WO2016047122A1 - Structural color display - Google Patents

Structural color display Download PDF

Info

Publication number
WO2016047122A1
WO2016047122A1 PCT/JP2015/004767 JP2015004767W WO2016047122A1 WO 2016047122 A1 WO2016047122 A1 WO 2016047122A1 JP 2015004767 W JP2015004767 W JP 2015004767W WO 2016047122 A1 WO2016047122 A1 WO 2016047122A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural color
image display
incident
sheet
reflected light
Prior art date
Application number
PCT/JP2015/004767
Other languages
French (fr)
Japanese (ja)
Inventor
和浩 山本
Original Assignee
山富電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山富電機株式会社 filed Critical 山富電機株式会社
Priority to JP2015553957A priority Critical patent/JP5894715B1/en
Publication of WO2016047122A1 publication Critical patent/WO2016047122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/23Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of the colour
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/34Colour display without the use of colour mosaic filters

Definitions

  • the present invention relates to a structural color display and an image display using the same.
  • structural color display is also simply referred to as “image display device”.
  • FIG. 12 is a schematic diagram for explaining a problem in the image display device according to the prior art.
  • FIGS. 12A and 12B are diagrams schematically illustrating a case where images displayed on the image display device 20 according to the related art are observed at different angles.
  • the distance of light traveling in the image display sheet 1 that is, the optical path length
  • the wavelength of the light which interferes changes and the color (namely, wavelength of reflected light) of the image displayed with the image display apparatus 20 changes.
  • “3a” indicates incident light
  • “3b” indicates reflected light (structural color).
  • the present invention has been made in view of such circumstances, and a structural color capable of preventing an image (particularly the color) displayed using the structural color from changing depending on the viewing angle of the observer.
  • An object is to provide a display and an image display using the display.
  • an aspect of the present invention is an image display device that displays an image with a structural color, the image display sheet having a structural color expression region that is a region that expresses the structural color, Incident light that is placed on the image display side of the structural color expression region and is incident at a predetermined angle with respect to the surface of the structural color expression region located on the image display side, and the structure of the incident light
  • the structural color display includes at least an incident / reflected light limiting unit that selectively transmits reflected light reflected by a part of the color expression region.
  • the structural color display according to one aspect of the present invention can prevent an image displayed using the structural color from changing depending on the observation angle of the observer.
  • the observation angle referred to in one embodiment of the present invention is an observation angle of a person who views the display device, and is a concept different from “a viewing angle in a liquid crystal display”.
  • FIG. 1 is a conceptual cross-sectional view illustrating a configuration of an image display device according to a first embodiment of the present invention. It is a schematic diagram for demonstrating the expression mechanism of the structural color in the image display apparatus which concerns on 1st Embodiment of this invention. It is a conceptual sectional view showing the composition of the image display device concerning a 2nd embodiment of the present invention. It is a schematic diagram for demonstrating the sheet
  • FIG. 1 it is an xy chromaticity diagram which shows the locus
  • FIG. 2 it is an xy chromaticity diagram which shows the locus
  • FIG. 2 It is a figure which shows the observation angle dependence of the brightness
  • FIG. It is a figure which shows the measurement position of the structural color (chromaticity and brightness
  • it is xy chromaticity diagram which shows the locus
  • It is a figure which shows the observation angle dependence of the brightness
  • FIG. 5 It is an xy chromaticity diagram which shows the locus
  • FIG. 5 it is an xy chromaticity diagram which shows the locus
  • FIG. 5 it is an xy chromaticity diagram which shows the locus
  • FIG. 1 is a conceptual cross-sectional view showing a configuration of an image display device 10 according to the first embodiment of the present invention.
  • an image display device 10 is an image display device that displays an image with a structural color, and includes an image display sheet 1 having a structural color expression region R1 that is a region that exhibits a structural color, and a structure.
  • Incident light that is installed on the image display side of the color expression region R1 and is incident on the surface S1 on the image display side at a preset angle, and reflected light that is reflected by a part of the structural color expression region R1 of the incident light And the incident / reflected light limiting unit 2 that selectively transmits the light.
  • each of the members will be described.
  • the image display sheet 1 is a sheet-like member that can express a structural color.
  • the image display sheet 1 includes, for example, a thin film or plate integrally formed using a resin having a preset refractive index, or a gas having a preset refractive index between two sheets disposed opposite to each other.
  • a laminate formed by filling one of a liquid and a solid can be used.
  • examples of the substance filled between the two sheets include a voltage-responsive polymer gel whose volume changes according to the applied voltage.
  • the image display sheet 1 should just be able to express a structural color, for example, the material and shape are not ask
  • this image display sheet for example, a structure in which a resin film having a lamellar structure, a chargeable organic polymer or inorganic spherical particles are migrated and regularly aligned in a vertical and horizontal direction on a predetermined support surface
  • a metal structure having a nanostructure on the surface and a substrate having protrusions and recesses formed on the surface the protrusions and recesses are imprinted on a plurality of resin plates by a nanoimprint technique, and the replication is performed.
  • an expansion / contraction body such as a stimulus-responsive polymer gel that changes in volume according to the electric field
  • a periodic structure disposed in the expansion / contraction body
  • a structural color A sphere and a matrix having a display layer that expresses and a reflective interface that reflects light transmitted through the display layer, a laminate in which high-refractive index layers and low-refractive index layers are alternately stacked, and a wavelength of visible light 1 / An integral multiple of 2 wavelengths It can be exemplified microstructure or the like having a regular microstructure which is periodic interval.
  • the image display sheet 1 has a structural color expression region R1 that is a region that expresses a structural color (a region for displaying an image).
  • the thickness of the image display sheet 1 in the structural color expression region R1 is substantially uniform over the entire structural color expression region R1.
  • the structural color expression region R1 may be any size, shape, or number.
  • the structural color expression region R1 will be described in more detail.
  • the structural color expression region R1 is not particularly limited as long as it is formed of a structural color material having a function of expressing a structural color based on the principle of light interference.
  • the structure of the structural color material is as follows: (1) colloidal crystal structure in which colloidal particles are dispersed in a medium, (2) inverse opal structure, (3) multilayer structure, (4) lamellar structure, (5) Any of a thin film structure may be sufficient.
  • the colloidal crystal structure of (1) includes a polymer gel formed by dissolving and polymerizing a monomer and a crosslinking agent in a dispersion medium of colloidal particles.
  • a hydrophilic polymer gel hydrogel can be suitably used as the polymer gel.
  • the lamellar structure (4) includes a self-aggregating lamellar structure formed by self-aggregation of a (polymer) surfactant, in addition to a lamellar structure formed by a microphase-separated structure of a block polymer.
  • the structural color material may be a stimulus-responsive structural color material that responds to the external stimulus already described.
  • the structural color material is selected in consideration of formula (1) or formula (3) corresponding to the structure of the structural color material, which will be described later.
  • Stimulus-responsive structural color materials include, for example, electric fields, deformation (strain / stress), heat, electromagnetic waves (including visible light, ultraviolet rays, and X-rays), moisture / moisture, magnetism, pH change, solvent contact, and other stimuli
  • a structural color material composed of a stimulus-responsive material that responds and changes its volume or Bragg period can be suitably used.
  • the incident / reflected light limiting unit 2 On the surface S1 on the image display side of the structural color expression region R1, the incident / reflected light limiting unit 2 is disposed.
  • the incident / reflected light limiting unit 2 includes incident / reflected light transmission regions R2 (R2a to R2f), and the incident / reflected light transmission region R2 includes incident light incident at a preset angle with respect to the surface S1, and This refers to a region that selectively transmits reflected light reflected by a part of the structural color expression region R1 (for example, the surface S2) of the incident light.
  • An incident / reflected light limiting unit 2 having an incident / reflected light transmission region R2 (R2a to R2f) that selectively transmits reflected light reflected at an angle is illustrated.
  • the incident / reflected light limiting unit 2 for example, urexite arranged so as to transmit incident light incident along the thickness direction of the image display sheet 1 and optical fibers extending along the same direction are fixed in a bundle. It is possible to use one provided with at least one of the bundled optical fibers. In the case where the one provided with at least one of the urexite and the bundled optical fiber is used as the incident / reflected light limiting unit 2, for example, the light enters the surface S1 at an angle in the range of 80 ° to 90 °. It becomes easy to selectively transmit incident light and reflected light reflected at an angle within the range.
  • “Urexite” is an ore generally called a television stone, and is an aggregate in which transparent fibrous crystals are arranged completely in parallel.
  • the incident / reflected light limiting unit 2 only needs to be able to selectively transmit incident light and reflected light, and may be of any material or shape. Moreover, the size does not ask
  • the incident / reflected light transmission region R2 (R2a to R2f) may have any size, shape, or number.
  • the “bundle optical fiber” is obtained by cutting a plurality of optical fibers in which the axes are bundled and welded in a direction perpendicular to the axis into a plate shape.
  • the incident / reflected light limiting portion 2 made of urexite is referred to as a “Urexite plate”, and the incident / reflected light limiting portion 2 formed of a bundle of optical fibers is referred to as a “bunched optical fiber plate”.
  • a tapered bundle optical fiber can be used as the bundle optical fiber. If this taper-type bundle optical fiber is used, the image in which the structural color material appears can be enlarged.
  • structural colors will be briefly described.
  • the structural color is a color due to light interference caused by the fine periodic structure of the object.
  • Beautiful colors such as iridescent insects and gem opals are also due to structural colors.
  • structural color material a material exhibiting a structural color (hereinafter referred to as “structural color material”) in which a sub-microscale fine periodic structure is formed has been developed.
  • structural color material a material exhibiting a structural color
  • typical structures include (1) colloidal crystal structure in which colloidal particles are dispersed in a medium (opal structure), (2) inverse opal structure, and (3) multilayer structure.
  • Lamella structure is known.
  • any of the structures (1) to (4) is characterized by having a periodic structure in which a high refractive index phase and a low refractive index phase are arranged at a predetermined period.
  • (5) thin film structures represented by soap bubbles also emit structural colors due to light interference caused by multiple reflection.
  • a structural color material that can variably control the period of the periodic structure by applying an external stimulus.
  • electric field, deformation (strain / stress), heat, moisture (moisture), magnetism, pH change, solvent contact, etc. are known as stimuli (hereinafter, structural colors that change the hue of the structural color by applying stimuli)
  • the material may be referred to as “stimulus responsive structural color material”).
  • these stimuli change the (Bragg) period or refractive index of the periodic structure, and as a result, use the property that the structural color to be visually recognized changes.
  • FIG. 2 is a schematic diagram for explaining the mechanism of expression of structural colors in the image display device 10.
  • FIG. 2 shows the image display sheet 1 having the structural color expression region R1 and the incident / reflected light limiting unit 2 arranged on the structural color expression region R1.
  • incident light 3a incident at an angle within a range of 80 ° to 90 ° with respect to the surface S1 (that is, an incident angle is 0 ° to 10 °) and reflected at an angle within the range.
  • a single incident / reflected light transmission region R2 (R2a) that selectively transmits the reflected light 3b is illustrated. That is, FIG. 2 shows a part of the image display device 10 in an enlarged manner.
  • the angle of light incident on the structural color expression region R1 is limited to an angle in the range of 80 ° to 90 ° with respect to the surface S1 by the incident / reflected light transmission region R2.
  • the “angle within the range of 80 ° or more and 90 ° or less” is an angle that is set in advance in the first embodiment and can be arbitrarily selected.
  • a part of the incident light 3a that reaches the structural color expression region R1 is reflected by the surface S1. Further, another part of the incident light 3a is reflected by the surface S2, for example. In this way, the reflected light 3b reflected by different surfaces (locations) interferes with each other, so that a structural color appears.
  • the expressed structural color transmits through the incident / reflected light transmission region R2 and is observed (viewed) by the observer.
  • the angle of the light (incident light 3a) incident on the structural color expression region R1 and the angle of the light (reflected light 3b) reflected on the structural color expression region R1 are set as the incident / reflected light limiting unit 2. It can be limited (fixed) by. For this reason, even when the observation angle of the observer changes, the optical path length itself in the image display sheet 1 does not change, so the wavelength of the structural color to be expressed does not change. Therefore, according to the image display device 10 according to the first embodiment, it is possible to prevent the image displayed using the structural color from changing depending on the observation angle of the observer.
  • ⁇ peak 2d C [n eff 2 ⁇ sin 2 ⁇ ] 1/2 (1)
  • ⁇ peak wavelength at which the reflectance becomes maximum
  • observation angle
  • d C distance between crystal planes
  • n eff effective refractive index
  • n eff (1 ⁇ ) n M + ⁇ n D (2)
  • n M is the refractive index of the matrix (dispersion medium, continuous phase)
  • n D is the refractive index of the colloidal particles (dispersed phase)
  • is the volume fraction of the colloidal particles in the colloidal crystal.
  • ⁇ peak 2 [d 1 (n 1 2 ⁇ sin 2 ⁇ ) 1/2 + d 2 (n 2 2 ⁇ sin 2 ⁇ ) 1/2 ] (3)
  • d 1 thickness of the first phase
  • d 2 thickness of the second phase
  • n 1 refractive index of the first phase
  • n 2 refractive index of the second phase.
  • ⁇ peak is a wavelength at which the reflectance is maximum, and a hue based on this wavelength is observed (observed, visually confirmed).
  • the structural color to be visually recognized depends on the observation angle ( ⁇ ). This situation also applies to the stimuli-responsive structural color material.
  • the image display device 10 is installed outdoors, for example. Thereby, the sun can be used as the light source. By doing so, it is possible to display an image that does not require power for displaying an image and whose color or the like does not change depending on the observation angle of the observer.
  • what is necessary is just to change the thickness of the image display sheet 1 in the preset area
  • FIG. 3 is a conceptual cross-sectional view showing the configuration of the image display device 11 according to the second embodiment of the present invention.
  • the structure of the image display device 11 is substantially the same as the structure of the image display device 10 according to the first embodiment described above, but the thickness d1 of the image display sheet 1 in the structural color expression region R1 is set as follows. It differs from the image display apparatus 10 in that the sheet thickness adjusting unit 4 to be adjusted is provided. Therefore, in the second embodiment, the sheet thickness adjusting unit 4 will be mainly described, and description of other components will be omitted.
  • the sheet thickness adjusting unit 4 is disposed at a position facing the incident / reflected light limiting unit 2 with the structural color expression region R1 interposed therebetween.
  • the sheet thickness adjusting unit 4 for example, one including an electrode (not shown) that contacts the image display sheet 1 can be used.
  • the sheet thickness adjustment part 4 should just be what can adjust the thickness d1 of the image display sheet 1 in the structural color expression area
  • the sheet thickness adjusting unit 4 may apply a stimulus to the stimulus-responsive structural color material.
  • Examples of the stimulus applied by the sheet thickness adjusting unit 4 include an electric field, deformation (strain / stress), heat, light, and a magnetic field.
  • the sheet thickness adjusting unit 4 can adjust the thickness d1 of the image display sheet 1 in the structural color expression region R1 by the stimulation.
  • FIG. 4 is a schematic diagram for explaining a change in sheet thickness in the image display apparatus 11 according to the second embodiment.
  • 4A shows the state before changing the thickness of the image display sheet 1 (sheet thickness d1)
  • FIG. 4B shows the state after changing the sheet thickness (sheet thickness d2).
  • the image display sheet 1 shown to Fig.4 (a) and FIG.4 (b) is a sheet
  • the ITO (Indium Tin Oxide) electrode which does not interfere with visual recognition of a structural color can be used.
  • the electrode included in the sheet thickness adjusting unit 4 is in contact with the image display sheet 1, and when a voltage is applied to the electrode, the volume of the voltage-responsive polymer gel in the structural color expression region R1 responds to the applied voltage. Decrease or increase. Thus, the thickness of the image display sheet 1 in the structural color expression region R1 is adjusted by reducing or increasing the volume of the voltage-responsive polymer gel.
  • FIG. 4B schematically shows how the volume of the voltage-responsive polymer gel increases in response to the applied voltage and the sheet thickness increases. Note that when the applied voltage is released, the volume of the voltage-responsive polymer gel returns to the state before voltage application, and thus the sheet thickness returns to the state shown in FIG.
  • the optical path length in the image display sheet 1 changes.
  • the color of the structural color can be changed by changing the wavelength of the interfering light.
  • FIG. 5 is a conceptual cross-sectional view showing the configuration of the image display device 12 according to the third embodiment of the present invention.
  • the structure of the image display device 12 is substantially the same as the structure of the image display device 10 according to the first embodiment described above, but the image display sheet 1 has a laminated structure. Different from the display device 10. Therefore, in the third embodiment, the image display sheet 1 having this laminated structure will be mainly described, and description of other components will be omitted.
  • the image display sheet 1 provided in the image display device 12 is a multilayer structure in which structural color expression layers 1 a to 1 c that express a structural color are stacked along the thickness direction of the image display sheet 1.
  • the thicknesses of the structural color developing layers 1a to 1c in the structural color developing region R1 are the same. In this way, by making the image display sheet 1 a multilayer structure, incident light can be reflected at the interfaces of the structural color developing layers 1a to 1c. When light is reflected from a plurality of surfaces, the wavelength range in which interference can occur is narrowed, so that the monochromaticity of the structural color that is expressed can be enhanced.
  • each of the structural color developing layers 1a to 1c may be an integral multiple of the thickness of the reference layer when any one of the structural color developing layers 1a to 1c is used as the reference layer. Even in this case, the monochromaticity of the developed structural color can be enhanced.
  • the above-described reference layer is the structural color expression layer 1a
  • the thickness of each of the structural color expression layers 1b and 1c is set to be one time the thickness of the structural color expression layer 1a.
  • the structural color developing layers 1a to 1c are all made of the same material. By doing so, it is possible to reduce an increase in the manufacturing cost of the image display device 12.
  • the material and shape of each layer of the structural color expression layers 1a to 1c are not limited. Moreover, the size does not ask
  • FIG. 6 is a conceptual cross-sectional view showing the configuration of the image display device 13 according to the fourth embodiment of the present invention.
  • the structure of the image display device 13 is substantially the same as the structure of the image display device 11 according to the second embodiment described above, but between the image display sheet 1 and the incident / reflected light limiting unit 2.
  • the image display device 11 is different from the image display device 11 in that a pixel partition frame (hereinafter, also simply referred to as “frame”) 5 for partitioning a pixel region is disposed.
  • the image display device 11 is also different in that it includes a plurality of sheet thickness adjustment units 4 (4a to 4f).
  • the frame 5 and the sheet thickness adjusting units 4a to 4f will be mainly described, and the description of the other constituent members will be omitted.
  • the number of structural color expression regions R1 (R1a to R1f) is not limited.
  • the frame 5 shown in FIG. 6 is a sheet-like member that is disposed between the image display sheet 1 and the incident / reflected light limiting unit 2 and absorbs visible light.
  • the frame 5 includes an opening that exposes each of the structural color expression regions R1a to R1f to partition the pixel region.
  • the frame 5 only needs to have an opening that divides the pixel region, and may be of any material or shape. Moreover, the size does not ask
  • the frame 5 may be formed of an insulating film having electrical insulating properties, or may be formed of a material having elasticity (such as a buffer material). Further, the frame 5 is arranged as necessary, and is not an essential member in the present invention. Further, the shape, size, and number of the openings provided in the frame 5 are not limited. Further, the color of the frame 5 is, for example, black in order to clearly partition the pixel region.
  • the image display device 11 adjusts the sheet thickness of the structural color expression region R ⁇ b> 1 with one sheet thickness adjustment unit 4.
  • the sheet thicknesses of the plurality of structural color expression regions R1a to R1f are adjusted by the plurality of sheet thickness adjustment units 4a to 4f. More specifically, the sheet thickness adjusting units 4a to 4f provided in the image display device 13 are arranged so as to overlap the structural color expression regions R1a to R1f. In this way, the sheet thickness can be adjusted for each pixel. For example, as shown in FIG.
  • the red structural color R, the green structural color G, and the blue structural color B are displayed for each pixel. Can do. For this reason, an image with high resolution can be displayed. Further, with the above-described configuration, the red structural color R, the green structural color G, the blue structural color B, or the intermediate color can be freely displayed by one pixel.
  • the sheet thickness adjusting unit 4 provided in the image display device 11 and the sheet thickness adjusting units 4a to 4f provided in the image display device 13 have the same functions, although they are different in installation position and size.
  • FIG. 7 is a conceptual cross-sectional view showing the configuration of the image display device 14 according to the fifth embodiment of the present invention.
  • the structure of the image display device 14 is the same as that of the image display device 13 according to the fourth embodiment described above except that the frame 5 is arranged so as to be embedded in the image display sheet 1. The same. Therefore, details of the structure of the image display device 14 are omitted here.
  • a plano-convex lens 6 and microlens arrays 7 and 8 to be described later can be disposed on the incident / reflected light limiting unit 2.
  • FIG. 8 is a conceptual cross-sectional view showing the configuration of the image display device 15 according to the sixth embodiment of the present invention.
  • the structure of the image display device 15 is substantially the same as the structure of the image display device 13 according to the fourth embodiment described above, but for widening the viewing angle on the incident / reflected light limiting unit 2. It differs from the image display device 13 in that it includes a plano-convex lens 6. Therefore, in the sixth embodiment, the plano-convex lens 6 will be mainly described, and description of other components will be omitted.
  • the plano-convex lens 6 is a lens for widening the aperture angle of incident light and diffusing reflected light to widen the viewing angle.
  • the plano-convex lens 6 is a lens having a plane and a convex surface located on the back side of the plane, and is arranged so as to cover the image display side of the incident / reflected light limiting unit 2. Further, in the state where the plano-convex lens 6 is disposed, the plane faces the incident / reflected light limiting unit 2 side. By doing so, the observer can observe the displayed image at a wider angle.
  • the plano-convex lens 6 may be any material and shape of the plano-convex lens 6 as long as the aperture angle of incident light is widened and the reflected light is diffused to widen the viewing angle. Moreover, the size does not ask
  • FIG. 9 is a conceptual cross-sectional view showing the configuration of the image display device 16 according to the seventh embodiment of the present invention.
  • the structure of the image display device 16 is substantially the same as the structure of the image display device 15 according to the sixth embodiment described above, but for widening the viewing angle on the incident / reflected light limiting unit 2. It differs from the image display device 15 in that the microlens array 7 is provided. Therefore, in the seventh embodiment, the microlens array 7 will be mainly described, and description of other components will be omitted.
  • the microlens array 7 is for widening the aperture angle of incident light and diffusing reflected light to widen the viewing angle.
  • the microlens array 7 is composed of a plurality of microlenses 7a to 7h, and the microlenses 7a to 7h are planoconvex lenses having a plane and a convex surface located on the back side of the plane.
  • the microlens array 7 is disposed so as to cover the image display side of the incident / reflected light limiting unit 2, and in the state where the microlens array 7 is disposed, the planes of the microlenses 7 a to 7 h are configured to limit the incident / reflected light.
  • the microlens array 7 only needs to widen the aperture angle of incident light and diffuse the reflected light to widen the viewing angle.
  • the material and shape of the microlenses 7a to 7h are not limited.
  • the size and number are not ask
  • FIG. 10 is a conceptual cross-sectional view showing the configuration of the image display device 17 according to the eighth embodiment of the present invention.
  • the structure of the image display device 17 is substantially the same as the structure of the image display device 16 according to the seventh embodiment described above, but for widening the viewing angle on the incident / reflected light limiting unit 2. It differs from the image display device 16 in that the microlens array 8 is provided. Therefore, in the eighth embodiment, the microlens array 8 will be mainly described, and description of other components will be omitted.
  • the microlens array 8 Similar to the microlens array 7 described in the seventh embodiment, the microlens array 8 is for widening the viewing angle.
  • the microlens array 8 includes a plurality of microlenses 8a to 8f, and the microlenses 8a to 8f are planoconvex lenses each having a flat surface and a convex surface located on the back side of the flat surface.
  • the microlens array 8 is disposed so as to cover the image display side of the incident / reflected light limiting unit 2, and in the state where the microlens array 8 is disposed, the planes of the microlenses 8 a to 8 f are limited to the incident / reflected light. It faces the part 2 side.
  • the diameters of the microlenses 8a to 8f coincide with the size of the pixel region (that is, the size of the opening of the frame 5 and the structural color expression regions R1a to R1f). More specifically, the incident / reflected light limiting unit 2 according to the eighth embodiment includes a bundled optical fiber in which optical fibers extending along the thickness direction of the image display sheet 1 are fixed in a bundle. Microlenses 8a to 8f are arranged on the opening end face of the optical fiber. Further, the diameters of the microlenses 8a to 8f are the same as the diameters of the open end faces of the optical fibers. In other words, in the microlens, the diameter and pitch of the opening end face of the optical fiber are matched.
  • the microlens array 8 only needs to widen the opening angle of incident light and diffuse the reflected light to widen the viewing angle.
  • the material, shape, and number of the microlenses 8a to 8f are not limited.
  • FIG. 11 is a conceptual cross-sectional view showing the configuration of the image display device 18 according to the ninth embodiment of the present invention.
  • the structure of the image display device 18 is substantially the same as the structure of the image display device 15 according to the sixth embodiment described above, but the opening angle of the incident light is set on the incident / reflected light limiting unit 2. It differs from the image display device 15 in that it includes a light scattering sheet 9 that spreads and diffuses reflected light. Therefore, in the ninth embodiment, the light scattering sheet 9 will be mainly described, and description of other components will be omitted.
  • the light scattering sheet 9 is a sheet-like member for widening the opening angle of incident light and diffusing reflected light to widen the viewing angle.
  • the light scattering sheet 9 is arranged so as to cover the image display side of the incident / reflected light limiting unit 2. By doing so, the observer can observe the image at a wider angle.
  • the light scattering sheet 9 may be any material or shape as long as it can widen the opening angle of incident light and diffuse the reflected light to widen the viewing angle.
  • the size does not ask
  • the light-scattering sheet 9 is not limited to what diffuses reflected light as mentioned above.
  • the light scattering sheet 9 may have a function of diffusing both incident light and reflected light.
  • the light scattering sheet 9 preferably has a high light transmittance while having an appropriate diffusibility.
  • the material of the light scattering sheet 9 having a function of diffusing incident / reflected light include, for example, a glass plate (ground glass) whose surface is roughened, a light scattering film, a light scattering sheet, a translucent film, tracing paper, and glassine paper. And paraffin paper.
  • the image display devices 10 to 18 are set in advance for the image display sheet 1 having the structural color expression region R1 and the surface S1 that is installed on the image display side of the structural color expression region R1 and is located on the image display side. At least the incident light 3a incident at an angle and the incident light 3a that selectively reflects the reflected light 3b reflected from a part of the structural color expression region R1 of the incident light 3a. With such a configuration, the incident angle of the incident light 3a and the reflection angle of the reflected light 3b can be set to preset angles. For this reason, even when the observation angle of the observer is different, the optical path length in the image display sheet 1 does not change, and the wavelength of the interfering light does not change.
  • the structural color display according to one embodiment of the present invention even if the position of the light source, that is, the incident angle of light changes, an image displayed using the structural color is prevented from changing. You can also Further, in the structural color display according to one aspect of the present invention, for example, even when incident light is multiple reflected light, that is, when a part of the incident light is reflected by an outer wall or the like installed outdoors, It is also possible to prevent luminance unevenness of an image displayed using structural colors.
  • the incident / reflected light limiting unit 2 of the image display devices 10 to 18 reflects the incident light 3a incident on the surface S1 at an angle in the range of 80 ° to 90 ° and the angle within the angular range.
  • the reflected light 3b is selectively transmitted.
  • the incident / reflected light restricting unit 2 of the image display devices 10 to 18 includes a urexite disposed so as to be able to transmit incident light 3a incident along the thickness direction of the image display sheet 1, and a thickness direction of the image display sheet 1. At least one of a bundled optical fiber in which optical fibers extending along the bundle are fixed in a bundle is provided. Urexite and bundled optical fibers can be obtained relatively easily. Therefore, with such a configuration, the manufacturing cost of the incident / reflected light limiting unit 2 can be reduced. Therefore, the manufacturing cost of the entire image display device can be reduced.
  • the image display device 11 includes a sheet thickness adjustment unit 4 that adjusts the thickness of the image display sheet 1 in the structural color expression region R1 at a position facing the incident reflection light limiting unit 2 with the structural color expression region R1 interposed therebetween. ing. With such a configuration, since the thickness of the image display sheet 1 in the structural color expression region R1 can be freely adjusted, the color of the structural color to be expressed can be variously changed.
  • the sheet thickness adjusting unit 4 of the image display device 11 includes an electrode that contacts the image display sheet 1, and the image display sheet 1 is formed of a voltage-responsive polymer gel whose volume changes according to voltage. Yes.
  • the sheet thickness adjusting unit 4 includes a heating unit capable of heating the image display sheet 1, and the image display sheet 1 is formed of a thermoresponsive polymer gel whose volume changes according to heat.
  • the sheet thickness adjusting unit 4 includes a light irradiation unit that can irradiate the image display sheet 1 with light, and the image display sheet 1 is formed of a photoresponsive polymer gel whose volume changes according to light. With such a configuration, the thickness d1 of the image display sheet 1 can be freely adjusted by applying a voltage to the electrodes included in the sheet thickness adjusting unit 4.
  • the image display sheet 1 of the image display device 12 is a multilayer structure in which structural color expression layers 1a to 1c that express a structural color are stacked along the thickness direction of the image display sheet 1, and the structural color expression region R1
  • the thickness of each of the structural color developing layers 1a to 1c is an integral multiple of the thickness of the reference layer when any one of the laminated structural color developing layers 1a to 1c is used as the reference layer. With such a configuration, a structural color with improved monochromaticity can be expressed.
  • the structural color developing layers 1a to 1c of the image display device 12 are all formed of the same material. With such a configuration, a structural color with improved monochromaticity can be produced at low cost.
  • the image display device 15 further includes a plano-convex lens 6 which is disposed so as to cover the image display side of the incident / reflected light limiting unit 2 and has a plane and a convex surface located on the back side of the plane.
  • the 6 plane faces the incident / reflected light limiting unit 2 side.
  • the image display device 16 includes a microlens array 7 including a plurality of microlenses 7a to 7h. With such a configuration, the incident light 3a and the reflected light 3b can be reliably scattered, so that the viewing angle can be more reliably widened.
  • the incident / reflected light limiting unit 2 of the image display device 17 includes a bundled optical fiber in which optical fibers extending in the thickness direction of the image display sheet 1 are fixed in a bundle, and each opening of the optical fiber.
  • Microlenses 8a to 8f are disposed on the end face, and the diameters of the microlenses 8a to 8f are the same as the diameter of the opening end face of the optical fiber.
  • the image display device 18 further includes a light scattering sheet 9 that scatters the incident light 3a and the reflected light 3b, which is disposed so as to cover the image display side of the incident / reflected light limiting unit 2.
  • the incident / reflected light limiting unit 2 having a plurality of incident / reflected light transmission regions R2a to R2f has been described.
  • the present invention is not limited to this.
  • the incident / reflected light limiting unit 2 may have a single incident / reflected light transmission region R2. Even in this case, the above-described effects can be achieved.
  • the incident / reflected light limiting unit 2 in which the incident / reflected light transmission regions R2 (R2a to R2f) are located apart from each other has been described.
  • the present invention is not limited to this.
  • the incident / reflected light transmission regions R2 (R2a to R2f) may be adjacent to each other. Even in this case, the above-described effects can be achieved.
  • the sheet thickness adjusting unit 4 (4a to 4f) including the electrode in contact with the image display sheet 1 has been described, but the present invention is not limited to this.
  • the sheet thickness adjusting unit 4 (4a to 4f) only needs to change the sheet thickness of the structural color expression region R1 (R1a to R1f).
  • the sheet thickness adjustment unit 4 (4a to 4f) includes a pump and the like, and the structural color expression region R1 (R1a to R1f) is added in the sheet thickness direction using the sheet thickness adjustment unit 4 (4a to 4f).
  • the sheet thickness of the structural color expression region R1 (R1a to R1f) may be changed by applying pressure or reduced pressure. Even in this case, the above-described effects can be achieved.
  • the sheet thickness adjusting unit 4 (4a to 4f) may be, for example, a light irradiation device capable of irradiating light or a heating device capable of applying heat. Even in this case, the above-described effects can be achieved.
  • the image display sheet 1 is preferably formed of, for example, a photoresponsive polymer gel.
  • the sheet thickness adjusting unit 4 (4a to 4f) is a heating device
  • the image display sheet 1 is preferably formed of, for example, a temperature-responsive polymer gel.
  • the sheet thickness adjusting unit 4 (4a to 4f) may be an apparatus capable of imparting distortion such as bending, pulling, and compression to the image display sheet 1.
  • the image display sheet 1 composed of the three structural color developing layers 1a to 1c has been described.
  • the present invention is not limited to this.
  • the image display sheet may be a multilayer structure, and may be a structure in which two structural color developing layers are stacked, or a structure in which four or more structural color developing layers are stacked. . Even in this case, the above-described effects can be achieved.
  • the reference layer is the structural color developing layer 1a
  • the present invention is not limited to this.
  • the reference layer may be the structural color expression layer 1b or the structural color expression layer 1c. Even in this case, the above-described effects can be achieved.
  • each of the structural color developing layers 1a to 1c may be formed of different materials. Even in this case, the above-described effects can be achieved.
  • plano-convex lens 6 and the microlens arrays 7 and 8 are used to widen the viewing angle of the displayed image has been described, but the present invention is not limited to these.
  • a lens other than a plano-convex lens or a microlens array may be used as long as the viewing angle of the displayed image can be widened. Even in these cases, the above-described effects can be achieved.
  • the image display apparatus that displays an image using structural colors has been described.
  • the present invention is not limited to these.
  • the image display device described in the above embodiment may be incorporated in an image display medium and used as an image display object.
  • a poster or calendar can be created by incorporating the image display device described in the above embodiment into paper.
  • urexite or a bundled optical fiber is used as the incident / reflected light limiting unit 2
  • the present invention is not limited to these.
  • a glass plate (ground glass) whose surface is roughened, a light scattering film, a light scattering sheet, a translucent film, tracing paper, Glassine paper, paraffin paper, or the like may be used. Even when these materials are used, the above-described effects can be obtained.
  • a Fresnel lens may be used instead of the above-described urexite or bundled optical fiber. Even when this lens is used, the above-described effects can be obtained.
  • a configuration of a display other than the display according to the above-described modification will be described below. Even the following display can solve the problems of the present application.
  • ⁇ Modification A A display on which an image is displayed with a structural color, the display including an image display sheet that displays an image with a structural color, the image display sheet including a structural color expression region and the image of the structural color expression region
  • a structural color display comprising an incident / reflected light limiting unit disposed on the display side of the display.
  • ⁇ Modification C A structural color display in which the incident / reflected light limiting portion is constituted by a bundle of optical fibers or a urexite plate.
  • a structural color display in which the structural color expression region is any one of a colloidal crystal structure, an inverse opal structure, a multilayer structure, and a lamella structure.
  • the image display sheet further includes a stimulus applying unit that applies a stimulus to the structural color expression region at a position facing the incident / reflected light limiting unit with the structural color expression region interposed therebetween, or across the structural color expression region.
  • Structural color display composed of color materials.
  • the image display sheet further includes a plano-convex lens having a plane and a convex surface located on the back side of the plane, and the plano-convex lens is arranged such that the plane faces the incident reflection light limiting unit side, and the convex surface
  • a structural color display arranged to face the image display side (viewing side) and to cover the display side of the image.
  • plano-convex lens is a microlens array composed of a plurality of microlenses.
  • the incident / reflected light limiting portion is configured by a bundled optical fiber, the diameter of the microlens configuring the microlens array is the same as the diameter of the optical fiber configuring the bundled optical fiber, and each of the optical fibers A structural color display in which the microlens is disposed on the opening end face.
  • a structural color display further comprising a light scattering sheet arranged to cover the image display side of the incident / reflected light restricting portion and diffusing the incident / reflected light and the reflected light.
  • FIG. 15 is a schematic diagram of the structural color measuring apparatus 30 used for demonstrating the effects of the present invention.
  • the main part of the apparatus is composed of a light source device 31, a color luminance meter 32, a slider 33 for adjusting the light reception angle (observation angle ⁇ ) of the color luminance meter 32, a test piece installation base 35, and a support base 34.
  • the upper surface of the support table 34 is kept horizontal, and the slider 33 is placed perpendicular to the upper surface of the support table 34.
  • the outer periphery of the slider 33 has a semicircular arc shape, and the color luminance meter 32 can change the observation angle ⁇ with respect to the center of the test piece installation base 35 along the slider 33 in the range of 0 ° to about 40 °.
  • the light source device 31 is on a plane perpendicular to the slider 33 including the center of the test piece installation table 35, and the incident angle ( ⁇ ) is set to 25 ° with respect to the center of the test piece installation table 35.
  • the direction indicator mark 38 is provided on the test piece mounting base 35.
  • the direction indication mark 38 indicates the direction of the test piece mounting base 35 to be installed on the structural color measuring device 30. In each measurement, since the test piece is placed on the test piece setting table 35 in accordance with the direction indication mark 38, it is possible to correctly grasp the direction of the light source device 31 with respect to the measurement object and the direction in which the color luminance meter 32 moves. It becomes possible.
  • the light source device 31 includes a box 311 and a cylinder 312 having a black inner surface, and a high color rendering fluorescent tube (not shown) is accommodated in the box 311.
  • a high color rendering fluorescent tube (not shown) is accommodated in the box 311.
  • FIG. 16 shows a spectrum distribution obtained by actually measuring the light emitted from the cylinder 312 of the light source device 31 with a spectral radiance meter from the front.
  • the spectral radiance meter is a spectral radiance meter (CS-2000A) manufactured by Konica Minolta.
  • the specifications of the fluorescent tube used in the light source device 31 are as follows. Manufacturer: Mitsubishi Electric Lighting Co., Ltd. Name: High color rendering color rendering AAA daylight white fluorescent tube Model: FL20S / N-EDL / NU Color temperature: 5000K (Manufacturer's data sheet value) Color rendering index (Ra): 99 (data sheet provided by manufacturer)
  • CA-2500 two-dimensional color luminance meter manufactured by Konica Minolta.
  • numerical values of the chromaticity and luminance of the surface of the measurement object are obtained by the color luminance meter 32, and these are obtained on the surface image of the measurement object projected by the color luminance meter 32 in each measurement scene.
  • a measurement area is set by surrounding a desired position in a rectangle with squares, and an average value of chromaticity and an average value of luminance are obtained in the area.
  • ⁇ Standard gray plate for comparison> As a “standard gray plate for comparison”, an 18% standard reflector made by Nikon Corporation was used. This is to measure the chromaticity and luminance of the standard reflector together with the measurement object, and to judge that the measurement has proceeded correctly from the values obtained here.
  • a rectangular elastomer sheet having a thickness of about 2 mm, a vertical length of about 30 mm, and a horizontal length of about 20 mm.
  • This elastomer sheet is a structural color material whose hue changes depending on the viewing angle.
  • this elastomer sheet exhibiting a structural color is referred to as a particle-type structural color sheet 36.
  • the multilayer structural color plate 37 was prepared using the following commercially available notch filter.
  • the specifications of the notch filter used are as follows. Name: Notch filter Model number: NF-25C05-47-633 Manufacturer: Sigma Hikari Co., Ltd. Characteristics: Cut wavelength 633 nm, transmission band wavelengths 475 to 597 nm and 669 to 850 nm, transmittance 90%
  • This notch filter reflects light of a wavelength corresponding to the incident angle of the light and transmits other light only during regular reflection.
  • This notch filter has a multilayer structure in which two kinds of fine particles having different refractive indexes are alternately laminated, and has a property of not transmitting light in a specific wavelength range.
  • the notch filter has transmission band wavelengths of 475 to 597 nm and 669 to 850 nm in front view (incidence angle 0 °). Accordingly, when viewed from the front, light (red) having a wavelength of 600 to 668 nm has a characteristic of being reflected toward the front without being transmitted.
  • ⁇ Multi-layered structural color plate 37 was created by applying black coating on one side of the notch filter. A black coating was applied to the back of the notch filter so that light with a transmission band wavelength (ranging from 475 to 597 nm and 669 to 850 nm) was absorbed by the black coating. In this way, the multilayer structural color plate 37 has a characteristic that the light having a wavelength corresponding to the incident angle of the light is specularly reflected and the other light is absorbed by the black paint.
  • ⁇ Light diffusion sheet DP1> The following translucent film was used as the light diffusion sheet DP1.
  • -Translucent film (3M Company's mending tape, Scotch tape, "Scotch” is a registered trademark of 3M Company)
  • Example 1 The following experiment was conducted by combining the particle-type structural color sheet 36 and the bundled optical fiber plate OP1. Hereinafter, a description will be given with reference to FIGS. 15 and 17.
  • the structural color measuring device 30 was placed in a dark room, and the particle type structural color sheet 36 was fixed to a test piece mounting table 35 placed on the structural color measuring device 30. Further, OP1 was placed on a part of the upper surface of the particle type structural color sheet 36.
  • the “standard gray color plate for comparison” was pasted at the position of the measurement position P1, and on the other hand, the same sheet piece as the particle type structural color sheet 36 was pasted at the position of the measurement position P2.
  • the chromaticity of the surface of OP1 (measurement position P4) due to the reflected light of the particle-type structural color sheet 36 that is transmitted through and reflected by the bundled optical fiber plate OP1 is less dependent on the observation angle and ⁇ is 30 °. The red color is still maintained.
  • the bundled optical fiber plate OP1 suppresses the observation angle dependency of the chromaticity of the structural color.
  • the luminance of the surface of the particle-type structural color sheet 36 at the measurement positions P2 and P3 decreases sharply when the observation angle ⁇ exceeds 10 °, whereas the bundled optical fiber plate OP1 is reduced.
  • the brightness of the surface of OP1 (measurement position P4) by the reflected light of the particle-type structural color sheet 36 that has passed through maintains a high value from the observation angle of 20 ° to the observation angle of 40 °. This is also an effect of the bundled optical fiber plate OP1.
  • Example 3 The bundled optical fiber plate OP1 and the high performance plate OP3 were placed adjacent to each other on the particle-type structural color sheet 36, and the following experiment was conducted for the purpose of comparing the difference in characteristics between the two. The comparison was visually.
  • OP1 and high-performance plate OP3 were placed adjacent to each other on the particle-type structural color sheet 36.
  • the light source device 31 maintained the position in Experimental Example 1, and the observation angle dependency of the structural color of the test piece viewed through OP1 and OP3 was observed by visual observation instead of the color luminance meter 32.
  • the position of the naked eye is substantially the same as the position of the color luminance meter 32 in Experimental Example 1.
  • Example 4 The following experiment was performed using a combination of the multilayer structural color plate 37 and the bundled optical fiber plate OP1. That is, in Experimental Example 1, the test color was changed from the particle type structural color sheet 36 to the multilayer type structural color plate 37, and the structural color was measured in the same manner as the others. The measurement positions are as shown in FIG.
  • the multilayered structural color plate 37 used in this experiment has a characteristic that does not reflect light except for regular reflection. That is, the incident angle of light from the light source device 31 with respect to the surface of the multilayer structural color plate 37 and the angle (reflection angle) of the light reflected on the surface of the multilayer structural color plate 37 and observed by the color luminance meter 32. Unless they are equal, the surface of the multilayer structural color plate 37 has very low brightness and appears black.
  • the light irradiated from the light source device 31 has a multilayer structure. It is reflected by the surface of the color plate 37 and is not captured by the color luminance meter 32 by regular reflection (see FIG. 30). For this reason, the surface of the multilayer structural color plate 37 always shows extremely low luminance (measurement position P3).
  • the upper surface (measurement position P4) of the bundled optical fiber plate OP1 always shows high brightness and clear red. it can.
  • the bundled optical fiber plate OP1 is provided on the multi-layer structural color plate 37, so that the position of the light source and the position of the observer are Even when there is no regular reflection relative to the surface of the mold structure color plate 37, the structure color of the multilayer structure color plate 37 can be visually recognized.
  • the structural color display of the present invention has less restrictions on arrangement and installation due to the position of the observer and the light source (or the angle of the light source), and has a high degree of design freedom. This greatly increases the practical value of the structural color display.
  • the bundled optical fiber plate OP1 exhibits the effect of suppressing the observation angle dependency even for the multilayer structural color plate 37 having a narrow angle range in which the reflected light can be visually recognized. There was found.
  • Example 5 The following experiment was conducted using a combination of the multilayer structure color plate 37 and the light diffusion sheet DP1. That is, in Experimental Example 4, the measurement was performed in the same manner except that the light diffusion sheet DP1 was used instead of the bundled optical fiber plate OP1. The measurement position is as shown in FIG.
  • the light diffusion sheet DP1 also exerts an effect of suppressing the observation angle dependency on the multilayered structural color plate 37 having a narrow angle range in which the reflected light can be visually recognized. .
  • the light diffusion sheet DP1 is an inexpensive material and is advantageous for practical use in terms of cost.

