WO2016047492A1 - プリント配線板 - Google Patents

プリント配線板 Download PDF

Info

Publication number
WO2016047492A1
WO2016047492A1 PCT/JP2015/076090 JP2015076090W WO2016047492A1 WO 2016047492 A1 WO2016047492 A1 WO 2016047492A1 JP 2015076090 W JP2015076090 W JP 2015076090W WO 2016047492 A1 WO2016047492 A1 WO 2016047492A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
wiring board
printed wiring
main surface
pad
Prior art date
Application number
PCT/JP2015/076090
Other languages
English (en)
French (fr)
Inventor
悠起 石田
鈴木 雅幸
元徳 浦井
功 小島
Original Assignee
株式会社フジクラ
第一電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, 第一電子工業株式会社 filed Critical 株式会社フジクラ
Priority to US15/513,459 priority Critical patent/US10129978B2/en
Priority to CN201580044942.2A priority patent/CN106576426B/zh
Priority to EP15843513.1A priority patent/EP3200572A4/en
Priority to KR1020177009298A priority patent/KR102023338B1/ko
Publication of WO2016047492A1 publication Critical patent/WO2016047492A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/118Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • H05K1/0221Coaxially shielded signal lines comprising a continuous shielding layer partially or wholly surrounding the signal lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/117Pads along the edge of rigid circuit boards, e.g. for pluggable connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09363Conductive planes wherein only contours around conductors are removed for insulation

