WO2016049989A1 - 升压自动匹配电路及智能旅行用电源转换装置 - Google Patents

升压自动匹配电路及智能旅行用电源转换装置 Download PDF

Info

Publication number
WO2016049989A1
WO2016049989A1 PCT/CN2014/095207 CN2014095207W WO2016049989A1 WO 2016049989 A1 WO2016049989 A1 WO 2016049989A1 CN 2014095207 W CN2014095207 W CN 2014095207W WO 2016049989 A1 WO2016049989 A1 WO 2016049989A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
boost
voltage
output
current
Prior art date
Application number
PCT/CN2014/095207
Other languages
English (en)
French (fr)
Inventor
徐新华
Original Assignee
深圳市茂润电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市茂润电气有限公司 filed Critical 深圳市茂润电气有限公司
Priority to EP14903057.9A priority Critical patent/EP3160025B1/en
Publication of WO2016049989A1 publication Critical patent/WO2016049989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/451Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output voltage or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to a power supply circuit, in particular to a boost automatic matching circuit and a smart travel power conversion device.
  • the power circuit refers to a part of the circuit that supplies power to the power supply of the consumer.
  • the common power circuit includes an AC power circuit and a DC power circuit.
  • the voltage of the power supply is different, and the rated voltage of the same electrical equipment is the same. Therefore, the electrical equipment cannot be directly connected to the power supply of different countries, and generally needs to be converted by the power conversion device.
  • the power conversion devices convert a fixed power supply voltage into another fixed power supply voltage, for example, converting 110V alternating current into 220V alternating current to adapt to power supplies such as Chinese specifications.
  • the input terminal can only be adapted to input a fixed voltage.
  • the power conversion device has a small adaptation range and can only perform one-to-one single conversion, which is inconvenient to use.
  • a primary object of the present invention is to provide a boost automatic matching circuit and a smart travel power conversion device in view of the above-mentioned deficiencies in the prior art.
  • the boost automatic matching circuit provided by the present invention includes:
  • the AC input terminal is connected to an external mains power source for inputting the first alternating current power within a predetermined voltage range
  • a rectifying and filtering circuit is connected to the AC input end for rectifying and filtering the first alternating current to form a direct current
  • a switching circuit connected to the rectifying and filtering circuit for turning on or off in response to the control signal to output the first pulse voltage
  • a boost converter circuit connected to the switch circuit for boosting the first pulse voltage and outputting a second pulse voltage
  • a PFC control circuit is connected to the switch circuit and the boost converter circuit for controlling a pulse width of the first pulse voltage output by the switch circuit;
  • a bridge inverter circuit connected to the boost converter circuit for converting the second pulse voltage into a second alternating current
  • An AC output terminal is connected to the bridge inverter circuit for outputting a second alternating current
  • the inverter control circuit is connected to the AC output terminal and the bridge inverter circuit for controlling the duty ratio of the output waveform of the bridge inverter circuit to control the stability of the second alternating current.
  • the PFC control circuit comprises:
  • a voltage detection feedback circuit connected to the boost converter circuit for detecting the second pulse voltage to generate a feedback voltage
  • An overcurrent detecting circuit is connected to the switching circuit for detecting a current output by the switching circuit to generate a feedback current
  • a PFC controller wherein a feedback end is connected to the voltage detecting feedback circuit, a current detecting end is connected to the overcurrent detecting circuit, and a control end is connected to the switch circuit for outputting a signal according to the feedback voltage and the feedback current
  • the control signal is used to control the pulse width of the first pulse voltage.
  • the inverter control circuit comprises:
  • An output voltage detecting circuit is connected to the AC output terminal for sampling a voltage of the second alternating current to generate a first sampling voltage
  • An output current detecting circuit is connected to the AC output terminal for sampling a current of the second alternating current to generate a first sampling current
  • the inverter controller is connected to the output voltage detecting circuit, the output current detecting circuit and the bridge inverter circuit, and is configured to control the duty of the output waveform of the bridge inverter circuit according to the first sampling voltage and the first sampling current To control the stability of the second alternating current.
  • the switch circuit includes a MOS switch transistor and a switch transistor drive circuit, a drain of the MOS switch transistor is connected to a positive output terminal of the rectifier filter circuit through a boost inductor, and a gate is driven by the switch transistor
  • the circuit is connected to the control terminal of the PFC controller, and the source is connected to the negative output terminal of the rectifier filter circuit through a third sampling resistor.
  • the boost converter circuit includes a boost diode, a boost DC filter capacitor, and the boost inductor, an anode of the boost diode is connected to a drain of the MOS switch tube, and a cathode and the riser
  • the anode of the DC-DC filter capacitor is connected to the bridge inverter circuit, and the cathode of the boost DC filter capacitor is grounded.
  • the PFC controller includes a PFC control chip, an INV pin and a COMP pin of the PFC control chip are feedback ends of the PFC controller, and a CS pin is a current detecting end;
  • the voltage detection feedback circuit includes a voltage sampling circuit, a forty-first resistor, an eighth capacitor, and a ninth capacitor, and the INV pin of the PFC control chip is connected to the INV pin through the voltage sampling circuit a boost converter circuit, one end of the forty-first resistor is connected to the INV pin, the other end is connected to the COMP pin of the PFC control chip through the ninth capacitor, and the eighth capacitor is connected to the INV pin Between the pin and the COMP pin.
  • the overcurrent detecting circuit includes a forty-second resistor, a third capacitor, and the third sampling resistor; one end of the forty-second resistor is connected to the CS pin of the PFC control chip, and the other end is connected. To the source of the MOS switch transistor, the CS pin is grounded through the third capacitor.
  • the bridge inverter circuit includes an inverter bridge composed of a first MOS transistor, a second MOS transistor, a third MOS transistor, and a fourth MOS transistor, and the first MOS transistor, the second MOS transistor, and the third MOS
  • the gates of the tube and the fourth MOS tube are respectively connected to a MOS tube driving circuit, and the MOS tube driving circuit is connected to a corresponding control end of the inverter controller;
  • the source of the second MOS tube is the live end of the AC output end, and the source of the third MOS tube is the zero line end of the AC output end.