Abstract

Provided are: a structural color display capable of preventing an image (especially the hue thereof) displayed using structural colors from changing depending on the observation angle of observers; and an image display object using same. This image display device (10) upon which images are displayed using structural colors comprises at least: an image display sheet (1) having a structural color expression area (R1) being an area in which structural colors are expressed; and an incident/reflected light limiting unit (2) arranged on the image display side of the structural color expression area (R1) and selectively transmitting incident light and reflected light, said incident light being incident, at a pre-set angle, to a surface (S1) in the structural color expression area (R1) positioned on the image display side and said reflected light being incident light that has been reflected by part of the structural color expression area (R1).

Description

構造色ディスプレイStructural color display
 本発明は、構造色ディスプレイ及びそれを用いた画像表示物に関する。 The present invention relates to a structural color display and an image display using the same.
 画像表示装置の技術分野では、構造色を利用して画像を表示するものが既に知られている。この種の画像表示装置としては、例えば、特許文献1や特許文献2に記載されたものがある。 In the technical field of image display devices, devices that display images using structural colors are already known. Examples of this type of image display device include those described in Patent Document 1 and Patent Document 2.
特開2007-11112号公報JP 2007-11112 A 特開2009-139800号公報JP 2009-139800 A
 構造色によって画像を表示する構造色ディスプレイの多くは、ブラッグの法則によって定められた波長の可視光を用いて所望の画像を表示するものである。このため、従来技術に係る構造色ディスプレイには、表示した画像(特にその色彩)が観察者の観察角度によって変化するといった課題がある。この点について、図12を参照しつつ簡単に説明する。なお、以降、「構造色ディスプレイ」を、単に「画像表示装置」とも表記する。 Many structural color displays that display an image using a structural color display a desired image using visible light having a wavelength determined by Bragg's law. For this reason, the structural color display according to the prior art has a problem that the displayed image (particularly its color) changes depending on the observation angle of the observer. This point will be briefly described with reference to FIG. Hereinafter, “structural color display” is also simply referred to as “image display device”.
 図12は、従来技術に係る画像表示装置における課題を説明するための模式図である。図12(a)及び図12(b)は、従来技術に係る画像表示装置20で表示した画像を、互いに異なる角度で観察した場合を模式的に示した図である。図12(a)及び図12(b)に示すように、観察者の観察角度が異なると、画像表示シート1中を進行する光の距離(つまり、光路長)が異なる。このため、干渉する光の波長が変化し、画像表示装置20で表示した画像の色彩(つまり、反射光の波長)が変化する。なお、図12において、「3a」は入射光を示し、「3b」は反射光(構造色)を示している。 FIG. 12 is a schematic diagram for explaining a problem in the image display device according to the prior art. FIGS. 12A and 12B are diagrams schematically illustrating a case where images displayed on the image display device 20 according to the related art are observed at different angles. As shown in FIG. 12A and FIG. 12B, the distance of light traveling in the image display sheet 1 (that is, the optical path length) varies depending on the observation angle of the observer. For this reason, the wavelength of the light which interferes changes and the color (namely, wavelength of reflected light) of the image displayed with the image display apparatus 20 changes. In FIG. 12, “3a” indicates incident light, and “3b” indicates reflected light (structural color).
 本発明は、このような事情に鑑みてなされたものであって、構造色を利用して表示した画像(特にその色彩)が観察者の観察角度によって変化するのを防止することができる構造色ディスプレイ及びそれを用いた画像表示物を提供することを目的とする。 The present invention has been made in view of such circumstances, and a structural color capable of preventing an image (particularly the color) displayed using the structural color from changing depending on the viewing angle of the observer. An object is to provide a display and an image display using the display.
 上記課題を解決するため、本発明の一態様は、構造色によって画像が表示される画像表示装置であって、前記構造色を発現する領域である構造色発現領域を有する画像表示シートと、前記構造色発現領域の前記画像の表示側に設置され、前記画像の表示側に位置する前記構造色発現領域の面に対して予め設定した角度で入射する入射光と、前記入射光のうち前記構造色発現領域の一部で反射した反射光とを選択的に透過する入反射光制限部と、を少なくとも備えることを特徴とする構造色ディスプレイである。 In order to solve the above problems, an aspect of the present invention is an image display device that displays an image with a structural color, the image display sheet having a structural color expression region that is a region that expresses the structural color, Incident light that is placed on the image display side of the structural color expression region and is incident at a predetermined angle with respect to the surface of the structural color expression region located on the image display side, and the structure of the incident light The structural color display includes at least an incident / reflected light limiting unit that selectively transmits reflected light reflected by a part of the color expression region.
 本発明の一態様に係る構造色ディスプレイによれば、構造色を利用して表示した画像が観察者の観察角によって変化するのを防止することができる。なお、本発明の一態様でいう観察角とは、表示装置を見る者の観察角であり、「液晶ディスプレイにおける視野角」とは別の概念である。 The structural color display according to one aspect of the present invention can prevent an image displayed using the structural color from changing depending on the observation angle of the observer. Note that the observation angle referred to in one embodiment of the present invention is an observation angle of a person who views the display device, and is a concept different from “a viewing angle in a liquid crystal display”.
本発明の第1実施形態に係る画像表示装置の構成を示す概念断面図である。1 is a conceptual cross-sectional view illustrating a configuration of an image display device according to a first embodiment of the present invention. 本発明の第1実施形態に係る画像表示装置における構造色の発現機構を説明するための模式図である。It is a schematic diagram for demonstrating the expression mechanism of the structural color in the image display apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る画像表示装置におけるシート厚変化を説明するための模式図である。It is a schematic diagram for demonstrating the sheet | seat thickness change in the image display apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning a 4th embodiment of the present invention. 本発明の第5実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning a 5th embodiment of the present invention. 本発明の第6実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning a 6th embodiment of the present invention. 本発明の第7実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning a 7th embodiment of the present invention. 本発明の第8実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning an 8th embodiment of the present invention. 本発明の第9実施形態に係る画像表示装置の構成を示す概念断面図である。It is a conceptual sectional view showing the composition of the image display device concerning a 9th embodiment of the present invention. 従来技術に係る画像表示装置における課題を説明するための模式図である。It is a schematic diagram for demonstrating the subject in the image display apparatus which concerns on a prior art. コロイド結晶の構造色発現の原理を示す概略図である。It is the schematic which shows the principle of structural color expression of a colloid crystal. 多層構造の構造色発現の原理を示す概略図である。It is the schematic which shows the principle of structural color expression of a multilayer structure. 構造色測定装置の概要を示す図である。It is a figure which shows the outline | summary of a structural color measuring apparatus. 構造色測定に用いた光源のスペクトル分布を示す図である。It is a figure which shows the spectral distribution of the light source used for structural color measurement. 実験例1及び2における構造色(色度及び輝度)の測定位置を示す図である。It is a figure which shows the measurement position of the structural color (chromaticity and brightness | luminance) in Experimental example 1 and 2. FIG. 実験例1において、観察角の変化に伴う色度変化の軌跡を示すxy色度図である。In Experimental example 1, it is an xy chromaticity diagram which shows the locus | trajectory of the chromaticity change accompanying the change of an observation angle. 実験例1における輝度の観察角依存性を示す図である。It is a figure which shows the observation angle dependence of the brightness | luminance in Experimental example 1. FIG. 実験例2において、観察角の変化に伴う色度変化の軌跡を示すxy色度図である。In Experimental example 2, it is an xy chromaticity diagram which shows the locus | trajectory of the chromaticity change accompanying the change of an observation angle. 実験例2における輝度の観察角依存性を示す図である。It is a figure which shows the observation angle dependence of the brightness | luminance in Experimental example 2. FIG. 実験例4における構造色(色度及び輝度)の測定位置を示す図である。It is a figure which shows the measurement position of the structural color (chromaticity and brightness | luminance) in Experimental example 4. 実験例4において、観察角の変化に伴う色度変化の軌跡を示すxy色度図である。In Experimental example 4, it is xy chromaticity diagram which shows the locus | trajectory of chromaticity change accompanying the change of an observation angle. 実験例4における輝度の観察角依存性を示す図である。It is a figure which shows the observation angle dependence of the brightness | luminance in Experimental example 4. FIG. 実験例5における構造色(色度及び輝度)の測定位置を示す図である。It is a figure which shows the measurement position of the structural color (chromaticity and brightness | luminance) in Experimental example 5. 実験例5において、観察角の変化に伴う色度変化の軌跡を示すxy色度図である。In Experimental example 5, it is an xy chromaticity diagram which shows the locus | trajectory of chromaticity change accompanying the change of an observation angle. 実験例5における輝度の観察角依存性を示す図である。It is a figure which shows the observation angle dependence of the brightness | luminance in Experimental example 5. FIG.
 以下、本発明に係る各実施形態について、図面を参照して説明する。なお、各図面において、同一の構成で同一の機能を有する部分には同一の符号を付している。
[第1実施形態]
 以下、第1実施形態に係る画像表示装置10の構成について説明する。図1は、本発明の第1実施形態に係る画像表示装置10の構成を示す概念断面図である。図1に示すように、画像表示装置10は、構造色によって画像が表示される画像表示装置であって、構造色を発現する領域である構造色発現領域R1を有する画像表示シート1と、構造色発現領域R1の画像表示側に設置され、その画像表示側の面S1に対して予め設定した角度で入射する入射光と、入射光のうち構造色発現領域R1の一部で反射した反射光とを選択的に透過する入反射光制限部2と、を備えたものである。以下、上記部材のそれぞれについて説明する。
Embodiments according to the present invention will be described below with reference to the drawings. In each drawing, parts having the same configuration and the same function are denoted by the same reference numerals.
[First Embodiment]
Hereinafter, the configuration of the image display apparatus 10 according to the first embodiment will be described. FIG. 1 is a conceptual cross-sectional view showing a configuration of an image display device 10 according to the first embodiment of the present invention. As shown in FIG. 1, an image display device 10 is an image display device that displays an image with a structural color, and includes an image display sheet 1 having a structural color expression region R1 that is a region that exhibits a structural color, and a structure. Incident light that is installed on the image display side of the color expression region R1 and is incident on the surface S1 on the image display side at a preset angle, and reflected light that is reflected by a part of the structural color expression region R1 of the incident light And the incident / reflected light limiting unit 2 that selectively transmits the light. Hereinafter, each of the members will be described.
(画像表示シート1)
 画像表示シート1は、構造色を発現することができるシート状部材である。この画像表示シート1には、例えば、予め設定した屈折率を有する樹脂を用いて一体的に形成した薄膜や板、又は対向配置された2枚のシートの間に予め設定した屈折率を有する気体、液体、固体のいずれかを充填して形成した積層体を使用することができる。ここで、2枚のシートの間に充填する物質としては、例えば、印加した電圧に応じて体積が変化する電圧応答性高分子ゲルが挙げられる。
 なお、画像表示シート1は、構造色を発現することができればよく、例えばその材質や形状を問わない。また、そのサイズも問わない。この画像表示シート1としては、例えば、ラメラ構造を有する樹脂膜、帯電性の有機ポリマー又は無機の球状粒子を泳動させて、所定の支持表面に縦及び横方向に規則的に整合させた構造体、表面にナノ構造を備えた金属構造体、表面に凸部及び凹部を形成された基板を用いて、ナノインプリント技術により該凸部及び凹部を複数の樹脂板にインプリントして複製し、前記複製した複数枚の樹脂板を貼り合わせた基板、電界に応じて体積変化が生じる刺激応答性高分子ゲルなどの膨張・収縮体と、膨張・収縮体中に配される周期構造体、構造色を発現する表示層と、当該表示層を透過する光を反射する反射界面とを有する球体及びマトリックス、高屈折率層と低屈折率層とが交互に積層された積層体、可視光の波長の1/2波長の整数倍程度の周期間隔とされる規則的な微細構造を有した微細構造体等を挙げることができる。
(Image display sheet 1)
The image display sheet 1 is a sheet-like member that can express a structural color. The image display sheet 1 includes, for example, a thin film or plate integrally formed using a resin having a preset refractive index, or a gas having a preset refractive index between two sheets disposed opposite to each other. A laminate formed by filling one of a liquid and a solid can be used. Here, examples of the substance filled between the two sheets include a voltage-responsive polymer gel whose volume changes according to the applied voltage.
In addition, the image display sheet 1 should just be able to express a structural color, for example, the material and shape are not ask | required. Moreover, the size does not ask | require. As this image display sheet 1, for example, a structure in which a resin film having a lamellar structure, a chargeable organic polymer or inorganic spherical particles are migrated and regularly aligned in a vertical and horizontal direction on a predetermined support surface Using a metal structure having a nanostructure on the surface and a substrate having protrusions and recesses formed on the surface, the protrusions and recesses are imprinted on a plurality of resin plates by a nanoimprint technique, and the replication is performed. A substrate with a plurality of resin plates bonded together, an expansion / contraction body such as a stimulus-responsive polymer gel that changes in volume according to the electric field, a periodic structure disposed in the expansion / contraction body, and a structural color A sphere and a matrix having a display layer that expresses and a reflective interface that reflects light transmitted through the display layer, a laminate in which high-refractive index layers and low-refractive index layers are alternately stacked, and a wavelength of visible light 1 / An integral multiple of 2 wavelengths It can be exemplified microstructure or the like having a regular microstructure which is periodic interval.
 画像表示シート1は、その一部に構造色を発現する領域(画像を表示する領域)である構造色発現領域R1を有している。この構造色発現領域R1における画像表示シート1の厚みは、構造色発現領域R1全体に亘って略均一である。
 なお、構造色発現領域R1は、そのサイズや形状、個数を問わない。
 以下、構造色発現領域R1について、より詳しく説明する。
 構造色発現領域R1は、光の干渉の原理による構造色を発現する機能を有する構造色材料にて形成されていればその材質は問わない。その際、構造色材料の構造は、後述する(1)コロイド粒子を媒体中に分散させたコロイド結晶構造、(2)逆オパール構造、(3)多層構造、(4)ラメラ構造、(5)薄膜構造のいずれであってもよい。(1)のコロイド結晶構造には、コロイド粒子の分散媒にモノマー及び架橋剤を溶解し重合して形成される高分子ゲルが含まれる。高分子ゲルとして親水性ポリマーのゲル(ハイドロゲル)を好適に使用できる。また、(4)のラメラ構造には、ブロックポリマーのミクロ相分離組織により形成されるラメラ構造の他、(高分子)界面活性剤の自己凝集により形成される自己凝集型ラメラ構造が含まれる。
 さらに上記構造色材料は、既に述べた外部刺激に応答する刺激応答性構造色材料であってもよい。
The image display sheet 1 has a structural color expression region R1 that is a region that expresses a structural color (a region for displaying an image). The thickness of the image display sheet 1 in the structural color expression region R1 is substantially uniform over the entire structural color expression region R1.
The structural color expression region R1 may be any size, shape, or number.
Hereinafter, the structural color expression region R1 will be described in more detail.
The structural color expression region R1 is not particularly limited as long as it is formed of a structural color material having a function of expressing a structural color based on the principle of light interference. At that time, the structure of the structural color material is as follows: (1) colloidal crystal structure in which colloidal particles are dispersed in a medium, (2) inverse opal structure, (3) multilayer structure, (4) lamellar structure, (5) Any of a thin film structure may be sufficient. The colloidal crystal structure of (1) includes a polymer gel formed by dissolving and polymerizing a monomer and a crosslinking agent in a dispersion medium of colloidal particles. A hydrophilic polymer gel (hydrogel) can be suitably used as the polymer gel. In addition, the lamellar structure (4) includes a self-aggregating lamellar structure formed by self-aggregation of a (polymer) surfactant, in addition to a lamellar structure formed by a microphase-separated structure of a block polymer.
Further, the structural color material may be a stimulus-responsive structural color material that responds to the external stimulus already described.
 構造色材料の採用に際しては、後述する、構造色材料の構造に対応する式(1)又は式(3)を考慮して選択される。
 刺激応答性構造色材料としては、例えば、電場、変形(歪・応力)、熱、電磁波(可視光、紫外線、エックス線を含む)、湿気・水分、磁気、pH変化、溶媒接触、その他の刺激に応答し、その体積又はブラッグ周期が変化する刺激応答性材料にて構成される構造色材料を好適に使用できる。
In adopting the structural color material, the structural color material is selected in consideration of formula (1) or formula (3) corresponding to the structure of the structural color material, which will be described later.
Stimulus-responsive structural color materials include, for example, electric fields, deformation (strain / stress), heat, electromagnetic waves (including visible light, ultraviolet rays, and X-rays), moisture / moisture, magnetism, pH change, solvent contact, and other stimuli A structural color material composed of a stimulus-responsive material that responds and changes its volume or Bragg period can be suitably used.
(入反射光制限部2)
 構造色発現領域R1の画像表示側の面S1上には、入反射光制限部2が配置されている。入反射光制限部2は、入反射光透過領域R2(R2a~R2f)を有しており、この入反射光透過領域R2は、面S1に対して予め設定した角度で入射する入射光と、入射光のうち構造色発現領域R1の一部(例えば、面S2)で反射した反射光とを選択的に透過する領域を指す。図1には、面S1に対して80°以上90°以下(即ち、面S1の法線に対し、0°以上10°以下)の範囲内の角度で入射する入射光と、その範囲内の角度で反射した反射光とを選択的に透過させる入反射光透過領域R2(R2a~R2f)を有する入反射光制限部2が例示されている。
(Incoming / reflecting light limiting unit 2)
On the surface S1 on the image display side of the structural color expression region R1, the incident / reflected light limiting unit 2 is disposed. The incident / reflected light limiting unit 2 includes incident / reflected light transmission regions R2 (R2a to R2f), and the incident / reflected light transmission region R2 includes incident light incident at a preset angle with respect to the surface S1, and This refers to a region that selectively transmits reflected light reflected by a part of the structural color expression region R1 (for example, the surface S2) of the incident light. FIG. 1 shows incident light incident at an angle in the range of 80 ° to 90 ° with respect to the surface S1 (that is, 0 ° to 10 ° with respect to the normal of the surface S1), and An incident / reflected light limiting unit 2 having an incident / reflected light transmission region R2 (R2a to R2f) that selectively transmits reflected light reflected at an angle is illustrated.
 入反射光制限部2には、例えば、画像表示シート1の厚み方向に沿って入射する入射光を透過可能に配置したウレキサイト(ulexite)と、同方向に沿って延びる光ファイバを束状に固定した束状光ファイバとの少なくとも一方を備えたものを使用することができる。このウレキサイトと束状光ファイバとの少なくとも一方を備えたものを入反射光制限部2として使用した場合には、例えば、面S1に対して80°以上90°以下の範囲内の角度で入射する入射光と、その範囲内の角度で反射した反射光とを選択的に透過させることが容易となる。ここで、「ウレキサイト」とは、一般的にテレビ石と呼ばれる鉱石であり、透明な繊維状結晶が完全に平行に整列した集合体である。
 なお、入反射光制限部2は、入射光と反射光とを選択的に透過することができればよく、例えば、その材質や形状を問わない。また、そのサイズも問わない。同様に、入反射光透過領域R2(R2a~R2f)についても、そのサイズや形状、個数を問わない。
 また、上記「束状光ファイバ」とは、多数の光ファイバを、その軸を束ねて溶着したものを軸に対し垂直方向に裁断してプレート状にしたものである。この束状光ファイバを紙面に載置すると、紙面の文字が浮き上がって見える。
 以降、ウレキサイトで作成した入反射光制限部2を「ウレキサイト製プレート」と称し、束状光ファイバで作成した入反射光制限部2を「束状光ファイバプレート」と称する。
In the incident / reflected light limiting unit 2, for example, urexite arranged so as to transmit incident light incident along the thickness direction of the image display sheet 1 and optical fibers extending along the same direction are fixed in a bundle. It is possible to use one provided with at least one of the bundled optical fibers. In the case where the one provided with at least one of the urexite and the bundled optical fiber is used as the incident / reflected light limiting unit 2, for example, the light enters the surface S1 at an angle in the range of 80 ° to 90 °. It becomes easy to selectively transmit incident light and reflected light reflected at an angle within the range. Here, “Urexite” is an ore generally called a television stone, and is an aggregate in which transparent fibrous crystals are arranged completely in parallel.
The incident / reflected light limiting unit 2 only needs to be able to selectively transmit incident light and reflected light, and may be of any material or shape. Moreover, the size does not ask | require. Similarly, the incident / reflected light transmission region R2 (R2a to R2f) may have any size, shape, or number.
Further, the “bundle optical fiber” is obtained by cutting a plurality of optical fibers in which the axes are bundled and welded in a direction perpendicular to the axis into a plate shape. When this bundled optical fiber is placed on a paper surface, characters on the paper surface appear to float.
Hereinafter, the incident / reflected light limiting portion 2 made of urexite is referred to as a “Urexite plate”, and the incident / reflected light limiting portion 2 formed of a bundle of optical fibers is referred to as a “bunched optical fiber plate”.
 また束状光ファイバとして、テーパー型束状光ファイバを使用することもできる。このテーパー型束状光ファイバを使えば、構造色材料が発現する画像を拡大できる。 Also, as the bundle optical fiber, a tapered bundle optical fiber can be used. If this taper-type bundle optical fiber is used, the image in which the structural color material appears can be enlarged.
<構造色の発現機構>
 まず、「構造色」について簡単に説明する。
 構造色は物体の微細周期構造に起因する光の干渉による発色である。玉虫等の昆虫や、宝石のオパールなどの美麗な発色も構造色によるものである。近年、サブマイクロスケールの微細周期構造が形成された、構造色を呈する材料(以後、「構造色材料」と称する。)が開発されている。上記微細周期構造のタイプは多岐にわたるが、代表的な構造としては、(1)コロイド粒子を媒体中に分散させたコロイド結晶構造(オパール構造)、(2)逆オパール構造、(3)多層構造、(4)ラメラ構造、が知られている。上記(1)~(4)のいずれの構造においても、高屈折率相と低屈折率相が所定の周期にて配置された周期構造を有するのが特徴である。この他、シャボン玉に代表される(5)薄膜構造も多重反射に起因する光の干渉により構造色を発する。
 最近では、外部から刺激を加えることにより上記周期構造の周期を可変制御できる構造色材料も開発されつつある。例えば、刺激として、電場、変形(歪・応力)、熱、湿気(水分)、磁気、pH変化、溶媒接触などが知られている(以後、刺激を加えることにより構造色の色相が変わる構造色材料を「刺激応答性構造色材料」と称することがある。)。いずれもこれらの刺激により、周期構造の、(ブラッグ)周期又は屈折率が変わり、結果、視認される構造色が変わる性質を利用するものである。
<Structure mechanism of structural color>
First, “structural colors” will be briefly described.
