WO2016048091A1 - Optical sheet comprising nanopattern and method for manufacturing same - Google Patents

Optical sheet comprising nanopattern and method for manufacturing same Download PDF

Info

Publication number
WO2016048091A1
WO2016048091A1 PCT/KR2015/010207 KR2015010207W WO2016048091A1 WO 2016048091 A1 WO2016048091 A1 WO 2016048091A1 KR 2015010207 W KR2015010207 W KR 2015010207W WO 2016048091 A1 WO2016048091 A1 WO 2016048091A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical sheet
weight
layer
parts
nanopattern
Prior art date
Application number
PCT/KR2015/010207
Other languages
French (fr)
Korean (ko)
Inventor
남시욱
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150134921A external-priority patent/KR101776065B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP15844402.6A priority Critical patent/EP3199983B1/en
Priority to US15/513,345 priority patent/US10132962B2/en
Priority to CN201580051845.6A priority patent/CN106716183B/en
Priority to JP2017516141A priority patent/JP6442602B2/en
Publication of WO2016048091A1 publication Critical patent/WO2016048091A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an optical sheet used in a liquid crystal display, and more particularly, to an optical sheet including a nanopattern and a manufacturing method thereof.
  • a fine concavo-convex structure having a period of visible light wavelength (about 380 to 780 nm) or less is formed on a surface of an optical device such as a display, a light emitting diode, and a solar cell. It is known that the efficiency of the optical device can be improved by the expression of the light.
  • a fine concave-convex structure is called a moth-eye structure, and the micro-concave-convex structure buffers a change in refractive index occurring between two media having different refractive indices. That is, when light passes through two different media, a reflection phenomenon occurs due to a difference in refractive index. If fine irregularities exist between the two media, the refractive index of the two media is continuously increased, thereby suppressing the reflection phenomenon.
  • the method (nanoimprint) containing the following steps (i)-(iii) is known, for example.
  • the said mold has the period of a pore normally nanometer and the aspect ratio of a pore is comparatively large, the contact interface of a mold and an active-energy-ray-curable composition increases significantly. As a result, it is difficult to accurately stamp the pattern formed on the mold onto the cured resin layer, and as the interfacial force increases, the work itself of separating the mold in the step (iii) becomes very difficult. In particular, since the operation of separating the mold can be directly connected to productivity, several patent technologies have been disclosed to solve this problem.
  • Japanese Unexamined Patent Application Publication No. 2007-326367 discloses a method of treating a surface of a side on which a fine concavo-convex structure is formed with a release agent (external release agent), and Japanese Patent Publication No. 2009-061628 discloses a phosphate ester as an internal release agent.
  • the method of using the solid state photocurable transfer layer which consists of photocurable resin composition containing a system compound was disclosed.
  • the release property may be gradually degraded by repeated transfer operations or the mold surface may be contaminated due to deposition of the release agent.
  • PE, PC, PMMA, etc. are used as the base film on which the cured resin layer of the fine concavo-convex structure is formed.
  • Such a base film may be vulnerable to wrinkles and curls although it has excellent transparency and flexibility.
  • physical properties such as strength may be improved due to the use of the base film, but it is difficult to realize thinning of the article and there is a limit in reducing manufacturing costs.
  • the present invention applies a conventional pattern transfer process such as a roll to roll and a stamp, but forms a nanopattern using only a curable resin without using a base film to form a nanopattern. It is an object of the present invention to provide an inorganic-type nanopattern optical sheet having no light transmission loss (reflection characteristics) due to an interface and exhibiting excellent transmittance of 95% or more.
  • a first preferred embodiment according to the present invention is an optical sheet manufacturing method comprising the following steps (S1) to (S3).
  • (S1) supplying a curable resin composition to form a single layer layer; (S2) The single layer layer in which the nano pattern is transferred to the surface by passing the single layer layer formed in the step (S1) through a release mold having a nano pattern having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0. Obtaining; And (S3) curing the monolayer to which the nanopattern obtained in the step (S2) is transferred.
  • Curable resin composition according to the first embodiment the weight average molecular weight of 100 to 30,000 urethane acrylate 100 parts by weight; And 75 to 250 parts by weight of a fluorine-containing siloxane-acrylate oligomer having a weight average molecular weight of 100 to 10,000 based on 100 parts by weight of the urethane acrylate, wherein the curable resin composition is additionally 60 to 100 parts by weight of urethane acrylate To 125 parts by weight of a diluent and 10 to 25 parts by weight of a polymerization initiator, and the curable resin composition accordingly, the viscosity may be 100 to 300 cps.
  • the step (S2) according to the first embodiment may include the step of temporarily curing the monolayer layer with a light amount of 50 to 150mj / cm2 while transferring the nano-pattern, the release mold used in the pattern transfer is silicon It may be coated with one or more release agents selected from the group consisting of fluorine and teflon.
  • a second preferred embodiment of the present invention 100 weight parts urethane acrylate having a weight average molecular weight of 100 to 30,000; And a curable composition comprising 75 to 250 parts by weight of a fluorine-containing siloxane-acrylate oligomer having a weight average molecular weight of 100 to 10,000 based on 100 parts by weight of the urethane acrylate, and has a pitch of 50 to 500 nm on at least one surface. And a plurality of nanopatterns having an aspect ratio of 1.0 to 5.0.
  • the optical sheet according to the second embodiment may have a transmittance of 95% or more when irradiated with 550 nm light, and a curl value at 23 ° C. may be 0 mm to 2.0 mm.
  • optical sheet according to the second embodiment may be manufactured by the manufacturing method according to the first embodiment.
  • the optical sheet according to the present invention is an inorganic type optical sheet which does not use a base material, and since the reflection phenomenon (loss of light) does not occur due to the difference in refractive index between the interface between the base material layer and the resin pattern layer, 95% The above transmittance can be exhibited and the light condensing and diffusing characteristics of the light can be improved.
  • a single-layer optical sheet can be manufactured using only a curable resin, high reliability optical sheet with excellent wrinkle and curl characteristics even after reliability test under constant temperature and humidity (60 ° C, RH85%) and high temperature (120 ° C) conditions.
  • FIG. 1 is a cross-sectional view illustrating an example of a conventional nanopattern optical sheet including a nanopattern layer on one or both surfaces of a substrate layer.
  • FIG. 2 is a cross-sectional view showing an example of an inorganic material type optical sheet of the present invention formed of a curable resin including a plurality of nanopatterns.
  • FIG. 3 is a schematic view showing an example of a roll-to-roll process of forming a pattern on one surface of a single layer layer (curable resin) using a release mold (soft mold) on which a nanopattern is formed.
  • FIG. 4 is a schematic view showing another example of a roll-to-roll process of forming a pattern on one surface of a single layer layer (curable resin) using a release mold (hard mold) on which a nanopattern is formed.
  • FIG. 5 is a schematic view showing an example of a roll-to-roll process of forming a pattern on both sides of a single layer layer (curable resin) using a release mold having a nanopattern formed thereon.
  • (S1) supplying a curable resin composition to form a single layer layer; (S2) The single layer layer in which the nano pattern is transferred to the surface by passing the single layer layer formed in the step (S1) through a release mold having a nano pattern having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0.
  • (S3) it can provide an optical sheet manufacturing method comprising the step of curing the single layer layer transferred to the nanopattern obtained in the (S2) step.
  • a curable resin is coated on a substrate film (substrate layer) such as PET, PC, PMMA, TAC, COC, COP, and then patterned (pattern layer formation).
  • substrate film such as PET, PC, PMMA, TAC, COC, COP
  • pattern layer formation As shown in FIG. 1, an interface between the base layer 100 and the pattern layer 200 may occur to cause light loss. As a result, the transmittance may be remarkably decreased or light reflection may occur frequently.
  • a method of manufacturing an optical sheet having a structure of a single layer layer has been proposed by forming a pattern layer on a base layer and then removing the base layer, but a process of separating the base layer is required. The manufacturing process was so difficult that the practical application of the process was limited.
  • the optical sheet having the nanopattern without the substrate layer may be implemented. It was very difficult.
  • an inorganic type optical sheet having no base layer as shown in FIG. 2 by directly applying to a conventional pattern transfer process such as roll to roll without adding a cumbersome process.
  • a nanoscale pattern having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0 can be formed on at least one surface.
  • the curable resin composition of the present invention has a weight average molecular weight of 100 to 100 to produce an optical sheet of an inorganic material type having a nanoscale pattern as in the present invention by applying an existing impregnation process.
  • each weight average molecular weight preferably satisfies the above range, and the weight average molecular weight May be a value measured using a method capable of measuring the molecular weight of the polymer, such as a matrix-assisted laser desorption ion mass spectrometer (MALDS) or gel permeation chromatography (GPC).
  • MALDS matrix-assisted laser desorption ion mass spectrometer
  • GPC gel permeation chromatography
  • the urethane acrylate is a main component included to provide durability of the optical sheet and reliability, flexibility, and support as a monolayer layer, such as curl or yellowing, and can secure the physical properties. It may be included in a ratio of 20 to 40% by weight based on the total weight of the curable resin.
  • the fluorine-containing siloxane-acrylate oligomer as a main component participating in the curing reaction, has a molecular structure in which fluorine is substituted for siloxane-acrylate, which is very effective in increasing mold release property after curing. It can play an important role.
  • a silicone acrylate having a weight average molecular weight of 900 to 1,500 is used to give a mold release property with a mold. If you go to the nano-size, releasability is not very satisfactory.
  • a fluorine resin is used to secure release property, but in this case, the resin easily remains in the mold and contaminates the mold, making it difficult to secure repeatability.
  • both releasability and repeat pattern can be secured.
  • the content of the fluorine-containing siloxane-acrylate oligomer is less than 75 based on 100 parts by weight of urethane acrylate, the releasing property and transfer rate may be reduced, resulting in pattern aggregation, and sufficient release property may be secured even at 250 parts by weight or less. Therefore, it may be desirable not to exceed 250 parts by weight in consideration of the unit price of fluorine.
  • the curable resin composition may further include 60 to 125 parts by weight of a diluent and 10 to 25 parts by weight of a polymerization initiator based on 100 parts by weight of urethane acrylate.
  • the diluent may be added for the purpose of adjusting the viscosity of the resin, it may be preferable that the acrylate-based monomo. As both the diluent and the main component contain an acrylate monomer, radical polymerization occurs while the double bond of the vinyl group is broken, and a curing reaction may easily occur.
  • the content of the diluent preferably satisfies the above range in order to maintain the viscosity of the resin to 100 to 300cps. If the viscosity of the curable resin composition is less than 100 cps, the flowability of the composition during roll to roll imprinting may be too high, causing film thickness variation. If the viscosity is 300 cps, the composition penetrates between the nanopatterns, making it difficult to form patterning. It can be undesirable.
  • the polymerization initiator may be at least one selected from the group consisting of a phosphine oxide-based polymerization initiator, a propanone-based polymerization initiator, a ketone-based polymerization initiator, and a formate-based polymerization initiator, and the polymerization reaction occurs easily and is colored.
  • the polymerization initiator is preferably added in an amount of 10 to 25 parts by weight based on 100 parts by weight of urethane acrylate.
  • the curable resin composition of the present invention may further include at least one additive selected from the group consisting of UV absorbers, UV stabilizers, color stabilizers, leveling agents, antioxidants, antifoaming agents, and antistatic agents. It is not limited.
  • the optical sheet of the present invention may be manufactured through a roll-to-roll process or a stamp process, more preferably through a roll-to-roll process.
  • the roll-to-roll process as shown in Figures 3 to 5, the two guide rolls 11, which are the axis, the release mold (1 and 2) and the curable resin composition formed with a nano-pattern to form a pattern on the optical sheet It may be to include a slot die 14 for supplying a sheet.
  • the curable resin composition may be supplied to the slot die to form a single layer layer.
  • the thickness may be manufactured to 10 to 500 ⁇ m by adjusting the line speed of the roll-to-roll system according to the intended use, but is not necessarily limited thereto.
  • the single layer layer discharged from the slot die may be primarily cured before forming the nano pattern, but is not limited thereto.
  • the single layer layer formed in the step (S1) passes through a release mold in which a nano-pattern is formed (soft mold: 1 in FIGS. 3 and 5 and hard mold: 2 in FIGS. 4 and 5), and the pattern of the mold is formed in the single layer layer.
  • the pattern may be formed by transferring to one or both surfaces (step S2).
  • the pattern may be a microlens shape in which figures such as hemispheres, cylinders, triangular pyramids, square pyramids, etc. are repeated, or may be linear grids such as prisms and lenticulars, but is not limited thereto.
  • the unit shape of the nanopattern in the cross section observed when the monolayer layer on which the pattern is formed is cut in the vertical direction is preferably a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0.
  • the pattern has a nano size in the above range, it is possible to mitigate the change in refractive index due to the fine concavo-convex structure.
  • the forming of the pattern on the monolayer layer (S2) is preferably performed by the step of temporarily hardening the monolayer layer with a light amount of 50 to 150mj / cm2 together with the pattern transfer.
  • preliminary curing preliminary curing
  • the resin composition with a light amount of 50 to 150mj / cm 2
  • the substrate is finally manufactured without a substrate. Curl characteristics and transmittance of the optical sheet can be secured.
  • the amount of light is less than 50mj / cm2 at the time of hardening it is difficult to form a pattern without the substrate, or the Curl characteristics in the sheet may be worse, if it exceeds 150mj / cm2, it is possible to form an inorganic material sheet However, mold release property and repeatability may be reduced.
  • the release mold in the present invention should not only be well released after the pattern is transferred to the single layer layer to be repeatedly used in the roll-to-roll process, it should be easy to clean.
  • the release mold may be coated with one or more release agents selected from the group consisting of silicon, fluorine and teflon.
  • a mold surface treatment method by a mold release agent As a mold surface treatment method by a mold release agent, the method of immersing a mold main body in the dilute solution of a mold release agent, or the method of apply
  • the light amount of 150 to 1,000 mj / cm 2 may be irradiated, and thus, an inorganic material type optical sheet including a nanopattern may be finally manufactured (step S3).
  • the amount of irradiated light is less than 150mj / cm 2 may cause uncured and there is a problem in reliability
  • more than 1,000 mj / cm 2 may be brittle due to over-hardening (Brittle) may affect the handling problems or reliability have.
  • the amount of light is not necessarily limited thereto, and in the roll-to-roll system during curing, light quantity and degree of curing may be optimized in consideration of line speed.
  • the optical sheet of the present invention thus produced may have a transmittance of 95% or more when irradiated with 550 nm light, and a curl value at 23 ° C. may be 0 mm to 2.0 mm.
  • the present invention can provide an inorganic type optical sheet having improved transmittance and stable reliability compared to the optical sheet including the base layer.
  • a curable resin composition having a viscosity of 150 cps was prepared by mixing 25 weight% of (1,6-hexandiol diacrylate) and 5 weight% of 1-hydroxy-cyclohexylphenyl-ketone as a polymerization initiator. 3 and 4, a release mold (Sokken Co., Ltd.) was supplied to a roll-to-roll system provided only on one side of the sheet to prepare an inorganic type optical sheet including a nanopattern in the following manner.
  • (S1) step The curable composition prepared above was supplied to a slot die of a roll-to-roll system, and a monolayer layer having a thickness of 75 ⁇ m was formed through the slot die (14).
  • step (S2) step The monolayer layer formed by the step (S1) is supplied to a release soft mold (Fig. 1) having a nanoprism pattern having a pitch of 100 nm and an aspect ratio of 3.5, and transferred to a pattern while transferring the pattern onto one surface of the monolayer layer. Moth-eye structural patterns were formed. In addition, temporary curing was performed by irradiating UV of 100 mj / cm 2 light amount during pattern transfer.
  • (S3) step The optical sheet including the nanopattern was finally prepared by UV curing the single layer layer having the pattern formed by the step (S2) to a light amount of 500mj / cm 2.
  • An optical sheet including a nanopattern was manufactured in the same manner as in Example 1, except that the amount of light during temporary curing in step (S2) was changed to 50 mj / cm 2.
  • An optical sheet including a nanopattern was manufactured in the same manner as in Example 1, except that the amount of light during temporary curing in step (S2) was changed to 150 mj / cm 2.
  • An optical sheet including a nanopattern was prepared in the same manner as in Example 1 except that 30 wt% of a fluorine-containing siloxane acrylate oligomer and 40 wt% of urethane acrylate were added.
  • Example 1 Using the same curable composition as in Example 1, except that the step of applying the curable composition to a thickness of 25 ⁇ m on the substrate layer using a PET film (KOLON, 50 ⁇ m) as a base layer in step (S1) And the same method as in Example 1 was always applied to prepare a nano-pattern optical sheet having a base layer.
  • a PET film KOLON, 50 ⁇ m
  • An optical sheet including a nanopattern was prepared in the same manner as in Example 1, except that the same curable composition as in Example 1 was used, except that the amount of light was temporarily changed to 45 mj / cm 2 at step S2. .
  • An optical sheet including a nanopattern was prepared in the same manner as in Example 1, except that the same curable composition as in Example 1 was used, except that the amount of light was temporarily changed to 160 mj / cm 2 at step S2. .
  • An inorganic optical sheet including a nanopattern was manufactured in the same manner as in Example 1, except that 10 wt% of the fluorine-containing siloxane acrylate oligomer and 60 wt% of the urethane acrylate were added.
  • An inorganic optical sheet including a nanopattern was manufactured in the same manner as in Example 3, except that 30 wt% of polysiloxane acrylate (Miwon Co., Ltd.) having a molecular weight of 1,100 was added instead of the fluorine-containing acrylate oligomer.
  • Comparative example 7 Composition and ratio of composition of curable composition are different Inorganic materials type Optical sheet Produce
  • An inorganic optical sheet including a nanopattern was manufactured in the same manner as in Example 3 except that 10 wt% of polysiloxane acrylate (Miwon Co., Ltd.) was further added and 30 wt% of urethane acrylate was added.
  • An inorganic optical sheet including a nanopattern was prepared in the same manner as in Example 1 except that only 70 wt% of the urethane acrylate was added without adding a fluorine-containing acrylate acrylate oligomer or polysiloxane acrylate. The composition stuck to the mold and pattern formation was impossible.
  • compositions of the curable compositions used to prepare the optical sheets of Examples 1 to 5 and Comparative Examples 1 to 8, respectively, are summarized as Table 1 below.
  • the release property is already seen as a defect in appearance if no transfer occurs in the mold after prism or pattern after mold removal. When visually recognized, it was unconditionally NG (Not Good), and SEM analysis showed that the pattern transfer rate after release was more than 90%. In addition, if the transfer rate of the optical film is maintained at the same level during five consecutive transfers, it was determined that the repeatability is excellent.However, if the transfer rate drops more than 20% due to contamination of the mold surface as a result of five consecutive operations, the repeatability is repeated. It was judged that this was bad.
  • the sheets were cut into 5 cm * 5 cm, respectively, and then analyzed for transmittance based on a wavelength of 550 nm using a spectrophotometer (model name CM-3600) analyzer.
  • Reliability test was performed for 1,000 hours at 65 ° C. and 85% humidity, and then the specimens were allowed to stand at room temperature (23 ° C.) for 1 hour, and the curl was measured with a steel ruler or a Gab gauge.
  • fluorine-containing siloxane acrylic Although the amount of the rate oligomer may be more than 30% by weight, the degree of transfer may be possible when the polysiloxane acrylates are mixed together, but the relatively low fluorine content may result in poor repeatability, and consequently, may not be applied to the mass production process system. It was found to be inappropriate.