  • the output current detecting circuit includes a second resistor and a second sampling resistor; one end of the second resistor is connected to the sources of the first MOS transistor and the fourth MOS transistor, and the other end is connected to the inverse a variable controller; one end of the second sampling resistor is connected to the sources of the first MOS transistor and the fourth MOS transistor, and the other end is grounded.
  • the smart travel power conversion device provided by the present invention has the boost automatic matching circuit as described above.
  • the boost automatic matching circuit and the intelligent traveling power conversion device provided by the invention have a first alternating current input in a predetermined voltage range (generally AC90-265V) input from an alternating current input terminal, and are rectified and filtered by a rectifying and filtering circuit to form a direct current, in a PFC
  • the switching circuit outputs the first pulse voltage in a pulse form by the direct current, and the first pulse voltage is further subjected to a boosting process by the boosting conversion circuit to form a second pulse voltage, and the second pulse voltage is passed through the bridge inverter.
  • the circuit performs inverter control and the inverter control circuit performs PWM control adjustment and converts into a stable second alternating current (for example, 220V) output.
  • a wide voltage boosting process can be realized, since the input terminal can be an alternating current within a predetermined voltage range, The adaptability range is larger, and the smart travel power conversion device using the boost circuit is more convenient to use.
  • FIG. 1 is a circuit block diagram of a boost automatic matching circuit in accordance with an embodiment of the present invention
  • FIG. 2 is a circuit schematic diagram of a boost automatic matching circuit according to an embodiment of the present invention.
  • an embodiment of the present invention provides a boost automatic matching circuit, including an AC input terminal 10, a rectifier filter circuit 20, a switch circuit 30, a boost converter circuit 40, a PFC control circuit, and a bridge inverter. Circuit 60, AC output 70 and inverter control circuit.
  • the AC input terminal 10 is connected to an external mains power supply for inputting a first alternating current within a predetermined voltage range.
  • the predetermined voltage range may generally be AC90-AC265V, that is, the wide voltage range is AC90-AC265V, and the specific input first alternating current is, for example, 110V AC.
  • the rectifying and filtering circuit 20 is connected to the AC input terminal 10 for rectifying and filtering the first alternating current to form a direct current.
  • the switching circuit 30 is connected to the rectifying and filtering circuit 20 for turning on or off in response to the control signal to output the first pulse voltage; that is, in the on/off state of the switching circuit 30, the switching circuit 30 outputs a DC pulse.
  • the DC pulse is also the first pulse voltage described above.
  • the boost converter circuit 40 is connected to the switch circuit 30 for boosting the first pulse voltage and outputting the second pulse voltage.
  • the PFC control circuit is connected to the switch circuit 30 and the boost converter circuit 40 for controlling the pulse width of the first pulse voltage outputted by
  • the bridge inverter circuit 60 is connected to the boost converter circuit 40 for converting the second pulse voltage into a second alternating current.
  • the AC output terminal 70 is connected to the bridge inverter circuit 60 for outputting a second alternating current; the second alternating current is a stable fixed voltage, generally AC220V.
  • the inverter control circuit is connected to the AC output terminal 70 and the bridge inverter circuit 60 for controlling the duty ratio of the output waveform of the bridge inverter circuit 60 to control the stability of the second AC power.
  • the first alternating current in a predetermined voltage range (generally AC90-265V) input from the alternating current input terminal 10 is rectified and filtered by the rectifying and filtering circuit 20 to form a direct current, which is controlled by the PFC control circuit.
  • the switching circuit 30 outputs the first pulse voltage in a pulse form by the direct current, and the first pulse voltage is further subjected to a boosting process by the boosting conversion circuit 40 to form a second pulse voltage, and the second pulse voltage passes through the bridge inverter circuit 60.
  • Inverter and inverter control The circuit is PWM-controlled and converted to a stable second alternating current (for example, 220V) output.
  • a wide voltage boosting process can be realized. Since the input terminal can be an alternating current within a predetermined voltage range, the adaptation range is larger.
  • the smart travel power conversion device using the boost circuit is more convenient to use.
  • the PFC control circuit may specifically include a voltage detection feedback circuit 52, an overcurrent detection circuit 51, and a PFC controller 50.
  • the voltage detection feedback circuit 52 is coupled to the boost converter circuit 40 for detecting the second pulse voltage to generate a feedback voltage.
  • the overcurrent detecting circuit 51 is connected to the switching circuit 30 for detecting the current output by the switching circuit 30 to generate a feedback current.
  • the feedback end of the PFC controller 50 is connected to the voltage detection feedback circuit 52.
  • the current detection terminal is connected to the overcurrent detection circuit 51.
  • the control terminal is connected to the switch circuit 30 for outputting a signal according to the feedback voltage and the feedback current.
  • the control signal controls a pulse width of the first pulse voltage.
  • the inverter control circuit may specifically include an output voltage detecting circuit 82, an output current detecting circuit 81, and an inverter controller 80.
  • the output voltage detecting circuit 82 is connected to the AC output terminal 70 for sampling the voltage of the second alternating current to generate a first sampling voltage.
  • the output current detecting circuit 81 is connected to the AC output terminal 70 for sampling the current of the second alternating current to generate a first sampling current.
  • the inverter controller 80 is connected to the output voltage detecting circuit 82, the output current detecting circuit 81 and the bridge inverter circuit 60 for controlling the output of the bridge inverter circuit 60 according to the first sampling voltage and the first sampling current. The duty cycle of the waveform to control the stability of the second alternating current.
  • the rectifying and filtering circuit 20 includes a rectifier bridge BD1 composed of four diodes and a filter capacitor C19.
  • the input terminal AC of the rectifier bridge BD1 is connected to the AC input terminal 10, and the anode is connected.
  • the output terminal V+ is connected to the anode of the filter capacitor C19, and the cathode of the filter capacitor C19 is connected to the anode output terminal V- of the rectifier bridge BD1.
  • the first alternating current input from the alternating current input terminal 10 is rectified by the rectifier bridge BD1, and then filtered by the filter capacitor C19 to form a direct current.
  • the switch circuit 30 includes a MOS switch transistor Q5 and a switch transistor drive circuit 301.
  • the drain of the MOS switch transistor Q5 is connected to the positive output terminal V+ of the rectifier filter circuit 20 through a boost inductor L1, and the gate is driven by the switch transistor.