The structural color is a color due to light interference caused by the fine periodic structure of the object. Beautiful colors such as iridescent insects and gem opals are also due to structural colors. In recent years, a material exhibiting a structural color (hereinafter referred to as “structural color material”) in which a sub-microscale fine periodic structure is formed has been developed. There are various types of the above fine periodic structures, but typical structures include (1) colloidal crystal structure in which colloidal particles are dispersed in a medium (opal structure), (2) inverse opal structure, and (3) multilayer structure. (4) Lamella structure is known. Any of the structures (1) to (4) is characterized by having a periodic structure in which a high refractive index phase and a low refractive index phase are arranged at a predetermined period. In addition, (5) thin film structures represented by soap bubbles also emit structural colors due to light interference caused by multiple reflection.
Recently, a structural color material that can variably control the period of the periodic structure by applying an external stimulus has been developed. For example, electric field, deformation (strain / stress), heat, moisture (moisture), magnetism, pH change, solvent contact, etc. are known as stimuli (hereinafter, structural colors that change the hue of the structural color by applying stimuli) The material may be referred to as “stimulus responsive structural color material”). In any case, these stimuli change the (Bragg) period or refractive index of the periodic structure, and as a result, use the property that the structural color to be visually recognized changes.
 次に、図2を参照しつつ、画像表示装置10の構造色の発現機構について簡単に説明する。
 図2は、画像表示装置10における構造色の発現機構を説明するための模式図である。図2には、構造色発現領域R1を有する画像表示シート1と、構造色発現領域R1上に配置された入反射光制限部2とが示されている。なお、図2には、面S1に対して80°以上90°以下の範囲内の角度(即ち、入射角度が0°から10°)で入射する入射光3aと、その範囲内の角度で反射した反射光3bとを選択的に透過させる単数の入反射光透過領域R2(R2a)が例示されている。つまり、図2は、画像表示装置10の一部を拡大して示したものである。
Next, with reference to FIG. 2, a structure color expression mechanism of the image display device 10 will be briefly described.
FIG. 2 is a schematic diagram for explaining the mechanism of expression of structural colors in the image display device 10. FIG. 2 shows the image display sheet 1 having the structural color expression region R1 and the incident / reflected light limiting unit 2 arranged on the structural color expression region R1. In FIG. 2, incident light 3a incident at an angle within a range of 80 ° to 90 ° with respect to the surface S1 (that is, an incident angle is 0 ° to 10 °) and reflected at an angle within the range. A single incident / reflected light transmission region R2 (R2a) that selectively transmits the reflected light 3b is illustrated. That is, FIG. 2 shows a part of the image display device 10 in an enlarged manner.
 まず、図2に示した画像表示シート1に向けて光(例えば、太陽光等)が照射される。この際、入反射光透過領域R2によって、構造色発現領域R1に入射される光の角度は、面S1に対して80°以上90°以下の範囲内の角度に制限される。ここで、この「80°以上90°以下の範囲内の角度」は、第1実施形態において予め設定した角度であって、任意に選択可能な角度である。そして、構造色発現領域R1に到達した入射光3aのうち一部は、面S1で反射する。また、この入射光3aのうち別の一部は、例えば面S2で反射する。このように異なる面(箇所)で反射した反射光3b同士が干渉することで構造色が発現する。発現した構造色は、入反射光透過領域R2を透過し、観察者に観察(視認)される。 First, light (for example, sunlight) is irradiated toward the image display sheet 1 shown in FIG. At this time, the angle of light incident on the structural color expression region R1 is limited to an angle in the range of 80 ° to 90 ° with respect to the surface S1 by the incident / reflected light transmission region R2. Here, the “angle within the range of 80 ° or more and 90 ° or less” is an angle that is set in advance in the first embodiment and can be arbitrarily selected. A part of the incident light 3a that reaches the structural color expression region R1 is reflected by the surface S1. Further, another part of the incident light 3a is reflected by the surface S2, for example. In this way, the reflected light 3b reflected by different surfaces (locations) interferes with each other, so that a structural color appears. The expressed structural color transmits through the incident / reflected light transmission region R2 and is observed (viewed) by the observer.
 以上のように、構造色発現領域R1に入射される光(入射光3a)の角度と、構造色発現領域R1で反射される光(反射光3b)の角度とを、入反射光制限部2によって制限(固定)することができる。このため、観察者の観察角度が変化した場合であっても、画像表示シート1中における光路長自体は変化しないので、発現する構造色の波長は変化しない。したがって、第1実施形態に係る画像表示装置10によれば、構造色を利用して表示した画像が観察者の観察角度によって変化するのを防止することができる。 As described above, the angle of the light (incident light 3a) incident on the structural color expression region R1 and the angle of the light (reflected light 3b) reflected on the structural color expression region R1 are set as the incident / reflected light limiting unit 2. It can be limited (fixed) by. For this reason, even when the observation angle of the observer changes, the optical path length itself in the image display sheet 1 does not change, so the wavelength of the structural color to be expressed does not change. Therefore, according to the image display device 10 according to the first embodiment, it is possible to prevent the image displayed using the structural color from changing depending on the observation angle of the observer.
<コロイド結晶又は逆オパール構造の場合の構造色の観察角依存性>
 次に、コロイド結晶又は逆オパール構造の場合の構造色の観察角依存性を、図13を参照しつつ説明する。
 構造色の観察角依存性は、その構造色発現構造に基づき下記式(1)と式(3)とにより定量的に示される。この式(1)と式(3)との関係式は、観察者と構造色ディスプレイとの位置関係が同じであって、光源の位置が変化した場合にもあてはまる。
<Dependence of structural color on observation angle in case of colloidal crystal or inverted opal structure>
Next, the observation angle dependence of the structural color in the case of a colloidal crystal or an inverse opal structure will be described with reference to FIG.
The observation angle dependence of the structural color is quantitatively shown by the following formulas (1) and (3) based on the structural color expression structure. The relational expression between Expression (1) and Expression (3) is applicable even when the positional relationship between the observer and the structural color display is the same and the position of the light source is changed.
 λpeak=2d[neff -sinθ]1/2        (1)
  ここで、λpeak:反射率が最大となる波長
      θ   :観察角
      d  :結晶面間の距離
      neff :有効屈折率
である。
λ peak = 2d C [n eff 2 −sin 2 θ] 1/2 (1)
Here, λ peak : wavelength at which the reflectance becomes maximum θ: observation angle d C : distance between crystal planes n eff : effective refractive index.
  上記において、neffは、下記式(2)で算出される。
 neff=(1-φ)n+φn         (2)
  ここで、n:マトリックス(分散媒、連続相)の屈折率
      n:コロイド粒子(分散相)の屈折率
      φ :コロイド結晶に占めるコロイド粒子の体積分率
である。
In the above, n eff is calculated by the following formula (2).
n eff = (1−φ) n M + φn D (2)
Where n M is the refractive index of the matrix (dispersion medium, continuous phase), n D is the refractive index of the colloidal particles (dispersed phase), and φ is the volume fraction of the colloidal particles in the colloidal crystal.
<多層構造又はラメラ構造の場合の構造色の観察角依存性>
 最後に、多層構造又はラメラ構造の場合の構造色の観察角依存性を、図14を参照しつつ説明する。
<Depending on viewing angle of structural color in case of multilayer structure or lamellar structure>
Finally, the observation angle dependence of the structural color in the case of a multilayer structure or a lamella structure will be described with reference to FIG.
 λpeak=2[d(n1 -sinθ)1/2+d(n -sinθ)1/2]  (3)
  ここで、d:第一の相の厚み
      d:第二の相の厚み
      n:第一の相の屈折率
      n:第二の相の屈折率
である。
 式(1)と式(3)とにおいて、λpeakは反射率が最大となる波長であり、この波長に基づく色相が観察(観測、視認)される。上記式(1)と式(3)のいずれにおいても、視認される構造色は観察角(θ)に依存する。またこの事情は刺激応答性構造色材料においても同様である。
λ peak = 2 [d 1 (n 1 2 −sin 2 θ) 1/2 + d 2 (n 2 2 −sin 2 θ) 1/2 ] (3)
Here, d 1 : thickness of the first phase d 2 : thickness of the second phase n 1 : refractive index of the first phase n 2 : refractive index of the second phase.
In Expressions (1) and (3), λ peak is a wavelength at which the reflectance is maximum, and a hue based on this wavelength is observed (observed, visually confirmed). In any of the above formulas (1) and (3), the structural color to be visually recognized depends on the observation angle (θ). This situation also applies to the stimuli-responsive structural color material.
<使用方法>
 画像表示装置10では、入反射光透過領域R2と構造色発現領域R1とが重なる領域がそれぞれ画素として機能する。このため、画像表示装置10では、各画素を予め設定した画像が表示されるように配列しておく。そして、この画像表示装置10を例えば屋外に設置する。これにより、太陽をその光源とすることができる。こうすることで、画像を表示するための電力を必要とせず、且つ、観察者の観察角度によって色彩等が変化しない画像を表示することができる。
 なお、複数の構造色を用いて画像を表示する場合には、予め設定した領域における画像表示シート1の厚みを変化させればよい。こうすることで、画像表示シート1中における光路長が変化するので、構造色の色彩を変化させることができる。こうして、複数の色の構造色を用いて画像を表示させることができる。
<How to use>
In the image display device 10, the regions where the incident / reflected light transmission region R2 and the structural color expression region R1 overlap each function as a pixel. For this reason, in the image display apparatus 10, it arrange | positions so that the image which preset each pixel may be displayed. The image display device 10 is installed outdoors, for example. Thereby, the sun can be used as the light source. By doing so, it is possible to display an image that does not require power for displaying an image and whose color or the like does not change depending on the observation angle of the observer.
In addition, what is necessary is just to change the thickness of the image display sheet 1 in the preset area | region, when displaying an image using a some structural color. By doing so, the optical path length in the image display sheet 1 changes, so that the color of the structural color can be changed. Thus, an image can be displayed using a plurality of structural colors.
[第2実施形態]
 以下、第2実施形態に係る画像表示装置11の構成について説明する。図3は、本発明の第2実施形態に係る画像表示装置11の構成を示す概念断面図である。図3に示すように、画像表示装置11の構造は、上述の第1実施形態に係る画像表示装置10の構造と略同じであるが、構造色発現領域R1における画像表示シート1の厚みd1を調整するシート厚調整部4を備える点で画像表示装置10とは異なる。そこで、第2実施形態では、主として、このシート厚調整部4について説明し、その他の構成部材についての説明は省略する。
[Second Embodiment]
Hereinafter, the configuration of the image display apparatus 11 according to the second embodiment will be described. FIG. 3 is a conceptual cross-sectional view showing the configuration of the image display device 11 according to the second embodiment of the present invention. As shown in FIG. 3, the structure of the image display device 11 is substantially the same as the structure of the image display device 10 according to the first embodiment described above, but the thickness d1 of the image display sheet 1 in the structural color expression region R1 is set as follows. It differs from the image display apparatus 10 in that the sheet thickness adjusting unit 4 to be adjusted is provided. Therefore, in the second embodiment, the sheet thickness adjusting unit 4 will be mainly described, and description of other components will be omitted.
(シート厚調整部4)
 シート厚調整部4は、構造色発現領域R1を挟んで入反射光制限部2に対向する位置に配置されている。このシート厚調整部4には、例えば、画像表示シート1に接触する電極(図示せず)を含んだものを使用することができる。
 なお、シート厚調整部4は、構造色発現領域R1における画像表示シート1の厚みd1を調整できるものであればよく、例えば、その手段を問わない。また、そのサイズも問わない。
 例えば、シート厚調整部4は、刺激応答性構造色材料に刺激を加えてもよい。シート厚調整部4により加えられる刺激としては、例えば、電場、変形(歪・応力)、熱、光、磁場などである。シート厚調整部4は上記刺激により、構造色発現領域R1における画像表示シート1の厚みd1を調整できる。
(Sheet thickness adjusting unit 4)
The sheet thickness adjusting unit 4 is disposed at a position facing the incident / reflected light limiting unit 2 with the structural color expression region R1 interposed therebetween. As the sheet thickness adjusting unit 4, for example, one including an electrode (not shown) that contacts the image display sheet 1 can be used.
In addition, the sheet thickness adjustment part 4 should just be what can adjust the thickness d1 of the image display sheet 1 in the structural color expression area | region R1, for example, the means is not ask | required. Moreover, the size does not ask | require.
For example, the sheet thickness adjusting unit 4 may apply a stimulus to the stimulus-responsive structural color material. Examples of the stimulus applied by the sheet thickness adjusting unit 4 include an electric field, deformation (strain / stress), heat, light, and a magnetic field. The sheet thickness adjusting unit 4 can adjust the thickness d1 of the image display sheet 1 in the structural color expression region R1 by the stimulation.
<構造色の色彩変化機構>
 以下、電極を含んだシート厚調整部4を用いて構造色の色彩を変化させる手段(機構)について、図4を参照しつつ説明する。図4は、第2実施形態に係る画像表示装置11におけるシート厚変化を説明するための模式図である。図4(a)は、画像表示シート1の厚みを変化させる前の状態(シート厚d1)を示し、図4(b)は、シート厚を変化させた後の状態(シート厚d2)を示している。また、図4(a)及び図4(b)に示した画像表示シート1は、印加した電圧に応じて体積が変化する電圧応答性高分子ゲルを含んだシートである。なお、電場付与のためのシート厚調整部4を構成する電極としては、構造色の視認の妨げとならないITO(Indium Tin Oxide)電極を使用することができる。
<Color change mechanism of structural color>
Hereinafter, means (mechanism) for changing the color of the structural color using the sheet thickness adjusting unit 4 including the electrode will be described with reference to FIG. FIG. 4 is a schematic diagram for explaining a change in sheet thickness in the image display apparatus 11 according to the second embodiment. 4A shows the state before changing the thickness of the image display sheet 1 (sheet thickness d1), and FIG. 4B shows the state after changing the sheet thickness (sheet thickness d2). ing. Moreover, the image display sheet 1 shown to Fig.4 (a) and FIG.4 (b) is a sheet | seat containing the voltage-responsive polymer gel from which a volume changes according to the applied voltage. In addition, as an electrode which comprises the sheet thickness adjustment part 4 for electric field provision, the ITO (Indium Tin Oxide) electrode which does not interfere with visual recognition of a structural color can be used.
 シート厚調整部4に含まれる電極は画像表示シート1に接触しており、その電極に電圧を印加すると、印加した電圧に応答して構造色発現領域R1における電圧応答性高分子ゲルの体積が減少又は増加する。このように、電圧応答性高分子ゲルの体積を減少又は増加させることで、構造色発現領域R1における画像表示シート1の厚みを調整する。図4(b)は、印加した電圧に応答して電圧応答性高分子ゲルの体積が増加し、シート厚が増加した様子を模式的に示している。なお、印加した電圧を解除すると、電圧応答性高分子ゲルの体積は電圧印可前の状態に戻るので、シート厚は図4(a)に示す状態へと戻る。
 以上のようにして、画像表示シート1の厚みを変化させると、画像表示シート1中における光路長が変化する。こうして、干渉する光の波長を変化させることで、構造色の色彩を変化させることができる。
The electrode included in the sheet thickness adjusting unit 4 is in contact with the image display sheet 1, and when a voltage is applied to the electrode, the volume of the voltage-responsive polymer gel in the structural color expression region R1 responds to the applied voltage. Decrease or increase. Thus, the thickness of the image display sheet 1 in the structural color expression region R1 is adjusted by reducing or increasing the volume of the voltage-responsive polymer gel. FIG. 4B schematically shows how the volume of the voltage-responsive polymer gel increases in response to the applied voltage and the sheet thickness increases. Note that when the applied voltage is released, the volume of the voltage-responsive polymer gel returns to the state before voltage application, and thus the sheet thickness returns to the state shown in FIG.
When the thickness of the image display sheet 1 is changed as described above, the optical path length in the image display sheet 1 changes. Thus, the color of the structural color can be changed by changing the wavelength of the interfering light.
[第3実施形態]
 以下、第3実施形態に係る画像表示装置12の構成について説明する。図5は、本発明の第3実施形態に係る画像表示装置12の構成を示す概念断面図である。図5に示すように、画像表示装置12の構造は、上述の第1実施形態に係る画像表示装置10の構造と略同じであるが、画像表示シート1が積層構造をしている点で画像表示装置10とは異なる。そこで、第3実施形態では、主として、この積層構造をした画像表示シート1について説明し、その他の構成部材についての説明は省略する。
[Third Embodiment]
Hereinafter, the configuration of the image display device 12 according to the third embodiment will be described. FIG. 5 is a conceptual cross-sectional view showing the configuration of the image display device 12 according to the third embodiment of the present invention. As shown in FIG. 5, the structure of the image display device 12 is substantially the same as the structure of the image display device 10 according to the first embodiment described above, but the image display sheet 1 has a laminated structure. Different from the display device 10. Therefore, in the third embodiment, the image display sheet 1 having this laminated structure will be mainly described, and description of other components will be omitted.
(画像表示シート1)
 画像表示装置12に備わる画像表示シート1は、構造色を発現する構造色発現層1a~1cが画像表示シート1の厚み方向に沿って積層した多層構造体である。そして、構造色発現領域R1における構造色発現層1a~1cの各層の厚みは同じである。このように、画像表示シート1を多層構造体とすることで、構造色発現層1a~1cの各層における界面で入射光を反射させることができる。複数の面で光が反射した場合には、干渉可能な波長領域が狭まるので、これにより発現する構造色の単色性を高めることができる。
 構造色発現層1a~1cの各層の厚みについては、構造色発現層1a~1cのうちいずれか1層を基準層とした場合に、その基準層の厚みの整数倍となっていればよい。この場合であっても、発現する構造色の単色性を高めることができる。第3実施形態では、上述の基準層を構造色発現層1aとし、構造色発現層1b、1cの各層の厚みを構造色発現層1aの厚みの1倍としている。
 また、構造色発現層1a~1cの各層は、全て同じ材料で形成されている。こうすることで、画像表示装置12の製造コストが高騰するのを低減することができる。
 なお、構造色発現層1a~1cの各層の材質や形状を問わない。また、そのサイズも問わない。
(Image display sheet 1)
The image display sheet 1 provided in the image display device 12 is a multilayer structure in which structural color expression layers 1 a to 1 c that express a structural color are stacked along the thickness direction of the image display sheet 1. The thicknesses of the structural color developing layers 1a to 1c in the structural color developing region R1 are the same. In this way, by making the image display sheet 1 a multilayer structure, incident light can be reflected at the interfaces of the structural color developing layers 1a to 1c. When light is reflected from a plurality of surfaces, the wavelength range in which interference can occur is narrowed, so that the monochromaticity of the structural color that is expressed can be enhanced.
The thickness of each of the structural color developing layers 1a to 1c may be an integral multiple of the thickness of the reference layer when any one of the structural color developing layers 1a to 1c is used as the reference layer. Even in this case, the monochromaticity of the developed structural color can be enhanced. In the third embodiment, the above-described reference layer is the structural color expression layer 1a, and the thickness of each of the structural color expression layers 1b and 1c is set to be one time the thickness of the structural color expression layer 1a.
The structural color developing layers 1a to 1c are all made of the same material. By doing so, it is possible to reduce an increase in the manufacturing cost of the image display device 12.
The material and shape of each layer of the structural color expression layers 1a to 1c are not limited. Moreover, the size does not ask | require.
[第4実施形態]
 以下、第4実施形態に係る画像表示装置13の構成について説明する。図6は、本発明の第4実施形態に係る画像表示装置13の構成を示す概念断面図である。図6に示すように、画像表示装置13の構造は、上述の第2実施形態に係る画像表示装置11の構造と略同じであるが、画像表示シート1と入反射光制限部2との間に画素領域を区画する画素区画枠(以下、単に「フレーム」ともいう。)5が配置されている点で画像表示装置11とは異なる。また、複数のシート厚調整部4(4a~4f)を備えている点でも画像表示装置11とは異なる。そこで、第4実施形態では、主として、このフレーム5と、シート厚調整部4a~4fとについて説明し、その他の構成部材についての説明は省略する。なお、構造色発現領域R1(R1a~R1f)については、その個数を問わない。
[Fourth Embodiment]
Hereinafter, the configuration of the image display device 13 according to the fourth embodiment will be described. FIG. 6 is a conceptual cross-sectional view showing the configuration of the image display device 13 according to the fourth embodiment of the present invention. As shown in FIG. 6, the structure of the image display device 13 is substantially the same as the structure of the image display device 11 according to the second embodiment described above, but between the image display sheet 1 and the incident / reflected light limiting unit 2. The image display device 11 is different from the image display device 11 in that a pixel partition frame (hereinafter, also simply referred to as “frame”) 5 for partitioning a pixel region is disposed. The image display device 11 is also different in that it includes a plurality of sheet thickness adjustment units 4 (4a to 4f). Therefore, in the fourth embodiment, the frame 5 and the sheet thickness adjusting units 4a to 4f will be mainly described, and the description of the other constituent members will be omitted. The number of structural color expression regions R1 (R1a to R1f) is not limited.
(フレーム5)
 図6に示されたフレーム5は、画像表示シート1と入反射光制限部2との間に配置され、可視光を吸収するシート状部材である。このフレーム5は、構造色発現領域R1a~R1fのそれぞれを露出して画素領域を区画する開口部を備えている。
 なお、フレーム5は、画素領域を区画する開口部を備えていればよく、例えば、その材質や形状を問わない。また、そのサイズも問わない。例えば、フレーム5は、電気的な絶縁性を有する絶縁膜で形成されていてもよいし、伸縮性等を有する材質(緩衝材等)で形成されていてもよい。また、このフレーム5は、必要に応じて配置されるものであり、本願発明において必須の部材ではない。また、フレーム5に備わる開口部についても、その形状やサイズ、個数を問わない。また、フレーム5の色は、画素領域を明確に区画するために、例えば黒色である。
(Frame 5)
The frame 5 shown in FIG. 6 is a sheet-like member that is disposed between the image display sheet 1 and the incident / reflected light limiting unit 2 and absorbs visible light. The frame 5 includes an opening that exposes each of the structural color expression regions R1a to R1f to partition the pixel region.
Note that the frame 5 only needs to have an opening that divides the pixel region, and may be of any material or shape. Moreover, the size does not ask | require. For example, the frame 5 may be formed of an insulating film having electrical insulating properties, or may be formed of a material having elasticity (such as a buffer material). Further, the frame 5 is arranged as necessary, and is not an essential member in the present invention. Further, the shape, size, and number of the openings provided in the frame 5 are not limited. Further, the color of the frame 5 is, for example, black in order to clearly partition the pixel region.
(シート厚調整部4a~4f)
 上述した第2実施形態に係る画像表示装置11は、図4に示すように、構造色発現領域R1のシート厚を1つのシート厚調整部4で調整している。これに対し、第4実施形態に係る画像表示装置13では、複数の構造色発現領域R1a~R1fのシート厚を、複数のシート厚調整部4a~4fで調整している。より詳しくは、画像表示装置13に備わるシート厚調整部4a~4fは、構造色発現領域R1a~R1fと重なるように配置されている。こうすることで、画素ごとにシート厚を調整することができ、図6に示すように、例えば、赤色の構造色R、緑色の構造色G、青色の構造色Bを画素ごとに表示することができる。このため、解像度の高い画像を表示することができる。また、上記構成とすることで、1つの画素で、赤色の構造色R、緑色の構造色G、青色の構造色B、又は中間色を自在に表示することができる。
 なお、画像表示装置11に備わるシート厚調整部4と、画像表示装置13に備わるシート厚調整部4a~4fとは、設置位置及びサイズが異なるものの機能自体は同じである。
(Sheet thickness adjusters 4a to 4f)