Definitions

  • the present invention relates to a printed wiring board connected to another electronic component provided in an electronic device.
  • the contents described in Japanese Patent Application No. 2014-192485 filed in Japan on September 22, 2014 are incorporated herein by reference. Part of the description.
  • Printed wiring boards are known.
  • This type of printed wiring board has a problem that it is difficult to construct a shield structure having a high shielding property because it is necessary to take a structure in which a pad that contacts the connector is exposed on the surface.
  • An object of the present invention is to provide a shield structure having high shielding properties in a printed wiring board including pads connected to other connectors.
  • the present invention is formed so as to have a pad electrically connected to another connector, an inner edge that surrounds the pad from the periphery of the pad, and has a predetermined distance from the outer edge of the pad;
  • a printed wiring board including a base material including at least a first base material formed on any one of the main surfaces of the ground layer grounded to the ground contact.
  • the first base material has a wiring formed on the one main surface and electrically connected to the pad, and the outer edge of the wiring is the ground layer.
  • the first base material is formed on the other main surface opposite to the one main surface of the first base material, and is electrically connected to the pad;
  • the above-described problem is solved by having a ground layer having an inner edge at a position separated from the outer edge of the wiring formed on the other main surface by a predetermined distance and connected to the ground contact.
  • the base material further includes one or a plurality of second base materials which are laminated directly or via another base material on any one of the first base materials,
  • the second base material is formed on the second base material and a wiring electrically connected to the pad through a via penetrating the base material including the first base material and the second base material.
  • the base material includes the first base material and the second base material, and the first base material is provided on one main surface side of the first base material with the other base material.
  • the second base material is electrically connected to the other connector on the other main surface side of the second base material on the side opposite to the one main surface.
  • the ground layer formed on the same main surface as the pad is located on the inner side by a predetermined offset amount from the outer edge of the main surface of the base material on which the ground layer is formed.
  • the said subject is solved by forming so that an outer edge may be located.
  • the pad includes the pad connected to the wiring for transmitting the first signal and the pad connected to the wiring for transmitting the second signal different from the first signal. Resolve.
  • a pad to be connected to an external connector and a ground layer formed in a region that does not interfere with the pad are formed on the same main surface of the base material, whereby the pad to be connected to another connector.
  • a printed wiring board having a shield structure with high shielding properties can be provided.
  • FIG. 1A is a plan perspective view of a connection portion of a printed wiring board of a first example of this embodiment of the present invention.
  • FIG. 1B is a plan perspective view of the first substrate excluding the cover lay of the printed wiring board shown in FIG. 1A.
  • 1C is a partially enlarged view of the 1C region shown in FIG. 1B.
  • FIG. 1D is a bottom perspective view of the printed wiring board shown in FIG. 1A.
  • FIG. 1E is a cross-sectional view taken along line 1E-1E of the printed wiring board shown in FIG. 1A.
  • FIG. 1F is a cross-sectional view taken along the line 1F-1F of the printed wiring board shown in FIG. 1A.
  • FIG. 1A is a plan perspective view of a connection portion of a printed wiring board of a first example of this embodiment of the present invention.
  • FIG. 1B is a plan perspective view of the first substrate excluding the cover lay of the printed wiring board shown in FIG. 1A.
  • 1C
  • 2A is a plan perspective view of the connection end portion of the printed wiring board of the second example of the present embodiment of the present invention.
  • 2B is a plan perspective view of the first base material excluding the coverlay of the printed wiring board shown in FIG. 2A.
  • FIG. 2C is a partially enlarged view of the 2C region shown in FIG. 2B.
  • 2D is a bottom perspective view of the printed wiring board shown in FIG. 2A.
  • 2E is a cross-sectional view taken along line 2E-2E of the printed wiring board shown in FIG. 2A.
  • 2F is a cross-sectional view taken along line 2F-2F of the printed wiring board shown in FIG. 2A.
  • FIG. 1 is a plan perspective view of the connection end portion of the printed wiring board of the second example of the present embodiment of the present invention.
  • 2B is a plan perspective view of the first base material excluding the coverlay of the printed wiring board shown in FIG. 2A.
  • FIG. 2C is a partially enlarged view of the 2
  • FIG. 3A is a plan perspective view of a connection portion of a printed wiring board according to a third example of the present embodiment of the present invention.
  • FIG. 3B is a plan perspective view of the first substrate excluding the coverlay of the printed wiring board shown in FIG. 3A.
  • FIG. 3C is a partially enlarged view of the 3C region shown in FIG. 3B.
  • 3D is a bottom perspective view of the first substrate of the printed wiring board shown in FIG. 3A.
  • FIG. 3E is a partially enlarged view of the 3E region shown in FIG. 3D.
  • 3F is a bottom perspective view of the printed wiring board shown in FIG. 3A.
  • 3G is a cross-sectional view taken along line 3G-3G of the printed wiring board shown in FIG. 3A.
  • FIG. 3H is a cross-sectional view taken along line 3H-3H of the printed wiring board shown in FIG. 3A.
  • FIG. 4A is a plan perspective view of a connection portion of a printed wiring board according to a fourth example of the present embodiment of the present invention.
  • 4B is a plan perspective view of the first base material excluding the coverlay of the printed wiring board shown in FIG. 4A.
  • FIG. 4C is a partially enlarged view of the 4C region shown in FIG. 4B.
  • 4D is a plan perspective view of the other main surface of the printed wiring board shown in FIG. 4A.
  • FIG. 4E is a partially enlarged view of the 4E region shown in FIG. 4D.
  • 4F is a bottom perspective view of the second base material of the printed wiring board shown in FIG. 4A.
  • FIG. 5A is a plan perspective view of a connection portion of a printed wiring board according to a fifth example of the present embodiment of the present invention.
  • FIG. 5B is a plan perspective view of the first base material excluding the coverlay of the printed wiring board shown in FIG. 5A.
  • FIG. 5C is a partially enlarged view of the 5C region shown in FIG. 5B.
  • FIG. 5D is a plan perspective view of a second substrate of the printed wiring board shown in FIG. 5A.
  • FIG. 5E is a partially enlarged view of the 5E region shown in FIG. 5D.
  • FIG. 5F is a bottom perspective view of the second substrate of the printed wiring board shown in FIG. 5A.
  • FIG. 5G is a bottom perspective view of the printed wiring board shown in FIG. 5A.
  • FIG. 5H is a cross-sectional view taken along the line 5H-5H of the printed wiring board shown in FIG. 5A.
  • FIG. 5I is a cross-sectional view taken along line 5I-5I of the printed wiring board shown in FIG. 5A.
  • FIG. 5J is a cross-sectional view taken along line 5J-5J of the printed wiring board shown in FIG. 5G.
  • FIG. 5H is a cross-sectional view taken along the line 5H-5H of the printed wiring board shown in FIG. 5A.
  • FIG. 5I is a cross-sectional view taken along
  • FIG. 6A is a plan perspective view of the connection portion of the printed wiring board of the sixth example of the present embodiment of the present invention.
  • FIG. 6B is a plan perspective view of another substrate excluding the cover lay of the printed wiring board shown in FIG. 6A.
  • FIG. 6C is a plan perspective view of the second substrate of the printed wiring board shown in FIG. 6A.
  • 6D is a partially enlarged view of the 6C region shown in FIG. 6C.
  • 6E is a bottom perspective view of the first substrate of the printed wiring board shown in FIG. 6A.
  • 6F is a partially enlarged view of a 6F region shown in FIG. 6E.
  • 6G is a bottom perspective view of the printed wiring board shown in FIG. 6A.
  • FIG. 6H is a cross-sectional view taken along line 6H-6H of the printed wiring board shown in FIG. 6A.
  • FIG. 6I is a cross-sectional view taken along line 6I-6I of the printed wiring board shown in FIG. 6G.
  • FIG. 7A is a plan perspective view of a connection portion of a printed wiring board according to a seventh example of the present embodiment of the present invention.
  • FIG. 7B is a plan perspective view of another substrate excluding the coverlay of the printed wiring board shown in FIG. 7A.
  • FIG. 7C is a plan perspective view of the first substrate of the printed wiring board shown in FIG. 7A.
  • FIG. 7D is a partially enlarged view of the 7D region shown in FIG. 7C.
  • FIG. 7E is a plan perspective view of another substrate of the printed wiring board shown in FIG. 7A.
  • FIG. 7F is a bottom perspective view of the printed wiring board shown in FIG. 7A.
  • FIG. 7G is a cross-sectional view taken along the line 7G-7G of the printed wiring board shown in FIG. 7A.
  • FIG. 7H is a cross-sectional view taken along the line 7H-7H of the printed wiring board shown in FIG. 7A.
  • FIG. 8A is a plan perspective view of the connection portion of the printed wiring board of the eighth example of the present embodiment of the present invention.
  • FIG. 8B is a plan perspective view of another substrate excluding the cover lay of the printed wiring board shown in FIG. 8A.
  • FIG. 8C is a plan perspective view of the first substrate of the printed wiring board shown in FIG. 8A.
  • FIG. 8D is a partially enlarged view of the 8D region shown in FIG. 8C.
  • FIG. 8E is a plan perspective view of another substrate of the printed wiring board shown in FIG. 8A.
  • FIG. 8F is a bottom perspective view of the printed wiring board shown in FIG. 8A.
  • FIG. 8G is a cross-sectional view taken along line 8G-8G of the printed wiring board shown in FIG. 8A.
  • FIG. 8H is a cross-sectional view taken along line 8H-8H of the printed wiring board shown in FIG. 8A.
  • FIG. 9A is a chart showing antenna characteristics of Example 1 and Example 2 of the present embodiment.
  • FIG. 9B is a chart showing antenna characteristics of Example 3 of the present embodiment.
  • FIG. 9C is a chart showing antenna characteristics of Example 4 of the present embodiment.
  • FIG. 9D is a chart showing antenna characteristics of Example 5 of the present embodiment.
  • FIG. 10A is a first diagram illustrating a measurement condition of a radiation level in an example of the present embodiment.
  • FIG. 10B is a second diagram showing the measurement conditions of the radiation level in the example of the present embodiment.
  • the printed wiring board of this embodiment has a shield structure.
  • the printed wiring board 1 of the present embodiment is a flexible and deformable flexible printed wiring board (FPC).
  • the printed wiring board of this embodiment is used by being inserted into a ZIF (Zero Insertion Force) connector.
  • the printed wiring board of the present embodiment is not limited to this, and can also be applied to connectors such as a non-ZIF connector and a backboard connector that obtain a fitting force using the thickness.
  • a flexible printed wiring board will be described as an example, but the present invention can also be applied to a type of printed wiring board such as a rigid flexible printed wiring board.
  • the aspect of the connector with which the printed wiring board of this embodiment is latched is not specifically limited.
  • the printed wiring board 1 of the first example to the seventh example will be sequentially described.
  • an end portion including a connection end portion E on the side connected to another connector is cut out from the printed wiring board 1 of the present embodiment.
  • the printed wiring board 1 shown in each drawing actually extends in the ⁇ Y direction in the drawing.
  • the printed wiring board 1 is connected to a connector existing on the connection end E side.
  • the 1st base material 11, the 2nd base material 12, and the 3rd base material with which the printed wiring board 1 of each example of this embodiment is provided may be named generically, and the base material 10 may be called.
  • the third substrate is a substrate other than the first substrate 11 and the second substrate 12.
  • the upper layer side or the upper surface direction (+ Z direction in the figure) in the laminated structure of the printed wiring board 1 will be referred to as the upper side with respect to the lamination direction (Z direction in the figure) of the printed wiring board 1.
  • the lower layer side or lower surface direction (the ⁇ Z direction in the figure) in the laminated structure of the printed wiring board will be referred to as the lower side.
  • the surface on the upper layer side of each base material in the laminated structure is referred to as “one main surface”, and in the laminated structure, The surface on the lower layer side will be described as “the other main surface”.
  • any one main surface is a main surface of either the one main surface or the other main surface, and is not limited to one main surface or the other main surface.
  • the printed wiring board 1 of the first example is a type (single-sided connection type) that includes one conductive layer 11a and is connected to the connector only on one main surface. Further, the printed wiring board 1 of the first example shown in FIGS. 1A to 1F has a wiring 5 (signal line) for transmitting a single end signal.
  • FIG. 1A is a plan perspective view of a connection portion including a connection end E of the printed wiring board 1 of the first example of the present embodiment.
  • the printed wiring board 1 shown in FIG. 1A includes at least a cover lay 20, a first base material 11, and a reinforcing layer 30.
  • the printed wiring board 1 of this embodiment includes one or more engaged portions 70 and one or more tab-like members 80.
  • the printed wiring board 1 includes an engaged portion 70 at at least one of the left and right edges in the width direction (X direction in the drawing) of the connection end E.
  • the engaged portion 70 is formed at the connection end E connected to the connector, and is engaged with the engaging portion of the connector. Specifically, the engaged portion 70 is pulled out in the ⁇ Y direction in the figure to an engaging portion (for example, a tab-like member provided on the connector) with another electronic component to which the printed wiring board 1 is connected. Locked by directional force.
  • the engaged portions 70 are provided at the left and right edges of the connection end E, the pull-out resistance is improved, and a stable engagement state can be maintained.
  • the left and right engaged portions 70 are formed at the same position along the connecting direction (Y-axis direction in the figure), the force applied to the left and right engaged portions 70 is evenly distributed and stable engagement is achieved. The state can be maintained.
  • the engaged portion 70 of this example is configured by a notch formed in the side edge portion of the connection end E.
  • the aspect of the engaged portion 70 is not limited.
  • the notch part which comprises the to-be-engaged part 70 may be the aspect which notched all the laminated base materials 10 in the same shape, and a notch part (part cut off) as it approaches the upper surface or the lower surface It is good also as a structure where the area (area of an XY plane) of this decreases gradually or increases.
  • the outer edge of the base material 10 may be included in the cutout portion, or a through hole that does not include the outer edge of the base material 10 may be formed.
  • the engaged portion 70 may be formed as a bottomed concave portion where the base material on the lower surface side is non-penetrating, or may be formed as a concave portion with a lid where the base material on the upper surface side remains.
  • the printed wiring board 1 of the present embodiment includes a tab-like member 80 on at least one of the left and right edges in the width direction (X direction in the drawing) of the connection end E.
  • the tab-shaped member 80 is formed at the connection end E connected to the connector, and is locked to the engaged portion of the connector.
  • the tab-like member 80 is applied to the engaging portion (for example, a notch provided in the connector) with another electronic component to be connected to the printed wiring board 1 in the drawing direction force in the -Y direction in the figure. It is locked by.
  • the tab-like members 80 are provided on the left and right edges of the connection end E, respectively, so that the pull-out resistance is improved and a stable engagement state can be maintained.
  • the left and right tab-like members 80 are formed at the same position along the connecting direction (Y-axis direction in the figure), the force applied to the left and right tab-like members 80 is evenly distributed and a stable engagement state is achieved. Can be maintained.
  • the engagement strength between the printed wiring board 1 and the connector can be increased by the engaged portion 70 and the tab-like member 80 described above.
  • the example in which the engaged portion 70 and the tab-shaped member 80 are provided has been described.
  • a locking structure including either the engaged portion 70 or the tab-shaped member 80 may be employed.
  • the locking structure is not limited to that by the engaged portion 70 and / or the tab-like member 80, the present embodiment can be provided without any of the engaged portion 70 and the tab-like member 80 shown in this example.
  • the printed wiring board 1 can be produced. The same applies to other examples described below.
  • the tab-shaped member 80 of the present example is constituted by the base material 10 that extends to the left and right at the side edge portion of the connection end E.
  • the aspect of the tab-shaped member 80 is not limited.
  • the tab-like member 80 is formed by punching the laminated base material 10 into a desired shape.
  • the shape of the tab-shaped member 80 may be a structure in which the area of the tab-shaped member 80 (area of the XY plane) decreases or increases as it approaches the upper surface or the lower surface.
  • a coverlay 20 is laminated on the uppermost layer of the printed wiring board 1.
  • the coverlay 20 can be formed by sticking an insulating resin film such as polyimide, or by applying and curing a thermosetting ink, an ultraviolet curable ink, or a photosensitive ink.
  • the first base material 11 is laminated on the lower layer of the coverlay 20.
  • the 1st base material 11 has the structure where the conductive layer 11a was formed in the main surface of the insulating base material 11b and the insulating base material 11b.
  • Each base material 10 including the first base material 11, the second base material 12 described later, and the third base material of the present embodiment has flexibility.
  • the insulating base material 11b of each base material 10 is formed of an insulating resin. Examples of the insulating resin include polyimide, polyester, polyethylene terephthalate, and polyethylene naphthalate.
  • the insulating base material of each base material 10 may be made from the same resin, or may be made from different resins. FIG.
  • FIG. 1B is a plan perspective view of the first substrate 11 excluding the coverlay 20 of the printed wiring board shown in FIG. 1A.
  • a conductive layer 11a such as a copper foil is formed on one main surface of the insulating substrate 11b.
  • the conductive layer 11a is formed by performing copper plating after copper is vapor-deposited or sputtered on the insulating substrate 11b.
  • the conductive layer 11a may be a polyimide base material bonded with a copper foil via an adhesive.
  • the conductive layer 11 a of the first base material 11 has a plurality of pads 2. Each of the plurality of pads 2 is electrically connected to another connector (not shown). The pad 2 is formed at an end connected to another connector. As shown in FIGS. 1A and 1B, the plurality of pads 2 are arranged in parallel along the edge Ed of the printed wiring board 1 at the connection end E connected to the connector of the printed wiring board 1.
  • FIG. 1C is a partially enlarged view of the region 1C shown in FIG. 1B.
  • a conductive layer 11 a including a pad 2 and a ground layer 3 is formed on one main surface on the upper side of the first base material 11.
  • the pad 2 and the ground layer 3 are formed on the same main surface of the substrate 10.
  • the ground layer 3 is connected to a ground contact that is grounded to a reference potential.
  • the ground layer 3 is formed in a shape having an inner edge at a position separated from the outer edge of the pad 2 by a predetermined distance.
  • the pad 2 is formed in a shape having an outer edge at a position separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 is formed so as to surround the pad 2.
  • a groove 4 having a width of a predetermined distance is formed between the ground layer 3 and the pad 2 included in the conductive layer 11a.
  • the ground layer 3 surrounds the pad 2 from the periphery and constitutes a groove 4.
  • the groove 4 is formed so as to surround the entire periphery of the pad 2 and the wiring 5.
  • the groove 4 is formed so as to surround the entire periphery of the pad 2.
  • the term “predetermined distance” between the inner edge of the ground layer 3 and the outer edge of the pad 2 means “a distance that does not change with time”, and the distance between the ground layer 3 and the pad 2 is It is not limited to the same at any position. That is, the “predetermined distance” between the ground layer 3 and the pad 2 can be a different distance in each portion. The same applies to other examples described below.
  • an insulating layer may be interposed between the pad 2 and the ground layer 3.
  • the first base material 11 has the wiring 5 that is formed on one main surface and is electrically connected to the pad 2.
  • the wiring 5 is formed using a conductive material.
  • copper or a copper alloy can be used as the conductive material.
  • the connection relationship between the pad 2 and the wiring 5 is not particularly limited, and a desired connection relationship can be realized by appropriately applying a printed wiring board manufacturing method known at the time of filing. The same applies to other examples described below.
  • the wiring 5 has an outer edge at a position separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 is formed to have an inner edge at a position separated from the outer edge of the wiring 5 by a predetermined distance.
  • the wiring 5 is formed to have an outer edge at a position separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 is formed so as to surround the wiring 5. As shown in FIG. 1C, the ground layer 3 and the wiring 5 are separated by a predetermined distance. That is, a groove 4 having a width of a predetermined distance is formed between the ground layer 3 and the wiring 5 included in the conductive layer 11a.
  • the term “predetermined distance” between the inner edge of the ground layer 3 and the outer edge of the wiring 5 means “a distance that does not change over time”, and the distance between the ground layer 3 and the wiring 5 is It is not limited to the same at any position. That is, the “predetermined distance” between the ground layer 3 and the wiring 5 can be a different distance in each part. Of course, the distance between the ground layer 3 and the pad 2 described above and the distance between the ground layer 3 and the wiring 5 can be different distances. The same applies to other examples described below. Although not particularly limited, an insulating layer may be interposed between the wiring 5 and the ground layer 3.
  • the “predetermined distance” between the inner edge of the ground layer 3 and the outer edge of the pad 2 and the “predetermined distance” between the inner edge of the ground layer 3 and the outer edge of the wiring 5 may be the same distance, It may be a different distance. This also applies to other examples described below.
  • FIG. 1D is a bottom perspective view of the printed wiring board 1 shown in FIG. 1A.
  • a reinforcing layer 30 is formed on the surface of the insulating base 11b on the other main surface side of the first base 11 via an adhesive layer.
  • the reinforcing layer 30 is formed using, for example, a polyimide film.
  • the notation of the adhesive layer is omitted in the drawings for explaining the first example and the second to eighth examples. It is assumed that an adhesive layer is present between the substrates as necessary.
  • FIG. 1E is a sectional view taken along line 1E-1E of the printed wiring board shown in FIG. 1A. That is, it is a cross-sectional view including the pad 2 and the ground layer 3. As shown in FIG. 1E, a groove 4 is formed between the pad 2 and the ground layer 3.
  • a surface treatment layer MT is formed on the upper surface side of the pad 2 and the ground layer 3.
  • the surface treatment layer MT has conductivity.
  • a plating process is performed as the surface treatment.
  • the surface treatment layer MT has corrosion resistance, wear resistance, and the like, and protects part of the pad 2 and the ground layer 3.
  • a gold plating process is performed as the surface treatment.
  • the material used for forming the gold plating layer formed by the gold plating process is not particularly limited.
  • a nickel layer may be included in the lower layer.
  • a method for forming the surface treatment layer MT such as a plating layer is not particularly limited. Materials and techniques known at the time of filing can be used as appropriate.
  • the surface treatment layer MT may be a conductive carbon layer or a solder layer.
  • FIG. 1F is a sectional view taken along line 1F-1F of the printed wiring board shown in FIG. 1A. That is, it is a cross-sectional view including the ground layer 3. Since the pad 2 does not exist in the 1F-1F line, the groove 4 does not exist.
  • the printed wiring board 1 in which the pads 2 and the wirings 5 are formed only on one main surface of the first base material 11 has been described.
  • the present invention is not limited thereto, and the wiring 5 may be formed on the other main surface on the opposite side of the one main surface on which the pads 2 are formed, out of both main surfaces of the first base material 11.
  • the wiring 5 formed on the other main surface is electrically connected to the pad 2 through a via penetrating the first base material 11.
  • the ground layer 3 is formed on the other main surface of the first base material 11.
  • the ground layer 3 has an inner edge at a position separated from the outer edge of the wiring 5 by a predetermined distance, and is connected to a ground contact of a reference potential.
  • the printed wiring board of the aspect which provides the pad 2 in one main surface, and provides the wiring 5 in the other main surface side, provides the pad 2 and the wiring 5 in one main surface, and provides the wiring 5 also in the other main surface side. 1 can be provided.
  • the freedom degree of design improves and it can respond easily also to the request
  • the printed wiring board 1 of the second example is common to the printed wiring board 1 of the first example described above, except that it includes a pair of wirings 5a and 5b that function as differential signal lines. That is, the printed wiring board 1 of the second example is a type (single-sided connection type) that includes one conductive layer 11a and is connected to the connector only on one main surface. In order to avoid redundant explanation, the explanation is used for matters common to the first example.
  • FIG. 2A is a plan perspective view of the connection portion including the connection end E of the printed wiring board 1 of the second example of the present embodiment.
  • the printed wiring board 1 shown in FIG. 2A includes at least a cover lay 20, a first base material 11, and a reinforcing layer 30.
  • the coverlay 20 and the reinforcing layer 30 in this example are common to those in the first example.
  • the printed wiring board 1 of this example includes one or more engaged portions 70 and one or more tab-like members 80, as in the first example.
  • a coverlay 20 is laminated on the uppermost layer of the printed wiring board 1.
  • the first base material 11 is laminated on the lower layer of the coverlay 20.
  • 2B is a plan perspective view of the first base material 11 excluding the coverlay 20 of the printed wiring board shown in FIG. 2A.
  • the conductive layer 11a formed on one main surface of the insulating substrate 11b has a plurality of pads 2a and 2b (also collectively referred to as pads 2).
  • the plurality of pads 2a and 2b form a pair.
  • the plurality of pairs of pads 2 a and 2 b are arranged in parallel along the edge Ed of the printed wiring board 1 at the connection end E connected to the connector of the printed wiring board 1. .
  • the pad 2 included in the printed wiring board 1 of the second example includes a pad 2a connected to the wiring 5a that transmits the first signal, and a wiring that transmits a second signal different from the first signal. 5b and a pad 2b to be connected.
  • the first signal and the second signal are signals having different phases and causing a phase shift.
  • the first signal and the second signal in this example are differential signals having opposite phases.
  • the first signal and the second signal may be signals having different frequencies.
  • FIG. 2C which is an enlarged partial area 2C shown in FIG. 2B, a conductive layer 11a including a plurality of pairs of pads 2a, pads 2b, and a ground layer 3 is formed on one upper main surface of the first base material 11.
  • the ground layer 3 is connected to a ground contact that is grounded to a reference potential.
  • the ground layer 3 is formed in a pattern having an inner edge at a position separated from the outer edges of the pads 2a and 2b by a predetermined distance.
  • the pads 2a and 2b are formed in a pattern having an outer edge at a position separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 in this example is formed so as to surround the pair of pads 2a and 2b.
  • the pair of pads 2a and 2b are grouped. As shown in FIG.
  • a groove 4 having a width of a predetermined distance is formed between the ground layer 3 included in the conductive layer 11a and the pair of pads 2a and 2b.
  • the groove 4 is formed so as to surround the entire periphery of the pads 2a and 2b and the wirings 5a and 5b.
  • the groove 4 may be formed so as to surround the entire periphery of the pair of pads 2a and 2b.
  • the ground layer 3 and the pads 2a and 2b have grooves 4 at the outer edges other than the outer edges of the pads 2a and 2b facing each other.
  • the first base material 11 is formed on one main surface and is electrically connected to the pad 2a and to the wiring 5a and the pad 2b.
  • the wiring 5b is electrically connected.
  • the pair of wirings 5 a and 5 b have outer edges at positions separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 is formed so as to have an inner edge at a position separated by a predetermined distance from the outer edges of the wirings 5a and 5b.
  • the wirings 5a and 5b are formed so as to have outer edges at positions separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 in this example is formed so as to surround the pair of wirings 5a and 5b.
  • the region where the pair of wirings 5a and 5b are provided is grouped as one region.
  • a groove 4 having a width of a predetermined distance is formed between the ground layer 3 included in the conductive layer 11a and a region provided with a pair of wirings 5a and 5b. The That is, a groove 4 having a width corresponding to a predetermined distance is formed between the ground layer 3 and the pair of grouped wirings 5a and 5b.
  • the groove 4 is formed so as to surround the entire periphery of the wirings 5a and 5b and the pads 2a and 2b.
  • the ground layer 3 is not formed between the wiring 5a and the wiring 5b forming a pair.
  • the ground layer 3 is not formed between the paired pads 2a and 2b.
  • the wirings 5a, and the wirings 5b form the grooves 4 on the outer edges other than the outer edges that the wirings 5a and 5b face.
  • FIG. 2D is a bottom perspective view of the printed wiring board 1 shown in FIG. 2A.
  • a reinforcing layer 30 is formed on the surface of the insulating base 11b on the other main surface side of the first base 11 via an adhesive layer.
  • FIG. 2E is a cross-sectional view taken along line 2E-2E of the printed wiring board shown in FIG. 2A. That is, it is a cross-sectional view including the pad 2 a and the ground layer 3. As shown in FIG. 2E, a groove 4 is formed between the pad 2 a and the ground layer 3. The cross section along the line passing through the pad 2b is the same as that shown in FIG. 2E. A groove 4 is also formed between the pad 2 b and the ground layer 3. Similar to the first example, a surface treatment layer MT is formed on the upper surfaces of the pads 2 a and 2 b and the ground layer 3.
  • FIG. 2F is a cross-sectional view including the ground layer 3 along the line 2F-2F of the printed wiring board shown in FIG. 2A. Since the pad 2 does not exist in the 2F-2F line, the groove 4 does not exist.
  • the same main surface as the pad 2 (including 2a and 2b; the same applies hereinafter).
  • the ground layer 3 is formed on the ground layer 3 so that the outer edge of the ground layer 3 is located inward by a predetermined offset amount S from the outer edge of the main surface of the insulating base 11b on which the ground layer 3 is formed.
  • the conductive layer 11a including the pad 2 is highly likely to be disposed on the uppermost layer or the lowermost layer.
  • the mold When punching is performed using a mold during manufacture of the printed wiring board 1, the mold directly cuts the ground layer 3 that is the uppermost layer or the lowermost layer. By cutting the ground layer 3 made of a metal such as a copper foil, the mold is likely to be worn and chipped. As in this embodiment, the ground layer 3 is offset inward from the outer edge of the insulating base material 11b so that the ground layer 3 and the mold do not directly contact each other, thereby suppressing wear and damage of the mold. it can. As a result, the manufacturing cost can be reduced.
  • the ground layer 3 formed on the main surface different from the main surface on which the pad 2 is formed is the main of the insulating base material (such as an insulating base material 12b described later) on which the ground layer 3 is formed.
  • the outer edge of the surface and the outer edge of the ground layer 3 are formed at the same position.
  • the manufacturing method of the printed wiring board 1 of the 1st example of this embodiment mentioned above and the 2nd example is demonstrated.
  • the manufacturing method of the printed wiring board 1 of this embodiment is not specifically limited, The production method of the printed wiring board known at the time of this-application application can be used suitably. The same applies to the method of manufacturing the printed wiring board 1 of another example.