  • the circuit 301 is connected to the control terminal of the PFC controller 50, and the source is connected to the negative output terminal V- of the rectifier filter circuit 20 via a third sampling resistor RS3. That is, the gate of the MOS switch transistor Q5 receives the control signal of the PFC controller 50 and the conduit is turned off, thereby outputting the first pulse voltage.
  • the boost converter circuit 40 includes a boost diode D15, a boost DC filter capacitor CE5, and the boost inductor L1.
  • the anode of the boost diode D15 is connected to the drain of the MOS switch transistor Q5, and the cathode and the boost
  • the anode of the DC filter capacitor CE5 is connected to the bridge inverter circuit 60, and the cathode of the boost DC filter capacitor CE5 is grounded.
  • the boost inductor L1, the boost diode D15, and the boost DC filter capacitor CE5 can perform a DC-DC voltage boost conversion process on the first pulse voltage output from the switch circuit 30, and output a second pulse voltage.
  • the PFC controller 50 includes a PFC control chip U4.
  • the PFC control chip U4 can be a PFC control chip of the type L6562.
  • the INV pin and the COMP pin of the PFC control chip U4 are the feedback terminals of the PFC controller 50, and the CS pin. It is the current detection terminal.
  • the voltage detection feedback circuit 52 includes a voltage sampling circuit 521, a forty-first resistor R41, an eighth capacitor C8, and a ninth capacitor C9.
  • the INV pin of the PFC control chip U4 is connected to the boost converter circuit through a voltage sampling circuit 521.
  • the voltage sampling circuit 521 performs voltage sampling from the output end of the boost converter circuit 40, and the extracted feedback voltage is input to the INV pin.
  • the voltage sampling circuit 521 includes a thirty-second resistor R32, a thirty-third resistor R33, a thirty-fourth resistor R34, a thirty-fifth resistor R35, and a forty-sixth resistor R46, which are sequentially connected in series, and a third
  • the twelve resistor R32 is connected to the cathode of the boost diode D15
  • the INV pin of the PFC control chip U4 is connected to the node of the thirty-fifth resistor R35 and the forty-sixth resistor R46.
  • the third twelve resistor R32, the thirty-third resistor R33, the thirty-fourth resistor R34, the thirty-fifth resistor R35 and the forty-sixth resistor R46 are used for voltage division, and then from the thirty-fifth resistor R35 and The node of the forty-sixth resistor R46 takes a voltage value as a feedback voltage and inputs it to the INV pin of the PFC control chip U4.
  • the VCC pin of the PFC control chip U4 is connected to an auxiliary power source composed of an induction coil L2, a fourteenth diode D14, a filter capacitor EC4 and a thirty-sixth resistor R36, and is induced from the boost inductor L1 through the induction coil L2.
  • the induced voltage is output, and the induced voltage is rectified by the fourteenth diode D14 and filtered by the filter capacitor EC4, and finally the operating voltage is supplied to the PFC control chip U4.
  • the GD pin is the control terminal of the PFC controller 50, and is connected to the gate of the MOS switch transistor Q5 through the switch transistor drive circuit 301, and controls the on/off of the MOS switch transistor Q5 by outputting a control signal.
  • the GND pin is grounded, and the ZCD pin is connected to the induction coil L2 through the thirty-first resistor R31, and is also grounded through the thirty-seventh resistor R37.
  • the MUL/T pin passes through the forty-fifth resistor R45 and the forty-fourth resistor R44 in series.
  • the forty-third resistor R43 is connected to the positive output terminal V+ of the rectifying and filtering circuit 20, and is also grounded through the forty-sixth resistor R46.
  • the overcurrent detecting circuit 51 includes a forty-second resistor R42, a third capacitor C3, and the third sampling resistor RS3.
  • One end of the forty-second resistor R42 is connected to the CS pin of the PFC control chip U4, and the other end is connected to the source of the MOS switch transistor Q5, and the CS pin is grounded through the third capacitor C3.
  • the overcurrent detecting circuit 51 takes out the feedback current from the source of the MOS switch transistor Q5, and the feedback current is output to the PFC control chip U4 through the CS pin.
  • the bridge inverter circuit 60 includes an inverter bridge composed of a first MOS transistor Q1, a second MOS transistor Q2, a third MOS transistor Q3, and a fourth MOS transistor Q4.
  • the first MOS transistor Q1 and the second MOS transistor Q2 The gates of the third MOS transistor Q3 and the fourth MOS transistor Q4 are respectively connected to a MOS transistor driving circuit, and the MOS transistor driving circuit is connected to a corresponding control terminal of the inverter controller 80.
  • the source of the second MOS transistor Q2 is the IGBT terminal ACL of the AC output terminal 70
  • the source of the third MOS transistor Q3 is the neutral terminal ACN of the AC output terminal 70.
  • the inverter bridge converts the second pulse voltage outputted by the boost converter circuit 40 into a second AC voltage, and outputs the output through the AC output terminal to supply power to the electronic product.
  • the inverter controller 80 includes an inverter controller interface terminal 801, and has connection terminals such as DVR1, DVR2, DVR3, DVR4, ACDCIN, GND, ACN, ACL, and CS.
  • the above PWM1, PWM2, PWM3, and PWM4 are control terminals, corresponding to The MOS transistor driving circuits of the first MOS transistor Q1, the second MOS transistor Q2, the third MOS transistor Q3, and the fourth MOS transistor Q4 are connected.
  • the output current detecting circuit 81 includes a second resistor R2 and a second sampling resistor RS2; one end of the second resistor R2 is connected to the sources of the first MOS transistor Q1 and the fourth MOS transistor Q4, and the other end is connected to the inverter
  • the output voltage detecting circuit 82 includes a rectifying chip BD01, wherein one AC end of the rectifying chip BD01 is connected to the live end ACL of the AC output terminal 70 and the ACL connection end of the inverter controller interface terminal 801, and the other AC end is connected to The neutral terminal ACN of the AC output terminal 70 and the ACN connector terminal of the inverter controller interface terminal 801, and the DC output terminals V+ and V- are connected to the ACDCIN and GND connection terminals.
  • the present invention also provides an intelligent travel power conversion device having the boost automatic matching circuit as described above.
  • the present invention provides a boost automatic matching circuit and a smart travel power conversion device.
  • the first alternating current in the predetermined voltage range (generally AC90-265V) input from the alternating current input terminal 10 is rectified and filtered by the rectifying and filtering circuit 20 to form a direct current.
  • the switching circuit 30 Under the control of the PFC control circuit, the switching circuit 30 outputs the direct current in a pulsed manner.
  • the first pulse voltage, the first pulse voltage is further subjected to boost processing by the boost converter circuit 40 to form a second pulse voltage, and the second pulse voltage is further inverted by the bridge inverter circuit 60 and the inverter control circuit performs PWM control.
  • the adjustment is converted into a stable second alternating current (for example, 220V) output, so that a wide voltage boosting process can be realized. Since the input terminal can be an alternating current within a predetermined voltage range, the adaptation range is larger, and the boosting circuit is applied.
  • the smart travel power conversion device is more convenient to use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

一种升压自动匹配电路,包括交流输入端(10)、整流滤波电路(20)、开关电路(30)、升压式变换电路(40)、PFC控制电路(52)、桥式逆变电路(60)、交流输出端(70)及逆变控制电路(80)。开关电路与整流滤波电路连接,升压式变换电路与开关电路连接,PFC控制电路与开关电路及升压式变换电路连接,桥式逆变电路与升压式变换电路连接,交流输出端与桥式逆变电路连接,逆变控制电路与交流输出端及桥式逆变电路连接。升压自动匹配电路可以实现宽电压升压处理,其适用范围大。

Description

升压自动匹配电路及智能旅行用电源转换装置 技术领域
本发明涉及电源电路,特别涉及一种升压自动匹配电路及智能旅行用电源转换装置。
背景技术
电源电路是指提供给用电设备电力供应电源的部分电路,常见的电源电路有交流电源电路、直流电源电路等。然而对于不同地区和不同国家供电电源的电压不同,同一用电设备的额定电压是相同,因此,该用电设备不能直接应用连接到不同国家电源上,一般都需要通过电源转换装置进行转换。
目前的电源转换装置,大多是将一种固定的电源电压转换成另一种固定的电源电压,例如将110V交流电转换成220V交流电,以适应中国规格等电源。对于这种电源转换装置,其输入端只能适用于输入一种固定电压,换句话说,这种电源转换装置适应范围小,只能进行一对一单一转换,使用不方便。
发明内容
本发明的主要目的在于,针对上述现有技术中的不足,提供一种升压自动匹配电路及智能旅行用电源转换装置。
为实现上述目的,一方面,本发明提供的升压自动匹配电路,包括:
交流输入端,与外部市电电源连接,用以输入预定电压范围内的第一交流电;
整流滤波电路,与所述交流输入端连接,用以对所述第一交流电进行整流滤波形成直流电;
开关电路,与所述整流滤波电路连接,用以响应控制信号而导通或断开以输出第一脉冲电压;
升压式变换电路,与所述开关电路连接,用于对所述第一脉冲电压进行升压处理后输出第二脉冲电压;
PFC控制电路,与所述开关电路及升压式变换电路连接,用以控制所述开关电路输出的第一脉冲电压的脉宽;
桥式逆变电路,与所述升压式变换电路连接,用以将所述第二脉冲电压转换成第二交流电;
交流输出端,与所述桥式逆变电路连接,用以输出第二交流电;
逆变控制电路,与所述交流输出端及桥式逆变电路连接,用以控制所述桥式逆变电路输出波形的占空比,以控制所述第二交流电稳定。
优选地,所述PFC控制电路包括:
电压检测反馈电路,与所述升压式变换电路连接,用以对所述第二脉冲电压进行检测以产生一反馈电压;
过流检测电路,与所述开关电路连接,用以对所述开关电路输出的电流进行检测以产生一反馈电流;
PFC控制器,其反馈端与所述电压检测反馈电路连接,电流检测端与所述过流检测电路连接,控制端与所述开关电路连接,用以根据所述反馈电压及反馈电流输出一所述控制信号而控制所述第一脉冲电压的脉宽。
优选地,所述逆变控制电路包括:
输出电压检测电路,与所述交流输出端连接,用以对所述第二交流电的电压进行取样以产生第一取样电压;
输出电流检测电路,与所述交流输出端连接,用以对所述第二交流电的电流进行取样以产生第一取样电流;
逆变控制器,与输出电压检测电路、输出电流检测电路及桥式逆变电路连接,用以根据所述第一取样电压及第一取样电流控制所述桥式逆变电路输出波形的占空比,以控制所述第二交流电稳定。
优选地,所述开关电路包括MOS开关管及开关管驱动电路,所述MOS开关管的漏极通过一升压电感与所述整流滤波电路的正极输出端连接,栅极通过所述开关管驱动电路与所述PFC控制器的控制端连接,源极通过一第三取样电阻与所述整流滤波电路的负极输出端连接。
优选地,所述升压式变换电路包括升压二极管、升压直流滤波电容及所述升压电感,所述升压二极管的阳极与所述MOS开关管的漏极连接,阴极与所述升压直流滤波电容的正极及所述桥式逆变电路连接,所述升压直流滤波电容的负极接地。
优选地,所述PFC控制器包括PFC控制芯片,所述PFC控制芯片的INV引脚及COMP引脚为所述PFC控制器的反馈端,CS引脚为电流检测端;
所述电压检测反馈电路包括电压取样电路、第四十一电阻、第八电容及第九电容,所述PFC控制芯片的INV引脚通过所述电压取样电路连接至所述 升压式变换电路,所述第四十一电阻一端与INV引脚连接,另一端通过所述第九电容连接至所述PFC控制芯片的COMP引脚,所述第八电容连接于所述INV引脚与COMP引脚之间。
优选地,所述过流检测电路包括第四十二电阻、第三电容及所述第三取样电阻;所述第四十二电阻的一端连接所述PFC控制芯片的CS引脚,另一端连接至所述MOS开关管的源极,所述CS引脚通过所述第三电容接地。
优选地,所述桥式逆变电路包括由第一MOS管、第二MOS管、第三MOS管及第四MOS管组成的逆变桥,第一MOS管、第二MOS管、第三MOS管及第四MOS管的栅极分别连接一MOS管驱动电路,所述MOS管驱动电路连接至所述逆变控制器上对应的控制端;
所述第二MOS管的源极为所述交流输出端的火线端,所述第三MOS管的源极为所述交流输出端的零线端。
优选地,所述输出电流检测电路包括第二电阻及第二取样电阻;所述第二电阻的一端连接至所述第一MOS管及第四MOS管的源极,另一端连接至所述逆变控制器;所述第二取样电阻一端连接至所述第一MOS管及第四MOS管的源极,另一端接地。
为实现上述目的,第二方面,本发明提供的智能旅行用电源转换装置,具有如上所述的升压自动匹配电路。
本发明提供的升压自动匹配电路及智能旅行用电源转换装置,交流输入端输入的预定电压范围(一般为AC90-265V)内的第一交流电,通过整流滤波电路进行整流滤波形成直流电,在PFC控制电路的控制下,开关电路将直流电以脉冲形式输出第一脉冲电压,第一脉冲电压再通过升压式变换电路进行升压处理形成第二脉冲电压,第二脉冲电压再通过桥式逆变电路进行逆变以及逆变控制电路进行PWM控制调整,转换成稳定的第二交流电(例如220V)输出,如此,可以实现宽电压升压处理,由于输入端可以是预定电压范围内的交流电,因此,其适应范围更大,应用该升压电路的智能旅行用电源转换装置使用更加方便。
附图说明
图1是本发明实施例升压自动匹配电路的电路方框图;
图2是本发明实施例升压自动匹配电路的电路原理图;
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
参照图1所示,本发明实施例提供了一种升压自动匹配电路,包括交流输入端10、整流滤波电路20、开关电路30、升压式变换电路40、PFC控制电路、桥式逆变电路60、交流输出端70及逆变控制电路。
具体的,交流输入端10与外部市电电源连接,用以输入预定电压范围内的第一交流电。例如预定电压范围一般可以是AC90-AC265V,也就是宽电压的范围为AC90-AC265V,具体输入的第一交流电例如为交流110V。整流滤波电路20与交流输入端10连接,用以对所述第一交流电进行整流滤波形成直流电。开关电路30与整流滤波电路20连接,用以响应控制信号而导通或断开以输出第一脉冲电压;也就是说,在开关电路30的通断状态下,开关电路30输出直流脉冲,该直流脉冲也就是上述第一脉冲电压。升压式变换电路40与开关电路30连接,用于对第一脉冲电压进行升压处理后输出第二脉冲电压。PFC控制电路与开关电路30及升压式变换电路40连接,用以控制开关电路30输出的第一脉冲电压的脉宽。
桥式逆变电路60与升压式变换电路40连接,用以将第二脉冲电压转换成第二交流电。交流输出端70与桥式逆变电路60连接,用以输出第二交流电;该第二交流电为稳定的固定电压,一般是AC220V。逆变控制电路与交流输出端70及桥式逆变电路60连接,用以控制所述桥式逆变电路60输出波形的占空比,以控制所述第二交流电稳定。
根据本发明提供的升压自动匹配电路,交流输入端10输入的预定电压范围(一般为AC90-265V)内的第一交流电,通过整流滤波电路20进行整流滤波形成直流电,在PFC控制电路的控制下,开关电路30将直流电以脉冲形式输出第一脉冲电压,第一脉冲电压再通过升压式变换电路40进行升压处理形成第二脉冲电压,第二脉冲电压再通过桥式逆变电路60进行逆变以及逆变控 制电路进行PWM控制调整,转换成稳定的第二交流电(例如220V)输出,如此,可以实现宽电压升压处理,由于输入端可以是预定电压范围内的交流电,因此,其适应范围更大,应用该升压电路的智能旅行用电源转换装置使用更加方便。
在本发明的一个具体实施例中,PFC控制电路具体可以包括电压检测反馈电路52、过流检测电路51及PFC控制器50。电压检测反馈电路52与升压式变换电路40连接,用以对所述第二脉冲电压进行检测以产生一反馈电压。过流检测电路51与开关电路30连接,用以对所述开关电路30输出的电流进行检测以产生一反馈电流。PFC控制器50的反馈端与电压检测反馈电路52连接,电流检测端与所述过流检测电路51连接,控制端与所述开关电路30连接,用以根据所述反馈电压及反馈电流输出一所述控制信号而控制所述第一脉冲电压的脉宽。
逆变控制电路具体可以包括输出电压检测电路82、输出电流检测电路81及逆变控制器80。输出电压检测电路82与所述交流输出端70连接,用以对所述第二交流电的电压进行取样以产生第一取样电压。输出电流检测电路81与所述交流输出端70连接,用以对所述第二交流电的电流进行取样以产生第一取样电流。逆变控制器80与输出电压检测电路82、输出电流检测电路81及桥式逆变电路60连接,用以根据所述第一取样电压及第一取样电流控制所述桥式逆变电路60输出波形的占空比,以控制所述第二交流电稳定。
参照图2所示,在本发明的一个具体实施例中,整流滤波电路20包括由四个二极管组成的整流桥BD1及滤波电容C19,整流桥BD1的输入端AC与交流输入端10相连,正极输出端V+与滤波电容C19的正极连接,滤波电容C19的负极连接整流桥BD1的正极输出端V-。其中,交流输入端10输入的第一交流电通过整流桥BD1整流后再通过滤波电容C19进行滤波以形成直流电。
开关电路30包括MOS开关管Q5及开关管驱动电路301,MOS开关管Q5的漏极通过一升压电感L1与所述整流滤波电路20的正极输出端V+连接,栅极通过所述开关管驱动电路301与所述PFC控制器50的控制端连接,源极通过一第三取样电阻RS3与所述整流滤波电路20的负极输出端V-连接。也就是说,MOS开关管Q5的栅极接收PFC控制器50的控制信号而导管或关闭,以此输出上述第一脉冲电压。
升压式变换电路40包括升压二极管D15、升压直流滤波电容CE5及所述升压电感L1,升压二极管D15的阳极与所述MOS开关管Q5的漏极连接,阴极与所述升压直流滤波电容CE5的正极及所述桥式逆变电路60连接,所述升压直流滤波电容CE5的负极接地。其中,升压电感L1、升压二极管D15及升压直流滤波电容CE5可对开关电路30输出的第一脉冲电压进行DC-DC电压升压变换处理,输出第二脉冲电压。
PFC控制器50包括PFC控制芯片U4,该PFC控制芯片U4可采用型号为L6562的PFC控制芯片,该PFC控制芯片U4的INV引脚及COMP引脚为PFC控制器50的反馈端,CS引脚为电流检测端。电压检测反馈电路52包括电压取样电路521、第四十一电阻R41、第八电容C8及第九电容C9,PFC控制芯片U4的INV引脚通过电压取样电路521连接至所述升压式变换电路40,第四十一电阻R41一端与INV引脚连接,另一端通过第九电容C9连接至所述PFC控制芯片U4的COMP引脚,第八电容C8连接于所述INV引脚与COMP引脚之间。其中,电压取样电路521从升压式变换电路40输出端进行电压取样,取出的反馈电压输入至INV引脚。
更为具体的,电压取样电路521包括依次串联的第三十二电阻R32、第三十三电阻R33、第三十四电阻R34、第三十五电阻R35及第四十六电阻R46,第三十二电阻R32连接至升压二极管D15的阴极,PFC控制芯片U4的INV引脚连接至第三十五电阻R35与第四十六电阻R46的节点。其中,利用第三十二电阻R32、第三十三电阻R33、第三十四电阻R34、第三十五电阻R35及第四十六电阻R46进行分压,再从第三十五电阻R35与第四十六电阻R46的节点取一电压值作为反馈电压输入至PFC控制芯片U4的INV引脚。
PFC控制芯片U4的VCC引脚连接至一由感应线圈L2、第十四二极管D14、滤波电容EC4及第三十六电阻R36组成的辅助电源,通过感应线圈L2从升压电感L1上感应出感应电压,感应电压再通过第十四二极管D14进行整流以及通过滤波电容EC4进行滤波,最后为PFC控制芯片U4提供工作电压。GD引脚为PFC控制器50的控制端,通过开关管驱动电路301与MOS开关管Q5的栅极连接,以输出控制信号而控制MOS开关管Q5的通断。GND引脚接地,ZCD引脚通过第三十一电阻R31连接至感应线圈L2,同时,还通过第三十七电阻R37接地。MUL/T引脚通过依次串联的第四十五电阻R45、第四十四电阻R44、 第四十三电阻R43连接至整流滤波电路20的正极输出端V+,同时,还通过第四十六电阻R46接地。
过流检测电路51包括第四十二电阻R42、第三电容C3及所述第三取样电阻RS3。第四十二电阻R42的一端连接所述PFC控制芯片U4的CS引脚,另一端连接至所述MOS开关管Q5的源极,所述CS引脚通过所述第三电容C3接地。其中,过流检测电路51由MOS开关管Q5的源极取出反馈电流,该反馈电流通过CS引脚输出至PFC控制芯片U4。
桥式逆变电路60包括由第一MOS管Q1、第二MOS管Q2、第三MOS管Q3及第四MOS管Q4组成的逆变桥,第一MOS管Q1、第二MOS管Q2、第三MOS管Q3及第四MOS管Q4的栅极分别连接一MOS管驱动电路,所述MOS管驱动电路连接至所述逆变控制器80上对应的控制端。第二MOS管Q2的源极为所述交流输出端70的火线端ACL,所述第三MOS管Q3的源极为所述交流输出端70的零线端ACN。其中,逆变桥将升压式变换电路40输出的第二脉冲电压转换成第二交流电压,通过交流输出端输出,以为电子产品供电。
逆变控制器80包括逆变控制器接口端子801,具有DVR1、DVR2、DVR3、DVR4、ACDCIN、GND、ACN、ACL、CS等连接端,上述PWM1、PWM2、PWM3、PWM4为控制端,对应与第一MOS管Q1、第二MOS管Q2、第三MOS管Q3及第四MOS管Q4的MOS管驱动电路连接。
输出电流检测电路81包括第二电阻R2及第二取样电阻RS2;第二电阻R2的一端连接至所述第一MOS管Q1及第四MOS管Q4的源极,另一端连接至所述逆变控制器80的CS连接端;所述第二取样电阻RS2一端连接至所述第一MOS管Q1及第四MOS管Q4的源极,另一端接地。
输出电压检测电路82包括整流芯片BD01,其中,该整流芯片BD01的一个AC端连接于交流输出端70的火线端ACL及逆变控制器接口端子801上的ACL连接端,另一个AC端连接于交流输出端70的零线端ACN及逆变控制器接口端子801上的ACN连接端,直流输出端V+、V-对应连接于ACDCIN、GND连接端。
基于上述升压自动匹配电路,本发明还提供了一种智能旅行用电源转换装置,具有如上所述的升压自动匹配电路。
综上所述,本发明提供的升压自动匹配电路及智能旅行用电源转换装置, 交流输入端10输入的预定电压范围(一般为AC90-265V)内的第一交流电,通过整流滤波电路20进行整流滤波形成直流电,在PFC控制电路的控制下,开关电路30将直流电以脉冲形式输出第一脉冲电压,第一脉冲电压再通过升压式变换电路40进行升压处理形成第二脉冲电压,第二脉冲电压再通过桥式逆变电路60进行逆变以及逆变控制电路进行PWM控制调整,转换成稳定的第二交流电(例如220V)输出,如此,可以实现宽电压升压处理,由于输入端可以是预定电压范围内的交流电,因此,其适应范围更大,应用该升压电路的智能旅行用电源转换装置使用更加方便。
以上所述仅为本发明的优选实施例,并非因此限制其专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种升压自动匹配电路,其特征在于,包括:
    交流输入端,与外部市电电源连接,用以输入预定电压范围内的第一交流电;
    整流滤波电路,与所述交流输入端连接,用以对所述第一交流电进行整流滤波形成直流电;
    开关电路,与所述整流滤波电路连接,用以响应控制信号而导通或断开以输出第一脉冲电压;
    升压式变换电路,与所述开关电路连接,用于对所述第一脉冲电压进行升压处理后输出第二脉冲电压;
    PFC控制电路,与所述开关电路及升压式变换电路连接,用以控制所述开关电路输出的第一脉冲电压的脉宽;
    桥式逆变电路,与所述升压式变换电路连接,用以将所述第二脉冲电压转换成第二交流电;
    交流输出端,与所述桥式逆变电路连接,用以输出第二交流电;
    逆变控制电路,与所述交流输出端及桥式逆变电路连接,用以控制所述桥式逆变电路输出波形的占空比,以控制所述第二交流电稳定。
  2. 根据权利要求1所述的升压自动匹配电路,其特征在于,所述PFC控制电路包括:
    电压检测反馈电路,与所述升压式变换电路连接,用以对所述第二脉冲电压进行检测以产生一反馈电压;
    过流检测电路,与所述开关电路连接,用以对所述开关电路输出的电流进行检测以产生一反馈电流;
    PFC控制器,其反馈端与所述电压检测反馈电路连接,电流检测端与所述过流检测电路连接,控制端与所述开关电路连接,用以根据所述反馈电压及反馈电流输出一所述控制信号而控制所述第一脉冲电压的脉宽。
  3. 根据权利要求1所述的升压自动匹配电路,其特征在于,所述逆变控制电路包括:
    输出电压检测电路,与所述交流输出端连接,用以对所述第二交流电的电压进行取样以产生第一取样电压;
    输出电流检测电路,与所述交流输出端连接,用以对所述第二交流电的 电流进行取样以产生第一取样电流;
    逆变控制器,与输出电压检测电路、输出电流检测电路及桥式逆变电路连接,用以根据所述第一取样电压及第一取样电流控制所述桥式逆变电路输出波形的占空比,以控制所述第二交流电稳定。
  4. 根据权利要求2所述的升压自动匹配电路,其特征在于,所述开关电路包括MOS开关管及开关管驱动电路,所述MOS开关管的漏极通过一升压电感与所述整流滤波电路的正极输出端连接,栅极通过所述开关管驱动电路与所述PFC控制器的控制端连接,源极通过一第三取样电阻与所述整流滤波电路的负极输出端连接。
  5. 根据权利要求4所述的升压自动匹配电路,其特征在于,所述升压式变换电路包括升压二极管、升压直流滤波电容及所述升压电感,所述升压二极管的阳极与所述MOS开关管的漏极连接,阴极与所述升压直流滤波电容的正极及所述桥式逆变电路连接,所述升压直流滤波电容的负极接地。
  6. 根据权利要求4述的升压自动匹配电路,其特征在于,所述PFC控制器包括PFC控制芯片,所述PFC控制芯片的INV引脚及COMP引脚为所述PFC控制器的反馈端,CS引脚为电流检测端;
    所述电压检测反馈电路包括电压取样电路、第四十一电阻、第八电容及第九电容,所述PFC控制芯片的INV引脚通过所述电压取样电路连接至所述升压式变换电路,所述第四十一电阻一端与INV引脚连接,另一端通过所述第九电容连接至所述PFC控制芯片的COMP引脚,所述第八电容连接于所述INV引脚与COMP引脚之间。
  7. 根据权利要求6述的升压自动匹配电路,其特征在于,所述过流检测电路包括第四十二电阻、第三电容及所述第三取样电阻;所述第四十二电阻的一端连接所述PFC控制芯片的CS引脚,另一端连接至所述MOS开关管的源极,所述CS引脚通过所述第三电容接地。
  8. 根据权利要求3所述的升压自动匹配电路,其特征在于,所述桥式逆变电路包括由第一MOS管、第二MOS管、第三MOS管及第四MOS管组成的逆变桥,第一MOS管、第二MOS管、第三MOS管及第四MOS管的栅极分别连接一MOS管驱动电路,所述MOS管驱动电路连接至所述逆变控制器上对应的控制端;
    所述第二MOS管的源极为所述交流输出端的火线端,所述第三MOS管的源极为所述交流输出端的零线端。
  9. 根据权利要求3所述的升压自动匹配电路,其特征在于,所述输出电流检测电路包括第二电阻及第二取样电阻;所述第二电阻的一端连接至所述第一MOS管及第四MOS管的源极,另一端连接至所述逆变控制器;所述第二取样电阻一端连接至所述第一MOS管及第四MOS管的源极,另一端接地。
  10. 一种智能旅行用电源转换装置,其特征在于,具有如权利要求1至9中任一项所述的升压自动匹配电路。
PCT/CN2014/095207 2014-09-30 2014-12-26 升压自动匹配电路及智能旅行用电源转换装置 WO2016049989A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14903057.9A EP3160025B1 (en) 2014-09-30 2014-12-26 Voltage set-up automatic matching circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410521740.XA CN104270013B (zh) 2014-09-30 2014-09-30 升压自动匹配电路及智能旅行用电源转换装置
CN201410521740.X 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016049989A1 true WO2016049989A1 (zh) 2016-04-07

Family

ID=52161515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095207 WO2016049989A1 (zh) 2014-09-30 2014-12-26 升压自动匹配电路及智能旅行用电源转换装置

Country Status (3)

Country Link
EP (1) EP3160025B1 (zh)
CN (1) CN104270013B (zh)
WO (1) WO2016049989A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518791A (zh) * 2019-09-27 2019-11-29 上海沪工焊接集团股份有限公司 一种pfc控制电路
CN118282231A (zh) * 2024-06-03 2024-07-02 威胜能源技术股份有限公司 一种跟随交流电自动同步翻转的h桥驱动电路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024560A (zh) * 2015-08-05 2015-11-04 哈尔滨工业大学 交流电源自动转换装置
EP3350912A1 (en) * 2015-09-18 2018-07-25 The Esab Group, Inc. Power supply for welding and cutting apparatus
CN106655804A (zh) * 2017-01-16 2017-05-10 广东百事泰电子商务股份有限公司 一种基于维也纳pfc的智能型半桥修正波电压转换电路
CN115428321A (zh) * 2020-03-04 2022-12-02 红色半导体公司 控制器,电源转换器和相关方法
CN113572371B (zh) * 2021-08-12 2022-11-15 乐清市乐翔电气有限公司 一种纯正弦波交流恒压稳定电源
CN116760166B (zh) * 2023-06-05 2024-01-19 广东振辉消防科技有限公司 一体式升降压灯具专用应急电源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325367A (zh) * 2007-06-14 2008-12-17 海尔集团公司 一种部分有源功率因数校正电路
CN101777829A (zh) * 2010-03-09 2010-07-14 上海大学 一种变频空调在低频模型下的apfc控制方法
CN102594174A (zh) * 2012-02-13 2012-07-18 上海威特力焊接设备制造股份有限公司 一种全电压范围的焊接电源
CN103078549A (zh) * 2013-01-10 2013-05-01 浙江中碳科技有限公司 一种交直流通用的交流适配器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7443113B2 (en) * 2003-12-02 2008-10-28 Universal Lighting Technologies, Inc. Software controlled electronic dimming ballast
CN101295934B (zh) * 2007-04-28 2012-04-25 力博特公司 一种具有宽输入电压范围的不间断电源
JP5085397B2 (ja) * 2008-04-11 2012-11-28 ルネサスエレクトロニクス株式会社 電源装置および半導体集積回路装置
WO2012077125A1 (en) * 2010-12-08 2012-06-14 Deepak Chandran A system for monitoring and controlling high intensity discharge (hid) lamps
CN202261008U (zh) * 2011-10-28 2012-05-30 明纬(广州)电子有限公司 一种改善功率因数校正电路冲击电流过高的电路
CN202889210U (zh) * 2012-11-07 2013-04-17 深圳市茂润电气有限公司 旅行插座
CN203104332U (zh) * 2013-01-10 2013-07-31 浙江中碳科技有限公司 一种交直流通用的交流适配器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325367A (zh) * 2007-06-14 2008-12-17 海尔集团公司 一种部分有源功率因数校正电路
CN101777829A (zh) * 2010-03-09 2010-07-14 上海大学 一种变频空调在低频模型下的apfc控制方法
CN102594174A (zh) * 2012-02-13 2012-07-18 上海威特力焊接设备制造股份有限公司 一种全电压范围的焊接电源
CN103078549A (zh) * 2013-01-10 2013-05-01 浙江中碳科技有限公司 一种交直流通用的交流适配器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518791A (zh) * 2019-09-27 2019-11-29 上海沪工焊接集团股份有限公司 一种pfc控制电路
CN118282231A (zh) * 2024-06-03 2024-07-02 威胜能源技术股份有限公司 一种跟随交流电自动同步翻转的h桥驱动电路

Also Published As

Publication number Publication date
EP3160025B1 (en) 2018-09-05
EP3160025A1 (en) 2017-04-26
EP3160025A4 (en) 2017-06-28
CN104270013B (zh) 2018-08-21
CN104270013A (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
WO2016049989A1 (zh) 升压自动匹配电路及智能旅行用电源转换装置
US9263967B2 (en) AC/DC power conversion methods and apparatus
US8355268B2 (en) Electronic driver circuit and method
WO2018040119A1 (zh) 一种兼容市电和镇流器输入的led光源驱动控制装置
TWI565204B (zh) Dynamic detection regulator boost power factor correction control device
US9654020B2 (en) Smart matching step-down circuits and travel-use power conversion devices
WO2016049988A1 (zh) 智能匹配降压电路及旅行用电源转换装置
US9699842B2 (en) Complementary converter for switch mode power supply
US10326356B2 (en) Boost power factor correction circuit, driving circuit for light-emitting diode and lighting device
TWI461097B (zh) 發光二極體驅動電路
CN103683919B (zh) 高功率因数低谐波失真恒流电路及装置
TW201117643A (en) LED lamp and LED lamp module
US20040155638A1 (en) Switch mode power converter
US9369050B1 (en) Indirect current sensing method for a constant current flyback converter
CN106911255B (zh) 一种电源适配器
CN211019318U (zh) 高功率led照明装置及用于驱动它的电源模块
US7791914B1 (en) High efficiency power supply front end
WO2018129833A1 (zh) 一种基于mos管全桥整流的智能型正弦波电压转换电路
KR20150091796A (ko) Led조명용 구동회로
TW201035711A (en) Assistant circuit of power
WO2018129834A1 (zh) 一种基于mos管全桥整流的智能型修正波电压转换电路
TWI526120B (zh) Led調光驅動系統
CN106301022A (zh) 一种驱动电路
CN107896403B (zh) 一种led电源
CN106712488B (zh) 一种pfc开关电源的主控芯片电路和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903057

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014903057

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903057

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE