is transmitted as a random access preamble over a random access channel (RACH) during a RACH procedure.
  13. The method of Claim 12, wherein the RACH procedure is contention-based for initial beam alignment.
  14. The method of Claim 12, wherein the RACH procedure is non-contention-based for subsequent beam tracking, and wherein the UE receives the random access preamble and a RACH resource via the resource mapping information.
  15. The method of Claim 14, wherein the UE initiates the beam tracking procedure by sending a beam-tracking request comprising a number of UE beam patterns for tracking.
  16. A user equipment (UE) , comprising:
    a beam training circuit that obtains beam training information in a wireless communication network, wherein the beam training information comprises a training period, a window size, and resource mapping information;
    a transmitter that transmits an uplink pilot signal by the UE over one or more UE beams based on the received beam training information; and
    a receiver that receives a beam training complete command from a base station (BS) , wherein the beam training complete command comprises a selected UE beam ID and a timing advance value associated with the selected UE beam for uplink transmission.
  17. The UE of Claim 16, wherein the UE applies switched beamforming over the one or more UE beams for the uplink pilot signal transmission.
  18. The UE of Claim 16, wherein the beam training involves either an initial beam alignment procedure or a subsequent beam tracking procedure.
  19. The UE of Claim 16, wherein the uplink pilot signal is transmitted as a random access preamble over a random access channel (RACH) during a RACH procedure.
  20. The UE of Claim 19, wherein the RACH procedure is contention-based for initial beam alignment.
  21. The UE of Claim 19, wherein the RACH procedure is non-contention-based for subsequent beam tracking, and wherein the UE receives the random access preamble and a RACH resource via the resource mapping information.
  22. The UE of Claim 21, wherein the UE initiates the beam tracking procedure by sending a beam-tracking request comprising a number of UE beam patterns for tracking.
PCT/CN2015/091474 2014-10-07 2015-10-08 Beam administration methods for cellualr or wireless networks WO2016055003A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15849639.8A EP3180870B1 (en) 2014-10-07 2015-10-08 Beam administration methods for cellular or wireless networks
BR112017006485-5A BR112017006485B1 (en) 2014-10-07 2015-10-08 BEAM MANAGEMENT METHODS FOR CELLULAR OR WIRELESS NETWORKS AND USER EQUIPMENT
CN201580054761.8A CN106797239B (en) 2014-10-07 2015-10-08 Wave beam management method of cell/wireless network

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462060786P 2014-10-07 2014-10-07
US62/060,786 2014-10-07
US14/868,705 2015-09-29
US14/868,705 US10355761B2 (en) 2014-10-07 2015-09-29 Beam administration methods for cellular/wireless networks

Publications (2)

Publication Number Publication Date
WO2016055003A1 true WO2016055003A1 (en) 2016-04-14
WO2016055003A9 WO2016055003A9 (en) 2017-03-02

Family

ID=55633580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091474 WO2016055003A1 (en) 2014-10-07 2015-10-08 Beam administration methods for cellualr or wireless networks

Country Status (4)

Country Link
US (1) US10355761B2 (en)
EP (1) EP3180870B1 (en)
CN (1) CN106797239B (en)
WO (1) WO2016055003A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548158A (en) * 2016-06-24 2018-01-05 华硕电脑股份有限公司 The method and apparatus that the user equipment beam forming and wave beam of radio communication scan
WO2018014830A1 (en) * 2016-07-20 2018-01-25 中兴通讯股份有限公司 Method and apparatus for measuring timing advance
CN107733504A (en) * 2016-08-12 2018-02-23 电信科学技术研究院 A kind of processing method and terminal of downlink wave beam training signal
WO2018059582A1 (en) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 Method and apparatus for implementing user plane function enhancement in wireless communication system
WO2018068530A1 (en) * 2016-10-12 2018-04-19 华为技术有限公司 Method, device and system for controlling beam alignment
WO2018082017A1 (en) * 2016-11-04 2018-05-11 Mediatek Singapore Pte. Ltd. Methods and apparatus for random access procedure in nr system with beamforming
CN108377559A (en) * 2016-11-04 2018-08-07 华为技术有限公司 Multi-link communication method, terminal device and the network equipment based on wave beam
CN108401521A (en) * 2017-08-10 2018-08-14 北京小米移动软件有限公司 Information generating method and device, signaling method and device
WO2019006882A1 (en) * 2017-07-05 2019-01-10 华为技术有限公司 Method, apparatus and system for training transmission beam
CN109997320A (en) * 2016-11-25 2019-07-09 三星电子株式会社 Equipment and its control method including antenna

