WO2016049940A1 - Overlapping stacked die package with vertical columns - Google Patents
Overlapping stacked die package with vertical columns Download PDFInfo
- Publication number
- WO2016049940A1 WO2016049940A1 PCT/CN2014/088096 CN2014088096W WO2016049940A1 WO 2016049940 A1 WO2016049940 A1 WO 2016049940A1 CN 2014088096 W CN2014088096 W CN 2014088096W WO 2016049940 A1 WO2016049940 A1 WO 2016049940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- die
- electronic
- columns
- conductive column
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/19—Manufacturing methods of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3121—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
- H01L23/3128—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L24/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L24/20—Structure, shape, material or disposition of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/96—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/06—Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
- H01L2224/061—Disposition
- H01L2224/0612—Layout
- H01L2224/0613—Square or rectangular array
- H01L2224/06134—Square or rectangular array covering only portions of the surface to be connected
- H01L2224/06135—Covering only the peripheral area of the surface to be connected, i.e. peripheral arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/12105—Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/20—Structure, shape, material or disposition of high density interconnect preforms
- H01L2224/21—Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
- H01L2224/214—Connecting portions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32135—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/32145—Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73217—Layer and HDI connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73267—Layer and HDI connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/922—Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
- H01L2224/9222—Sequential connecting processes
- H01L2224/92242—Sequential connecting processes the first connecting process involving a layer connector
- H01L2224/92244—Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06506—Wire or wire-like electrical connections between devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06555—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
- H01L2225/06562—Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1017—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
- H01L2225/1035—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the device being entirely enclosed by the support, e.g. high-density interconnect [HDI]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/1058—Bump or bump-like electrical connections, e.g. balls, pillars, posts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
- H01L24/92—Specific sequence of method steps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/1815—Shape
- H01L2924/1816—Exposing the passive side of the semiconductor or solid-state body
- H01L2924/18162—Exposing the passive side of the semiconductor or solid-state body of a chip with build-up interconnect
Definitions
- Embodiments described herein generally relate to stacked die packages, and more particularly to overlapping stacked die packages that include conductive columns.
- wire bond based package In which substrate and over mold add extra z-height to the package.
- wire bond based package are also typically limited in their performance because of the number and length of the wires that are utilized in the packages.
- TSV Thru Silicon Via
- High die count stacked die packages that utilize TSV usually have relatively high speed.
- z-height reduction is still difficult with TSV.
- the vias that are formed using TSV technology often use up valuable space on silicon.
- the typical z-height of a conventional 16 Die BGA stacked die package is 1.35 mm where each die is thinned to 35 um.
- FIG. 1 is a side view of an example die.
- FIG. 2 is a side view of the example die shown in FIG. 1 with at least one conductive column formed on the die.
- FIG. 3 is an enlarged side view of the conductive column shown in FIG. 2.
- FIG. 4 is a top view of the die shown in FIG 2.
- FIG. 5 is a side view of a package that includes an overlapping stack of electronic assemblies.
- FIG. 6 is a top view of the package shown in FIG. 5.
- FIG. 7 is a side view of package shown in FIGS. 5 and 6 where the overlapping stack of dies is enclosed in a mold.
- FIG. 8 is a side view of the package shown in FIG. 7 where a portion of the mold has been removed to expose the columns on overlapping stack of dies.
- FIG. 9 is a side view of the package shown in FIG. 8 where a redistribution layer is placed on the exposed columns of the overlapping stack of dies.
- FIG. 10 is a side view of the package shown in FIG. 9 where solder bumps are placed on the redistribution layer of the overlapping stack of dies.
- FIG. 11 is a side view of the package shown in FIG. 10 where a similar additional package is inverted and aligned with the solder balls on the package shown in FIG. 10.
- FIG. 12 is a flow diagram illustrating a method of overlapping a stack of electronic assemblies to form an electronic package.
- FIG. 13 is block diagram of an electronic apparatus that includes the electronic assemblies and/or the electronic packages described herein.
- FIG. 14 is a side view of another electronic apparatus.
- Orientation terminology such as “horizontal, ” as used in this application is defined with respect to a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate.
- the term “vertical” refers to a direction perpendicular to the horizontal as defined above.
- Prepositions such as “on, ” “side” (as in “sidewall” ) , “higher, ” “lower, ” “over, ” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate.
- the electronic assemblies, packages and methods described herein may address the drawbacks that are associated with using wire bond packaging technology and TSV technology to form high die count stacked die packages.
- electronic assemblies, packages and methods described herein may increase the electrical performance of high die count stacked die packages.
- the electronic assemblies, packages and methods described herein may provide some benefits over using conventional TSV technology to form high die count stacked die packages.
- TSV technology usually creates a standoff that is tens of microns, while the assemblies, packages and methods described herein may create a standoff that is 5 um and less. This smaller standoff may reduce the overall size and thickness of the high die count stacked die packages.
- the silicon utilization efficiency of the electronic assemblies, packages and methods described herein may be higher than TSV technology because TSV technology must fabricate the vias through peripheral areas of silicon. This need to fabricate openings in the silicon to create openings for via formation (i) uses valuable space on the silicon; and (ii) increases the fabrication costs associated with forming high die count stacked die packages.
- the electronic assemblies, packages and methods described herein do not require any type of fabrication to create openings in the silicon for vias.
- the electronic assemblies, packages and methods described herein may utilize existing wire bond equipment to create conductive columns on an upper surface of a die. This ability to potentially use existing wire bond equipment may reduce the costs that are associated with fabricating the electronic assemblies, packages and methods described herein.