Abstract

The present invention relates to a method for manufacturing an optical sheet, the method comprising the steps of: (S1) supplying a curable resin composition and forming a onefold layer; (S2) causing the onefold layer, which has been formed in step (S1), to pass through a release mold having a nanopattern formed thereon, the nanopattern having a pitch of 50 to 500nm and an aspect ratio of 1.0 to 5.0, thereby obtaining a onefold layer, which has the nanopattern transferred to the surface thereof; and (S3) curing the onefold layer, to which the nanopattern has been transferred, obtained in step (S2).

Description

나노패턴을 포함하는 광학시트 및 그 제조방법Optical sheet containing nanopattern and manufacturing method thereof
본 발명은 액정 디스플레이에 사용되는 광학시트에 관한 것으로서, 보다 구체적으로는 나노패턴을 포함하는 광학시트 및 그 제조방법에 관한 것이다.The present invention relates to an optical sheet used in a liquid crystal display, and more particularly, to an optical sheet including a nanopattern and a manufacturing method thereof.
최근 다양한 연구들을 통해서, 디스플레이, 발광다이오드, 태양전지 등의 광소자의 표면에 가시광 파장(약 380 내지 780nm) 이하의 주기를 갖는 미세 요철 구조를 구현할 경우, 반사 방지 효과 및 로터스 효과(lotus-effect) 등이 발현되어 광소자의 효율이 향상될 수 있음이 알려져 왔다. 이러한 미세 요철구조는 모스아이(moth-eye) 구조라고 불리는데, 이러한 미세 요철 구조는 굴절률이 서로 다른 두 매질 사이에서 발생하는 굴절률 변화에 완충작용을 하게 된다. 즉, 빛이 서로 다른 두 매질을 지나게 되면 굴절률 차이에 의해 반사 현상이 발생하게 되는데, 두 매질 사이에 미세 요철이 존재하면, 두 매질의 굴절률이 연속적으로 증가되므로 반사 현상이 억제되는 것이다.Recently, various studies have shown that anti-reflective effect and lotus-effect may be realized when a fine concavo-convex structure having a period of visible light wavelength (about 380 to 780 nm) or less is formed on a surface of an optical device such as a display, a light emitting diode, and a solar cell. It is known that the efficiency of the optical device can be improved by the expression of the light. Such a fine concave-convex structure is called a moth-eye structure, and the micro-concave-convex structure buffers a change in refractive index occurring between two media having different refractive indices. That is, when light passes through two different media, a reflection phenomenon occurs due to a difference in refractive index. If fine irregularities exist between the two media, the refractive index of the two media is continuously increased, thereby suppressing the reflection phenomenon.
광소자의 표면에 미세 요철 구조를 형성하는 방법으로서는, 예컨대 하기의 단계(i)∼(iii)를 포함하는 방법(나노 임프린트, nano imprint)이 알려져 있다.As a method of forming a fine uneven structure on the surface of an optical element, the method (nanoimprint) containing the following steps (i)-(iii) is known, for example.
(i) 미세 요철 구조와 반전 구조를 갖는 몰드와 광투과성 필름의 본체가 되는 기재 필름 사이에 활성 에너지선 경화성 조성물을 제공하는 단계;(i) providing an active energy ray curable composition between a mold having a fine concavo-convex structure and an inverted structure and a base film serving as a body of the light transmissive film;
(ii) 활성 에너지선 경화성 조성물에 자외선 등의 활성 에너지선을 조사·경화시켜 기재 필름 표면에 미세 요철 구조를 갖는 경화 수지층을 형성하는 단계; 및(ii) irradiating and curing active energy rays such as ultraviolet rays to the active energy ray curable composition to form a cured resin layer having a fine uneven structure on the surface of the base film; And
(iii) 경화 수지층으로부터 몰드를 분리하는 공정.(iii) A step of separating the mold from the cured resin layer.
그런데, 상기 몰드는 통상 세공의 주기가 나노미터이고, 세공의 종횡비(aspect ratio)도 비교적 크기 때문에, 몰드와 활성 에너지선 경화성 조성물의 접촉 계면이 대폭 증가한다. 이로 인해 몰드에 형성된 패턴을 경화 수지층에 정확하게 각인시키기 곤란하며 계면력이 증가함에 따라 상기 공정(iii)에서 몰드를 분리해 내는 작업 자체가 매우 어렵게 된다. 특히, 몰드를 분리해내는 작업은 생산성과 직결될 수 있기 때문에, 종래 이를 해결하고자 하는 몇몇 특허기술이 공개된 바 있다. By the way, since the said mold has the period of a pore normally nanometer and the aspect ratio of a pore is comparatively large, the contact interface of a mold and an active-energy-ray-curable composition increases significantly. As a result, it is difficult to accurately stamp the pattern formed on the mold onto the cured resin layer, and as the interfacial force increases, the work itself of separating the mold in the step (iii) becomes very difficult. In particular, since the operation of separating the mold can be directly connected to productivity, several patent technologies have been disclosed to solve this problem.
일예로, 일본 공개공보 2007-326367호에는 몰드의 미세 요철 구조가 형성된 측의 표면을 이형제(외부 이형제)에 의해 처리하는 방법이 개시되어 있고, 일본 공개공보 2009-061628호에는 내부 이형제로서 인산에스터계 화합물을 포함하는 광 경화성 수지 조성물로 이루어지는 고체상의 광 경화성 전사층을 이용하는 방법이 개시된바 있다. 그러나 상기 특허와 같이 단순히 이형제 처리에만 의지할 경우 반복적 전사작업으로 이형성이 점차 저하되거나 몰드 표면이 이형제의 퇴적으로 인해 오염될 수 있다는 단점이 존재한다.For example, Japanese Unexamined Patent Application Publication No. 2007-326367 discloses a method of treating a surface of a side on which a fine concavo-convex structure is formed with a release agent (external release agent), and Japanese Patent Publication No. 2009-061628 discloses a phosphate ester as an internal release agent. The method of using the solid state photocurable transfer layer which consists of photocurable resin composition containing a system compound was disclosed. However, there is a drawback that if relying only on the release agent treatment as described in the patent, the release property may be gradually degraded by repeated transfer operations or the mold surface may be contaminated due to deposition of the release agent.
한편, 미세 요철 구조의 경화 수지층이 형성되는 기재 필름으로는 PE, PC, PMMA 등이 사용되는데, 이와 같은 기재 필름은 투명성, 유연성 등이 우수하지만 링클과 컬에 취약할 수 있다. 또한, 이러한 기재 필름의 사용으로 인해 강도 등의 물성은 향상될 수 있으나 물품의 박막화 구현이 어렵고 제조원가를 절감하는 데도 한계가 발생할 수밖에 없는 상황이다.On the other hand, PE, PC, PMMA, etc. are used as the base film on which the cured resin layer of the fine concavo-convex structure is formed. Such a base film may be vulnerable to wrinkles and curls although it has excellent transparency and flexibility. In addition, physical properties such as strength may be improved due to the use of the base film, but it is difficult to realize thinning of the article and there is a limit in reducing manufacturing costs.
아울러 하기 도 1과 같이 종래에는 기재필름과 경화 수지층이 구분되는 다층 구조가 형성됨에 따라서 층간 계면에서 빛 투과 손실이 발생하고 투과되지 못한 빛은 반사현상에 또 다른 원인으로 작용하게 된다. 이에 기재층을 사용하지 않는 기술들이 제안되고 있으나, 수지층을 형성한 이후에 기재필름을 화학처리하여 박리하는 방법에 그치고 있고, 구현할 수 있는 패턴 사이즈도 마이크로 단위라는 한계가 존재하는 실정이다.In addition, as shown in FIG. 1, in the related art, a multilayer structure in which a base film and a cured resin layer are formed is formed, and light transmission loss occurs at an interface between layers, and light that is not transmitted serves as another cause of reflection. Therefore, technologies that do not use a base layer have been proposed, but the method of chemically peeling off a base film after forming a resin layer is limited, and there is a limit that a pattern size that can be implemented is also micro units.
이에, 본 발명을 통해서 롤투롤(roll to roll) 및 스탬프(stamp)등과 같은 기존의 패턴 전사공정을 적용하되, 기재 필름을 사용하지 않고 경화성 수지만을 이용하여 나노패턴을 형성함으로써, 기재와의 계면에 의한 광 투과 손실(반사 특성)이 전혀 발생하지 않고, 95% 이상의 우수한 투과율을 나타내는 무기재 타입의 나노 패턴 광학시트을 제공하고자 한다.Accordingly, the present invention applies a conventional pattern transfer process such as a roll to roll and a stamp, but forms a nanopattern using only a curable resin without using a base film to form a nanopattern. It is an object of the present invention to provide an inorganic-type nanopattern optical sheet having no light transmission loss (reflection characteristics) due to an interface and exhibiting excellent transmittance of 95% or more.
본 발명에 따른 바람직한 제 1 구현예는 하기 (S1) 내지 (S3)단계를 포함하는 광학시트 제조방법이다.A first preferred embodiment according to the present invention is an optical sheet manufacturing method comprising the following steps (S1) to (S3).
(S1) 경화성 수지 조성물을 공급하여 단층 레이어를 형성하는 단계; (S2) 상기 (S1)단계에서 형성된 단층 레이어를 피치(pitch)가 50 내지 500nm 및 종횡비(aspect ratio)가 1.0 내지 5.0인 나노패턴이 형성된 이형 몰드에 통과시켜 표면에 나노패턴이 전사된 단층 레이어를 얻는 단계; 및 (S3) 상기 (S2)단계에서 얻은 나노패턴이 전사된 단층 레이어를 경화시키는 단계.(S1) supplying a curable resin composition to form a single layer layer; (S2) The single layer layer in which the nano pattern is transferred to the surface by passing the single layer layer formed in the step (S1) through a release mold having a nano pattern having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0. Obtaining; And (S3) curing the monolayer to which the nanopattern obtained in the step (S2) is transferred.
상기 제 1 구현예에 따른 경화성 수지 조성물은, 중량평균 분자량이 100 내지 30,000인 우레탄 아크릴레이트 100중량부; 및 상기 우레탄 아크릴레이트 100중량부 기준 중량평균 분자량이 100 내지 10,000인 불소 함유 실록산-아크릴 레이트 올리고머를 75 내지 250중량부 포함할 수 있으며, 이때, 경화성 수지 조성물에는 추가적으로 우레탄 아크릴레이트 100중량부 기준 60 내지 125 중량부의 희석제 및 10 내지 25 중량부의 중합 개시제를 포함할 수 있고, 이에 따른 경화성 수지 조성물은, 점도가 100 내지 300cps일 수 있다.Curable resin composition according to the first embodiment, the weight average molecular weight of 100 to 30,000 urethane acrylate 100 parts by weight; And 75 to 250 parts by weight of a fluorine-containing siloxane-acrylate oligomer having a weight average molecular weight of 100 to 10,000 based on 100 parts by weight of the urethane acrylate, wherein the curable resin composition is additionally 60 to 100 parts by weight of urethane acrylate To 125 parts by weight of a diluent and 10 to 25 parts by weight of a polymerization initiator, and the curable resin composition accordingly, the viscosity may be 100 to 300 cps.