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478857B2 (en) * 2012-03-02 2016-10-25 Samsung Electronics Co., Ltd. Apparatus and method for controlling adaptive beamforming gain in wireless communication system
KR102341215B1 (en) * 2014-11-26 2021-12-20 삼성전자주식회사 Scheme for random access in mobile communication system using beam forming
EP3217737B1 (en) 2014-12-29 2019-09-25 Huawei Technologies Co., Ltd. Method and apparatus for aligning beams of antennae of high-low frequency co-station network
US9907093B2 (en) * 2014-12-29 2018-02-27 Electronics And Telecommunications Research Institute Method and apparatus for random access in communications system
CN107005858B (en) * 2015-02-13 2020-09-29 联发科技(新加坡)私人有限公司 Method for beam tracking and recovery and user equipment
KR102324079B1 (en) * 2015-03-20 2021-11-09 삼성전자주식회사 Method for estimating angle and electronic device thereof
US10492161B2 (en) * 2015-05-06 2019-11-26 Lg Electronics Inc. Method and device for acquiring uplink synchronism in consideration of beam forming effect in wireless communication system
US10615862B2 (en) 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
US10425200B2 (en) 2016-04-13 2019-09-24 Qualcomm Incorporated System and method for beam adjustment request
US11088747B2 (en) 2016-04-13 2021-08-10 Qualcomm Incorporated System and method for beam management
KR102471056B1 (en) * 2016-05-11 2022-11-25 아이디에이씨 홀딩스, 인크. Systems and methods for beamformed uplink transmission
MX2018013862A (en) * 2016-05-12 2019-03-21 Interdigital Patent Holdings Inc SYSTEMS AND METHODS FOR BEAMFORMING FEEDBACK IN mmWAVE WIRELESS LOCAL AREA NETWORKS.
WO2017209417A1 (en) * 2016-06-03 2017-12-07 엘지전자 주식회사 Method for transmitting uplink control information in wireless communication system and device therefor
US11916620B2 (en) 2016-06-17 2024-02-27 Nokia Technologies Oy Enhanced uplink beam selection for massive MIMO system
KR101967047B1 (en) * 2016-06-24 2019-04-09 아서스테크 컴퓨터 인코포레이션 Method and apparatus for performing UE beamforming in a wireless communication system
US11451976B2 (en) * 2016-06-24 2022-09-20 Asustek Computer Inc. Method and apparatus for performing UE beamforming in a wireless communication system
KR102021089B1 (en) 2016-06-24 2019-09-11 에스케이텔레콤 주식회사 Uplink signal transmitting apparatus and method
US11678258B2 (en) 2016-07-20 2023-06-13 Lg Electronics Inc. Method and device for receiving system information on basis of beam information
US10368373B2 (en) * 2016-07-25 2019-07-30 Qualcomm Incorporated Beam selection and refinement during a random access channel (RACH) procedure
JP6634982B2 (en) * 2016-07-29 2020-01-22 ソニー株式会社 Terminal device, base station, method and recording medium
CN107682066A (en) * 2016-08-02 2018-02-09 北京信威通信技术股份有限公司 A kind of method and device for receiving data
WO2018027936A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Uplink multiple-input multiple-output (mimo) scheduling using beamformed reference signals
US10271223B2 (en) * 2016-08-12 2019-04-23 Mediatek Inc. Beam management in beamforming systems
US11026261B2 (en) 2016-08-12 2021-06-01 Qualcomm Incorporated Rach conveyance of DL synchronization beam information for various DL-UL correspondence states
US10897718B2 (en) * 2016-09-09 2021-01-19 Lg Electronics Inc. Method and device for performing beam refinement in wireless communication system
CN107872889A (en) * 2016-09-28 2018-04-03 北京信威通信技术股份有限公司 A kind of method and device of wave beam tracking
CN107872267A (en) * 2016-09-28 2018-04-03 北京信威通信技术股份有限公司 A kind of method and device of wave beam tracking
US9942886B1 (en) 2016-10-07 2018-04-10 Qualcomm Incorporated Variable physical uplink control channel (PUCCH) signaling and transmission
WO2018082910A1 (en) * 2016-11-02 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism for switching between uplink and downlink training in hybrid beamforming systems
EP3536111B1 (en) * 2016-11-02 2022-03-23 Telefonaktiebolaget LM Ericsson (publ) A network node and a wireless communication device for random access in beam-based systems
EP3518438B1 (en) 2016-11-03 2023-01-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Uplink transmission method, terminal device and network device
EP3536014A4 (en) * 2016-11-04 2020-08-26 Telefonaktiebolaget LM Ericsson (publ) Methods for measurement reporting, a user equipment and network nodes
US10652894B2 (en) * 2016-11-11 2020-05-12 Qualcomm Incorporated Timing advance reporting for latency reduction
WO2018106260A1 (en) * 2016-12-09 2018-06-14 Intel Corporation Shared-channel access control in beamforming architecture
EP3562206B1 (en) * 2016-12-30 2021-05-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method and terminal device