- the electronic assemblies, packages and methods described herein may provide some benefits over using conventional substrate based wire bond technology.
- the electronic assemblies, packages and methods described herein may provide improved electrical performance.
- the electrical performance may be better because the conductive columns are shorter than the wires that are used in conventional wire bond technology.
- the overall size of the electronic assemblies, packages and methods described herein may be much smaller than substrate based package that utilize conventional wire bond technology.
- the overall size may be reduced because (i) the X-Y space on the substrate that is usually required for wire bonding may be saved; (ii) the extra over molding that is usually required for the conductive wires that are used in wire bonding may be eliminated to reduce the z-height; and (iii) a substrate is not required because no wire bonding is necessary.
- FIG. 1 is a side view of an example die 11 while FIG. 2 is a side view of the example die 11 shown in FIG. 1 with at least one conductive column 13 formed on the die 11 to create an electronic assembly 10.
- FIG. 3 is an enlarged side view of the conductive column 13 shown in FIG. 2 while FIG. 4 is a top view of the electronic assembly 10 shown in FIG 2.
- FIGS. 2-4 illustrate an electronic assembly 10 that includes a die 11 (or some other form of electronic component) having an upper surface 12.
- the electronic assembly 10 further includes a conductive column 13 that extends from the upper surface 12 such that the conductive column 13 is not surrounded by any material other than where the conductive column 13 engages the die 11.
- the conductive column 13 may be several hundred um long. It should be noted the conductive columns 13 may not have as high of an aspect ratio as shown in the FIGS. (i. e. , the conductive columns 13 are not drawn to scale) . An example range for the aspect ratio of the conductive columns 13 would be from 1 to 20.
- the die 11 includes a conductive pad 14 such that the conductive column 13 extends from the conductive pad 14 on the die 11.
- the conductive pad 14 shown in FIGS. 1-4 is merely an example of a conductor that may be included on the upper surface 12 of the die 11 for engagement with the conductive column 13.
- the conductive column 13 may include a spherical section 16 that engages the conductive pad 14 and a cylindrical section 17 that extends from the spherical section 16. It should be noted that other forms are contemplated for the conductive column 13. The configuration and size of the conductive column 13 will depend in part on the overall design of the electronic assembly 10 as well as manufacturing considerations that are associated with fabricating the conductive columns 13 (among other factors) .
- the conductive column 13 may be part of a plurality of conductive columns 13 extending from the upper surface 12 such that each conductive column 13 is not surrounded by any material other than where the conductive columns 13 engage the die 11.
- the plurality of conductive columns 13 are aligned in a row near one edge 18 of the die 11.
- the plurality of conductive columns 13 may be arranged in any manner on the upper surface 12 of the die 11.
- the plurality of conductive columns 13 may be arranged in an L-shaped, C-shaped, or multiple row configuration on the upper surface 12 of the die 11.
- the arrangement of the plurality of conductive columns 13 on the upper surface 12 of the die 11 will depend in part on the overall design of the electronic assembly 10 as well as manufacturing consideration that are associated with fabricating the electronic assembly 10 (among other factors) .
- FIG. 5 is a side view of a package 19 that includes an overlapping stack 20 of electronic assemblies 10 that are similar to the electronic assemblies 10 shown in FIGS. 2-4.
- FIG. 6 is a top view of the overlapping stack of electronic assemblies 10 shown in FIG. 5.
- the package 19 shown in FIGS. 5 and 6 includes a stack 20 of electronic assemblies 10 where each electronic assembly 10 includes a die 11 having an upper surface 12 and a plurality of conductive columns 13 extending from the upper surface 12 such that each conductive column 13 in the stack 20 is not surrounded by any material other than where the conductive column 13 engages the respective die 11.
- the stack 20 of electronic assemblies 10 is arranged in an overlapping configuration such the plurality of conductive columns 13 on each electronic assembly 10 are not covered by another electronic assembly 10.
- each electronic assembly 10 In the overlapping stack of electronic assemblies 10 shown in FIGS. 5 and 6, the plurality of conductive columns 13 in each electronic assembly 10 are aligned in a row near one edge of the respective die 11that includes the corresponding plurality of conductive columns 13. This configuration of the plurality of conductive columns 13 in each electronic assembly 10 allows the stack 20 of electronic assemblies 10 to be arranged in a shingles configuration. It should be noted that the manner in which the electronic assemblies 10 overlap to form a stack 20 of electronic assemblies 10 will depend in part on how plurality of conductive columns 13 are configured on each respective die 11.
- the conductive columns 13 that extend from each die 11 may have same or different aspect ratios. In addition, there may be a different number of conductive columns 13 in each electronic assembly 10 that forms the electronic package 19. It should be noted that the dies 11 in each electronic assembly 10 of the electronic package 1 may be the same, or have a different size, thickness, material or function.
- FIG. 7 is a side view of the overlapping stack 20 of dies 11 shown in FIGS. 5 and 6 where the package 19 is enclosed in a mold 21.
- the mold 21 may surround the package 19 and be formed of a thermoset molding compound, such as an epoxy (among other types of materials) .
- a bottom surface of the bottom die 11 in the overlapping stack 20 of electronic assemblies 10 may be exposed (or not exposed as shown in FIG. 7)
- FIG. 8 is a side view of the overlapping stack 20 of electronic assemblies 10 shown in FIG. 7 where a portion of the mold 21 has been removed to expose the plurality of conductive columns 13 on the electronic package 19.
- the portion of the mold 21 may be removed by grinding, although it should be noted that other material removal methods are contemplated. It should be noted that other forms of the package 19 are contemplated where a portion of the mold 21 may be removed such that an upper surface 12 of the die 11 in the upper most electronic assembly 10 is exposed.
- FIG. 9 is a side view of the example electronic package 19 shown in FIG. 8 where a redistribution layer 22 may be placed on the exposed columns 13 in the overlapping stack 20 of electronic assemblies 10.
- the redistribution layer 22 may be placed on the exposed columns 13 in any manner that is known now or discovered in the future.
- the configuration of the redistribution layer 22 will depend in part on the locations of the exposed columns 13 in the overall design of the electronic package 19.
- FIG. 10 is a side view of the electronic package 19 shown in FIG. 9 where solder bumps 23 may be placed on the conductive redistribution layer 22 on the upper surface of the mold 21 and/or the exposed portions of some of the plurality of conductive columns 13.
- the solder bumps 23 may be placed on the conductive redistribution layer 22 and/or the exposed columns 13 in any manner that is known now or discovered in the future.
- the configuration of the solder bumps 13 will depend in part on the locations of the exposed columns 13 and configuration of the redistribution layer 22 in the overall design of the package 19.
- FIG. 11 is a side view of the package 19 shown in FIG. 10 where a similar additional package 30 is inverted and aligned with the solder bumps 23 on the overlapping stack of dies shown in FIG. 10.
- the package 19 may be mounted using the solder bumps 23 (or some other type of conductor) to many other types of electronic devices (e. g., a substrate, die, chipset, motherboard, card and/or different type of electronic package among other types of electronic devices) .
- the dies 11 or packages 20 may be thinned (e. g. , by grinding) in order to reduce the height of the electronic assemblies 10 and/or packages 20.
- Example are also contemplated where an additional electronic device (e. g. , another package similar to electronic package 19) is mounted to the other side of the electronic package 19 in order form a stack of multiple electronic packages.
- FIG. 12 is a flow diagram illustrating an example method [1200] .
- the method [1200] includes [1210] forming an electronic assembly 10 by attaching a conductive column 13 to an upper surface 12 of a die 11 such that the conductive column 13 extends from the upper surface 12 and is not surrounded by any material other than where the conductive column 12 engages the die 11 (see FIGS. 2 and 3) .
- attaching a conductive column 13 to an upper surface 12 of a die 11 includes attaching a conductive column 13 to an upper surface 12 of a die 11 using wire bonding techniques, although any techniques that are known now or discovered in the future may be used to attach the conductive column 13 to the upper surface 12 of the die 11.
- forming an electronic assembly 10 includes attaching a plurality of conductive columns 13 to an upper surface 12 of a die 11 such that the conductive columns 13 extend from the upper surface 12 and are not surrounded by any material other than where the conductive columns 13 engage the die 11.
- attaching a plurality of conductive columns 13 to an upper surface 12 of a die 11 includes aligning the plurality of conductive columns 13 in a row near one edge 18 of the die 11.
- the method [1200] may further include [1220] stacking additional electronic assemblies 10 onto the electronic assembly 10 to form an electronic package 19.
- Each additional electronic assembly 10 includes a die 11 having an upper surface 12 and a plurality of conductive columns 13 extending from the upper surface 12 such that each conductive column 13 is not surrounded by any material other than where the conductive columns 13 engage the respective dies 11.
- the electronic assemblies 10 that form the package 19 are arranged in an overlapping configuration such the plurality of conductive columns 13 on each electronic assembly 10 are not covered by another electronic assembly 10.
- the method [1200] may further include [1230] forming a mold 21 that surrounds the stack 20 of electronic assemblies 10 (see FIG. 7) .
- the method [1220] may include [1240] removing a portion of the mold 21 to expose the conductive columns 13 through an upper surface of the mold 21 (see FIG. 8) .
- the method [1200] may further include [1250] forming a conductive redistribution layer 22 on the upper surface of the mold 21.
- the conductive redistribution layer 22 may engage an exposed portion of each of the plurality of conductive columns 13.
- the method may also include [1260] forming solder bumps 23 on the conductive redistribution layer 22 or the exposed portions of some of the plurality of conductive columns 13 (see FIG. 10) .
- the method [1200] may further include [1270] inverting the electronic package, and [1280] attaching the solder bumps 23 on the electronic package 19 to another electronic device (see, e. g., package 30 in FIG. 11) .
- the type of electronic device that the package 19 is attached to will depend in part on the desired functionality of the package 19 when the package 19 is used in a particular application.
- the methods, electronic assemblies 10 and packages 19 described herein may be in wafer form, row form or any other form that promotes fabrication of the electronic assemblies 10 and overlapping stacks 20 of electronic assemblies 10.
- the form taken by the methods, electronic assemblies 10 and packages 19 will depend in part on manufacturing costs as well as the overall desired functionality of the electronic assemblies 10 and packages 19.
- FIG. 13 is a block diagram of an electronic apparatus 1300 incorporating at least one electronic assembly 10 and or electronic package 19 described herein.
- Electronic apparatus 1300 is merely one example of an electronic apparatus in which forms of the electronic assemblies 10, electronic packages 19 described herein may be used. Examples of an electronic apparatus 1300 include, but are not limited to, personal computers, tablet computers, mobile telephones, game devices, MP3 or other digital music players, etc.
- electronic apparatus 1300 comprises a data processing system that includes a system bus 1302 to couple the various components of the electronic apparatus 1300.
- System bus 1302 provides communications links among the various components of the electronic apparatus 1300 and may be implemented as a single bus, as a combination of busses, or in any other suitable manner.
- An electronic apparatus 1300 as describe herein may be coupled to system bus 1302.
- the electronic apparatus 1300 may include any circuit or combination of circuits.
- the electronic apparatus 1300 includes a processor 1312 which can be of any type.
- processor means any type of computational circuit, such as but not limited to a microprocessor, a microcontroller, a complex instruction set computing (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a graphics processor, a digital signal processor (DSP) , multiple core processor, or any other type of processor or processing circuit.
- CISC complex instruction set computing
- RISC reduced instruction set computing
- VLIW very long instruction word
- DSP digital signal processor
- circuits that may be included in electronic apparatus 1300 are a custom circuit, an application-specific integrated circuit (ASIC) , or the like, such as, for example, one or more circuits (such as a communications circuit 1314) for use in wireless devices like mobile telephones, tablet computers, laptop computers, two-way radios, and similar electronic systems.
- ASIC application-specific integrated circuit
- the IC can perform any other type of function.
- the electronic apparatus 1300 may also include an external memory 1320, which in turn may include one or more memory elements suitable to the particular application, such as a main memory 1322 in the form of random access memory (RAM) , one or more hard drives 1324, and/or one or more drives that handle removable media 1326 such as compact disks (CD) , flash memory cards, digital video disk (DVD) , and the like.
- RAM random access memory
- CD compact disks
- DVD digital video disk
- the electronic apparatus 1300 may also include a display device 1316, one or more speakers 1318, and a keyboard and/or controller 1330, which can include a mouse, trackball, touch screen, voice-recognition device, or any other device that permits a system user to input information into and receive information from the electronic apparatus 1300.
- a display device 1316 one or more speakers 1318
- a keyboard and/or controller 1330 which can include a mouse, trackball, touch screen, voice-recognition device, or any other device that permits a system user to input information into and receive information from the electronic apparatus 1300.
- FIG. 14 illustrates an example apparatus 50 that includes a first die 11’a nd a first conductive column 17’ on a surface of the first die 11’ .
- a second die 11” is disposed adjacent the first die 11’ and a second conductive column 17” is on a surface of the second die 11” .
- a mold material 21 contacts the first die 11’ a nd the second die 11” at each respective surface, and at each respective first conductive column 17’ and second conductive column 17” .
- the mold material 21 exhibits characteristic flow across each of the first conductive column 17’ a nd the second conductive column 17” , and wherein the mold material is integral.
- the apparatus 50 further includes a subsequent die 11” ’ a nd a subsequent conductive column 17” ’ on a surface of the subsequent die 11” ’ .
- the mold material 21 also exhibits characteristic residual flow across the subsequent conductive column 17” ’ .
- Conventional techniques for forming conducting columns typically include drilling through a mold material to reach a die, and subsequently filling in the drilled hole with conductive material to form the conductive column.
- Configurations that are formed by flowing a mold material around already existing conducting columns will exhibit distinctive physical characteristics that are detectable and different from configurations formed by drilling and filling after the fact. Examples of such physical differences include, but are not limited to microstructural differences in a mold polymer or other material that is bent around the conductive column as a residual artifact from the flow.
- weld lines represent an optical as well as mechanical defect in a molded part. Weld lines typically appear in the area where the polymer flows come together during the injection process.
- Grooves are a surface defect where “rings” appear at the surface of molded parts mainly around pin point gates and concentrically spreading over the molding. Jetting is a similar defect to grooves where rough or matt lines appear at the surface of the molding starting at the gate and spreading over the entire part.
- Air streaks in molded parts appear as matt, silvery or white lines (streaks) at the surface of the molded parts. They can usually be found near domes, ribs and where the wall thickness of the molded part may vary. They also can appear near the sprue or near engraving and depressions.
- Example 1 includes an electronic assembly that includes a die that includes an upper surface and a conductive column extending from the upper surface such that the conductive column is not surrounded by any material other than where the conductive column engages the die.
- Example 2 includes the electronic assembly of example 1, wherein the die includes a conductive pad such that the conductive column extends from the conductive pad on the die.
- Example 3 includes the electronic assembly of any one of examples 1-2, wherein the conductive column includes a spherical section that engages the conductive pad and a cylindrical section that extends from the spherical section.
- Example 4 includes the electronic assembly of any one of examples 1-3, wherein conductive column is part of a plurality of conductive columns extending from the upper surface such that the conductive columns are not surrounded by any material other than where the conductive columns engage the die.
- Example 5 includes the electronic assembly of any one of examples 1-4, wherein the plurality of conductive columns are aligned in a row near one edge of the die.
- Example 6 includes an electronic package that includes a stack of electronic assemblies where each electronic assembly includes a die that having an upper surface and a plurality of conductive columns extending from the upper surface such that each conductive column is not surrounded by any material other than where the conductive column engages the die, and wherein the stack of electronic assemblies is arranged in an overlapping configuration such the plurality of conductive columns on each electronic assembly are not covered by another electronic assembly.
- Example 7 includes the electronic package of example 6, wherein the plurality of conductive columns in each electronic assembly are aligned in a row near one edge of the respective die that includes the corresponding plurality of conductive columns.
- Example 8 includes the electronic package of any one of examples 6-7, and further including a mold that surrounds the stack of electronic assemblies.
- Example 9 includes the electronic package of any one of examples 6-8, wherein a portion of the mold is removed to expose the conductive columns through an upper surface of the mold.