  • a base material having a conductive layer 11a formed on one side of an insulating base material 11b is prepared.
  • a single-sided copper-clad base material in which a copper foil is formed on one main surface of a polyimide base material is prepared.
  • the single-sided copper-clad base material is not particularly limited, and may be one obtained by performing copper plating after copper is deposited or sputtered on a polyimide base material.
  • the single-sided copper-clad base material may be a polyimide base material bonded with a copper foil via an adhesive.
  • a desired pad 2, wiring 5, and ground layer 3 are formed on one main surface of a single-sided copper-clad base material.
  • the conductive layer 11 a is not left in the region corresponding to the groove 4 between the pad 2 and the ground layer 3 and the region corresponding to the groove between the wiring 5 and the ground layer 3.
  • the pad 2 and the ground layer 3 and the wiring 5 and the ground layer 3 are insulated. Thereby, the 1st base material 11 is obtained.
  • the pad 2 and the wiring 5 are wiring patterns of signal lines for transmitting a single end signal.
  • FIG. 1B the pad 2 and the wiring 5 are wiring patterns of signal lines for transmitting a single end signal.
  • the pads 2a and 2b and the wirings 5a and 5b form a pair of differential signal line patterns.
  • a mask pattern corresponding to a signal pattern of a single-end signal line or a wiring pattern of a differential signal line is formed on the main surface of the single-sided copper-clad base material, and the copper foil is etched to obtain a desired pattern.
  • the first base material 11 on which the wiring 5 and the pad 2 are formed is obtained.
  • a cover lay 20 that covers a portion of the formed wiring 5 is attached to one main surface of the first base material 11.
  • the reinforcing layer 30 is attached to a region including the connection end portion E on the other main surface of the first base material 11.
  • the coverlay 20 and the reinforcing layer 30 are attached using an appropriate adhesive. If necessary, the adhesive is cured.
  • the printed wiring board 1 is punched out into a shape having the engaged portion 70 and the tab-like member 80.
  • a surface treatment such as gold plating is performed on the surface of the pad 2 (2a, 2b) to form a surface treatment layer.
  • connectors for connecting flexible printed wiring boards (FPCs) to substrates of various electronic devices are becoming lighter, thinner, and smaller.
  • the connection end portion of the printed wiring board that is locked to the connector is becoming thinner and smaller, and there is a high demand for a narrower wiring pitch.
  • the wiring width of the printed wiring board is narrow, the thickness of the wiring tends to be thin, and it is difficult to maintain the strength. If the strength of the connection end of the printed wiring board decreases, it may be damaged when subjected to an external force.
  • right-angle type connectors are used in small electronic devices.
  • the printed wiring board is slid in the connector direction from the front of the connector and inserted into the connector.
  • a space for sliding the printed wiring board is required, but it is difficult to secure the space in the substrate of the electronic device with high density.
  • the printed wiring board connected to the substrate may be incorporated into the housing in a state where the printed wiring board is bent at 180 degrees at the end of the housing.
  • the need for the printed wiring board to have a shield structure is increasing as the transmission speed of electronic devices is improved and the density is increased. Since communication devices such as smartphones are equipped with a plurality of wireless devices, there is a high demand for adopting a shield structure as a measure against EMI (Electro Magnetic Interference).
  • EMI Electro Magnetic Interference
  • the shield structure a wiring functioning as a signal line is disposed on the inner layer, and the shield layer is disposed on the upper or lower layer.
  • the physical contact with a connector is required and it is necessary to arrange
  • the printed wiring board 1 of this embodiment is formed so that the inner edge is located at a position separated from the outer edge of the pad 2 and the wiring 5 by a predetermined distance so as to surround the pad 2 and the wiring 5 connected to the pad 2.
  • the ground layer 3 is provided.
  • the ground layer 3 is grounded to a ground contact at a reference potential. Thereby, the ground layer 3 can be insulated from the pad 2 and the wiring 5.
  • the printed wiring board 1 can be reduced in thickness and size, the strength of the connection end E can be improved, EMI countermeasures, transmission characteristics, workability during fabrication, and layout flexibility can be solved in a balanced manner. Further, by offsetting the ground layer 3 to the inside of the insulating base material 11b, it is possible to extend the life of the mold and reduce the production cost.
  • the third example is an example of the printed wiring board 1 including two conductive layers.
  • the printed wiring board 1 of the third example is different from the first and second examples in that the pad 2 is provided in one conductive layer and the wiring 5 is provided in another conductive layer.
  • the pad 2 and the wiring 5 are formed in different layers.
  • the third example is common to the second example in that it includes a pair of wirings 5a and 5b that function as differential signal lines.
  • the printed wiring board 1 of the third example includes a conductive layer 11a and a conductive layer 11c, and is a type (single-sided connection type) that is connected to a connector only on one main surface.
  • the description is used for matters common to the first example and the second example.
  • FIG. 3A is a plan perspective view of the connection portion including the connection end E of the printed wiring board 1 of the third example of the present embodiment.
  • the printed wiring board 1 shown in FIG. 3A includes at least a cover lay 20, a first base material 11, and a reinforcing layer 30.
  • the coverlay 20 and the reinforcing layer 30 in this example are common to those in the first example.
  • the printed wiring board 1 of this example includes one or more engaged portions 70 and one or more tab-like members 80, as in the first example.
  • a coverlay 20 is laminated on the uppermost layer of the printed wiring board 1.
  • the first base material 11 is laminated on the lower layer of the coverlay 20.
  • 3B is a plan perspective view of the first base material 11 excluding the coverlay 20 of the printed wiring board shown in FIG. 3A.
  • the conductive layer 11 a formed on one main surface of the first base material 11 includes a pair of pads 2 a and 2 b and a ground layer 3.
  • the wiring 5 is not formed.
  • the conductive layer 11a formed on one main surface of the insulating substrate 11b has a plurality of pads 2a and 2b (also collectively referred to as pads 2).
  • the plurality of pairs of pads 2 a and 2 b are arranged in parallel along the edge Ed of the printed wiring board 1 at the connection end E connected to the connector of the printed wiring board 1.
  • FIG. 3C is a partially enlarged view of the 3C region shown in FIG. 3B.
  • the pad 2 of the printed wiring board 1 of the third example transmits a second signal that is different from the first signal and the pad 2a that is connected to the wiring 5a that transmits the first signal.
  • the ground layer 3 is connected to a ground contact that is grounded to a reference potential.
  • the pads 2 a and 2 b are connected to wirings 5 a and 5 b formed on the other main surface of the first base material 11 through vias TH that penetrate the first base material 11.
  • the ground layer 3 is formed in a pattern having an inner edge at a position separated from the outer edges of the pads 2a and 2b by a predetermined distance.
  • the pads 2a and 2b are formed in a pattern having an outer edge at a position separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the pair of pads 2a and 2b are grouped.
  • the ground layer 3 of this example is formed so as to surround the entire circumference of the region including both the pair of pads 2a and 2b.
  • a groove 4 having a width of a predetermined distance is formed between the pair of pads 2a and 2b formed as a pair with the ground layer 3 included in the conductive layer 11a.
  • the ground layer 3 constitutes a groove 4 surrounding the pair of pads 2a and 2b.
  • FIG. 3D is a bottom perspective view of the other main surface of the first base material 11.
  • FIG. 3E is a partially enlarged view of the 3E region shown in FIG. 3D.
  • the first base material 11 is separated from the wirings 5a and 5b electrically connected to the pads 2a and 2b via the vias TH penetrating the first base material 11 by a predetermined distance from the outer edges of the wirings 5a and 5b.
  • a ground layer 3 connected to the ground contact.
  • a plurality of wirings 5a and 5b forming a pair are arranged in parallel along the width direction on one main surface of the second base 12.
  • An end portion 5a ′ of the wiring 5a is electrically connected to a pad 2a formed on one main surface of the first base material 11 through a via penetrating the first base material 11.
  • the end portion 5 b ′ of the wiring 5 b is electrically connected to the pad 2 b formed on one main surface of the upper first base material 11 through a via penetrating the first base material 11.
  • the pair of wirings 5a and 5b has an outer edge at a position separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 is formed so as to have an inner edge at a position separated by a predetermined distance from the outer edges of the wirings 5a and 5b.
  • the wirings 5a and 5b are formed so as to have outer edges at positions separated from the inner edge of the ground layer 3 by a predetermined distance.
  • the ground layer 3 in this example is formed so as to surround the pair of wirings 5a and 5b. In this example, the pair of wirings 5a and 5b are grouped. As shown in FIGS.
  • a groove 4 having a width of a predetermined distance is formed between a pair of wirings 5a and 5b formed as a pair with the ground layer 3 included in the conductive layer 12a. That is, a groove having a width corresponding to a predetermined distance is formed between the ground layer 3 and the pair of grouped wirings 5a and 5b.
  • the ground layer 3 As shown in FIGS. 3D and 3E, among the outer edges of the adjacent wirings 5a and 5b, the ground layer 3, the wirings 5a, and the wirings 5b at the outer edges other than the outer edges facing the wirings 5a and 5b are: They are separated by a groove 4. That is, the ground layer 3 is not formed between the adjacent wirings 5a and 5b.
  • FIG. 3F is a bottom perspective view of the printed wiring board 1 shown in FIG. 3A.
  • a reinforcing layer 30 is formed on the surface of the coverlay 20 that covers the other main surface of the first base material 11 via an adhesive layer.
  • FIG. 3G is a cross-sectional view taken along line 3G-3G of the printed wiring board shown in FIG. 3A. That is, it is a cross-sectional view including the pad 2 a and the ground layer 3 of the first base material 11.
  • a groove 4 is formed between the pad 2 a and the ground layer 3.
  • the cross section along the line passing through the pad 2b is the same as that shown in FIG. 3G.
  • a groove 4 is also formed between the pad 2 b and the ground layer 3.
  • a surface treatment layer MT is formed on the upper surfaces of the pads 2 a and 2 b and the ground layer 3.
  • the wiring 5a formed on the conductive layer 11c of the first base material 11 and its end 5a ′ are connected to the pad 2 of the upper first base material 11 through the via TH.
  • FIG. 3H is a cross-sectional view including the ground layer 3 along the line 3H-3H of the printed wiring board shown in FIG. 3A. Since the pad 2 and the wiring 5 do not exist in the 3H-3H line, the groove 4 does not exist.
  • the ground layer 3 of the second substrate 12 is connected to the ground layer 3 of the first substrate 11 via the via TH.
  • the ground layer 3 is grounded to a ground contact (not shown).
  • a base material in which conductive layers are formed on both main surfaces of the insulating base material is prepared.
  • a double-sided copper-clad base material in which copper foils are formed on both main surfaces of a polyimide base material is prepared.
  • the material of the insulating substrate and the material of the conductive layer can be the same as those in the first example and the second example.
  • a via hole penetrating the double-sided copper-clad base material in the thickness direction is formed at a predetermined position of the double-sided copper-clad base material by laser processing, CNC drilling or the like.
  • a conductive layer is formed on the inner wall surface of the via hole by DPP (Direct Placing Process) processing. If necessary, a copper plating layer is formed on the entire surface of the double-sided copper-clad substrate including the inner wall surface of the via hole. Of course, a partial plating process including a via hole may be performed. Thereby, the via TH that electrically connects the one main surface and the other main surface of the double-sided copper-clad base material is formed.
  • desired pads 2a and 2b are formed on the conductive layer 11a on one main surface of the double-sided copper-clad base material, and wirings 5a and 5b are formed on the conductive layer 11c on the other main surface.
  • the conductive layer 12 a is not left in the region corresponding to the groove 4 between the pads 2 a and 2 b and the ground layer 3 and the region corresponding to the groove between the wirings 5 a and 5 b and the ground layer 3.
  • the pads 2a and 2b and the ground layer 3 are insulated.
  • the wirings 5a and 5b and the ground layer 3 are insulated. Thereby, the 1st base material 11 is obtained.
  • the pads 2a and 2b and the wirings 5a and 5b form a pair of differential signal line patterns.
  • a desired wiring 5a, 5b is formed by producing a mask pattern corresponding to the differential signal line pattern on the other main surface of the double-sided copper-clad base material and etching the copper foil.
  • a desired pad 2a, 2b is formed by producing a mask pattern corresponding to the pattern of the pads 2a, 2b on one main surface of the double-sided copper-clad substrate and etching the copper foil.
  • the cover lay 20 is attached to one main surface and the other main surface of the obtained first base material using an adhesive. If necessary, the adhesive is cured.
  • the surface of the pads 2a and 2b is subjected to a surface treatment such as gold plating to form a surface treatment layer MT.
  • the reinforcing layer 30 is pasted onto the cover lay 20 on the other main surface using an adhesive. If necessary, the adhesive is cured.
  • the printed wiring board 1 is punched out into a shape having an engaged portion 70 and a tab-like member 80. Thereby, the printed wiring board 1 of the 3rd example of this embodiment is obtained.
  • the fourth example is an example of the printed wiring board 1 including three conductive layers.
  • the fourth example is common to the second and third examples in that the wirings 5a and 5b functioning as differential signal lines are provided.
  • the printed wiring board 1 of the fourth example is a type (single-sided connection type) that includes a conductive layer 11a, a conductive layer 11c, and a conductive layer 12c and is connected to the connector only on one main surface. In order to avoid duplicated explanation, the explanation is applied to matters common to the first to third examples.
  • FIG. 4A is a plan perspective view of a connection portion including the connection end E of the printed wiring board 1 of the fourth example of the present embodiment.
  • the printed wiring board 1 shown in FIG. 4A includes at least a cover lay 20, a first base material 11, a second base material 12, and a reinforcing layer 30.
  • the coverlay 20 and the reinforcing layer 30 in this example are common to those in the first example.
  • the printed wiring board 1 of this example includes one or more engaged portions 70 and one or more tab-like members 80, as in the first example.
  • a coverlay 20 is laminated on the uppermost layer of the printed wiring board 1.
  • the first base material 11 is laminated on the lower layer of the coverlay 20.
  • 4B is a plan perspective view of the first base material 11 excluding the coverlay 20 of the printed wiring board shown in FIG. 4A.
  • a conductive layer 11 a including a pair of pads 2 a and 2 b and a ground layer 3 is formed on the conductive layer 11 a on one main surface of the first base material 11.
  • the wiring 5 is not formed.
  • the conductive layer 11a formed on one main surface of the insulating substrate 11b has a plurality of pads 2a and 2b (also collectively referred to as pads 2).
  • the arrangement of the pads 2a and 2b is the same as that in the second example.
  • FIG. 4C is a partially enlarged view of the 4C region shown in FIG. 4B.
  • the aspect of the pads 2a and 2b, the ground layer 3, and the groove 4 of the printed wiring board 1 of the fourth example shown in FIGS. 4B and 4C is the same as that of the third example.
  • FIG. 4D is a plan perspective view of the other main surface of the first base material 11.
  • FIG. 4E is a partially enlarged view of the 4E region shown in FIG. 4D.
  • a plurality of wirings 5a and 5b forming a pair are arranged in parallel along the width direction on the other main surface of the first base material 11.
  • the end portion 5 a ′ of the wiring 5 a is electrically connected to the pad 2 a of the upper first base material 11 through a via penetrating the first base material 11.
  • the end portion 5b ′ of the wiring 5b is electrically connected to the pad 2b of the upper first base material 11 through a via penetrating the first base material 11.
  • the forms of the wires 5a and 5b, the ground layer 3, and the groove 4 of the printed wiring board 1 of the fourth example shown in FIGS. 4D and 4E are formed on the other main surface side of the first base material 11 in the third example.
  • the wirings 5a and 5b, the ground layer 3, and the groove 4 are common.
  • FIG. 4F is a bottom perspective view of the second substrate 12.
  • a conductive layer 12 c is formed on the other main surface of the second substrate 12.
  • the conductive layer 12 c is connected to the ground contact at the reference potential and functions as the ground layer 3.
  • the printed wiring board 1 of the fourth example has one second base material 12 that is directly laminated on one main surface of the first base material 11.
  • a third base material (not shown) may be interposed between the first base material 11 and the second base material 12, and the number of second base materials 12 to be stacked is limited.
  • the second base material 12 is a first base material 11 connected to a ground contact through a via TH penetrating one or a plurality of base materials 10 including a first base material 11 and a third base material (not shown). It is electrically connected to the ground layer 3.
  • FIG. 4H is a cross-sectional view including the pad 2a and the ground layer 3 of the first base material 11, the wiring 5a and the ground layer 3 of the first base material 11, and the ground layer 3 of the second base material 12.
  • FIG. 4H a groove 4 is formed between the pad 2 a and the ground layer 3.
  • the cross section along the line passing through the pad 2b is the same as that shown in FIG. 4H.
  • a groove 4 is also formed between the pad 2 b and the ground layer 3.
  • a surface treatment layer MT is formed on the upper surfaces of the pads 2 a and 2 b and the ground layer 3.
  • the wiring 5a formed on the conductive layer 11c of the first base material 11 and its end 5a ′ are connected to the pad 2 of the upper first base material 11 through the via TH.
  • FIG. 4I is a cross-sectional view including the ground layer 3 taken along line 4I-4I of the printed wiring board 1 shown in FIG. 4A. Since the pad 2 and the wiring 5 do not exist in the 4I-4I line, the groove 4 does not exist.
  • the ground layer 3 on the one main surface and the other main surface of the first base material 11 and the ground layer 3 of the second base material 12 are connected via vias TH. Each ground layer 3 is grounded to a ground contact (not shown).
  • the connector is shielded for EMI countermeasures.
  • the via TH for performing interlayer connection of the multilayer printed wiring board 1 connected to the connector is disposed outside the connector, the via TH cannot be protected by the shield layer of the printed wiring board, and the connector shield May not be protected.
  • the noise which arises by this may reduce a transmission characteristic.
  • the influence on transmission characteristics cannot be ignored even with a small amount of noise.
  • a via TH that realizes interlayer connection is formed at the connection end E. That is, the via TH for realizing the interlayer connection is not disposed on the front side (opposite side of the edge Ed) of the connection end E of the printed wiring board 1 but on the connection end E. It is arranged directly under the pad 2 provided. One end of the via TH penetrating the interlayer contacts the back surface of the pad 2 (the back side surface of the contact surface).
  • the pad 2 in the printed wiring board 1 of the present embodiment is surrounded by the ground layer 3. For this reason, the signal transmission path between the layers can be shielded by the shield structure provided in the printed wiring board 1 of the present embodiment. Even when there is a request for high-speed transmission or a request for EMI characteristics, it is possible to protect the transmission path from being exposed outside the shield structure.
  • the shielded state can be maintained until the signal is transmitted to the pad 2. That is, in the printed wiring board 1 of the present embodiment, the signal is exposed to the outside of the shield structure only at the pad 2 in contact with the connector.
  • the printed wiring board 1 of the present embodiment can provide a shield structure that realizes the ultimate shielding property that the shield state can be maintained up to the pad 2 that physically contacts the connector.
  • the printed wiring board 1 can be bent in the vicinity of the connector fitting portion. Since the connector can be disposed in the vicinity of the wall surface of the housing without considering the bending angle of the printed wiring board 1, it is possible to contribute to downsizing of the entire electronic device. As described above, even in the printed wiring board 1 having a multilayer structure, the printed wiring board 1 is thinned and miniaturized, the strength of the connection end E is improved, EMI countermeasures, transmission characteristics, workability during fabrication, and freedom of layout are achieved. The problem concerning the space saving of the board layout can be solved in a well-balanced manner. Further, by offsetting the ground layer 3 to the inside of the insulating base material 11b, it is possible to extend the life of the mold and reduce the production cost.
  • the manufacturing method of the printed wiring board 1 of the 4th example of this embodiment mentioned above is demonstrated.
  • the base material in which the conductive layers 11a and 11c were formed on both surfaces of the insulating base material 11b is prepared.
  • the double-sided copper-clad substrate is the same as that in the third example.
  • the wirings 5a and 5b are formed on the conductive layer 11c on the other main surface of the double-sided copper-clad base material using a general photolithography technique by the same method as in the third example.
  • the conductive layer 11 c is not left in the region corresponding to the groove between the wirings 5 a and 5 b and the ground layer 3.
  • the wirings 5a and 5b and the ground layer 3 are insulated. Thereby, the 1st base material 11 is obtained.
  • the single-sided copper pasting base material in which conductive layer 12c was formed in the other principal surface of an insulating base material is prepared.
  • the ground layer 3 is formed on the other main surface of the second substrate 12.
  • the conductive layer 12c is left as it is to function as the ground layer 3.
  • the first base material 11 and the second base material 12 are laminated, and a conductive layer on one main surface of the double-sided copper-clad base material using a general photolithography technique in the same manner as in the third example. Desired pads 2a and 2b are formed on 11a.
  • the conductive layer 11a is not left in the region corresponding to the groove 4 between the pads 2a and 2b and the ground layer 3.
  • the pads 2a and 2b and the ground layer 3 are insulated.
  • Via TH that electrically connects one main surface and the other main surface of the first base material 11 by the same method as in the third example one main surface and the other main surface of the first base material 11 and the second base A via TH that electrically connects the other main surface of the material 12 is formed.
  • the cover lay 20 is attached to the uppermost surface on the one main surface side of the first base material 11 using an adhesive.
  • the coverlay 20 is attached to the other main surface side of the second substrate 12 using an adhesive. If necessary, the adhesive is cured.
  • the reinforcing layer 30 is attached to the coverlay 20 attached to the other main surface side of the second substrate 12 using an adhesive. If necessary, the adhesive is cured. Using a mold prepared in advance, the printed wiring board 1 is punched out into a shape having an engaged portion 70 and a tab-like member 80. Thereby, the printed wiring board 1 of the 4th example of this embodiment is obtained.
  • the fifth example is an example of the printed wiring board 1 including three conductive layers. Further, the fifth example is common to the first example in that the wiring 5 is a wiring pattern of a signal line of a single end signal.
  • the printed wiring board 1 of the fifth example includes a conductive layer 11a, a conductive layer 12a, and a conductive layer 12c, and is a type (double-sided connection type) that is connected to the connector on both the front and back surfaces. In order to avoid duplicated explanation, the explanation is applied to matters common to the first to fourth examples.
  • FIG. 5A is a plan perspective view of a connection portion including the connection end E of the printed wiring board 1 of the fifth example of the present embodiment.
  • the printed wiring board 1 shown in FIG. 5A includes at least a cover lay 20, a first base material 11, and a single second base material 12.
  • the coverlay 20 of this example is common to that of the first example.
  • the printed wiring board 1 of this example includes one or more engaged portions 70 and one or more tab-like members 80, as in the first example.
  • FIG. 5A coverlays 20 are attached to the uppermost layer and the lowermost layer of the printed wiring board 1.
  • the first base material 11 is disposed below the uppermost cover lay 20.
  • FIG. 5B is a plan perspective view of the first base material 11 excluding the coverlay 20 of the printed wiring board shown in FIG. 5A.
  • the conductive layer 11 a formed on one main surface of the insulating base material 11 b has a plurality of pads 2.
  • the plurality of pads 2 are arranged in parallel along the edge Ed of the printed wiring board 1 at the connection end E connected to the connector of the printed wiring board 1.
  • the arrangement of the pads 2 is common to the first example.
  • a conductive layer 11 a including the pad 2 and the ground layer 3 is formed on one upper main surface of the first base material 11.
  • the wiring 5 is not formed.
  • FIG. 5C is a partially enlarged view of the 5C region shown in FIG. 5B.
  • the conductive layer 11a formed on one main surface of the insulating substrate 11b has a plurality of pads 2.
  • the arrangement of the pads 2 is common to the first example.
  • the ground layer 3 is formed in a pattern having an inner edge at a position separated from the outer edge of the pad 2 by a predetermined distance. As shown in FIG. 5C, the ground layer 3 in this example is formed so as to surround the entire periphery of the pad 2.
  • a groove 4 having a predetermined distance is formed between the ground layer 3 and the pad 2 included in the conductive layer 11a.
  • the ground layer 3 constitutes a groove 4 surrounding each pad 2.
  • FIG. 5D is a plan perspective view of one main surface side of the second base material 12.
  • FIG. 5E is a partially enlarged view of the 5E region shown in FIG. 5D.
  • the printed wiring board 1 of the fifth example has one second substrate 12 that is directly laminated on any one main surface of the first substrate 11.
  • a third base material may be interposed between the first base material 11 and the second base material 12, and the number of second base materials 12 to be stacked is not limited.
  • the second substrate 12 has an inner edge at a position separated from the outer edge of the wiring 5 by a predetermined distance, and the wiring 5 electrically connected to the pad 2 through the via TH penetrating one or a plurality of the substrates 10. And a ground layer 3 connected to the ground contact.
  • a plurality of wirings 5 are arranged in parallel along the width direction of the printed wiring board 1 on one main surface of the second substrate 12.
  • the end portion 5 ′ of the wiring 5 is electrically connected to the pad 2 on the one main surface of the first base material 11 through a via penetrating the first base material 11. Further, the end portion 5 ′ of the wiring line 5 is also electrically connected to the pad 2 on the other main surface of the second base material 12 through a via penetrating the second base material 12.
  • the end portion 5 ′ of the odd-numbered wiring 5 is electrically connected to the pad 2 on the one main surface of the first base material 11, and the even-numbered wiring 5 'is electrically connected to the pad 2 on the other main surface of the second substrate 12.
  • the printed wiring board 1 according to the fifth example is connected to the connector on both sides.
  • the pad 2 and the ground layer 3 are formed on one main image side of the first base material 11, and the pad 2 and the ground layer 3 are formed on the other main surface side of the second base material 12. .
  • FIG. 5F is a bottom perspective view of the second main surface 12 on the other main surface side.
  • a plurality of pads 2 and a ground layer 3 are formed on the other main surface side of the second substrate 12. Similar to the first base material 11 of the first example, a groove 4 having a width corresponding to a predetermined distance is formed between the pad 2 and the ground layer 3.
  • the second substrate 12 in the fifth example has the configuration and function as the first substrate 11.
  • the base material provided with the pad 2 will be referred to as the second base material 12, but the second base material 12 in the fifth example corresponds to the first base material of the present invention.
  • FIG. 5G is a bottom perspective view of the printed wiring board 1 shown in FIG. 5A.
  • the conductive layer 12c on the other main surface side of the second base material 12 constituting the bottom surface is covered with a coverlay 20 except for a region where the pad 2 is formed.
  • the pad 2 formed on the other main surface of the second base material 12 is exposed on the bottom surface side of the printed wiring board 1, and can be in electrical contact with the connector also on the bottom surface. .
  • FIG. 5H is a cross-sectional view taken along line 5H-5H of the printed wiring board shown in FIG. 5A. That is, FIG. 5H shows the pads 2 and the ground layer 3 of the first base material 11, the wiring 5 a and the ground layer 3 formed on one main surface of the second base material 12, and the other main surface of the second base material 12.
  • FIG. 3 is a cross-sectional view including a ground layer 3 formed. As shown in FIG. 5H, a groove 4 is formed between the pad 2 and the ground layer 3. Similar to the first example, a surface treatment layer MT is formed on the upper surface side of the pad 2 and the ground layer 3. The wiring 5 formed on the conductive layer 12a of the second substrate 12 and its end 5 ′ are connected to the pad 2 of the upper first substrate 11 via the via TH.
  • FIG. 5I is a cross-sectional view including the ground layer 3 taken along line 5I-5I of the printed wiring board 1 shown in FIG. 5A. Since the pad 2 and the wiring 5 do not exist in the 5I-5I line, the groove 4 does not exist.
  • the ground layer 3 formed on one main surface of the first base material 11 and the ground layer 3 formed on both main surfaces of the second base material 12 are connected via vias TH.
  • the ground layer 3 is grounded to a ground contact (not shown).
  • FIG. 5J is a cross-sectional view taken along the line 5J-5J of the printed wiring board 1 shown in FIG. 5G.
  • FIG. 5J is a cross-sectional view including the pad 2 and the ground layer 3 on the bottom surface side of the printed wiring board 1, and the wiring 5 and the ground layer 3 of the second base 12.
  • a groove 4 is formed between the pad 2 on the bottom side and the ground layer 3.
  • a surface treatment layer MT is formed on the upper surface side of the pad 2 and the ground layer 3 on the bottom surface side.
  • the wiring 5 formed on the first substrate 11 and its end 5 ′ are connected to the pad 2 of the lower second substrate 12 via the via TH.
  • the second substrate 12 located in the uppermost layer in FIG. 5G is inverted so as to be located in the lowermost layer. This is to align the vertical direction with FIGS. 5H and 5I.
  • the base material referred to as “second base material 12” substantially corresponds to the “first base material” of the present invention having the pad 2 and the ground layer 3.
  • the double-sided copper sticking base material in which the conductive layer 12a was formed in the one main surface of an insulating base material, and the conductive layer 12c was formed in the other main surface is prepared.
  • the double-sided copper-clad substrate is the same as in the third and fourth examples.
  • the wiring 5 is formed on the conductive layer 12a on the one main surface (upper surface in the drawing) using a general photolithography technique by the same method as in the third example.
  • the conductive layer 12 a is not left in the region corresponding to the groove between the wiring 5 and the ground layer 3.
  • the wiring 5 and the ground layer 3 are insulated.
  • the single-sided copper sticking base material in which the conductive layer 11a was formed in the one main surface of an insulating base material is prepared.
  • the first base material 11 and the second base material 12 are laminated, and one main surface of the first base material 11 and one main surface of the second base material 12 are formed by the same method as in the third example.
  • Via TH for electrical connection via TH for electrically connecting one main surface of the first base material 11 and one main surface and the other main surface of the second base material 12, one main surface of the second base material 12 And vias TH that electrically connect the other main surface.
  • the desired pads 2a and 2b are placed on the conductive layer 11a on the one main surface of the first base material 11 and the other main surface of the second base material 12 using a general photolithography technique in the same manner as in the third example. Desired pads 2a and 2b are formed on the conductive layer 12c on the surface.
  • the conductive layer 11a is not left in the region corresponding to the groove 4 between the pads 2a and 2b and the ground layer 3.
  • the pads 2a and 2b and the ground layer 3 are insulated.
  • the coverlay 20 is pasted so that the pad 2 is exposed on the uppermost surface on the one main surface side of the first base material 11. Similarly, the cover lay 20 is attached so that the pad 2 is exposed on the other main surface side of the second substrate 12. An appropriate adhesive is used for attaching the coverlay 20. Curing is performed as necessary.
  • the sixth example is an example of the printed wiring board 1 including three conductive layers. Further, the sixth example is common to the second example in that the wiring 5 is a differential signal line that makes a pair.
  • the printed wiring board 1 of the sixth example includes a conductive layer 11a, a conductive layer 12a, and a conductive layer 12c, and is a type (double-sided connection type) that is connected to the connector on both the front and back surfaces. In order to avoid duplicated explanation, the explanation is used for matters common to the first to fifth examples.
  • FIG. 6A is a plan perspective view of a connection portion including the connection end E of the printed wiring board 1 of the sixth example of the present embodiment.
  • the printed wiring board 1 shown in FIG. 6A includes at least a cover lay 20, a first base material 11, and a single second base material 12.
  • the printed wiring board 1 of this example includes one or more engaged portions 70 and one or more tab-like members 80, as in the first example.
  • coverlays 20 are attached to the uppermost layer and the lowermost layer of the printed wiring board 1.
  • the first base material 11 is disposed on the lower layer side of the uppermost cover lay 20.
  • 6B is a plan perspective view of the first base material 11 excluding the coverlay 20 of the printed wiring board shown in FIG. 6A.
  • the pad 2 and the wiring 5 are not provided on the conductive layer 11a formed on one main surface of the insulating substrate 11b.
  • the conductive layer 11 a functions as the ground layer 3.
  • FIG. 6C is a plan perspective view of one main surface side of the second base material 12 laminated on the other main surface side of the first base material 11.
  • FIG. 6D is a partially enlarged view of the 6D region shown in FIG. 6C.
  • the printed wiring board 1 of the sixth example has one second substrate 12 that is directly laminated on any one main surface of the first substrate 11.
  • the second substrate 12 has wirings 5a and 5b that are electrically connected to the pad 2 via vias TH penetrating the substrate 10, and an inner edge at a position separated from the outer edges of the wirings 5a and 5b by a predetermined distance.
  • a ground layer 3 connected to the ground contact.
  • a plurality of wirings 5 a ′ and 5 b ′ are arranged in parallel along the width direction of the printed wiring board 1 on one main surface of the second substrate 12.
  • the end portions 5 a ′ and 5 b ′ of the wiring 5 are electrically connected to the pads 2 a and 2 b on the other main surface of the second base material 12 through vias penetrating the second base material 12.
  • FIG. 6E is a bottom perspective view of the other main surface side of the second substrate 12, and FIG. 6F is a partially enlarged view of the 6F region shown in FIG. 6E.
  • a plurality of pads 2 a and 2 b are formed on the other main surface side of the second base material 12.
  • the conductive layer 12c of the second substrate 12 shown in the figure is arranged so as to be on the lower surface side of the printed wiring board 1. For this reason, the position of the pad 2b of the conductive layer 12c on the other main surface of the second base material 12 shown in FIG. 6E corresponds to the position of the end portion 5b 'of the wiring 5 of the conductive layer 12a on the back main surface side.
  • a groove 4 having a width corresponding to a predetermined distance is formed between the pads 2 a and 2 b and the ground layer 3.
  • FIG. 6G is a bottom perspective view of the printed wiring board 1 shown in FIG. 6A.
  • the conductive layer 12c on the other main surface side of the second base material 12 constituting the bottom surface is covered with a coverlay 20 except for the region where the pads 2a and 2b are formed.
  • pads 2 a and 2 b formed on the other main surface of the second base 12 are exposed on the bottom surface side of the printed wiring board 1. Can be touched.
  • the ground layer 3 is connected to the ground contact on the uppermost surface, and the pads 2a and 2b are connected to the connector on the lowermost surface.
  • FIG. 6H is a cross-sectional view taken along the line 6H-6H of the printed wiring board shown in FIG. 6A.
  • 6H is a cross section including the ground layer 3 of the first base material 11, the ground layer 3 formed on one main surface of the second base material 12, and the ground layer 3 formed on the other main surface of the second base material 12.
  • FIG. Since the pads 2a and 2b and the wirings 5a 'and 5b' do not exist in the 6H-6H line, the groove 4 does not exist.
  • the ground layer 3 formed on one main surface of the first base material 11, the ground layer 3 formed on one main surface of the second base material 12, and the ground formed on the other main surface of the second base material 12 Layer 3 is connected via via TH.
  • the ground layer 3 is grounded to a ground contact (not shown).
  • FIG. 6I is a cross-sectional view including the pad 2b and the ground layer 3 along the 6I-6I line of the printed wiring board 1 shown in FIG. 6G.
  • a groove 4 is formed between the pad 2 b and the ground layer 3.
  • a surface treatment layer MT is formed on the upper surface side of the pad 2b and the ground layer 3.
  • the second base material 12 positioned in the uppermost layer in FIG.
  • the second base material 12 having the pads 2a and 2b and the ground layer 3 is a base material corresponding to the “first base material” of the present invention.
  • the contact of the ground layer 3 is disposed on the uppermost surface of the printed wiring board 1 and the pads 2a and 2b are disposed on the lowermost surface.
  • the upper and lower sides are reversed, and the pads 2a and 2b are disposed on the uppermost surface. 2b may be disposed, and the contact of the ground layer 3 may be disposed on the uppermost surface.
  • the manufacturing method of the printed wiring board 1 of the 6th example of this embodiment mentioned above is demonstrated.
  • the double-sided copper sticking base material in which the conductive layer 12a was formed in the one main surface of an insulating base material, and the conductive layer 12c was formed in the other main surface is prepared.
  • Wirings 5a ′ and 5b ′ are formed on the conductive layer 12a on the one main surface (the upper surface in the figure) of the double-sided copper-clad base material using a general photolithography technique by the same method as in the third example. To do.
  • the conductive layer 12 a is not left in the region corresponding to the groove between the wirings 5 a ′ and 5 b ′ and the ground layer 3.
  • the wirings 5a ′ and 5b ′ and the ground layer 3 are insulated.
  • the single-sided copper sticking base material in which the conductive layer 11a was formed in the one main surface of an insulating base material is prepared.
  • the conductive layer 11 a functions as the ground layer 3.
  • the first base material 11 and the second base material 12 are laminated, and one main surface of the first base material 11, one main surface of the second base material 12, and the other main main surface are obtained in the same manner as in the third example.
  • a via TH that electrically connects the surface and a via TH that electrically connects one main surface and the other main surface of the second base 12 are formed.
  • Desired pads 2a and 2b are formed on the conductive layer 12c on the other main surface of the second base material 12 using a general photolithography technique by the same method as in the third example.
  • the conductive layer 11a is not left in the region corresponding to the groove 4 between the pads 2a and 2b and the ground layer 3.
  • the pads 2a and 2b and the ground layer 3 are insulated.
  • the coverlay 20 is affixed to a region excluding the uppermost connection end E on the one main surface side of the first base material 11. Similarly, the coverlay 20 is affixed so that the pads 2a and 2b are exposed on the other main surface side of the second substrate 12 as well. An appropriate adhesive is used for attaching the coverlay 20. Curing is performed as necessary.
  • the printed wiring board 1 of the seventh example is not connected to the connector at the uppermost conductive layer 12a among the conductive layers, but the second conductive layer 11a located below the conductive layer 12a is connected to the connector. .
  • the printed wiring board 1 of the seventh example is a type that includes three conductive layers of a conductive layer 11a, a conductive layer 11c, and a conductive layer 12a, and is connected to the connector on one side.
  • the seventh example is common to the first example and the fifth example in that the wiring 5 is a wiring pattern of a signal line for transmitting a single end signal. In order to avoid duplicated explanation, the explanation is applied to matters common to the first to sixth examples.
  • FIG. 7A is a plan perspective view of a connection portion including the connection end E of the printed wiring board 1 of the seventh example of the present embodiment.
  • FIG. 7B is a plan perspective view showing a state where the coverlay 20 of the printed wiring board 1 shown in FIG. 7A is removed.
  • the printed wiring board 1 shown in FIGS. 7A and 7B includes at least a cover lay 20, a first base material 11, and a second base material 12.
  • a coverlay 20 is attached to the uppermost layer of the printed wiring board 1.
  • the second substrate 12 is disposed below the uppermost cover lay 20, and the first substrate 11 is disposed below the second substrate 12.
  • the printed wiring board 1 of this example includes one or more engaged portions 70 and one or more tab-like members 80, as in the first example.
  • the conductive layer 12a and the insulating base 12b of the second base 12 are removed so that the pad 2 is exposed.
  • the pad 2 formed on the conductive layer 11a of the first base material 11 of this example is connected to the connector.
  • the conductive layer 12a of the second substrate 12 is connected to the ground contact.
  • FIG. 7C is a plan perspective view of one main surface of the first base material 11.
  • a pad 2 and a wiring 5 are provided on the conductive layer 11a formed on one main surface of the insulating substrate 11b.
  • FIG. 7D is a partially enlarged view of the 7D region shown in FIG. 7C.
  • a plurality of pads 2 and a ground layer 3 are formed on one main surface side of the first base material 11. Similar to the first and fifth examples, a groove 4 having a width corresponding to a predetermined distance is formed between the pad 2 and the ground layer 3.
  • FIG. 7E is a plan perspective view of the conductive layer 11 c formed on the other main surface side of the first base material 11.
  • the conductive layer 11c has a shielding function and is connected to a ground contact.
  • FIG. 7F is a bottom perspective view of the printed wiring board 1 shown in FIG. 7A.
  • the entire surface of the conductive layer 11 c on the other main surface side of the first base material 11 constituting the bottom surface of the printed wiring board 1 is covered with a coverlay 20. Further, a reinforcing layer 30 is formed in the region where the pad 2 is formed.
  • FIG. 7G is a cross-sectional view taken along line 7G-7G of the printed wiring board shown in FIG. 7A.
  • 7G shows the ground layer 3 formed on one main surface of the second base material 12, the pad 2 and the wiring 5 formed on one main surface of the first base material 11, and the other main surface of the first base material 11. It is sectional drawing containing the ground layer 3 formed in the surface.
  • the 7G-7G line includes a pad 2, a wiring 5, and a ground layer 3.
  • a groove 4 exists between the ground layer 3 and the pad 2.
  • a surface treatment layer MT is formed on the upper layer of the pad 2 of the first base material 11. The pad 2 is connected to the connector via the surface treatment layer MT.
  • FIG. 7H is a cross-sectional view including the ground layer 3 of the conductive layer 11a along the line 7H-7H of the printed wiring board 1 shown in FIG. 7A.
  • the ground layer 3 on the one main surface side of the second base material 12 is connected to the ground layer 3 on the one main surface side and the other main surface of the first base material 11 via vias TH. And connected to a ground contact (not shown).
  • the wiring 5 formed on the first base material 11 is a wiring pattern of a signal line of a single end signal.
  • the wiring 5a forms a pair in which the wiring 5 functions as a differential signal line. , 5b.
  • the manufacturing method of the printed wiring board 1 of the 7th example of this embodiment mentioned above is demonstrated.
  • the double-sided copper sticking base material in which the conductive layers 11a and 11c were formed on both surfaces of the insulating base material is prepared.
  • the main surface (conductive layer 11a in this example) in contact with the main surface of the second base material 12 is provided with the pads 2 and the wirings 5 using a general photolithography technique.
  • the conductive layer 13 c is not left in the region corresponding to the groove 4 between the pad 2 and the ground layer 3.
  • the pad 2 and the ground layer 3 are insulated.
  • surface of an insulating base material is prepared.
  • the conductive layer 12a functions as the ground layer 3.
  • the adhesive layer is attached to the entire surface of the insulating base material 12b of the second base material 12, and then the adhesive layer in a predetermined region corresponding to the position where the pad 2 is formed is removed.
  • the method for removing the adhesive layer in the predetermined region is not limited, and it may be removed with a mold or may be removed with a laser. Thereafter, the first base material 11 and the second base material 12 are laminated. In this laminating step, since the adhesive layer in a predetermined region corresponding to the position where the pad 2 is formed is removed, at the position where the pad 2 is formed, the first base material 11 and the second base material 12 In this state, no adhesive layer is present.
  • region of the conductive layer 12a and the insulating base material 12b of the 2nd base material 12 corresponding to the position where the pad 2 is formed later is removed, and the pad formed in the conductive layer 11a 2 can be exposed.
  • the via TH is formed by the same method as in the third example.
  • wiring or the like is applied to the conductive layer 12a of the second base material 12 and the conductive layer 11c of the first base material 11 May be formed.
  • the conductive layer 12a and the insulating substrate 12b of the second substrate 12 in a predetermined region corresponding to the position where the pad 2 is formed are removed.
  • the method for removing these is not limited, and they may be removed with a mold or may be removed with a laser.
  • the coverlay 20 is affixed to the one main surface side of the second base material 12.
  • the second base 12 and the coverlay 20 do not cover the connection end E.
  • the pad 2 of the first base material 11 under the second base material 12 is exposed.
  • the coverlay 20 is attached to the other main surface side of the first base material 11.
  • the reinforcement layer 30 is affixed on the area
  • the coverlay 20 and the reinforcing layer 30 are attached using an appropriate adhesive. If necessary, the adhesive is cured.
  • a surface treatment such as gold plating is applied to the surface of the exposed portion of the conductive layer 11a including the pad 2 of the first base material 11 to form a surface treatment layer MT.
  • the printed wiring board 1 is punched out into a shape having an engaged portion 70 and a tab-like member 80. Thereby, the printed wiring board 1 of the 7th example of this embodiment is obtained.
  • a printed wiring board 1 of an eighth example will be described based on FIGS. 8A to 8H.
  • the printed wiring board 1 of the eighth example is not connected to the connector by the conductive layer 12a located at the uppermost layer among the conductive layers, but the second conductive layer 11a located below the conductive layer 12a is connected to the connector. This is common with the seventh example. Further, the printed wiring board 1 of the eighth example differs from the seventh example in that the conductive layer 11c which is the lowermost surface is connected to the connector. In other words, the printed wiring board 1 of the eighth example is a type that can be connected to the connector on both the main surface and the other main surface. This point is common to the fifth example and the sixth example.
  • the eighth example includes three conductive layers.
  • the eighth example is common to the fourth example and the sixth example in that the wiring 5 is a pair of differential signal lines.
  • the explanation is applied to matters common to the first to seventh examples.
  • FIG. 8A is a plan perspective view of the connection portion including the connection end E of the printed wiring board 1 of the eighth example of the present embodiment.
  • FIG. 8B is a plan perspective view showing a state where the coverlay 20 of the printed wiring board 1 shown in FIG. 8A is removed.
  • the printed wiring board 1 shown in FIGS. 8A and 8B includes at least a cover lay 20, a first base material 11, and a second base material 12.
  • a coverlay 20 is attached to the uppermost layer of the printed wiring board 1.
  • the second substrate 12 is disposed below the uppermost cover lay 20, and the first substrate 11 is disposed below the second substrate 12.
  • the printed wiring board 1 of this example includes one or more engaged portions 70 and one or more tab-like members 80, as in the first example.
  • the conductive layer 12a and the insulating base 12b of the second base 12 are removed so that the pad 2 is exposed.
  • the pad 2 formed on the conductive layer 11a of the first base material 11 of this example is connected to the connector.
  • the conductive layer 12a of the second substrate 12 is connected to the ground contact.
  • FIG. 8C is a plan perspective view of one main surface of the first base material 11.
  • the conductive layer 11a formed on one main surface of the insulating base 11b is provided with pads 2a and 2b and wirings 5a and 5b.
  • FIG. 8D is a partially enlarged view of the 8D region shown in FIG. 8C.
  • a plurality of pads 2 a and 2 b and a ground layer 3 are formed on the one main surface side of the first base material 11. Similar to the sixth example, a groove 4 having a width corresponding to a predetermined distance is formed between the pads 2 a and 2 b and the ground layer 3.
  • FIG. 8E is a plan perspective view of the conductive layer 11 c formed on the other main surface side of the first base material 11.
  • the conductive layer 11c has a shielding function and is connected to a ground contact.
  • FIG. 8F is a bottom perspective view of the printed wiring board 1 shown in FIG. 8A.
  • the conductive layer 11c on the other main surface side of the first base material 11 constituting the bottom surface of the printed wiring board 1 a region other than the region of the connection end E where the pads 2a and 2b are formed is covered with the coverlay 20. It has been broken. Further, the conductive layer 11c is exposed in a portion corresponding to a region including the connection end E where the pads 2a and 2b are formed.
  • FIG. 8G is a cross-sectional view taken along line 8G-8G of the printed wiring board shown in FIG. 8A.
  • FIG. 8G shows the ground layer 3 formed on one main surface of the second base material 12, the pads 2 a and wiring 5 a formed on the one main surface of the first base material 11, and the other main surface of the first base material 11. It is sectional drawing containing the ground layer 3 formed in the surface.
  • the pad 2a, the wiring 5a, and the ground layer 3 exist in the 8G-8G line.
  • a groove 4 exists between the ground layer 3 and the pad 2.
  • a surface treatment layer MT is formed on the upper layer of the pad 2 a of the first base material 11. The pad 2a is connected to the connector through the surface treatment layer MT.
  • FIG. 8H is a cross-sectional view including the ground layer 3 of the conductive layer 11a along the line 8H-8H of the printed wiring board 1 shown in FIG. 8H.
  • the one main surface side ground layer 3 of the second substrate 12 and the one main surface and the other main surface ground layer 3 of the first substrate 11 are connected via vias TH, It is connected to a ground contact (not shown).
  • the differential signal lines in which the wirings 5a and 5b formed on the first base material 11 are paired but a wiring pattern of signal lines for single-ended signals may be used.
  • the production method of the second substrate 12 and the production method of the first substrate 11 are the same as those in the seventh example.
  • the adhesive layer in a predetermined region corresponding to the position where the pad 2 is formed is removed, and the second base material 12 and the first base material 11 are bonded together.
  • vias TH are formed by the same method as in the third example.
  • the conductive layer 12a and the insulating base material 12b of the second base material 12 in a predetermined region corresponding to the position where the pad 2 is formed are removed.
  • the coverlay 20 is affixed to one main surface side of the second substrate 12.
  • the second base 12 and the coverlay 20 do not cover the connection end E.
  • the pad 2 formed on one main surface of the first substrate 11 is exposed. Up to this point, the method common to the seventh example is used.
  • the cover lay 20 is affixed except for the region of the connecting end E where the pads 2a and 2b are formed on the other main surface of the first base material 11. That is, the conductive layer 11c in the region of the connection end E is exposed.
  • a surface treatment such as gold plating is applied to the exposed portions of the conductive layer 11a including the pads 2 of the first substrate 11 and the exposed portions of the conductive layer 11c of the first substrate 11 to form the surface treatment layer MT.
  • the printed wiring board 1 is punched out into a shape having an engaged portion 70 and a tab-like member 80. Thereby, the printed wiring board 1 of the eighth example of the present embodiment is obtained.
  • Example> In order to confirm the effect of the present invention, an antenna characteristic test was conducted and will be described below.
  • the directivity and radiation level when the ideal omnidirectional antenna was used as a reference were examined.
  • a plurality of models were created for the printed wiring board 1 of the present embodiment, and the radiation level in the vicinity of the pad 2 connected to the connector, that is, the connection end E was measured.
  • a plurality of printed wiring board models as comparative examples were created, and similarly, the radiation level in the vicinity of the pad 2 connected to the connector, that is, the connection end E was measured.
  • 9A to 9D show the analysis shapes of Examples 1 to 5 and Comparative Examples 1 to 5 (including 5-1 and 5-2) related to each model, and the maximum values as antenna characteristics thereof. It was. 9A to 9D, the column (1) shows the state in which the cover lay 20 is formed, and the column (2) in FIG. 9A to 9D shows that the cover lay has been removed. The shape of the pad 2 and the wiring 5 excluding the ground layer 3 is shown in the column (3) of FIG. Further, the maximum value is shown in the rightmost column as the antenna characteristics of each of Examples 1 to 5 and Comparative Examples 1 to 5.
  • the model of the printed wiring board 1 used in the examples and comparative examples described below was defined as follows.
  • a base material a base material corresponding to the first base material 11, the second base material 12, and the third base material of the present embodiment
  • it is made of polyimide having a thickness of 20 [ ⁇ m]. It was set as the copper sticking base material in which the copper foil was formed in one main surface or both surfaces of a film.
  • the arrangement of the pads 2a and 2b is as shown in the drawings pointed out in each description.
  • the pitch between the pads 2a and 2b according to the present embodiment was 0.4 [mm].
  • the pitch between the pads 2a and 2b and the ground layer 3 was 0.4 [mm].
  • the width of the groove 4 surrounding the pads 2a and 2b was 0.08 [mm].
  • the wiring according to the present example was configured with a pair of differential signal lines.
  • the thickness of the wirings 5a and 5b (differential signal lines) was set to 0.1 [mm].
  • the pitch between the paired wirings (differential signal lines) was 0.18 [mm].
  • the pads 2a and 2b, the wirings 5a and 5b, and the ground layer 3 were made of copper.
  • the thicknesses of the pads 2a and 2b, the wirings 5a and 5b, and the ground layer 3 are substantially uniform, and are 27 [ ⁇ m] (copper foil: 12 [ ⁇ m], copper plating: 15 [ ⁇ m].
  • a gold plating layer as a surface treatment layer MT was formed as necessary on a part of the surface of the ground layer 3.
  • the upper surface side coverlay 20 and the lower surface side coverlay 20 of the printed wiring board had a thickness.
  • a polyimide film having a thickness of 12.5 [ ⁇ m] was used, and a polyimide film having a thickness of 12.5 [ ⁇ m] was used for the reinforcing layer 30.
  • Example 1 As Example 1, the model 1 of the printed wiring board 1 of the second example described above was defined. A model 1 of the printed wiring board 1 of the second example has a structure shown in FIGS. 2A to 2F. For comparison with Example 1, a model 1-2 of a printed wiring board according to Comparative Example 1 was defined. The model 1-2 of the comparative example 1 was defined as the same condition as the model 1 of the example 1 except that the groove 4 surrounding the pads 2a and 2b was not provided. As shown in FIG. 9A, a ground layer 3 is formed around the pads 2a and 2b of the model 1 of the printed wiring board 1 according to the first embodiment, and between the pads 2a and 2b and the ground layer 3 is formed. , Grooves 4 are formed.
  • the printed wiring board model 1-2 according to the comparative example 1 has a ground layer (corresponding to the ground layer 3 of the present embodiment) around the pads (members corresponding to the pads 2a and 2b of the present embodiment, the same applies hereinafter). No member is formed, and there is no groove (a member corresponding to the groove 4 of the present embodiment; the same applies hereinafter) between the pad and the ground layer.
  • the radiation level at the connection end E of the printed wiring board 1 of Example 1 is lower than the radiation level of Comparative Example 1, and the radiation level of the printed wiring board 1 of Example 1 is that of that of Comparative Example 1. It was approximately 83%.
  • Example 2 As Example 2, a model 2 having a structure in which a ground layer 3 was formed on the other main surface of the printed wiring board 1 of the second example described above was defined. The number of conductive layers of the printed wiring board of Model 2 in Example 2 is 2. A ground layer is formed on one surface of the other main surface of the insulating substrate. For comparison with Example 2, a printed wiring board model 2-2 according to Comparative Example 2 was defined. The model 2-2 of the comparative example 2 was defined as the same condition as the model 2-1 of the example 2 except that the ground layer surrounding the entire circumference of the pad was not formed on one main surface of the insulating base material. As shown in FIG.
  • the model 2 of the printed wiring board 1 according to the second embodiment has the groove 4, but the printed wiring board according to the model 2-2 of the comparative example 2 does not have the groove.
  • the radiation level at the connection end E of the printed wiring board 1 of Example 2 is lower than the radiation level of Comparative Example 2, and the radiation level of the printed wiring board 1 of Example 2 is that of that of Comparative Example 2. It was approximately 53%.
  • Example 3 As Example 3, the model 3 of the printed wiring board 1 of the eighth example described above was defined. The number of conductive layers of the printed wiring board of Model 2 is 3. The ground layer was provided only on the side opposite to the connection end E without providing the ground layer on the connection end E side of the pad on one main surface of the insulating base.
  • the model 3 of the printed wiring board 1 of the eighth example has a structure shown in FIGS. 8A to 8H.
  • a model 3-2 of a printed wiring board according to the third comparative example was defined.
  • the model 3-2 of the comparative example 3 was defined as the same condition as the model 3 of the example 3 except that the groove 4 surrounding the pads 2a and 2b was not provided. As shown in FIG.
  • the model 3 of the printed wiring board 1 according to the third embodiment has the groove 4, but the printed wiring board according to the model 3-2 of the comparative example 2 does not have the groove.
  • the radiation level at the connection end E of the printed wiring board 1 of Example 3 is lower than the radiation level of Comparative Example 3, and the radiation level of the printed wiring board 1 of Example 3 is that of that of Comparative Example 3. It was approximately 46%.
  • Example 4 As Example 4, the model 4 of the printed wiring board 1 of the third example described above was defined. The number of conductive layers of the printed wiring board of model 4 is 2. A model 4 of the printed wiring board 1 of the third example has a structure shown in FIGS. 3A to 3H. For comparison with Example 4, models 4-21 and 4-22 of the printed wiring boards according to Comparative Example 4-1 and Comparative Example 4-2 were defined. In the model 4 of Example 4, the ground layer surrounding the pad is formed on the entire surface of the one main surface of the insulating base material, and the ground layer surrounding the wiring is formed on the entire surface of the other main surface of the insulating base material. Yes.
  • a ground layer surrounding the entire circumference of the pad is not formed on one main surface of the insulating base material.
  • a ground layer was provided only on the side opposite to the connection end E without providing a ground layer on the connection end E side of the pad.
  • the ground layer is provided only in the region on the connection end E side of the pad formation position on the other main surface of the insulating base material (main surface on which the wiring is formed). Without being provided, a ground layer surrounding the wiring was provided only on the side opposite to the connection end E.
  • the ground layer surrounding the entire circumference of the pad is not formed on the one main surface of the insulating base material.
  • a ground layer was provided only on the side opposite to the connection end E without providing a ground layer on the connection end E side of the pad.
  • the other main surface (main surface on which the wiring is formed) of the insulating base material is compared with the example 4. Similarly, a ground layer surrounding the wiring was provided on the entire surface.
  • the model of Comparative Example 4-1 does not have the groove 4 surrounding the end 5a ′ of the wiring 5a and the end 5b ′ of the wiring 5b.
  • the radiation level at the connection end E of the printed wiring board 1 of Example 4 is lower than any of the radiation levels of Comparative Example 4-1 and Comparative Example 4-2, and the radiation level of the printed wiring board 1 of Example 4 is It was about 5% of the radiation level of Comparative Example 4-1.
  • the radiation level of the printed wiring board 1 of Example 4 was approximately 32% of that of Comparative Example 4-2.
  • Example 5 As Example 5, the model 5 of the printed wiring board 1 of the fourth example described above was defined. The number of conductive layers of the printed wiring board of model 5 is 3. A model 5 of the printed wiring board 1 of the fourth example has a structure shown in FIGS. 4A to 4I. For comparison with Example 5, printed wiring board models 5-21 and 5-22 according to Comparative Examples 5-1 and 5-2 were defined, respectively. In the model 5 of Example 5, a ground layer surrounding the pad is formed on the entire surface of the one main surface of the insulating base material, and a ground layer surrounding the wiring is formed on the entire surface of the other main surface of the insulating base material. Yes.
  • a ground layer is formed on one surface via the conductive layer on the other main surface where the wiring is formed and an insulating base material.
  • the ground layer surrounding the entire circumference of the pad is not formed on one main surface of the insulating base material.
  • a ground layer was provided only on the side opposite to the connection end E without providing a ground layer on the connection end E side of the pad.
  • the ground layer is provided only in the region closer to the connection end E than the pad formation position on the other main surface (main surface on which the wiring is formed) of the insulating base material.
  • a ground layer surrounding the wiring was provided only on the side opposite to the connection end E.
  • a ground layer was formed on one surface of the other main surface of the insulating base material laminated on the conductive layer on the other main surface where the wiring was formed. This ground layer is the lowest layer of the three conductive layers.
  • the ground layer surrounding the entire circumference of the pad is not formed on one main surface of the insulating base material.
  • a ground layer was provided only on the side opposite to the connection end E without providing a ground layer on the connection end E side of the pad.
  • a ground layer surrounding the wiring is provided on the entire other main surface of the insulating base material.
  • a ground layer was formed on one surface of the other main surface of the insulating base material laminated on the conductive layer on the other main surface where the wiring was formed. This ground layer is the lowest layer of the three conductive layers.
  • None of the models 5-21 and 5-22 of the comparative example 5-1 and the comparative example 5-2 has the groove 4 surrounding the pads 2a and 2b. Further, the model 5-21 of the comparative example 5-1 does not have the groove 4 surrounding the end portion 5a ′ of the wiring 5a and the end portion 5b ′ of the wiring 5b like the model 5 of the fifth embodiment.
  • the radiation level at the connection end E of the printed wiring board 1 of Example 5 is lower than any of the radiation levels of Comparative Example 5-1 and Comparative Example 5-2, and the radiation level of the printed wiring board 1 of Example 5 is , Approximately 11% of that of Comparative Example 5-1.
  • the radiation level of the printed wiring board 1 of Example 5 was approximately 22% of that of Comparative Example 5-2.
  • the radiation level could be reduced.