CN108282863A (en) * 2017-01-05 2018-07-13 华为技术有限公司 A kind of indicating means and device of out-hole run signal
CN110278016B (en) * 2017-01-06 2020-07-24 华为技术有限公司 Signal transmission method, network equipment and terminal equipment
CN110268641B (en) 2017-02-06 2021-03-19 Oppo广东移动通信有限公司 Communication method, terminal equipment and network equipment
US10779273B2 (en) 2017-03-10 2020-09-15 Qualcomm Incorporated NR uplink transmit beam selection based on PDCCH/PDSCH receive beams
WO2018173646A1 (en) * 2017-03-21 2018-09-27 三菱電機株式会社 Communication system
CN108668354B (en) * 2017-03-28 2021-08-03 华为技术有限公司 Communication method, terminal and network equipment
US11166320B2 (en) 2017-04-28 2021-11-02 Lg Electronics Inc. Random access performing method, and device supporting same
CN109089309B (en) * 2017-06-14 2021-01-12 维沃移动通信有限公司 Method for acquiring and feeding back timing advance information, terminal and base station
CN109152006B (en) * 2017-06-15 2021-06-18 大唐移动通信设备有限公司 Uplink beam confirmation method and terminal
WO2018227464A1 (en) * 2017-06-15 2018-12-20 Motorola Mobility Llc Transmitting a beam recovery request
CN109104220B (en) * 2017-06-20 2021-06-22 华为技术有限公司 Beam training method, initiator device and responder device
US10694443B2 (en) 2017-06-27 2020-06-23 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication device and method for network controlled beam based handover in NR
CN109302720B (en) * 2017-07-25 2021-03-23 华为技术有限公司 Method and equipment for selecting wave beam
EP3666022A4 (en) 2017-08-11 2021-03-03 Nokia Technologies Oy Scheduling request procedure with multiple scheduling request configurations
US10735081B2 (en) * 2017-09-13 2020-08-04 Chiun Mai Communication Systems, Inc. Heterogeneous network, mobile device and method for beam training and tracking
US10524266B2 (en) 2017-10-20 2019-12-31 Google Llc Switching transmission technologies within a spectrum based on network load
CN111108783B (en) * 2017-11-03 2021-10-01 华为技术有限公司 Management of time advance values
US10582503B2 (en) * 2017-11-10 2020-03-03 Apple Inc. UE initiated beam management procedure
WO2019096147A1 (en) * 2017-11-17 2019-05-23 华为技术有限公司 Method and apparatus for detecting control information
US10779303B2 (en) 2017-12-12 2020-09-15 Google Llc Inter-radio access technology carrier aggregation
US10608721B2 (en) 2017-12-14 2020-03-31 Google Llc Opportunistic beamforming
US10868654B2 (en) 2017-12-15 2020-12-15 Google Llc Customizing transmission of a system information message
US11246143B2 (en) 2017-12-15 2022-02-08 Google Llc Beamforming enhancement via strategic resource utilization
US10375671B2 (en) 2017-12-22 2019-08-06 Google Llc Paging with enhanced beamforming
EP3763150A1 (en) * 2018-03-05 2021-01-13 Nokia Technologies Oy Communication connection control procedure for supporting and conducting handover
US11251847B2 (en) 2018-03-28 2022-02-15 Google Llc User device beamforming
CN110545129B (en) * 2018-05-29 2021-01-29 华为技术有限公司 Beam transmission method, device and system
EP3844889B1 (en) * 2018-08-31 2023-11-08 Telefonaktiebolaget LM Ericsson (publ) Beam-formed signal transmission from a network node
WO2020055602A1 (en) 2018-09-10 2020-03-19 Google Llc Fast beam tracking
US11470489B2 (en) * 2019-01-11 2022-10-11 Qualcomm Incorporated Synchronization signal block and physical downlink control channel search space monitoring based on user equipment beamforming capability
US11695462B2 (en) * 2019-01-29 2023-07-04 Qualcomm Incorporated Techniques for coordinated beamforming in millimeter wave systems
US11516824B2 (en) * 2019-02-28 2022-11-29 Qualcomm Incorporated Dynamic UE beam switching for mmWave measurements in asynchronous networks
EP3954057A1 (en) * 2019-04-11 2022-02-16 Nokia Technologies Oy Methods and apparatus for determining beam directions after inactive period
US11172417B2 (en) * 2019-05-02 2021-11-09 Ofinno, Llc Multiple access configuration information
CN112086750B (en) 2019-06-13 2022-02-08 中国电信股份有限公司 Method, system and storage medium for working state of terminal antenna panel
US11012312B2 (en) * 2019-07-24 2021-05-18 At&T Intellectual Property I, L.P. Network slice management
KR102399317B1 (en) * 2019-07-30 2022-05-18 한양대학교 산학협력단 Apparatus and method for beam alignment based on location information in wireless communication system
CN111130631B (en) * 2019-12-30 2022-08-02 北京华力创通科技股份有限公司 Wave beam self-adaptive selection method and system of satellite terminal in real network environment
WO2022079188A1 (en) * 2020-10-16 2022-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Iterative transmit refinement
CN114915320A (en) * 2021-02-10 2022-08-16 华为技术有限公司 Beam management method and device
WO2024007124A1 (en) * 2022-07-04 2024-01-11 Zte Corporation Random access response transmission and reception techniques