- Example 10 includes the electronic package of any one of examples 6-9, and further including a conductive redistribution layer on the upper surface of the mold, the conductive redistribution layer engaging an exposed portion of each of the plurality of conductive columns.
- Example 11 includes the electronic package of any one of examples 6-10, and further including solder bumps that engage the conductive redistribution layer on the upper surface of the mold or the exposed portions of some of the plurality of conductive columns.
- Example 12 includes the electronic package of any one of examples 6-11, and further including an additional electronic package that is inverted and joined with the electronic package by connecting solder bumps on the electronic package with solder bumps on the additional electronic package.
- Example 13 is a method that includes forming an electronic assembly by attaching a conductive column to an upper surface of a die such that the conductive column extends from the upper surface and is not surrounded by any material other than where the conductive column engages the die.
- Example 14 includes the method of example 13, wherein attaching a conductive column to an upper surface of a die includes attaching a conductive column to an upper surface of a die using wire bonding techniques.
- Example 15 includes the method of any one of examples 13-14, wherein forming an electronic assembly includes attaching a plurality of conductive columns to an upper surface of a die such that the conductive columns extend from the upper surface and are not surrounded by any material other than where the conductive columns engage the die.
- Example 16 includes the method of any one of examples 13-15, wherein attaching a plurality of conductive columns to an upper surface of a die includes aligning the plurality of conductive columns in a row near one edge of the die.
- Example 17 includes the method of any one of examples 13-16, and further including stacking additional electronic assemblies onto the electronic assembly to form an electronic package, wherein each additional electronic assembly includes a die having an upper surface and a plurality of conductive columns extending from the upper surface such that each conductive column is not surrounded by any material other than where the conductive column engages the respective die, and wherein the electronic assemblies are arranged in an overlapping configuration such the plurality of conductive columns on each electronic assembly are not covered by another electronic assembly.
- Example 18 includes the method of examples 13-17, and further including forming a mold that surrounds the stack of electronic assemblies.
- Example 19 includes the method of any one of examples 13-18, and further including removing a portion of the mold to expose the conductive columns through an upper surface of the mold.
- Example 20 includes the method of examples 13-19, and further including forming a conductive redistribution layer on the upper surface of the mold, wherein the conductive redistribution layer engages an exposed portion of each of the plurality of conductive columns, and forming solder bumps on the conductive redistribution layer or the exposed portions of some of the plurality of conductive columns.
- Example 21 includes the method of any one of examples 13-20, and further including inverting the electronic package, and attaching the solder bumps on the electronic package to another electronic device.
- Example 22 includes an example apparatus that includes a first die and a first conductive column on a surface of the first die.
- a second die is disposed adjacent the first die and a second conductive column is on a surface of the second die.
- a mold material contacts the first die and the second die at each respective surface, and at each respective first conductive column and second conductive column. The mold material exhibits characteristic flow across each of the first conductive column and the second conductive column, and wherein the mold material is integral.
- Example 23 includes the apparatus of Example 22, and further includes a subsequent die and a subsequent conductive column on a surface of the subsequent die.
- the mold material also exhibits characteristic residual flow across the subsequent conductive column.
- the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more. ”
- the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B, ” “B but not A, ” and “A and B, ” unless otherwise indicated.
- the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Packaging Frangible Articles (AREA)
- Ceramic Engineering (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
Claims (23)
- An electronic assembly, comprising:a die that includes an upper surface; anda conductive column extending from the upper surface such that the conductive column is not surrounded by any material other than where the conductive column engages the die.
- The electronic assembly of claim 1, wherein the die includes a conductive pad such that the conductive column extends from the conductive pad on the die.
- The electronic assembly of claims 1-2, wherein the conductive column includes a spherical section that engages the conductive pad and a cylindrical section that extends from the spherical section.
- The electronic assembly of claims 1-3, wherein conductive column is part of a plurality of conductive columns extending from the upper surface such that the conductive columns are not surrounded by any material other than where the conductive columns engage the die.
- The electronic assembly of claims 3-4, wherein the plurality of conductive columns are aligned in a row near one edge of the die.
- An electronic package, comprising:a stack of electronic assemblies where each electronic assembly includes a die that having an upper surface and a plurality of conductive columns extending from the upper surface such that each conductive column is not surrounded by any material other than where the conductive column engages the die; andwherein the stack of electronic assemblies is arranged in an overlapping configuration such the plurality of conductive columns on each electronic assembly are not covered by another electronic assembly.
- The electronic package of claim 6, wherein the plurality of conductive columns in each electronic assembly are aligned in a row near one edge of the respective die that includes the corresponding plurality of conductive columns.
- The electronic package of claims 6-7, further comprising a mold that surrounds the stack of electronic assemblies.
- The electronic package of claims 6-8, wherein a portion of the mold is removed to expose the conductive columns through an upper surface of the mold.
- The electronic package of claims 6-9, further comprising a conductive redistribution layer on the upper surface of the mold, the conductive redistribution layer engaging an exposed portion of each of the plurality of conductive columns.
- The electronic package of claims 6-10, further comprising solder bumps that engage the conductive redistribution layer on the upper surface of the mold or the exposed portions of some of the plurality of conductive columns.
- The electronic package of claims 6-11, further comprising an additional electronic package that is inverted and joined with the electronic package by connecting solder bumps on the electronic package with solder bumps on the additional electronic package.
- A method, comprising forming an electronic assembly by attaching a conductive column to an upper surface of a die such that the conductive column extends from the upper surface and is not surrounded by any material other than where the conductive column engages the die.
- The method of claim 13, wherein attaching a conductive column to an upper surface of a die includes attaching a conductive column to an upper surface of a die using wire bonding techniques.