아울러, 상기 제 1 구현예에 따른 (S2) 단계는 나노 패턴을 전사하면서 50 내지 150mj/㎠의 광량으로 단층 레이어를 가경화하는 공정을 포함하는 것일 수 있고, 패턴 전사시 사용되는 이형 몰드는 실리콘, 불소 및 테프론으로 구성된 군으로부터 선택된 1종 이상의 이형제로 코팅처리된 것일 수 있다.In addition, the step (S2) according to the first embodiment may include the step of temporarily curing the monolayer layer with a light amount of 50 to 150mj / ㎠ while transferring the nano-pattern, the release mold used in the pattern transfer is silicon It may be coated with one or more release agents selected from the group consisting of fluorine and teflon.
한편, 본 발명의 바람직한 제 2 구현예는 중량평균 분자량이 100 내지 30,000인 우레탄 아크릴레이트 100중량부; 및 상기 우레탄 아크릴레이트 100중량부 기준 중량평균 분자량이 100 내지 10,000인 불소 함유 실록산-아크릴 레이트 올리고머를 75 내지 250중량부 포함하는 경화성 조성물로부터 형성되고, 적어도 일 표면에 피치(pitch)가 50 내지 500nm 및 종횡비(aspect ratio)가 1.0 내지 5.0인 다수의 나노패턴을 포함하는 광학시트이다.On the other hand, a second preferred embodiment of the present invention 100 weight parts urethane acrylate having a weight average molecular weight of 100 to 30,000; And a curable composition comprising 75 to 250 parts by weight of a fluorine-containing siloxane-acrylate oligomer having a weight average molecular weight of 100 to 10,000 based on 100 parts by weight of the urethane acrylate, and has a pitch of 50 to 500 nm on at least one surface. And a plurality of nanopatterns having an aspect ratio of 1.0 to 5.0.
상기 제 2 구현예에 따른 광학시트는 550nm 광 조사시 투과율이 95%이상일 수 있고, 23℃에서의 컬(curl) 값이 0mm 내지 2.0mm일 수 있다.The optical sheet according to the second embodiment may have a transmittance of 95% or more when irradiated with 550 nm light, and a curl value at 23 ° C. may be 0 mm to 2.0 mm.
또한, 상기 제 2 구현예에 따른 광학시트는 상기 제 1 구현예에 따른 제조방법으로 제조된 것일 수 있다.In addition, the optical sheet according to the second embodiment may be manufactured by the manufacturing method according to the first embodiment.
본 발명에 따른 광학시트는, 기재를 사용하지 않은 무기재 타입의 광학시트로서, 통상 기재층과 수지 패턴층의 계면간 굴절율 차이에 따라 발생하는 반사현상(빛의 손실)이 발생하지 않으므로 95%이상의 투과율을 나타냄과 동시에 광의 집광 및 확산 특성을 향상시킬 수 있다.The optical sheet according to the present invention is an inorganic type optical sheet which does not use a base material, and since the reflection phenomenon (loss of light) does not occur due to the difference in refractive index between the interface between the base material layer and the resin pattern layer, 95% The above transmittance can be exhibited and the light condensing and diffusing characteristics of the light can be improved.
또한, 경화성 수지만을 이용하여 단층의 광학시트를 제조할 수 있으므로, 항온 항습(60℃, RH85%) 및 고온(120℃) 조건하에서의 신뢰성 테스트 후에도 링클과 컬 특성이 우수하여 고 신뢰성의 광학 시트를 제조할 수 있고, 박막화가 가능하며, 나아가 기존의 Roll to Roll 공정을 그대로 적용할 수 있으므로 대량 생산뿐만 아니라, 공정 자체에서 기재필름을 사용하지 않기 때문에 제조원가 절감에 따른 가격 경쟁력을 확보할 수 있다.In addition, since a single-layer optical sheet can be manufactured using only a curable resin, high reliability optical sheet with excellent wrinkle and curl characteristics even after reliability test under constant temperature and humidity (60 ° C, RH85%) and high temperature (120 ° C) conditions. Can be manufactured, thinning, and can be applied to the existing Roll to Roll process as it is, not only mass production, but also because the base film is not used in the process itself, it can secure the price competitiveness by reducing the manufacturing cost .
도 1은 기재층의 일면 또는 양면에 나노 패턴층을 포함하는 통상의 나노패턴 광학시트 일 예를 나타낸 단면도이다.1 is a cross-sectional view illustrating an example of a conventional nanopattern optical sheet including a nanopattern layer on one or both surfaces of a substrate layer.
도 2는 다수의 나노패턴을 포함하는 경화성 수지로 형성된 본 발명의 무기재 타입 광학시트 일 예를 나타낸 단면도이다.2 is a cross-sectional view showing an example of an inorganic material type optical sheet of the present invention formed of a curable resin including a plurality of nanopatterns.
도 3은 나노패턴이 형성된 이형몰드(소프트 몰드)를 이용하여 단층 레이어(경화성 수지)의 일면에 패턴을 형성하는 롤투롤 공정의 일예를 나타내는 개략도이다.3 is a schematic view showing an example of a roll-to-roll process of forming a pattern on one surface of a single layer layer (curable resin) using a release mold (soft mold) on which a nanopattern is formed.
도 4는 나노패턴이 형성된 이형몰드(하드 몰드)를 이용하여 단층 레이어(경화성 수지)의 일면에 패턴을 형성하는 롤투롤 공정의 또다른 일예를 나타내는 개략도이다.4 is a schematic view showing another example of a roll-to-roll process of forming a pattern on one surface of a single layer layer (curable resin) using a release mold (hard mold) on which a nanopattern is formed.
도 5는 나노패턴이 형성된 이형몰드를 이용하여 단층 레이어(경화성 수지)의 양면에 패턴을 형성하는 롤투롤 공정의 일예를 나타내는 개략도이다.5 is a schematic view showing an example of a roll-to-roll process of forming a pattern on both sides of a single layer layer (curable resin) using a release mold having a nanopattern formed thereon.
<부호의 설명><Description of the code>
1: 이형몰드(소프트 몰드) 2: 이형몰드(하드 몰드)1: Release Mold (Soft Mold) 2: Release Mold (Hard Mold)
11: 가이드롤 12: 프레스롤11: guide roll 12: press roll
13: 권취롤 14: 슬롯다이13: winding roll 14: slot die
100: 기재층 200: 패턴층100: base material layer 200: pattern layer
본 발명의 일 양태에 따르면, (S1) 경화성 수지 조성물을 공급하여 단층 레이어를 형성하는 단계; (S2) 상기 (S1)단계에서 형성된 단층 레이어를 피치(pitch)가 50 내지 500nm 및 종횡비(aspect ratio)가 1.0 내지 5.0인 나노패턴이 형성된 이형 몰드에 통과시켜 표면에 나노패턴이 전사된 단층 레이어를 얻는 단계; 및 (S3) 상기 (S2)단계에서 얻은 나노패턴이 전사된 단층 레이어를 경화시키는 단계를 포함하는 광학시트 제조방법을 제공할 수 있다.According to one aspect of the invention, (S1) supplying a curable resin composition to form a single layer layer; (S2) The single layer layer in which the nano pattern is transferred to the surface by passing the single layer layer formed in the step (S1) through a release mold having a nano pattern having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0. Obtaining; And (S3) it can provide an optical sheet manufacturing method comprising the step of curing the single layer layer transferred to the nanopattern obtained in the (S2) step.
종래 마이크로 또는 나노패턴이 형성된 광학시트의 경우, PET, PC, PMMA, TAC, COC, COP 등의 기재필름(기재층)위에 경화성 수지를 코팅한 후 패터닝하는 방법(패턴층 형성)으로 제조하여 왔으나, 도 1과 같이 기재층(100)과 패턴층(200)의 계면이 발생하여 광 손실을 유발할 수 있고, 이로 인해 투과도가 현저히 떨어지거나 빛 반사 현상이 빈번히 일어났다. 또한, 이와 같은 문제를 해결하기 위해 기재층 상에 패턴층을 형성한 다음 기재층을 제거함으로써 단층 레이어의 구조를 갖는 광학시트 제조방법이 제시되었으나, 기재층을 분리하는 공정이 추가로 요구되는 등 제조 공정이 매우 까다로워져 실제 공정 적용에는 한계가 있었다.Conventionally, in the case of an optical sheet formed with a micro or nano pattern, a curable resin is coated on a substrate film (substrate layer) such as PET, PC, PMMA, TAC, COC, COP, and then patterned (pattern layer formation). As shown in FIG. 1, an interface between the base layer 100 and the pattern layer 200 may occur to cause light loss. As a result, the transmittance may be remarkably decreased or light reflection may occur frequently. In addition, in order to solve such a problem, a method of manufacturing an optical sheet having a structure of a single layer layer has been proposed by forming a pattern layer on a base layer and then removing the base layer, but a process of separating the base layer is required. The manufacturing process was so difficult that the practical application of the process was limited.
더욱이, 광학시트에 나노 스케일의 패턴을 전사할 경우, 경화성 수지가 몰드에 접촉하는 표면적이 늘어나 오히려 몰드와의 이형성이 크게 감소하게 되므로 종래의 경우 기재층없이 나노 패턴을 갖는 광학시트를 구현하기는 매우 곤란하였다. Furthermore, when the nanoscale pattern is transferred to the optical sheet, the surface area in which the curable resin is in contact with the mold increases, and the releasability with the mold is greatly reduced. Therefore, in the conventional case, the optical sheet having the nanopattern without the substrate layer may be implemented. It was very difficult.
그러나, 본 발명을 통해서는 번거로운 공정의 추가 없이도 기존의 롤투롤(Roll to Roll) 등의 패턴 전사공정에 바로 적용하여 도 2와 같이 기재층이 존재하지 않는 무기재 타입의 광학시트를 구현할 수 있을 뿐만 아니라, 이와 동시에 피치(pitch)가 50 내지 500nm 및 종횡비(aspect ratio)가 1.0 내지 5.0인 나노 스케일의 패턴을 적어도 일면에 형성할 수 있게 되는 것이다.However, through the present invention, it is possible to implement an inorganic type optical sheet having no base layer as shown in FIG. 2 by directly applying to a conventional pattern transfer process such as roll to roll without adding a cumbersome process. In addition, at the same time, a nanoscale pattern having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0 can be formed on at least one surface.
이와 같이 기존의 임프리팅 공정을 적용하여, 본 발명과 같이 나노 스케일의 패턴을 갖는 무기재 타입의 광학시트를 제조하기 위해서 본 발명의 상기 경화성 수지 조성물은 중량평균 분자량이 중량평균 분자량이 100 내지 30,000인 우레탄 아크릴레이트 100중량부; 및 상기 우레탄 아크릴레이트 100중량부 기준 중량평균 분자량이 100 내지 10,000인 불소 함유 실록산-아크릴 레이트 올리고머를 75 내지 250중량부 포함하는 것이 바람직하다.As described above, the curable resin composition of the present invention has a weight average molecular weight of 100 to 100 to produce an optical sheet of an inorganic material type having a nanoscale pattern as in the present invention by applying an existing impregnation process. 100 parts by weight of a urethane acrylate of 30,000; And 75 to 250 parts by weight of a fluorine-containing siloxane-acrylate oligomer having a weight average molecular weight of 100 to 10,000 parts by weight based on the urethane acrylate.
이때, 기재를 사용하지 않은 광학시트가 최종적으로 제조되었을 때 지나치게 브리틀(brittle)하거나 유연(flexible)해지는 것을 방지하기 위하여 각각의 중량평균 분자량은 상기 범위를 만족하는 것이 바람직하며, 상기 중량평균 분자량은 MALDS(Matrix-Assisted Laser Desorption Ionization Mass Spectrometer) 또는 GPC(Gel Permeation Chromatography)와 같이 고분자의 분자량을 측정할 수 있는 방법를 사용하여 측정된 값일 수 있다.In this case, in order to prevent excessive brittle or flexible when the optical sheet without a substrate is finally manufactured, each weight average molecular weight preferably satisfies the above range, and the weight average molecular weight May be a value measured using a method capable of measuring the molecular weight of the polymer, such as a matrix-assisted laser desorption ion mass spectrometer (MALDS) or gel permeation chromatography (GPC).