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137185A (en) * 2007-01-18 2008-03-05 中兴通讯股份有限公司 Method for applying intelligent antenna technique to wireless communication system
CN102271014A (en) * 2011-06-09 2011-12-07 华为技术有限公司 Method and device for pairing wave beams among devices
WO2013022161A1 (en) * 2011-08-10 2013-02-14 Samsung Electronics Co., Ltd. Apparatus and method for beam locking in wireless communication system
WO2013039355A2 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co., Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
US20140051351A1 (en) * 2012-08-17 2014-02-20 Qualcomm Incorporated Method of using zoning map for beam searching, tracking and refinement

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7039441B1 (en) 1999-10-19 2006-05-02 Kathrein-Werke Kg High speed fixed wireless voice/data systems and methods
US20140206367A1 (en) * 2000-06-13 2014-07-24 Comcast Cable Communications, Llc Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US7313417B2 (en) * 2003-12-19 2007-12-25 Electronics And Telecommunications Research Institute Transceiver for a base station with smart antenna and a switched beamforming method in downlink
EP1995979B1 (en) * 2007-05-23 2009-06-03 NTT DoCoMo, Inc. Subchannel allocation apparatus and corresponding method
CN101939926B (en) * 2009-04-03 2013-03-13 联发科技(新加坡)私人有限公司 Method for beamforming training and communicationsystem
US20130229309A1 (en) * 2012-03-01 2013-09-05 Nokia Siemens Networks Oy Beam alignment method utilizing omni-directional sounding and use thereof
KR20130127347A (en) * 2012-05-10 2013-11-22 삼성전자주식회사 Method and apparatus for communication on analog and digital hybrid beam-forming
US8958412B2 (en) 2012-05-11 2015-02-17 Samsung Electronics Co., Ltd. Methods and apparatus for uplink timing alignment in system with large number of antennas
EP2988431B1 (en) * 2013-06-28 2018-11-14 Chung-Ang University Industry-Academy Cooperation Foundation Beam training device and method
KR102139223B1 (en) * 2013-07-02 2020-08-11 삼성전자주식회사 Apparatus and method of synchronization establishing and transmission/receiption of a signal in a beamforming system
US20150103934A1 (en) * 2013-10-16 2015-04-16 Electronics And Telecommunications Research Institute Method and apparatus for communication in millimeter wave mimo communication environment
JP2015165640A (en) * 2014-02-07 2015-09-17 株式会社Nttドコモ User device, base station, and communication method
KR102177804B1 (en) * 2014-03-25 2020-11-11 삼성전자주식회사 Appratus and method for scheduling in a multi input multi output system
US9521560B2 (en) * 2014-03-31 2016-12-13 Nec Corporation Multicell beamforming system and methods for OFDMA small-cell networks
KR102171561B1 (en) * 2014-04-07 2020-10-29 삼성전자주식회사 Method and apparatus for uplink beam tracking in beamforming based cellular systems
US9445282B2 (en) * 2014-11-17 2016-09-13 Mediatek Inc. Transceiver architecture for multiple antenna systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137185A (en) * 2007-01-18 2008-03-05 中兴通讯股份有限公司 Method for applying intelligent antenna technique to wireless communication system
CN102271014A (en) * 2011-06-09 2011-12-07 华为技术有限公司 Method and device for pairing wave beams among devices
WO2013022161A1 (en) * 2011-08-10 2013-02-14 Samsung Electronics Co., Ltd. Apparatus and method for beam locking in wireless communication system
WO2013039355A2 (en) * 2011-09-15 2013-03-21 Samsung Electronics Co., Ltd. Apparatus and method for beam selecting in beamformed wireless communication system
US20140051351A1 (en) * 2012-08-17 2014-02-20 Qualcomm Incorporated Method of using zoning map for beam searching, tracking and refinement