Abstract

 他のコネクタに電気的に接続されるパッド(2)と、パッド(2)の周囲から当該パッド(2)を囲い、パッド(2)の外縁から所定距離だけ離隔した位置に内縁を有するように形成され、グランド接点に接地されるグランド層(3)とが、何れか一方の主面に形成された第1基材(11)を少なくとも含み、パッド(2)とグランド層(3)との間には、溝(4)が形成されているプリント配線板(1)を提供する。

Description

プリント配線板
 本発明は、電子機器が備える他の電子部品と接続されるプリント配線板に関する。
 文献の参照による組み込みが認められる指定国については、2014年9月22日に日本国に出願された特願2014-192485号に記載された内容を参照により本明細書に組み込み、本明細書の記載の一部とする。
 コネクタを介して他の電子機器と接続されるフレキシブルプリント配線板であって、ベースフィルムの下面側に第1配線が設けられるとともに、ベースフィルム52の上面側に第2配線が設けられた構造のプリント配線板が知られている。
特開2009-080972号公報
 この種のプリント配線板においては、コネクタと接触するパッドを表面に露出させる構造をとる必要があるため、遮蔽性の高いシールド構造を構成することが難しいという問題がある。
 本発明は、他のコネクタに接続されるパッドを備えるプリント配線板において、遮蔽性の高いシールド構造を提供することを課題とする。
 [1] 本発明は、他のコネクタに電気的に接続されるパッドと、前記パッドの周囲から当該パッドを囲い、前記パッドの外縁から所定距離だけ離隔した位置に内縁を有するように形成され、グランド接点に接地されるグランド層とが、何れか一方の主面に形成された第1基材を少なくとも含む基材を備えるプリント配線板を提供することにより、上記課題を解決する。
 [2] 上記発明において、前記第1基材は、前記一方の主面に形成され、前記パッドに電気的に接続された配線を有し、前記配線を、当該配線の外縁が前記グランド層の内縁から所定距離だけ離隔した位置となるように形成することにより上記課題を解決する。
 [3] 上記発明において、前記第1基材は、当該第1基材の前記一方の主面の反対側の他方の主面に形成され、前記パッドに電気的に接続される配線と、前記他方の主面に形成された配線の外縁から所定距離だけ離隔した位置に内縁を有し、グランド接点に接続されるグランド層と、を有することにより上記課題を解決する。
 [4] 上記発明において、前記基材は、前記第1基材の何れか一方の主面に直接又は他の基材を介して積層される一又は複数の第2基材をさらに含み、前記第2基材は、前記第1基材と前記第2基材とを含む前記基材を貫通するビアを介して前記パッドに電気的に接続される配線と、前記第2基材に形成された配線の外縁から所定距離だけ離隔した位置に内縁を有し、グランド接点に接続されるグランド層と、を有することにより、上記課題を解決する。
 [5] 上記発明において、前記基材は、前記第1基材と前記第2基材とを含み、前記第1基材は、当該第1基材の一方の主面側に、前記他のコネクタに電気的に接続される複数のパッドと、前記パッドの周囲から当該パッドを囲い、前記パッドの外縁から所定距離だけ離隔した位置に内縁を有するように形成され、グランド接点に接続されるグランド層とを有し、前記第2基材は、前記一方の主面とは反対側の、当該第2基材の他方の主面側に、前記他のコネクタに電気的に接続される複数のパッドと、前記パッドの周囲から当該パッドを囲い、前記パッドの外縁から所定距離だけ離隔した位置に内縁を有するように形成され、グランド接点に接続されるグランド層とを有することにより、上記課題を解決する。
 [6] 上記発明において、前記コネクタに接続される接続端部に形成され、前記パッドと一方端部が接するビアを備えることにより上記課題を解決する。
 [7] 上記発明において、前記パッドと同じ主面に形成される前記グランド層が、当該グランド層が形成される前記基材の主面の外縁から所定のオフセット量だけ内側に、当該グランド層の外縁が位置するように形成されることにより上記課題を解決する。
 [8] 上記発明において、前記パッドが形成される主面と異なる主面に他のグランド層が形成される場合には、当該他のグランド層が形成される前記基材の主面の外縁と、当該他のグランド層の外縁とが同じ位置となるように形成されることにより上記課題を解決する。
 [9] 上記発明において、前記パッドが、第1信号を伝達する配線と接続するパッドと、第1信号とは異なる第2信号を伝達する配線と接続するパッドと、を含むことにより上記課題を解決する。
 本発明によれば、外部のコネクタと接続されるパッドと、パッドと干渉しない領域に形成されたグランド層とを、基材の同一主面に形成することにより、他のコネクタに接続されるパッドを備えつつも、遮蔽性の高いシールド構造のプリント配線板を提供できる。
図1Aは、本発明の本実施形態の第1の例のプリント配線板の接続部分の平面斜視図である。 図1Bは、図1Aに示すプリント配線板のカバーレイを除いた第1基材の平面斜視図である。 図1Cは、図1Bに示す1C領域の部分拡大図である。 図1Dは、図1Aに示すプリント配線板の底面斜視図である。 図1Eは、図1Aに示すプリント配線板の1E-1E線に沿う断面図である。 図1Fは、図1Aに示すプリント配線板の1F-1F線に沿う断面図である。 図2Aは、本発明の本実施形態の第2の例のプリント配線板の接続端部の平面斜視図である。 図2Bは、図2Aに示すプリント配線板のカバーレイを除いた第1基材の平面斜視図である。 図2Cは、図2Bに示す2C領域の部分拡大図である。 図2Dは、図2Aに示すプリント配線板の底面斜視図である。 図2Eは、図2Aに示すプリント配線板の2E-2E線に沿う断面図である。 図2Fは、図2Aに示すプリント配線板の2F-2F線に沿う断面図である。 図3Aは、本発明の本実施形態の第3の例のプリント配線板の接続部分の平面斜視図である。 図3Bは、図3Aに示すプリント配線板のカバーレイを除いた第1基材の平面斜視図である。 図3Cは、図3Bに示す3C領域の部分拡大図である。 図3Dは、図3Aに示すプリント配線板の第1基材の底面斜視図である。 図3Eは、図3Dに示す3E領域の部分拡大図である。 図3Fは、図3Aに示すプリント配線板の底面斜視図である。 図3Gは、図3Aに示すプリント配線板の3G-3G線に沿う断面図である。 図3Hは、図3Aに示すプリント配線板の3H-3H線に沿う断面図である。 図4Aは、本発明の本実施形態の第4の例のプリント配線板の接続部分の平面斜視図である。 図4Bは、図4Aに示すプリント配線板のカバーレイを除いた第1基材の平面斜視図である。 図4Cは、図4Bに示す4C領域の部分拡大図である。 図4Dは、図4Aに示すプリント配線板の他方主面の平面斜視図である。 図4Eは、図4Dに示す4E領域の部分拡大図である。 図4Fは、図4Aに示すプリント配線板の第2基材の底面斜視図である。 図4Gは、図4Aに示すプリント配線板の底面斜視図である。 図4Hは、図4Aに示すプリント配線板の4G-4G線に沿う断面図である。 図4Iは、図4Aに示すプリント配線板の4I-4I線に沿う断面図である。 図5Aは、本発明の本実施形態の第5の例のプリント配線板の接続部分の平面斜視図である。 図5Bは、図5Aに示すプリント配線板のカバーレイを除いた第1基材の平面斜視図である。 図5Cは、図5Bに示す5C領域の部分拡大図である。 図5Dは、図5Aに示すプリント配線板の第2基材の平面斜視図である。 図5Eは、図5Dに示す5E領域の部分拡大図である。 図5Fは、図5Aに示すプリント配線板の第2基材の底面斜視図である。 図5Gは、図5Aに示すプリント配線板の底面斜視図である。 図5Hは、図5Aに示すプリント配線板の5H-5H線に沿う断面図である。 図5Iは、図5Aに示すプリント配線板の5I-5I線に沿う断面図である。 図5Jは、図5Gに示すプリント配線板の5J-5J線に沿う断面図である。 図6Aは、本発明の本実施形態の第6の例のプリント配線板の接続部分の平面斜視図である。 図6Bは、図6Aに示すプリント配線板のカバーレイを除いた他の基材の平面斜視図である。 図6Cは、図6Aに示すプリント配線板の第2基材の平面斜視図である。 図6Dは、図6Cに示す6C領域の部分拡大図である。 図6Eは、図6Aに示すプリント配線板の第1基材の底面斜視図である。 図6Fは、図6Eに示す6F領域の部分拡大図である。 図6Gは、図6Aに示すプリント配線板の底面斜視図である。 図6Hは、図6Aに示すプリント配線板の6H-6H線に沿う断面図である。 図6Iは、図6Gに示すプリント配線板の6I-6I線に沿う断面図である。 図7Aは、本発明の本実施形態の第7の例のプリント配線板の接続部分の平面斜視図である。 図7Bは、図7Aに示すプリント配線板のカバーレイを除いた、他の基材の平面斜視図である。 図7Cは、図7Aに示すプリント配線板の第1基材の平面斜視図である。 図7Dは、図7Cに示す7D領域の部分拡大図である。 図7Eは、図7Aに示すプリント配線板の他の基材の平面斜視図である。 図7Fは、図7Aに示すプリント配線板の底面斜視図である。 図7Gは、図7Aに示すプリント配線板の7G-7G線に沿う断面図である。 図7Hは、図7Aに示すプリント配線板の7H-7H線に沿う断面図である。 図8Aは、本発明の本実施形態の第8の例のプリント配線板の接続部分の平面斜視図である。 図8Bは、図8Aに示すプリント配線板のカバーレイを除いた、他の基材の平面斜視図である。 図8Cは、図8Aに示すプリント配線板の第1基材の平面斜視図である。 図8Dは、図8Cに示す8D領域の部分拡大図である。 図8Eは、図8Aに示すプリント配線板の他の基材の平面斜視図である。 図8Fは、図8Aに示すプリント配線板の底面斜視図である。 図8Gは、図8Aに示すプリント配線板の8G-8G線に沿う断面図である。 図8Hは、図8Aに示すプリント配線板の8H-8H線に沿う断面図である。 図9Aは、本実施形態の実施例1及び実施例2のアンテナ特性を示す図表である。 図9Bは、本実施形態の実施例3のアンテナ特性を示す図表である。 図9Cは、本実施形態の実施例4のアンテナ特性を示す図表である。 図9Dは、本実施形態の実施例5のアンテナ特性を示す図表である。 図10Aは、本実施形態の実施例における放射レベルの測定条件を示す第1の図である。 図10Bは、本実施形態の実施例における放射レベルの測定条件を示す第2の図である。
 本実施形態のプリント配線板は、シールド構造を備える。本実施形態のプリント配線板1は柔軟性があり、変形可能なフレキシブルプリント配線板(FPC)である。本実施形態のプリント配線板は、ZIF(Zero Insertion Force)コネクタに挿入して使用される。これに限定されず、本実施形態のプリント配線板は、その厚みを利用して嵌合力を得る非ZIFコネクタやバックボードコネクタなどのコネクタにも適用できる。本実施形態では、フレキシブルなプリント配線板を例にして説明するが、リジットフレキシブルプリント配線板などのタイプのプリント配線板にも適用できる。なお、本実施形態のプリント配線板が係止されるコネクタの態様は特に限定されない。
 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態では、第1の例から第7の例のプリント配線板1について順次説明する。各図において、本実施形態のプリント配線板1のうち、他のコネクタと接続される側の接続端部Eを含む端部を切り出して示す。各図に示すプリント配線板1は、実際には図中の-Y方向に延在する。プリント配線板1は、接続端部E側に存在するコネクタに接続される。なお、本実施形態の各例のプリント配線板1が備える第1基材11、第2基材12、第3基材を総称して、基材10と称することもある。第3基材は、第1基材11、第2基材12以外の基材である。
 本明細書では、説明の便宜上、プリント配線板1の積層方向(図中Z方向)に関し、プリント配線板1の積層構造における上層側又は上面方向(図中+Z方向)を、上側と称して説明し、プリント配線板の積層構造における下層側又は下面方向(図中-Z方向)を、下側と称して説明する。積層される各基材が有する一方の主面と他方の主面のうち、積層構造において各基材の上層側の面を「一方主面」と称して説明し、積層構造において各基材の下層側の面を「他方主面」と称して説明する。なお、「何れか一方の主面」というときは、一方主面又は他方主面のどちらかの主面であり、一方主面又は他方主面に限定されない。
 まず、図1A~図1Fに基づいて、第1の例のプリント配線板1について説明する。
 第1の例のプリント配線板1は、1層の導電層11aを含み、コネクタと一方主面のみで接続するタイプ(片面接続タイプ)である。また、図1A~図1Fに示す第1の例のプリント配線板1は、シングルエンド信号を伝達する配線5(信号線)を有する。
 図1Aは、本実施形態の第1の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図1Aに示すプリント配線板1は、カバーレイ20と、第1基材11と、補強層30とを少なくとも備える。本実施形態のプリント配線板1は、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図1Aに示すように、本実施形態のプリント配線板1は、接続端部Eの幅方向(図中X方向)の左右の少なくとも一方側の端縁に被係合部70を備える。被係合部70は、コネクタに接続される接続端部Eに形成され、コネクタの係合部に係止される。具体的に、被係合部70は、プリント配線板1の接続対象である他の電子部品との係合部(例えば、コネクタに設けられたタブ状部材)に、図中-Y方向の引き抜き方向の力により係止される。本例では、接続端部Eの左右両側の端縁に被係合部70をそれぞれ設けるので、耐引き抜け性を向上させ、安定した係合状態を維持できる。さらに、左右の被係合部70は、接続方向(図中Y軸方向)に沿って同じ位置に形成するので、左右の被係合部70にかかる力を均等に分散し、安定した係合状態を維持できる。
 本例の被係合部70は、接続端部Eの側縁部分に形成された切欠き部により構成される。被係合部70の態様は限定されない。被係合部70を構成する切欠き部は、積層された基材10の全部を同じ形状に切り欠く態様であってもよいし、上面又は下面に近づくに従って切欠き部(切除される部分)の面積(XY平面の面積)が漸減又は漸増するような構造としてもよい。切欠き部に基材10の外縁を含んでもよいし、基材10の外縁を含まない貫通孔として形成してもよい。被係合部70は、下面側の基材が非貫通である有底の凹部として形成してもよいし、上面側の基材が残る有蓋の凹部として形成してもよい。
 図1Aに示すように、本実施形態のプリント配線板1は、接続端部Eの幅方向(図中X方向)の左右の少なくとも一方側の端縁にタブ状部材80を備える。タブ状部材80は、コネクタに接続される接続端部Eに形成され、コネクタの被係合部に係止される。具体的に、タブ状部材80は、プリント配線板1の接続対象である他の電子部品との係合部(例えば、コネクタに設けられ切欠部)に、図中-Y方向の引き抜き方向の力により係止される。本例では、接続端部Eの左右両側の端縁にタブ状部材80をそれぞれ設けるので、耐引き抜け性を向上させ、安定した係合状態を維持できる。さらに、左右のタブ状部材80は、接続方向(図中Y軸方向)に沿って同じ位置に形成するので、左右のタブ状部材80にかかる力を均等に分散し、安定した係合状態を維持できる。
 上述した被係合部70とタブ状部材80とにより、プリント配線板1とコネクタとの係合強度を高めることができる。
 なお、本実施形態では、被係合部70及びタブ状部材80を備える例を説明したが、被係合部70又はタブ状部材80の何れか一方を備える係止構造としてもよい。また、係止構造は、被係合部70及び/又はタブ状部材80によるものに限定されないので、本例に示す被係合部70及びタブ状部材80の何れも備えなくとも、本実施形態のプリント配線板1を作製できる。以下に説明する他の例においても同様である。
 本例のタブ状部材80とは、接続端部Eの側縁部分において左右に延在させた基材10により構成される。タブ状部材80の態様は限定されない。タブ状部材80は、積層された基材10を所望の形状に型抜くことにより形成する。タブ状部材80の形状は、上面又は下面に近づくに従ってタブ状部材80の面積(XY平面の面積)が減少又は増加するような構造としてもよい。
 図1Aに示すように、プリント配線板1の最上層には、カバーレイ20が積層されている。カバーレイ20は、ポリイミド等の絶縁性樹脂フィルムを貼着すること、又は熱硬化インクや紫外線硬化インク又は感光性インクを、塗布及び硬化することにより形成できる。
 カバーレイ20の下層には、第1基材11が積層されている。第1基材11は、絶縁性基材11bと、絶縁性基材11bの主面に導電層11aが形成された構造を有する。本実施形態の第1基材11、後述する第2基材12、及び第3基材を含む各基材10は可撓性を有する。各基材10の絶縁性基材11bは絶縁性樹脂により形成される。絶縁性樹脂は、例えば、ポリイミド、ポリエステル、ポリエチレンテレフタレート、ポリエチレンナフタレートを含む。各基材10の絶縁性基材は、同じ樹脂から作製してもよいし、異なる樹脂から作製してもよい。
 図1Bは、図1Aに示すプリント配線板のカバーレイ20を除いた第1基材11の平面斜視図である。図1Bに示すように、絶縁性基材11bの一方の主面には銅箔などの導電層11aが形成されている。導電層11aは、絶縁性基材11bに銅を蒸着又はスパッタリングした後に銅めっきをして形成される。導電層11aは、ポリイミド基材に接着剤を介して銅箔を貼り合わせたものであってもよい。
 第1基材11の導電層11aは、複数のパッド2を有する。複数のパッド2のそれぞれは、図示しない他のコネクタに電気的に接続される。パッド2は、他のコネクタに接続される端部に形成される。図1A、図1Bに示すように、複数のパッド2は、プリント配線板1のコネクタへ接続される接続端部Eに、プリント配線板1の端縁Edに沿って並列配置される。
 図1Cは、図1Bに示す領域1Cを拡大した部分拡大図である。図1B及び図1Cに示すように、第1基材11の上側の一方主面にはパッド2とグランド層3を含む導電層11aが形成されている。パッド2とグランド層3とは、基材10の同一主面に形成される。グランド層3は、基準電位に接地するグランド接点に接続される。
 グランド層3は、パッド2の外縁から所定距離だけ離隔した位置にその内縁を有する形状に形成される。一方、パッド2は、グランド層3の内縁から所定距離だけ離隔した位置にその外縁を有する形状に形成される。グランド層3は、パッド2を囲うように形成される。図1Cに示すように、導電層11aに含まれるグランド層3とパッド2との間には、所定距離の幅を有する溝4が形成される。グランド層3は、パッド2を周囲から囲い、溝4を構成する。本実施形態のように、パッド2に配線5が接続されている場合には、パッド2及び配線5の全周囲を囲うように溝4を形成する。パッド2に配線5が接続されていない場合には、溝4をパッド2の全周囲を囲うように形成する。
 本実施形態において、グランド層3の内縁とパッド2の外縁との間の「所定距離」の文言は「経時的に変化しない距離」という意味であって、グランド層3とパッド2との距離がいずれの位置においても同じであるという限定されるものではない。つまり、グランド層3とパッド2との間の「所定距離」は各部分において異なる距離とすることができる。以下に説明する他の例においても同様である。特に限定されないが、パッド2とグランド層3との間に絶縁層を介在させてもよい。
 また、図1Bに示すように、本実施形態のプリント配線板1は、第1基材11は、一方の主面に形成され、パッド2に電気的に接続された配線5を有する。配線5は、導電性材料を用いて形成される。導電性材料としては、例えば銅または銅合金を用いることができる。パッド2と配線5との接続関係は特に限定されず、出願時に知られたプリント配線板の製造手法を適宜に適用し、所望の接続関係を実現できる。以下に説明する他の例においても同様である。
 本実施形態のプリント配線板1において、配線5は、グランド層3の内縁から所定距離だけ離隔した位置に外縁を有する。グランド層3は、配線5の外縁から所定距離だけ離隔した位置にその内縁を有するように形成される。一方、配線5は、グランド層3の内縁から所定距離だけ離隔した位置にその外縁を有するように形成される。グランド層3は、配線5を囲うように形成される。図1Cに示すように、グランド層3と配線5との間は所定距離だけ離隔している。つまり、導電層11aに含まれるグランド層3と配線5との間には、所定距離の幅を有する溝4が形成されている。
 本実施形態において、グランド層3の内縁と配線5の外縁との間の「所定距離」の文言は「経時的に変化しない距離」という意味であって、グランド層3と配線5との距離がいずれの位置においても同じであるという限定されるものではない。つまり、グランド層3と配線5との間の「所定距離」は各部分において異なる距離とすることができる。もちろん、先述したグランド層3とパッド2との距離と、グランド層3と配線5との距離も異なる距離とすることができる。以下に説明する他の例においても同様である。特に限定されないが、配線5とグランド層3との間に絶縁層を介在させてもよい。
 グランド層3の内縁とパッド2の外縁との間の「所定距離」と、グランド層3の内縁と配線5の外縁との間の「所定距離」とは、同じ距離であってもよいし、異なる距離であってもよい。この点も、以下に説明する他の例においても同様である。
 図1Dは、図1Aに示すプリント配線板1の底面斜視図である.第1基材11の他方主面側の絶縁性基材11bの表面には接着層を介して補強層30が形成されている。補強層30は、例えば、ポリイミド製のフィルムを用いて形成する。なお、各構成の関係を明確に示すため、本第1の例及び第2~第8の例を説明するための図面において、接着層の表記は省略した。基材同士の間には、必要に応じて接着層が存在するものとする。
 図1Eは、図1Aに示すプリント配線板の1E-1E線に沿う断面図である。つまり、パッド2及びグランド層3を含む断面図である。図1Eに示すように、パッド2とグランド層3との間には溝4が形成されている。
 また、パッド2及びグランド層3の上面側には、表面処理層MTが形成されている。表面処理層MTは導電性を有する。本実施形態では、表面処理としてめっき処理を行う。表面処理層MTは耐腐食性や耐摩耗性等を備え、パッド2及びグランド層3の一部を保護する。本実施形態では、表面処理として金めっき処理を行う。金めっき処理によって形成される金めっき層の形成に用いる材料は特に限定されない。下層にニッケル層を含んでもよい。めっき層などの表面処理層MTの形成手法も特に限定されない。出願時に知られた材料及び手法を適宜に用いることができる。表面処理層MTは、導電性カーボン層や半田層などとしてもよい。
 図1Fは図1Aに示すプリント配線板の1F-1F線に沿う断面図である。つまり、グランド層3を含む断面図である。1F-1F線にはパッド2が存在しないので、溝4も存在しない。
 図1A~図1Fに示す第1の例では、第1基材11の一方主面のみに、パッド2と配線5とが形成されたプリント配線板1を説明した。
 これに限定されず、第1基材11の両主面のうち、パッド2形成された一方の主面の反対側の他方の主面に配線5を形成してもよい。他方の主面に形成された配線5は、第1基材11を貫通するビアを介してパッド2に電気的に接続される。また、第1基材11の他の主面には、グランド層3を形成する。グランド層3は、配線5の外縁から所定距離だけ離隔した位置に内縁を有し、基準電位のグランド接点に接続される。これにより、一方主面にパッド2を設け、他方主面側に配線5を設ける態様、一方主面にパッド2及び配線5を設け、他方主面側にも配線5を設ける態様のプリント配線板1を提供できる。これにより、設計の自由度が向上し、電子機器の小型化・薄型化の要請にも容易に応じることができる。
 次に、図2A~図2Fに基づいて、第2の例のプリント配線板1について説明する。
 第2の例のプリント配線板1は、差動信号線として機能する対をなす配線5a,5bを備える点を除き、先述した第1の例のプリント配線板1と共通する。つまり、第2の例のプリント配線板1は、1層の導電層11aを含み、コネクタと一方主面のみで接続するタイプ(片面接続タイプ)である。重複した説明を避けるため、第1の例と共通する事項については、その説明を援用する。
 図2Aは、本実施形態の第2の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図2Aに示すプリント配線板1は、カバーレイ20と、第1基材11と、補強層30とを少なくとも備える。本例のカバーレイ20と、補強層30は、第1の例のそれらと共通する。本例のプリント配線板1は、第1の例と同様に、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図2Aに示すように、プリント配線板1の最上層には、カバーレイ20が積層されている。カバーレイ20の下層には、第1基材11が積層されている。図2Bは、図2Aに示すプリント配線板のカバーレイ20を除いた第1基材11の平面斜視図である。図2A、図2Bに示すように、絶縁性基材11bの一方の主面に形成された導電層11aは、複数のパッド2a,2b(総称してパッド2と称することもある)を有する。複数のパッド2a,2bは対を形成する。図2A、図2Bに示すように、複数対のパッド2a,2bは、プリント配線板1のコネクタへ接続される接続端部Eに、プリント配線板1の端縁Edに沿って並列配置される。
 図2Bに示すように、第2の例のプリント配線板1が備えるパッド2は、第1信号を伝達する配線5aと接続するパッド2aと、第1信号とは異なる第2信号を伝達する配線5bと接続するパッド2bとを含む。第1信号と第2信号は位相が異なり、位相ずれが生じる信号である。具体的に、本例の第1信号と第2信号は逆相の差動信号である。第1信号と第2信号とは周波数が異なる信号であってもよい。
 図2Bに示す領域2Cを拡大した部分拡大図2Cに示すように、第1基材11の上側の一方主面には複数対のパッド2a、パッド2bとグランド層3を含む導電層11aが形成されている。グランド層3は、基準電位に接地するグランド接点に接続される。
 グランド層3は、パッド2a,2bの外縁から所定距離だけ離隔した位置にその内縁を有するパターンに形成される。一方、パッド2a,2bは、グランド層3の内縁から所定距離だけ離隔した位置にその外縁を有するパターンに形成される。本例では、グランド層3の内縁の少なくとも一部が、パッド2a,2bの外縁の少なくとも一部と所定距離だけ離隔する関係を有すればよい。本例のグランド層3は、一対のパッド2a,2bを囲うように形成される。本例において、一対のパッド2a,2bはグループ化される。図2Cに示すように、導電層11aに含まれるグランド層3と、一対のパッド2a,2bとの間には、所定距離の幅を有する溝4が形成される。本例のように、パッド2a,2bに配線5a,5bが接続されている場合には、パッド2a,2b及び配線5a,5bの全周囲を囲うように、溝4を形成する。パッド2a,2bに配線5a,5bが接続されていない場合には、溝4を一対のパッド2a,2bの全周囲を囲うように形成してもよい。図2Cに示すように、隣り合うパッド2a及びパッド2bがそれぞれ有する外縁のうち、パッド2a及びパッド2bが対向する外縁以外の外縁において、グランド層3とパッド2a及びパッド2bとは、溝4を介して隔てられる。
 また、図2Bに示すように、本実施形態のプリント配線板1は、第1基材11は、一方の主面に形成され、パッド2aに電気的に接続された配線5a、及びパッド2bに電気的に接続された配線5bを有する。一対をなす配線5a,5bは、グランド層3の内縁から所定距離だけ離隔した位置に外縁を有する。グランド層3は、配線5a,5bの外縁から所定距離だけ離隔した位置にその内縁を有するように形成される。配線5a,5bは、グランド層3の内縁から所定距離だけ離隔した位置にその外縁を有するように形成される。本例のグランド層3は、一対の配線5a,5bを囲うように形成される。本例において、一対の配線5a,5bが設けられた領域は一つの領域としてグループ化される。図2Cに示すように、導電層11aに含まれるグランド層3と対として形成された一対の配線5a,5bが設けられた領域との間には、所定距離の幅を有する溝4が形成される。つまり、グランド層3と、グループ化された一対の配線5a,5bとの間には、所定距離に応じた幅の溝4が形成される。本例のように、配線5a,5bがパッド2a,2bに接続されている場合には、配線5a,5b及びパッド2a,2bの全周囲を囲うように、溝4を形成する。対をなす配線5aと配線5bとの間には、グランド層3は形成されない。対をなすパッド2aとパッド2bとの間にも、グランド層3は形成されない。図2Cに示すように、隣り合う配線5a及び配線5bがそれぞれ有する外縁のうち、配線5a及び配線5bが対向する外縁以外の外縁において、グランド層3と配線5a及び配線5bとは、溝4を介して隔てられる。
 図2Dは、図2Aに示すプリント配線板1の底面斜視図である.第1基材11の他方主面側の絶縁性基材11bの表面には接着層を介して補強層30が形成されている。
 図2Eは、図2Aに示すプリント配線板の2E-2E線に沿う断面図である。つまり、パッド2a及びグランド層3を含む断面図である。図2Eに示すように、パッド2aとグランド層3との間には溝4が形成されている。パッド2bを通る線に沿う断面は図2Eに示すものと共通する。パッド2bとグランド層3との間にも溝4が形成される。第1の例と同様に、パッド2a,2b及びグランド層3の上面側には、表面処理層MTが形成されている。
 図2Fは図2Aに示すプリント配線板の2F-2F線に沿う、グランド層3を含む断面図である。2F-2F線にはパッド2が存在しないので、溝4も存在しない。
 上述した第1の例、及び第2の例のプリント配線板1において、特に限定されないが、図1C及び図2Cに示すように、パッド2(2a,2bを含む。以下同じ)と同じ主面に形成されるグランド層3は、そのグランド層3が形成される絶縁性基材11bの主面の外縁から所定のオフセット量Sだけ内側に、グランド層3の外縁が位置するようにグランド層3を形成する。積層構造のプリント配線板1において、パッド2を含む導電層11aは、最上層又は最下層に配置される可能性が高い。プリント配線板1の製造時において金型を用いて打ち抜き加工をする際に、最上層又は最下層のグランド層3を金型が直接裁断する。銅箔などの金属で構成されているグランド層3を裁断することにより金型は摩耗・欠損しやすくなる。本実施形態のように、グランド層3を、絶縁性基材11bの外縁よりも内側にオフセットし、グランド層3と金型が直接当たらないようにすることにより、金型の摩耗・損傷を抑制できる。その結果、製造コストを低減させることができる。
 他方、パッド2が形成される主面以外の主面は、最上層及び最下層以外の内側の層に配置される可能性が高い。このため、金型を用いてプリント配線板1を打ち抜き加工をする際に、金型の歯が内層のグランド層3に直接当たることがなく、金型の摩耗・欠損の発生は抑制される。本実施形態では、パッド2が形成される主面と異なる主面に形成されるグランド層3は、そのグランド層3が形成される絶縁性基材(後述する絶縁性基材12bなど)の主面の外縁と、そのグランド層3の外縁とが同じ位置となるように形成する。
 続いて、上述した本実施形態の第1の例及び第2の例のプリント配線板1の製造方法について説明する。本実施形態のプリント配線板1の製造方法は特に限定されず、本願出願時に知られているプリント配線板の作製手法を適宜に用いることができる。他の例のプリント配線板1の製造方法についても同様である。
 まず、絶縁性基材11bの片面に導電層11aが形成された基材を準備する。本実施形態では、ポリイミド製の基材の一方主面に銅箔が形成された片面銅貼基材を準備する。片面銅貼基材は、特に限定されず、ポリイミド基材に銅を蒸着又はスパッタリングした後に銅めっきをしたものであってもよい。片面銅貼基材は、ポリイミド基材に接着剤を介して銅箔を貼り合わせたものであってもよい。
 一般的なフォトリソグラフィー技術を用いて、片面銅貼基材の一方主面に所望のパッド2と配線5と、グランド層3を形成する。パッド2とグランド層3との間の溝4に対応する領域及び配線5とグランド層3との間の溝に対応する領域には、導電層11aを残さない。パッド2とグランド層3及び配線5とグランド層3とは絶縁された状態とする。これにより、第1基材11を得る。第1の例では、図1Bに示すように、パッド2と配線5とはシングルエンド信号を伝達する信号線の配線パターンとなる。第2の例では、図2Bに示すように、パッド2a,2bと配線5a,5bは、対をなす差動信号線のパターンとなる。本実施形態では、片面銅貼基材の主面に、シングルエンド信号の信号線の配線パターン又は差動信号線の配線パターンに応じたマスクパターンを作製し、銅箔をエッチングすることにより、所望の配線5及びパッド2が形成された第1基材11を得る。
 第1基材11の一方主面に、形成された配線5の部分を覆うカバーレイ20を貼りつける。第1基材11の他方主面の接続端部Eを含む領域に、補強層30を貼りつける。カバーレイ20及び補強層30は適切な接着剤を用いて貼りつける。必要に応じて接着剤の硬化処理を行う。
 予め準備した金型を用いて、プリント配線板1を型抜きし、被係合部70、タブ状部材80を有する形状にする。パッド2(2a,2b)の表面に金めっきなどの表面処理を施し、表面処理層を形成する。これにより、本実施形態の第1の例及び第2の例のプリント配線板1を得る。
 ところで、電子機器の小型化に伴い、フレキシブルプリント配線板(FPC)を各種電子機器の基板に接続させるコネクタも軽量化、薄型化、小型化が顕著となっている。同様に、コネクタに係止されるプリント配線板の接続端部の薄型化、小型化が進み、配線の狭ピッチ化の要請も高い。このため、プリント配線板の配線幅は狭く、配線の厚さは薄くなる傾向にあり、強度を維持するのが困難な状況にある。プリント配線板の接続端部の強度が低下すると、外力を受けたときに破損する可能性がある。また、コネクタに接続する際にフレキシブルプリント配線板にかかる負荷が小さいZIFタイプだけではなく、フレキシブルプリント配線板に負荷がかかるLIF(Low Insertion Force)タイプやNON-ZIFタイプのコネクタが使用される場合もある。このように、負荷のかかるコネクタを用いる場合には、配線にひびや破損が生じるほかに、接続端部の変形や破損が発生することがある。
 薄型化観点から、小型の電子機器においては、ライトアングルタイプのコネクタが用いられる。ライトアングルタイプのコネクタにおいては、プリント配線板を、コネクタの前方からコネクタ方向にスライドさせて、コネクタに挿入する。このため、ライトアングルタイプのコネクタでは、プリント配線板をスライドさせるスペースが必要であるが、高密度化された電子機器の基板においてスペースの確保は難しい。また、電子機器の筐体と基板との隙間も狭いため、基板に接続されたプリント配線板は筐体の端部で180度に折り曲げられた状態で、筐体に組み込まれることがある。このようにプリント配線板を小さい曲率半径で折り曲げることが前提となる場合には、層間を貫通するビアを配置できないなどの設計上に制約が課される。
 また、上述したプリント配線板の接続端部の強度に問題に加えて、電子機器の伝送スピードの向上や、高密度化に伴い、プリント配線板がシールド構造を備える必要性が高まっている。スマートフォンなどの通信機器は、複数の無線装置を搭載するため、EMI(Electro Magnetic Interference)対策のためにもシールド構造を採用する要請が高い。シールド構造においては、信号線として機能する配線を内側層に配し、シールド層を上側又は下側の層に配する。また、コネクタに係止される接続端部の構造においては、コネクタとの物理的な接触が必要であり、最上面又は最下面に露出したパッドを配置する必要がある。
 このように、薄型化・小型化、接続端部の強度、EMI対策、伝送特性の維持・向上、作業性の向上、レイアウトの自由度の向上などの課題を適切に解決することは容易ではない。
 本実施形態のプリント配線板1は、パッド2、このパッド2に接続される配線5を取り囲むように、パッド2、配線5の外縁から所定距離だけ離隔させた位置に内縁が位置するように形成されたグランド層3を備える。グランド層3は、基準電位のグランド接点に接地される。これにより、グランド層3を、パッド2、配線5から絶縁された状態とすることができる。このような構造のグランド層3を形成することにより、プリント配線板1の接続端部Eの強度を向上させ、接続端部Eの端縁Edの変形、破損を防止できる。このように、プリント配線板1の薄型化・小型化、その接続端部Eの強度の向上、EMI対策、伝送特性、作製時の作業性、レイアウトの自由度に関する課題をバランスよく解決できる。さらに、グランド層3を絶縁性基材11bの内側にオフセットすることにより、金型の寿命の延長、作製コストの低減も併せて図ることができる。
 次に、図3A~図3Hに基づいて、第3の例のプリント配線板1について説明する。
 第3の例は、二つの導電層を備えるプリント配線板1の例である。第3の例のプリント配線板1は、パッド2を一の導電層に設け、配線5を他の導電層に設ける点で第1、第2の例と異なる。第3の例のプリント配線板1では、パッド2と配線5は別の層に形成される。第3の例では、差動信号線として機能する対となる配線5a,5bを備える点で、第2の例と共通する。第3の例のプリント配線板1は、導電層11a、導電層11cを含み、コネクタと一方主面のみで接続するタイプ(片面接続タイプ)である。重複した説明を避けるため、第1の例、第2の例と共通する事項については、その説明を援用する。
 図3Aは、本実施形態の第3の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図3Aに示すプリント配線板1は、カバーレイ20と、第1基材11と、補強層30とを少なくとも備える。本例のカバーレイ20と、補強層30は、第1の例のそれらと共通する。本例のプリント配線板1は、第1の例と同様に、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図3Aに示すように、プリント配線板1の最上層には、カバーレイ20が積層されている。カバーレイ20の下層には、第1基材11が積層されている。図3Bは、図3Aに示すプリント配線板のカバーレイ20を除いた第1基材11の平面斜視図である。図3Bに示すように、第1基材11の一方主面に形成された導電層11aは、対をなすパッド2a,2bと、グランド層3とを含む。配線5は形成されていない。絶縁性基材11bの一方の主面に形成された導電層11aは、複数のパッド2a,2b(総称してパッド2と称することもある)を有する。複数対のパッド2a,2bは、プリント配線板1のコネクタへ接続される接続端部Eに、プリント配線板1の端縁Edに沿って並列配置される。
 図3Cは、図3Bに示す3C領域の部分拡大図である。図3B、図3Cに示すように、第3の例のプリント配線板1のパッド2は、第1信号を伝達する配線5aと接続するパッド2aと、第1信号とは異なる第2信号を伝達する配線5bと接続するパッド2bとを含む。グランド層3は、基準電位に接地するグランド接点に接続される。パッド2a,2bは、第1基材11を貫通するビアTHを介して、第1基材11の他方主面に形成された配線5a,5bと接続する。
 第3の例のプリント配線板1において、グランド層3は、パッド2a,2bの外縁から所定距離だけ離隔した位置にその内縁を有するパターンに形成される。パッド2a,2bは、グランド層3の内縁から所定距離だけ離隔した位置にその外縁を有するパターンに形成される。本例において、一対のパッド2a,2bはグループ化される。図3Cに示すように、本例のグランド層3は、一対のパッド2a,2bの両方を含む領域の全周を囲うように形成される。導電層11aに含まれるグランド層3と対として形成された一対のパッド2a,2bとの間には、所定距離の幅を有する溝4が形成される。グランド層3は、一対のパッド2a,2bを囲う溝4を構成する。
 図3Dは、第1基材11の他方主面の底面斜視図である。図3Eは、図3Dに示す3E領域の部分拡大図である。第1基材11は、第1基材11を貫通するビアTHを介してパッド2a,2bに電気的に接続される配線5a,5bと、配線5a,5bの外縁から所定距離だけ離隔した位置に内縁を有し、グランド接点に接続されるグランド層3と、を有する。
 図3D,図3Eに示すように、第2基材12の一方主面には、対を形成する配線5a,5bが、複数、幅方向に沿って並列配置されている。配線5aの端部5a´は、第1基材11を貫通するビアを介して第1基材11の一方主面に形成されたパッド2aと電気的に接続する。同様に、配線5bの端部5b´は、第1基材11を貫通するビアを介して上層の第1基材11の一方主面に形成されたパッド2bと電気的に接続する。
 また、図3D,図3Eに示すように、一対をなす配線5a,5bは、グランド層3の内縁から所定距離だけ離隔した位置に外縁を有する。グランド層3は、配線5a,5bの外縁から所定距離だけ離隔した位置にその内縁を有するように形成される。配線5a,5bは、グランド層3の内縁から所定距離だけ離隔した位置にその外縁を有するように形成される。本例のグランド層3は、一対の配線5a,5bを囲うように形成される。本例において、一対の配線5a,5bはグループ化される。図3D,図3Eに示すように、導電層12aに含まれるグランド層3と対として形成された一対の配線5a,5bとの間には、所定距離の幅を有する溝4が形成される。つまり、グランド層3と、グループ化された一対の配線5a,5bとの間には、所定距離に応じた幅の溝が形成される。図3D、図3Eに示すように、隣り合う配線5a及び配線5bがそれぞれ有する外縁のうち、配線5a及び配線5bが対向する外縁以外の外縁において、グランド層3と配線5a及び配線5bとは、溝4を介して隔てられる。つまり、隣り合う配線5a及び配線5bの間にはグランド層3は形成されない。
 図3Fは、図3Aに示すプリント配線板1の底面斜視図である。第1基材11の他方主面を覆うカバーレイ20の表面には、接着層を介して補強層30が形成されている。
 図3Gは、図3Aに示すプリント配線板の3G-3G線に沿う断面図である。つまり、第1基材11のパッド2a及びグランド層3を含む断面図である。図3Gに示すように、パッド2aとグランド層3との間には溝4が形成されている。パッド2bを通る線に沿う断面は図3Gに示すものと共通する。パッド2bとグランド層3との間にも溝4が形成される。第1の例と同様に、パッド2a,2b及びグランド層3の上面側には、表面処理層MTが形成されている。
 第1基材11の導電層11cに形成された配線5a及びその端部5a´はビアTHを介して上側の第1基材11のパッド2と接続する。
 図3Hは、図3Aに示すプリント配線板の3H-3H線に沿う、グランド層3を含む断面図である。3H-3H線にはパッド2、配線5が存在しないので、溝4も存在しない。第2基材12のグランド層3は、第1基材11のグランド層3とビアTHを介して接続する。グランド層3は、図外のグランド接点に接地される。
 続いて、上述した本実施形態の第3の例のプリント配線板1の製造方法について説明する。まず、絶縁性基材の両主面に導電層が形成された基材を準備する。本実施形態では、ポリイミド製の基材の両主面に銅箔が形成された両面銅貼基材を準備する。絶縁性基材の材質、導電層の材質は、第1の例、第2の例と同様のものを用いることができる。
 両面銅貼基材の所定位置に、レーザー加工やCNCドリル加工等によってその両面銅貼基材を厚さ方向に貫通するビアホールを形成する。DPP(Direct Plating Process)処理によって、ビアホールの内壁面に導電層を形成する。必要に応じて、ビアホール内壁面を含めた両面銅貼基材の表面全体に銅めっき層を形成する。もちろん、ビアホールを含む部分的なめっき処理を行ってもよい。これにより、両面銅貼基材の一方主面と他方主面とを電気的に接続するビアTHが形成される。
 一般的なフォトリソグラフィー技術を用いて、両面銅貼基材の一方主面の導電層11aに所望のパッド2a,2bを形成し、他方主面の導電層11cに配線5a,5bを形成する。パッド2a,2bとグランド層3との間の溝4に対応する領域、及び配線5a、5bとグランド層3との間の溝に対応する領域には導電層12aを残さない。パッド2a,2bとグランド層3とは絶縁された状態とする。配線5a,5bとグランド層3とは絶縁された状態とする。これにより、第1基材11を得る。
 第3の例では、図3B、図3D示すように、パッド2a,2bと配線5a,5bは、対をなす差動信号線のパターンとなる。本実施形態では、両面銅貼基材の他方主面に、差動信号線のパターンに応じたマスクパターンを作製し、銅箔をエッチングすることにより、所望の配線5a,5bを形成する。同様に、両面銅貼基材の一方主面に、パッド2a,2bのパターンに応じたマスクパターンを作製し、銅箔をエッチングすることにより、所望のパッド2a,2bを形成する。これにより、所望の配線5a,5b及びパッド2a,2bが形成された第1基材11を得る。
 得られた第1基材の一方主面及び他方主面にカバーレイ20を接着剤を用いて貼りつける。必要に応じて接着剤の硬化処理を行う。
 パッド2a,2bの表面に金めっきなどの表面処理を施し、表面処理層MTを形成する。他方主面のカバーレイ20の上に接着剤を用いて補強層30を貼りつける。必要に応じて接着剤の硬化処理を行う。予め準備した金型を用いて、プリント配線板1を型抜きし、被係合部70、タブ状部材80を有する形状にする。これにより、本実施形態の第3の例のプリント配線板1を得る。
 次に、図4A~図4Iに基づいて、第4の例のプリント配線板1を説明する。
 第4の例は、三つの導電層を備えるプリント配線板1の例である。また、第4の例では、差動信号線として機能する配線5a,5bを備える点で、第2、第3の例と共通する。第4の例のプリント配線板1は、導電層11a、導電層11c、及び導電層12cを含み、コネクタと一方主面のみで接続するタイプ(片面接続タイプ)である。重複した説明を避けるため、第1~3の例と共通する事項については、その説明を援用する。
 図4Aは、本実施形態の第4の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図4Aに示すプリント配線板1は、カバーレイ20と、第1基材11と、第2基材12と、補強層30とを少なくとも備える。本例のカバーレイ20と、補強層30は、第1の例のそれらと共通する。本例のプリント配線板1は、第1の例と同様に、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図4Aに示すように、プリント配線板1の最上層には、カバーレイ20が積層されている。カバーレイ20の下層には、第1基材11が積層されている。図4Bは、図4Aに示すプリント配線板のカバーレイ20を除いた第1基材11の平面斜視図である。図4Bに示すように、第1基材11の一方主面の導電層11aには、対をなすパッド2a,パッド2bと、グランド層3を含む導電層11aが形成されている。配線5は形成されていない。絶縁性基材11bの一方の主面に形成された導電層11aは、複数のパッド2a,2b(総称してパッド2と称することもある)を有する。パッド2a,2bの配置の態様は第2の例と共通する。
 図4Cは、図4Bに示す4C領域の部分拡大図である。図4B、図4Cに示す第4の例のプリント配線板1のパッド2a,2b、グランド層3、溝4の態様は、第3の例と共通する。
 図4Dは、第1基材11の他方主面の平面斜視図である。図4Eは、図4Dに示す4E領域の部分拡大図である。
 図4D,図4Eに示すように、第1基材11の他方主面には、対を形成する配線5a,5bが、複数、幅方向に沿って並列配置されている。配線5aの端部5a´は、第1基材11を貫通するビアを介して上層の第1基材11のパッド2aと電気的に接続する。同様に、配線5bの端部5b´は、第1基材11を貫通するビアを介して上層の第1基材11のパッド2bと電気的に接続する。図4D、図4Eに示す第4の例のプリント配線板1の配線5a,5b、グランド層3、溝4の態様は、第3の例で第1基材11の他方主面側に形成された配線5a,5b、グランド層3、溝4の態様と共通する。
 図4Fは、第2基材12の底面斜視図である。第2基材12の他方主面には導電層12cが形成されている。導電層12cは、基準電位のグランド接点に接続され、グランド層3として機能する。
 図4Hは、図4Aに示すプリント配線板の4H-4H線に沿う断面図である。
第4の例のプリント配線板1は、第1基材11の何れか一方の主面に直接積層される一の第2基材12を有する。なお、変形の態様として、第1基材11と第2基材12との間には、不図示の第3基材を介在させてもよいし、積層する第2基材12の数は限定されない。第2基材12は、第1基材11、第3基材(不図示)を含む一又は複数の基材10を貫通するビアTHを介してグランド接点に接続される第1基材11のグランド層3に電気的に接続される。
 図4Hは、第1基材11のパッド2a及びグランド層3、第1基材11の配線5a及びグランド層3、第2基材12のグランド層3を含む断面図である。図4Hに示すように、パッド2aとグランド層3との間には溝4が形成されている。パッド2bを通る線に沿う断面は図4Hに示すものと共通する。パッド2bとグランド層3との間にも溝4が形成される。第1の例と同様に、パッド2a,2b及びグランド層3の上面側には、表面処理層MTが形成されている。
 図4Hに示すように、第1基材11の導電層11cに形成された配線5a及びその端部5a´はビアTHを介して上側の第1基材11のパッド2と接続する。
 図4Iは、図4Aに示すプリント配線板1の4I-4I線に沿う、グランド層3を含む断面図である。4I-4I線にはパッド2、配線5が存在しないので、溝4も存在しない。第1基材11の一方主面及び他方主面のグランド層3と、第2基材12のグランド層3とは、ビアTHを介して接続する。各グランド層3は、図外のグランド接点に接地される。
 一般に、EMI対策のためにコネクタにシールドを施すことが行われている。しかし、コネクタに接続される多層のプリント配線板1の層間接続を行うビアTHは、コネクタの外側に配置されるため、ビアTHは、プリント配線板のシールド層によっても保護できず、コネクタのシールドによっても保護できない場合がある。このように保護が十分でない場合には、これによって生じるノイズが伝送特性を低下させることがある。特に伝送スピードが高い現在において、僅かなノイズであっても、伝送特性に与える影響は無視できない。
 本実施形態では、多層構造のプリント配線板1において、層間接続を実現するビアTHを接続端部Eに形成する。つまり、層間接続を実現するビアTHを、プリント配線板1の接続端部Eの端縁Edよりも手前側(端縁Edとは反対側)に配置するのではなく、接続端部Eに設けられたパッド2の直下に配置する。層間を貫通するビアTHの一方端部は、パッド2の裏面(接触面の裏側面)と接する。
 本実施形態のプリント配線板1におけるパッド2は、グランド層3に取り囲まれている。このため、本実施形態のプリント配線板1が備えるシールド構造によって、層間の信号の伝送経路をシールドすることができる。高速伝送の要求やEMI特性の要求がある場合であっても、伝送経路がシールド構造の外に露出されないように保護することができる。
 本実施形態の多層構造のプリント配線板1のシールド構造によれば、信号がパッド2に伝送されるまでシールドされた状態を維持することができる。つまり、本実施形態のプリント配線板1において、信号がシールド構造の外部に露出されるのはコネクタと接触するパッド2においてのみとなる。このように、本実施形態のプリント配線板1は、コネクタと物理的に接触するパッド2に至るまでシールド状態を維持できるという、究極の遮蔽性を実現するシールド構造を提供することができる。
 また、プリント配線板1の接続端部EにおいてビアTHによって、表層のパッド2へ信号を伝送できるので、コネクタ嵌合部近傍にてプリント配線板1を屈曲させることが可能となる。プリント配線板1の折り曲げ角度を考慮せずに、コネクタを筐体の壁面近傍に配置できるので、電子機器全体の小型化に貢献できる。このように、多層構造のプリント配線板1においても、プリント配線板1の薄型化・小型化、その接続端部Eの強度の向上、EMI対策、伝送特性、作製時の作業性、レイアウトの自由度、基板レイアウトの省スペース化に関する課題をバランスよく解決できる。さらに、グランド層3を絶縁性基材11bの内側にオフセットすることにより、金型の寿命の延長、作製コストの低減も併せて図ることができる。
 続いて、上述した本実施形態の第4の例のプリント配線板1の製造方法について説明する。まず、第1基材11を作製するために、絶縁性基材11bの両面に導電層11a及び11cが形成された基材を準備する。両面銅貼基材は、第3の例と同様のものを用いる。
 第3の例と同様の手法により、一般的なフォトリソグラフィー技術を用いて、両面銅貼基材の他方主面の導電層11cに配線5a,5bを形成する。配線5a、5bとグランド層3との間の溝に対応する領域には導電層11cを残さない。配線5a,5bとグランド層3とは絶縁された状態とする。これにより、第1基材11を得る。
 次に、第2基材12を作製するために、絶縁性基材の他方主面に導電層12cが形成された片面銅貼基材を準備する。
 第2基材12の他方主面にグランド層3を形成する。本例では、導電層12cをそのまま残してグランド層3として機能させる。
 次いで、第1基材11と第2基材12とを積層し、第3の例と同様の手法により、一般的なフォトリソグラフィー技術を用いて、両面銅貼基材の一方主面の導電層11aに所望のパッド2a,2bを形成する。パッド2a,2bとグランド層3との間の溝4に対応する領域には導電層11aを残さない。パッド2a,2bとグランド層3とは絶縁された状態とする。第3の例と同様の手法により、第1基材11の一方主面と他方主面とを電気的に接続するビアTH、第1基材11の一方主面と他方主面と第2基材12の他方主面とを電気的に接続するビアTHを形成する。
 第1基材11の一方主面側の最上面にカバーレイ20を接着剤を用いて貼りつける。第2基材12の他方主面側に接着剤を用いてカバーレイ20を貼りつける。必要に応じて接着剤の硬化処理を行う。
 第1基材11の一方主面側のパッド2a,2bとグランド層3の表面に金めっきなどの表面処理を施し、表面処理層MTを形成する。第2基材12の他方主面側に貼り付けたカバーレイ20に接着剤を用いて補強層30を貼りつける。必要に応じて接着剤の硬化処理を行う。予め準備した金型を用いて、プリント配線板1を型抜きし、被係合部70、タブ状部材80を有する形状にする。これにより、本実施形態の第4の例のプリント配線板1を得る。
 次に、図5A~図5Jに基づいて、第5の例のプリント配線板1について説明する。
 第5の例は、三つの導電層を備えるプリント配線板1の例である。また、第5の例では、配線5がシングルエンド信号の信号線の配線パターンである点で、第1の例と共通する。第5の例のプリント配線板1は、導電層11a、導電層12a、導電層12cを含み、コネクタと表面及び裏面の両面にて接続するタイプ(両面接続タイプ)である。重複した説明を避けるため、第1~第4の例と共通する事項については、その説明を援用する。
 図5Aは、本実施形態の第5の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図5Aに示すプリント配線板1は、カバーレイ20と、第1基材11と、一枚の第2基材12とを少なくとも備える。本例のカバーレイ20は、第1の例のそれと共通する。本例のプリント配線板1は、第1の例と同様に、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図5Aに示すように、プリント配線板1の最上層及び最下層には、カバーレイ20が貼り付けられている。最上層のカバーレイ20の下層には第1基材11が配置されている。図5Bは、図5Aに示すプリント配線板のカバーレイ20を除いた第1基材11の平面斜視図である。図5A、図5Bに示すように、絶縁性基材11bの一方の主面に形成された導電層11aは、複数のパッド2を有する。図5A、図5Bに示すように、複数のパッド2は、プリント配線板1のコネクタへ接続される接続端部Eに、プリント配線板1の端縁Edに沿って並列配置される。パッド2の配置の態様は第1の例と共通する。図5Bに示すように、第1基材11の上側の一方主面にはパッド2とグランド層3を含む導電層11aが形成されている。配線5は形成されていない。
 図5Cは、図5Bに示す5C領域の部分拡大図である。絶縁性基材11bの一方の主面に形成された導電層11aは、複数のパッド2を有する。パッド2の配置の態様は第1の例と共通する。第5の例のプリント配線板1において、グランド層3は、パッド2の外縁から所定距離だけ離隔した位置にその内縁を有するパターンに形成される。図5Cに示すように、本例のグランド層3は、パッド2の全周を囲うように形成される。導電層11aに含まれるグランド層3とパッド2との間には、所定距離の幅を有する溝4が形成される。グランド層3は、各パッド2を囲う溝4を構成する。
 図5Dは、第2基材12の一方主面側の平面斜視図である。図5Eは、図5Dに示す5E領域の部分拡大図である。第5の例のプリント配線板1は、第1基材11の何れか一方の主面に直接積層される一の第2基材12を有する。なお、変形の態様として、第1基材11と第2基材12との間には第3基材を介在させてもよいし、積層する第2基材12の数は限定されない。第2基材12は、一又は複数の基材10を貫通するビアTHを介してパッド2に電気的に接続される配線5と、配線5の外縁から所定距離だけ離隔した位置に内縁を有し、グランド接点に接続されるグランド層3と、を有する。
 図5D,図5Eに示すように、第2基材12の一方主面には、複数の配線5が、プリント配線板1の幅方向に沿って並列配置されている。配線5の端部5´は、第1基材11を貫通するビアを介して第1基材11の一方主面のパッド2と電気的に接続する。また、配線線5の端部5´は、第2基材12を貫通するビアを介して第2基材12の他方主面のパッド2とも電気的に接続する。本実施形態の第5の例のプリント配線板1においては、奇数列の配線5の端部5´は第1基材11の一方主面のパッド2と電気的に接続し、偶数列の配線5の端部5´は第2基材12の他方主面のパッド2と電気的に接続している。
 第5の例に係るプリント配線板1は、両面でコネクタと接続する。本例では、第1基材11の一方主画側に、パッド2とグランド層3とを形成するとともに、第2基材12の他方主面側に、パッド2とグランド層3とを形成する。
 図5Fは、第2基材12の他方主面側の底面斜視図である。第2基材12の他方主面側には、複数のパッド2とグランド層3とが形成される。第1の例の第1基材11と同様に、パッド2とグランド層3との間には、所定距離に応じた幅の溝4が形成される。このように、第5の例における第2基材12は、第1基材11としての構成及び機能を備える。説明の便宜のために、パッド2を備える基材を第2基材12と称して説明するが、第5の例における第2基材12は、本発明の第1基材に対応する。
 図5Gは、図5Aに示すプリント配線板1の底面斜視図である。底面を構成する第2基材12の他方主面側の導電層12cは、パッド2が形成された領域を除き、カバーレイ20で覆われている。図5Gに示すように、プリント配線板1の底面側には第2基材12の他方主面に形成されたパッド2が露出しており、底面においてもコネクタと電気的に接触することができる。
 図5Hは、図5Aに示すプリント配線板の5H-5H線に沿う断面図である。つまり、図5Hは、第1基材11のパッド2及びグランド層3、第2基材12の一方主面に形成された配線5a及びグランド層3、第2基材12の他方主面に形成されたグランド層3を含む断面図である。図5Hに示すように、パッド2とグランド層3との間には溝4が形成されている。第1の例と同様に、パッド2及びグランド層3の上面側には、表面処理層MTが形成されている。第2基材12の導電層12aに形成された配線5及びその端部5´はビアTHを介して上側の第1基材11のパッド2と接続する。
 図5Iは、図5Aに示すプリント配線板1の5I-5I線に沿う、グランド層3を含む断面図である。5I-5I線にはパッド2、配線5が存在しないので、溝4も存在しない。第1基材11の一方主面に形成されたグランド層3と、第2基材12の両主面に形成されたグランド層3とは、ビアTHを介して接続する。グランド層3は、図外のグランド接点に接地される。
 図5Jは、図5Gに示すプリント配線板1の5J-5J線に沿う断面図である。図5Jは、プリント配線板1の図中における底面側のパッド2及びグランド層3、第2基材12の配線5及びグランド層3、を含む断面図である。図5Jに示すように、底面側のパッド2とグランド層3との間には溝4が形成されている。底面側のパッド2及びグランド層3の上面側には、表面処理層MTが形成されている。第1基材11に形成された配線5及びその端部5´はビアTHを介して下側の第2基材12のパッド2と接続する。ちなみに、図5Jに示す断面では、図5Gで最上層に位置する第2基材12が最下層に位置するように反転して示す。図5H,図5Iとの上下方向を揃えるためである。なお、第5の例において、説明の便宜から「第2基材12」と称する基材は、パッド2及びグランド層3を有する本発明の「第1基材」に実質的に対応する。
 続いて、上述した本実施形態の第5の例のプリント配線板1の製造方法について説明する。
 まず、第2基材12を作製するために、絶縁性基材の一方主面に導電層12aが形成され,他方主面に導電層12cが形成された両面銅貼基材を準備する。両面銅貼基材は、第3、第4の例と同様のものを用いる。
 第3の例と同様の手法により、一般的なフォトリソグラフィー技術を用いて、一方主面(図中上側となる面)の導電層12aに配線5を形成する。配線5とグランド層3との間の溝に対応する領域には導電層12aを残さない。配線5とグランド層3とは絶縁された状態とする。
 次に、第1基材11を作製するために、絶縁性基材の一方主面に導電層11aが形成された片面銅貼基材を準備する。
 次いで、第1基材11と第2基材12とを積層し、第3の例と同様の手法により、第1基材11の一方主面と第2基材の12の一方主面とを電気的に接続するビアTH、第1基材11の一方主面と第2基材12の一方主面と他方主面とを電気的に接続するビアTH、第2基材12の一方主面と他方主面とを電気的に接続するビアTHを形成する。第3の例と同様の手法により、一般的なフォトリソグラフィー技術を用いて、第1基材11の一方主面の導電層11aに所望のパッド2a,2bを、第2基材12の他方主面の導電層12cに所望のパッド2a,2bを形成する。パッド2a,2bとグランド層3との間の溝4に対応する領域には導電層11aを残さない。パッド2a,2bとグランド層3とは絶縁された状態とする。
 第1基材11の一方主面側の最上面にパッド2が露出するように、カバーレイ20を貼りつける。第2基材12の他方主面側も同様に、パッド2が露出するようにカバーレイ20を貼りつける。カバーレイ20の貼り付けには、適切な接着剤を用いる。必要に応じて硬化処理を行う。
 第1基材11及び第2基材12のパッド2とグランド層3の表面に金めっきなどの表面処理を施し、表面処理層MTを形成する。予め準備した金型を用いて、プリント配線板1を型抜きし、被係合部70、タブ状部材80を有する形状にする。これにより、本実施形態の第5の例のプリント配線板1を得る。
 次に、図6A~図6Iに基づいて、第6の例のプリント配線板1について説明する。
 第6の例は、三つの導電層を備えるプリント配線板1の例である。また、第6の例では、配線5が対をなす差動信号線である点で、第2の例と共通する。第6の例のプリント配線板1は、導電層11a、導電層12a、導電層12cを含み、コネクタと表面及び裏面の両面にて接続するタイプ(両面接続タイプ)である。重複した説明を避けるため、第1~第5の例と共通する事項については、その説明を援用する。
 図6Aは、本実施形態の第6の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図6Aに示すプリント配線板1は、カバーレイ20と、第1基材11と、一枚の第2基材12とを少なくとも備える。本例のプリント配線板1は、第1の例と同様に、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図6Aに示すように、プリント配線板1の最上層及び最下層には、カバーレイ20が貼り付けられている。最上層のカバーレイ20の下層側には第1基材11が配置されている。図6Bは、図6Aに示すプリント配線板のカバーレイ20を除いた第1基材11の平面斜視図である。図6A、図6Bに示すように、絶縁性基材11bの一方の主面に形成された導電層11aには、パッド2、配線5は設けられていない。導電層11aは、グランド層3として機能する。
 図6Cは、第1基材11の他方主面側に積層された、第2基材12の一方主面側の平面斜視図である。図6Dは、図6Cに示す6D領域の部分拡大図である。第6の例のプリント配線板1は、第1基材11の何れか一方の主面に直接積層される一の第2基材12を有する。第2基材12は基材10を貫通するビアTHを介してパッド2に電気的に接続される配線5a,5bと、配線5a、5bの外縁から所定距離だけ離隔した位置に内縁を有し、グランド接点に接続されるグランド層3と、を有する。
 図6C,図6Dに示すように、第2基材12の一方主面には、複数の配線5a´,5b´が、プリント配線板1の幅方向に沿って並列配置されている。配線5の端部5a´,5b´は、第2基材12を貫通するビアを介して第2基材12の他方主面のパッド2a,2bと電気的に接続する。
 図6Eは、第2基材12の他方主面側の底面斜視図であり、図6Fは、図6Eに示す6F領域の部分拡大図である。第2基材12の他方主面側には、複数のパッド2a,2bとが形成されている。同図に示す第2基材12の導電層12cは、プリント配線板1の下面側となるように配置される。このため、図6Eに示す第2基材12の他方主面の導電層12cのパッド2bの位置が、その裏側の一方主面側の導電層12aの配線5の端部5b´の位置と対応する。第2の例の第1基材11と同様に、パッド2a,2bとグランド層3との間には、所定距離に応じた幅の溝4が形成される。
 図6Gは、図6Aに示すプリント配線板1の底面斜視図である.底面を構成する第2基材12の他方主面側の導電層12cは、パッド2a,2bが形成された領域を除き、カバーレイ20で覆われている。図6Gに示すように、プリント配線板1の底面側には第2基材12の他方主面に形成されたパッド2a,2bが露出しており、プリント配線板1の底面側においてコネクタと電気的に接触することができる。第6の例に係るプリント配線板1は、最上面においてグランド層3がグランド接点に接続するとともに、最下面においてパッド2a,2bがコネクタと接続する。
 図6Hは、図6Aに示すプリント配線板の6H-6H線に沿う断面図である。図6Hは、第1基材11のグランド層3、第2基材12の一方主面に形成されたグランド層3、第2基材12の他方主面に形成されたグランド層3を含む断面図である。6H-6H線にはパッド2a,2b、配線5a´,5b´が存在しないので、溝4も存在しない。第1基材11の一方主面に形成されたグランド層3と、第2基材12の一方主面に形成されたグランド層3と、第2基材12の他方主面に形成されたグランド層3は、ビアTHを介して接続される。グランド層3は、図外のグランド接点に接地される。
 図6Iは、図6Gに示すプリント配線板1の6I-6I線に沿う、パッド2b及びグランド層3を含む断面図である。図6Iに示すように、パッド2bとグランド層3との間には溝4が形成されている。第1の例と同様に、パッド2b及びグランド層3の上面側には、表面処理層MTが形成されている。第2基材12の導電層12aに形成された配線5b及びその端部5b´は、ビアTHを介して、第2基材12の他方主面側の導電層12cに形成されたパッド2bと接続する。ちなみに、図6Iに示す断面では、図6Gで最上層に位置する第2基材12が最下層に位置するように反転して示す。図6Hと上下方向を揃えるためである。第6の例において、パッド2a,2b及びグランド層3を有する第2基材12は、本発明の「第1基材」に対応する基材である。
 第6の例では、プリント配線板1の最上面にグランド層3の接点が配置され最下面にパッド2a,2bが配置される例を説明したが、上下を反対にし、最上面にパッド2a,2bが配置され、最上面にグランド層3の接点が配置されるように使用してもよい。
 続いて、上述した本実施形態の第6の例のプリント配線板1の製造方法について説明する。まず、第2基材12を作製するために、絶縁性基材の一方主面に導電層12aが形成され,他方主面に導電層12cが形成された両面銅貼基材を準備する。
 第3の例と同様の手法により、一般的なフォトリソグラフィー技術を用いて、両面銅貼基材の一方主面(図中上側となる面)の導電層12aに配線5a´,5b´を形成する。配線5a´,5b´とグランド層3との間の溝に対応する領域には導電層12aを残さない。配線5a´,5b´とグランド層3とは絶縁された状態とする。
 次に、第1基材11を作製するために、絶縁性基材の一方主面に導電層11aが形成された片面銅貼基材を準備する。導電層11aは、グランド層3として機能する。
 次いで、第1基材11と第2基材12とを積層し、第3の例と同様の手法により、第1基材11の一方主面と第2基材12の一方主面と他方主面とを電気的に接続するビアTH、第2基材12の一方主面と他方主面とを電気的に接続するビアTHを形成する。第3の例と同様の手法により、一般的なフォトリソグラフィー技術を用いて、第2基材12の他方主面の導電層12cに所望のパッド2a,2bを形成する。パッド2a,2bとグランド層3との間の溝4に対応する領域には導電層11aを残さない。パッド2a,2bとグランド層3とは絶縁された状態とする。
 第1基材11の一方主面側の最上面の接続端部Eを除いた領域にカバーレイ20を貼りつける。第2基材12の他方主面側も同様に、パッド2a,2bが露出するようにカバーレイ20を貼りつける。カバーレイ20の貼り付けには、適切な接着剤を用いる。必要に応じて硬化処理を行う。
 第2基材12のパッド2a,2b及び第1基材11の露出部分の表面に金めっきなどの表面処理を施し、表面処理層MTを形成する。予め準備した金型を用いて、プリント配線板1を型抜きし、被係合部70、タブ状部材80を有する形状にする。これにより、本実施形態の第6の例のプリント配線板1を得る。
 次に、図7A~図7Hに基づいて、第7の例のプリント配線板1について説明する。
 第7の例のプリント配線板1は、導電層のうち最上層に位置する導電層12aにてコネクタと接続するのではなく、その下側に位置する二番目の導電層11aがコネクタと接続する。第7の例のプリント配線板1は、導電層11a、導電層11c、導電層12aの三つの導電層を含み、コネクタと一方側にて接続するタイプである。また、第7の例では、配線5がシングルエンド信号を伝達する信号線の配線パターンである点で、第1の例、第5の例と共通する。重複した説明を避けるため、第1~第6の例と共通する事項については、その説明を援用する。
 図7Aは、本実施形態の第7の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図7Bは、図7Aに示すプリント配線板1のカバーレイ20を除去した状態を示す平面斜視図である。図7A、図7Bに示すプリント配線板1は、カバーレイ20と、第1基材11と、第2基材12とを少なくとも備える。図7Aに示すように、プリント配線板1の最上層には、カバーレイ20が貼り付けられている。最上層のカバーレイ20の下層には第2基材12が配置され、その下層にはその第1基材11が配置されている。本例のプリント配線板1は、第1の例と同様に、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図7Bに示すように、パッド2が露出するように、第2基材12の導電層12a及び絶縁性基材12bが除去されている。本例の第1基材11の導電層11aに形成されたパッド2は、コネクタと接続される。第2基材12の導電層12aは、グランド接点に接続される。
 図7Cは、第1基材11の一方主面の平面斜視図である。絶縁性基材11bの一方主面に形成された導電層11aには、パッド2及び配線5が設けられている。図7Dは、図7Cに示す7D領域の部分拡大図である。第1基材11の一方主面側には、複数のパッド2とグランド層3とが形成されている。第1の例、第5の例と同様に、パッド2とグランド層3との間には、所定距離に応じた幅の溝4が形成される。
 図7Eは、第1基材11の他方主面側に形成された導電層11cの平面斜視図である。導電層11cはシールド機能を備え、グランド接点に接続される。
 図7Fは、図7Aに示すプリント配線板1の底面斜視図である。プリント配線板1の底面を構成する第1基材11の他方主面側の導電層11cの全面がカバーレイ20で覆われている。さらに、パッド2が形成された領域には、補強層30が形成されている。
 図7Gは、図7Aに示すプリント配線板の7G-7G線に沿う断面図である。図7Gは、第2基材12の一方主面に形成されたグランド層3と、第1基材11の一方主面に形成されたパッド2と配線5、及び第1基材11の他方主面に形成されたグランド層3を含む断面図である。7G-7G線にはパッド2、配線5及びグランド層3が存在する。グランド層3とパッド2との間には溝4が存在する。第1基材11のパッド2の上層には、表面処理層MTが形成されている。パッド2は、表面処理層MTを介してコネクタと接続する。
 図7Hは、図7Aに示すプリント配線板1の7H-7H線に沿う、導電層11aのグランド層3を含む断面図である。図7Hに示すように、第2基材12の一方主面側のグランド層3と、第1基材11の一方主面側及び他方主面のグランド層3とは、ビアTHを介して接続され、図示しないグランド接点に接続される。
 第7の例では、第1基材11に形成される配線5がシングルエンド信号の信号線の配線パターンである例を説明したが、配線5が差動信号線として機能する対をなす配線5a,5bとしてもよい。
 続いて、上述した本実施形態の第7の例のプリント配線板1の製造方法について説明する。まず、第1基材11を作成するために、絶縁性基材の両面に導電層11a,11cが形成された両面銅貼基材を準備する。第1基材11の両主面のうち、第2基材12の主面と接する主面(本例では導電層11a)に、一般的なフォトリソグラフィー技術を用いて、パッド2及び配線5を形成する。パッド2とグランド層3との間の溝4に対応する領域には導電層13cを残さない。パッド2とグランド層3とは絶縁された状態とする。
 並行して、第2基材12を作製するために、絶縁性基材の片面に導電層12aが形成された片面銅貼基材を準備する。本例では、導電層12aをグランド層3として機能させる。
 第2基材12の絶縁性基材12bの全面に接着層を貼りつけ、その後、パッド2が形成される位置に対応する所定領域の接着層を除去する。所定領域の接着層を除去する手法は限定されず、金型で抜いてもよいし、レーザーにより除去してもよい。その後、第1基材11と第2基材12とを積層する。この積層工程においては、パッド2が形成される位置に対応する所定領域の接着層が除去されているので、パッド2が形成される位置においては、第1基材11と第2基材12との間に接着層が存在しない状態とすることができる。このようにすることで、後に、パッド2が形成される位置に対応する、第2基材12の導電層12a及び絶縁性基材12bの所定領域を除去し、導電層11aに形成されたパッド2を露出させることができる。
 積層後、第3の例と同様の手法により、ビアTHを形成する。次に、必要に応じて、第3の例と同様の手法により、一般的なフォトリソグラフィー技術を用いて、第2基材12の導電層12a、第1基材11の導電層11cに配線等を形成してもよい。
 最後に、パッド2が形成される位置に対応する所定領域の第2基材12の導電層12a及び絶縁性基材12bを除去する。これらを除去する手法は限定されず、金型で抜いてもよいし、レーザーにより除去してもよい。
 第2基材12の一方主面側にカバーレイ20を貼りつける。第2基材12及びカバーレイ20は接続端部Eを覆わない。第2基材12の下層の第1基材11のパッド2を露出させる。第1基材11の他方主面側にカバーレイ20を貼りつける。さらに、カバーレイ20の表面のうち、第1基材11の他方主面の接続端部Eを含む領域に、補強層30を貼りつける。カバーレイ20及び補強層30は適切な接着剤を用いて貼りつける。必要に応じて接着剤の硬化処理を行う。第1基材11のパッド2を含む導電層11aの露出部分の表面に金めっきなどの表面処理を施し、表面処理層MTを形成する。予め準備した金型を用いて、プリント配線板1を型抜きし、被係合部70、タブ状部材80を有する形状にする。これにより、本実施形態の第7の例のプリント配線板1を得る。
 次に、図8A~図8Hに基づいて、第8の例のプリント配線板1について説明する。
 第8の例のプリント配線板1は、導電層のうち最上層に位置する導電層12aにてコネクタと接続するのではなく、その下側に位置する二番目の導電層11aがコネクタと接続する点で第7の例と共通する。また、第8の例のプリント配線板1は、最下面となる導電層11cにおいてもコネクタと接続する点で第7の例とは異なる。つまり、第8の例のプリント配線板1は、コネクタと一方主面及び他方主面の両面接続が可能なタイプである。この点で、第5の例、第6の例と共通する。
 第8の例は、三つの導電層を備える。また、第8の例では、配線5が一対の差動信号線である点で、第4の例、第6の例と共通する。重複した説明を避けるため、第1~第7の例と共通する事項については、その説明を援用する。
 図8Aは、本実施形態の第8の例のプリント配線板1の接続端部Eを含む接続部分の平面斜視図である。図8Bは、図8Aに示すプリント配線板1のカバーレイ20を除去した状態を示す平面斜視図である。図8A、図8Bに示すプリント配線板1は、カバーレイ20と、第1基材11と、第2基材12とを少なくとも備える。図8Aに示すように、プリント配線板1の最上層には、カバーレイ20が貼り付けられている。最上層のカバーレイ20の下層には第2基材12が配置され、その下層にはその第1基材11が配置されている。本例のプリント配線板1は、第1の例と同様に、一又は複数の被係合部70と、一又は複数のタブ状部材80を備える。
 図8A、図8Bに示すように、パッド2が露出するように、第2基材12の導電層12a及び絶縁性基材12bが除去されている。本例の第1基材11の導電層11aに形成されたパッド2は、コネクタと接続される。第2基材12の導電層12aは、グランド接点に接続される。
 図8Cは、第1基材11の一方主面の平面斜視図である。絶縁性基材11bの一方主面に形成された導電層11aには、パッド2a,2b、配線5a,5bが設けられている。図8Dは、図8Cに示す8D領域の部分拡大図である。第1基材11の一方主面側には、複数のパッド2a,2bとグランド層3とが形成されている。第6の例と同様に、パッド2a,2bとグランド層3との間には、所定距離に応じた幅の溝4が形成される。
 図8Eは、第1基材11の他方主面側に形成された導電層11cの平面斜視図である。導電層11cはシールド機能を備え、グランド接点に接続される。
 図8Fは、図8Aに示すプリント配線板1の底面斜視図である。プリント配線板1の底面を構成する第1基材11の他方主面側の導電層11cのうち、パッド2a,2bが形成された接続端部Eの領域以外の領域が、カバーレイ20で覆われている。さらに、パッド2a,2bが形成された接続端部Eを含む領域に対応する部分において導電層11cは露出している。
 図8Gは、図8Aに示すプリント配線板の8G-8G線に沿う断面図である。図8Gは、第2基材12の一方主面に形成されたグランド層3と、第1基材11の一方主面に形成されたパッド2a及び配線5a、及び第1基材11の他方主面に形成されたグランド層3を含む断面図である。8G-8G線にはパッド2a、配線5a及びグランド層3が存在する。グランド層3とパッド2との間には溝4が存在する。第1基材11のパッド2aの上層には、表面処理層MTが形成されている。パッド2aは、表面処理層MTを介してコネクタと接続する。
 図8Hは、図8Hに示すプリント配線板1の8H-8H線に沿う、導電層11aのグランド層3を含む断面図である。図8Hに示すように、第2基材12の一方主面側グランド層3と、第1基材11の一方主面及び他方主面のグランド層3とは、ビアTHを介して接続され、図示しないグランド接点に接続される。
 第8の例では、第1基材11に形成される配線5a,5bが対をなす差動信号線としたが、シングルエンド信号の信号線の配線パターンとしてもよい。
 続いて、上述した本実施形態の第8の例のプリント配線板1の製造方法について説明する。第2基材12の作製手法及び第1基材11の作製手法は、第7の例と共通する。第7の例と同様に、パッド2が形成される位置に対応する所定領域の接着層を除去して、第2基材12と第1基材11とを貼り合わせる。積層後、第3の例と同様の手法により、ビアTHを形成する。さらに、パッド2が形成される位置に対応する所定領域の第2基材12の導電層12a及び絶縁性基材12bを除去する。第2基材12の一方主面側にカバーレイ20を貼りつける。第2基材12及びカバーレイ20は接続端部Eを覆わない。第1基材11の一方主面に形成されたパッド2を露出させる。ここまで、第7の例と共通する手法を用いる。
 第1基材11の他方主面のうち、パッド2a,2bが形成される接続端部Eの領域を除いて、カバーレイ20を貼りつける。つまり、接続端部Eの領域の導電層11cを露出させる。第1基材11のパッド2を含む導電層11aの露出部分、及び第1基材11の導電層11cの露出部分の表面に金めっきなどの表面処理を施し、表面処理層MTを形成する。予め準備した金型を用いて、プリント配線板1を型抜きし、被係合部70、タブ状部材80を有する形状にする。これにより、本実施形態の第8の例のプリント配線板1を得る。
<実施例>
 本発明の効果を確認するため、アンテナ特性に関する試験を行ったので以下説明する。
 本実施例では、理想無指向性アンテナを基準としたときの指向性と放射レベルを検討した。本実施例では、本実施形態のプリント配線板1について、複数のモデルを作成し、コネクタと接続されるパッド2の近傍、つまり接続端部Eにおける放射レベルを測定した。同様に、比較例となるプリント配線板のモデルを複数作成し、同じく、コネクタと接続されるパッド2の近傍、つまり接続端部Eにおける放射レベルを測定した。
 測定の条件を、図10A及び図10Bに示す。
 図9A~図9Dに、各モデルに係る実施例1~実施例5及び比較例1~比較例5(5-1,5-2を含む)の解析形状と、そのアンテナ特性として最大値を示した。図9A~図9Dにおける解析形状を示す欄において、(1)の欄には、カバーレイ20が形成された状態のものを示し、同図の(2)の欄には、カバーレイを除去した状態のものを示し、同図の(3)の欄には、グランド層3を除いたパッド2及び配線5の形状を示した。また、各実施例1~実施例5及び比較例1~比較例5のアンテナ特性として最大値を最右欄に示した。
 以下に説明する実施例及び比較例において用いるプリント配線板1のモデルを以下の通り定義した。プリント配線板1を構成する基材(本実施形態の第1基材11、第2基材12、及び第3基材に対応する基材)としては、厚さ20[μm]のポリイミド製のフィルムの一方の主面又は両面に銅箔が形成された銅貼基材とした。パッド2a,2bの配置は、各説明において指摘する図に示すとおりである。
 本実施例に係るパッド2a,2b間のピッチは0.4[mm]とした。パッド2a,2bとグランド層3とのピッチは0.4[mm]とした。パッド2a,2bを囲う溝4の幅は0.08[mm]とした。本実施例に係る配線は、対をなす差動信号線で構成した。配線5a,5b(差動信号線)の太さは0.1[mm]とした。対をなす配線(差動信号線)間のピッチは0.18[mm]とした。
 パッド2a,2b,配線5a,5b、及びグランド層3は銅製とした。パッド2a,2b,配線5a,5b、及びグランド層3の厚さは、ほぼ均一とし、27[μm](銅箔:12[μm],銅めっき:15[μm]とした。パッド2a,2b、グランド層3の一部の表面には、必要に応じて表面処理層MTとしての金めっき層を形成した。プリント配線板の上面側のカバーレイ20及び下面側のカバーレイ20には、厚さ12.5[μm]のポリイミド製のフィルムを用いた。補強層30には、厚さ12.5[μm]のポリイミド製のフィルムを用いた。
<実施例1>
 実施例1として、上述した第2の例のプリント配線板1のモデル1を定義した。第2の例のプリント配線板1のモデル1は、図2A~図2Fに示す構造を有する。また、実施例1と比較するために、比較例1に係るプリント配線板のモデル1-2を定義した。パッド2a,2bを取り囲む溝4を有さないという点以外は実施例1のモデル1と同一条件として、比較例1のモデル1-2を定義した。
 図9Aに示すように、実施例1に係るプリント配線板1のモデル1のパッド2a,2bの周囲にはグランド層3が形成されており、パッド2a,2bとグランド層3との間には、溝4が形成されている。他方、比較例1に係るプリント配線板のモデル1-2は、パッド(本実施形態のパッド2a,2bに相当する部材、以下同じ)の周囲にグランド層(本実施形態のグランド層3に相当する部材。以下同じ)は形成されておらず、パッドとグランド層との間には、溝(本実施形態の溝4に相当する部材。以下同じ)が無い。
 実施例1のプリント配線板1の接続端部Eにおける放射レベルは、比較例1の放射レベルよりも低く、実施例1のプリント配線板1の放射レベルは、比較例1のそれの放射レベルのおよそ83%であった。
<実施例2>
 実施例2として、上述した第2の例のプリント配線板1の他方主面にグランド層3を形成した構造のモデル2を定義した。実施例2のモデル2のプリント配線板の導電層の層数は2である。絶縁性基材の他方主面の一面にグランド層が形成されている。また、この実施例2と比較するために、比較例2に係るプリント配線板のモデル2-2を定義した。絶縁性基材の一方主面において、パッドの全周を取り囲むグランド層は形成しない点以外は実施例2のモデル2-1と同一条件として、比較例2のモデル2-2を定義した。
 図9Aに示すように、実施例2に係るプリント配線板1のモデル2は溝4を有するが、比較例2のモデル2-2に係るプリント配線板は、溝を有さない。
 実施例2のプリント配線板1の接続端部Eにおける放射レベルは、比較例2の放射レベルよりも低く、実施例2のプリント配線板1の放射レベルは、比較例2のそれの放射レベルのおよそ53%であった。
<実施例3>
 実施例3として、上述した第8の例のプリント配線板1のモデル3を定義した。モデル2のプリント配線板の導電層の層数は3である。絶縁性基材の一方主面においてパッドよりも接続端部E側にはグランド層を設けずに、接続端部Eとは反対側だけにグランド層を設けた。第8の例のプリント配線板1のモデル3は、図8A~図8Hに示す構造を有する。また、この実施例3のモデル3と比較するために、比較例3に係るプリント配線板のモデル3-2を定義した。パッド2a,2bを取り囲む、溝4を有さないという点以外は実施例3のモデル3と同一条件として、比較例3のモデル3-2を定義した。
 図9Bに示すように、実施例3に係るプリント配線板1のモデル3は溝4を有するが、比較例2のモデル3-2に係るプリント配線板は、溝を有さない。
 実施例3のプリント配線板1の接続端部Eにおける放射レベルは、比較例3の放射レベルよりも低く、実施例3のプリント配線板1の放射レベルは、比較例3のそれの放射レベルのおよそ46%であった。
<実施例4>
 実施例4として、上述した第3の例のプリント配線板1のモデル4を定義した。モデル4のプリント配線板の導電層の層数は2である。第3の例のプリント配線板1のモデル4は、図3A~図3Hに示す構造を有する。また、この実施例4と比較するために、比較例4-1及び比較例4-2に係るプリント配線板のモデル4-21,4-22をそれぞれ定義した。実施例4のモデル4は、絶縁性基材の一方主面の全面においてパッドを取り囲むグランド層が形成されるとともに、絶縁性基材の他方主面の全面において配線を取り囲むグランド層が形成されている。
 これに対し、比較例4-1のモデル4-21では、絶縁性基材の一方主面において、パッドの全周を取り囲むグランド層は形成しない。絶縁性基材の一方主面において、パッドよりも接続端部E側にはグランド層を設けずに、接続端部Eとは反対側だけにグランド層を設けた。この比較例4-1のモデル4-21では、絶縁性基材の他方主面(配線が形成される主面)において、パッドの形成位置よりも接続端部E側の領域にだけグランド層を設けずに、接続端部Eとは反対側だけに配線を取り囲むグランド層を設けた。
 また、比較例4-2のモデル4-22では、比較例4-1と同様に、絶縁性基材の一方主面において、パッドの全周を取り囲むグランド層は形成しない。絶縁性基材の一方主面において、パッドよりも接続端部E側にはグランド層を設けずに、接続端部Eとは反対側だけにグランド層を設けた。比較例4-1のモデル4-21とは異なり、この比較例4-2のモデル4-22では、絶縁性基材の他方主面(配線が形成される主面)において、実施例4と同様に、全面において配線を取り囲むグランド層を設けた。
 比較例4-1及び比較例4-2のモデル4-21,4-22は、いずれも、パッド2a,2bを取り囲む溝4を有さない。また比較例4-1のモデルは、配線5aの端部5a´,配線5bの端部5b´を取り囲む溝4を有さない。
 実施例4のプリント配線板1の接続端部Eにおける放射レベルは、比較例4-1及び比較例4-2のいずれの放射レベルよりも低く、実施例4のプリント配線板1の放射レベルは、比較例4-1のそれの放射レベルのおよそ5%であった。実施例4のプリント配線板1の放射レベルは、比較例4-2のそれの放射レベルのおよそ32%であった。
<実施例5>
 実施例5として、上述した第4の例のプリント配線板1のモデル5を定義した。モデル5のプリント配線板の導電層の層数は3である。第4の例のプリント配線板1のモデル5は、図4A~図4Iに示す構造を有する。また、この実施例5と比較するために、比較例5-1及び比較例5-2に係るプリント配線板のモデル5-21,5-22をそれぞれ定義した。実施例5のモデル5では、絶縁性基材の一方主面の全面においてパッドを取り囲むグランド層が形成されるとともに、絶縁性基材の他方主面の全面において配線を取り囲むグランド層が形成されている。さらに、配線が形成された他方の主面の導電層と、絶縁性基材を介して一面にグランド層が形成されている。
 これに対し、比較例5-1のモデル5-21では、絶縁性基材の一方主面において、パッドの全周を取り囲むグランド層は形成しない。絶縁性基材の一方主面において、パッドよりも接続端部E側にはグランド層を設けずに、接続端部Eとは反対側だけにグランド層を設けた。この比較例5-1のモデル5-21では、絶縁性基材の他方主面(配線が形成される主面)において、パッドの形成位置よりも接続端部E側の領域にだけグランド層を設けずに、接続端部Eとは反対側だけに配線を取り囲むグランド層を設けた。配線が形成された他方の主面の導電層に積層される絶縁性基材の他方主面の一面にグランド層を形成した。このグランド層は三層の導電層のうち最下層となる。
 また、比較例5-2のモデル5-22では、比較例5-1のモデル5-21と同様に、絶縁性基材の一方主面において、パッドの全周を取り囲むグランド層は形成しない。絶縁性基材の一方主面において、パッドよりも接続端部E側にはグランド層を設けずに、接続端部Eとは反対側だけにグランド層を設けた。比較例5-1のモデル5-21とは異なり、この比較例5-2のモデル5-22では、絶縁性基材の他方主面の全面において配線を取り囲むグランド層が設けられている。配線が形成された他方の主面の導電層に積層される絶縁性基材の他方主面の一面にグランド層を形成した。このグランド層は三層の導電層のうち最下層となる。
 比較例5-1及び比較例5-2のモデル5-21,5-22は、いずれも、パッド2a,2bを取り囲む溝4を有さない。さらに、比較例5-1のモデル5-21は、実施例5のモデル5ように、配線5aの端部5a´,配線5bの端部5b´を取り囲む溝4を有さない。
 実施例5のプリント配線板1の接続端部Eにおける放射レベルは、比較例5-1及び比較例5-2のいずれの放射レベルよりも低く、実施例5のプリント配線板1の放射レベルは、比較例5-1のそれの放射レベルのおよそ11%であった。実施例5のプリント配線板1の放射レベルは、比較例5-2のそれの放射レベルのおよそ22%であった。
 以上のように、実施例1~5のいずれの態様においても、放射レベルを低減させることができた。
 1…プリント配線板
 10…基材
  11…第1基材
   11a…導電層
   11b…絶縁性基材
  12…第2基材
 2…パッド
  2a…第1配線
  2b…第2配線
 3…グランド層
  3a…パッド囲い部分
 4…溝
 5…配線
  5a…第1配線
  5b…第2配線
20…カバーレイ
30…補強層
70…被係合部
80…タブ状部材
E…接続端部
 Ed…端縁
S…オフセット部

Claims (9)

  1.  他のコネクタに電気的に接続されるパッドと、
     前記パッドの周囲から当該パッドを囲い、前記パッドの外縁から所定距離だけ離隔した位置に内縁を有するように形成され、グランド接点に接地されるグランド層とが、
     何れか一方の主面に形成された第1基材を少なくとも含む基材を備えるプリント配線板。
  2.  前記第1基材は、前記一方の主面に形成され、前記パッドに電気的に接続された配線を有し、
     前記配線は、当該配線の外縁が前記グランド層の内縁から所定距離だけ離隔した位置となるように形成された請求項1に記載のプリント配線板。
  3.  前記第1基材は、
     当該第1基材の前記一方の主面の反対側の他方の主面に形成され、前記パッドに電気的に接続される配線と、
     前記他方の主面に形成された配線の外縁から所定距離だけ離隔した位置に内縁を有し、グランド接点に接続されるグランド層と、を有する請求項1又は2に記載のプリント配線板。
  4.  前記基材は、前記第1基材の何れか一方の主面に直接又は他の基材を介して積層される一又は複数の第2基材をさらに含み、
     前記第2基材は、
     前記第1基材と前記第2基材とを含む前記基材を貫通するビアを介して前記パッドに電気的に接続される配線と、前記第2基材に形成された配線の外縁から所定距離だけ離隔した位置に内縁を有し、グランド接点に接続されるグランド層と、を有する請求項1~3の何れか一項に記載のプリント配線板。
  5.  前記基材は、前記第1基材と前記第2基材とを含み、
     前記第1基材は、当該第1基材の一方の主面側に、前記他のコネクタに電気的に接続される複数のパッドと、前記パッドの周囲から当該パッドを囲い、前記パッドの外縁から所定距離だけ離隔した位置に内縁を有するように形成され、グランド接点に接続されるグランド層とを有し、
     前記第2基材は、前記一方の主面とは反対側の、当該第2基材の他方の主面側に、前記他のコネクタに電気的に接続される複数のパッドと、前記パッドの周囲から当該パッドを囲い、前記パッドの外縁から所定距離だけ離隔した位置に内縁を有するように形成され、グランド接点に接続されるグランド層とを有する請求項4に記載のプリント配線板。
  6.  前記コネクタに接続される接続端部に形成され、前記パッドと一方端部が接するビアを、備える請求項1~5の何れか一項に記載のプリント配線板。
  7.  前記パッドと同じ主面に形成される前記グランド層は、当該グランド層が形成される前記基材の主面の外縁から所定のオフセット量だけ内側に、当該グランド層の外縁が位置するように形成される請求項1~6の何れか一項に記載のプリント配線板。
  8.  前記パッドが形成される主面と異なる主面に他のグランド層が形成される場合には、当該他のグランド層が形成される前記基材の主面の外縁と、当該他のグランド層の外縁とが同じ位置となるように形成される請求項7に記載のプリント配線板。
  9.  前記パッドは、第1信号を伝達する配線と接続するパッドと、第1信号とは異なる第2信号を伝達する配線と接続するパッドと、を含む請求項1~8の何れか一項に記載のプリント配線板。
PCT/JP2015/076090 2014-09-22 2015-09-15 プリント配線板 WO2016047492A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/513,459 US10129978B2 (en) 2014-09-22 2015-09-15 Printed wiring board
CN201580044942.2A CN106576426B (zh) 2014-09-22 2015-09-15 印刷配线板
EP15843513.1A EP3200572A4 (en) 2014-09-22 2015-09-15 Printed wiring board
KR1020177009298A KR102023338B1 (ko) 2014-09-22 2015-09-15 프린트 배선판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-192485 2014-09-22
JP2014192485A JP6190345B2 (ja) 2014-09-22 2014-09-22 プリント配線板

Publications (1)

Publication Number Publication Date
WO2016047492A1 true WO2016047492A1 (ja) 2016-03-31

Family

ID=55581019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076090 WO2016047492A1 (ja) 2014-09-22 2015-09-15 プリント配線板

Country Status (7)

Country Link
US (1) US10129978B2 (ja)
EP (1) EP3200572A4 (ja)
JP (1) JP6190345B2 (ja)
KR (1) KR102023338B1 (ja)
CN (1) CN106576426B (ja)
TW (1) TWI613941B (ja)
WO (1) WO2016047492A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686884A (zh) * 2017-02-27 2017-05-17 深圳市柯达科电子科技有限公司 一种fpc连接头、触摸屏及液晶屏
WO2018153383A1 (zh) * 2017-02-27 2018-08-30 深圳市柯达科电子科技有限公司 一种fpc连接头、触摸屏及液晶屏

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107535044B (zh) 2014-11-21 2019-12-10 安费诺公司 用于高速、高密度电连接器的配套背板
CN109076700B (zh) 2016-03-08 2021-07-30 安费诺公司 用于高速、高密度电连接器的背板占板区
US10201074B2 (en) 2016-03-08 2019-02-05 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US11483928B2 (en) * 2017-08-14 2022-10-25 Sumitomo Electric Printed Circuits, Inc. Flexible printed circuit board
CN107708292B (zh) * 2017-10-27 2019-12-17 广东生益科技股份有限公司 能有效减少埋孔裂纹的pcb及其制造方法
CN111602472B (zh) * 2017-11-08 2024-02-06 安费诺公司 用于高速、高密度电连接器的背板占板区
CN109933227A (zh) * 2017-12-15 2019-06-25 南昌欧菲光科技有限公司 Fpc结构和终端
JP6740268B2 (ja) * 2018-02-23 2020-08-12 株式会社三共 遊技機
WO2019241107A1 (en) 2018-06-11 2019-12-19 Amphenol Corporation Backplane footprint for high speed, high density electrical connectors
US10314162B1 (en) * 2018-07-13 2019-06-04 Mellanox Technologies, Ltd. Apparatuses and methods for improved network connections
KR102616482B1 (ko) * 2018-07-26 2023-12-26 삼성전자주식회사 전원 배선에서 발생된 전자기파를 상쇄하기 위한 접지 배선을 포함하는 인쇄 회로 기판 및 이를 포함하는 전자 장치
TWI675510B (zh) * 2019-01-14 2019-10-21 燁元電子有限公司 連接排線與電路板的連接結構
WO2020236794A1 (en) 2019-05-20 2020-11-26 Amphenol Corporation High density, high speed electrical connector
WO2021020701A1 (ko) * 2019-07-30 2021-02-04 삼성전자 주식회사 경연성 인쇄 회로 기판 및 이를 포함하는 전자 장치
CN112203405B (zh) * 2020-10-26 2022-05-20 恒为科技(上海)股份有限公司 Pcb焊盘宽度的确定方法及pcb板
KR20220139617A (ko) * 2021-04-08 2022-10-17 삼성전자주식회사 루프 배선을 포함하는 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024618A (ja) * 2004-07-06 2006-01-26 Toshiba Corp 配線基板
JP2007123741A (ja) * 2005-10-31 2007-05-17 Sony Corp フレキシブル基板、光送受信モジュール及び光送受信装置
JP2007180292A (ja) * 2005-12-28 2007-07-12 Fujitsu Ltd 回路基板
JP2011096954A (ja) * 2009-10-30 2011-05-12 Kyocer Slc Technologies Corp 配線基板

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876989B2 (ja) 1994-05-31 1999-03-31 松下電工株式会社 プリント配線板の製造方法
JP2728372B2 (ja) * 1994-12-15 1998-03-18 ケル株式会社 電気コネクタ
JP2001326440A (ja) * 2000-05-18 2001-11-22 Casio Comput Co Ltd フレキシブル配線基板の接合構造
JP2002353588A (ja) * 2001-05-29 2002-12-06 Mitsubishi Electric Corp 配線基板及び配線基板の製造方法
US7044794B2 (en) * 2004-07-14 2006-05-16 Tyco Electronics Corporation Electrical connector with ESD protection
JP4421427B2 (ja) 2004-08-31 2010-02-24 富士通コンポーネント株式会社 平衡伝送用ケーブルコネクタ
JP4551776B2 (ja) 2005-01-17 2010-09-29 日本圧着端子製造株式会社 両面fpc
JP2007193999A (ja) 2006-01-17 2007-08-02 Sony Chemical & Information Device Corp 伝送ケーブル
US7520757B2 (en) * 2006-08-11 2009-04-21 Tyco Electronics Corporation Circuit board having configurable ground link and with coplanar circuit and ground traces
DE102007028799A1 (de) * 2007-06-19 2008-12-24 Technische Universität Ilmenau Impedanzkontrolliertes koplanares Wellenleitersystem zur dreidimensionalen Verteilung von Signalen hoher Bandbreite
JP2009080972A (ja) 2007-09-25 2009-04-16 Sumitomo Electric Ind Ltd 接続構造体,配線板接続体,配線板モジュールおよび電子機器
US7643305B2 (en) * 2008-03-07 2010-01-05 Qualcomm Mems Technologies, Inc. System and method of preventing damage to metal traces of flexible printed circuits
JP5311669B2 (ja) 2009-12-27 2013-10-09 京セラSlcテクノロジー株式会社 配線基板
JP5563890B2 (ja) 2010-05-13 2014-07-30 住友電気工業株式会社 フレキシブル配線板
JP5565958B2 (ja) 2010-10-30 2014-08-06 京セラSlcテクノロジー株式会社 配線基板
US8885357B2 (en) 2012-01-06 2014-11-11 Cray Inc. Printed circuit board with reduced cross-talk
US9565750B2 (en) * 2012-08-18 2017-02-07 Kyocera Corporation Wiring board for mounting a semiconductor element
JP6218481B2 (ja) 2012-09-27 2017-10-25 三菱電機株式会社 フレキシブル基板、基板接続構造及び光モジュール
JP6190202B2 (ja) * 2013-08-06 2017-08-30 ヒロセ電機株式会社 電気コネクタ
JP5797309B1 (ja) 2014-07-22 2015-10-21 株式会社フジクラ プリント配線板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024618A (ja) * 2004-07-06 2006-01-26 Toshiba Corp 配線基板
JP2007123741A (ja) * 2005-10-31 2007-05-17 Sony Corp フレキシブル基板、光送受信モジュール及び光送受信装置
JP2007180292A (ja) * 2005-12-28 2007-07-12 Fujitsu Ltd 回路基板
JP2011096954A (ja) * 2009-10-30 2011-05-12 Kyocer Slc Technologies Corp 配線基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200572A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686884A (zh) * 2017-02-27 2017-05-17 深圳市柯达科电子科技有限公司 一种fpc连接头、触摸屏及液晶屏
WO2018153383A1 (zh) * 2017-02-27 2018-08-30 深圳市柯达科电子科技有限公司 一种fpc连接头、触摸屏及液晶屏
US10886652B2 (en) 2017-02-27 2021-01-05 Shenzhen Startek Electronic Technology Co., Ltd. FPC connector, touch-sensitive screen and LCD screen

Also Published As

Publication number Publication date
EP3200572A1 (en) 2017-08-02
CN106576426B (zh) 2019-09-20
US20170303395A1 (en) 2017-10-19
EP3200572A4 (en) 2018-05-23
KR102023338B1 (ko) 2019-09-20
JP6190345B2 (ja) 2017-08-30
KR20170048575A (ko) 2017-05-08
TWI613941B (zh) 2018-02-01
US10129978B2 (en) 2018-11-13
CN106576426A (zh) 2017-04-19
JP2016063188A (ja) 2016-04-25
TW201630486A (zh) 2016-08-16

Similar Documents

Publication Publication Date Title
JP6190345B2 (ja) プリント配線板
JP5797309B1 (ja) プリント配線板
JP5754562B1 (ja) 高周波信号線路及び電子機器
KR102517144B1 (ko) 다층 플렉시블 프린트 배선판 및 그 제조방법
US9692100B2 (en) Multi-layer resin substrate having grounding conductors configured to form triplate line sections and microstrip sections
JP5201270B2 (ja) 回路基板及びその製造方法
JP4414365B2 (ja) 高速伝送用基板
JP2007234500A (ja) 高速伝送用fpc及びこのfpcに接続されるプリント基板
US20230019563A1 (en) High-frequency circuit
JP6732723B2 (ja) 高周波伝送用プリント配線板
JP5472555B2 (ja) 高周波信号伝送線路及び電子機器
JP6259813B2 (ja) 樹脂多層基板、および樹脂多層基板の製造方法
JP6383830B2 (ja) プリント配線板
EP1951009B1 (en) Printed circuit board
WO2014065172A1 (ja) フレキシブル基板
KR101052160B1 (ko) 멀티 배선 레이어를 구비한 플랫 케이블
JP2008294151A (ja) フレキシブルプリント基板
JP2007103560A (ja) フレキシブル配線基板
JP2011249467A (ja) 回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15513459

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015843513

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843513

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177009298

Country of ref document: KR

Kind code of ref document: A