As shown in FIG. 4, the image display device 11 according to the second embodiment described above adjusts the sheet thickness of the structural color expression region R <b> 1 with one sheet thickness adjustment unit 4. On the other hand, in the image display device 13 according to the fourth embodiment, the sheet thicknesses of the plurality of structural color expression regions R1a to R1f are adjusted by the plurality of sheet thickness adjustment units 4a to 4f. More specifically, the sheet thickness adjusting units 4a to 4f provided in the image display device 13 are arranged so as to overlap the structural color expression regions R1a to R1f. In this way, the sheet thickness can be adjusted for each pixel. For example, as shown in FIG. 6, the red structural color R, the green structural color G, and the blue structural color B are displayed for each pixel. Can do. For this reason, an image with high resolution can be displayed. Further, with the above-described configuration, the red structural color R, the green structural color G, the blue structural color B, or the intermediate color can be freely displayed by one pixel.
The sheet thickness adjusting unit 4 provided in the image display device 11 and the sheet thickness adjusting units 4a to 4f provided in the image display device 13 have the same functions, although they are different in installation position and size.
[第5実施形態]
 以下、第5実施形態に係る画像表示装置14の構成について説明する。図7は、本発明の第5実施形態に係る画像表示装置14の構成を示す概念断面図である。図7に示すように、画像表示装置14の構造は、フレーム5が画像表示シート1内に埋め込まれるように配置されている以外は、上述の第4実施形態に係る画像表示装置13の構成と同じである。よって、ここでは、画像表示装置14の構造の詳細については省略する。なお、画像表示装置14において、入反射光制限部2上に、後述する平凸レンズ6、マイクロレンズアレイ7、8を配置することも可能である。
[Fifth Embodiment]
Hereinafter, the configuration of the image display device 14 according to the fifth embodiment will be described. FIG. 7 is a conceptual cross-sectional view showing the configuration of the image display device 14 according to the fifth embodiment of the present invention. As shown in FIG. 7, the structure of the image display device 14 is the same as that of the image display device 13 according to the fourth embodiment described above except that the frame 5 is arranged so as to be embedded in the image display sheet 1. The same. Therefore, details of the structure of the image display device 14 are omitted here. In the image display device 14, a plano-convex lens 6 and microlens arrays 7 and 8 to be described later can be disposed on the incident / reflected light limiting unit 2.
[第6実施形態]
 以下、第6実施形態に係る画像表示装置15の構成について説明する。図8は、本発明の第6実施形態に係る画像表示装置15の構成を示す概念断面図である。図8に示すように、画像表示装置15の構造は、上述の第4実施形態に係る画像表示装置13の構造と略同じであるが、入反射光制限部2上に視野角を広げるための平凸レンズ6を備えている点で画像表示装置13とは異なる。そこで、第6実施形態では、主として、この平凸レンズ6について説明し、その他の構成部材についての説明は省略する。
[Sixth Embodiment]
The configuration of the image display device 15 according to the sixth embodiment will be described below. FIG. 8 is a conceptual cross-sectional view showing the configuration of the image display device 15 according to the sixth embodiment of the present invention. As shown in FIG. 8, the structure of the image display device 15 is substantially the same as the structure of the image display device 13 according to the fourth embodiment described above, but for widening the viewing angle on the incident / reflected light limiting unit 2. It differs from the image display device 13 in that it includes a plano-convex lens 6. Therefore, in the sixth embodiment, the plano-convex lens 6 will be mainly described, and description of other components will be omitted.
(平凸レンズ6)
 平凸レンズ6は、入射光の開口角を広げ、反射光を拡散させて視野角を広げるためのレンズである。この平凸レンズ6は、平面とその平面の裏面側に位置する凸面とを有するレンズであり、入反射光制限部2の画像表示側を覆うように配置されている。また、平凸レンズ6が配置された状態において、その平面は入反射光制限部2側を向いている。こうすることで、観察者は、表示された画像をより広い角度で観察することができる。
 なお、平凸レンズ6は、入射光の開口角を広げ、反射光を拡散させて視野角を広げることができればよく、例えば平凸レンズ6の材質や形状を問わない。また、そのサイズも問わない。
(Plano-convex lens 6)
The plano-convex lens 6 is a lens for widening the aperture angle of incident light and diffusing reflected light to widen the viewing angle. The plano-convex lens 6 is a lens having a plane and a convex surface located on the back side of the plane, and is arranged so as to cover the image display side of the incident / reflected light limiting unit 2. Further, in the state where the plano-convex lens 6 is disposed, the plane faces the incident / reflected light limiting unit 2 side. By doing so, the observer can observe the displayed image at a wider angle.
The plano-convex lens 6 may be any material and shape of the plano-convex lens 6 as long as the aperture angle of incident light is widened and the reflected light is diffused to widen the viewing angle. Moreover, the size does not ask | require.
[第7実施形態]
 以下、第7実施形態に係る画像表示装置16の構成について説明する。図9は、本発明の第7実施形態に係る画像表示装置16の構成を示す概念断面図である。図9に示すように、画像表示装置16の構造は、上述の第6実施形態に係る画像表示装置15の構造と略同じであるが、入反射光制限部2上に視野角を広げるためのマイクロレンズアレイ7を備えている点で画像表示装置15とは異なる。そこで、第7実施形態では、主として、このマイクロレンズアレイ7について説明し、その他の構成部材についての説明は省略する。
[Seventh Embodiment]
The configuration of the image display device 16 according to the seventh embodiment will be described below. FIG. 9 is a conceptual cross-sectional view showing the configuration of the image display device 16 according to the seventh embodiment of the present invention. As shown in FIG. 9, the structure of the image display device 16 is substantially the same as the structure of the image display device 15 according to the sixth embodiment described above, but for widening the viewing angle on the incident / reflected light limiting unit 2. It differs from the image display device 15 in that the microlens array 7 is provided. Therefore, in the seventh embodiment, the microlens array 7 will be mainly described, and description of other components will be omitted.
(マイクロレンズアレイ7)
 マイクロレンズアレイ7は、上述の平凸レンズ6と同様に、入射光の開口角を広げ、反射光を拡散させて視野角を広げるためのものである。このマイクロレンズアレイ7は、複数のマイクロレンズ7a~7hで構成されており、マイクロレンズ7a~7hは、平面とその平面の裏面側に位置する凸面とを有する平凸レンズである。また、マイクロレンズアレイ7は、入反射光制限部2の画像表示側を覆うように配置されており、マイクロレンズアレイ7が配置された状態において、マイクロレンズ7a~7hの平面は入反射光制限部2側を向いている。こうすることで、観察者は、より広い角度で画像を観察することができる。
 なお、マイクロレンズアレイ7は、入射光の開口角を広げ、反射光を拡散させて視野角を広げることができればよく、例えばマイクロレンズ7a~7hの材質や形状を問わない。また、そのサイズや個数も問わない。つまり、マイクロレンズ7a~7hのサイズは、画素領域のサイズ(つまり、フレーム5の開口部及び構造色発現領域R1a~R1fのサイズ)と一致している必要はない。
(Microlens array 7)
Similar to the plano-convex lens 6 described above, the microlens array 7 is for widening the aperture angle of incident light and diffusing reflected light to widen the viewing angle. The microlens array 7 is composed of a plurality of microlenses 7a to 7h, and the microlenses 7a to 7h are planoconvex lenses having a plane and a convex surface located on the back side of the plane. The microlens array 7 is disposed so as to cover the image display side of the incident / reflected light limiting unit 2, and in the state where the microlens array 7 is disposed, the planes of the microlenses 7 a to 7 h are configured to limit the incident / reflected light. It faces the part 2 side. By doing so, the observer can observe the image at a wider angle.
Note that the microlens array 7 only needs to widen the aperture angle of incident light and diffuse the reflected light to widen the viewing angle. For example, the material and shape of the microlenses 7a to 7h are not limited. Moreover, the size and number are not ask | required. That is, the size of the microlenses 7a to 7h does not need to match the size of the pixel region (that is, the size of the opening of the frame 5 and the structural color expression regions R1a to R1f).
[第8実施形態]
 以下、第8実施形態に係る画像表示装置17の構成について説明する。図10は、本発明の第8実施形態に係る画像表示装置17の構成を示す概念断面図である。図10に示すように、画像表示装置17の構造は、上述の第7実施形態に係る画像表示装置16の構造と略同じであるが、入反射光制限部2上に視野角を広げるためのマイクロレンズアレイ8を備えている点で画像表示装置16とは異なる。そこで、第8実施形態では、主として、このマイクロレンズアレイ8について説明し、その他の構成部材についての説明は省略する。
[Eighth Embodiment]
Hereinafter, the configuration of the image display device 17 according to the eighth embodiment will be described. FIG. 10 is a conceptual cross-sectional view showing the configuration of the image display device 17 according to the eighth embodiment of the present invention. As shown in FIG. 10, the structure of the image display device 17 is substantially the same as the structure of the image display device 16 according to the seventh embodiment described above, but for widening the viewing angle on the incident / reflected light limiting unit 2. It differs from the image display device 16 in that the microlens array 8 is provided. Therefore, in the eighth embodiment, the microlens array 8 will be mainly described, and description of other components will be omitted.
(マイクロレンズアレイ8)
 マイクロレンズアレイ8は、第7実施形態で説明したマイクロレンズアレイ7と同様に、視野角を広げるためのものである。このマイクロレンズアレイ8は、複数のマイクロレンズ8a~8fで構成されており、マイクロレンズ8a~8fは、平面とその平面の裏面側に位置する凸面とを有する平凸レンズである。また、マイクロレンズアレイ8は、入反射光制限部2の画像表示側を覆うように配置されており、マイクロレンズアレイ8が配置された状態において、マイクロレンズ8a~8fの平面は入反射光制限部2側を向いている。さらに、マイクロレンズ8a~8fの直径は、画素領域のサイズ(つまり、フレーム5の開口部及び構造色発現領域R1a~R1fのサイズ)と一致している。より詳しくは、第8実施形態に係る入反射光制限部2は、画像表示シート1の厚み方向に沿って延びる光ファイバを束状に固定した束状光ファイバを備えたものである。そして、その光ファイバの開口端面上には、マイクロレンズ8a~8fが配置されている。さらに、マイクロレンズ8a~8fの直径は、光ファイバの開口端面の直径とそれぞれ同じである。換言すると、マイクロレンズは、光ファイバの開口端面の直径とピッチが合っている。こうすることで、表示された画像の解像度が低下するのを防止し、且つ、観察者は広い角度で画像を観察することができる。
 なお、マイクロレンズアレイ8は、入射光の開口角を広げ、反射光を拡散させて視野角を広げることができればよく、例えばマイクロレンズ8a~8fの材質や形状、その個数を問わない。
(Microlens array 8)
Similar to the microlens array 7 described in the seventh embodiment, the microlens array 8 is for widening the viewing angle. The microlens array 8 includes a plurality of microlenses 8a to 8f, and the microlenses 8a to 8f are planoconvex lenses each having a flat surface and a convex surface located on the back side of the flat surface. The microlens array 8 is disposed so as to cover the image display side of the incident / reflected light limiting unit 2, and in the state where the microlens array 8 is disposed, the planes of the microlenses 8 a to 8 f are limited to the incident / reflected light. It faces the part 2 side. Further, the diameters of the microlenses 8a to 8f coincide with the size of the pixel region (that is, the size of the opening of the frame 5 and the structural color expression regions R1a to R1f). More specifically, the incident / reflected light limiting unit 2 according to the eighth embodiment includes a bundled optical fiber in which optical fibers extending along the thickness direction of the image display sheet 1 are fixed in a bundle. Microlenses 8a to 8f are arranged on the opening end face of the optical fiber. Further, the diameters of the microlenses 8a to 8f are the same as the diameters of the open end faces of the optical fibers. In other words, in the microlens, the diameter and pitch of the opening end face of the optical fiber are matched. By doing so, it is possible to prevent the resolution of the displayed image from being lowered, and the observer can observe the image at a wide angle.
Note that the microlens array 8 only needs to widen the opening angle of incident light and diffuse the reflected light to widen the viewing angle. For example, the material, shape, and number of the microlenses 8a to 8f are not limited.
[第9実施形態]
 以下、第9実施形態に係る画像表示装置18の構成について説明する。図11は、本発明の第9実施形態に係る画像表示装置18の構成を示す概念断面図である。図11に示すように、画像表示装置18の構造は、上述の第6実施形態に係る画像表示装置15の構造と略同じであるが、入反射光制限部2上に入射光の開口角を広げ、反射光を拡散させる光散乱シート9を備える点で画像表示装置15とは異なる。そこで、第9実施形態では、主として、この光散乱シート9について説明し、その他の構成部材についての説明は省略する。
[Ninth Embodiment]
Hereinafter, the configuration of the image display device 18 according to the ninth embodiment will be described. FIG. 11 is a conceptual cross-sectional view showing the configuration of the image display device 18 according to the ninth embodiment of the present invention. As shown in FIG. 11, the structure of the image display device 18 is substantially the same as the structure of the image display device 15 according to the sixth embodiment described above, but the opening angle of the incident light is set on the incident / reflected light limiting unit 2. It differs from the image display device 15 in that it includes a light scattering sheet 9 that spreads and diffuses reflected light. Therefore, in the ninth embodiment, the light scattering sheet 9 will be mainly described, and description of other components will be omitted.
(光散乱シート9)
 光散乱シート9は、入射光の開口角を広げ、反射光を拡散させて視野角を広げるためのシート状部材である。また、光散乱シート9は、入反射光制限部2の画像表示側を覆うように配置されている。こうすることで、観察者は、より広い角度で画像を観察することができる。
 なお、光散乱シート9は、入射光の開口角を広げ、反射光を拡散させて視野角を広げることができればよく、例えばその材質や形状を問わない。また、そのサイズも問わない。
 また、光散乱シート9は、上述のように、反射光を拡散させるものに限定されない。例えば、光散乱シート9は、入射光と反射光を共に拡散する機能を有するものであってもよい。その場合、光散乱シート9は、適度の拡散性を有しつつ、光透過率の高いものが好ましい。過度に光を拡散する場合には、視認できる構造色の輝度が低下する。入反射光を拡散する機能を有する光散乱シート9の材料としては、例えば、表面を粗面化したガラス板(すりガラス)、光散乱フィルム、光散乱シート、半透明フィルム、トレーシングペーパー、グラシン紙、パラフィン紙などが挙げられる。
(Light scattering sheet 9)
The light scattering sheet 9 is a sheet-like member for widening the opening angle of incident light and diffusing reflected light to widen the viewing angle. The light scattering sheet 9 is arranged so as to cover the image display side of the incident / reflected light limiting unit 2. By doing so, the observer can observe the image at a wider angle.
Note that the light scattering sheet 9 may be any material or shape as long as it can widen the opening angle of incident light and diffuse the reflected light to widen the viewing angle. Moreover, the size does not ask | require.
Moreover, the light-scattering sheet 9 is not limited to what diffuses reflected light as mentioned above. For example, the light scattering sheet 9 may have a function of diffusing both incident light and reflected light. In that case, the light scattering sheet 9 preferably has a high light transmittance while having an appropriate diffusibility. When light is diffused excessively, the luminance of the structural color that can be visually recognized decreases. Examples of the material of the light scattering sheet 9 having a function of diffusing incident / reflected light include, for example, a glass plate (ground glass) whose surface is roughened, a light scattering film, a light scattering sheet, a translucent film, tracing paper, and glassine paper. And paraffin paper.
(効果)
(1)画像表示装置10~18は、構造色発現領域R1を有する画像表示シート1と、構造色発現領域R1の画像表示側に設置され、画像表示側に位置する面S1に対して予め設定した角度で入射する入射光3aと、入射光3aのうち構造色発現領域R1の一部で反射した反射光3bとを選択的に透過する入反射光制限部2と、を少なくとも備えている。
 このような構成であれば、入射光3aの入射角度と、反射光3bの反射角度とを予め設定した角度にすることができる。このため、観察者の観察角度が異なった場合であっても、画像表示シート1中の光路長は変化せず、干渉する光の波長も変化しない。これにより、画像表示装置10~18で表示した構造色が変化するのを防止することができる。
 また、このような構成であれば、入射光3aの光源を太陽光にすれば、画像を表示するための電力を必要としない。
 また、本発明の一態様に係る構造色ディスプレイであれば、光源の位置、即ち光の入射角度が変化した場合であっても、構造色を利用して表示した画像が変化するのを防止することもできる。
 また、本発明の一態様に係る構造色ディスプレイであれば、例えば、入射光が多重反射した光、つまり、入射光の一部が屋外に設置された外壁等により反射した光である場合でも、構造色を利用して表示した画像の輝度ムラを防止することもできる。
(effect)
(1) The image display devices 10 to 18 are set in advance for the image display sheet 1 having the structural color expression region R1 and the surface S1 that is installed on the image display side of the structural color expression region R1 and is located on the image display side. At least the incident light 3a incident at an angle and the incident light 3a that selectively reflects the reflected light 3b reflected from a part of the structural color expression region R1 of the incident light 3a.
With such a configuration, the incident angle of the incident light 3a and the reflection angle of the reflected light 3b can be set to preset angles. For this reason, even when the observation angle of the observer is different, the optical path length in the image display sheet 1 does not change, and the wavelength of the interfering light does not change. Thereby, it is possible to prevent the structural colors displayed on the image display devices 10 to 18 from changing.
Moreover, if it is such a structure, if the light source of the incident light 3a will be sunlight, the electric power for displaying an image will not be required.
In addition, with the structural color display according to one embodiment of the present invention, even if the position of the light source, that is, the incident angle of light changes, an image displayed using the structural color is prevented from changing. You can also
Further, in the structural color display according to one aspect of the present invention, for example, even when incident light is multiple reflected light, that is, when a part of the incident light is reflected by an outer wall or the like installed outdoors, It is also possible to prevent luminance unevenness of an image displayed using structural colors.
(2)画像表示装置10~18の入反射光制限部2は、面S1に対して80°以上90°以下の範囲内の角度で入射する入射光3aと、その角度範囲内の角度で反射した反射光3bとを選択的に透過する。
 このような構成であれば、面S1に対して略垂直方向から画像を観察することができるので、表示された画像の視認性をより高めることができる。また、視野角を狭くすることができるので、のぞき見を防止(プライバシービューガード)できる。
(2) The incident / reflected light limiting unit 2 of the image display devices 10 to 18 reflects the incident light 3a incident on the surface S1 at an angle in the range of 80 ° to 90 ° and the angle within the angular range. The reflected light 3b is selectively transmitted.
With such a configuration, the image can be observed from a direction substantially perpendicular to the surface S1, and thus the visibility of the displayed image can be further improved. Also, since the viewing angle can be narrowed, peeping can be prevented (privacy view guard).
(3)画像表示装置10~18の入反射光制限部2は、画像表示シート1の厚み方向に沿って入射する入射光3aを透過可能に配置したウレキサイトと、画像表示シート1の厚み方向に沿って延びる光ファイバを束状に固定した束状光ファイバとの少なくとも一方を備えている。
 ウレキサイトと束状光ファイバとは、それぞれ比較的容易に入手できる。したがって、このような構成であれば、入反射光制限部2の製造コストを低減することができる。よって、画像表示装置全体としての製造コストを低減することができる。
(3) The incident / reflected light restricting unit 2 of the image display devices 10 to 18 includes a urexite disposed so as to be able to transmit incident light 3a incident along the thickness direction of the image display sheet 1, and a thickness direction of the image display sheet 1. At least one of a bundled optical fiber in which optical fibers extending along the bundle are fixed in a bundle is provided.
Urexite and bundled optical fibers can be obtained relatively easily. Therefore, with such a configuration, the manufacturing cost of the incident / reflected light limiting unit 2 can be reduced. Therefore, the manufacturing cost of the entire image display device can be reduced.
(4)画像表示装置11は、構造色発現領域R1を挟み入反射光制限部2に対向する位置で、構造色発現領域R1における画像表示シート1の厚みを調整するシート厚調整部4を備えている。
 このような構成であれば、構造色発現領域R1における画像表示シート1の厚みを自在に調整することができるので、発現する構造色の色彩を多様に変化させることができる。
(4) The image display device 11 includes a sheet thickness adjustment unit 4 that adjusts the thickness of the image display sheet 1 in the structural color expression region R1 at a position facing the incident reflection light limiting unit 2 with the structural color expression region R1 interposed therebetween. ing.
With such a configuration, since the thickness of the image display sheet 1 in the structural color expression region R1 can be freely adjusted, the color of the structural color to be expressed can be variously changed.
(5)画像表示装置11のシート厚調整部4は、画像表示シート1に接触する電極を含み、画像表示シート1は、電圧に応じて体積が変化する電圧応答性高分子ゲルで形成されている。また、シート厚調整部4は、画像表示シート1を加熱可能な加熱部を含み、画像表示シート1は、熱に応じて体積が変化する熱応答性高分子ゲルで形成されている。また、シート厚調整部4は、画像表示シート1に光照射可能な光照射部を含み、画像表示シート1は、光に応じて体積が変化する光応答性高分子ゲルで形成されている。
 このような構成であれば、シート厚調整部4に含まれる電極に電圧を印加することによって、画像表示シート1の厚みd1を自在に調整することができる。したがって、発現する構造色の色彩を多様に変化させることができるとともに、構造色の色彩を変化させる速度(応答速度)をより高めることができる。なお、画像表示シート1に対する加熱や光照射によっても、これと同様の作用効果を奏する。
(5) The sheet thickness adjusting unit 4 of the image display device 11 includes an electrode that contacts the image display sheet 1, and the image display sheet 1 is formed of a voltage-responsive polymer gel whose volume changes according to voltage. Yes. The sheet thickness adjusting unit 4 includes a heating unit capable of heating the image display sheet 1, and the image display sheet 1 is formed of a thermoresponsive polymer gel whose volume changes according to heat. The sheet thickness adjusting unit 4 includes a light irradiation unit that can irradiate the image display sheet 1 with light, and the image display sheet 1 is formed of a photoresponsive polymer gel whose volume changes according to light.
With such a configuration, the thickness d1 of the image display sheet 1 can be freely adjusted by applying a voltage to the electrodes included in the sheet thickness adjusting unit 4. Therefore, it is possible to change the color of the structural color that is expressed in various ways, and it is possible to further increase the speed (response speed) of changing the color of the structural color. In addition, there exists an effect similar to this also by the heating with respect to the image display sheet 1, or light irradiation.
(6)画像表示装置12の画像表示シート1は、構造色を発現する構造色発現層1a~1cが画像表示シート1の厚み方向に沿って積層した多層構造体であり、構造色発現領域R1における構造色発現層1a~1cの各層の厚みは、積層した構造色発現層1a~1cのうちいずれか1層を基準層とした場合に、基準層の厚みの整数倍である。
 このような構成であれば、単色性を高めた構造色を発現させることができる。
(6) The image display sheet 1 of the image display device 12 is a multilayer structure in which structural color expression layers 1a to 1c that express a structural color are stacked along the thickness direction of the image display sheet 1, and the structural color expression region R1 The thickness of each of the structural color developing layers 1a to 1c is an integral multiple of the thickness of the reference layer when any one of the laminated structural color developing layers 1a to 1c is used as the reference layer.
With such a configuration, a structural color with improved monochromaticity can be expressed.
(7)画像表示装置12の構造色発現層1a~1cの各層は、全て同じ材料で形成されている。
 このような構成であれば、低コストで単色性を高めた構造色を発現させることができる。
(7) The structural color developing layers 1a to 1c of the image display device 12 are all formed of the same material.
With such a configuration, a structural color with improved monochromaticity can be produced at low cost.
(8)画像表示装置15は、入反射光制限部2の画像表示側を覆うように配置された、平面とその平面の裏面側に位置する凸面とを有する平凸レンズ6をさらに備え、平凸レンズ6の平面は、入反射光制限部2側を向いている。
 このような構成であれば、入射光3a及び反射光3bを容易に散乱させることができるので、容易に視野角を広げることができる。
(8) The image display device 15 further includes a plano-convex lens 6 which is disposed so as to cover the image display side of the incident / reflected light limiting unit 2 and has a plane and a convex surface located on the back side of the plane. The 6 plane faces the incident / reflected light limiting unit 2 side.
With such a configuration, since the incident light 3a and the reflected light 3b can be easily scattered, the viewing angle can be easily widened.
(9)画像表示装置16は、複数のマイクロレンズ7a~7hで構成されるマイクロレンズアレイ7を備えている。
 このような構成であれば、入射光3a及び反射光3bを確実に散乱させることができるので、より確実に視野角を広げることができる。
(9) The image display device 16 includes a microlens array 7 including a plurality of microlenses 7a to 7h.
With such a configuration, the incident light 3a and the reflected light 3b can be reliably scattered, so that the viewing angle can be more reliably widened.
(10)画像表示装置17の入反射光制限部2は、画像表示シート1の厚み方向に沿って延びる光ファイバを束状に固定した束状光ファイバを備えており、その光ファイバの各開口端面上には、マイクロレンズ8a~8fが配置されており、そのマイクロレンズ8a~8fの直径は、上記光ファイバの開口端面の直径とそれぞれ同じである。
 このような構成であれば、入射光3a及び反射光3bを容易に散乱させることができるので、さらに視野角を広げることができる。
(10) The incident / reflected light limiting unit 2 of the image display device 17 includes a bundled optical fiber in which optical fibers extending in the thickness direction of the image display sheet 1 are fixed in a bundle, and each opening of the optical fiber. Microlenses 8a to 8f are disposed on the end face, and the diameters of the microlenses 8a to 8f are the same as the diameter of the opening end face of the optical fiber.
With such a configuration, since the incident light 3a and the reflected light 3b can be easily scattered, the viewing angle can be further widened.
(11)画像表示装置18は、入反射光制限部2の画像表示側を覆うように配置された、入射光3a及び反射光3bを散乱させる光散乱シート9をさらに備えている。
 このような構成であれば、入射光3a及び反射光3bを容易に散乱させることができるので、容易に視野角を広げることができる。
(11) The image display device 18 further includes a light scattering sheet 9 that scatters the incident light 3a and the reflected light 3b, which is disposed so as to cover the image display side of the incident / reflected light limiting unit 2.
With such a configuration, since the incident light 3a and the reflected light 3b can be easily scattered, the viewing angle can be easily widened.
(変形例)
(1)上記実施形態では、複数の入反射光透過領域R2a~R2fを有する入反射光制限部2について説明したが、本発明はこれに限定されるものではない。例えば、入反射光制限部2は、単数の入反射光透過領域R2を有するものであってもよい。この場合であっても、上述の効果を奏することができる。
(Modification)
(1) In the above embodiment, the incident / reflected light limiting unit 2 having a plurality of incident / reflected light transmission regions R2a to R2f has been described. However, the present invention is not limited to this. For example, the incident / reflected light limiting unit 2 may have a single incident / reflected light transmission region R2. Even in this case, the above-described effects can be achieved.
(2)上記実施形態では、入反射光透過領域R2(R2a~R2f)同士が離れて位置する入反射光制限部2について説明したが、本発明はこれに限定されるものではない。例えば、入反射光透過領域R2(R2a~R2f)同士が隣接しているものであってもよい。この場合であっても、上述の効果を奏することができる。 (2) In the above-described embodiment, the incident / reflected light limiting unit 2 in which the incident / reflected light transmission regions R2 (R2a to R2f) are located apart from each other has been described. However, the present invention is not limited to this. For example, the incident / reflected light transmission regions R2 (R2a to R2f) may be adjacent to each other. Even in this case, the above-described effects can be achieved.
(3)上記実施形態では、画像表示シート1に接触する電極を含んだシート厚調整部4(4a~4f)について説明したが、本発明はこれに限定されるものではない。シート厚調整部4(4a~4f)は、構造色発現領域R1(R1a~R1f)のシート厚を変化させることができればよい。例えば、シート厚調整部4(4a~4f)はポンプ等を備えており、そのシート厚調整部4(4a~4f)を用いて構造色発現領域R1(R1a~R1f)をシート厚方向に加圧・減圧して、構造色発現領域R1(R1a~R1f)のシート厚を変化させてもよい。この場合であっても、上述の効果を奏することができる。
 また、シート厚調整部4(4a~4f)は、例えば、光を照射することが可能な光照射装置や熱を加えることが可能な加熱装置であってもよい。この場合であっても、上述の効果を奏することができる。ここで、シート厚調整部4(4a~4f)を光照射装置とした場合には、画像表示シート1は、例えば光応答性高分子ゲルで形成されていることが好ましい。また、シート厚調整部4(4a~4f)を加熱装置とした場合には、画像表示シート1は、例えば温度応答性高分子ゲルで形成されていることが好ましい。
 また、シート厚調整部4(4a~4f)は、画像表示シート1に、例えば、曲げ・引っ張り・圧縮等の歪を付与可能な装置であってもよい。
(3) In the above embodiment, the sheet thickness adjusting unit 4 (4a to 4f) including the electrode in contact with the image display sheet 1 has been described, but the present invention is not limited to this. The sheet thickness adjusting unit 4 (4a to 4f) only needs to change the sheet thickness of the structural color expression region R1 (R1a to R1f). For example, the sheet thickness adjustment unit 4 (4a to 4f) includes a pump and the like, and the structural color expression region R1 (R1a to R1f) is added in the sheet thickness direction using the sheet thickness adjustment unit 4 (4a to 4f). The sheet thickness of the structural color expression region R1 (R1a to R1f) may be changed by applying pressure or reduced pressure. Even in this case, the above-described effects can be achieved.
Further, the sheet thickness adjusting unit 4 (4a to 4f) may be, for example, a light irradiation device capable of irradiating light or a heating device capable of applying heat. Even in this case, the above-described effects can be achieved. Here, when the sheet thickness adjusting unit 4 (4a to 4f) is a light irradiation device, the image display sheet 1 is preferably formed of, for example, a photoresponsive polymer gel. When the sheet thickness adjusting unit 4 (4a to 4f) is a heating device, the image display sheet 1 is preferably formed of, for example, a temperature-responsive polymer gel.
Further, the sheet thickness adjusting unit 4 (4a to 4f) may be an apparatus capable of imparting distortion such as bending, pulling, and compression to the image display sheet 1.
(4)上記実施形態では、構造色発現層1a~1cの3層で構成された画像表示シート1について説明したが、本発明はこれに限定されるものではない。例えば、画像表示シートは、多層構造体であればよく、構造色発現層が2層積層した構造体であってもよいし、構造色発現層が4層以上積層した構造体であってもよい。この場合であっても、上述の効果を奏することができる。 (4) In the above embodiment, the image display sheet 1 composed of the three structural color developing layers 1a to 1c has been described. However, the present invention is not limited to this. For example, the image display sheet may be a multilayer structure, and may be a structure in which two structural color developing layers are stacked, or a structure in which four or more structural color developing layers are stacked. . Even in this case, the above-described effects can be achieved.
(5)上記実施形態では、基準層を構造色発現層1aとした場合について説明したが、本発明はこれに限定されるものではない。例えば、基準層を構造色発現層1bとしてもよいし、構造色発現層1cとしてもよい。この場合であっても、上述の効果を奏することができる。 (5) In the above embodiment, the case where the reference layer is the structural color developing layer 1a has been described, but the present invention is not limited to this. For example, the reference layer may be the structural color expression layer 1b or the structural color expression layer 1c. Even in this case, the above-described effects can be achieved.
(6)上記実施形態では、構造色発現層1a~1cの各層が全て同じ材料で形成されている場合について説明したが、本発明はこれに限定されるものではない。例えば、構造色発現層1a~1cの各層が全て異なる材料で形成されていてもよい。この場合であっても、上述の効果を奏することができる。 (6) In the above embodiment, the case where the structural color developing layers 1a to 1c are all formed of the same material has been described, but the present invention is not limited to this. For example, each of the structural color developing layers 1a to 1c may be formed of different materials. Even in this case, the above-described effects can be achieved.
(7)上記実施形態では、表示された画像の視野角を広げるために平凸レンズ6、マイクロレンズアレイ7、8をそれぞれ用いた場合について説明したが、本発明はこれらに限定されるものではない。表示された画像の視野角を広げることができれば、平凸レンズ以外のレンズ、マイクロレンズアレイを用いてもよい。これらの場合であっても、上述の効果を奏することができる。 (7) In the above embodiment, the case where the plano-convex lens 6 and the microlens arrays 7 and 8 are used to widen the viewing angle of the displayed image has been described, but the present invention is not limited to these. . A lens other than a plano-convex lens or a microlens array may be used as long as the viewing angle of the displayed image can be widened. Even in these cases, the above-described effects can be achieved.
(8)上記実施形態では、画像表示シート1と入反射光制限部2との間、又は画像表示シート1内に埋め込まれるようにフレーム5を備えた場合について説明したが、本発明はこれらに限定されるものではない。フレーム5を備えない場合であっても、上述の効果を奏することができる。また、フレーム5を備えないことで、構造色発現領域R1a~R1fをより広くすることができる。 (8) In the above embodiment, the case where the frame 5 is provided between the image display sheet 1 and the incident / reflected light limiting unit 2 or embedded in the image display sheet 1 has been described. It is not limited. Even if the frame 5 is not provided, the above-described effects can be achieved. Further, since the frame 5 is not provided, the structural color expression regions R1a to R1f can be made wider.
(9)上記実施形態では、構造色を利用して画像を表示する画像表示装置について説明したが、本発明はこれらに限定されるものではない。例えば、上記実施形態で説明した画像表示装置を画像表示媒体に組み込み、それを画像表示物としてもよい。より詳しくは、上記実施形態で説明した画像表示装置を紙に組む込むことで、ポスターやカレンダーを作成することができる。 (9) In the above-described embodiment, the image display apparatus that displays an image using structural colors has been described. However, the present invention is not limited to these. For example, the image display device described in the above embodiment may be incorporated in an image display medium and used as an image display object. More specifically, a poster or calendar can be created by incorporating the image display device described in the above embodiment into paper.
(10)上記実施形態では、入反射光制限部2として、例えば、ウレキサイトや束状光ファイバを用いた場合について説明したが、本発明はこれらに限定されるものではない。例えば、上述したウレキサイトや束状光ファイバに代えて、入反射光制限部2として、表面を粗面化したガラス板(すりガラス)、光散乱フィルム、光散乱シート、半透明フィルム、トレーシングペーパー、グラシン紙、パラフィン紙などを用いてもよい。これらの材料を用いた場合であっても、上述の効果を奏することができる。
 また、入反射光制限部2として、上述したウレキサイトや束状光ファイバに代えて、フレネルレンズを用いてもよい。このレンズを用いた場合であっても、上述の効果を奏することができる。
(10) In the above embodiment, the case where, for example, urexite or a bundled optical fiber is used as the incident / reflected light limiting unit 2 is described, but the present invention is not limited to these. For example, instead of the above-described urexite or bundled optical fiber, as the incident / reflected light limiting portion 2, a glass plate (ground glass) whose surface is roughened, a light scattering film, a light scattering sheet, a translucent film, tracing paper, Glassine paper, paraffin paper, or the like may be used. Even when these materials are used, the above-described effects can be obtained.
Further, as the incident / reflected light limiting unit 2, a Fresnel lens may be used instead of the above-described urexite or bundled optical fiber. Even when this lens is used, the above-described effects can be obtained.
(その他の変形例)
 上述した変形例に係るディスプレイ以外のディスプレイの構成を以下に記載する。なお、下記ディスプレイであっても、本願の課題を解決し得る。
・変形例A
 構造色によって画像が表示されるディスプレイであって、前記ディスプレイは、構造色により画像を表示する画像表示シートを備え、前記画像表示シートは、構造色発現領域と、前記構造色発現領域の前記画像の表示側に配置される入反射光制限部と、を備えている構造色ディスプレイ。
(Other variations)
A configuration of a display other than the display according to the above-described modification will be described below. Even the following display can solve the problems of the present application.
・ Modification A
A display on which an image is displayed with a structural color, the display including an image display sheet that displays an image with a structural color, the image display sheet including a structural color expression region and the image of the structural color expression region A structural color display comprising an incident / reflected light limiting unit disposed on the display side of the display.
・変形例B
 前記入反射光制限部を、前記構造色発現領域の面に対して予め設定した入射角範囲内で入射する入射光と、前記入射光のうち前記構造色発現領域の一部で反射した反射光と、を選択的に透過する入反射光制限部とした構造色ディスプレイ。
・ Modification B
Incident light incident on the incident / reflected light restricting portion within a predetermined incident angle range with respect to the surface of the structural color expression area, and reflected light reflected by a part of the structural color expression area of the incident light And a structural color display using an incident / reflected light restricting portion that selectively transmits light.
・変形例C
 前記入反射光制限部を、束状光ファイバ、又はウレキサイト製プレートで構成した構造色ディスプレイ。
・ Modification C
A structural color display in which the incident / reflected light limiting portion is constituted by a bundle of optical fibers or a urexite plate.
・変形例D
 前記入反射光制限部を束状光ファイバとし、該束状光ファイバをテーパー型束状光ファイバとした構造色ディスプレイ。
・ Modification D
A structural color display in which the incident / reflected light limiting portion is a bundled optical fiber, and the bundled optical fiber is a tapered bundled optical fiber.
・変形例E
 前記構造色発現領域を、コロイド結晶構造、逆オパール構造、多層構造、ラメラ構造のいずれかの構造とした構造色ディスプレイ。
・ Modification E
A structural color display in which the structural color expression region is any one of a colloidal crystal structure, an inverse opal structure, a multilayer structure, and a lamella structure.
・変形例F
 前記構造色発現領域を、多層構造に基づくブラッグ周期を有するものとし、かつ各層を同一材料で構成した構造色ディスプレイ。
・ Modification F
A structural color display in which the structural color expression region has a Bragg period based on a multilayer structure and each layer is made of the same material.
・変形例G
 前記画像表示シートを、前記構造色発現領域を挟み前記入反射光制限部に対向する位置に、又は前記構造色発現領域を挟んで、前記構造色発現領域に刺激を加える刺激付与部をさらに備えたものとし、かつ、前記構造色発現領域を、前記刺激付与部により加えられる電場、光、変形(歪・応力)、熱、又は磁気のいずれか刺激によって前記ブラッグ周期が変化する刺激応答性構造色材料にて構成した構造色ディスプレイ。
・ Modification G
The image display sheet further includes a stimulus applying unit that applies a stimulus to the structural color expression region at a position facing the incident / reflected light limiting unit with the structural color expression region interposed therebetween, or across the structural color expression region. A stimulus-responsive structure in which the Bragg period is changed by any one of an electric field, light, deformation (strain / stress), heat, or magnetism applied by the stimulus applying unit. Structural color display composed of color materials.
・変形例H
 前記画像表示シートを、平面と前記平面の裏面側に位置する凸面とを有する平凸レンズをさらに備えたものとし、前記平凸レンズを、前記平面が前記入反射光制限部側を向き、前記凸面が画像表示側(視認側)に向くように、かつ前記画像の表示側を覆うように配置した構造色ディスプレイ。
・ Modification H
The image display sheet further includes a plano-convex lens having a plane and a convex surface located on the back side of the plane, and the plano-convex lens is arranged such that the plane faces the incident reflection light limiting unit side, and the convex surface A structural color display arranged to face the image display side (viewing side) and to cover the display side of the image.
・変形例I
 前記平凸レンズを、複数のマイクロレンズで構成されたマイクロレンズアレイとした構造色ディスプレイ。
・ Modification I
A structural color display in which the plano-convex lens is a microlens array composed of a plurality of microlenses.
・変形例J
 前記入反射光制限部を束状光ファイバで構成し、前記マイクロレンズアレイを構成するマイクロレンズの直径を、前記束状光ファイバを構成する光ファイバの径と同一とし、かつ前記光ファイバの各開口端面上には、前記マイクロレンズを配置した構造色ディスプレイ。
・ Modification J
The incident / reflected light limiting portion is configured by a bundled optical fiber, the diameter of the microlens configuring the microlens array is the same as the diameter of the optical fiber configuring the bundled optical fiber, and each of the optical fibers A structural color display in which the microlens is disposed on the opening end face.
・変形例K
 前記入反射光制限部の前記画像の表示側を覆うように配置された、前記入反射光及び前記反射光を拡散させる光散乱シートをさらに備えた構造色ディスプレイ。
・ Modification K
A structural color display further comprising a light scattering sheet arranged to cover the image display side of the incident / reflected light restricting portion and diffusing the incident / reflected light and the reflected light.
・変形例L
 変形例A~Kのいずれかに係る構造色ディスプレイを備えた画像表示物。
・ Modification L
An image display object including the structural color display according to any one of Modifications A to K.
 <実験例>
 以下、実験例を示す。
 <構造色測定装置の概要>
  図15は、本発明の効果の実証に用いた構造色測定装置30の概要図である。本装置の主要部は光源装置31、色彩輝度計32、色彩輝度計32の受光角(観察角α)を調節するためのスライダー33、試験片設置台35、及び支持台34にて構成される。支持台34の上面は水平に保たれており、スライダー33は、支持台34の上面に対し垂直に据えられている。スライダー33の外周は半円弧状となっており、色彩輝度計32はスライダー33に沿って、試験片設置台35の中心に対する観察角αを0°~約40°の範囲で変えることが出来る。光源装置31は、試験片設置台35の中心を含みスライダー33に対し垂直な面上に有り、試験片設置台35の中心に対し入射角(β)を25°に設定してある。
<Experimental example>
Examples of experiments are shown below.
<Outline of structural color measuring device>
FIG. 15 is a schematic diagram of the structural color measuring apparatus 30 used for demonstrating the effects of the present invention. The main part of the apparatus is composed of a light source device 31, a color luminance meter 32, a slider 33 for adjusting the light reception angle (observation angle α) of the color luminance meter 32, a test piece installation base 35, and a support base 34. . The upper surface of the support table 34 is kept horizontal, and the slider 33 is placed perpendicular to the upper surface of the support table 34. The outer periphery of the slider 33 has a semicircular arc shape, and the color luminance meter 32 can change the observation angle α with respect to the center of the test piece installation base 35 along the slider 33 in the range of 0 ° to about 40 °. The light source device 31 is on a plane perpendicular to the slider 33 including the center of the test piece installation table 35, and the incident angle (β) is set to 25 ° with respect to the center of the test piece installation table 35.
 試験片設置台35には方向指示マーク38が設けられている。方向指示マーク38は、構造色測定装置30へ据え付ける試験片設置台35の方向を示す。各測定において、試験片は方向指示マーク38に従い試験片設置台35の上に載置されるので、測定物に対する光源装置31の方向、及び色彩輝度計32が移動する方向を正しく把握することが可能となる。 The direction indicator mark 38 is provided on the test piece mounting base 35. The direction indication mark 38 indicates the direction of the test piece mounting base 35 to be installed on the structural color measuring device 30. In each measurement, since the test piece is placed on the test piece setting table 35 in accordance with the direction indication mark 38, it is possible to correctly grasp the direction of the light source device 31 with respect to the measurement object and the direction in which the color luminance meter 32 moves. It becomes possible.
   <光源装置31>
  図15において、光源装置31は、内面が黒色の、箱311と筒312とを備え、箱311の中に高演色形蛍光管(図示していない)を収納している。蛍光管から発した光のうち、筒312を通り抜けた光、すなわち筒312の軸に対してほぼ平行になっている光だけが測定物へ届くようにしている。
 この光源装置31の筒312から発する光を正面から分光放射輝度計によって実測したスペクトル分布を図16に示す。分光放射輝度計は、コニカミノルタ(株)製の分光放射輝度計(CS-2000A)である。
 光源装置31にて使用した蛍光管の仕様は以下のとおりである。
     メーカー:三菱電機照明(株)
     名称:高演色形演色性AAA昼白色蛍光管
     型式:FL20S・N-EDL・NU
     色温度:5000K (メーカー提供データシート値)
     演色評価数(Ra):99(メーカー提供データシート値)
<Light source device 31>
In FIG. 15, the light source device 31 includes a box 311 and a cylinder 312 having a black inner surface, and a high color rendering fluorescent tube (not shown) is accommodated in the box 311. Of the light emitted from the fluorescent tube, only the light that has passed through the tube 312, that is, the light that is substantially parallel to the axis of the tube 312, reaches the object to be measured.
FIG. 16 shows a spectrum distribution obtained by actually measuring the light emitted from the cylinder 312 of the light source device 31 with a spectral radiance meter from the front. The spectral radiance meter is a spectral radiance meter (CS-2000A) manufactured by Konica Minolta.
The specifications of the fluorescent tube used in the light source device 31 are as follows.
Manufacturer: Mitsubishi Electric Lighting Co., Ltd.
Name: High color rendering color rendering AAA daylight white fluorescent tube Model: FL20S / N-EDL / NU
Color temperature: 5000K (Manufacturer's data sheet value)
Color rendering index (Ra): 99 (data sheet provided by manufacturer)
   <色彩輝度計32>
     色度(x,y)と輝度(Lv)の測定は、コニカミノルタ(株)製の2次元色彩輝度計(CA-2500)を使用した。各実験では、この色彩輝度計32によって測定物の表面の色度及び輝度の数値を得ているが、これらは、各測定場面において、色彩輝度計32が写し出した測定物の表面の映像の上における所望の位置を四角形で囲むことにより測定エリアを設定し、そのエリア内において色度の平均数値及び輝度の平均数値を求めたものである。
<Color luminance meter 32>
Chromaticity (x, y) and luminance (Lv) were measured using a two-dimensional color luminance meter (CA-2500) manufactured by Konica Minolta. In each experiment, numerical values of the chromaticity and luminance of the surface of the measurement object are obtained by the color luminance meter 32, and these are obtained on the surface image of the measurement object projected by the color luminance meter 32 in each measurement scene. A measurement area is set by surrounding a desired position in a rectangle with squares, and an average value of chromaticity and an average value of luminance are obtained in the area.
   <比較用の標準グレー色板>
     「比較用の標準グレー色板」として、(株)ニコン製18%標準反射板を使用した。これは、測定物と一緒にこの標準反射板の色度や輝度も測定し、ここで得られた値から測定が正しく進められたことを判断するためのものである。
<Standard gray plate for comparison>
As a “standard gray plate for comparison”, an 18% standard reflector made by Nikon Corporation was used. This is to measure the chromaticity and luminance of the standard reflector together with the measurement object, and to judge that the measurement has proceeded correctly from the values obtained here.
   <粒子型構造色シート36>
 いくつかの実験例では、以下の構造色材料にて構成されるシート状試験片(=エラストマーシート)を使用した。
 この試験片は、屈折率1.50のエラストマー相中に屈折率1.45の単分散ガラス微粒子(粒子径0.18μm)を均一分散した軟質シートを、黒色ゴム状のベースシートに積層固定し裁断した、厚さ約2mm、縦長さ約30mm、横長さ約20mmの長方形状のエラストマーシートである。
<Particle type structural color sheet 36>
In some experimental examples, a sheet-like test piece (= elastomer sheet) composed of the following structural color materials was used.
In this test piece, a soft sheet in which monodispersed glass fine particles (particle diameter: 0.18 μm) having a refractive index of 1.45 are uniformly dispersed in an elastomer phase having a refractive index of 1.50 is laminated and fixed on a black rubber-like base sheet. A rectangular elastomer sheet having a thickness of about 2 mm, a vertical length of about 30 mm, and a horizontal length of about 20 mm.
 本エラストマーシートは、見る角度により、色相が変化する構造色材料である。
 以後、構造色を呈する本エラストマーシートを粒子型構造色シート36と称する。
This elastomer sheet is a structural color material whose hue changes depending on the viewing angle.
Hereinafter, this elastomer sheet exhibiting a structural color is referred to as a particle-type structural color sheet 36.
   <多層型構造色プレート37>
 また、本実験では、入反射光制限部2の効果を更に調べるため、以下の多層型構造色プレート37も用いた。
 この多層型構造色プレート37は、下記の市販ノッチフィルターを用いて作成した。用いたノッチフィルターの仕様は以下のとおりである。
    名称:ノッチフィルター
    型番:NF-25C05-47-633
    メーカー:シグマ光機(株)
    特性:カット波長633nm、透過帯波長475~597nm及び669~850nm、透過率90%
<Multilayer structure color plate 37>
In this experiment, in order to further investigate the effect of the incident / reflected light limiting unit 2, the following multilayer structural color plate 37 was also used.
The multilayer structural color plate 37 was prepared using the following commercially available notch filter. The specifications of the notch filter used are as follows.
Name: Notch filter Model number: NF-25C05-47-633
Manufacturer: Sigma Hikari Co., Ltd.
Characteristics: Cut wavelength 633 nm, transmission band wavelengths 475 to 597 nm and 669 to 850 nm, transmittance 90%
 このノッチフィルターは、正反射の時だけ、その光の入射角に応じた波長の光を反射させ、その他の光は透過させるものである。このノッチフィルターは、屈折率の異なる2種の微粒子を交互に積層させた多層構造を有し、特定波長範囲の光を透過しない性質を備えている。具体的には、当該ノッチフィルターは正面視(入射角0°)での透過帯波長が475~597nm及び669~850nmである。よって正面視では、波長600~668nmの光(赤色)は透過せずに正面に向かって反射するという特性を持つ。 This notch filter reflects light of a wavelength corresponding to the incident angle of the light and transmits other light only during regular reflection. This notch filter has a multilayer structure in which two kinds of fine particles having different refractive indexes are alternately laminated, and has a property of not transmitting light in a specific wavelength range. Specifically, the notch filter has transmission band wavelengths of 475 to 597 nm and 669 to 850 nm in front view (incidence angle 0 °). Accordingly, when viewed from the front, light (red) having a wavelength of 600 to 668 nm has a characteristic of being reflected toward the front without being transmitted.
 上記ノッチフィルターの片面へ黒色塗装を施し多層型構造色プレート37を作成した。ノッチフィルターの背面へ黒色塗装を施し、透過帯波長(475~597nm及び669~850nmの範囲)の光を黒色塗装で吸収させるようにした。こうして、多層型構造色プレート37は、その光の入射角に応じた波長の光を正反射させ、他の光は黒色塗装で吸収するという特性を持つことになる。 ¡Multi-layered structural color plate 37 was created by applying black coating on one side of the notch filter. A black coating was applied to the back of the notch filter so that light with a transmission band wavelength (ranging from 475 to 597 nm and 669 to 850 nm) was absorbed by the black coating. In this way, the multilayer structural color plate 37 has a characteristic that the light having a wavelength corresponding to the incident angle of the light is specularly reflected and the other light is absorbed by the black paint.
 以下の実験例1~4では、入反射光制限部2の具体的構成として、以下のプレートを使用した。
   <入反射光制限プレート>
     ・束状光ファイバプレートOP1(以下、単にOP1と略称することがある。):厚さ約11mm
     ・ウレキサイト製プレートOP2(以下、単にOP2と略称することがある。):厚さ約7mm
     ・束状光ファイバプレートOP3(以下、高性能プレートOP3と略称することがある。):厚さ約3mm
 いずれもプレート面に垂直方向にファイバ軸又は結晶軸が配向している。なお、高性能プレートOP3の「高性能」とは、OP1よりも性能が高いことを意味する。より詳しくは、上記高性能とは、OP1よりも配向性が高く、且つ光の透過率が高いことを意味する。
In Experimental Examples 1 to 4 below, the following plates were used as specific configurations of the incident / reflected light limiting unit 2.
<Incoming / reflecting light limiting plate>
Bundled optical fiber plate OP1 (hereinafter sometimes simply referred to as OP1): thickness of about 11 mm
・ Urexite plate OP2 (hereinafter sometimes simply referred to as OP2): thickness of about 7 mm
Bundled optical fiber plate OP3 (hereinafter sometimes referred to as high performance plate OP3): about 3 mm thick
In either case, the fiber axis or crystal axis is oriented in the direction perpendicular to the plate surface. The “high performance” of the high performance plate OP3 means that the performance is higher than that of OP1. More specifically, the high performance means that the orientation is higher than that of OP1 and the light transmittance is high.
 さらに実験例5では、入反射光制限部2の具体的構成として、以下の光拡散シートDP1を使用した。 Further, in Experimental Example 5, the following light diffusion sheet DP1 was used as a specific configuration of the incident / reflected light limiting unit 2.
   <光拡散シートDP1>
    以下の半透明フィルムを光拡散シートDP1として使用した。
     ・半透明フィルム:(スリーエム カンパニー製メンディングテープ、スコッチテープ、「スコッチ」はスリーエム カンパニーの登録商標)
<Light diffusion sheet DP1>
The following translucent film was used as the light diffusion sheet DP1.
-Translucent film: (3M Company's mending tape, Scotch tape, "Scotch" is a registered trademark of 3M Company)
 [実験例1]
  粒子型構造色シート36と束状光ファイバプレートOP1との組み合わせにより、以下の実験をおこなった。以下、図15、図17を参照しつつ説明する。
  暗室内に上記の構造色測定装置30を配置し、上記粒子型構造色シート36を構造色測定装置30の上に置かれた試験片設置台35に固定した。更に、粒子型構造色シート36の上面の一部にOP1を載置した。次いで、測定位置P1の位置に「比較用の標準グレー色板」を貼り付け、他方、測定位置P2の位置には上記粒子型構造色シート36と同一のシート小片を貼り付けた。
[Experimental Example 1]
The following experiment was conducted by combining the particle-type structural color sheet 36 and the bundled optical fiber plate OP1. Hereinafter, a description will be given with reference to FIGS. 15 and 17.
The structural color measuring device 30 was placed in a dark room, and the particle type structural color sheet 36 was fixed to a test piece mounting table 35 placed on the structural color measuring device 30. Further, OP1 was placed on a part of the upper surface of the particle type structural color sheet 36. Next, the “standard gray color plate for comparison” was pasted at the position of the measurement position P1, and on the other hand, the same sheet piece as the particle type structural color sheet 36 was pasted at the position of the measurement position P2.
 以上の準備の後、光源装置31から試験片設置台35に向け光を照射し、「比較用の標準グレー色板」の表面(測定位置P1)、粒子型構造色シート36の表面(測定位置P3)、OP1の上に載置した粒子型構造色シートの小片の表面(測定位置P2)、OP1を透過してきた粒子型構造色シート36の反射光によるOP1の表面(測定位置P4)の、各々の位置における色度及び輝度を、色彩輝度計32の観察角αを0,10,20,30,40°に設定し、測定した。 After the above preparation, light is emitted from the light source device 31 to the test piece mounting table 35, and the surface of the “standard gray plate for comparison” (measurement position P1) and the surface of the particle-type structural color sheet 36 (measurement position). P3), the surface of the particle-type structural color sheet placed on OP1 (measurement position P2), the surface of OP1 by the reflected light of the particle-type structural color sheet 36 that has passed through OP1 (measurement position P4), The chromaticity and luminance at each position were measured by setting the observation angle α of the color luminance meter 32 to 0, 10, 20, 30, 40 °.
 結果を表1に示す。表1に基づき、観察角αの変化に伴う、色度変化の軌跡をxy色度図として図18に、輝度の変化を図19に示した。
 まず、「比較用の標準グレー色板」(測定位置P1)の色度と輝度を見ると、これらの数値は殆ど変化しておらず、本実験が正しく実施されたことを示している。
 次に、図18が示すように、粒子型構造色シート36表面の色度(測定位置P2,P3)を見ると、これらは観察角α依存性が強く、αがまだ10°であるにもかかわらず急激に色度が変化し、30°に至っては「赤み」を失っていることが明らかである。
The results are shown in Table 1. Based on Table 1, the locus of the chromaticity change accompanying the change in the observation angle α is shown as an xy chromaticity diagram in FIG. 18, and the change in luminance is shown in FIG.
First, looking at the chromaticity and luminance of the “comparative standard gray color plate” (measurement position P1), these values hardly change, indicating that this experiment was performed correctly.
Next, as shown in FIG. 18, when the chromaticities (measurement positions P2, P3) on the surface of the particle-type structural color sheet 36 are observed, these are strongly dependent on the observation angle α, and α is still 10 °. Regardless, the chromaticity changes abruptly, and it is clear that the “redness” is lost at 30 °.
 他方、束状光ファイバプレートOP1を透過して反射される粒子型構造色シート36の反射光によるOP1の表面(測定位置P4)の色度は、観察角依存性が抑制され、αが30°に至ってもなお赤色を維持している。 On the other hand, the chromaticity of the surface of OP1 (measurement position P4) due to the reflected light of the particle-type structural color sheet 36 that is transmitted through and reflected by the bundled optical fiber plate OP1 is less dependent on the observation angle and α is 30 °. The red color is still maintained.
 以上から、束状光ファイバプレートOP1により、構造色の色度の観察角依存性の抑止効果が明らかである。 From the above, it is clear that the bundled optical fiber plate OP1 suppresses the observation angle dependency of the chromaticity of the structural color.
 輝度(図19)について述べると、測定位置P2及びP3における粒子型構造色シート36表面の輝度は、観察角αが10°を超えると急激に低下するのに対し、束状光ファイバプレートOP1を透過してきた粒子型構造色シート36の反射光によるOP1の表面(測定位置P4)の輝度は、観察角20°をピークに観察角40°に至るまで高い値を維持している。
 この点も、束状光ファイバプレートOP1の効果である。
When the luminance (FIG. 19) is described, the luminance of the surface of the particle-type structural color sheet 36 at the measurement positions P2 and P3 decreases sharply when the observation angle α exceeds 10 °, whereas the bundled optical fiber plate OP1 is reduced. The brightness of the surface of OP1 (measurement position P4) by the reflected light of the particle-type structural color sheet 36 that has passed through maintains a high value from the observation angle of 20 ° to the observation angle of 40 °.
This is also an effect of the bundled optical fiber plate OP1.
 なお、本実験例の観察角αのいずれの範囲においても、粒子型構造色シート36表面の色度と輝度の観察角依存性は、測定位置P2、P3の差の影響をほとんど受けていない。この点から、束状光ファイバプレートOP1の構造色の観察角依存性の抑止効果は、測定位置の差(P3対P4)によるものではないことが明白である。 Note that, in any range of the observation angle α in this experimental example, the observation angle dependency of the chromaticity and luminance on the surface of the particle-type structural color sheet 36 is hardly affected by the difference between the measurement positions P2 and P3. From this point, it is apparent that the effect of suppressing the dependence of the structural color of the bundled optical fiber plate OP1 on the observation angle is not due to the difference in measurement position (P3 vs. P4).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実験例2]
 以下、粒子型構造色シート36とウレキサイト製プレートOP2との組み合わせによる実験を行った。
 実験例1において、束状光ファイバプレートOP1に代えてウレキサイト製プレートOP2を用いた他は同様にして構造色測定試験を行った。
[Experiment 2]
Hereinafter, an experiment was performed by combining the particle-type structural color sheet 36 and the urexite plate OP2.
A structural color measurement test was conducted in the same manner as in Experimental Example 1 except that a urexite plate OP2 was used instead of the bundled optical fiber plate OP1.
結果を表2、図20、及び図21に示す。実験例1と同様、ウレキサイト製プレートOP2により、構造色の観察角依存性が改善され、かつ輝度が高い値に維持されることが分かる。 The results are shown in Table 2, FIG. 20 and FIG. Similar to Experimental Example 1, it can be seen that the observation angle dependency of the structural color is improved and the luminance is maintained at a high value by the urexite plate OP2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実験例3]
 粒子型構造色シート36の上に、束状光ファイバプレートOP1と高性能プレートOP3とを隣接載置し、両者の特性の違いを比較する目的で、以下の実験を行った。比較は目視によった。
 実験例1において、粒子型構造色シート36の上にOP1と高性能プレートOP3とを隣接して置いた。この時、光源装置31は実験例1での位置を保ち、色彩輝度計32に代えて、肉眼観察により、OP1とOP3を通して見える試験片の構造色の観察角依存性を観察した。肉眼の位置は実験例1における色彩輝度計32の位置と略同一である。
[Experiment 3]
The bundled optical fiber plate OP1 and the high performance plate OP3 were placed adjacent to each other on the particle-type structural color sheet 36, and the following experiment was conducted for the purpose of comparing the difference in characteristics between the two. The comparison was visually.
In Experimental Example 1, OP1 and high-performance plate OP3 were placed adjacent to each other on the particle-type structural color sheet 36. At this time, the light source device 31 maintained the position in Experimental Example 1, and the observation angle dependency of the structural color of the test piece viewed through OP1 and OP3 was observed by visual observation instead of the color luminance meter 32. The position of the naked eye is substantially the same as the position of the color luminance meter 32 in Experimental Example 1.
 結果、観察角αが30°になると束状光ファイバプレートOP1の場合には構造色の赤色の彩度が低くなる(くすんでくる)のに対し、高性能プレートOP3の場合には彩度の高い赤色が視認できた。 As a result, when the observation angle α is 30 °, in the case of the bundled optical fiber plate OP1, the red saturation of the structural color is lowered (smoothed), whereas in the case of the high-performance plate OP3, the saturation is reduced. A high red color was visible.
 [実験例4]
  多層型構造色プレート37と束状光ファイバプレートOP1との組み合わせにより、以下の実験を行った。すなわち、実験例1において、試験片を粒子型構造色シート36から多層型構造色プレート37へ代え、他は同様にして構造色の測定を行った。なお、測定位置は図22に示すとおりである。
[Experimental Example 4]
The following experiment was performed using a combination of the multilayer structural color plate 37 and the bundled optical fiber plate OP1. That is, in Experimental Example 1, the test color was changed from the particle type structural color sheet 36 to the multilayer type structural color plate 37, and the structural color was measured in the same manner as the others. The measurement positions are as shown in FIG.
 結果を表3、図23、及び図24に示す。
 ここで、本実験で用いた多層型構造色プレート37は正反射以外では光を反射させることがない特性を持っている。つまり、多層型構造色プレート37表面に対する光源装置31からの光の入射角と、多層型構造色プレート37表面を反射して色彩輝度計32にて観察される光の角度(反射角)とが等しくならない限り、多層型構造色プレート37の表面は輝度が極めて低く黒色に見えることになる。
The results are shown in Table 3, FIG. 23, and FIG.
Here, the multilayered structural color plate 37 used in this experiment has a characteristic that does not reflect light except for regular reflection. That is, the incident angle of light from the light source device 31 with respect to the surface of the multilayer structural color plate 37 and the angle (reflection angle) of the light reflected on the surface of the multilayer structural color plate 37 and observed by the color luminance meter 32. Unless they are equal, the surface of the multilayer structural color plate 37 has very low brightness and appears black.
 したがって、本実験の構造色測定装置30における光源装置31、色彩輝度計32、及び試験片設置台35の位置関係から明らかなように、本実験では、光源装置31より照射した光線が多層型構造色プレート37の表面で反射され正反射により色彩輝度計32に捕らえられることはない(図30参照)。このため、多層型構造色プレート37の表面は常に極めて低い輝度を示す(測定位置P3)。 Therefore, as is clear from the positional relationship among the light source device 31, the color luminance meter 32, and the test piece installation base 35 in the structural color measuring device 30 of the present experiment, in this experiment, the light irradiated from the light source device 31 has a multilayer structure. It is reflected by the surface of the color plate 37 and is not captured by the color luminance meter 32 by regular reflection (see FIG. 30). For this reason, the surface of the multilayer structural color plate 37 always shows extremely low luminance (measurement position P3).
 これに対し、本実験例において、正反射の条件が決して満たされないにもかかわらず、束状光ファイバプレートOP1の上面(測定位置P4)には常に高い輝度と、はっきりとした赤色を見ることができる。 On the other hand, in this experimental example, although the regular reflection condition is never satisfied, the upper surface (measurement position P4) of the bundled optical fiber plate OP1 always shows high brightness and clear red. it can.
 すなわち、反射光の視認可能な角度範囲の極めて狭い多層型構造色プレート37であっても、その上に束状光ファイバプレートOP1を設けることにより、光源の位置と観察者の位置とが、多層型構造色プレート37の面に対し互いに正反射の位置関係にない場合においても、多層型構造色プレート37の構造色を視認できるという効果が生じる。 That is, even if the multilayer structural color plate 37 has a very narrow angle range in which the reflected light can be visually recognized, the bundled optical fiber plate OP1 is provided on the multi-layer structural color plate 37, so that the position of the light source and the position of the observer are Even when there is no regular reflection relative to the surface of the mold structure color plate 37, the structure color of the multilayer structure color plate 37 can be visually recognized.
 以上の効果は、本発明の構造色ディスプレイは、観察者と光源の位置(又は光源の角度)に起因する配置・設置上の制限が少なく、設計の自由度が高いことを意味し、本発明の構造色ディスプレイの実用的価値を大いに高めるものである。 The above effect means that the structural color display of the present invention has less restrictions on arrangement and installation due to the position of the observer and the light source (or the angle of the light source), and has a high degree of design freedom. This greatly increases the practical value of the structural color display.
 また同時に、実験例1と同様、束状光ファイバプレートOP1は、反射光の視認可能な角度範囲の狭い多層型構造色プレート37に対しても、観察角依存性を抑止する効果を発揮することが判明した。 At the same time, as in Experimental Example 1, the bundled optical fiber plate OP1 exhibits the effect of suppressing the observation angle dependency even for the multilayer structural color plate 37 having a narrow angle range in which the reflected light can be visually recognized. There was found.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実験例5]
 多層型構造色プレート37と光拡散シートDP1との組み合わせによリ、以下の実験を行った。すなわち、実験例4において、束状光ファイバプレートOP1に代えて、光拡散シートDP1を用いた他は同様にして測定を行った。測定位置は図25に示すとおりである。
[Experimental Example 5]
The following experiment was conducted using a combination of the multilayer structure color plate 37 and the light diffusion sheet DP1. That is, in Experimental Example 4, the measurement was performed in the same manner except that the light diffusion sheet DP1 was used instead of the bundled optical fiber plate OP1. The measurement position is as shown in FIG.
 結果を表4、図26、及び図27に示す。
 この結果から、光拡散シートDP1についても、実験例4と同様に、反射光の視認可能な角度範囲の極めて狭い多層型構造色プレート37について、光源の位置と観察者の位置とが、多層型構造色プレート37の面に対し、互いに正反射の位置関係にない場合であっても、多層型構造色プレート37の上面(測定位置P4)には常に高い輝度と、はっきりとした赤色を見ることができた。
The results are shown in Table 4, FIG. 26, and FIG.
From this result, as for the light diffusion sheet DP1, as in Experimental Example 4, the multilayer light source sheet 37 and the observer position of the multilayer structural color plate 37 having a very narrow angle range in which the reflected light can be visually recognized are multilayered. Even when there is no regular reflection position relative to the surface of the structural color plate 37, the upper surface (measurement position P4) of the multilayer structural color plate 37 always has a high brightness and a clear red color. I was able to.
 さらに、実験例4と同様に、光拡散シートDP1もまた、反射光の視認可能な角度範囲の狭い多層型構造色プレート37に対し、観察角依存性を抑止する効果を発揮することが判明した。 Further, similarly to Experimental Example 4, it was found that the light diffusion sheet DP1 also exerts an effect of suppressing the observation angle dependency on the multilayered structural color plate 37 having a narrow angle range in which the reflected light can be visually recognized. .
 なお、光拡散シートDP1は廉価な材料であり、コスト面で実用化に有利である。 The light diffusion sheet DP1 is an inexpensive material and is advantageous for practical use in terms of cost.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、ここでは限られた数の実施形態及び変形例を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。 Although the present invention has been described with reference to a limited number of embodiments and modifications, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure are obvious to those skilled in the art. That is.
1       画像表示シート
1a~1c   構造色発現層
2       入反射光制限部
3a      入射光
3b      反射光(構造色)
4       シート厚調整部
4a~4f   シート厚調整部
5       画素区画枠(フレーム)
6       平凸レンズ
7       マイクロレンズアレイ
7a~7h   マイクロレンズ
8       マイクロレンズアレイ
8a~8f   マイクロレンズ
9       光散乱シート
10~18   画像表示装置
20      画像表示装置
30      構造色測定装置
31      光源装置
311     箱
312     筒
32      色彩輝度計
33      スライダー
34      支持台
35      試験片設置台
36      粒子型構造色シート
37      多層型構造色プレート
38      方向指示マーク
 α      観察角
 β      光源の入射角
N       法線
P1      実験例における色度及び輝度の測定位置
P2      実験例における色度及び輝度の測定位置
P3      実験例における色度及び輝度の測定位置
P4      実験例における色度及び輝度の測定位置
      多層構造構造色材料における第一の層の厚さ
      多層構造構造色材料における第二の層の厚さ
      多層構造構造色材料における第一の層の屈折率
      多層構造構造色材料における第二の層の屈折率
λpeak    反射率が最大となる波長
θ       観察角
      コロイド結晶構造色材料における結晶面間距離
      刺激応答性コロイド結晶構造色材料における刺激付与前の結晶面間距離
      刺激応答性コロイド結晶構造色材料における刺激付与後の結晶面間距離
      コロイド結晶構造色材料における分散粒子(分散相)の屈折率
      コロイド結晶構造色材料における分散媒(連続相)の屈折率
R       赤色の構造色
G       緑色の構造色
B       青色の構造色
R1      構造色発現領域
R1a~R1f 構造色発現領域
R2      入反射光透過領域
R2a~R2f 入反射光透過領域
S1      面(画像表示側の面)
S2      面(裏側の面)
d1~d2   シート厚
DESCRIPTION OF SYMBOLS 1 Image display sheet 1a-1c Structural color expression layer 2 Incident reflected light restriction | limiting part 3a Incident light 3b Reflected light (structural color)
4 Sheet thickness adjusting unit 4a to 4f Sheet thickness adjusting unit 5 Pixel division frame (frame)
6 Plano-convex lens 7 Micro lens array 7a to 7h Micro lens 8 Micro lens array 8a to 8f Micro lens 9 Light scattering sheet 10 to 18 Image display device 20 Image display device 30 Structural color measuring device 31 Light source device 311 Box 312 Tube 32 Color luminance Total 33 Slider 34 Support stand 35 Test piece installation stand 36 Particle type structural color sheet 37 Multilayer type structural color plate 38 Direction indication mark α Observation angle β Light source incident angle L N normal P1 Measurement position of chromaticity and luminance in the experimental example P2 measurement positions chromaticity and luminance at the measurement position P4 experimental example of the chromaticity and the luminance at the measurement position P3 experimental example of the chromaticity and luminance in experimental example D 1 of the first layer in a multilayer structure structural color material thickness D 2 Multi-layer structure Wavelength refractive index lambda peak reflectivity of the second layer in the first layer refractive index n 2 multilayer structural color materials in the thickness n 1 multilayer structural color materials of the second layer in the color material is maximum θ Observation angle D c Distance between crystal planes in colloidal crystal structure color material D o Stimulus responsive colloid crystal structure color material before interstitial distance D S Stimulus responsive colloid crystal structure color material during the distance n D colloid dispersing medium refractive index R red structural color G green structural color B blue structure (continuous phase) in the refractive index n M colloidal crystal structural color materials of the dispersed particles in the crystal structure color material (dispersed phase) Color R1 Structural color expression region R1a to R1f Structural color expression region R2 Incident / reflected light transmission region R2a to R2f Incident / reflected light transmission region S1 surface (image display side surface)
S2 side (back side)
d1 to d2 Sheet thickness

Claims (13)

  1.  構造色によって画像が表示される構造色ディスプレイであって、
     前記構造色を発現する領域である構造色発現領域を有する画像表示シートと、
     前記構造色発現領域の前記画像の表示側に設置され、前記画像の表示側に位置する前記構造色発現領域の面に対して予め設定した角度で入射する入射光と、前記入射光のうち前記構造色発現領域の一部で反射した反射光とを選択的に透過する入反射光制限部と、を少なくとも備えることを特徴とする構造色ディスプレイ。
    A structural color display in which an image is displayed by a structural color,
    An image display sheet having a structural color expression region that is a region expressing the structural color;
    Incident light that is installed on the image display side of the structural color expression region and is incident at a predetermined angle with respect to the surface of the structural color expression region located on the image display side, A structural color display comprising at least an incident / reflected light limiting unit that selectively transmits reflected light reflected by a part of the structural color expression region.
  2.  前記入反射光制限部は、前記構造色発現領域の面に対して80°以上90°以下の範囲内の角度で入射する前記入射光と、前記範囲内の角度で反射した前記反射光とを選択的に透過することを特徴とする請求項1に記載の構造色ディスプレイ。 The incident / reflected light limiting unit includes the incident light incident at an angle within a range of 80 ° to 90 ° with respect to the surface of the structural color expression region, and the reflected light reflected at an angle within the range. The structural color display according to claim 1, wherein the structural color display is selectively transmissive.
  3.  前記入反射光制限部は、前記画像表示シートの厚み方向に沿って入射する入射光を透過可能に配置したウレキサイトと、前記画像表示シートの厚み方向に沿って延びる光ファイバを束状に固定した束状光ファイバとの少なくとも一方を備えることを特徴とする請求項1または請求項2に記載の構造色ディスプレイ。 The incident / reflected light limiting unit fixes a urexite disposed so as to transmit incident light incident along a thickness direction of the image display sheet and an optical fiber extending along the thickness direction of the image display sheet in a bundle shape. The structural color display according to claim 1, comprising at least one of a bundle of optical fibers.
  4.  構造色によって画像が表示される構造色ディスプレイであって、
     前記構造色を発現する領域である構造色発現領域を有する画像表示シートと、
     前記構造色発現領域の前記画像の表示側に設置され、前記画像表示シートの厚み方向に沿って入射する入射光を透過可能に配置したウレキサイトと、前記画像表示シートの厚み方向に沿って延びる光ファイバを束状に固定した束状光ファイバとの少なくとも一方を備えた入反射光制限部と、を少なくとも備えることを特徴とする構造色ディスプレイ。
    A structural color display in which an image is displayed by a structural color,
    An image display sheet having a structural color expression region that is a region expressing the structural color;
    Urexite installed on the image display side of the structural color expression region and arranged to transmit incident light incident along the thickness direction of the image display sheet, and light extending along the thickness direction of the image display sheet A structural color display comprising: an incident / reflected light limiting unit including at least one of a bundle of optical fibers in which fibers are fixed in a bundle.
  5.  前記構造色発現領域を挟み前記入反射光制限部に対向する位置で、前記構造色発現領域における前記画像表示シートの厚みを調整するシート厚調整部をさらに備えることを特徴とする請求項1から請求項4のいずれか1項に記載の構造色ディスプレイ。 The sheet thickness adjusting unit further adjusts the thickness of the image display sheet in the structural color developing region at a position facing the incident / reflected light restricting unit across the structural color developing region. The structural color display according to claim 4.
  6.  前記シート厚調整部は、前記画像表示シートに接触する電極、前記画像表示シートを加熱可能な加熱部、前記画像表示シートに光照射可能な光照射部のいずれかを含み、
     前記画像表示シートは、前記電極に印加された電圧又は電界に応じて体積が変化する電圧応答性高分子ゲル、前記加熱部からの熱に応じて体積が変化する熱応答性高分子ゲル、前記光照射部からの光に応じて体積が変化する光応答性高分子ゲルのいずれかで形成されていることを特徴とする請求項5に記載の構造色ディスプレイ。
    The sheet thickness adjusting unit includes any one of an electrode that contacts the image display sheet, a heating unit that can heat the image display sheet, and a light irradiation unit that can irradiate the image display sheet with light.
    The image display sheet is a voltage-responsive polymer gel whose volume changes according to a voltage or an electric field applied to the electrodes, a heat-responsive polymer gel whose volume changes according to heat from the heating unit, 6. The structural color display according to claim 5, wherein the structural color display is formed of any one of photoresponsive polymer gels whose volume changes in response to light from the light irradiation unit.
  7.  前記画像表示シートは、前記構造色を発現する構造色発現層が前記画像表示シートの厚み方向に沿って積層した多層構造体であり、
     前記構造色発現領域における前記構造色発現層の各層の厚みは、積層した前記構造色発現層のうちいずれか1層を基準層とした場合に、前記基準層の厚みの整数倍であることを特徴とする請求項1から請求項6のいずれか1項に記載の構造色ディスプレイ。
    The image display sheet is a multilayer structure in which a structural color expression layer that expresses the structural color is laminated along the thickness direction of the image display sheet,
    The thickness of each of the structural color expression layers in the structural color expression region is an integral multiple of the thickness of the reference layer when any one of the stacked structural color expression layers is used as a reference layer. The structural color display according to any one of claims 1 to 6, wherein the structural color display is characterized.
  8.  前記構造色発現層の各層は、全て同じ材料で形成されていることを特徴とする請求項7に記載の構造色ディスプレイ。 8. The structural color display according to claim 7, wherein each layer of the structural color expression layer is formed of the same material.
  9.  前記入反射光制限部の前記画像の表示側を覆うように配置された、平面と前記平面の裏面側に位置する凸面とを有する平凸レンズをさらに備え、
     前記平凸レンズの前記平面は、前記入反射光制限部側を向いていることを特徴とする請求項1から請求項8のいずれか1項に記載の構造色ディスプレイ。
    A plano-convex lens having a flat surface and a convex surface located on the back surface side of the flat surface, disposed so as to cover the image display side of the incident / reflected light limiting unit;
    9. The structural color display according to claim 1, wherein the plane of the plano-convex lens faces the incident / reflected light restricting portion side.
  10.  前記平凸レンズは、複数のマイクロレンズで構成されるマイクロレンズアレイであることを特徴とする請求項9に記載の構造色ディスプレイ。 The structural color display according to claim 9, wherein the plano-convex lens is a microlens array including a plurality of microlenses.
  11.  前記入反射光制限部は、前記画像表示シートの厚み方向に沿って延びる光ファイバを束状に固定した束状光ファイバを備えており、
     前記光ファイバの各開口端面上には、前記マイクロレンズが配置されており、
     前記マイクロレンズの直径は、前記光ファイバの開口端面の直径とそれぞれ同じであることを特徴とする請求項10に記載の構造色ディスプレイ。
    The incident / reflected light limiting unit includes a bundled optical fiber in which optical fibers extending along the thickness direction of the image display sheet are fixed in a bundle.
    The microlens is arranged on each opening end face of the optical fiber,
    The structural color display according to claim 10, wherein the diameter of the microlens is the same as the diameter of the opening end face of the optical fiber.
  12.  前記入反射光制限部の前記画像の表示側を覆うように配置された、前記入射光及び前記反射光を拡散させる光散乱シートをさらに備えたことを特徴とする請求項1から請求項8のいずれか1項に記載の構造色ディスプレイ。 The light scattering sheet for diffusing the incident light and the reflected light, which is disposed so as to cover the display side of the image of the incident / reflected light limiting unit, further comprises: The structural color display according to any one of the preceding claims.
  13.  請求項1から請求項12のいずれか1項に記載の構造色ディスプレイを備えたことを特徴とする画像表示物。 An image display object comprising the structural color display according to any one of claims 1 to 12.
PCT/JP2015/004767 2014-09-22 2015-09-17 Structural color display WO2016047122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553957A JP5894715B1 (en) 2014-09-22 2015-09-17 Structural color display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014193139 2014-09-22
JP2014-193139 2014-09-22

Publications (1)

Publication Number Publication Date
WO2016047122A1 true WO2016047122A1 (en) 2016-03-31

Family

ID=55580669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004767 WO2016047122A1 (en) 2014-09-22 2015-09-17 Structural color display

Country Status (3)

Country Link
JP (3) JP5894715B1 (en)
TW (1) TW201617713A (en)
WO (1) WO2016047122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131145A (en) * 2020-02-21 2021-09-09 株式会社フジキン bolt
JPWO2022030016A1 (en) * 2020-08-07 2022-02-10

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324490A (en) * 1991-04-24 1992-11-13 Sharp Corp Liquid crystal display device
JPH063670A (en) * 1992-06-19 1994-01-14 Sony Corp Liquid crystal display device
JP2001311813A (en) * 2000-04-28 2001-11-09 Dainippon Printing Co Ltd Image display device using hologram color filter
US20020024711A1 (en) * 1994-05-05 2002-02-28 Iridigm Display Corporation, A Delaware Corporation Interferometric modulation of radiation
JP2002358032A (en) * 2001-02-28 2002-12-13 Koninkl Philips Electronics Nv Device including display device and suitable display device for the device
JP2004206049A (en) * 2002-12-25 2004-07-22 Prime View Internatl Co Ltd Light interference type color display
JP2006302178A (en) * 2005-04-25 2006-11-02 Fuji Xerox Co Ltd Display device
JP2007272247A (en) * 2007-06-04 2007-10-18 Sharp Corp Interference type modulator and display device
JP2010060974A (en) * 2008-09-05 2010-03-18 Konica Minolta Business Technologies Inc Display member
JP2011524021A (en) * 2008-05-30 2011-08-25 オパラックス インコーポレーテッド Variable Bragg stack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925025B2 (en) * 2004-07-12 2012-04-25 独立行政法人物質・材料研究機構 Structural color expression elastic body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324490A (en) * 1991-04-24 1992-11-13 Sharp Corp Liquid crystal display device
JPH063670A (en) * 1992-06-19 1994-01-14 Sony Corp Liquid crystal display device
US20020024711A1 (en) * 1994-05-05 2002-02-28 Iridigm Display Corporation, A Delaware Corporation Interferometric modulation of radiation
JP2001311813A (en) * 2000-04-28 2001-11-09 Dainippon Printing Co Ltd Image display device using hologram color filter
JP2002358032A (en) * 2001-02-28 2002-12-13 Koninkl Philips Electronics Nv Device including display device and suitable display device for the device
JP2004206049A (en) * 2002-12-25 2004-07-22 Prime View Internatl Co Ltd Light interference type color display
JP2006302178A (en) * 2005-04-25 2006-11-02 Fuji Xerox Co Ltd Display device
JP2007272247A (en) * 2007-06-04 2007-10-18 Sharp Corp Interference type modulator and display device
JP2011524021A (en) * 2008-05-30 2011-08-25 オパラックス インコーポレーテッド Variable Bragg stack
JP2010060974A (en) * 2008-09-05 2010-03-18 Konica Minolta Business Technologies Inc Display member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021131145A (en) * 2020-02-21 2021-09-09 株式会社フジキン bolt
JPWO2022030016A1 (en) * 2020-08-07 2022-02-10
WO2022030016A1 (en) * 2020-08-07 2022-02-10 日本電信電話株式会社 Optical coupling device and optical coupling system

Also Published As

Publication number Publication date
JPWO2016047122A1 (en) 2017-04-27
JP2019144571A (en) 2019-08-29
JP5894715B1 (en) 2016-03-30
TW201617713A (en) 2016-05-16
JP2016118803A (en) 2016-06-30

Similar Documents

Publication Publication Date Title
KR102422979B1 (en) Mode-Switchable Backlight, Display and Method
JP6793261B2 (en) Multi-view backlight with color-adjusted emission pattern
CN103492793B (en) Couple light into the system and method for lamella lucida
JP2016505870A (en) Reflective or transflective autostereoscopic display with reduced banding effect
JP5629351B2 (en) lamp
JP2007517250A (en) Brightness enhancement film for backlit image display devices.
JP2020516038A (en) Method of using single-sided backlight, multi-view display, and tilted diffraction grating
WO2010150615A1 (en) Display device and multilayer substrate
US20210294021A1 (en) Method of manufacturing a display using a film-based lightguide and diffusely reflective release liner
TW201435446A (en) Integrated quantum dot optical constructions
CN113272693B (en) Film-based front light with angularly variable diffuser film
JP2019144571A (en) Structural color display
KR20210016638A (en) Hybrid backlight, display, and method
JP6693058B2 (en) Direct type backlight and liquid crystal display device
JP2014067580A (en) Light source device and display device
JP2018205414A (en) Optical structure and display device
CN110632688B (en) Light diffusion control laminate and reflective display
JP2017173372A (en) Structural color display (lens)
JP4727962B2 (en) Screen and image projection system
WO2013061907A1 (en) Display device
TW201702657A (en) Light guide plate, and backlight module and liquid crystal display apparatus using the same
KR20210060643A (en) Backlight with lattice diffuser, multi-view display and method
JP2016071321A (en) Structural color display
JP2014102469A5 (en)
TWI831941B (en) Mode-switchable backlight, privacy display, and method employing emitter arrays

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015553957

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844522

Country of ref document: EP

Kind code of ref document: A1