- The method of claims 13-14, wherein forming an electronic assembly includes attaching a plurality of conductive columns to an upper surface of a die such that the conductive columns extend from the upper surface and are not surrounded by any material other than where the conductive columns engage the die.
- The method of claims 13-15, wherein attaching a plurality of conductive columns to an upper surface of a die includes aligning the plurality of conductive columns in a row near one edge of the die.
- The method of claims 13-16, further comprising stacking additional electronic assemblies onto the electronic assembly to form an electronic package, wherein each additional electronic assembly includes a die having an upper surface and a plurality of conductive columns extending from the upper surface such that each conductive column is not surrounded by any material other than where the conductive column engages the respective die, and wherein the electronic assemblies are arranged in an overlapping configuration such the plurality of conductive columns on each electronic assembly are not covered by another electronic assembly.
- The method of claim 17, further comprising forming a mold that surrounds the stack of electronic assemblies.
- The method of claim 18, further comprising removing a portion of the mold to expose the conductive columns through an upper surface of the mold.
- The method of claim 19, further comprising:forming a conductive redistribution layer on the upper surface of the mold, wherein the conductive redistribution layer engages an exposed portion of each of the plurality of conductive columns; andforming solder bumps on the conductive redistribution layer or the exposed portions of some of the plurality of conductive columns.
- The method of claim 20, further comprising:inverting the electronic package; andattaching the solder bumps on the electronic package to another electronic device.
- An apparatus comprising:a first die;a first conductive column on a surface of the first die;a second die disposed adjacent the first die;a second conductive column on a surface of the second die;mold material that contacts the first die and the second die at each respective surface, and at each respective first conductive column and second conductive column, wherein the mold material exhibits characteristic flow across each of the first conductive column and the second conductive column, and wherein the mold material is integral.
- The apparatus of claim 22, further including a subsequent die and a subsequent conductive column on a surface of the subsequent die, wherein the mold material also exhibits characteristic residual flow across the subsequent conductive column.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/509,416 US10256208B2 (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
CN201480008902.8A CN105830212A (en) | 2014-10-03 | 2014-10-03 | Overlapping Stacked Die Package With Vertical Columns |
PCT/CN2014/088096 WO2016049940A1 (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
JP2016550918A JP2016535463A (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
BR112015021244A BR112015021244A2 (en) | 2014-10-03 | 2014-10-03 | stacked stacked matrix package with vertical columns |
EP14883533.3A EP3017463A4 (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
KR1020157023974A KR20160055100A (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
TW104128814A TWI578466B (en) | 2014-10-03 | 2015-09-01 | Overlapping stacked die package with vertical columns |
US16/282,824 US10629561B2 (en) | 2014-10-03 | 2019-02-22 | Overlapping stacked die package with vertical columns |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/088096 WO2016049940A1 (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/509,416 A-371-Of-International US10256208B2 (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
US16/282,824 Continuation US10629561B2 (en) | 2014-10-03 | 2019-02-22 | Overlapping stacked die package with vertical columns |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016049940A1 true WO2016049940A1 (en) | 2016-04-07 |
Family
ID=55629363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/088096 WO2016049940A1 (en) | 2014-10-03 | 2014-10-03 | Overlapping stacked die package with vertical columns |
Country Status (8)
Country | Link |
---|---|
US (2) | US10256208B2 (en) |
EP (1) | EP3017463A4 (en) |
JP (1) | JP2016535463A (en) |
KR (1) | KR20160055100A (en) |
CN (1) | CN105830212A (en) |
BR (1) | BR112015021244A2 (en) |
TW (1) | TWI578466B (en) |
WO (1) | WO2016049940A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018063413A1 (en) * | 2016-10-01 | 2018-04-05 | Intel Corporation | Electronic device package |
WO2018112914A1 (en) * | 2016-12-23 | 2018-06-28 | Intel Corporation | Vertical bond- wire stacked chip-scale package with application-specific integrated circuit die on stack, and methods of making same |
WO2018125159A1 (en) * | 2016-12-29 | 2018-07-05 | Intel Corporation | Semiconductor package having singular wire bond on bonding pads |
US10204884B2 (en) | 2016-06-29 | 2019-02-12 | Intel Corporation | Multichip packaging for dice of different sizes |
US10256208B2 (en) | 2014-10-03 | 2019-04-09 | Intel Corporation | Overlapping stacked die package with vertical columns |
US11107763B2 (en) | 2016-12-30 | 2021-08-31 | Intel Corporation | Interconnect structure for stacked die in a microelectronic device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107579061B (en) | 2016-07-04 | 2020-01-07 | 晟碟信息科技(上海)有限公司 | Semiconductor device including stacked packages of interconnects |
CN107611099B (en) * | 2016-07-12 | 2020-03-24 | 晟碟信息科技(上海)有限公司 | Fan-out semiconductor device including multiple semiconductor die |
WO2018086395A1 (en) * | 2016-11-08 | 2018-05-17 | 华进半导体封装先导技术研发中心有限公司 | Semiconductor memory, semiconductor storage module and manufacturing method therefor |
CN108695284A (en) * | 2017-04-07 | 2018-10-23 | 晟碟信息科技(上海)有限公司 | Include the semiconductor equipment of Top-down design semiconductor package body group |
WO2019132933A1 (en) * | 2017-12-28 | 2019-07-04 | Intel Corporation | Multi-die, vertical-wire package-in-package apparatus, and methods of making same |
TWI700798B (en) | 2018-07-12 | 2020-08-01 | 南韓商三星電子股份有限公司 | Semiconductor package |
KR102652872B1 (en) | 2018-09-04 | 2024-04-02 | 삼성전자주식회사 | Semiconductor package |
US11158608B2 (en) * | 2019-09-25 | 2021-10-26 | Powertech Technology Inc. | Semiconductor package including offset stack of semiconductor dies between first and second redistribution structures, and manufacturing method therefor |
KR102710260B1 (en) * | 2019-10-01 | 2024-09-27 | 에스케이하이닉스 주식회사 | Semiconductor package including stacked semiconductor chips |
US11086539B2 (en) | 2019-10-21 | 2021-08-10 | Sandisk Technologies Llc | Mapping consecutive logical block addresses to consecutive good blocks in memory device |
KR102664356B1 (en) * | 2019-11-29 | 2024-05-13 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | Chip package structure and manufacturing method thereof |
KR102643424B1 (en) * | 2019-12-13 | 2024-03-06 | 삼성전자주식회사 | Semiconductor package |
KR20220010323A (en) | 2020-07-17 | 2022-01-25 | 삼성전자주식회사 | Semiconductor package |
JP2022112923A (en) | 2021-01-22 | 2022-08-03 | キオクシア株式会社 | Semiconductor device and method for manufacturing the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030156402A1 (en) * | 2002-02-15 | 2003-08-21 | Advanced Semiconductor Engineering, Inc. | Method for making a build-up package of a semiconductor die and structure formed from the same |
US20040004294A1 (en) * | 2002-07-08 | 2004-01-08 | Hall Frank L. | Underfilled, encapsulated semiconductor die assemblies and methods of fabrication |
US20070148918A1 (en) * | 2000-06-02 | 2007-06-28 | Kinsman Larry D | Method for fabricating a chip scale package using wafer level processing |
CN103165484A (en) * | 2013-03-29 | 2013-06-19 | 日月光半导体制造股份有限公司 | Stacked package and manufacturing method thereof |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5061989A (en) * | 1990-03-22 | 1991-10-29 | Transcomputer, Inc. | Mechanical translator for semiconductor chips |
US6348728B1 (en) | 2000-01-28 | 2002-02-19 | Fujitsu Limited | Semiconductor device having a plurality of semiconductor elements interconnected by a redistribution layer |
JP4105996B2 (en) | 2003-07-25 | 2008-06-25 | 株式会社新川 | Wire bonding method |
JP2006173232A (en) * | 2004-12-14 | 2006-06-29 | Casio Comput Co Ltd | Semiconductor apparatus and its manufacturing method |
US7317249B2 (en) * | 2004-12-23 | 2008-01-08 | Tessera, Inc. | Microelectronic package having stacked semiconductor devices and a process for its fabrication |
KR101133123B1 (en) | 2005-03-25 | 2012-04-06 | 삼성테크윈 주식회사 | Wire bonding method and semiconductor package by the same |
US7656017B2 (en) * | 2006-12-18 | 2010-02-02 | Stats Chippac Ltd. | Integrated circuit package system with thermo-mechanical interlocking substrates |
US20080164605A1 (en) * | 2007-01-08 | 2008-07-10 | United Microelectronics Corp. | Multi-chip package |
TW200830520A (en) | 2007-01-12 | 2008-07-16 | United Microelectronics Corp | Multi-chip package |
WO2009022991A1 (en) | 2007-08-14 | 2009-02-19 | Agency For Science, Technology And Research | Die package and method for manufacturing the die package |
JP5321592B2 (en) | 2008-10-07 | 2013-10-23 | 株式会社村田製作所 | Manufacturing method of electronic component module |
US20100193930A1 (en) * | 2009-02-02 | 2010-08-05 | Samsung Electronics Co., Ltd. | Multi-chip semiconductor devices having conductive vias and methods of forming the same |
IT1397716B1 (en) * | 2009-02-05 | 2013-01-24 | Lumson Spa | CONTAINER WITH RELIEF DECORATIONS |
KR20100114421A (en) | 2009-04-15 | 2010-10-25 | 삼성전자주식회사 | Stacked package |
US8446017B2 (en) * | 2009-09-18 | 2013-05-21 | Amkor Technology Korea, Inc. | Stackable wafer level package and fabricating method thereof |
JP2013528324A (en) | 2010-06-08 | 2013-07-08 | モサイド・テクノロジーズ・インコーポレーテッド | Multi-chip package with pillar connection |
KR101686553B1 (en) | 2010-07-12 | 2016-12-14 | 삼성전자 주식회사 | Chip Stacked Package and Package on Package |
JP5803276B2 (en) | 2011-05-26 | 2015-11-04 | 富士通株式会社 | Manufacturing method of semiconductor device |
JP5857129B2 (en) * | 2011-10-03 | 2016-02-10 | インヴェンサス・コーポレイション | Stub minimization for windowless wirebond assemblies |
US8637352B2 (en) * | 2011-11-22 | 2014-01-28 | Stmicroelectronics Pte Ltd. | Ball grid array to pin grid array conversion |
CN102790042B (en) | 2012-07-12 | 2015-11-18 | 日月光半导体制造股份有限公司 | The stacking structure of semiconductor chip |
CN104471693B (en) | 2012-07-17 | 2018-05-08 | 库利克和索夫工业公司 | The method for forming wire interconnecting structure |
US9111896B2 (en) | 2012-08-24 | 2015-08-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package-on-package semiconductor device |