특히, 본 발명에서 상기 우레탄 아크릴레이트는 광학시트의 내구성과 컬(curl) 또는 황변 등에 대한 신뢰성, 유연성 및 단층 레이어로서의 지지성 등을 부여하기 위해 포함되는 주성분으로서, 상기 물성을 확보할 수 있는 측면에서 경화성 수지 총 중량을 기준으로 20 내지 40 중량%의 비율로 포함될 수 있다.Particularly, in the present invention, the urethane acrylate is a main component included to provide durability of the optical sheet and reliability, flexibility, and support as a monolayer layer, such as curl or yellowing, and can secure the physical properties. It may be included in a ratio of 20 to 40% by weight based on the total weight of the curable resin.
또한, 본 발명에서 상기 불소 함유 실록산-아크릴 레이트 올리고머의 경우, 경화반응에 참여하는 주성분으로서, 실록산-아크릴레이트에 불소가 치환되어있는 분자 구조를 가지고 있어, 경화 이후 몰드와의 이형성을 증가시키는데 매우 중요한 역할을 할 수 있다. 일반적으로 패턴을 포함하는 광학시트의 경우, 몰드와의 이형성을 부여하기 위하여 중량평균 분자량이 900 내지 1,500인 실리콘 아크릴레이트를 사용하고 있는데, 실시콘 아크릴 레이트의 경우 마크로 사이즈의 패턴 전사는 충분히 가능하지만 나노 사이즈로 가면 이형성이 크게 만족스럽지는 못하다. 또한, 이형성을 확보하기 위해 불소 수지를 사용하는 경우도 존재하나, 이 경우에는 수지가 쉽게 몰드에 잔존하게 되고 몰드를 오염시키게 되면서 반복재현성을 확보하기 곤란하다.In addition, in the present invention, the fluorine-containing siloxane-acrylate oligomer, as a main component participating in the curing reaction, has a molecular structure in which fluorine is substituted for siloxane-acrylate, which is very effective in increasing mold release property after curing. It can play an important role. In general, in the case of an optical sheet including a pattern, a silicone acrylate having a weight average molecular weight of 900 to 1,500 is used to give a mold release property with a mold. If you go to the nano-size, releasability is not very satisfactory. In addition, in some cases, a fluorine resin is used to secure release property, but in this case, the resin easily remains in the mold and contaminates the mold, making it difficult to secure repeatability.
이에 반해 본 발명의 경우 실록산-아크릴레이트에 불소가 치환되어 있는 독특한 구조의 올리고머를 주성분으로 포함함으로써 이형성과 반복 패턴성을 모두 확보할 수 있다. 다만, 불소 함유 실록산-아크릴레이트 올리고머의 함량은 우레탄 아크릴레이트 100 중량부 기준 75 미만일 경우 이형성 및 전사율이 떨어져 패턴 뭉침 등의 현상이 발생할 수 있고, 250 중량부 이하에서도 충분히 이형성을 확보할 수 있기 때문에 불소의 단가를 고려하여 250 중량부를 초과하지 않는 것이 바람직할 수 있다. On the contrary, in the case of the present invention, by including the oligomer having a unique structure in which fluorine is substituted in the siloxane-acrylate as a main component, both releasability and repeat pattern can be secured. However, when the content of the fluorine-containing siloxane-acrylate oligomer is less than 75 based on 100 parts by weight of urethane acrylate, the releasing property and transfer rate may be reduced, resulting in pattern aggregation, and sufficient release property may be secured even at 250 parts by weight or less. Therefore, it may be desirable not to exceed 250 parts by weight in consideration of the unit price of fluorine.
나아가, 본 발명에서 상기 경화성 수지 조성물은 우레탄 아크릴레이트 100중량부 기준 60 내지 125 중량부의 희석제 및 10 내지 25 중량부의 중합 개시제를 추가로 포함할 수 있다. 본 발명에서 상기 희석제는 수지의 점도를 조절 목적으로 투입될 수 있으며, 아크릴레이트계 모노모인 것이 바람직할 수 있다. 희석제와 주성분 모두 아크릴레이트계 단량체를 포함하고 있음에 따라, 비닐기의 이중 결합이 깨지면서 라디칼 중합이 일어나게 되고 경화 반응이 용이하게 일어날 수 있다.Furthermore, in the present invention, the curable resin composition may further include 60 to 125 parts by weight of a diluent and 10 to 25 parts by weight of a polymerization initiator based on 100 parts by weight of urethane acrylate. In the present invention, the diluent may be added for the purpose of adjusting the viscosity of the resin, it may be preferable that the acrylate-based monomo. As both the diluent and the main component contain an acrylate monomer, radical polymerization occurs while the double bond of the vinyl group is broken, and a curing reaction may easily occur.
이때, 희석제의 함량은 수지의 점도를 100 내지 300cps로 유지하기 위하여 상기 범위를 만족하는 것이 바람직하다. 경화성 수지 조성물의 점도가 100cps 미만일 경우 Roll to Roll 임프린팅 중 조성의 흐름성이 지나치게 높아 필름 두께 편차가 발생할 수 있고, 점도가 300cps일 경우 나노 패턴 사이로 조성이 침투하여 패턴닝 형성이 어려운 현상이 일어날 수 있어 바람직하지 못하다. At this time, the content of the diluent preferably satisfies the above range in order to maintain the viscosity of the resin to 100 to 300cps. If the viscosity of the curable resin composition is less than 100 cps, the flowability of the composition during roll to roll imprinting may be too high, causing film thickness variation. If the viscosity is 300 cps, the composition penetrates between the nanopatterns, making it difficult to form patterning. It can be undesirable.
본 발명에서 상기 중합 개시제의 경우, 포스핀 옥사이드계 중합 개시제, 프로판논계 중합 개시제, 케톤계 중합 개시제 및 포르메이트계 중합 개시제로 구성된 군에서 선택된 적어도 하나일 수 있으며, 중합반응이 용이하게 일어나되 착색 또는 기계적 강도 저하를 방지하기 위하여 상기 중합 개시재는 우레탄 아크릴레이트 100중량부 기준 10 내지 25 중량부 첨가되는 것이 바람직하다.In the present invention, the polymerization initiator may be at least one selected from the group consisting of a phosphine oxide-based polymerization initiator, a propanone-based polymerization initiator, a ketone-based polymerization initiator, and a formate-based polymerization initiator, and the polymerization reaction occurs easily and is colored. Alternatively, in order to prevent a decrease in mechanical strength, the polymerization initiator is preferably added in an amount of 10 to 25 parts by weight based on 100 parts by weight of urethane acrylate.
이에 그치지 않고 본 발명의 상기 경화성 수지 조성물은 이외에 자외선 흡수제, 자외선 안정제, 색상 안정제, 레벨링제, 산화방지제, 소포제 및 대전방지제로 구성된 군에서 선택되는 1종 이상의 첨가제를 더 포함할 수 있으나, 반드시 이에 한정되는 것은 아니다.In addition to this, the curable resin composition of the present invention may further include at least one additive selected from the group consisting of UV absorbers, UV stabilizers, color stabilizers, leveling agents, antioxidants, antifoaming agents, and antistatic agents. It is not limited.
한편, 본 발명의 광학시트는 롤투롤 공정 또는 스템프 공정을 통하여 제조될 수 있으며, 보다 바람직하게는 롤투롤 공정을 통하여 제조될 수 있다. 이때, 롤투롤 공정은 도 3 내지 5 와 같이, 축이 되는 2개의 가이드롤(11), 광학시트에 패턴을 형성할 수 있도록 하는 나노패턴이 형성된 이형몰드(1 및 2) 및 경화성 수지 조성물을 시트상으로 공급하는 슬롯다이(14)를 포함하는 것일 수 있다.On the other hand, the optical sheet of the present invention may be manufactured through a roll-to-roll process or a stamp process, more preferably through a roll-to-roll process. At this time, the roll-to-roll process, as shown in Figures 3 to 5, the two guide rolls 11, which are the axis, the release mold (1 and 2) and the curable resin composition formed with a nano-pattern to form a pattern on the optical sheet It may be to include a slot die 14 for supplying a sheet.
본 발명에서 상기 (S1)단계에서는 슬롯다이에 경화성 수지조성물을 공급하여 단층 레이어를 형성할 수 있다. 단층 레이어를 형성할 때, 두께는 사용 용도에 따라 롤투롤 시스템의 라인 스피드를 조절하여 10 내지 500㎛으로 제조할 수 있으나 반드시 이에 제한되는 것은 아니다. 이때, 슬롯다이에서 토출된 단층 레이어는 나노 패턴을 형성하기 전에 1차적으로 경화시킬 수도 있으나, 반드시 이에 제한되는 것은 아니다.In the step (S1) in the present invention, the curable resin composition may be supplied to the slot die to form a single layer layer. When forming the monolayer layer, the thickness may be manufactured to 10 to 500㎛ by adjusting the line speed of the roll-to-roll system according to the intended use, but is not necessarily limited thereto. In this case, the single layer layer discharged from the slot die may be primarily cured before forming the nano pattern, but is not limited thereto.
상기 (S1) 단계에서 형성된 단층 레이어는 나노 패턴이 형성된 이형몰드(소프트 몰드: 도 3 및 5의 1, 하드 몰드: 도 4 및 5의 2에 해당)를 통과하면서, 몰드의 패턴이 단층 레이어의 일면 또는 양면에 전사됨으로써 패턴이 형성될 수 있다(S2 단계). 이때, 상기 패턴은 반구, 원기둥, 삼각뿔, 사각뿔 등의 도형이 반복되는 마이크로 렌즈 형상일 수도 있고, 프리즘 및 렌티큘러 등의 선 격자 형상일 수도 있으나 이에 제한되지는 않는다. 다만, 패턴이 형성된 단층 레이어를 수직 방향으로 절단하였을 때 관찰되는 단면에서 나노패턴의 단위 형상은 피치(pitch)가 50 내지 500nm 및 종횡비(aspect ratio)가 1.0 내지 5.0인 것이 바람직하다. 패턴이 상기 범위의 나노 크기를 가짐에 따라 미세 요철 구조에 의한 굴절율 변화를 완화시킬 수 있다.The single layer layer formed in the step (S1) passes through a release mold in which a nano-pattern is formed (soft mold: 1 in FIGS. 3 and 5 and hard mold: 2 in FIGS. 4 and 5), and the pattern of the mold is formed in the single layer layer. The pattern may be formed by transferring to one or both surfaces (step S2). In this case, the pattern may be a microlens shape in which figures such as hemispheres, cylinders, triangular pyramids, square pyramids, etc. are repeated, or may be linear grids such as prisms and lenticulars, but is not limited thereto. However, the unit shape of the nanopattern in the cross section observed when the monolayer layer on which the pattern is formed is cut in the vertical direction is preferably a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0. As the pattern has a nano size in the above range, it is possible to mitigate the change in refractive index due to the fine concavo-convex structure.
본 발명에서 단층 레이어에 패턴을 형성하는 (S2) 단계는 패턴 전사와 함께 50 내지 150mj/㎠의 광량으로 단층 레이어를 가경화하는 공정을 수행하는 것이 바람직하다. 수지 조성물에 50 내지 150mj/㎠의 광량를 조사함으로써 가경화(예비경화)를 수행하게 되면, 몰드로부터 패턴이 이형될 때, 패턴 뭉개짐이나 레이어의 찢어짐을 방지할 수 있고, 기재 없이도 최종적으로 제조된 광학시트의 컬 특성과 투과도를 확보할 수 있다. 다만, 가경화 시 광량이 50mj/㎠에 미치지 못하면 기재 없이 패턴이 형성되기 어렵거나, 시트에서의 Curl 특성이 나빠질 수 있고, 150mj/㎠를 초과하게 되면, 무기재 타입의 시트를 형성할 수는 있으나, 몰드 이형성 및 반복재현성이 저하될 수 있다.In the present invention, the forming of the pattern on the monolayer layer (S2) is preferably performed by the step of temporarily hardening the monolayer layer with a light amount of 50 to 150mj / cm2 together with the pattern transfer. When preliminary curing (preliminary curing) is carried out by irradiating the resin composition with a light amount of 50 to 150mj / cm 2, when the pattern is released from the mold, pattern crushing or tearing of the layer can be prevented, and finally, the substrate is finally manufactured without a substrate. Curl characteristics and transmittance of the optical sheet can be secured. However, if the amount of light is less than 50mj / ㎠ at the time of hardening it is difficult to form a pattern without the substrate, or the Curl characteristics in the sheet may be worse, if it exceeds 150mj / ㎠, it is possible to form an inorganic material sheet However, mold release property and repeatability may be reduced.
또한, 본 발명에서 상기 이형몰드는 롤투롤 공정에서 반복적으로 사용 가능하도록 단층 레이어에 패턴이 전사된 후에 이형이 잘 되어야 할 뿐만 아니라, 세척이 용이해야 한다. 이에 따라, 본 발명의 바람직한 양태에 따르면, 상기 이형 몰드는 실리콘, 불소 및 테프론으로 구성된 군으로부터 선택된 1종 이상의 이형제로 코팅처리된 것일 수 있다. In addition, the release mold in the present invention should not only be well released after the pattern is transferred to the single layer layer to be repeatedly used in the roll-to-roll process, it should be easy to clean. Accordingly, according to a preferred embodiment of the present invention, the release mold may be coated with one or more release agents selected from the group consisting of silicon, fluorine and teflon.
이형제에 의한 몰드 표면 처리 방법으로서는, 이형제의 희석 용액에 몰드 본체를 침지하는 방법이나, 이형제 또는 그의 희석 용액을, 몰드 본체의 미세 요철 구조가 형성된 측의 표면에 도포하는 방법을 적용할 수 있고, 몰드 본체의 미세 요철 구조가 형성된 측의 표면을 불균일 없이 이형제로 처리할 수 있는 점에서, 이형제의 희석 용액에 몰드 본체를 침지하는 방법이 보다 바람직하다.As a mold surface treatment method by a mold release agent, the method of immersing a mold main body in the dilute solution of a mold release agent, or the method of apply | coating a mold release agent or its diluted solution to the surface of the side in which the fine uneven structure of the mold main body was formed, Since the surface of the side where the fine concavo-convex structure of the mold main body is formed can be treated with a release agent without nonuniformity, a method of immersing the mold main body in a dilute solution of the release agent is more preferable.
이어서, 상기 (S2)단계에 의해 나노 패턴이 형성된 단층 레이어에 150mj/cm2 이상, 바람직하게는 150 내지 1,000 mj/cm2의 광량을 조사할 수 있으며, 이에 따라 최종적으로 나노패턴을 포함하는 무기재 타입 광학시트를 제조할 수 있다(S3 단계). 여기서, 조사되는 광량이 150mj/cm2미만이면 미경화가 발생하고 신뢰성에 문제가 있을 수 있으며, 1,000 mj/cm2초과이면 과경화로 인하여 브리틀(Brittle)하여 취급성의 문제나 신뢰성에 영향이 있을 수 있다. 다만, 광량이 반드시 이에 제한되는 것은 아니며, 경화시 롤투롤 시스템에서는 라인스피드를 고려하여 광량 및 경화 정도를 최적화할 수 있다.Subsequently, 150mj / cm 2 to the single layer layer in which the nanopattern is formed by the step (S2). As described above, preferably, the light amount of 150 to 1,000 mj / cm 2 may be irradiated, and thus, an inorganic material type optical sheet including a nanopattern may be finally manufactured (step S3). Here, if the amount of irradiated light is less than 150mj / cm 2 may cause uncured and there is a problem in reliability, if more than 1,000 mj / cm 2 may be brittle due to over-hardening (Brittle) may affect the handling problems or reliability have. However, the amount of light is not necessarily limited thereto, and in the roll-to-roll system during curing, light quantity and degree of curing may be optimized in consideration of line speed.
이로써 제조된 본 발명의 광학시트는 550nm 광 조사시 투과율이 95%이상일 수 있고, 23℃에서의 컬(curl) 값이 0mm 내지 2.0mm일 수 있다. 상기 광학시트가 상기의 광학특성 및 물성을 갖제 됨으로써 본 발명은 기재층을 포함하는 광학시트에 비하여 향상된 투과율과 안정된 신뢰성을 확보한 무기재 타입의 광학시트를 제공할 수 있게 된다.The optical sheet of the present invention thus produced may have a transmittance of 95% or more when irradiated with 550 nm light, and a curl value at 23 ° C. may be 0 mm to 2.0 mm. By the optical sheet having the optical properties and physical properties described above, the present invention can provide an inorganic type optical sheet having improved transmittance and stable reliability compared to the optical sheet including the base layer.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, and the present invention is not limited thereto.
실시예Example 1 One
혼합물 총 중량 기준, 메인 화합물인 중량평균 분자량이 5,500인 불소 함유 실록산 아크릴 레이트 올리고머 50 중량%, 중량평균 분자량이 1,800인 폴리 우레탄 아크릴 레이트 20 중량%, 희석제로서 1,6-엑산티올 다이아크릴레이트(1,6-hexandiol diacrylate) 25 중량% 및 중합 개시제로서 1-하이드록시-사이클로센실페닐-케톤(1-hydroxy-cyclohexylphenyl-ketone) 5 중량%를 혼합하여 점도가 150cps인 경화성 수지 조성물을 제조하였고, 이를 도 3 또는 4에 나타낸 바와 같이 이형 몰드(일본 소켄 社)가 시트의 한 면에만 구비된 롤투롤 시스템에 공급하여 하기 방법으로 나노패턴을 포함하는 무기재 타입의 광학시트를 제조하였다.50% by weight of the fluorine-containing siloxane acrylate oligomer having a weight average molecular weight of 5,500 which is the main compound, 20% by weight of polyurethane acrylate having a weight average molecular weight of 1,800, as a diluent 1,6-exothiol diacrylate A curable resin composition having a viscosity of 150 cps was prepared by mixing 25 weight% of (1,6-hexandiol diacrylate) and 5 weight% of 1-hydroxy-cyclohexylphenyl-ketone as a polymerization initiator. 3 and 4, a release mold (Sokken Co., Ltd.) was supplied to a roll-to-roll system provided only on one side of the sheet to prepare an inorganic type optical sheet including a nanopattern in the following manner.
(S1) 단계: 상기 제조된 경화성 조성물을 롤투롤 시스템의 슬롯 다이에 공급하고, 슬롯 다이(도면 부호 14)를 통해 두께 75㎛의 단층 레이어를 형성하였다.(S1) step: The curable composition prepared above was supplied to a slot die of a roll-to-roll system, and a monolayer layer having a thickness of 75 μm was formed through the slot die (14).
(S2) 단계: 상기 (S1) 단계에 의해 형성된 단층 레이어를 피치가 100㎚이고, 종횡비가 3.5인 나노 프리즘 패턴이 형성된 이형 소프트 몰드(도면 부호 1)로 공급하여 패턴 전사시키면서 단층 레이어의 일면에 나방눈(모스아이, moth-eye) 구조패턴을 형성시켰다. 또한, 패턴 전사시 100mj/㎠ 광량의 UV를 조사하여 가경화를 수행하였다. (S2) step: The monolayer layer formed by the step (S1) is supplied to a release soft mold (Fig. 1) having a nanoprism pattern having a pitch of 100 nm and an aspect ratio of 3.5, and transferred to a pattern while transferring the pattern onto one surface of the monolayer layer. Moth-eye structural patterns were formed. In addition, temporary curing was performed by irradiating UV of 100 mj / cm 2 light amount during pattern transfer.
(S3) 단계: 상기 (S2) 단계에 의해 패턴이 형성된 단층 레이어를 500mj/㎠의 광량으로 UV경화시켜 최종적으로 나노패턴을 포함하는 광학시트를 제조하였다.(S3) step: The optical sheet including the nanopattern was finally prepared by UV curing the single layer layer having the pattern formed by the step (S2) to a light amount of 500mj / cm 2.
실시예Example 2 2
(S2)단계에서 하기 도 5에 나타낸 바와 같이 단층 레이어의 양면에 실시예 1과 동일한 패턴을 형성(상하 패턴 동일)시킨 것을 제외하고 상기 실시예 1과 동일한 방법으로 나노 패턴을 포함하는 광학시트를 제조하였다.In the step (S2) as shown in Figure 5 below, except that the same pattern as Example 1 on the both sides of the single layer layer (up and down pattern is the same), the optical sheet including the nano-pattern in the same manner as in Example 1 Prepared.
실시예Example 3 3
(S2)단계에서 가경화시 광량을 50 mj/㎠로 변경한 것을 제외하고 상기 실시예 1과 동일한 방법으로 나노 패턴을 포함하는 광학시트를 제조하였다.An optical sheet including a nanopattern was manufactured in the same manner as in Example 1, except that the amount of light during temporary curing in step (S2) was changed to 50 mj / cm 2.
실시예Example 4 4
(S2)단계에서 가경화시 광량을 150 mj/㎠로 변경한 것을 제외하고 상기 실시예 1과 동일한 방법으로 나노 패턴을 포함하는 광학시트를 제조하였다.An optical sheet including a nanopattern was manufactured in the same manner as in Example 1, except that the amount of light during temporary curing in step (S2) was changed to 150 mj / cm 2.
실시예Example 5 5
불소 함유 실록산 아크릴 레이트 올리고머를 30 중량%, 우레탄 아크릴 레이트를 40 중량% 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 나노패턴을 포함하는 광학시트를 제조하였다.An optical sheet including a nanopattern was prepared in the same manner as in Example 1 except that 30 wt% of a fluorine-containing siloxane acrylate oligomer and 40 wt% of urethane acrylate were added.
비교예Comparative example 1.  One. 기재층을Base layer 포함하는 나노 패턴  Nano pattern containing 광학시트Optical sheet 제조 Produce
상기 실시예 1과 동일한 경화성 조성물을 이용하되, PET필름(KOLON, 50㎛)을 기재층으로 하여 기재층 상부에 경화성 조성물을 25㎛의 두께로 도포하는 공정을 (S1)단계에서 수행하는 것을 제외하고, 상시 실시예 1과 동일한 방법을 적용하여 기재층이 있는 나노 패턴 광학시트를 제조하였다. Using the same curable composition as in Example 1, except that the step of applying the curable composition to a thickness of 25㎛ on the substrate layer using a PET film (KOLON, 50㎛) as a base layer in step (S1) And the same method as in Example 1 was always applied to prepare a nano-pattern optical sheet having a base layer.
비교예Comparative example 2.  2. 가경화Temporary hardening 공정 생략 Omit process
상기 실시예 1과 동일한 경화성 조성물을 이용하되, (S2)단계에서 가경화를 생략하고자 하였으나, 경화성 조성물이 몰드에 엉겨 붙는 현상이 일어나 시트로서 제조가 불가능하였다.Using the same curable composition as in Example 1, but tried to omit the temporary curing in the step (S2), but the phenomenon that the curable composition is entangled in the mold was not possible to manufacture as a sheet.
비교예Comparative example 3.  3. 가경화Temporary hardening 광량 조건을 변경한  Changing the light condition 무기재Inorganic materials 타입  type 광학시트Optical sheet 제조 Produce
상기 실시예 1과 동일한 경화성 조성물을 이용하되, (S2)단계에서 가경화시 광량을 45 mj/㎠로 변경한 것을 제외하고 상기 실시예 1과 동일한 방법으로 나노 패턴을 포함하는 광학시트를 제조하였다.An optical sheet including a nanopattern was prepared in the same manner as in Example 1, except that the same curable composition as in Example 1 was used, except that the amount of light was temporarily changed to 45 mj / cm 2 at step S2. .
비교예Comparative example 4.  4. 가경화Temporary hardening 광량 조건을 변경한  Changing the light condition 무기재Inorganic materials 타입  type 광학시트Optical sheet 제조 Produce
상기 실시예 1과 동일한 경화성 조성물을 이용하되, (S2)단계에서 가경화시 광량을 160 mj/㎠로 변경한 것을 제외하고 상기 실시예 1과 동일한 방법으로 나노 패턴을 포함하는 광학시트를 제조하였다.An optical sheet including a nanopattern was prepared in the same manner as in Example 1, except that the same curable composition as in Example 1 was used, except that the amount of light was temporarily changed to 160 mj / cm 2 at step S2. .
비교예Comparative example 5. 경화성 조성물의 조성비가 다른  5. Composition ratio of curable composition is different 무기재Inorganic materials 타입  type 광학시트Optical sheet 제조 Produce
불소 함유 실록산 아크릴 레이트 올리고머를 10 중량%, 우레탄 아크릴 레이트를 60 중량% 첨가한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 나노패턴을 포함하는 무기재 광학시트를 제조하였다. An inorganic optical sheet including a nanopattern was manufactured in the same manner as in Example 1, except that 10 wt% of the fluorine-containing siloxane acrylate oligomer and 60 wt% of the urethane acrylate were added.
비교예Comparative example 6. 경화성 조성물의 조성이 다른  6. Different composition of curable composition 무기재Inorganic materials 타입  type 광학시트Optical sheet 제조 Produce
불소 함유 실록산 아크릴 레이트 올리고머 대신 분자량이 1,100인 폴리 실록산 아크릴레이트(미원社)를 30 중량% 첨가한 것을 제외하고 상기 실시예 3과 동일한 방법으로 나노 패턴을 포함하는 무기재 광학시트를 제조하였다.An inorganic optical sheet including a nanopattern was manufactured in the same manner as in Example 3, except that 30 wt% of polysiloxane acrylate (Miwon Co., Ltd.) having a molecular weight of 1,100 was added instead of the fluorine-containing acrylate oligomer.
비교예Comparative example 7. 경화성 조성물의 조성 및 조성비가 다른  7. Composition and ratio of composition of curable composition are different 무기재Inorganic materials 타입  type 광학시트Optical sheet 제조 Produce
폴리 실록산 아크릴레이트(미원社)를 10 중량% 추가로 첨가하고, 우레탄 아크릴 레이트를 30 중량% 첨가한 것을 제외하고 상기 실시예 3과 동일한 방법으로 나노 패턴을 포함하는 무기재 광학시트를 제조하였다.An inorganic optical sheet including a nanopattern was manufactured in the same manner as in Example 3 except that 10 wt% of polysiloxane acrylate (Miwon Co., Ltd.) was further added and 30 wt% of urethane acrylate was added.
비교예Comparative example 8. 통상의  8. Normal 조성을 갖는Having composition 경화성 조성물을 이용한  With curable composition 무기재Inorganic materials 타입  type 광학시트Optical sheet 제조 Produce
불소 함유 실록산 아크릴 레이트 올리고머 또는 폴리 실록산 아크릴레이트를 첨가하지 않고, 우레탄 아크릴 레이트만 70 중량% 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 나노패턴을 포함하는 무기재 광학시트를 제조하고자 하였으나, 조성물이 몰드에 들러붙어 버려 패턴 형성이 불가능하였다.An inorganic optical sheet including a nanopattern was prepared in the same manner as in Example 1 except that only 70 wt% of the urethane acrylate was added without adding a fluorine-containing acrylate acrylate oligomer or polysiloxane acrylate. The composition stuck to the mold and pattern formation was impossible.
상기 실시예 1 내지 5 및 비교예 1 내지 8의 광학시트를 제조하기 위하여 각각 사용된 경화성 조성물의 조성을 하기 표 1로서 정리하여 나타내었다.The compositions of the curable compositions used to prepare the optical sheets of Examples 1 to 5 and Comparative Examples 1 to 8, respectively, are summarized as Table 1 below.
실시예 1~4 및비교예 1~4Examples 1-4 and Comparative Examples 1-4 실시예 5Example 5 비교예 5Comparative Example 5 비교예 6Comparative Example 6 비교예 7Comparative Example 7 비교예 8Comparative Example 8
화합물 A 1) Compound A 1) 5050 3030 1010 -- 3030 --
화합물 B 2) Compound B 2) -- -- -- 3030 1010 --
화합물 C 3) Compound C 3) 2020 4040 6060 4040 3030 7070
희석제 4) Thinner 4) 2525 2525 2525 2525 2525 2525
경화제 5) Curing agent 5) 55 55 55 55 55 55
1) 화합물 A: 불소 함유 실록산 아크릴 레이트 올리고머1) Compound A: Fluorine-containing siloxane acrylate oligomer
2) 화합물 B: 폴리 실록산 아크릴레이트2) Compound B: Polysiloxane Acrylate
3) 화합물 C: 우레탄 아크릴 레이트3) Compound C: Urethane Acrylate
4) 희석제: (1,6-Hexandiol diacrylate)4) Diluent: (1,6-Hexandiol diacrylate)
5) 경화제: (1-Hydroxy-cyclohexylphenyl-Ketone)5) Hardener: (1-Hydroxy-cyclohexylphenyl-Ketone)
또한, 상기 실시예 1 내지 5 및 비교예 1 내지 8 가운데, 패턴 형성 자체가 불가능하였던 비교예 2(가경화를 수행하지 않음)와 비교예 8(통상의 조성 사용)를 제외하고, 하기와 같은 방법으로 이형성, 광 투과율 및 Curl 특성을 측정하여 그 결과를 표 2에 기재하였다.In addition, among Examples 1 to 5 and Comparative Examples 1 to 8, except that Comparative Example 2 (not performing the hardening) and Comparative Example 8 (using a normal composition) that the pattern formation itself was impossible, The release property, light transmittance, and curl properties were measured by the method, and the results are shown in Table 2.
<< 측정예Measurement example >>
전사율(이형성) 및 반복 재현성 측정Transcription rate (release) and repeat reproducibility measurements
이형성은 몰드 제거 후 프리즘이나 패턴 후 몰드에서 전사가 되지 않을 경우 외관에서 이미 결점으로 보인다. 육안으로 인지될 경우 무조건 NG(Not Good)이며 SEM 분석시 이형 후 패턴 전사율이 90%이상인 것을 양호한 것으로 판단하였다. 또한, 5회 연속 전사시 광학필름의 전사율이 동일한 수준에서 유지될 경우 반복 재현성이 우수한 것으로 판단하였으나, 5회 연속 작업 결과 몰드 표면의 오염 등의 문제로 전사율이 20%이상 떨어질 경우 반복 재현성이 불량인 것으로 판단하였다. The release property is already seen as a defect in appearance if no transfer occurs in the mold after prism or pattern after mold removal. When visually recognized, it was unconditionally NG (Not Good), and SEM analysis showed that the pattern transfer rate after release was more than 90%. In addition, if the transfer rate of the optical film is maintained at the same level during five consecutive transfers, it was determined that the repeatability is excellent.However, if the transfer rate drops more than 20% due to contamination of the mold surface as a result of five consecutive operations, the repeatability is repeated. It was judged that this was bad.
광 투과율 측정Light transmittance measurement
시트를 각각 5cm*5cm로 절단한 후, 분광 색차계(모델명 CM-3600) 분석기기를 이용하여 파장 550nm 기준으로 투과도를 분석하였다. The sheets were cut into 5 cm * 5 cm, respectively, and then analyzed for transmittance based on a wavelength of 550 nm using a spectrophotometer (model name CM-3600) analyzer.
Curl 특성 측정Curl property measurement
65℃의 온도 및 85%의 습도 조건 하에서 1,000hr 동안 두어 신뢰성 테스트한 다음, 시편을 상온(23℃)에서 1시간 방치하여, 스틸자 또는 Gab gauge로 Curl을 측정하였다. Reliability test was performed for 1,000 hours at 65 ° C. and 85% humidity, and then the specimens were allowed to stand at room temperature (23 ° C.) for 1 hour, and the curl was measured with a steel ruler or a Gab gauge.
기재층 유무Base layer presence 패턴 형성Pattern formation 전사율Transcription rate 반복 재현성(5회)Repeat reproducibility (5 times) 광 투과율(%, 550㎚)Light transmittance (%, 550 nm) Curl (㎚)Curl (nm)
실시예 1Example 1 XX 단면section 양호Good 양호Good 96.596.5 0.5 이하0.5 or less
실시예 2Example 2 XX 양면both sides 양호Good 양호Good 99.599.5 0.5 이하0.5 or less
실시예 3Example 3 XX 단면section 양호Good 양호Good 96.196.1 0.5 이하0.5 or less
실시예 4Example 4 XX 단면section 양호Good 양호Good 95.795.7 0.5 이하0.5 or less
실시예 5Example 5 XX 단면section 양호Good 양호Good 96.496.4 0.5 이하0.5 or less
비교예 1Comparative Example 1 OO 단면section 양호Good 양호Good 94.594.5 2.5mm2.5mm
비교예 2Comparative Example 2 조성물이 몰드에 모두 붙어버려 무기재 시트형태로 제조 불가능The composition sticks to the mold and cannot be manufactured in the form of an inorganic sheet
비교예 3Comparative Example 3 XX 단면section 양호Good 양호Good 96.196.1 2.2mm2.2 mm
비교예 4Comparative Example 4 XX 단면section 몰드 이형성 X Mold Release X XX 95.795.7 0.5 이하0.5 or less
비교예 5Comparative Example 5 XX 단면section 불량(패턴 뭉침)Poor (Plumping Patterns) 측정불가Not measurable 90.190.1 0.5 이하0.5 or less
비교예 6Comparative Example 6 XX 단면section 불량Bad 측정불가Not measurable 측정불가Not measurable 측정불가Not measurable
비교예 7Comparative Example 7 XX 단면section 보통usually 불량Bad 96.296.2 0.5 이하0.5 or less
비교예 8Comparative Example 8 조성물이 몰드에 모두 붙어버려 무기재 시트형태로 제조 불가능The composition sticks to the mold and cannot be manufactured in the form of an inorganic sheet
상기 표 2에서 확인할 수 있듯이, 실시예 1 내지 5의 경우, 전사율, 반복재현성, 광 투과율 및 Curl특성이 모두 우수하게 나타났으며, 특히, 기재층을 갖는 비교예 1과 비교하였을 때 광투과율 및 컬 특성이 현저하게 향상되는 것을 알 수 있었다. 또한, 비교예 3 및 4의 결과를 통해 알 수 있듯이 가경화시 광량이 50 mj/㎠에 미치지 못할 경우, Curl 특성이 나빠지는 것으로 나타났고, 광량이 150 mj/㎠을 초과할 경우, 무기재는 제조되나 몰드 이형성이 좋지 않아 생산성을 저해시키는 것으로 확인되었다.As can be seen in Table 2, in Examples 1 to 5, the transfer rate, repeatability, light transmittance and Curl characteristics were all excellent, in particular, light transmittance when compared with Comparative Example 1 having a base layer And it turned out that a curl characteristic is improved significantly. In addition, as can be seen from the results of Comparative Examples 3 and 4, when the amount of light is less than 50 mj / ㎠ at the time of curing, it was found that the Curl characteristics deteriorated, when the amount of light exceeds 150 mj / ㎠, the inorganic material It was confirmed that the mold release property is poor but it inhibits productivity.
한편, 경화성 조성물의 조성에 있어서, 비교예 5와 같이 불소 함유 실록산 아크릴 레이트 올리고머의 첨가량이 총 조성물의 30중량% 미만일 경우에는 패턴의 뭉침 현상이 일어나 정밀한 나노 패턴을 형성할 수 없었으며, 그에 따라 광 투과율이 현저히 떨어지는 것을 확인할 수 있었다. 불소 함유 실록산 아크릴 레이트 올리고머 대신 불소를 함유하지 않는 일반 폴리 실록산 아크릴레이트를 첨가한 비교예 6의 경우도 이형성이 현저하게 저하되어 나노 패턴이 전혀 구현되지 않았으며, 비교예 7과 같이 불소 함유 실록산 아크릴 레이트 올리고머의 첨가량이 30 중량% 이상이더라도 폴리 실록산 아크릴레이트를 함께 혼합하여 사용할 경우에는 어느 정도의 전사는 가능할지 모르나, 상대적으로 불소 함량이 낮아 반복 재현성이 떨어지게 되고 결과적으로 대량 생산 공정 시스템에 적용하기에는 부적합한 것으로 나타났다.On the other hand, in the composition of the curable composition, when the addition amount of the fluorine-containing siloxane acrylate oligomer is less than 30% by weight of the total composition, as in Comparative Example 5, agglomeration of the pattern occurs to form a precise nanopattern, thereby It was confirmed that the light transmittance significantly decreased. In the case of Comparative Example 6, in which general polysiloxane acrylate containing no fluorine was added instead of the fluorine-containing acrylate acrylate oligomer, releasability was remarkably reduced, so that no nanopattern was realized. As in Comparative Example 7, fluorine-containing siloxane acrylic Although the amount of the rate oligomer may be more than 30% by weight, the degree of transfer may be possible when the polysiloxane acrylates are mixed together, but the relatively low fluorine content may result in poor repeatability, and consequently, may not be applied to the mass production process system. It was found to be inappropriate.

Claims (10)

  1. (S1) 경화성 수지 조성물을 공급하여 단층 레이어를 형성하는 단계;(S1) supplying a curable resin composition to form a single layer layer;
    (S2) 상기 (S1)단계에서 형성된 단층 레이어를 피치(pitch)가 50 내지 500nm 및 종횡비(aspect ratio)가 1.0 내지 5.0인 나노패턴이 형성된 이형 몰드에 통과시켜 표면에 나노패턴이 전사된 단층 레이어를 얻는 단계; 및(S2) The single layer layer in which the nano pattern is transferred to the surface by passing the single layer layer formed in the step (S1) through a release mold having a nano pattern having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0. Obtaining; And
    (S3) 상기 (S2)단계에서 얻은 나노패턴이 전사된 단층 레이어를 경화시키는 단계를 포함하는 광학시트 제조방법.(S3) The optical sheet manufacturing method comprising the step of curing the monolayer transferred to the nanopattern obtained in the step (S2).
  2. 제 1 항에 있어서, 상기 (S1)에서 경화성 수지 조성물은 중량평균 분자량이 100 내지 30,000인 우레탄 아크릴레이트 100중량부; 및 상기 우레탄 아크릴레이트 100중량부 기준 중량평균 분자량이 100 내지 10,000인 불소 함유 실록산-아크릴 레이트 올리고머를 75 내지 250중량부 포함하는 것을 특징으로 하는 광학시트 제조방법.According to claim 1, wherein the curable resin composition in (S1) is a weight average molecular weight of 100 to 30,000 urethane acrylate 100 parts by weight; And 75 to 250 parts by weight of a fluorine-containing siloxane-acrylate oligomer having a weight average molecular weight of 100 to 10,000 based on 100 parts by weight of the urethane acrylate.
  3. 제 2 항에 있어서, 상기 (S1)에서 경화성 수지 조성물은 우레탄 아크릴레이트 100중량부 기준 60 내지 125 중량부의 희석제 및 10 내지 25 중량부의 중합 개시제를 추가로 포함하는 것임을 특징으로 하는 광학시트 제조방법.The optical sheet manufacturing method of claim 2, wherein the curable resin composition (S1) further comprises 60 to 125 parts by weight of a diluent and 10 to 25 parts by weight of a polymerization initiator based on 100 parts by weight of urethane acrylate.
  4. 제 1 항에 있어서, 상기 (S1)에서 경화성 수지 조성물은 점도가 100 내지 300cps인 것임을 특징으로 하는 광학시트의 제조방법.The method of manufacturing an optical sheet according to claim 1, wherein the curable resin composition in (S1) has a viscosity of 100 to 300 cps.
  5. 제 1 항에 있어서, 상기 (S2) 단계는 나노 패턴을 전사하면서 50 내지 150mj/㎠의 광량으로 단층 레이어를 가경화하는 공정을 포함하는 것임을 특징으로 하는 광학시트 제조방법.The optical sheet manufacturing method of claim 1, wherein the step (S2) includes a step of temporarily curing the monolayer layer with a light amount of 50 to 150mj / cm 2 while transferring the nanopattern.
  6. 제 1 항에 있어서, 상기 이형 몰드는 실리콘, 불소 및 테프론으로 구성된 군으로부터 선택된 1종 이상의 이형제로 코팅처리된 것임을 특징으로 하는 광학시트 제조방법.The method of claim 1, wherein the release mold is coated with at least one release agent selected from the group consisting of silicon, fluorine, and teflon.
  7. 중량평균 분자량이 100 내지 30,000인 우레탄 아크릴레이트 100중량부; 및 상기 우레탄 아크릴레이트 100중량부 기준 중량평균 분자량이 100 내지 10,000인 불소 함유 실록산-아크릴 레이트 올리고머를 75 내지 250중량부 포함하는 경화성 조성물로부터 형성되고, 100 parts by weight of a urethane acrylate having a weight average molecular weight of 100 to 30,000; And a fluorine-containing siloxane-acrylate oligomer having a weight average molecular weight of 100 to 10,000 parts by weight based on 100 parts by weight of the urethane acrylate, and formed from a curable composition comprising 75 to 250 parts by weight,
    적어도 일 표면에 피치(pitch)가 50 내지 500nm 및 종횡비(aspect ratio)가 1.0 내지 5.0인 다수의 나노패턴을 포함하는 광학시트.An optical sheet comprising a plurality of nanopatterns having a pitch of 50 to 500 nm and an aspect ratio of 1.0 to 5.0 on at least one surface.
  8. 제 7 항에 있어서, 상기 광학시트는 550nm 광 조사시 투과율이 95%이상인 것임을 특징으로 하는 광학시트.The optical sheet according to claim 7, wherein the optical sheet has a transmittance of 95% or more when irradiated with 550 nm light.
  9. 제 7 항에 있어서, 상기 광학시트는 23℃에서의 컬(curl) 값이 0 내지 2.0 mm 인 것을 특징으로 하는 광학시트.The optical sheet of claim 7, wherein the optical sheet has a curl value of 0 to 2.0 mm at 23 ° C.
  10. 제 7 항에 있어서, 상기 광학시트는 상기 제 1 항 내지 제 6 항 중 어느 한 항의 방법으로 제조된 것임을 특징으로 하는 광학시트.8. The optical sheet of claim 7, wherein the optical sheet is manufactured by the method of any one of claims 1 to 6.
PCT/KR2015/010207 2014-09-25 2015-09-25 Optical sheet comprising nanopattern and method for manufacturing same WO2016048091A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15844402.6A EP3199983B1 (en) 2014-09-25 2015-09-25 Optical sheet comprising nanopattern and method for manufacturing same
US15/513,345 US10132962B2 (en) 2014-09-25 2015-09-25 Optical sheet comprising nanopattern and method for manufacturing same
CN201580051845.6A CN106716183B (en) 2014-09-25 2015-09-25 Optical sheet including nano-pattern and its manufacturing method
JP2017516141A JP6442602B2 (en) 2014-09-25 2015-09-25 Optical sheet containing nanopattern and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0128162 2014-09-25
KR20140128162 2014-09-25
KR10-2015-0134921 2015-09-23
KR1020150134921A KR101776065B1 (en) 2014-09-25 2015-09-23 Nano Patterned Optical Sheet And Method For Manufacturing The Same

Publications (1)

Publication Number Publication Date
WO2016048091A1 true WO2016048091A1 (en) 2016-03-31

Family

ID=55581509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010207 WO2016048091A1 (en) 2014-09-25 2015-09-25 Optical sheet comprising nanopattern and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016048091A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080014429A (en) * 2006-08-11 2008-02-14 삼성전자주식회사 Imprint method
KR20080113259A (en) * 2006-04-28 2008-12-29 코니카 미놀타 옵토 인코포레이티드 Process for producing optical film with uneven structure, optical film, wire grid p0larizer, and retardation film
KR100888904B1 (en) * 2006-02-21 2009-03-16 앱티콘 인코퍼레이티드 Method for forming structured film as molded by tape die
KR20090084340A (en) * 2008-02-01 2009-08-05 주식회사 동진쎄미켐 Photocurable resin composition and method for preparing of mold using the same
KR20100081976A (en) * 2007-09-28 2010-07-15 아사히 가라스 가부시키가이샤 Photocurable composition, method for producing fine patterned body, and optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888904B1 (en) * 2006-02-21 2009-03-16 앱티콘 인코퍼레이티드 Method for forming structured film as molded by tape die
KR20080113259A (en) * 2006-04-28 2008-12-29 코니카 미놀타 옵토 인코포레이티드 Process for producing optical film with uneven structure, optical film, wire grid p0larizer, and retardation film
KR20080014429A (en) * 2006-08-11 2008-02-14 삼성전자주식회사 Imprint method
KR20100081976A (en) * 2007-09-28 2010-07-15 아사히 가라스 가부시키가이샤 Photocurable composition, method for producing fine patterned body, and optical device
KR20090084340A (en) * 2008-02-01 2009-08-05 주식회사 동진쎄미켐 Photocurable resin composition and method for preparing of mold using the same

Similar Documents

Publication Publication Date Title
US20160059473A1 (en) Method for Producing Patterned Materials
WO2012070833A2 (en) Radiation curable resin composition, and method for producing self-replicatable mold using same
WO2017115967A1 (en) Wire grid polarizing plate and optical component including same
KR102528364B1 (en) Manufacturing method of release film and laminate
WO2011016651A9 (en) Photocurable resin composition for imprint lithography and method for manufacturing an imprint mold using same
WO2012074167A1 (en) Light guide plate, and method and apparatus of manufacturing same
JP6906034B2 (en) Release film with ultra-low release force and its manufacturing method
JP2008298962A (en) Optical sheet and its manufacturing method
JP2018187767A (en) Water-repellent member and manufacturing method thereof
WO2011007979A2 (en) Photocurable resin composition containing fluorine and method for producing a resin mold using same
WO2014098420A1 (en) Method for manufacturing hard-coated polarizing plate
WO2014035018A1 (en) Composition for coating highly refractive layer, and transparent conductive film comprising same
KR101776065B1 (en) Nano Patterned Optical Sheet And Method For Manufacturing The Same
WO2016048091A1 (en) Optical sheet comprising nanopattern and method for manufacturing same
WO2014051303A1 (en) Antiglare film, and polarizing plate and display device using same
WO2012060620A2 (en) Anti-biofouling ssq/peg network and preparation method thereof
TWI729465B (en) Flexographic printing plate and method for manufacturing liquid crystal display element using the same
JP6247826B2 (en) Photo-curable resin composition for imprint molding
WO2022080801A1 (en) Anti-glare film laminate, polarizing plate, and display apparatus
US10457829B2 (en) Photocurable resin composition for transferring surface free energy and method for producing substrate using same
WO2015190799A1 (en) Photo-curable resin composition
WO2020162677A1 (en) Radical-based adhesive composition, adhesive layer, polarizing plate, and image display device
WO2015147589A1 (en) Optical sheet and liquid crystal display comprising same
CN105492475A (en) Polypropylene resin for protective film and protective film
WO2014065531A1 (en) Composition for use in anti-glare layer formation, anti-glare film, polarizer, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844402

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015844402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15513345

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017516141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE