WO2016050036A1 - 一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法 - Google Patents

一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法 Download PDF

Info

Publication number
WO2016050036A1
WO2016050036A1 PCT/CN2015/074212 CN2015074212W WO2016050036A1 WO 2016050036 A1 WO2016050036 A1 WO 2016050036A1 CN 2015074212 W CN2015074212 W CN 2015074212W WO 2016050036 A1 WO2016050036 A1 WO 2016050036A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
phosphoric acid
leaching
calcium
phosphate
Prior art date
Application number
PCT/CN2015/074212
Other languages
English (en)
French (fr)
Inventor
蒋训雄
冯林永
汪胜东
蒋开喜
范艳青
张登高
刘巍
尹一男
蒋伟
林江顺
赵磊
Original Assignee
北京矿冶研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京矿冶研究总院 filed Critical 北京矿冶研究总院
Priority to AU2015319798A priority Critical patent/AU2015319798B2/en
Publication of WO2016050036A1 publication Critical patent/WO2016050036A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention belongs to the field of enrichment and comprehensive recovery of associated rare earths, and particularly relates to a method for preferentially leaching of rare earth-containing phosphate ore by removing phosphorus and calcium by using a mixed solution of phosphoric acid and calcium dihydrogen phosphate.
  • rare earth resources There are three kinds of rare earth resources: (1) independent rare earth ores, such as monazite, bastnasite, xenotime, etc.; (2) ionic rare earth ores that are adsorbed on the surface of mineral grains or between layers; (3) Associated rare earth minerals, such as apatite, which exist in other minerals by isomorphous substitution.
  • independent rare earth ores such as monazite, bastnasite, xenotime, etc.
  • ionic rare earth ores that are adsorbed on the surface of mineral grains or between layers
  • Associated rare earth minerals such as apatite, which exist in other minerals by isomorphous substitution.
  • the world's rare earth mineral products are mainly from the first two kinds of rare earth minerals, and the development and utilization of associated rare earth minerals is less.
  • the rare earths in the phosphate rock are common, and the rare earth content is different, up to 5% or more, and the low is only about 0.1%. Since rare earth exists in the phosphate mineral of apatite in the form of isomorphism, physical enrichment has poor enrichment effect on rare earth. Due to the low grade of rare earth and high phosphorus and calcium content of harmful impurities, it is difficult and costly to directly leaching and recovering rare earth.
  • the sulfuric acid method is the basic method for the production of wet-process phosphoric acid in the world.
  • Chinese patent 200710178377.6 discloses the addition of an organic or inorganic surfactant in the process of decomposing phosphate rock by sulfuric acid, so that the crystal form of phosphogypsum is changed to reduce the adsorption of rare earth, and the leaching rate of rare earth can reach 80%.
  • Chinese patent 201010217142.5 discloses a method for leaching rare earth by phosphoric acid. The rare earth phosphate ore is leached with phosphoric acid at a temperature above 65 ° C, and the rare earth leaching rate can reach about 90%. Although the above various methods can better leaching rare earth, it is difficult to further recover rare earth from the solution because the obtained rare earth-containing leaching solution has a high concentration of phosphoric acid and even contains a large amount of impurities such as calcium.
  • the pre-dip preferential removal of phosphorus, calcium, iron, aluminum and other impurities in the phosphate rock to increase the rare earth enrichment ratio is critical for the comprehensive recovery of the associated rare earth in the phosphate rock.
  • Both nitric acid and hydrochloric acid have high dissolving power for phosphorus, calcium and the like in apatite, but at the same time, rare earth is also mostly dissolved, and it is difficult to achieve the purpose of enriching rare earth, and the leachate is a mixture of phosphate and nitrate or chloride.
  • the system is not conducive to the production of phosphoric acid or phosphate fertilizer.
  • sulfuric acid has a high dissolving power for phosphorus in apatite, phosphorus, iron, aluminum, rare earth, etc.
  • the rare earth has a strong adsorption effect, and the leached rare earth re-enters the slag.
  • the amount of phosphogypsum slag is large.
  • about 1 ton of phosphogypsum is produced after leaching of 1 ton of phosphate rock by sulfuric acid.
  • the rare earth is lower in grade than phosphate rock in phosphogypsum slag, and does not reach pre-rich. Set effect.
  • the phosphoric acid is the same as the phosphoric acid or the phosphoric acid of the return system at 60-100 ° C.
  • phosphorus and calcium are removed from the phosphate rock by reaction with phosphoric acid to form water-soluble calcium dihydrogen phosphate [Ca(H 2 PO 4 ) 2 ].
  • the rare earth leaching rate can reach more than 50%; the second step is calcium dihydrogen phosphate and Excessive sulfuric acid reaction causes calcium dihydrogen phosphate to be converted into phosphoric acid, and gypsum is precipitated, and the rare earth leached in the first step is lost due to adsorption again entering the slag.
  • the reaction temperature in the first step is high, in addition to causing a large amount of rare earth to be leached into the solution, the fluorine in the phosphate rock is converted into hydrogen fluoride, and the latter reacts with the aluminosilicate in the phosphate rock, causing a large amount of aluminum and silicon to enter the solution, affecting Subsequent separation.
  • EP 0522234 A1 discloses a method for extracting rare earth from phosphate rock by recovering rare earth from rare earth-containing phosphate rock based on the principle of wet-process phosphoric acid described above by mixing an excess of three times of phosphoric acid with a rare earth-containing phosphate concentrate , the temperature is 60-110 ° C under the conditions of phosphate rock decomposition, the reaction of the ore The slurry is subjected to sedimentation classification to obtain a coarse-grained coarse residue containing calcium and a fine-grained rare earth residue containing rare earth. Due to the high temperature leaching at 60-110 °C, a large amount of rare earth is dissolved into the solution, and the rare earth dissolution rate is 30-40%.
  • Chinese patent 201110143415.0 discloses a method for separating rare earth from phosphate rock.
  • the phosphate rock is leached with excess phosphoric acid, and the insoluble rare earth fluoride is formed by using the characteristic element fluorine in the phosphate rock.
  • the rare earth is enriched in the leaching slag and the phosphorus is obtained. Then enter the solution in the form of calcium dihydrogen phosphate.
  • the key is to combine the phosphoric acid or phosphate fertilizer production process to remove the impurities such as phosphorus, calcium, iron and aluminum in the rare earth-containing phosphate ore by pretreatment without affecting the production of phosphorus products, and to increase the rare earth enrichment ratio.
  • phosphoric acid leaching has a good leaching effect on phosphorus and calcium in apatite, it has a good leaching effect on aluminum, iron, magnesium, etc. due to the large excess of phosphoric acid, and even some rare earths are leached under certain conditions. . Due to the high price of phosphoric acid, it is necessary to recycle the phosphoric acid in the production process, otherwise the cost is high. The dissolution of aluminum, iron and magnesium will affect the regeneration of phosphoric acid. Even after the accumulation of aluminum, iron and magnesium in the system to a certain concentration, the regeneration of phosphoric acid cannot be achieved. The dissolution of the rare earth causes the rare earth to be dispersed and lost. Therefore, reducing the excess phosphate coefficient to reduce the dissolution of aluminum, iron, magnesium, rare earth, etc. is the key to preconcentration of rare earth by phosphoric acid.
  • the object of the present invention is to provide a method for preferentially leaching a rare earth phosphate containing rare earth phosphate ore to remove phosphorus and calcium by using a mixed solution of phosphoric acid and calcium dihydrogen phosphate.
  • a rare earth phosphate containing rare earth phosphate ore to remove phosphorus and calcium by using a mixed solution of phosphoric acid and calcium dihydrogen phosphate.
  • the problem of large excess phosphate coefficient, high rare earth dissolution rate, and a large amount of impurities such as aluminum, iron and magnesium leaching affect the regeneration cycle of phosphoric acid, etc., by controlling the calcium content in the pulp during acid regeneration and leaching A small amount of nanometer calcium hydrogen phosphate particles are formed, and the rare earth carriers are separated and recovered by using the nanoparticles as a rare earth carrier.
  • the excess ratio of phosphoric acid is lowered by the control of calcium concentration, and the effective P 2 O 5 is lowered to control iron, aluminum, magnesium, etc. in the phosphate rock.
  • Dissolution of impurity elements The specific scheme is to adjust the reaction conditions to keep the calcium in the solution within a certain concentration range, that is, to form a mixed solution of phosphoric acid and calcium dihydrogen phosphate, and to use a low-temperature reaction technique in the leaching stage, that is, at a temperature of 20-60 ° C.
  • the reaction, phosphoric acid and calcium dihydrogen phosphate mixed solution and phosphate rock form a small amount of calcium phosphate particles with a particle size of about 200 nm, the content of which is 0.05% to 2% of the weight of the leaching slag, and the nanometer calcium hydrogen phosphate particles in the slurry are used for the rare earth Strong adsorption and eutectic action fix the rare earth in the slag.
  • the dissolution rate of the impurity elements iron, aluminum and magnesium in the phosphate rock is low, which has little effect on the phosphoric acid regeneration process.
  • An embodiment of the present invention provides a method for preferentially leaching phosphorus-calcium-rich rare earth containing rare earth phosphate ore by a mixed solution of phosphoric acid and calcium dihydrogen phosphate, the method comprising the following steps:
  • reaction temperature is 20 ° C - 70 ° C, preferably 30 ° C - 50 ° C;
  • step (3) (4) mixing the leachate obtained in step (3) with sulfuric acid and gypsum residue, the molar amount of sulfuric acid added is 0.7-1 times of the mole of calcium in the leachate, and the amount of gypsum residue added is 10%-100% of the mass of the rare earth-containing phosphate rock. ;
  • the circulating leaching agent of the step (1) is a mixed solution of phosphoric acid and calcium dihydrogen phosphate, and the total P 2 O 5 concentration of the leaching agent is 15%-55%, preferably 20%-35%, Ca 2 + concentration is 2-25g / L, preferably 5-15g / L, effective P 2 O 5 5wt% -45wt%; solid-liquid mass to volume ratio of rare earth-containing phosphate concentrate and recycled phosphoric acid is 1:2-10, preferably 1:4-8;
  • the reaction time is 0.5-4 hours, preferably 1-3 hours.
  • the appropriate amount of the rare earth enriched slag obtained in the step (3) is added to the stirring tank, and the amount is 10% to 50% of the mass of the rare earth-containing phosphate rock.
  • the step (4) sulfuric acid is concentrated sulfuric acid having a concentration of 90% or more, the reaction temperature is 35 ° C to 80 ° C, and the reaction time is 3 to 4 hours.
  • the rare earth-containing phosphate ore of the present invention preferentially leaching and removing phosphorus and calcium enriched rare earth by a mixed solution of phosphoric acid and calcium dihydrogen phosphate, and lowering the effective acid concentration in the leaching agent by means of low temperature and controlling calcium concentration, thereby achieving selectivity Leaching phosphorus and calcium. That is, through the low-temperature reaction of the mixed solution of phosphoric acid and calcium dihydrogen phosphate, a small amount of nano-sized calcium hydrogen phosphate particles are formed while ensuring the dissolution of phosphorus and most of the calcium in the phosphate rock, so that the rare earth is adsorbed or eutectic in the slag. To achieve efficient separation and enrichment of rare earths in phosphate rock.
  • the phosphate rock suitable for use in the present invention contains a rare earth element, and may be a rare earth-containing phosphate rock and a rare earth-containing phosphate concentrate. Since the rare earth in the phosphate concentrate is richer than the rare earth in the ore, Therefore, it is economically more advantageous to treat rare earth-containing phosphate concentrates.
  • the present invention employs recycled phosphoric acid, and it is also possible to use dilute phosphoric acid, crude phosphoric acid, and industrial phosphoric acid in the industrial process of phosphoric acid.
  • the invention has the advantages of simple process, matching with wet phosphoric acid process, rare earth enrichment ratio and high recovery rate.
  • Figure 1 is a schematic process flow diagram of the process of the present invention.
  • a rare earth-containing phosphate rock is obtained by preferentially leaching a phosphorus-calcium enriched rare earth by a mixed solution of phosphoric acid and calcium dihydrogen phosphate, and the rare earth-containing phosphate ore is at a concentration of 15 wt% to 55 wt% P 2 O 5 and 2-25 g/L.
  • the circulating phosphoric acid solution of Ca 2+ is mixed at a solid-liquid ratio of 1:2-10, and the mixture is stirred at 20 ° C to 70 ° C for 0.5-4 hours, then aged for 1-5 hours, and solid-liquid separation is carried out to obtain rare earth enrichment.
  • Slag and leachate The obtained leachate is mixed with sulfuric acid, and an appropriate amount of gypsum slag is added.
  • the molar amount of sulfuric acid is 0.7-1 times of the mole of calcium in the leachate, and the amount of gypsum residue added is 10%-100% of the mass of the rare earth-containing phosphate ore.
  • Regenerated phosphoric acid and gypsum slag, partially regenerated phosphoric acid and gypsum residue washing water, and an appropriate amount of supplementary water are mixed and used as recycled phosphoric acid for leaching.
  • 100 g of rare earth-containing phosphorus concentrate containing 0.14 wt% of rare earth and 1000 mL of dilute phosphoric acid solution containing 20 wt% of P 2 O 5 and Ca 2+ 8 g/L are mixed at a solid-liquid ratio of 1:10, and stirred at 25 ° C for 3 hours. Then, it is aged for 4 hours, filtered to obtain filtrate and leaching slag, and the leaching residue is dried, weighed and analyzed, the slag rate is 18%, the rare earth content in the slag is 0.73%, and the rare earth 94% is enriched in the slag, and the enrichment ratio is 5.2 times. .
  • 100 g of rare earth-containing phosphorus concentrate containing 0.8 wt% of rare earth and 1000 mL of dilute phosphoric acid solution containing 28 wt% of P 2 O 5 and Ca 2+ 12 g/L are mixed at a solid-liquid ratio of 1:10, and stirred at 30 ° C for 4 hours. Then, it is aged for 2 hours, and the filtrate and the leaching slag are obtained by filtration. The leached slag is dried, weighed and analyzed, the slag rate is 25%, the rare earth content in the slag is 3.04%, and the rare earth is 95% enriched in the slag.
  • the leaching solution obtained in Example 6 was added to 95% of sulfuric acid in an amount of 0.85 times the molar amount of calcium in the leaching solution, and 50 g of gypsum slag was added thereto, and reacted at 50 ° C for 3 hours, followed by filtration, and 500 mL of the filtrate and 5 wt% of rare earth containing rare earth were obtained.
  • 50 g of phosphate rock is mixed, and the reaction is stirred at 50 ° C for 4 hours, then aged for 2 hours, filtered to obtain leaching slag, and the leaching slag is further concentrated under the same conditions, solid-liquid separation, slag rate 22%, rare earth content in slag 21.5%, rare earth 95% enriched in the slag.

Abstract

一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,将含稀土磷矿与浓度为15wt%-55wt%P2O5、2-25g/L Ca2+、有效P2O5 5wt%-45wt%的循环磷酸溶液按固液比1:2-10混合,将混合物在20℃-70℃条件下搅拌反应0.5-4小时,然后陈化1-5小时,固液分离得到稀土富集渣和浸出液。得到的浸出液与硫酸混合,同时加入适量石膏渣,硫酸加入摩尔数量为浸出液中钙摩尔数的0.7-1倍,石膏渣加入量为含稀土磷矿质量的10%-100%,反应后过滤得到再生磷酸和石膏渣,部分再生磷酸与石膏渣洗水、适量补充水混合后作为循环磷酸返回浸出用。

Description

一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法
本申请要求享有2014年9月30日提交的中国专利申请201410523267.9的优先权。
技术领域
本发明属于伴生稀土的富集与综合回收领域,尤其涉及一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法。
发明背景
稀土资源大致分为三种:(1)独立稀土矿,如独居石、氟碳铈矿、磷钇矿等;(2)呈离子形态吸附于矿物晶粒表面或晶层间的离子稀土矿;(3)类质同像置换方式存在于其它矿物中的伴生稀土矿,如磷灰石等。目前,世界稀土矿产品主要来自前2种稀土矿,伴生稀土矿的开发利用较少。
磷矿中稀土伴生普遍,稀土含量不等,最高可达5%以上,低的仅有0.1%左右。由于稀土以类质同像形式存在于磷灰石的磷酸盐矿物中,物理选矿对稀土的富集效果差。由于稀土品位低、且有害杂质磷和钙含量高,直接浸出回收稀土的难度大、成本高。硫酸法是目前世界上湿法磷酸生产的基本方法,在湿法磷酸生产过程中,磷灰石被硫酸酸解时,形成大量磷石膏,且由于磷石膏对稀土具有很强的吸附能力,导致酸解过程稀土难以浸出。US4636369公布了在湿法磷酸矿浆中引入铝离子、铁离子、硅离子或其混合离子,来增加稀土在溶液中的溶解度,稀土浸出率为56%。中国专利200710178377.6公布了在硫酸分解磷矿过程中添加有机或无机表面活性剂,使磷石膏晶型改变而减少对稀土的吸附,稀土的浸出率可达80%。中国专利201010217142.5公布了一种磷酸浸出稀土的方法,在温度65℃以上的条件下用磷酸浸出含稀土磷矿,稀土浸出率可达90%左右。虽然上述各种方法均可较好地浸出稀土,但由于所得到的含稀土浸出液磷酸浓度高,甚至含大量钙等杂质,从溶液中进一步回收稀土困难。
通过预浸优先脱除磷矿中的磷、钙、铁、铝等杂质,提高稀土富集比,对磷矿中伴生稀土的综合回收非常关键。
硝酸和盐酸均对磷灰石中的磷、钙等具有很高的溶解能力,但同时稀土也被大部分溶出,难以达到富集稀土目的,且浸出液为磷酸盐和硝酸盐或氯化物的混合体系,不利于磷酸或磷化肥生产。硫酸虽然对磷灰石中的磷具有很高的溶解能力,在硫酸溶液中,磷、铁、铝、稀土等均可浸出进入溶液,但钙则全部转变成石膏而留在渣中,因石膏对稀土具有强烈的吸附作用,导致浸出的稀土又重新进入渣中。在硫酸酸解磷灰石时,磷石膏渣量大,通常1吨磷矿经硫酸浸出后约产出1.5吨磷石膏,稀土在磷石膏渣中品位比磷矿更低,达不到预富集的效果。
在传统的湿法磷酸生产中,硫酸分解磷矿是在大量磷酸溶液介质中进行的,因此,实际上分解过程分两步进行:首先是磷矿同磷酸或返回系统的磷酸在60~100℃温度下作用,磷、钙因与磷酸反应生成水溶性的磷酸二氢钙[Ca(H2PO4)2]而从磷矿中脱除,由于过量磷酸的存在,稀土离子与磷酸根离子(PO4 3-)络合成可溶性的络合阴离子[RE(PO4)2]3-,从而使得大量稀土浸出进入溶液,稀土浸出率可达50%以上;第二步是磷酸二氢钙和过量硫酸反应,使磷酸二氢钙转化为磷酸,并析出石膏,第一步浸出的稀土因吸附再次进入渣中而损失。由于第一步的反应温度高,除导致稀土大量被浸出进入溶液外,磷矿中的氟转化成氟化氢,后者与磷矿中的铝硅酸盐反应,导致大量铝、硅进入溶液,影响后续分离。
Ca5F(PO4)3+7H3PO4=5Ca(H2PO4)2+HF↑
3H2SO4+6HF+SiO2·Al2O3=H2SiF6+Al2(SO4)3+5H2O
Ca(H2PO4)2+H2SO4=CaSO4↓+2H3PO4
EP 0522234A1公布的一种从磷矿中提取稀土的方法,即基于上述湿法磷酸的原理从含稀土的磷矿中回收稀土,其过程是将过量三倍的磷酸与含稀土的磷精矿混合,加热至60-110℃下条件进行磷矿石分解,反应后的矿 浆进行沉降分级,得到含钙的粗粒级弃渣和含稀土的细粒级稀土渣。由于采用60-110℃的高温浸出,大量稀土被溶出进入溶液,稀土溶解率30~40%,同时,另有20-50%稀土进入粗粒级的弃渣,导致稀土分散,稀土回收率低,稀土回收率仅有20-50%。中国专利201110143415.0公布了一种从磷矿中分离稀土的方法,用过量磷酸浸出磷矿,利用磷矿中优势元素氟的特性形成难溶稀土氟化物,稀土在在浸出渣中得到富集而磷则以磷酸二氢钙形式进入溶液中。
综上所述,由于磷矿中稀土品位低,而影响稀土分离回收的磷、钙、铁、铝等杂质含量高,采用直接浸出稀土的方法回收稀土困难且不经济,应通过化学除杂方法提高稀土的富集比。关键是结合磷酸或磷肥生产工艺,在不影响磷产品生产的前提下,通过预处理脱除含稀土磷矿中的磷、钙、铁、铝等杂质,提高稀土富集比。
磷酸浸出虽然对磷灰石中的磷和钙具有良好的浸出效果,但由于磷酸过量系数大,同时对铝、铁、镁等也有较好的浸出效果,在一定条件下甚至部分稀土也被浸出。由于磷酸价格高,在生产过程中必须磷酸再生循环使用,否则成本很高。铝、铁、镁的溶出,会影响磷酸的再生,在系统中铝、铁、镁积累到一定浓度后甚至无法实现磷酸的再生循化。稀土的溶出则导致稀土分散、损失。因此,降低磷酸过量系数以减少铝、铁、镁、稀土等的溶出是磷酸法预浸富集稀土的关键。
发明内容
本发明的目的是针对已有技术存在的不足,提供一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法。具体针对磷酸预浸含稀土磷矿时,磷酸过量系数大、稀土溶出率高、大量铝、铁、镁等杂质浸出而影响磷酸再生循环等问题,通过控制酸再生与浸出时矿浆中钙含量来形成少量纳米磷酸氢钙颗粒,以纳米颗粒作为稀土载体分离回 收磷矿中伴生稀土,同时通过钙浓度的控制降低磷酸过量系数,使有效P2O5降低进而控制磷矿中铁、铝、镁等杂质元素的溶出。具体方案是在磷酸再生循环工序,控制反应条件使溶液中钙保持一定浓度范围内,即形成磷酸和磷酸二氢钙混合溶液,在浸出阶段利用低温反应技术手段,即在20-60℃条件下反应,磷酸和磷酸二氢钙混合溶液与磷矿作用形成少量粒度约200纳米的磷酸氢钙颗粒,其含量为浸出渣重量的0.05%~2%,利用矿浆中纳米级磷酸氢钙颗粒对稀土强烈的吸附与共晶作用将稀土固定在渣中,同时因混合溶液磷酸过量系数小、有效磷酸浓度低,磷矿中杂质元素铁、铝、镁的溶出率较低,对磷酸再生工序影响小。
本发明的目的是通过如下技术方案实现的。
本发明实施方式提供一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,该方法包括以下步骤:
(1)含稀土磷矿与循环浸出剂反应,反应温度为20℃-70℃,优选30℃-50℃;
(2)将步骤(1)后的料浆送入搅拌槽进行陈化,陈化时间1-5小时;
(3)将步骤(2)后的料浆固液分离,得到稀土富集渣和浸出液;
(4)将步骤(3)得到的浸出液与硫酸、石膏渣混合,硫酸加入摩尔数量为浸出液中钙摩尔数的0.7-1倍,石膏渣加入量为含稀土磷矿质量的10%-100%;
(5)将步骤(4)后的料浆固液分离,得到再生磷酸和石膏渣,部分再生磷酸与石膏渣洗水、适量补充水混合后返回步骤(1)做循环磷酸用。
上述方法中,所述步骤(1)的循环浸出剂为磷酸和磷酸二氢钙混合溶液,浸出剂的总P2O5质量浓度为15%-55%,优选20%-35%,Ca2+浓度为2-25g/L,优选5-15g/L,有效P2O55wt%-45wt%;含稀土磷精矿与循环磷酸的固液质量与体积比为1:2-10,优选1:4-8;反应时间为0.5-4小时,优选1-3小 时。
上述方法中,所述步骤(2)的陈化,陈化时在搅拌槽中加入步骤(3)得到的稀土富集渣适量,加入量为含稀土磷矿质量的10%~50%。
上述方法中,所述步骤(4)硫酸为浓度90%以上的浓硫酸,反应温度在35℃~80℃,反应时间3~4小时。
本发明的一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,通过低温与控制钙浓度措施,降低浸出剂中有效酸浓度,进而实现选择性浸出除磷和钙。即通过磷酸和磷酸二氢钙混合溶液的低温反应,在保证磷矿中磷、大部分钙溶出的同时,形成少量纳米级磷酸氢钙颗粒,从而使稀土呈吸附或共晶形式固定在渣中,实现磷矿中稀土的高效分离富集。同时因浸出剂中有效酸浓度降低,磷矿中铁、铝、镁等杂质的溶解也相应降低,从而减少杂质元素进入再生溶液中的数量,有利于混合溶液浸出剂的再生和循环使用。原则上,对适用于本发明的磷矿没有限制,只要含有稀土元素即可,可以是含稀土的磷矿和含稀土的磷精矿,由于磷精矿中稀土比原矿中的稀土富集,因此,处理含稀土的磷精矿在经济上更有利。
为降低成本,本发明采用循环磷酸,也可所采用磷酸工业过程的稀磷酸、粗磷酸、工业磷酸。
本发明的一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,通过低温与控制钙浓度反应技术实现磷和钙的选择性溶出,从而富集稀土。具有工艺简单、与湿法磷酸工艺匹配、稀土富集比和回收率高。
附图简要说明
图1是本发明方法的原则工艺流程图。
实施本发明的方式
一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,将含稀土磷矿与浓度为15wt%-55wt%P2O5、2-25g/L Ca2+的循环磷酸溶液按固液比1:2-10混合,将混合物在20℃-70℃条件下搅拌反应0.5-4小时,然后陈化1-5小时,固液分离得到稀土富集渣和浸出液。得到的浸出液与硫酸混合,同时加入适量石膏渣,硫酸加入摩尔数量为浸出液中钙摩尔数的0.7-1倍,石膏渣加入量为含稀土磷矿质量的10%-100%,反应后过滤得到再生磷酸和石膏渣,部分再生磷酸与石膏渣洗水、适量补充水混合后作为循环磷酸返回浸出用。
用以下非限定性实施例对本发明的方法作进一步的说明,以有助于理解本发明的内容及其优点,而不作为对本发明保护范围的限定,本发明的保护范围由权利要求书决定。
实施例1
取100g含稀土0.14wt%的含稀土磷矿与1000mL含P2O520wt%、Ca2+8g/L的稀磷酸溶液按固液比1:10混合,在20℃下搅拌反应1小时,然后陈化2小时,过滤得到滤液和浸出渣,浸出渣干燥后称重、分析,渣率22%,渣中稀土含量0.59%,稀土93%富集在渣中,富集倍数为4.2倍。
实施例2
取100g含稀土0.14wt%的含稀土磷矿与1000mL含P2O520wt%、Ca2+8g/L的稀磷酸溶液按固液比1:10混合,在45℃下搅拌反应1小时,然后陈化2小时,过滤得到滤液和浸出渣,浸出渣干燥后称重、分析,渣率21%,渣中稀土含量0.57%,稀土85%富集在渣中,富集倍数为4.1倍。
实施例3
取100g含稀土0.14wt%的含稀土磷精矿与1000mL含P2O520wt%、Ca2+8g/L的稀磷酸溶液按固液比1:10混合,在25℃下搅拌反应3小时, 然后陈化4小时,过滤得到滤液和浸出渣,浸出渣干燥后称重、分析,渣率18%,渣中稀土含量0.73%,稀土94%富集在渣中,富集倍数为5.2倍。
实施例4
取200g含稀土5wt%的含稀土磷矿与1000mL含P2O530wt%、Ca2+15g/L的循环磷酸溶液按固液比1:10混合,在30℃下搅拌反应4小时,然后陈化2小时,过滤得到滤液和浸出渣,浸出渣干燥后称重、分析,渣率25%,渣中稀土含量19.5%,稀土95%富集在渣中,富集倍数为4倍。
实施例5
取100g含稀土0.8wt%的含稀土磷精矿与1000mL含P2O528wt%、Ca2+12g/L的稀磷酸溶液按固液比1:10混合,在30℃下搅拌反应4小时,然后陈化2小时,过滤得到滤液和浸出渣,浸出渣干燥后称重、分析,渣率25%,渣中稀土含量3.04%,稀土95%富集在渣中。
实施例6
取100g含稀土5wt%的含稀土磷矿与1000mL含P2O535wt%、Ca2+15g/L的稀磷酸溶液按固液比1:10混合,在50℃下搅拌反应4小时,然后陈化2小时,过滤得浸出渣,浸出渣在相同条件下再富集一次,固液分离,渣率20%,渣中稀土含量24.5%,稀土95%富集在渣中。
实施例7
取实施例6所得到的浸出液,按浸出液中钙摩尔数的0.85倍量加入95%的硫酸,并加入50g石膏渣,50℃反应3小时后过滤,取滤液500mL与含稀土5wt%的含稀土磷矿50g混合,,在50℃下搅拌反应4小时,然后陈化2小时,过滤得浸出渣,浸出渣在相同条件下再富集一次,固液分离,渣率22%,渣中稀土含量21.5%,稀土95%富集在渣中。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (5)

  1. 一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法,其特征在于,其过程的步骤包括:
    (1)含稀土磷矿与循环浸出剂反应,反应温度为20℃-70℃,优选30℃-50℃;
    (2)将步骤(1)后的料浆送入搅拌槽进行陈化,陈化时间1-5小时;
    (3)将步骤(2)后的料浆固液分离,得到稀土富集渣和浸出液;
    (4)将步骤(3)得到的浸出液与硫酸、石膏渣混合,硫酸加入摩尔数量为浸出液中钙摩尔数的0.7-1倍,石膏渣加入量为含稀土磷矿质量的10%-100%;
    (5)将步骤(4)后的料浆固液分离,得到再生磷酸和石膏渣,部分再生磷酸与石膏渣洗水、适量补充水混合后返回步骤(1)做循环磷酸用。
  2. 根据权利要求1所述的一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,其特征在于其过程所述的步骤(1)的循环浸出剂为磷酸和磷酸二氢钙混合溶液,浸出剂的P2O5质量浓度为15%-55%,优选20%-35%,Ca2+浓度为2-25g/L,优选5-15g/L;含稀土磷精矿与循环磷酸的固液质量与体积比为1:2-10,优选1:4-8;反应时间为0.5-4小时,优选1-3小时。
  3. 根据权利要求1所述的一种含稀土磷矿通过磷酸二氢钙与磷酸混合溶液优先浸出脱除磷钙富集稀土的方法,其特征在于其过程所述的步骤(1)的浸出剂中有效磷酸的P2O5质量浓度为5%-45%,优选10%-25%。
  4. 根据权利要求1所述的一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,其特征在于其过程所述步骤(2)的陈化,陈化时在搅拌槽中加入步骤(3)得到的稀土富集渣适量,加入量为含稀土磷矿质量的10%-50%。
  5. 根据权利要求1所述的一种含稀土磷矿通过磷酸和磷酸二氢钙混合溶液优先浸出脱除磷钙富集稀土的方法,其特征在于其过程所述步骤(4)硫酸为浓度90%以上的浓硫酸,反应温度在35℃-80℃,反应时间3-4小时。
PCT/CN2015/074212 2014-09-30 2015-03-13 一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法 WO2016050036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015319798A AU2015319798B2 (en) 2014-09-30 2015-03-13 A method of enriching rare earth by priority leaching and removing phosphorus and calcium from REE-bearing phosphorus ores

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410523267.9A CN105525092B (zh) 2014-09-30 2014-09-30 一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法
CN201410523267.9 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016050036A1 true WO2016050036A1 (zh) 2016-04-07

Family

ID=55629388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074212 WO2016050036A1 (zh) 2014-09-30 2015-03-13 一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法

Country Status (3)

Country Link
CN (1) CN105525092B (zh)
AU (1) AU2015319798B2 (zh)
WO (1) WO2016050036A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY173056A (en) * 2015-06-19 2019-12-23 Grirem Advanced Mat Co Ltd A method for recovering phosphorus and rare earth from rare earth-containing phosphorite and substance containing rare earth phosphate
CN106391293A (zh) * 2016-08-30 2017-02-15 北京矿冶研究总院 一种通过选矿分离富集磷矿中稀土的方法
US11767228B2 (en) 2018-05-03 2023-09-26 Arafura Resources Limited Processing rare earth sulphate solutions
US11858824B2 (en) 2018-05-03 2024-01-02 Arafura Resources Limited Process for the recovery of rare earths
CN110055434B (zh) * 2019-04-18 2021-05-07 舒爱桦 一种从湿法磷酸联产高强度阿尔法石膏粉中回收稀土的方法
CN111394571B (zh) * 2020-04-17 2022-02-15 包头稀土研究院 提高稀土矿物与硫酸分解效率的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1736933A1 (ru) * 1990-04-27 1992-05-30 Московский институт тонкой химической технологии Способ извлечени редкоземельных элементов из апатита
EP0522234A1 (en) * 1991-07-01 1993-01-13 Y.G. Gorny Method for extracting rare-earth elements from phosphate ore
CN102220488A (zh) * 2011-05-31 2011-10-19 北京矿冶研究总院 一种从磷矿中分离稀土的方法
CN102312089A (zh) * 2010-07-01 2012-01-11 北京矿冶研究总院 一种从含稀土的磷矿中回收稀土的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451200B (zh) * 2007-11-29 2011-04-20 北京有色金属研究总院 一种从磷矿中富集回收稀土的方法
US8524176B2 (en) * 2011-12-15 2013-09-03 Reenewal Corporation Rare earth recovery from phosphor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1736933A1 (ru) * 1990-04-27 1992-05-30 Московский институт тонкой химической технологии Способ извлечени редкоземельных элементов из апатита
EP0522234A1 (en) * 1991-07-01 1993-01-13 Y.G. Gorny Method for extracting rare-earth elements from phosphate ore
CN102312089A (zh) * 2010-07-01 2012-01-11 北京矿冶研究总院 一种从含稀土的磷矿中回收稀土的方法
CN102220488A (zh) * 2011-05-31 2011-10-19 北京矿冶研究总院 一种从磷矿中分离稀土的方法

Also Published As

Publication number Publication date
CN105525092B (zh) 2017-10-27
AU2015319798A1 (en) 2016-04-14
CN105525092A (zh) 2016-04-27
AU2015319798B2 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
WO2016050036A1 (zh) 一种含稀土磷矿通过优先浸出脱除磷钙富集稀土的方法
AU2008286599B2 (en) A metallurgical process for iron-rich monazite rare earth ore or concentrate
CN103172074B (zh) 采用低温半干法分解钾长石综合利用的工艺方法
CN101451200B (zh) 一种从磷矿中富集回收稀土的方法
CN102220488B (zh) 一种从磷矿中分离稀土的方法
AU2016200606B2 (en) A method for recovering phosphorus and rare earth from rare earth containing phosphorite
CN102876889B (zh) 一种从含稀土磷灰石矿中提取稀土的方法
CN103213964B (zh) 利用低品位磷矿生产湿法磷酸的方法
CN102864318B (zh) 从含硅、磷的酸性含钒溶液中回收钒的方法
CN105154689A (zh) 一种磷矿中稀土分离富集的方法
CN112654583A (zh) 大幅度降低锂辉石硫酸法各级碳酸锂中硫酸根含量的方法
CN104495880A (zh) 一种利用锂云母制备氯化锂及其副产品的方法
CN103213960A (zh) 一种利用湿法磷酸分解低品位磷矿生产磷酸的方法
WO2022022090A1 (zh) 一种从污泥焚烧灰中回收蓝铁矿的方法
CN110972479B (zh) 一种两次浸提法生产氧化锌的方法
AU2016279392B2 (en) Method for recovering phosphorus and rare earth from rare earth-containing phosphate ore, and substance containing rare earth phosphate
CN101607721B (zh) 利用橄榄石尾矿制备高纯氢氧化镁及六硅酸镁的方法
CN105695739B (zh) 一种提高磷矿中伴生稀土回收率的方法
CN105441674A (zh) 从含独居石磷矿中综合回收磷和稀土的方法
CN110817935A (zh) 一种利用锌的再生资源制备高纯度氧化锌的方法
CN105543475B (zh) 从含稀土磷矿中富集和回收稀土的方法
CN110896643B (zh) 利用含锌原矿经锌酸钙合成中间步骤生产含锌复合物或氧化锌的方法
CN110896633B (zh) 一种生产锌酸钙的方法
CN110055434B (zh) 一种从湿法磷酸联产高强度阿尔法石膏粉中回收稀土的方法
He et al. Simultaneous removal of Al3+, Mg2+ and F-from wet-process phosphoric acid achieved by a co-precipitation strategy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2015319798

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846823

Country of ref document: EP

Kind code of ref document: A1