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107548158B (en) * 2016-06-24 2020-09-01 华硕电脑股份有限公司 Method and apparatus for user equipment beamforming and beam sweeping for wireless communications
US10523294B2 (en) 2016-06-24 2019-12-31 Asustek Computer Inc. Method and apparatus for UE beamforming and beam sweeping in a wireless communication system
CN107548158A (en) * 2016-06-24 2018-01-05 华硕电脑股份有限公司 The method and apparatus that the user equipment beam forming and wave beam of radio communication scan
WO2018014830A1 (en) * 2016-07-20 2018-01-25 中兴通讯股份有限公司 Method and apparatus for measuring timing advance
CN107645767A (en) * 2016-07-20 2018-01-30 中兴通讯股份有限公司 The measuring method and device of Timing Advance
CN107733504B (en) * 2016-08-12 2021-11-23 大唐移动通信设备有限公司 Method and terminal for processing downlink beam training signal
CN107733504A (en) * 2016-08-12 2018-02-23 电信科学技术研究院 A kind of processing method and terminal of downlink wave beam training signal
WO2018059582A1 (en) * 2016-09-30 2018-04-05 中兴通讯股份有限公司 Method and apparatus for implementing user plane function enhancement in wireless communication system
CN107959516B (en) * 2016-10-12 2021-10-01 华为技术有限公司 Control method, device and system for beam alignment
CN107959516A (en) * 2016-10-12 2018-04-24 华为技术有限公司 A kind of control method of wave beam alignment, apparatus and system
WO2018068530A1 (en) * 2016-10-12 2018-04-19 华为技术有限公司 Method, device and system for controlling beam alignment
WO2018082654A1 (en) * 2016-11-04 2018-05-11 Mediatek Singapore Pte. Ltd. Random access with beamforming
CN108377559A (en) * 2016-11-04 2018-08-07 华为技术有限公司 Multi-link communication method, terminal device and the network equipment based on wave beam
WO2018082017A1 (en) * 2016-11-04 2018-05-11 Mediatek Singapore Pte. Ltd. Methods and apparatus for random access procedure in nr system with beamforming
TWI665885B (en) * 2016-11-04 2019-07-11 新加坡商聯發科技(新加坡)私人有限公司 Random access with beamforming
US10972924B2 (en) 2016-11-04 2021-04-06 Huawei Technologies Co., Ltd. Beam-based multi-connection communication method, terminal device, and network device
CN108377559B (en) * 2016-11-04 2021-03-30 华为技术有限公司 Multi-connection communication method based on wave beams, terminal equipment and network equipment
US10805961B2 (en) 2016-11-04 2020-10-13 Mediatek Singapore Pte. Ltd. Methods and apparatus to support enhanced random access procedure in NR system with beamforming
CN109997320A (en) * 2016-11-25 2019-07-09 三星电子株式会社 Equipment and its control method including antenna
CN110383705A (en) * 2017-07-05 2019-10-25 华为技术有限公司 A kind of method, apparatus and system of trained transmission beam
WO2019006882A1 (en) * 2017-07-05 2019-01-10 华为技术有限公司 Method, apparatus and system for training transmission beam
CN108401521B (en) * 2017-08-10 2020-11-13 北京小米移动软件有限公司 Information generation method and device and signal transmission method and device
US11159993B2 (en) 2017-08-10 2021-10-26 Beijing Xiaomi Mobile Software Co., Ltd. Information generating method and device, signal transmitting method and device
CN108401521A (en) * 2017-08-10 2018-08-14 北京小米移动软件有限公司 Information generating method and device, signaling method and device
US11653274B2 (en) 2017-08-10 2023-05-16 Beijing Xiaomi Mobile Software Co., Ltd. Information generating method and device, signal transmitting method and device

Also Published As

Publication number Publication date
CN106797239B (en) 2020-09-15
BR112017006485A2 (en) 2018-07-03
EP3180870A4 (en) 2018-04-11
WO2016055003A9 (en) 2017-03-02
EP3180870A1 (en) 2017-06-21
CN106797239A (en) 2017-05-31
US10355761B2 (en) 2019-07-16
US20160099763A1 (en) 2016-04-07
EP3180870B1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
US10355761B2 (en) Beam administration methods for cellular/wireless networks
US10841926B2 (en) Default beam for uplink transmission after connection reestablishment
US9698884B2 (en) Control signaling in a beamforming system
US10674383B2 (en) Channels and procedures for beam failure recovery
TWI716035B (en) Methods and user equipments for transmitting beam failure recovery request
TWI674022B (en) Enhanced random access methods and apparatus
US9853707B2 (en) Channel state information collection for wireless communication system with beamforming
CN109845355B (en) Physical random access channel preamble transmission method and user equipment
WO2021041533A1 (en) Antenna element set selection system
WO2018082017A1 (en) Methods and apparatus for random access procedure in nr system with beamforming
TW201826830A (en) Initial access procedure for multi-beam operation
WO2017167532A1 (en) Beamforming device for forming different beams for control and data signal
Gao et al. Efficient uplink multi-beam initial access scheme for inactive users in mmWave networks
BR112017006485B1 (en) BEAM MANAGEMENT METHODS FOR CELLULAR OR WIRELESS NETWORKS AND USER EQUIPMENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849639

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015849639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015849639

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017006485

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017006485

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170329