US9536850B2 (en) | 2013-03-08 | 2017-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package having substrate with embedded metal trace overlapped by landing pad |
JP2016535463A (en) | 2014-10-03 | 2016-11-10 | インテル コーポレイション | Overlapping stacked die package with vertical columns |
-
2014
- 2014-10-03 JP JP2016550918A patent/JP2016535463A/en active Pending
- 2014-10-03 WO PCT/CN2014/088096 patent/WO2016049940A1/en active Application Filing
- 2014-10-03 KR KR1020157023974A patent/KR20160055100A/en active Search and Examination
- 2014-10-03 EP EP14883533.3A patent/EP3017463A4/en not_active Ceased
- 2014-10-03 CN CN201480008902.8A patent/CN105830212A/en active Pending
- 2014-10-03 BR BR112015021244A patent/BR112015021244A2/en not_active Application Discontinuation
- 2014-10-03 US US15/509,416 patent/US10256208B2/en active Active
-
2015
- 2015-09-01 TW TW104128814A patent/TWI578466B/en active
-
2019
- 2019-02-22 US US16/282,824 patent/US10629561B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070148918A1 (en) * | 2000-06-02 | 2007-06-28 | Kinsman Larry D | Method for fabricating a chip scale package using wafer level processing |
US20030156402A1 (en) * | 2002-02-15 | 2003-08-21 | Advanced Semiconductor Engineering, Inc. | Method for making a build-up package of a semiconductor die and structure formed from the same |
US20040004294A1 (en) * | 2002-07-08 | 2004-01-08 | Hall Frank L. | Underfilled, encapsulated semiconductor die assemblies and methods of fabrication |
CN103165484A (en) * | 2013-03-29 | 2013-06-19 | 日月光半导体制造股份有限公司 | Stacked package and manufacturing method thereof |
Non-Patent Citations (1)
Title |
---|
See also references of EP3017463A4 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10256208B2 (en) | 2014-10-03 | 2019-04-09 | Intel Corporation | Overlapping stacked die package with vertical columns |
US10629561B2 (en) | 2014-10-03 | 2020-04-21 | Intel Corporation | Overlapping stacked die package with vertical columns |
US10204884B2 (en) | 2016-06-29 | 2019-02-12 | Intel Corporation | Multichip packaging for dice of different sizes |
WO2018063413A1 (en) * | 2016-10-01 | 2018-04-05 | Intel Corporation | Electronic device package |
WO2018112914A1 (en) * | 2016-12-23 | 2018-06-28 | Intel Corporation | Vertical bond- wire stacked chip-scale package with application-specific integrated circuit die on stack, and methods of making same |
CN110050340A (en) * | 2016-12-23 | 2019-07-23 | 英特尔公司 | Vertical bonding line stacking core chip size package and its manufacturing method with specific integrated circuit tube core on lamination |
CN110050340B (en) * | 2016-12-23 | 2021-11-02 | 英特尔公司 | Vertical bond wire stacked chip scale package with on-stack asic die and method of making same |
US11538746B2 (en) | 2016-12-23 | 2022-12-27 | Intel Corporation | Vertical bond-wire stacked chip-scale package with application-specific integrated circuit die on stack, and methods of making same |
WO2018125159A1 (en) * | 2016-12-29 | 2018-07-05 | Intel Corporation | Semiconductor package having singular wire bond on bonding pads |
US11056465B2 (en) | 2016-12-29 | 2021-07-06 | Intel Corporation | Semiconductor package having singular wire bond on bonding pads |
US11107763B2 (en) | 2016-12-30 | 2021-08-31 | Intel Corporation | Interconnect structure for stacked die in a microelectronic device |
Also Published As
Publication number | Publication date |
---|---|
EP3017463A1 (en) | 2016-05-11 |
US20190189585A1 (en) | 2019-06-20 |
EP3017463A4 (en) | 2017-03-01 |
CN105830212A (en) | 2016-08-03 |
US20170278821A1 (en) | 2017-09-28 |
US10256208B2 (en) | 2019-04-09 |
TWI578466B (en) | 2017-04-11 |
KR20160055100A (en) | 2016-05-17 |
BR112015021244A2 (en) | 2018-05-08 |
JP2016535463A (en) | 2016-11-10 |
US10629561B2 (en) | 2020-04-21 |
TW201626522A (en) | 2016-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10629561B2 (en) | Overlapping stacked die package with vertical columns | |
US10497689B2 (en) | Semiconductor package assembly and method for forming the same | |
US9633937B2 (en) | Electronic assembly that includes stacked electronic devices | |
US12068283B2 (en) | Die stack with cascade and vertical connections | |
US9665122B2 (en) | Semiconductor device having markings and package on package including the same | |
US9997498B2 (en) | Semiconductor package assembly | |
US20150282367A1 (en) | Electronic assembly that includes stacked electronic components | |
US10861839B2 (en) | Dynamic random access memory (DRAM) mounts | |
US11676900B2 (en) | Electronic assembly that includes a bridge | |
US9741686B2 (en) | Electronic package and method of connecting a first die to a second die to form an electronic package | |
US9991243B2 (en) | Integrated circuit assembly that includes stacked dice | |
US10347615B2 (en) | Method of fabricating an optical module that includes an electronic package | |
US20170092608A1 (en) | Ball pad with a plurality of lobes | |
US11562955B2 (en) | High density multiple die structure | |
US10985080B2 (en) | Electronic package that includes lamination layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2014883533 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157023974 Country of ref document: KR Kind code of ref document: A Ref document number: 2016550918 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15509416 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015021244 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112015021244 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150901 |