WO2016046957A1 - Semiconductor device manufacturing method, substrate processing apparatus, and recording medium - Google Patents

Semiconductor device manufacturing method, substrate processing apparatus, and recording medium Download PDF

Info

Publication number
WO2016046957A1
WO2016046957A1 PCT/JP2014/075645 JP2014075645W WO2016046957A1 WO 2016046957 A1 WO2016046957 A1 WO 2016046957A1 JP 2014075645 W JP2014075645 W JP 2014075645W WO 2016046957 A1 WO2016046957 A1 WO 2016046957A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
heater
temperature
processing chamber
Prior art date
Application number
PCT/JP2014/075645
Other languages
French (fr)
Japanese (ja)
Inventor
圭太 市村
康寿 坪田
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2014/075645 priority Critical patent/WO2016046957A1/en
Publication of WO2016046957A1 publication Critical patent/WO2016046957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, a substrate processing apparatus, and the like, and more particularly to solder reflow processing.
  • bumps convex solder terminals
  • the semiconductor device and the lead frame can be connected to each other, and the space in the plane direction of the mounting substrate can be saved.
  • Bumps are not only used when stacking a semiconductor device and a lead frame, but also at three-dimensional mounting of a semiconductor device using a through-silicon via (TSV), which has been actively studied in recent years. Used.
  • TSV through-silicon via
  • bumps are formed by depositing solder on the electrodes using a paste printing method or a plating method after electrodes are formed on the semiconductor device.
  • a paste printing method or a plating method there are fine irregularities on the solder surface deposited by the paste printing method and plating method, and if the solder is connected as it is, bubbles will be taken into the solder and the connection strength and resistance will be reduced. End up.
  • a heat treatment is required to smooth the solder surface by heating the solder to the melting point or higher in advance and melting it once.
  • the surface of the solder is usually protected by a natural oxide film, and it is necessary to reduce and remove the natural oxide film on the surface in order to melt and reform by heat treatment.
  • a series of heat treatments for performing reduction / removal and melting / re-formation of the surface natural oxide film is referred to as reflow treatment.
  • Patent Document 1 discloses a method of removing a natural oxide film of solder using plasma and a method of melting solder by radiant heat from a heater.
  • the silicon substrate may be ground and thinned and bonded with a support glass and an adhesive.
  • temperature control is extremely important in reflow processing, and thermal stress applied to the substrate is minimized by controlling the temperature so that it reaches the desired temperature while paying attention to thermal uniformity and temperature rise / fall rate. It is required to do. It is desirable to control the temperature so that the substrate temperature is quickly lowered after the reflow process is completed while the substrate temperature is rapidly raised to the melting point of the solder to prevent unnecessary heating. In the future, it is considered that the importance will further increase as the number of substrate layers and circuits become finer.
  • One of the objects of the present invention is to provide a technique capable of suitably controlling the temperature and thermal stress of a processing substrate.
  • a step of placing a substrate on a substrate support mechanism provided in a processing chamber for processing a substrate, and introducing a plurality of types of gases into the processing chamber are provided in the processing chamber.
  • the step of heating the substrate by the heater There is provided a method for manufacturing a semiconductor device, wherein the temperature of the substrate is controlled by changing at least one of flow rates and mixing ratios of a plurality of types of gases introduced into the processing chamber.
  • a processing chamber for processing a substrate a substrate support mechanism provided in the processing chamber for supporting the substrate, a heater provided in the processing chamber for heating the substrate, A plurality of gas supply units for supplying different types of gases to the processing chamber, an exhaust unit for exhausting the atmosphere in the processing chamber, and the substrate supported by the substrate support mechanism when the heater is heated by the heater,
  • a substrate processing apparatus including a control unit that controls a temperature of the substrate by changing at least one of a flow rate and a mixing ratio of a gas supplied from each of a plurality of gas supply units.
  • a procedure for placing a substrate on a substrate support mechanism provided in a processing chamber for processing a substrate, and introducing a plurality of types of gases into the processing chamber A program for causing a computer to execute a procedure for supplying the plurality of types of gases to a space between a provided heater and the substrate, and a procedure for heating the substrate by the heater.
  • a program for controlling the temperature of the substrate by changing at least one of a flow rate and a mixing ratio of a plurality of types of gases introduced into the processing chamber, or a computer readable recording the program Recording medium is provided.
  • the semiconductor device manufacturing method, the substrate processing apparatus, and the like according to the present invention it is possible to suitably control the temperature and thermal stress of the processing substrate.
  • FIG. 1 is a schematic cross-sectional view for explaining a substrate processing apparatus 10 in an embodiment of the present invention
  • FIGS. 2 and 3 are schematic longitudinal cross-sectional views for explaining a substrate processing apparatus in an embodiment of the present invention.
  • the substrate processing apparatus 10 includes a cassette transfer unit 100, a load lock chamber unit 200, a transfer module unit 300, and a process chamber unit 400 that processes a substrate.
  • the cassette transfer unit 100 includes cassette transfer units 110 and 120 that are used as first transfer units.
  • the cassette transfer units 110 and 120 each include a cassette table 111 on which a cassette 500 that supports a wafer 600 that is used as a substrate is placed.
  • the load lock chamber unit 200 receives the wafers 600 from the load lock chambers 250 and 260 and the cassettes 500 placed on the cassette tables 111 and 121, and holds the wafers 600 in the load lock chambers 250 and 260, respectively.
  • 210 and 220 are provided.
  • Each of the buffer units 210 and 220 includes buffer finger assemblies 211 and 221 and index assemblies 212 and 222 below the buffer finger assemblies 211 and 221.
  • the buffer finger assembly 211 (221) and the index assembly 212 (222) below the buffer finger assembly 211 (221) are rotated simultaneously by the ⁇ axis 214 (224).
  • the transfer module unit 300 includes a transfer module 310 used as a transfer chamber, and the above-described load lock chambers 250 and 260 are attached to the transfer module 310 via gate valves 311 and 312.
  • the transfer module 310 is provided with a vacuum arm robot unit 320 used as a second transfer unit.
  • the process chamber unit 400 includes process chambers 410 and 420 and plasma generation chambers 430 and 440 provided on the upper part thereof.
  • the plasma generation chambers 430 and 440 are spaces in which a gas supplied into reaction vessels 431 and 441 described later is brought into a plasma state by a plasma generation unit described later.
  • the generated plasma is a mixed plasma of oxygen and hydrogen, or a mixed plasma of oxygen and nitrogen.
  • the process chambers 410 and 420 are attached to the transfer module 310 via gate valves 313 and 314.
  • the process chambers 410 and 420 include susceptor tables 411 and 421 that are used as a placement unit for placing the wafer 600 thereon.
  • Lifter pins 413 and 423 are provided through the susceptor tables 411 and 421, respectively. The lifter pins 413 move up and down in the Z-axis 412 and 422 directions, respectively.
  • the plasma generation chambers 430 and 440 are provided with reaction vessels 431 and 441 used as reaction tubes, respectively.
  • Resonant coils 432 and 442 are provided outside the reaction vessels 431 and 441.
  • a high-frequency power is applied to the resonance coils 432 and 442 to change the gas introduced from the gas inlets 433 and 443 into a plasma state, and the plasma is used on the wafer 600 placed on the susceptor tables 411 and 421. Reduction / removal processing of the formed solder bump surface is performed.
  • the wafer 600 is transferred from the cassette table 111 (121) to the load lock chamber 250 (260).
  • the cassette 500 is mounted on the cassette table 111 (121), and the Z-axis 140 moves downward.
  • the Y-axis 130 of the buffer finger assembly 211 (221) moves in the direction of the cassette 500 with the Z-axis 140 on the bottom.
  • 25 wafers 600 are received from the cassette 500 by the buffer fingers 213 (223) of the buffer finger assembly 211 (221). In the received state, the Y-axis 130 is lowered to the original position.
  • the wafer 600 held in the load lock chamber 250 (260) by the buffer unit 210 (220) is mounted on the finger 321 of the vacuum arm robot unit 320.
  • the vacuum arm robot unit 320 is rotated in the ⁇ -axis 325 direction, the fingers are further extended in the Y-axis 326 direction, and transferred onto the susceptor table 411 (421) in the process chamber 410 (420).
  • FIG. 4 shows details of the process chamber 410.
  • the process chamber 420 described above has the same configuration as the process chamber 410.
  • the process chamber 410 includes a plasma generation chamber 430 for generating plasma, a processing chamber 445 for accommodating a wafer 600 such as a semiconductor substrate, and a plasma generation chamber 430 (particularly, a resonance coil 432).
  • a high frequency power supply 444 for supplying power and a frequency matching unit 446 for controlling the oscillation frequency of the high frequency power supply 444 are provided.
  • the plasma generation chamber 430 is disposed above a horizontal base plate 448 as a gantry
  • the processing chamber 445 is disposed below the base plate 448.
  • the outer shield 452 and the resonance coil 432 that are electrically grounded constitute a spiral resonator.
  • the processing chamber 445 is provided continuously with the plasma generation chamber 430 and is used as a processing chamber having a susceptor 459 described later.
  • the plasma generation chamber 430 includes the above-described reaction vessel 431 that is configured to be depressurized and to which a reaction gas for plasma is supplied.
  • a resonance coil 432 wound around the reaction vessel 431 and an outer shield 452 disposed on the outer periphery of the resonance coil 432 and electrically grounded are provided.
  • the reaction vessel 431 is usually formed in a cylindrical shape with high-purity quartz glass or ceramics, and in this embodiment, one made of quartz is used.
  • the reaction vessel 431 is usually arranged so that its axis is vertical, and the upper and lower ends are hermetically sealed by the top plate 454 and the processing chamber 445.
  • a susceptor 459 supported by a plurality of (for example, four) support columns 461 is provided on the bottom surface of the processing chamber 445 below the reaction vessel 431.
  • the susceptor 459 heats the susceptor table 411 and the wafer 600 on the susceptor.
  • a heater 463 which is a substrate heating unit is provided.
  • An exhaust plate 465 is disposed below the susceptor 459.
  • the exhaust plate 465 is supported by the bottom substrate 469 via the guide shaft 467, and the bottom substrate 469 is airtightly provided on the lower surface of the processing chamber 445.
  • An elevating board 471 is provided to move up and down with a guide shaft 467 as a guide.
  • the lift board 471 supports at least three lifter pins 413.
  • the lifter pin 413 passes through the susceptor 459.
  • a lifter pin support portion 414 that supports the wafer 600 is provided on the top of the lifter pin 413.
  • the lifter pin support portion 414 extends in the center direction of the susceptor 459.
  • a lift shaft 473 of a lift drive unit (not shown) is connected to the lift substrate 471 on the bottom substrate 469. The lift drive unit moves the lift shaft 473 up and down, so that the lifter pin support portion 414 moves up and down via the lift substrate 471 and the lifter pin 413.
  • a cylindrical baffle ring 458 is provided between the susceptor 459 and the exhaust plate 465.
  • a first exhaust chamber 474 is formed by the baffle ring 458, the susceptor 459, and the exhaust plate 465.
  • the cylindrical baffle ring 458 has a large number of air holes uniformly provided on the side surface of the cylinder. Therefore, the first exhaust chamber 474 is partitioned from the processing chamber 445 and communicates with the processing chamber 445 through a vent hole.
  • An exhaust communication hole 475 is provided at the center of the exhaust plate 465.
  • the first exhaust chamber and the second exhaust chamber 476 communicate with each other through the exhaust communication hole 475.
  • An exhaust pipe 480 communicates with the second exhaust chamber 476, and an exhaust device 479 is provided in the exhaust pipe 480.
  • the exhaust device 479 includes a pressure adjusting mechanism such as an APC (Automatic Pressure Controller), an on-off valve, a vacuum pump, and the like.
  • the first gas supply pipe 455 and the second gas supply pipe 456 are attached to the gas introduction port 433.
  • the first gas supply pipe 455 is provided with a mass flow controller 477 and an on-off valve 478 which are flow rate control units.
  • the gas supply amount can be controlled by controlling with a controller 700 described later.
  • the first gas supply pipe 455, the mass flow controller 477, and the on-off valve 478 together constitute a first gas supply unit 490a.
  • the first gas supply unit 490 a supplies N 2 gas, which is the first gas supplied from the first gas supply source of the gas supply facility, into the reaction vessel 431.
  • the first gas supply source may be included in the first gas supply unit.
  • the second gas supply pipe 456 is also provided with a mass flow controller 483 and an on-off valve 484, which are also flow rate control units, and the gas supply amount can be controlled by controlling the controller 700, which will be described later, for example.
  • the second gas supply pipe 456, the mass flow controller 483, and the on-off valve 484 together constitute a second gas supply unit 490b.
  • the second gas supply unit 490 b supplies H 2 gas, which is the second gas supplied from the second gas supply source of the gas supply facility, into the reaction vessel 431.
  • the second gas supply source may be included in the second gas supply unit 490b.
  • the first gas supply unit 490a and the second gas supply unit 490b are combined to constitute the gas supply unit 490.
  • the first gas supply pipe 455 and the second gas supply pipe 456 are respectively attached to the gas inlet 433 and configured to supply the respective gases to the reaction vessel 431.
  • a mixed gas of N 2 gas and H 2 gas is supplied from the gas introduction port 433. Also good.
  • N 2 gas is supplied as the first gas and H 2 gas is supplied as the second gas from the first gas supply unit and the second gas supply unit, respectively.
  • H 2 gas is supplied as the second gas from the first gas supply unit and the second gas supply unit, respectively.
  • These are not limited to two types, and may be three or more types. In that case, in addition to the first gas supply unit and the second gas supply unit, third and fourth gas supply units are further provided.
  • a baffle plate 460 made of quartz is provided in a substantially disc shape for allowing the reaction gas to flow along the inner wall of the reaction vessel 431.
  • the baffle plate 460 may be made of ceramics.
  • the pressure of the atmosphere in the reaction vessel 431 can be adjusted by adjusting the supply amount and the exhaust amount by the flow rate control unit and the exhaust device 479.
  • the resonance coil 432 wound around the reaction vessel 431 forms a standing wave having a predetermined wavelength, the winding diameter, the winding pitch, and the number of turns are set so as to resonate in a constant wavelength mode. That is, the electrical length of the resonance coil 432 corresponds to an integral multiple (1 times, 2 times,...), Half wavelength, or 1 ⁇ 4 wavelength of one wavelength at a predetermined frequency of power supplied from the high frequency power supply 444. Set to the length to be. For example, in the case of 27.12 MHz, the length of one wavelength is about 11 meters.
  • the frequency to be used and the resonance coil length can be selected according to the desired plasma generation state, the mechanical dimensions of the plasma generation chamber 430, and the like.
  • the resonance coil 432 takes into account the applied power, the generated magnetic field strength, or the external shape of the device to be applied, for example, 0.01 to 10 by high frequency power of 800 kHz to 50 MHz and 0.5 to 5 kW. In order to generate a Gaussian magnetic field, it has an effective sectional area of 50 to 300 mm 2 and a coil diameter of 200 to 500 mm, and is wound about 2 to 60 times on the outer peripheral side of the reaction vessel 431.
  • a material constituting the resonance coil 432 a copper pipe, a copper thin plate, an aluminum pipe, an aluminum thin plate, a material obtained by evaporating a copper plate or aluminum on a polymer belt, or the like is used.
  • the resonant coil 432 is formed of an insulating material in a flat plate shape, and is supported by a plurality of support portions that are vertically provided on the upper end surface of the base plate 448.
  • Both ends of the resonance coil 432 are electrically grounded, but at least one end of the resonance coil 432 finely adjusts the electrical length of the resonance coil during the initial installation of the apparatus or when processing conditions are changed. Therefore, it is grounded via the movable tap 462.
  • Reference numeral 464 in FIG. 4 indicates the other fixed ground location.
  • a power feeding portion is provided between the grounded ends of the resonance coil 432 by a movable tap 466 in order to finely adjust the impedance of the resonance coil 432 when the apparatus is first installed or when processing conditions are changed. It is done.
  • the resonance coil 432 includes ground portions that are electrically grounded at both ends, and power supply portions that are supplied with power from the high-frequency power source 444, and at least one of the ground portions is positioned. It is an adjustable variable ground part, and the power feeding part is a variable power feeding part whose position can be adjusted. Since the resonance coil 432 includes the variable ground unit and the variable power supply unit, the resonance frequency and load impedance of the plasma generation chamber 430 can be adjusted more easily as will be described later.
  • a waveform adjustment circuit including a coil and a shield may be inserted at one end (or both ends) of the resonance coil 432 so that the phase and antiphase currents flow symmetrically with respect to the electrical midpoint of the resonance coil 432.
  • Such a waveform adjusting circuit is configured as an open circuit by setting the end of the resonance coil 432 to an electrically disconnected state or an electrically equivalent state.
  • the end of the resonance coil 432 may be ungrounded by a choke series resistor and may be DC-connected to a fixed reference potential.
  • the outer shield 452 is provided to shield leakage of electromagnetic waves to the outside of the resonance coil 432 and to form a capacitance component necessary for configuring a resonance circuit with the resonance coil 432.
  • the outer shield 452 is generally formed in a cylindrical shape using a conductive material such as aluminum alloy, copper, or copper alloy.
  • the outer shield 452 is arranged at a distance of, for example, about 5 to 10 mm from the outer periphery of the resonance coil 432. In general, the outer shield 452 is grounded so that the potential is equal to both ends of the resonance coil 432. To accurately set the resonance number of the resonance coil 432, one end or both ends of the outer shield 452 are tapped positions. The trimming capacitance may be inserted between the resonance coil 432 and the outer shield 452.
  • an appropriate power source such as an RF generator can be used as long as it is a power source that can supply power of the necessary voltage and frequency to the resonance coil 432.
  • a high frequency power supply capable of supplying about 5 kW of power is used.
  • the high-frequency power supply 444, the frequency matching unit 446, the resonance coil 432, and the reflected wave wattmeter 468 described later are collectively referred to as a plasma generation unit.
  • a reflected wave wattmeter 468 is installed on the output side of the high frequency power supply 444, and the reflected wave power detected by the reflected wave wattmeter 468 is input to the controller 700.
  • the controller 700 is used as a control unit that controls at least the plasma generation unit and the gas supply unit 490, and does not simply control only the high-frequency power source 444 but controls the entire substrate processing apparatus 10.
  • a display 472 that is a display unit is connected to the controller 700.
  • the display 472 displays, for example, data detected by various detection units provided in the substrate processing apparatus 10, such as the detection result of the reflected wave by the reflected wave wattmeter 468.
  • an inductively coupled plasma (ICP) plasma generation unit is used as a plasma generation method, but the plasma generation unit is not limited to this, and, for example, a capacitively coupled plasma (CCP) method is used. Alternatively, a plasma generation unit may be used.
  • ICP inductively coupled plasma
  • CCP capacitively coupled plasma
  • FIG. 5 is a schematic configuration diagram of a controller of the substrate processing apparatus 10 preferably used in the present embodiment.
  • the controller 700 which is a control unit (control means), includes a CPU (Central Processing Unit) 701a, a RAM (Random Access Memory) 701b, a storage device 701c, and an I / O port 701d. It is configured as a computer.
  • the RAM 701b, the storage device 701c, and the I / O port 701d are configured to exchange data with the CPU 701a via the internal bus 701e.
  • an input / output device 702 configured as a touch panel or the like is connected to the controller 700.
  • the storage device 701c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus 10 and a process recipe in which a procedure and conditions for substrate processing such as film formation processing described later are described in a readable manner.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 700 to execute each procedure in a substrate processing step to be described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • the RAM 701b is configured as a memory area (work area) in which a program or data read by the CPU 701a is temporarily stored.
  • the I / O port 701d is connected to the mass flow controllers 477 and 483, the valves 474 and 478, the exhaust device 479, the high frequency power supply 444, the frequency matching unit 446, the reflected wattmeter 468, the display 472, the heater 463, and the like.
  • the I / O port 701d is also connected to a lift drive unit (not shown).
  • the CPU 701a is configured to read out and execute a control program from the storage device 701c, and to read out a process recipe from the storage device 701c in response to an operation command input from the input / output device 702 or the like. Then, the CPU 701 a adjusts the flow rates of various gases by the mass flow controllers 477 and 483, the opening and closing operations of the valves 474 and 478, the pressure adjusting operation by the exhaust device 479, and the heating of the heater 463 so as to follow the contents of the read process recipe.
  • It is configured to control the lifting / lowering operation of the lifter pin 413 by the lifting / lowering driving unit, the power supply and stopping by the high frequency power supply 444, the impedance adjustment operation by the frequency matching unit 446, the display of various data by the display 472, and the like.
  • the controller 700 is not limited to being configured as a dedicated computer, but may be configured as a general-purpose computer.
  • an external storage device storing the above-described program for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card
  • the controller 700 according to the present embodiment can be configured by preparing 703 and installing a program in a general-purpose computer using the external storage device 703.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 703.
  • the program may be supplied without using the external storage device 703 by using communication means such as the Internet or a dedicated line.
  • the storage device 701c and the external storage device 703 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that in this specification, the term recording medium may include only the storage device 701c, only the external storage device 703, or both.
  • FIG. 6 is a schematic view showing the state of the electrode 800 formed on the wafer and the solder bump formed on the electrode 800.
  • solder bumps are generally formed by depositing solder on the electrodes using a paste printing method or plating method after electrodes are formed on the wafer.
  • FIG. 6A shows a solder bump 801 (a) formed by a paste printing method or a plating method.
  • the solder bump 801 (a) has fine irregularities on the surface. Therefore, if the solder bump 801 (a) is melted in this state and the electrode 800 is connected to the lead frame or the like, bubbles are taken into the solder and the connection strength and resistance are reduced.
  • a heat treatment is performed to smooth the solder surface by heating the solder bump 801 (a) to a melting point of the solder or higher once before the connection process.
  • the surface of the solder bump 801 (a) is usually covered with a natural oxide film 801 (a) ′. Therefore, in this embodiment, before the melting / reforming is performed by the heat treatment, a process of reducing and removing the natural oxide film on the surface is performed. A series of treatments for reducing and removing the surface natural oxide film 801 (a) ′ and heat treatment for melting and reforming the solder are collectively referred to as reflow treatment.
  • FIG. 7 is a flowchart showing a reflow processing procedure in the present embodiment.
  • the wafer 600 is transferred to the load lock chamber 250 (260), the pressure inside the load lock chamber 250 (260) is reduced, and the load lock chamber 250 (260) passes through the transfer module 310.
  • the wafer 600 is carried into and placed in the process chamber 410 (420), and the surface pre-oxide film reduction / removal processing of the solder bumps 801 (a) formed on the wafer 600 is performed in the process chamber 410 (420).
  • the solder bumps from which the surface natural oxide film has been removed are melted and re-formed, and transferred to the load lock chamber 250 (260) again via the transfer module 310.
  • step S ⁇ b> 120 of FIG. 6 a substrate carry-in / placement process into the processing chamber 445 is performed. That is, the wafer 600 is loaded into the processing chamber 445 and the wafer 600 is placed on the lifter pin support portion 414.
  • step S120 the controller 700 causes the finger 321 loaded with the wafer 600 to enter the processing chamber 445 via the gate valve 313, and at the same time, raises the lifter pin 413 and is raised to the finger 321.
  • the wafer 600 is placed on the lifter pin support portion 414 of the lifter pin 413.
  • the controller 700 raises and lowers the lifter pins 413 so that the distance between the wafer 600 and the susceptor table 411 becomes a predetermined distance described later (for convenience, the distance during loading and mounting is referred to as the distance L1).
  • the wafer 600 may be completely adhered (distance 0) to the susceptor table 411.
  • the lifting and lowering of the lifter pin 413 is performed by lifting and lowering the lifting and lowering substrate 471 connected to the lifter pin 413 along the guide shaft 467 by a lifting and lowering driving unit (not shown).
  • the heater 463 provided in the susceptor 459 is heated in advance, and the loaded wafer 600 can be heated to a predetermined wafer temperature within a range of room temperature to 300 ° C.
  • the wafer 600 is preferably kept in a reduced pressure state purged with an inert gas.
  • step S140 a reduction process of the surface natural oxide film 801 (a) ′ of the solder bump formed on the wafer 600 is performed.
  • step S ⁇ b > 140 the controller 700 controls the gas supply unit 490, and causes the gas supply unit 490 to pass H 2 (hydrogen) gas that is a reducing gas and N 2 ( Nitrogen) gas is supplied to the processing chamber 445 (S141). At this time, the total flow rate of the supplied gas is set to a predetermined flow rate within a range of about 0.1 to 10 slm, for example.
  • the controller 700 maintains the pressure in the reaction vessel 431 and the processing chamber 445 at a predetermined pressure (for example, in the range of about 1 to 1330 Pa) by adjusting the exhaust amount with the exhaust device 479 including the pressure adjustment mechanism.
  • the controller 700 controls the high frequency power supply 444 to supply power to the resonance coil 432, accelerates free electrons by an induced magnetic field excited inside the resonance coil 432, and collides with gas molecules. Plasma molecules are generated by exciting gas molecules. In this way, the supplied H 2 gas and N 2 gas are turned into plasma.
  • the high frequency power applied to the resonance coil 432 from the high frequency power supply 444 is a predetermined power within a range of about 0.5 to 5 kW, for example.
  • the plasma generated by the reaction gas containing hydrogen (H) element and nitrogen (N) element contains active species mainly composed of H radicals obtained by discharge, and solder bumps formed on the wafer 600 by the H radicals.
  • active species mainly composed of H radicals obtained by discharge, and solder bumps formed on the wafer 600 by the H radicals.
  • FIG. 6B shows a state of the solder bump 801 (b) after the natural oxide film 801 (a) ′ on the surface of the solder bump is removed in the oxide film reduction step S140. After the oxide film reduction process, the solder is exposed.
  • the application of the high frequency power to the resonance coil 432 is continued for a predetermined time, the reduction process of the natural oxide film is performed, and then the application of the high frequency power is stopped (S143). As a result, the generation of plasma is stopped and the oxide film reduction step is completed.
  • the total flow rate of H 2 gas and N 2 gas supplied to the processing chamber 445 is 2 slm, and the mixing ratio is H 2 : 4% and N 2 : 96%. did.
  • the pressure in the processing chamber 445 was adjusted to 2 Torr (about 266 Pa), for example.
  • the resonance coil 432 was supplied with 1000 W of high frequency power for 60 seconds to perform an oxide film reduction process.
  • the temperature of the heater 463 was 260 ° C., and the distance L1 between the wafer 600 and the susceptor table 411 in this step was 15 mm.
  • step S160 a heat treatment process for melting and re-forming the solder bump 801 (b) from which the surface natural oxide film has been removed in the oxide film reduction process S140 is performed. Even after the surface natural oxide film is removed, fine irregularities exist on the surface of the solder bump 801 (b). Therefore, in this step, heat treatment is performed to smooth the solder surface by heating the solder bump 801 (b) above the melting point of the solder and melting it once.
  • the oxide film reduction process and the heat treatment process are continuously performed in the same process chamber 401.
  • the solder bump 801 (b) is melted by heating the wafer 600 by the heater 463 provided in the susceptor 459.
  • a desired wafer is controlled by controlling the type, pressure, mixing ratio, flow rate, and the like of the gas supplied into the processing chamber 445 and the distance between the wafer 600 and the heater 463 as described below. Achieve temperature control.
  • FIGS. 8 to 10 show timing charts of various process conditions in this embodiment. Specifically, the temperature of the heater 463, the distance between the wafer 600 and the susceptor table 411, the pressure in the processing chamber 445, and the supply to the processing chamber 445 in each of the substrate carry-in / placement process, oxide film reduction process, and heat treatment process The flow rate of various gases and the temperature change of the wafer 600 are shown. Hereinafter, the three patterns will be described with reference to FIGS.
  • the temperature of the heater 463 is constant in any of the patterns 1 to 3 and is higher than the melting point of the solder and is set to a temperature sufficient to melt the solder bump 801 (b), for example, 260 ° C.
  • the melting point of solder varies depending on the type of solder used, it can be said that it is generally 180 ° C. or higher and lower than 250 ° C. Therefore, the maximum temperature of the wafer in the heat treatment process is also less than 250 ° C., and further heating is not desirable.
  • the set temperature of the heater is kept constant at the melting point temperature of solder + ⁇ , and the amount of heat transferred from the heater to the substrate is adjusted, It is preferred that the wafer temperature be saturated at the desired temperature.
  • the temperature of + ⁇ should be set in consideration of the amount of heat transferred from the heater to the wafer, but is in the range of about 0 to 100 ° C., for example.
  • the gas surrounding the heater and the wafer It is effective to make use of the heat transferred by heat conduction via
  • the time for performing the heat treatment step is appropriately adjusted according to conditions such as the state of solder bumps and the heat resistance time of other elements formed on the wafer.
  • the heat treatment step is performed for 90 seconds.
  • FIG. 8 is a timing chart of various process conditions in the pattern 1 of the present embodiment.
  • the distance between the wafer 600 and the susceptor table 411 is a constant distance L1 (for example, 15 mm) in the substrate loading / mounting process and the oxide film reduction process, and the distance L2 between the two is shorter than L1 at the start of the heat treatment process. (For example, 2 mm).
  • the distance L2 is adjusted within a range of about 0.5 to 5 mm, for example, and a gas is interposed between the wafer 600 and the susceptor table 411. At this time, if the gas has a high thermal conductivity, the uniformity of the wafer temperature can be improved.
  • the distance L1 may be a suitable distance from the viewpoint of the substrate transport mechanism, for example, or may be adjusted by finding a position where the wafer temperature is difficult to rise so that the wafer 600 is not unnecessarily heated. .
  • the distance between the wafer 600 and the susceptor table 411 is returned to L1.
  • the amount of heat transferred from the heater 463 to the wafer 600 decreases, so that the temperature of the wafer 600 can be lowered or the temperature drop rate can be increased.
  • the temperature rise can be suppressed so that unnecessary alloying of the solder bumps does not occur or the heat resistance temperature of other elements formed on the wafer 600 is not exceeded.
  • the distance between the wafer 600 and the susceptor table 411 in the second half of the heat treatment process is the same as L1 in the substrate carry-in / placement process and the oxide film reduction process, but in the second half of the heat treatment process, the temperature drop rate is increased. Therefore, the distance may be set larger than L1.
  • the pressure in the processing chamber 445 is set to P1 (for example, 2 Torr) in the oxide film reduction process, and the pressure is set to P2 (for example, 2.5 mm) higher than P1 at the start of the heat treatment process.
  • P1 for example, 2 Torr
  • P2 for example, 2.5 mm
  • the amount of heat transferred from the heater 463 to the wafer 600 is reduced, so that the temperature drop rate of the wafer 600 is increased, the solder bump is not required to be alloyed, and the heat resistance temperature of other elements formed on the wafer 600 is not exceeded.
  • the temperature rise can be suppressed.
  • the pressure may be controlled to be higher, and to increase the temperature decreasing rate, the pressure may be controlled to be lower.
  • the flow rate of N 2 gas is continued as F 1 ′ as in the oxide film reduction process, and the supply of H 2 gas is stopped. Further, it starts supplying the He gas at a flow rate F 3 at the same time.
  • the total flow rate of He gas and N 2 gas is set to 2 slm, for example.
  • He gas is characterized by high thermal conductivity compared to general gas (especially compared to N 2 gas). Therefore, by supplying the He gas into the processing chamber 445 (particularly the space between the wafer 600 and the heater 463), the amount of heat transferred from the heater 463 to the wafer 600 through heat conduction through the gas containing He gas is increased, and the wafer is The temperature rising rate of 600 can be increased. In order to increase the temperature rising rate, the flow rate of He gas or the mixing ratio may be controlled to be larger.
  • the supply of He gas into the processing chamber 445 is stopped (N 2 gas supply continues).
  • N 2 gas supply continues.
  • the amount of heat transferred from the heater 463 to the wafer 600 is reduced, so that the temperature drop rate of the wafer 600 can be increased. Further, the temperature rise can be suppressed so that unnecessary alloying of the solder bumps does not occur or the heat resistance temperature of other elements formed on the wafer 600 is not exceeded.
  • the flow rate of He gas or the mixing ratio may be controlled to be smaller.
  • He gas is used as a gas having high thermal conductivity.
  • H 2 gas has high thermal conductivity like He gas, and can be used to increase the amount of heat conduction.
  • He gas since there is a risk of explosion due to mixing with oxygen, He gas was used in this pattern from the viewpoint of safety.
  • N 2 gas mainly serves as a dilution gas, and the amount of heat conduction can be controlled by controlling the flow rate. (For example, the amount of heat transferred by heat conduction can be reduced by increasing the mixing ratio of N 2 gas, and the amount of heat transferred by heat conduction can be increased by lowering the mixing ratio of N 2 gas.)
  • FIG. 9 is a timing chart of various process conditions in the pattern 2 of the present embodiment.
  • the pattern 2 is the same as the pattern 1 except for the type of gas and the flow rate control.
  • the supply of H 2 gas into the processing chamber 445 is stopped (N 2 gas supply continues).
  • N 2 gas supply continues.
  • the amount of heat transferred from the heater 463 to the wafer 600 is reduced, so that the temperature drop rate of the wafer 600 can be increased. Further, the temperature rise can be suppressed so that unnecessary alloying of the solder bumps does not occur or the heat resistance temperature of other elements formed on the wafer 600 is not exceeded.
  • the flow rate of H 2 gas or the mixing ratio may be controlled to be smaller.
  • FIG. 10 is a timing chart of various process conditions in the pattern 3 of the present embodiment. Since the pattern 3 is the same as the pattern 2 except for the flow rate control of the H 2 gas in the heat treatment step, the description is omitted otherwise.
  • FIG. 6C shows a solder bump 801 (c) that has been heat-treated and melted / reformed in the heat treatment step S160.
  • the solder bump 801 (b) having fine irregularities on the surface is heated to a temperature higher than the melting point of the solder through this heat treatment, and once melted, the solder surface is smooth. It becomes.
  • the supply of He gas or H 2 gas is immediately stopped in the latter half of the heat treatment step.
  • the flow rate of H 2 gas is reduced for a certain period of time. It may be stopped after maintaining only, or the supply may be stopped after controlling the flow rate to gradually decrease.
  • Examples of the gas having high thermal conductivity include Ne (neon) gas in addition to H 2 gas and He gas.
  • Other preferable conditions for selecting a gas having a high thermal conductivity include, in addition to the small size of the molecule from the viewpoint of good thermal conductivity, for example, general and inexpensive, and handling hazards. And there are no adverse effects on other elements (devices and the like) on the wafer.
  • the temperature is controlled by using a gas having high thermal conductivity.
  • a gas having a low thermal conductivity particularly a gas having a lower thermal conductivity than N 2 gas
  • the amount of heat transferred by heat conduction may be controlled by controlling the flow rate.
  • He gas or H 2 gas is used as a gas having high thermal conductivity and N 2 gas is used as a dilution gas for temperature control in the heat treatment process.
  • the present invention is not limited to these gases, and the flow rate and mixing ratio of each gas are set using at least one kind of gas, ie, a gas for dilution and a gas having high thermal conductivity with respect to the gas for dilution. By controlling, the temperature of the wafer can be controlled efficiently.
  • temperature characteristics under various process conditions are measured in advance using a dummy wafer provided with a temperature sensor for temperature measurement, instead of a wafer (product wafer) that actually performs reflow processing of solder bumps. Determine the characteristic process conditions. Then, the product wafer reflow process is executed in accordance with the predetermined process conditions.
  • the temperature control is not performed based on the process conditions determined in advance as in the present embodiment.
  • a sensor for measuring the temperature of the wafer 600 is provided in the processing chamber 445, and the wafer acquired by the controller 700 from the sensor is provided.
  • the wafer temperature may be controlled by sequentially controlling the type and flow rate of the supplied gas, the pressure in the processing chamber 445, the distance between the wafer 600 and the susceptor table 411, and the like based on the temperature of 600.
  • a step of unloading the wafer 600 from the processing chamber 445 is performed in step S180 of FIG. That is, in the substrate unloading step S180, the controller 700 controls the fingers 321 and the lifter pins 413 to unload the wafer 600 that has undergone the reflow process through the heat treatment step from the inside of the processing chamber 445.
  • control is performed so as to change at least one of the flow rates and mixing ratios of a plurality of types of gases introduced into the processing chamber. Accordingly, the amount of heat transmitted from the heater to the wafer, particularly the amount of heat transmitted by heat conduction through the gas, can be changed, so that the wafer can be controlled to have a desired temperature. In particular, it is possible to control to heat the wafer at a desired temperature increase rate and temperature decrease rate.
  • At least one of the gases introduced into the processing chamber in the heat treatment step is a gas having a high thermal conductivity (particularly, more thermally conductive than other gases introduced into the processing chamber). High gas).
  • the temperature of the wafer should be controlled because the amount of heat transferred from the heater to the wafer, especially the amount of heat transferred through the gas, can be controlled by changing the flow rate of gas with high thermal conductivity and the mixing ratio with other gases. Can do.
  • control is performed so as to change the pressure of the atmosphere in the processing chamber. Accordingly, the amount of heat transmitted from the heater to the wafer, particularly the amount of heat transmitted by heat conduction through the gas, can be changed, so that the wafer can be controlled to have a desired temperature. In particular, it is possible to control to heat the wafer at a desired temperature increase rate and temperature decrease rate.
  • control is performed so as to change the distance between the wafer and the heater.
  • the amount of heat transferred from the heater to the wafer can be changed, so that the wafer can be controlled to have a desired temperature.
  • the oxide film reduction step and the heat treatment step are continuously performed in the same process chamber.
  • the time for transferring the wafer from the oxide film removal process to the heat treatment process can be shortened, and re-oxidation can be prevented on the surface of the solder bumps during transfer, and impurities such as moisture can be prevented from adhering to the wafer. You can also.
  • the H 2 gas used as the reducing gas in the oxide film reduction step is used as it is as a gas having high thermal conductivity in the heat treatment step. Yes. Therefore, it is not necessary to exhaust the H 2 gas remaining in the processing chamber in the oxide film reduction step, and the heat treatment step can be started continuously, so that the throughput can be greatly improved. Further, it is not necessary to provide a configuration for supplying new gas (He gas) as in the above-described pattern 1, and the apparatus configuration in the oxide film reduction process can be used as it is.
  • He gas new gas
  • He gas or H 2 gas is used as the gas having high thermal conductivity and N 2 gas is used as the dilution gas for temperature control in the heat treatment process.
  • N 2 gas is used as the dilution gas for temperature control in the heat treatment process.
  • the present invention is not limited to these gases, and the flow rate and mixing ratio of each gas are controlled by using at least one kind of gas for dilution and one having high thermal conductivity for the gas for dilution. As a result, the temperature of the wafer can be controlled efficiently.
  • the temperature can also be controlled.
  • the heat treatment process is performed after the oxide film reduction process of the bump solder.
  • the heat treatment process is not limited to the presence or absence of the oxide film reduction process and the method, and the general heat treatment process in the reflow process of the bump solder.
  • the structure and method of the heat treatment process can be implemented.
  • the present invention is not limited to the reflow process of the bump solder, but can be applied for the purpose of controlling the wafer temperature when the wafer to be processed is heated by the heater.
  • the reflow processing target on which the solder bumps are formed is not limited to a single wafer, but may be a laminated substrate in which different substrates are bonded together with an adhesive or solder.
  • the upper limit temperature of the laminated substrate in the heat treatment step is set to a temperature lower than the heat resistant temperature of the adhesive used for bonding the substrates or the temperature at which the solder melts.
  • the reflow processing target on which the solder bumps are formed may be a laminated substrate in which a silicon substrate on which solder bumps are formed and a support glass substrate are bonded together. This support glass substrate is bonded to support a thin silicon substrate.
  • the reflow processing target on which the solder bumps are formed may be a wafer obtained by bonding a die processed wafer and another substrate.
  • a method for manufacturing a semiconductor device wherein the temperature of the substrate is controlled by changing at least one of flow rates and mixing ratios of a plurality of types of gases.
  • the temperature of the substrate is set to a predetermined temperature by changing at least one of a flow rate and a mixing ratio of a plurality of types of gases introduced into the processing chamber.
  • appendix 6 In any one of appendices 1 to 5, in the step of heating the substrate by the heater, the temperature of the substrate is controlled to be a temperature at which the solder bumps formed on the substrate are melted. A method for manufacturing a semiconductor device is provided.
  • Solder bumps are formed on the substrate, and after the step of placing the substrate on the substrate support mechanism, a step of supplying a reducing gas to the processing chamber, and a plasma of the reducing gas
  • the temperature of the substrate is changed to a predetermined temperature by changing at least one of the pressure of the atmosphere in the processing chamber and the distance between the heater and the substrate.
  • substrate is a laminated substrate which bonded together the several different board
  • the temperature of the said heater is 300 degrees C or less, The manufacturing method of the semiconductor device as described in any one of Additional remark 1 thru
  • the process chamber which processes a substrate, the substrate support mechanism provided in the said process chamber, and supporting the said substrate, provided in the said process chamber, the said substrate
  • a heater that heats the substrate, a plurality of gas supply units that supply different types of gases to the processing chamber, an exhaust unit that exhausts the atmosphere in the processing chamber, and the substrate supported by the substrate support mechanism.
  • a control unit configured to control the temperature of the substrate by changing at least one of a flow rate and a mixing ratio of the gas supplied from each of the plurality of gas supply units when heating by A processing device is provided.
  • the gas supplied from at least one gas supply unit is supplied from a gas supply unit other than the at least one gas supply unit.
  • control unit heats the substrate supported by the substrate support mechanism with the heater, the flow rate of the gas supplied from the at least one gas supply unit and the other gas supply unit
  • the temperature increase rate of the substrate is increased by controlling the plurality of gas supply units so that at least one of the mixing ratio of the gas supplied from the at least one gas supply unit to the supplied gas increases.
  • a substrate processing apparatus according to appendix 16, which is configured to reduce a temperature drop rate.
  • the control unit controls the gas supply unit that supplies the gas having high thermal conductivity to thereby control the thermal conductivity.
  • the said control part controls the temperature of the said board
  • a substrate processing apparatus according to any one of appendices 13 to 19 is provided.
  • At least one of the plurality of gas supply units is a gas supply unit that supplies a reducing gas, and generates plasma of the reducing gas supplied from the gas supply unit that supplies the reducing gas.
  • a plasma generation unit is further provided, and the control unit controls the plasma generation unit, and the surface oxide film of the solder bump formed on the substrate supported by the substrate support mechanism by the plasma of the reducing gas.
  • substrate support mechanism provided in the process chamber which processes a substrate and introduce
  • the temperature of the substrate is controlled by changing the flow rate and / or the mixing ratio of a plurality of types of gases introduced into the processing chamber. Recording medium is provided.
  • the manufacturing quality of the semiconductor device can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

[Problem] To provide a semiconductor device manufacturing method, and a substrate treatment apparatus or the like, whereby, in substrate heat treatment, specifically in reflow treatment, heat treatment can be performed while eliminating unneeded heating and considering a temperature increase/reduction speed and thermal uniformity. [Solution] At the time of heating a substrate using a heater, the present invention supplies a plurality of kinds of gases to a substrate treatment chamber, and controls the temperature of the substrate by changing the flow rates and/or mixing ratio of the plurality of kinds of gases.

Description

半導体装置の製造方法、基板処理装置および記録媒体Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
 本発明は半導体装置の製造方法、基板処理装置等に関するもので、特にハンダリフロー処理に関するものである。 The present invention relates to a method for manufacturing a semiconductor device, a substrate processing apparatus, and the like, and more particularly to solder reflow processing.
 近年、半導体装置を高集積実装するために、半導体装置のパッケージの小型化が求められている。そのため、半導体装置の電極とリードフレームとの接続は、バンプと称する凸形状のハンダ端子が用いられるのが主流となってきている。このバンプを用いることで半導体装置とリードフレームを重ねて接続することが可能となり、実装基板の平面方向のスペースを省くことが出来る。また、バンプは半導体装置とリードフレームとを積層する場合だけでなく、近年研究が盛んなシリコン貫通電極(Through-Silicon Via:TSV)を用いた半導体装置の3次元実装においても、その接続箇所に用いられる。 In recent years, there has been a demand for miniaturization of semiconductor device packages in order to achieve highly integrated mounting of semiconductor devices. For this reason, the use of convex solder terminals called bumps has become the mainstream for connecting electrodes of semiconductor devices and lead frames. By using the bumps, the semiconductor device and the lead frame can be connected to each other, and the space in the plane direction of the mounting substrate can be saved. Bumps are not only used when stacking a semiconductor device and a lead frame, but also at three-dimensional mounting of a semiconductor device using a through-silicon via (TSV), which has been actively studied in recent years. Used.
 バンプは、半導体装置上に電極を形成した後に、その電極上にペースト印刷法やめっき法を用いてハンダを盛って形成するのが一般的である。しかし、ペースト印刷法やめっき法によって盛られたハンダ表面には微細な凹凸が生じており、このままでハンダの接続を行うと、ハンダ内部に気泡が取り込まれてしまい接続強度や耐性が低下してしまう。これを防ぐために、事前にハンダを融点以上に加熱して一旦溶融させることでハンダ表面を平滑化する熱処理が必要となる。 Generally, bumps are formed by depositing solder on the electrodes using a paste printing method or a plating method after electrodes are formed on the semiconductor device. However, there are fine irregularities on the solder surface deposited by the paste printing method and plating method, and if the solder is connected as it is, bubbles will be taken into the solder and the connection strength and resistance will be reduced. End up. In order to prevent this, a heat treatment is required to smooth the solder surface by heating the solder to the melting point or higher in advance and melting it once.
 また、ハンダの表面は通常、自然酸化膜に保護されており、熱処理によって溶融・再形成を行うには、この表面の自然酸化膜を還元・除去する必要がある。この表面自然酸化膜の還元・除去、及び溶融・再形成を行う一連の熱処理をリフロー処理と称する。 In addition, the surface of the solder is usually protected by a natural oxide film, and it is necessary to reduce and remove the natural oxide film on the surface in order to melt and reform by heat treatment. A series of heat treatments for performing reduction / removal and melting / re-formation of the surface natural oxide film is referred to as reflow treatment.
 リフローは様々な方法が開示されており、例えば特許文献1では、プラズマを用いてハンダの自然酸化膜を除去する工程と、ヒータからの輻射熱によってハンダを溶融させる方法が開示されている。 Various methods for reflow are disclosed. For example, Patent Document 1 discloses a method of removing a natural oxide film of solder using plasma and a method of melting solder by radiant heat from a heater.
特開2012-9597号JP2012-9597
 リフロー処理においては、基板上のハンダを融点以上に加熱することが必須であるが、過剰に加熱した場合、ハンダ中において望ましくない合金化反応が生じることが分かっている。更に、加熱された基板が熱に起因するストレスを受けることは不可避である。3次元実装によって多くの基板が積層されている場合、この熱ストレスの影響は無視出来ない。 In the reflow process, it is essential to heat the solder on the substrate to the melting point or higher, but it has been found that when it is excessively heated, an undesirable alloying reaction occurs in the solder. Furthermore, it is inevitable that the heated substrate is subjected to stress due to heat. When many substrates are stacked by three-dimensional mounting, the influence of this thermal stress cannot be ignored.
 また、TSV技術を採用した基板では、シリコン基板を研削して薄化し、サポートガラスと接着剤によって貼り合わせている場合がある。この場合、熱ストレスによりシリコン基板とサポートガラスの剥離が生じるだけでなく、接着剤の耐熱温度にも留意することが必要となる。以上の理由からリフロー処理では温度制御が極めて重要であり、熱均一性や昇温・降温レートに留意して所望の温度になるように温度制御を行うことで基板に加わる熱ストレスを最小限にすることが求められる。基板温度をハンダの融点以上に速やかに昇温することで不要な加熱を防ぎながら、リフロー処理が完了した後は速やかに降温するように制御することが望ましい。今後、基板の積層化や回路の微細化が進むにつれて、その重要性は更に増すと考えられる。 In addition, in a substrate adopting the TSV technology, the silicon substrate may be ground and thinned and bonded with a support glass and an adhesive. In this case, it is necessary not only to peel off the silicon substrate and the support glass due to thermal stress, but also to pay attention to the heat resistant temperature of the adhesive. For the above reasons, temperature control is extremely important in reflow processing, and thermal stress applied to the substrate is minimized by controlling the temperature so that it reaches the desired temperature while paying attention to thermal uniformity and temperature rise / fall rate. It is required to do. It is desirable to control the temperature so that the substrate temperature is quickly lowered after the reflow process is completed while the substrate temperature is rapidly raised to the melting point of the solder to prevent unnecessary heating. In the future, it is considered that the importance will further increase as the number of substrate layers and circuits become finer.
 本発明の目的の一つは、処理基板の温度や熱ストレスを好適に制御できる技術を提供することにある。 One of the objects of the present invention is to provide a technique capable of suitably controlling the temperature and thermal stress of a processing substrate.
 本発明の一態様によれば、基板を処理する処理室内に設けられた基板支持機構上に基板を載置する工程と、前記処理室へ複数の種類のガスを導入し、前記処理室内に設けられたヒータと前記基板との間の空間に前記複数の種類のガスを供給する工程と、前記ヒータにより前記基板を加熱する工程と、を有し、前記ヒータにより前記基板を加熱する工程では、前記処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させて、前記基板の温度を制御する、半導体装置の製造方法が提供される。 According to one embodiment of the present invention, a step of placing a substrate on a substrate support mechanism provided in a processing chamber for processing a substrate, and introducing a plurality of types of gases into the processing chamber are provided in the processing chamber. A step of supplying the plurality of types of gases to a space between the heater and the substrate, and a step of heating the substrate by the heater. In the step of heating the substrate by the heater, There is provided a method for manufacturing a semiconductor device, wherein the temperature of the substrate is controlled by changing at least one of flow rates and mixing ratios of a plurality of types of gases introduced into the processing chamber.
 本発明の他の様態によれば、基板を処理する処理室と、前記処理室内に設けられ、前記基板を支持する基板支持機構と、前記処理室内に設けられ、前記基板を加熱するヒータと、それぞれ異なる種類のガスを前記処理室へ供給する複数のガス供給部と、前記処理室内の雰囲気を排気する排気部と、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記複数のガス供給部のそれぞれから供給されるガスの流量、混合比の少なくともいずれかを変化させて、前記基板の温度を制御する制御部と、を有する基板処理装置が提供される。 According to another aspect of the present invention, a processing chamber for processing a substrate, a substrate support mechanism provided in the processing chamber for supporting the substrate, a heater provided in the processing chamber for heating the substrate, A plurality of gas supply units for supplying different types of gases to the processing chamber, an exhaust unit for exhausting the atmosphere in the processing chamber, and the substrate supported by the substrate support mechanism when the heater is heated by the heater, There is provided a substrate processing apparatus including a control unit that controls a temperature of the substrate by changing at least one of a flow rate and a mixing ratio of a gas supplied from each of a plurality of gas supply units.
 本発明の他の様態によれば、基板を処理する処理室内に設けられた基板支持機構上に基板を載置する手順と、前記処理室へ複数の種類のガスを導入し、前記処理室内に設けられたヒータと前記基板との間の空間に前記複数の種類のガスを供給する手順と、前記ヒータにより前記基板を加熱する手順と、をコンピュータに実行させるプログラムであって、前記ヒータにより前記基板を加熱する手順では、前記処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させて前記基板の温度を制御するプログラム、又は当該プログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。 According to another aspect of the present invention, a procedure for placing a substrate on a substrate support mechanism provided in a processing chamber for processing a substrate, and introducing a plurality of types of gases into the processing chamber, A program for causing a computer to execute a procedure for supplying the plurality of types of gases to a space between a provided heater and the substrate, and a procedure for heating the substrate by the heater. In the procedure for heating the substrate, a program for controlling the temperature of the substrate by changing at least one of a flow rate and a mixing ratio of a plurality of types of gases introduced into the processing chamber, or a computer readable recording the program Recording medium is provided.
 本発明に係る半導体装置の製造方法や基板処理装置等によれば、処理基板の温度や熱ストレスを好適に制御することが可能となる。 According to the semiconductor device manufacturing method, the substrate processing apparatus, and the like according to the present invention, it is possible to suitably control the temperature and thermal stress of the processing substrate.
本発明の実施形態における基板処理装置を説明するための概略横断面図である。It is a schematic cross-sectional view for demonstrating the substrate processing apparatus in embodiment of this invention. 図1に示す本発明の実施形態における基板処理装置の第1の概略縦断面図である。It is a 1st schematic longitudinal cross-sectional view of the substrate processing apparatus in embodiment of this invention shown in FIG. 図1に示す本発明の実施形態における基板処理装置の第2の概略縦断面図である。It is a 2nd schematic longitudinal cross-sectional view of the substrate processing apparatus in embodiment of this invention shown in FIG. 図1に示す本発明の実施形態における基板処理装置に用いられるプロセスチャンバを示す断面図である。It is sectional drawing which shows the process chamber used for the substrate processing apparatus in embodiment of this invention shown in FIG. 本発明の実施形態における基板処理装置のコントローラの構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the controller of the substrate processing apparatus in embodiment of this invention. (a)~(c)は、ウェハ上に形成された電極と、その上部に形成されたハンダバンプの状態を示す模式図である。(A)-(c) is a schematic diagram which shows the state of the electrode formed on the wafer, and the solder bump formed in the upper part. 本発明の実施形態におけるリフロー処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the reflow process in embodiment of this invention. 本発明の実施形態におけるリフロー処理のパターン1における、各種プロセス条件のタイミングチャートである。It is a timing chart of various process conditions in pattern 1 of reflow processing in an embodiment of the present invention. 本発明の実施形態におけるリフロー処理のパターン2における、各種プロセス条件のタイミングチャートである。It is a timing chart of various process conditions in pattern 2 of reflow processing in an embodiment of the present invention. 本発明の実施形態におけるリフロー処理のパターン3における、各種プロセス条件のタイミングチャートである。It is a timing chart of various process conditions in pattern 3 of reflow processing in an embodiment of the present invention.
 以下に本発明の実施形態を、図面を用いて詳細に説明する。 Embodiments of the present invention will be described below in detail with reference to the drawings.
(1)基板処理装置の構成
 まず、本実施形態における基板処理装置の構成を説明する。 図1は、本発明の実施形態における基板処理装置10を説明するための概略横断面図であり、図2、図3は、本発明の実施形態における基板処理装置を説明するための概略縦断面図である。図1、図2に示されるように、基板処理装置10は、カセットトランスファー部100と、ロードロックチャンバ部200と、トランスファーモジュール部300と、基板を処理するプロセスチャンバ部400とを備えている。
(1) Configuration of Substrate Processing Apparatus First, the configuration of the substrate processing apparatus in the present embodiment will be described. FIG. 1 is a schematic cross-sectional view for explaining a substrate processing apparatus 10 in an embodiment of the present invention, and FIGS. 2 and 3 are schematic longitudinal cross-sectional views for explaining a substrate processing apparatus in an embodiment of the present invention. FIG. As shown in FIGS. 1 and 2, the substrate processing apparatus 10 includes a cassette transfer unit 100, a load lock chamber unit 200, a transfer module unit 300, and a process chamber unit 400 that processes a substrate.
(基板処理装置の全体構成)
 カセットトランスファー部100は、第1の搬送部として用いられるカセットトランスファーユニット110、120を備え、カセットトランスファーユニット110、120は、基板として用いられるウェハ600を支持するカセット500を載置するカセットテーブル111、121と、カセットテーブル111、121のY軸130、Z軸140をそれぞれ動作させるY軸アセンブリ112、122、Z軸アセンブリ113、123を、それぞれが備えている。
(Overall configuration of substrate processing equipment)
The cassette transfer unit 100 includes cassette transfer units 110 and 120 that are used as first transfer units. The cassette transfer units 110 and 120 each include a cassette table 111 on which a cassette 500 that supports a wafer 600 that is used as a substrate is placed. 121, Y- axis assemblies 112 and 122, and Z-axis assemblies 113 and 123 for operating the Y-axis 130 and the Z-axis 140 of the cassette tables 111 and 121, respectively.
 ロードロックチャンバ部200は、ロードロックチャンバ250、260と、カセットテーブル111、121に載置されたカセット500からウェハ600をそれぞれ受け取り、ウェハ600をロードロックチャンバ250、260内でそれぞれ保持するバッファユニット210、220を備えている。バッファユニット210、220はそれぞれ、バッファフィンガーアセンブリ211、221とその下部のインデックスアセンブリ212、222とを備えている。バッファフィンガーアセンブリ211(221)と、その下部のインデックスアセンブリ212(222)は、θ軸214(224)により同時に回転する。 The load lock chamber unit 200 receives the wafers 600 from the load lock chambers 250 and 260 and the cassettes 500 placed on the cassette tables 111 and 121, and holds the wafers 600 in the load lock chambers 250 and 260, respectively. 210 and 220 are provided. Each of the buffer units 210 and 220 includes buffer finger assemblies 211 and 221 and index assemblies 212 and 222 below the buffer finger assemblies 211 and 221. The buffer finger assembly 211 (221) and the index assembly 212 (222) below the buffer finger assembly 211 (221) are rotated simultaneously by the θ axis 214 (224).
 トランスファーモジュール部300は、搬送室として用いられるトランスファーモジュール310を備えており、先述のロードロックチャンバ250、260は、ゲートバルブ311、312を介して、トランスファーモジュール310に取り付けられている。トランスファーモジュール310には、第2の搬送部として用いられる真空アームロボットユニット320が設けられている。 The transfer module unit 300 includes a transfer module 310 used as a transfer chamber, and the above-described load lock chambers 250 and 260 are attached to the transfer module 310 via gate valves 311 and 312. The transfer module 310 is provided with a vacuum arm robot unit 320 used as a second transfer unit.
 プロセスチャンバ部400は、プロセスチャンバ410、420と、その上部に設けられたプラズマ生成室430、440とを備えている。プラズマ生成室430、440は、後述する反応容器431、441内に供給されるガスを、後述するプラズマ生成部によってプラズマ状態とする空間である。本実施例では、生成されるプラズマとして、酸素と水素の混合プラズマ、酸素と窒素の混合プラズマである。プロセスチャンバ410、420は、ゲートバルブ313、314を介してトランスファーモジュール310に取り付けられている。 The process chamber unit 400 includes process chambers 410 and 420 and plasma generation chambers 430 and 440 provided on the upper part thereof. The plasma generation chambers 430 and 440 are spaces in which a gas supplied into reaction vessels 431 and 441 described later is brought into a plasma state by a plasma generation unit described later. In this embodiment, the generated plasma is a mixed plasma of oxygen and hydrogen, or a mixed plasma of oxygen and nitrogen. The process chambers 410 and 420 are attached to the transfer module 310 via gate valves 313 and 314.
 プロセスチャンバ410、420は、ウェハ600を載置する載置部として用いられるサセプタテーブル411、421を備えている。サセプタテーブル411、421をそれぞれ貫通してリフターピン413、423が設けられている。リフターピン413は、Z軸412、422の方向に、それぞれ上下する。 The process chambers 410 and 420 include susceptor tables 411 and 421 that are used as a placement unit for placing the wafer 600 thereon. Lifter pins 413 and 423 are provided through the susceptor tables 411 and 421, respectively. The lifter pins 413 move up and down in the Z- axis 412 and 422 directions, respectively.
 プラズマ生成室430、440は、反応管として用いられる反応容器431、441をそれぞれ備えている。反応容器431、441の外部には、共振コイル432、442が設けられている。共振コイル432、442に高周波電力を印加して、ガス導入口433、443から導入されたガスをプラズマ状態とし、そのプラズマを利用してサセプタテーブル411、421上に載置されたウェハ600上に形成されたハンダバンプ表面の還元・除去処理を行う。 The plasma generation chambers 430 and 440 are provided with reaction vessels 431 and 441 used as reaction tubes, respectively. Resonant coils 432 and 442 are provided outside the reaction vessels 431 and 441. A high-frequency power is applied to the resonance coils 432 and 442 to change the gas introduced from the gas inlets 433 and 443 into a plasma state, and the plasma is used on the wafer 600 placed on the susceptor tables 411 and 421. Reduction / removal processing of the formed solder bump surface is performed.
 以上のように構成された基板処理装置10においては、カセットテーブル111(121)からロードロックチャンバ250(260)へとウェハ600が搬送される。この際、まず、図2、図3に示されるように、カセットテーブル111(121)にカセット500を搭載してZ軸140が下方向に動作する。Z軸140が下にある状態でバッファフィンガーアセンブリ211(221)のY軸130がカセット500の方向に動作する。I軸230の動作により25枚のウェハ600をバッファフィンガーアセンブリ211(221)のバッファフィンガー213(223)がカセット500から受け取る。受け取った状態でY軸130がもとの位置まで下がる。 In the substrate processing apparatus 10 configured as described above, the wafer 600 is transferred from the cassette table 111 (121) to the load lock chamber 250 (260). At this time, first, as shown in FIGS. 2 and 3, the cassette 500 is mounted on the cassette table 111 (121), and the Z-axis 140 moves downward. The Y-axis 130 of the buffer finger assembly 211 (221) moves in the direction of the cassette 500 with the Z-axis 140 on the bottom. By operation of the I-axis 230, 25 wafers 600 are received from the cassette 500 by the buffer fingers 213 (223) of the buffer finger assembly 211 (221). In the received state, the Y-axis 130 is lowered to the original position.
 ロードロックチャンバ250(260)においては、ロードロックチャンバ250(260)内にバッファユニット210(220)によって、保持されているウエハ600を、真空アームロボットユニット320のフィンガー321に搭載する。θ軸325方向で真空アームロボットユニット320を回転し、さらにY軸326方向にフィンガーを延伸し、プロセスチャンバ410(420)内のサセプタテーブル411(421)上に移載する。 In the load lock chamber 250 (260), the wafer 600 held in the load lock chamber 250 (260) by the buffer unit 210 (220) is mounted on the finger 321 of the vacuum arm robot unit 320. The vacuum arm robot unit 320 is rotated in the θ-axis 325 direction, the fingers are further extended in the Y-axis 326 direction, and transferred onto the susceptor table 411 (421) in the process chamber 410 (420).
(プロセスチャンバ)
 図4には、プロセスチャンバ410の詳細が示されている。尚、先述のプロセスチャンバ420は、プロセスチャンバ410と同じ構成である。 プロセスチャンバ410は、図4に示すように、先述のプラズマを生成するためのプラズマ生成室430、半導体基板などのウェハ600を収容する処理室445、プラズマ生成室430(特に共振コイル432)に高周波電力を供給する高周波電源444、及び高周波電源444の発振周波数を制御する周波数整合器446を備えている。例えば、架台としての水平なベースプレート448の上部に前記のプラズマ生成室430を配置し、ベースプレート448の下部に処理室445を配置して構成される。また、電気的に接地された外側シールド452と共振コイル432とで、螺旋共振器が構成される。
(Process chamber)
FIG. 4 shows details of the process chamber 410. The process chamber 420 described above has the same configuration as the process chamber 410. As shown in FIG. 4, the process chamber 410 includes a plasma generation chamber 430 for generating plasma, a processing chamber 445 for accommodating a wafer 600 such as a semiconductor substrate, and a plasma generation chamber 430 (particularly, a resonance coil 432). A high frequency power supply 444 for supplying power and a frequency matching unit 446 for controlling the oscillation frequency of the high frequency power supply 444 are provided. For example, the plasma generation chamber 430 is disposed above a horizontal base plate 448 as a gantry, and the processing chamber 445 is disposed below the base plate 448. The outer shield 452 and the resonance coil 432 that are electrically grounded constitute a spiral resonator.
 処理室445は、プラズマ生成室430に連続して設けられていて、後述するサセプタ459を有する処理室として用いられている。 The processing chamber 445 is provided continuously with the plasma generation chamber 430 and is used as a processing chamber having a susceptor 459 described later.
 プラズマ生成室430は、減圧可能に構成され且つプラズマ用の反応ガスが供給される先述の反応容器431を有する。反応容器431の外周には、反応容器431に巻回された共振コイル432と、共振コイル432の外周に配置され且つ電気的に接地された外側シールド452が設けられる。 The plasma generation chamber 430 includes the above-described reaction vessel 431 that is configured to be depressurized and to which a reaction gas for plasma is supplied. On the outer periphery of the reaction vessel 431, a resonance coil 432 wound around the reaction vessel 431 and an outer shield 452 disposed on the outer periphery of the resonance coil 432 and electrically grounded are provided.
 反応容器431は、通常、高純度の石英硝子やセラミックスにて円筒状に形成されており、この実施形態では石英で形成されたものが用いられている。反応容器431は、通常、軸線が垂直になるように配置され、トッププレート454及び処理室445によって上下端が気密に封止される。反応容器431の下方の処理室445の底面には、複数(例えば4本)の支柱461によって支持されるサセプタ459が設けられ、サセプタ459には、サセプタテーブル411及びサセプタ上のウェハ600を加熱する基板加熱部であるヒータ463が具備される。 The reaction vessel 431 is usually formed in a cylindrical shape with high-purity quartz glass or ceramics, and in this embodiment, one made of quartz is used. The reaction vessel 431 is usually arranged so that its axis is vertical, and the upper and lower ends are hermetically sealed by the top plate 454 and the processing chamber 445. A susceptor 459 supported by a plurality of (for example, four) support columns 461 is provided on the bottom surface of the processing chamber 445 below the reaction vessel 431. The susceptor 459 heats the susceptor table 411 and the wafer 600 on the susceptor. A heater 463 which is a substrate heating unit is provided.
 サセプタ459の下方には、排気板465が配設される。排気板465は、ガイドシャフト467を介して底基板469に支持され、底基板469は処理室445の下面に気密に設けられる。昇降基板471がガイドシャフト467をガイドとして昇降自在に動くように設けられる。昇降基板471は、少なくとも3本のリフターピン413を支持している。 An exhaust plate 465 is disposed below the susceptor 459. The exhaust plate 465 is supported by the bottom substrate 469 via the guide shaft 467, and the bottom substrate 469 is airtightly provided on the lower surface of the processing chamber 445. An elevating board 471 is provided to move up and down with a guide shaft 467 as a guide. The lift board 471 supports at least three lifter pins 413.
 リフターピン413は、サセプタ459を貫通する。そして、リフターピン413の頂には、ウェハ600を支持するリフターピン支持部414が設けられている。リフターピン支持部414は、サセプタ459の中心方向に延出している。リフターピン413の昇降によって、リフターピン支持部414で支持されたウェハ600をサセプタテーブル411に載置し、あるいはサセプタテーブル411から所定の距離を離して支持することができる。底基板469には、昇降駆動部(図示略)の昇降シャフト473は昇降基板471に連結されている。昇降駆動部が昇降シャフト473を昇降させることで、昇降基板471とリフターピン413を介して、リフターピン支持部414が昇降する。 The lifter pin 413 passes through the susceptor 459. A lifter pin support portion 414 that supports the wafer 600 is provided on the top of the lifter pin 413. The lifter pin support portion 414 extends in the center direction of the susceptor 459. By raising and lowering the lifter pins 413, the wafer 600 supported by the lifter pin support portions 414 can be placed on the susceptor table 411 or supported at a predetermined distance from the susceptor table 411. A lift shaft 473 of a lift drive unit (not shown) is connected to the lift substrate 471 on the bottom substrate 469. The lift drive unit moves the lift shaft 473 up and down, so that the lifter pin support portion 414 moves up and down via the lift substrate 471 and the lifter pin 413.
(排気部)
 サセプタ459と排気板465の間には、円筒状のバッフルリング458が設けられる。バッフルリング458、サセプタ459、排気板465で第一排気室474が形成される。円筒状のバッフルリング458は、円筒側面に通気孔が多数均一に設けられている。したがって、第一排気室474は、処理室445と仕切られ、また通気孔によって、処理室445と連通している。
(Exhaust part)
A cylindrical baffle ring 458 is provided between the susceptor 459 and the exhaust plate 465. A first exhaust chamber 474 is formed by the baffle ring 458, the susceptor 459, and the exhaust plate 465. The cylindrical baffle ring 458 has a large number of air holes uniformly provided on the side surface of the cylinder. Therefore, the first exhaust chamber 474 is partitioned from the processing chamber 445 and communicates with the processing chamber 445 through a vent hole.
 排気板465の中央に、排気連通孔475が設けられる。排気連通孔475によって、第一排気室と第二排気室476が連通される。第二排気室476には、排気管480が連通されており、排気管480には排気装置479が設けられている。尚、排気装置479はAPC(Automatic Pressure Controller)などの圧力調整機構や開閉弁、真空ポンプなどにより構成される。 An exhaust communication hole 475 is provided at the center of the exhaust plate 465. The first exhaust chamber and the second exhaust chamber 476 communicate with each other through the exhaust communication hole 475. An exhaust pipe 480 communicates with the second exhaust chamber 476, and an exhaust device 479 is provided in the exhaust pipe 480. The exhaust device 479 includes a pressure adjusting mechanism such as an APC (Automatic Pressure Controller), an on-off valve, a vacuum pump, and the like.
(ガス供給部)
 反応容器431の上部のトッププレート454には、図中省略のガス供給設備から第1のガスであるN(窒素)ガスと第2のガスであるH(水素)ガスをそれぞれ供給する為の、第1のガス供給管455及び第2のガス供給管456が、ガス導入口433に付設されている。第1のガス供給管455には流量制御部であるマスフローコントローラ477及び開閉弁478が設けられており、例えば後述するコントローラ700で制御することでガス供給量を制御することが出来る。第1のガス供給管455、マスフローコントローラ477及び開閉弁478は、合わせて第1のガス供給部490aを構成する。第1のガス供給部490aは、ガス供給設備の第1のガス供給源から供給される第1のガスであるNガスを反応容器431内に供給する。なお、第1のガス供給源を第1のガス供給部に含めてもよい。
(Gas supply part)
In order to supply N 2 (nitrogen) gas, which is the first gas, and H 2 (hydrogen) gas, which is the second gas, to the top plate 454 at the top of the reaction vessel 431 from the gas supply equipment not shown in the drawing, respectively. The first gas supply pipe 455 and the second gas supply pipe 456 are attached to the gas introduction port 433. The first gas supply pipe 455 is provided with a mass flow controller 477 and an on-off valve 478 which are flow rate control units. For example, the gas supply amount can be controlled by controlling with a controller 700 described later. The first gas supply pipe 455, the mass flow controller 477, and the on-off valve 478 together constitute a first gas supply unit 490a. The first gas supply unit 490 a supplies N 2 gas, which is the first gas supplied from the first gas supply source of the gas supply facility, into the reaction vessel 431. The first gas supply source may be included in the first gas supply unit.
 また、第2のガス供給管456には同じく流量制御部であるマスフローコントローラ483及び開閉弁484が設けられており、例えば後述するコントローラ700で制御することでガス供給量を制御することが出来る。第2のガス供給管456、マスフローコントローラ483及び開閉弁484は、合わせて第2のガス供給部490bを構成する。第2のガス供給部490bは、ガス供給設備の第2のガス供給源から供給される第2のガスであるHガスを反応容器431内に供給する。なお、第2のガス供給源を第2のガス供給部490bに含めてもよい。第1のガス供給部490a及び第2のガス供給部490bを合わせてガス供給部490を構成する。 The second gas supply pipe 456 is also provided with a mass flow controller 483 and an on-off valve 484, which are also flow rate control units, and the gas supply amount can be controlled by controlling the controller 700, which will be described later, for example. The second gas supply pipe 456, the mass flow controller 483, and the on-off valve 484 together constitute a second gas supply unit 490b. The second gas supply unit 490 b supplies H 2 gas, which is the second gas supplied from the second gas supply source of the gas supply facility, into the reaction vessel 431. Note that the second gas supply source may be included in the second gas supply unit 490b. The first gas supply unit 490a and the second gas supply unit 490b are combined to constitute the gas supply unit 490.
 なお、本実施形態では第1のガス供給管455及び第2のガス供給管456がそれぞれガス導入口433に付設され、反応容器431へそれぞれのガスを供給するよう構成されているが、ガス導入口433より上流部分において第1のガス供給管455と第2のガス供給管456を接続することにより、NガスとHガスの混合ガスをガス導入口433から供給するように構成してもよい。 In the present embodiment, the first gas supply pipe 455 and the second gas supply pipe 456 are respectively attached to the gas inlet 433 and configured to supply the respective gases to the reaction vessel 431. By connecting the first gas supply pipe 455 and the second gas supply pipe 456 in the upstream portion from the port 433, a mixed gas of N 2 gas and H 2 gas is supplied from the gas introduction port 433. Also good.
 また、本実施形態では第1のガスとしてNガスを、第2のガスとしてHガスをそれぞれ第1のガス供給部及び第2のガス供給部から供給するが、供給するガスの種類はこれら2種類に限られず、3種類以上であってもよい。その場合、第1のガス供給部及び第2のガス供給部の他に、更に第3、第4のガス供給部を設ける。 In this embodiment, N 2 gas is supplied as the first gas and H 2 gas is supplied as the second gas from the first gas supply unit and the second gas supply unit, respectively. These are not limited to two types, and may be three or more types. In that case, in addition to the first gas supply unit and the second gas supply unit, third and fourth gas supply units are further provided.
 また、反応容器431内には、反応ガスを反応容器431の内壁に沿って流れるようにするための略円板形で、石英からなるバッフル板460が設けられている。バッフル板460はセラミックスで構成されてもよい。尚、流量制御部及び排気装置479によって供給量、排気量を調整することにより、反応容器431内の雰囲気の圧力を調整することができる。 Also, in the reaction vessel 431, a baffle plate 460 made of quartz is provided in a substantially disc shape for allowing the reaction gas to flow along the inner wall of the reaction vessel 431. The baffle plate 460 may be made of ceramics. In addition, the pressure of the atmosphere in the reaction vessel 431 can be adjusted by adjusting the supply amount and the exhaust amount by the flow rate control unit and the exhaust device 479.
(プラズマ生成部)
 反応容器431に巻回された共振コイル432は、所定の波長の定在波を形成する為、一定波長のモードで共振するように巻径、巻回ピッチ、巻数が設定される。即ち、共振コイル432の電気的長さは、高周波電源444から供給される電力の所定周波数における1波長の整数倍(1倍、2倍、・・・)又は半波長もしくは1/4波長に相当する長さに設定される。例えば、27.12MHzの場合、1波長の長さは約11メートルである。使用する周波数及び共振コイル長は、所望するプラズマ発生状態やプラズマ生成室430の機械的な寸法などに応じて選択することができる。
(Plasma generator)
Since the resonance coil 432 wound around the reaction vessel 431 forms a standing wave having a predetermined wavelength, the winding diameter, the winding pitch, and the number of turns are set so as to resonate in a constant wavelength mode. That is, the electrical length of the resonance coil 432 corresponds to an integral multiple (1 times, 2 times,...), Half wavelength, or ¼ wavelength of one wavelength at a predetermined frequency of power supplied from the high frequency power supply 444. Set to the length to be. For example, in the case of 27.12 MHz, the length of one wavelength is about 11 meters. The frequency to be used and the resonance coil length can be selected according to the desired plasma generation state, the mechanical dimensions of the plasma generation chamber 430, and the like.
 より具体的には、共振コイル432は、印加する電力や発生させる磁界強度又は適用する装置の外形などを勘案し、例えば、800kHz~50MHz、0.5~5kWの高周波電力によって0.01~10ガウス程度の磁場を発生し得る様に、50~300mm2の有効断面積であって、かつ200~500mmのコイル直径に構成され、反応容器431の外周側に2~60回程度巻回される。共振コイル432を構成する素材としては、銅パイプ、銅の薄板、アルミニウムパイプ、アルミニウム薄板、ポリマーベルトに銅板又はアルミニウムを蒸着した素材等が使用される。共振コイル432は、絶縁性材料にて平板状に形成され、かつベースプレート448の上端面に鉛直に立設された複数の支持部によって支持される。 More specifically, the resonance coil 432 takes into account the applied power, the generated magnetic field strength, or the external shape of the device to be applied, for example, 0.01 to 10 by high frequency power of 800 kHz to 50 MHz and 0.5 to 5 kW. In order to generate a Gaussian magnetic field, it has an effective sectional area of 50 to 300 mm 2 and a coil diameter of 200 to 500 mm, and is wound about 2 to 60 times on the outer peripheral side of the reaction vessel 431. As a material constituting the resonance coil 432, a copper pipe, a copper thin plate, an aluminum pipe, an aluminum thin plate, a material obtained by evaporating a copper plate or aluminum on a polymer belt, or the like is used. The resonant coil 432 is formed of an insulating material in a flat plate shape, and is supported by a plurality of support portions that are vertically provided on the upper end surface of the base plate 448.
 共振コイル432の両端は電気的に接地されているが、共振コイル432の少なくとも一端は、装置の最初の設置の際又は処理条件の変更の際に当該共振コイルの電気的長さを微調整する為、可動タップ462を介して接地される。図4中の符号464は他方の固定接地箇所を示す。更に、装置の最初の設置の際又は処理条件の変更の際に、共振コイル432のインピーダンスを微調整する為、共振コイル432の接地された両端の間には、可動タップ466によって給電部が設けられる。 Both ends of the resonance coil 432 are electrically grounded, but at least one end of the resonance coil 432 finely adjusts the electrical length of the resonance coil during the initial installation of the apparatus or when processing conditions are changed. Therefore, it is grounded via the movable tap 462. Reference numeral 464 in FIG. 4 indicates the other fixed ground location. Furthermore, a power feeding portion is provided between the grounded ends of the resonance coil 432 by a movable tap 466 in order to finely adjust the impedance of the resonance coil 432 when the apparatus is first installed or when processing conditions are changed. It is done.
 即ち、共振コイル432は、電気的に接地されたグラウンド部を両端に備え、かつ高周波電源444から電力供給される給電部を各グラウンド部の間に備え、しかも、少なくとも一方のグラウンド部は、位置調整可能な可変式グラウンド部であって、給電部は、位置調整可能な可変式給電部とされる。共振コイル432が可変式グラウンド部及び可変式給電部を備えることにより、後述する様に、プラズマ生成室430の共振周波数及び負荷インピーダンスの調整をより一層簡便に行うことが出来る。 That is, the resonance coil 432 includes ground portions that are electrically grounded at both ends, and power supply portions that are supplied with power from the high-frequency power source 444, and at least one of the ground portions is positioned. It is an adjustable variable ground part, and the power feeding part is a variable power feeding part whose position can be adjusted. Since the resonance coil 432 includes the variable ground unit and the variable power supply unit, the resonance frequency and load impedance of the plasma generation chamber 430 can be adjusted more easily as will be described later.
 更に、共振コイル432の一端(又は両端)には、位相及び逆位相電流が共振コイル432の電気的中点に関して対称に流れる様に、コイル及びシールドから成る波形調整回路が挿入されても良い。斯かる波形調整回路は、共振コイル432の端部を電気的に非接続状態とするか又は電気的に等価の状態に設定することにより開路に構成される。又、共振コイル432の端部は、チョーク直列抵抗によって非接地とし、固定基準電位に直流接続されても良い。 Furthermore, a waveform adjustment circuit including a coil and a shield may be inserted at one end (or both ends) of the resonance coil 432 so that the phase and antiphase currents flow symmetrically with respect to the electrical midpoint of the resonance coil 432. Such a waveform adjusting circuit is configured as an open circuit by setting the end of the resonance coil 432 to an electrically disconnected state or an electrically equivalent state. Further, the end of the resonance coil 432 may be ungrounded by a choke series resistor and may be DC-connected to a fixed reference potential.
 外側シールド452は、共振コイル432の外側への電磁波の漏れを遮蔽するとともに、共振回路を構成するのに必要な容量成分を共振コイル432との間に形成する為に設けられる。外側シールド452は、一般的には、アルミニウム合金、銅又は銅合金等の導電性材料を使用して円筒状に形成される。外側シールド452は、共振コイル432の外周から、例えば、5~10mm程度隔てて配置される。そして、通常、外側シールド452は、共振コイル432の両端と電位が等しくなる様に接地されるが、共振コイル432の共振数を正確に設定する為、外側シールド452の一端又は両端は、タップ位置を調整可能になされたり、或いは、共振コイル432と外側シールド452の間には、トリミングキャパシタンスが挿入されたりしても良い。 The outer shield 452 is provided to shield leakage of electromagnetic waves to the outside of the resonance coil 432 and to form a capacitance component necessary for configuring a resonance circuit with the resonance coil 432. The outer shield 452 is generally formed in a cylindrical shape using a conductive material such as aluminum alloy, copper, or copper alloy. The outer shield 452 is arranged at a distance of, for example, about 5 to 10 mm from the outer periphery of the resonance coil 432. In general, the outer shield 452 is grounded so that the potential is equal to both ends of the resonance coil 432. To accurately set the resonance number of the resonance coil 432, one end or both ends of the outer shield 452 are tapped positions. The trimming capacitance may be inserted between the resonance coil 432 and the outer shield 452.
 高周波電源444としては、共振コイル432に必要な電圧及び周波数の電力を供給できる電源である限り、RFジェネレータ等の適宜の電源を使用することができ、例えば、周波数80kHz~800MHzで0.5~5kW程度の電力を供給可能な高周波電源が使用される。この高周波電源444、周波数整合器446、共振コイル432、後述する反射波電力計468をまとめてプラズマ生成部と呼ぶ。 As the high-frequency power source 444, an appropriate power source such as an RF generator can be used as long as it is a power source that can supply power of the necessary voltage and frequency to the resonance coil 432. A high frequency power supply capable of supplying about 5 kW of power is used. The high-frequency power supply 444, the frequency matching unit 446, the resonance coil 432, and the reflected wave wattmeter 468 described later are collectively referred to as a plasma generation unit.
 また、高周波電源444の出力側には反射波電力計468が設置され、反射波電力計468によって検出された反射波電力が、コントローラ700に入力される。コントローラ700は、少なくとも、プラズマ生成部及びガス供給部490を制御する制御部として用いられていて、単に高周波電源444のみを制御するものではなく、基板処理装置10全体を制御している。コントローラ700には、表示部であるディスプレイ472が接続されている。ディスプレイ472は、例えば、反射波電力計468による反射波の検出結果等、基板処理装置10に設けられた各種検出部で検出されたデータ等を表示する。 Also, a reflected wave wattmeter 468 is installed on the output side of the high frequency power supply 444, and the reflected wave power detected by the reflected wave wattmeter 468 is input to the controller 700. The controller 700 is used as a control unit that controls at least the plasma generation unit and the gas supply unit 490, and does not simply control only the high-frequency power source 444 but controls the entire substrate processing apparatus 10. A display 472 that is a display unit is connected to the controller 700. The display 472 displays, for example, data detected by various detection units provided in the substrate processing apparatus 10, such as the detection result of the reflected wave by the reflected wave wattmeter 468.
 なお、本実施形態では、プラズマ生成方式として誘導結合プラズマ(Inductively Coupled Plasma:ICP)方式のプラズマ生成部を用いるが、これに限られるものではなく、例えば容量結合プラズマ(Capacitively Coupled Plasma:CCP)方式のプラズマ生成部を用いてもよい。 In the present embodiment, an inductively coupled plasma (ICP) plasma generation unit is used as a plasma generation method, but the plasma generation unit is not limited to this, and, for example, a capacitively coupled plasma (CCP) method is used. Alternatively, a plasma generation unit may be used.
(制御部)
 次に、図5を用い、本実施形態の基板処理装置10を制御する制御部(制御手段)であるコントローラ700について説明する。図5は、本実施形態で好適に用いられる基板処理装置10のコントローラの概略構成図である。
(Control part)
Next, a controller 700 that is a control unit (control means) that controls the substrate processing apparatus 10 of the present embodiment will be described with reference to FIG. FIG. 5 is a schematic configuration diagram of a controller of the substrate processing apparatus 10 preferably used in the present embodiment.
 図5に示されているように、制御部(制御手段)であるコントローラ700は、CPU(Central Processing Unit)701a、RAM(Random Access Memory)701b、記憶装置701c、I/Oポート701dを備えたコンピュータとして構成されている。RAM701b、記憶装置701c、I/Oポート701dは、内部バス701eを介して、CPU701aとデータ交換可能なように構成されている。コントローラ700には、例えばタッチパネル等として構成された入出力装置702が接続されている。 As shown in FIG. 5, the controller 700, which is a control unit (control means), includes a CPU (Central Processing Unit) 701a, a RAM (Random Access Memory) 701b, a storage device 701c, and an I / O port 701d. It is configured as a computer. The RAM 701b, the storage device 701c, and the I / O port 701d are configured to exchange data with the CPU 701a via the internal bus 701e. For example, an input / output device 702 configured as a touch panel or the like is connected to the controller 700.
 記憶装置701cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置701c内には、基板処理装置10の動作を制御する制御プログラムや、後述する成膜処理等の基板処理の手順や条件などが記載されたプロセスレシピが、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ700に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM701bは、CPU701aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 701c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like. In the storage device 701c, a control program for controlling the operation of the substrate processing apparatus 10 and a process recipe in which a procedure and conditions for substrate processing such as film formation processing described later are described in a readable manner. Note that the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 700 to execute each procedure in a substrate processing step to be described later, and functions as a program. Hereinafter, the process recipe, the control program, and the like are collectively referred to as simply a program. When the term “program” is used in this specification, it may include only a process recipe alone, may include only a control program alone, or may include both. The RAM 701b is configured as a memory area (work area) in which a program or data read by the CPU 701a is temporarily stored.
 I/Oポート701dは、上述のマスフローコントローラ477、483、バルブ474、478、排気装置479、高周波電源444、周波数整合器446、反射電力計468、ディスプレイ472、ヒータ463等に接続されている。なお、I/Oポート701dは、図示されていない昇降駆動部にも接続されている。 The I / O port 701d is connected to the mass flow controllers 477 and 483, the valves 474 and 478, the exhaust device 479, the high frequency power supply 444, the frequency matching unit 446, the reflected wattmeter 468, the display 472, the heater 463, and the like. The I / O port 701d is also connected to a lift drive unit (not shown).
 CPU701aは、記憶装置701cから制御プログラムを読み出して実行すると共に、入出力装置702からの操作コマンドの入力等に応じて記憶装置701cからプロセスレシピを読み出すように構成されている。そして、CPU701aは、読み出したプロセスレシピの内容に沿うように、マスフローコントローラ477、483による各種ガスの流量調整動作、バルブ474、478の開閉動作、排気装置479による圧力調整動作、ヒータ463の加熱開始及び停止、昇降駆動部によるリフターピン413の昇降動作、高周波電源444による電力供給および停止、周波数整合器446によるインピーダンス調整動作、ディスプレイ472による各種データの表示等を制御するように構成されている。 The CPU 701a is configured to read out and execute a control program from the storage device 701c, and to read out a process recipe from the storage device 701c in response to an operation command input from the input / output device 702 or the like. Then, the CPU 701 a adjusts the flow rates of various gases by the mass flow controllers 477 and 483, the opening and closing operations of the valves 474 and 478, the pressure adjusting operation by the exhaust device 479, and the heating of the heater 463 so as to follow the contents of the read process recipe. It is configured to control the lifting / lowering operation of the lifter pin 413 by the lifting / lowering driving unit, the power supply and stopping by the high frequency power supply 444, the impedance adjustment operation by the frequency matching unit 446, the display of various data by the display 472, and the like.
 なお、コントローラ700は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、上述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)703を用意し、係る外部記憶装置703を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態に係るコントローラ700を構成することができる。なお、コンピュータにプログラムを供給するための手段は、外部記憶装置703を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置703を介さずにプログラムを供給するようにしてもよい。なお、記憶装置701cや外部記憶装置703は、コンピュータ読み取り可能な記録媒体として構成される。以下、これらを総称して、単に記録媒体ともいう。なお、本明細書において記録媒体という言葉を用いた場合は、記憶装置701c単体のみを含む場合、外部記憶装置703単体のみを含む場合、または、その両方を含む場合がある。 Note that the controller 700 is not limited to being configured as a dedicated computer, but may be configured as a general-purpose computer. For example, an external storage device storing the above-described program (for example, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, semiconductor memory such as USB memory or memory card) The controller 700 according to the present embodiment can be configured by preparing 703 and installing a program in a general-purpose computer using the external storage device 703. Note that the means for supplying the program to the computer is not limited to supplying the program via the external storage device 703. For example, the program may be supplied without using the external storage device 703 by using communication means such as the Internet or a dedicated line. The storage device 701c and the external storage device 703 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. Note that in this specification, the term recording medium may include only the storage device 701c, only the external storage device 703, or both.
(3)基板処理工程
 続いて、本実施形態に係る半導体製造工程の一工程として、上述したプロセスチャンバ410を備える基板処理装置10を用いて実行される基板処理工程について説明する。
(3) Substrate Processing Step Subsequently, a substrate processing step executed using the substrate processing apparatus 10 including the process chamber 410 described above will be described as one step of the semiconductor manufacturing process according to the present embodiment.
 ここで、本実施形態において処理される基板上に形成されたハンダバンプについて説明する。図6は、ウェハ上に形成された電極800と、その上部に形成されたハンダバンプの状態を示す模式図である。 Here, the solder bump formed on the substrate to be processed in this embodiment will be described. FIG. 6 is a schematic view showing the state of the electrode 800 formed on the wafer and the solder bump formed on the electrode 800.
 上述の通り、ハンダバンプは、ウェハ上に電極を形成した後に、その電極上にペースト印刷法やめっき法を用いてハンダを盛って形成するのが一般的である。図6(a)はペースト印刷法やめっき法によって形成されたハンダバンプ801(a)を示している。このハンダバンプ801(a)は、表面に微細な凹凸が存在している。そのため、このままの状態でハンダバンプ801(a)を溶融して電極800とリードフレーム等の接続を行うと、ハンダ内部に気泡が取り込まれてしまい接続強度や耐性が低下してしまう。本実施形態ではこの問題を防ぐ為、接続処理を行う前にハンダバンプ801(a)をハンダの融点以上に加熱して一旦溶融させることでハンダ表面を平滑化する熱処理を行う。 As described above, solder bumps are generally formed by depositing solder on the electrodes using a paste printing method or plating method after electrodes are formed on the wafer. FIG. 6A shows a solder bump 801 (a) formed by a paste printing method or a plating method. The solder bump 801 (a) has fine irregularities on the surface. Therefore, if the solder bump 801 (a) is melted in this state and the electrode 800 is connected to the lead frame or the like, bubbles are taken into the solder and the connection strength and resistance are reduced. In this embodiment, in order to prevent this problem, a heat treatment is performed to smooth the solder surface by heating the solder bump 801 (a) to a melting point of the solder or higher once before the connection process.
 また、ハンダバンプ801(a)の表面は通常、自然酸化膜801(a)´で覆われている。従って本実施形態では、熱処理によって溶融・再形成を行う前に、この表面の自然酸化膜を還元・除去する処理を行う。この表面自然酸化膜801(a)´の還元・除去処理、及びハンダの溶融・再形成を行う熱処理を行う一連の処理を合わせてリフロー処理と称する。 Further, the surface of the solder bump 801 (a) is usually covered with a natural oxide film 801 (a) ′. Therefore, in this embodiment, before the melting / reforming is performed by the heat treatment, a process of reducing and removing the natural oxide film on the surface is performed. A series of treatments for reducing and removing the surface natural oxide film 801 (a) ′ and heat treatment for melting and reforming the solder are collectively referred to as reflow treatment.
 図7は、本実施形態におけるリフロー処理の手順を示すフローチャートである。本実施形態における基板処理装置10では、ロードロックチャンバ250(260)へウェハ600が搬送され、ロードロックチャンバ250(260)内が減圧され、ロードロックチャンバ250(260)から、トランスファーモジュール310を経てウェハ600がプロセスチャンバ410(420)内へと搬入・載置され、プロセスチャンバ410(420)でウェハ600上に形成されたハンダバンプ801(a)の表面事前酸化膜の還元・除去処理がなされ、表面自然酸化膜が除去されたハンダバンプを溶融・再形成処理がなされ、トランスファーモジュール310を経て再びロードロックチャンバ250(260)へ搬送される。 FIG. 7 is a flowchart showing a reflow processing procedure in the present embodiment. In the substrate processing apparatus 10 according to the present embodiment, the wafer 600 is transferred to the load lock chamber 250 (260), the pressure inside the load lock chamber 250 (260) is reduced, and the load lock chamber 250 (260) passes through the transfer module 310. The wafer 600 is carried into and placed in the process chamber 410 (420), and the surface pre-oxide film reduction / removal processing of the solder bumps 801 (a) formed on the wafer 600 is performed in the process chamber 410 (420). The solder bumps from which the surface natural oxide film has been removed are melted and re-formed, and transferred to the load lock chamber 250 (260) again via the transfer module 310.
(基板搬入・載置工程)
 図6のステップS120では、処理室445内への基板搬入・載置工程が行われる。即ち、処理室445内にウェハ600を搬入し、リフターピン支持部414にウェハ600を載置する処理がなされる。
(Board loading / mounting process)
In step S <b> 120 of FIG. 6, a substrate carry-in / placement process into the processing chamber 445 is performed. That is, the wafer 600 is loaded into the processing chamber 445 and the wafer 600 is placed on the lifter pin support portion 414.
 具体的には、ステップS120において、コントローラ700は、ウェハ600を搭載したフィンガー321を、ゲートバルブ313を介して処理室445に進入させ、それと同時にリフターピン413を上昇させ、フィンガー321に、上昇されたリフターピン413のリフターピン支持部414の上にウェハ600を載置させる。その後、コントローラ700はリフターピン413を昇降させ、ウェハ600とサセプタテーブル411との間の距離を、後述する所定の距離(便宜上、搬入・載置時の距離を距離L1と呼ぶ)となるようにする。場合によっては、ウェハ600をサセプタテーブル411に完全に密着(距離0)させてもよい。リフターピン413の昇降は、リフターピン413と接続された昇降基板471がガイドシャフト467に沿って図中省略の昇降駆動部により昇降されることで行われる。 Specifically, in step S120, the controller 700 causes the finger 321 loaded with the wafer 600 to enter the processing chamber 445 via the gate valve 313, and at the same time, raises the lifter pin 413 and is raised to the finger 321. The wafer 600 is placed on the lifter pin support portion 414 of the lifter pin 413. Thereafter, the controller 700 raises and lowers the lifter pins 413 so that the distance between the wafer 600 and the susceptor table 411 becomes a predetermined distance described later (for convenience, the distance during loading and mounting is referred to as the distance L1). To do. In some cases, the wafer 600 may be completely adhered (distance 0) to the susceptor table 411. The lifting and lowering of the lifter pin 413 is performed by lifting and lowering the lifting and lowering substrate 471 connected to the lifter pin 413 along the guide shaft 467 by a lifting and lowering driving unit (not shown).
 ここで、サセプタ459に具備されたヒータ463は予め加熱されており、搬入されたウェハ600は室温~300℃程度の範囲の内、所定のウェハ温度に加熱することができる。 Here, the heater 463 provided in the susceptor 459 is heated in advance, and the loaded wafer 600 can be heated to a predetermined wafer temperature within a range of room temperature to 300 ° C.
 なお、基板搬入・載置工程では、好ましくは、ウェハ600の搬送経路を不活性ガスにてパージした減圧状態に保って行う。 In the substrate carrying-in / placement process, the wafer 600 is preferably kept in a reduced pressure state purged with an inert gas.
(酸化膜還元工程)
 続いて、ステップS140では、ウェハ600上に形成されたハンダバンプの表面自然酸化膜801(a)´の還元工程が行われる。
(Oxide film reduction process)
Subsequently, in step S140, a reduction process of the surface natural oxide film 801 (a) ′ of the solder bump formed on the wafer 600 is performed.
 ステップS140において、コントローラ700は、ガス供給部490を制御して、ガス供給部490に、ガス導入口433を介して還元性ガスであるH(水素)ガスと不活性ガスであるN(窒素)ガスとを処理室445へと供給させる(S141)。この際、供給されるガスの総流量は、例えば0.1~10slm程度の範囲の内、所定の流量に設定される。また、コントローラ700は、圧力調整機構を内包する排気装置479によって排気量を調整することにより、反応容器431と処理室445の圧力を所定の圧力(例えば1~1330Pa程度の範囲)に維持する。 In step S < b > 140, the controller 700 controls the gas supply unit 490, and causes the gas supply unit 490 to pass H 2 (hydrogen) gas that is a reducing gas and N 2 ( Nitrogen) gas is supplied to the processing chamber 445 (S141). At this time, the total flow rate of the supplied gas is set to a predetermined flow rate within a range of about 0.1 to 10 slm, for example. In addition, the controller 700 maintains the pressure in the reaction vessel 431 and the processing chamber 445 at a predetermined pressure (for example, in the range of about 1 to 1330 Pa) by adjusting the exhaust amount with the exhaust device 479 including the pressure adjustment mechanism.
 続くステップS142において、コントローラ700は、共振コイル432に電力を供給するように高周波電源444を制御し、共振コイル432内部に励起される誘導磁界によって自由電子を加速させ、ガス分子と衝突させることでガス分子を励起してプラズマを生成させる。このようにして、供給されたHガスとNガスとは、プラズマ化される。共振コイル432に高周波電源444から印加される高周波電力は、例えば0.5~5kW程度の範囲の内、所定の電力とする。 In subsequent step S142, the controller 700 controls the high frequency power supply 444 to supply power to the resonance coil 432, accelerates free electrons by an induced magnetic field excited inside the resonance coil 432, and collides with gas molecules. Plasma molecules are generated by exciting gas molecules. In this way, the supplied H 2 gas and N 2 gas are turned into plasma. The high frequency power applied to the resonance coil 432 from the high frequency power supply 444 is a predetermined power within a range of about 0.5 to 5 kW, for example.
 水素(H)元素と窒素(N)元素を含む反応ガスで生成したプラズマには、放電させて得られる主としてHラジカルからなる活性種が含まれ、このHラジカルがウェハ600上に形成されたハンダバンプ表面の自然酸化膜801(a)´と反応し、酸化膜を還元することで、ハンダバンプ801(a)の表面から自然酸化膜が除去される。 The plasma generated by the reaction gas containing hydrogen (H) element and nitrogen (N) element contains active species mainly composed of H radicals obtained by discharge, and solder bumps formed on the wafer 600 by the H radicals. By reacting with the natural oxide film 801 (a) ′ on the surface and reducing the oxide film, the natural oxide film is removed from the surface of the solder bump 801 (a).
 すなわち、プラズマ中で活性化された水素(Hラジカル)とウェハ600上に形成されたハンダバンプ表面の自然酸化膜801(a)´とが以下の反応をすることにより、ハンダバンプ801(a)の表面から自然酸化膜が除去される。図6(b)は酸化膜還元工程S140においてハンダバンプ表面の自然酸化膜801(a)´が除去された後のハンダバンプ801(b)の状態を示している。酸化膜還元工程を経て、ハンダは露出した状態となる。 That is, hydrogen (H radicals) activated in plasma and the natural oxide film 801 (a) ′ on the surface of the solder bump formed on the wafer 600 react as follows, whereby the surface of the solder bump 801 (a). The natural oxide film is removed from. FIG. 6B shows a state of the solder bump 801 (b) after the natural oxide film 801 (a) ′ on the surface of the solder bump is removed in the oxide film reduction step S140. After the oxide film reduction process, the solder is exposed.
 続いて、所定の時間の間、共振コイル432への高周波電力の印加を継続し、自然酸化膜の還元処理を行った後、高周波電力の印加を停止する(S143)。これによりプラズマの生成が停止し、酸化膜還元工程が終了する。 Subsequently, the application of the high frequency power to the resonance coil 432 is continued for a predetermined time, the reduction process of the natural oxide film is performed, and then the application of the high frequency power is stopped (S143). As a result, the generation of plasma is stopped and the oxide film reduction step is completed.
 なお、本実施態様における酸化膜還元工程では、特に、処理室445に供給されるHガスとNガスの総流量を2slmとし、混合比はH:4%、N:96%とした。処理室445内の圧力は、例えば2Torr(約266Pa)に調整した。共振コイル432には、60秒間、1000Wの高周波電力が供給され、酸化膜還元処理を行うものとした。また、ヒータ463の温度は260℃とし、本工程におけるウェハ600とサセプタテーブル411との間の距離L1は15mmとした。 In the oxide film reduction process in this embodiment, in particular, the total flow rate of H 2 gas and N 2 gas supplied to the processing chamber 445 is 2 slm, and the mixing ratio is H 2 : 4% and N 2 : 96%. did. The pressure in the processing chamber 445 was adjusted to 2 Torr (about 266 Pa), for example. The resonance coil 432 was supplied with 1000 W of high frequency power for 60 seconds to perform an oxide film reduction process. The temperature of the heater 463 was 260 ° C., and the distance L1 between the wafer 600 and the susceptor table 411 in this step was 15 mm.
(熱処理工程)
 続いて、ステップS160では、酸化膜還元工程S140によって表面自然酸化膜が除去されたハンダバンプ801(b)を溶融・再形成するための熱処理工程が行われる。表面自然酸化膜が除去された後も、このハンダバンプ801(b)の表面には微細な凹凸が存在している。そのため、本工程ではハンダバンプ801(b)をハンダの融点以上に加熱して一旦溶融させることでハンダ表面を平滑化する熱処理を行う。 本実施形態では、酸化膜還元工程と熱処理工程を同一のプロセスチャンバ401内にて連続して行う。
(Heat treatment process)
Subsequently, in step S160, a heat treatment process for melting and re-forming the solder bump 801 (b) from which the surface natural oxide film has been removed in the oxide film reduction process S140 is performed. Even after the surface natural oxide film is removed, fine irregularities exist on the surface of the solder bump 801 (b). Therefore, in this step, heat treatment is performed to smooth the solder surface by heating the solder bump 801 (b) above the melting point of the solder and melting it once. In this embodiment, the oxide film reduction process and the heat treatment process are continuously performed in the same process chamber 401.
 熱処理工程では、サセプタ459に具備されたヒータ463によりウェハ600を加熱することによりハンダバンプ801(b)を溶融させる。しかしながら、一般にヒータ自体の温度を速やかに制御することは難しく、ウェハの温度を速やか且つ自在に制御することができない。そこで、本実施形態では、以下のように、処理室445内に供給するガスの種類、圧力、混合比、流量等、及びウェハ600とヒータ463の間の距離を制御することにより、所望のウェハ温度制御を実現する。 In the heat treatment step, the solder bump 801 (b) is melted by heating the wafer 600 by the heater 463 provided in the susceptor 459. However, it is generally difficult to quickly control the temperature of the heater itself, and the temperature of the wafer cannot be controlled quickly and freely. Therefore, in the present embodiment, a desired wafer is controlled by controlling the type, pressure, mixing ratio, flow rate, and the like of the gas supplied into the processing chamber 445 and the distance between the wafer 600 and the heater 463 as described below. Achieve temperature control.
 図8~図10に、本実施形態における各種プロセス条件のタイミングチャートを示す。具体的には、基板搬入・載置工程、酸化膜還元工程、熱処理工程それぞれにおける、ヒータ463の温度、ウェハ600とサセプタテーブル411との距離、処理室445内の圧力、処理室445内に供給される各種ガスの流量、ウェハ600の温度の変化を示している。 以下、3つのパターンについてそれぞれ図8~図10を用いて説明する。 8 to 10 show timing charts of various process conditions in this embodiment. Specifically, the temperature of the heater 463, the distance between the wafer 600 and the susceptor table 411, the pressure in the processing chamber 445, and the supply to the processing chamber 445 in each of the substrate carry-in / placement process, oxide film reduction process, and heat treatment process The flow rate of various gases and the temperature change of the wafer 600 are shown. Hereinafter, the three patterns will be described with reference to FIGS.
 ここで、ヒータ463の温度は、パターン1~3のいずれにおいても一定とし、ハンダの融点よりも高く、ハンダバンプ801(b)を溶融させるのに十分な温度、例えば260℃とする。 Here, the temperature of the heater 463 is constant in any of the patterns 1 to 3 and is higher than the melting point of the solder and is set to a temperature sufficient to melt the solder bump 801 (b), for example, 260 ° C.
 ハンダの融点は、使用するハンダの種類により異なるものの、概ね180℃以上250℃未満であると言える。従って、熱処理工程におけるウェハの最大温度も250℃未満であって、それ以上の加熱は望ましくない。この様な加熱を一般的な熱容量の大きなヒータを用いて行う場合、そのヒータの設定温度はハンダの融点温度+αで一定に保持し、ヒータから基板への熱の移動量を調整することで、ウェハ温度が所望の温度で飽和する様にすることが好ましい。一方、+αの温度は、ヒータからウェハへの熱の移動量を考慮して設定するべきであるが、例えば、0~100℃程度の範囲内となる。ヒータの温度がこの様な温度帯である時、ヒータからの輻射波長とウェハの吸収波長との差異が大きく、ウェハが受け取る熱量が少ないため、本実施形態のように、ヒータとウェハを取り巻くガスを経由して熱伝導によって伝わる熱を活かすことが有効である。 Although the melting point of solder varies depending on the type of solder used, it can be said that it is generally 180 ° C. or higher and lower than 250 ° C. Therefore, the maximum temperature of the wafer in the heat treatment process is also less than 250 ° C., and further heating is not desirable. When performing such heating using a general heater having a large heat capacity, the set temperature of the heater is kept constant at the melting point temperature of solder + α, and the amount of heat transferred from the heater to the substrate is adjusted, It is preferred that the wafer temperature be saturated at the desired temperature. On the other hand, the temperature of + α should be set in consideration of the amount of heat transferred from the heater to the wafer, but is in the range of about 0 to 100 ° C., for example. When the temperature of the heater is in such a temperature range, the difference between the radiation wavelength from the heater and the absorption wavelength of the wafer is large, and the amount of heat received by the wafer is small. Therefore, as in this embodiment, the gas surrounding the heater and the wafer It is effective to make use of the heat transferred by heat conduction via
 また、熱処理工程を実行する時間はハンダバンプの状態やウェハ上に形成された他の要素の耐熱時間等の条件により適宜調整されるが、本実施形態では、例えば熱処理工程を90秒間実行する。 Also, the time for performing the heat treatment step is appropriately adjusted according to conditions such as the state of solder bumps and the heat resistance time of other elements formed on the wafer. In this embodiment, for example, the heat treatment step is performed for 90 seconds.
(パターン1)
 図8は、本実施形態のパターン1における各種プロセス条件のタイミングチャートである。
(Pattern 1)
FIG. 8 is a timing chart of various process conditions in the pattern 1 of the present embodiment.
[ウェハ600とサセプタテーブル411との距離]
 ウェハ600とサセプタテーブル411との距離は、基板搬入・載置工程及び酸化膜還元工程においては一定の距離L1(例えば15mm)とし、熱処理工程の開始と共に両者間の距離をL1よりも短い距離L2(例えば2mm)とする。ウェハ600をサセプタテーブル411の下部に設けられたヒータ463に近づけることによってヒータ463からウェハ600に伝わる熱量を増やし、昇温レートを大きくすることができる。
[Distance between wafer 600 and susceptor table 411]
The distance between the wafer 600 and the susceptor table 411 is a constant distance L1 (for example, 15 mm) in the substrate loading / mounting process and the oxide film reduction process, and the distance L2 between the two is shorter than L1 at the start of the heat treatment process. (For example, 2 mm). By bringing the wafer 600 closer to the heater 463 provided at the lower part of the susceptor table 411, the amount of heat transferred from the heater 463 to the wafer 600 can be increased, and the rate of temperature increase can be increased.
 但し、ウェハ600の裏面とサセプタテーブル411とを接触させると、ウェハ600の裏面に傷や異物の付着が発生する可能性や、接触の程度のばらつきによりウェハ温度が面内で大きくばらついてしまうなどの可能性がある。そのため、距離L2は、例えば、0.5~5mm程度の範囲内で調整し、ウェハ600とサセプタテーブル411との間にガスを介在させることが好ましい。この時、熱伝導率が高いガスであれば、ウェハ温度の均一性を向上させることができる。なお、距離L1は、例えば、基板の搬送機構の観点から好適な距離をそのまま用いても良いし、ウェハ600が不必要に加熱されない様にウェハ温度が上がり難い位置を見つけて調整しても良い。 However, if the back surface of the wafer 600 and the susceptor table 411 are brought into contact with each other, scratches or foreign matter may be attached to the back surface of the wafer 600, or the wafer temperature may vary greatly within the surface due to variations in the degree of contact. There is a possibility. Therefore, it is preferable that the distance L2 is adjusted within a range of about 0.5 to 5 mm, for example, and a gas is interposed between the wafer 600 and the susceptor table 411. At this time, if the gas has a high thermal conductivity, the uniformity of the wafer temperature can be improved. The distance L1 may be a suitable distance from the viewpoint of the substrate transport mechanism, for example, or may be adjusted by finding a position where the wafer temperature is difficult to rise so that the wafer 600 is not unnecessarily heated. .
 続いて、熱処理工程の後半では、ウェハ600とサセプタテーブル411との距離をL1に戻す。これにより、ヒータ463からウェハ600に伝わる熱量が減少するため、ウェハ600の温度を下げたり、降温レートを大きくすることができる。また、ハンダバンプの不要な合金化が発生しないように、またはウェハ600上に形成された他の要素の耐熱温度を超えないように昇温を抑制することもできる。 Subsequently, in the second half of the heat treatment step, the distance between the wafer 600 and the susceptor table 411 is returned to L1. As a result, the amount of heat transferred from the heater 463 to the wafer 600 decreases, so that the temperature of the wafer 600 can be lowered or the temperature drop rate can be increased. In addition, the temperature rise can be suppressed so that unnecessary alloying of the solder bumps does not occur or the heat resistance temperature of other elements formed on the wafer 600 is not exceeded.
 なお、本パターンでは基板搬入・載置工程及び酸化膜還元工程と、熱処理工程の後半におけるウェハ600とサセプタテーブル411との距離を同じくL1としたが、熱処理工程の後半では降温レートをより大きくするために距離をL1より大きく設定してもよい。 In this pattern, the distance between the wafer 600 and the susceptor table 411 in the second half of the heat treatment process is the same as L1 in the substrate carry-in / placement process and the oxide film reduction process, but in the second half of the heat treatment process, the temperature drop rate is increased. Therefore, the distance may be set larger than L1.
[処理室445内の圧力]
 処理室445内の圧力は、酸化膜還元工程においてはP1(例えば2Torr)とし、熱処理工程の開始と共に圧力をP1よりも高いP2(例えば2.5mm)とする。ウェハ600とサセプタテーブル411との間に供給されたガスの圧力を高くすることによって、当該ガスを介して熱伝導でヒータ463からウェハ600に伝わる熱量を増やし、ウェハ600の昇温レートを大きくすることができる。続いて、熱処理工程の後半では、処理室445内の圧力をP2よりも低いP3へ下げる。これにより、ヒータ463からウェハ600に伝わる熱量が減少するため、ウェハ600の降温レートを大きくしたり、ハンダバンプの不要な合金化やウェハ600上に形成された他の要素の耐熱温度を超えないように昇温を抑制したりすることができる。また、昇温レートをより大きくするためには、圧力をより高く、降温レートをより大きくするためには圧力をより低くなるように制御すればよい。
[Pressure in processing chamber 445]
The pressure in the processing chamber 445 is set to P1 (for example, 2 Torr) in the oxide film reduction process, and the pressure is set to P2 (for example, 2.5 mm) higher than P1 at the start of the heat treatment process. By increasing the pressure of the gas supplied between the wafer 600 and the susceptor table 411, the amount of heat transferred from the heater 463 to the wafer 600 through heat conduction through the gas is increased, and the temperature increase rate of the wafer 600 is increased. be able to. Subsequently, in the second half of the heat treatment step, the pressure in the processing chamber 445 is lowered to P3 lower than P2. As a result, the amount of heat transferred from the heater 463 to the wafer 600 is reduced, so that the temperature drop rate of the wafer 600 is increased, the solder bump is not required to be alloyed, and the heat resistance temperature of other elements formed on the wafer 600 is not exceeded. The temperature rise can be suppressed. In order to increase the temperature rising rate, the pressure may be controlled to be higher, and to increase the temperature decreasing rate, the pressure may be controlled to be lower.
[ガスの種類と流量]
 本パターンでは、処理室445内に供給するガスとしてNガス、Hガス、He(ヘリウム)ガスの3種類を用いる。Heガスは、図示しない第3のガス供給部から供給される。 なお、酸化膜還元工程においては、パターン1~3のいずれにおいても、Hガスを流量F、Nガスを流量F´で供給する。酸化膜還元工程における具体的な流量や混合比は上述の通りである。従って、酸化膜還元工程においてはHeガスを供給しない。
[Gas type and flow rate]
In this pattern, three types of gas, N 2 gas, H 2 gas, and He (helium) gas, are used as the gas supplied into the processing chamber 445. He gas is supplied from a third gas supply unit (not shown). In the oxide film reduction step, H 2 gas is supplied at a flow rate F 2 and N 2 gas is supplied at a flow rate F 1 ′ in any of the patterns 1 to 3. Specific flow rates and mixing ratios in the oxide film reduction step are as described above. Therefore, no He gas is supplied in the oxide film reduction process.
 本パターンにおける熱処理工程では、まずNガスの流量を酸化膜還元工程と同じくF´のまま継続し、Hガスの供給を停止する。また、同時にHeガスを流量Fで供給し始める。HeガスとNガスの総流量を例えば2slmとする。ここで、Heガスは一般的なガスに比べて(特にNガスに比べて)熱伝導性が高いという特徴がある。従って、Heガスを処理室445内(特にウェハ600とヒータ463の間の空間)に供給することによって、Heガスを含むガスを介して熱伝導でヒータ463からウェハ600に伝わる熱量を増やし、ウェハ600の昇温レートを大きくすることができる。昇温レートをより大きくするためには、Heガスの流量、又は混合比をより大きくなるように制御すればよい。 In the heat treatment process in this pattern, first, the flow rate of N 2 gas is continued as F 1 ′ as in the oxide film reduction process, and the supply of H 2 gas is stopped. Further, it starts supplying the He gas at a flow rate F 3 at the same time. The total flow rate of He gas and N 2 gas is set to 2 slm, for example. Here, He gas is characterized by high thermal conductivity compared to general gas (especially compared to N 2 gas). Therefore, by supplying the He gas into the processing chamber 445 (particularly the space between the wafer 600 and the heater 463), the amount of heat transferred from the heater 463 to the wafer 600 through heat conduction through the gas containing He gas is increased, and the wafer is The temperature rising rate of 600 can be increased. In order to increase the temperature rising rate, the flow rate of He gas or the mixing ratio may be controlled to be larger.
 続いて、熱処理工程の後半では、処理室445内へのHeガスの供給を停止する(Nガスの供給は継続する)。これにより、ヒータ463からウェハ600に伝わる熱量が減少するため、ウェハ600の降温レートを大きくすることができる。また、ハンダバンプの不要な合金化が発生しないように、またはウェハ600上に形成された他の要素の耐熱温度を超えないように昇温を抑制したりすることができる。降温レートをより大きくするためにはHeガスの流量、又は混合比をより少なくなるように制御すればよい。 Subsequently, in the second half of the heat treatment step, the supply of He gas into the processing chamber 445 is stopped (N 2 gas supply continues). As a result, the amount of heat transferred from the heater 463 to the wafer 600 is reduced, so that the temperature drop rate of the wafer 600 can be increased. Further, the temperature rise can be suppressed so that unnecessary alloying of the solder bumps does not occur or the heat resistance temperature of other elements formed on the wafer 600 is not exceeded. In order to increase the temperature lowering rate, the flow rate of He gas or the mixing ratio may be controlled to be smaller.
 なお、本パターンでは熱伝導性が高いガスとしてHeガスを用いたが、HガスもHeガス同様に熱伝導性が高く、熱伝導量を多くするために用いることができる。但し、酸素との混合による爆発等の危険性を有しているため、安全性の観点から本パターンではHeガスを用いた。また、熱処理工程においてNガスは主に希釈ガスとしての役割を果たし、その流量を制御することにより熱伝導量を制御することができる。(例えば、Nガスの混合比を高めることによって熱伝導により伝わる熱量を少なくし、Nガスの混合比を低くすることによって熱伝導により伝わる熱量を多くすることができる。) In this pattern, He gas is used as a gas having high thermal conductivity. However, H 2 gas has high thermal conductivity like He gas, and can be used to increase the amount of heat conduction. However, since there is a risk of explosion due to mixing with oxygen, He gas was used in this pattern from the viewpoint of safety. Further, in the heat treatment step, N 2 gas mainly serves as a dilution gas, and the amount of heat conduction can be controlled by controlling the flow rate. (For example, the amount of heat transferred by heat conduction can be reduced by increasing the mixing ratio of N 2 gas, and the amount of heat transferred by heat conduction can be increased by lowering the mixing ratio of N 2 gas.)
(パターン2)
 図9は、本実施形態のパターン2における各種プロセス条件のタイミングチャートである。パターン2は、ガスの種類及び流量制御以外はパターン1と同様であるため、それ以外は説明を省略する。
(Pattern 2)
FIG. 9 is a timing chart of various process conditions in the pattern 2 of the present embodiment. The pattern 2 is the same as the pattern 1 except for the type of gas and the flow rate control.
[ガスの種類と流量]
 本パターンでは、熱処理工程においてHeガスを用いず、熱伝導性の高いガスとしてHガスを用いる。つまり、酸化膜還元工程においてHガスを流量Fで供給した後、熱処理工程ではFよりも大きい流量Fで引き続きHガスを供給し続ける。従って、熱処理工程において熱伝導率の高いHガスを処理室445内(特にウェハ600とヒータ463の間の空間)により多く供給することによって、Hガスを含むガスを介して熱伝導でヒータ463からウェハ600に伝わる熱量をさらに増加させ、ウェハ600の昇温レートを大きくすることができる。
[Gas type and flow rate]
In this pattern, He gas is not used in the heat treatment step, and H 2 gas is used as a gas having high thermal conductivity. That is, after supplying the H 2 gas at a flow rate F 2 in the oxide film reduction step, a heat treatment step continues to continue supplying the H 2 gas at a large flow rate F 3 than F 2. Accordingly, in the heat treatment step, a large amount of H 2 gas having high thermal conductivity is supplied into the processing chamber 445 (particularly, the space between the wafer 600 and the heater 463), whereby the heater is thermally conductive via the gas containing H 2 gas. The amount of heat transferred from 463 to wafer 600 can be further increased, and the temperature increase rate of wafer 600 can be increased.
 続いて、熱処理工程の後半では、処理室445内へのHガスの供給を停止する(Nガスの供給は継続する)。これにより、ヒータ463からウェハ600に伝わる熱量が減少するため、ウェハ600の降温レートを大きくすることができる。また、ハンダバンプの不要な合金化が発生しないように、またはウェハ600上に形成された他の要素の耐熱温度を超えないように昇温を抑制したりすることができる。降温レートをより大きくするためにはHガスの流量、又は混合比をより少なくなるように制御すればよい。 Subsequently, in the second half of the heat treatment step, the supply of H 2 gas into the processing chamber 445 is stopped (N 2 gas supply continues). As a result, the amount of heat transferred from the heater 463 to the wafer 600 is reduced, so that the temperature drop rate of the wafer 600 can be increased. Further, the temperature rise can be suppressed so that unnecessary alloying of the solder bumps does not occur or the heat resistance temperature of other elements formed on the wafer 600 is not exceeded. In order to increase the temperature drop rate, the flow rate of H 2 gas or the mixing ratio may be controlled to be smaller.
 なお、本パターンでは、酸化膜還元工程におけるHガスの流量Fよりも熱処理工程におけるHガスの流量Fを大きくしたが、他の条件や所望の昇温レートによっては流量Fを流量Fと同じ、若しくは少なくしてもよい。 In the present pattern, but increased the flow rate F 3 of the H 2 gas in the heat treatment step than the flow rate F 2 in H 2 gas in the oxidation film reduction step, the flow rate F 3 depending on other conditions or desired heating-up rate same as flow rate F 2, or may be reduced.
(パターン3)
 図10は、本実施形態のパターン3における各種プロセス条件のタイミングチャートである。パターン3は、熱処理工程におけるHガスの流量制御以外はパターン2と同様であるため、それ以外は説明を省略する。
(Pattern 3)
FIG. 10 is a timing chart of various process conditions in the pattern 3 of the present embodiment. Since the pattern 3 is the same as the pattern 2 except for the flow rate control of the H 2 gas in the heat treatment step, the description is omitted otherwise.
[ガスの種類と流量]
 本パターンでは、酸化膜還元工程においてHガスを流量Fで供給した後、熱処理工程ではFよりも多く、更にパターン2の流量Fよりも多い流量F13で一定時間Hガスを供給する。そしてその後、F13よりも少ない流量FでHガスを一定時間供給する。従って、流量F13でHガスを供給する間は、熱処理工程の開始時においてパターン2よりも高い昇温レートでウェハ600を加熱することができるとともに、流量FでHガスを供給する間は、ウェハ600上に形成された要素の耐熱上限温度を超えない温度を維持することができる。
[Gas type and flow rate]
In this pattern, after supplying H 2 gas at a flow rate F 2 in the oxide film reduction step more than F 2 is in the heat treatment step, a predetermined time H 2 gas yet more flow F 13 than the flow rate F 3 patterns 2 Supply. Thereafter, a predetermined time for supplying the H 2 gas with a small flow rate F 3 than F 13. Accordingly, while the H 2 gas is supplied at the flow rate F 13 , the wafer 600 can be heated at a temperature rising rate higher than that of the pattern 2 at the start of the heat treatment step, and the H 2 gas is supplied at the flow rate F 3. During this time, a temperature that does not exceed the heat resistant upper limit temperature of the element formed on the wafer 600 can be maintained.
 図6(c)は熱処理工程S160において熱処理が施されて溶融・再形成されたハンダバンプ801(c)を示している。図6(c)に示されるように、表面に微細な凹凸が存在していたハンダバンプ801(b)は、本熱処理を経ることによりハンダの融点以上に加熱されて一旦溶融し、ハンダ表面が平滑化される。 FIG. 6C shows a solder bump 801 (c) that has been heat-treated and melted / reformed in the heat treatment step S160. As shown in FIG. 6 (c), the solder bump 801 (b) having fine irregularities on the surface is heated to a temperature higher than the melting point of the solder through this heat treatment, and once melted, the solder surface is smooth. It becomes.
 なお、本実施形態(パターン1~3)では、熱処理工程の後半においてHeガス又はHガスの供給を即座に停止したが、所望の降温レートによってはHガスの流量を少なくして一定時間だけ維持した後に停止したり、徐々に流量が少なくなるように制御した後に供給を停止したりしてもよい。 In the present embodiment (Patterns 1 to 3), the supply of He gas or H 2 gas is immediately stopped in the latter half of the heat treatment step. However, depending on the desired temperature drop rate, the flow rate of H 2 gas is reduced for a certain period of time. It may be stopped after maintaining only, or the supply may be stopped after controlling the flow rate to gradually decrease.
 熱伝導率の高いガスとしてはHガス、Heガスのほか、Ne(ネオン)ガスなどが挙げられる。その他、好ましい熱伝導性の高いガスの選定条件としては、熱伝導性の良さの面から分子の大きさが小さいことに加えて、例えば、一般的で安価であること、取扱い上の危険性が少ないこと、ウェハ上の他の要素(デバイス等)に悪影響がないこと、などが挙げられる。 Examples of the gas having high thermal conductivity include Ne (neon) gas in addition to H 2 gas and He gas. Other preferable conditions for selecting a gas having a high thermal conductivity include, in addition to the small size of the molecule from the viewpoint of good thermal conductivity, for example, general and inexpensive, and handling hazards. And there are no adverse effects on other elements (devices and the like) on the wafer.
 また、本実施態様ではいずれも熱伝導性の高いガスを用いて温度制御を行っているが、逆に熱伝導率の低いガス(特にNガスよりも熱伝導率の低いガス)を供給してその流量を制御することによって、熱伝導で伝わる熱量を制御してもよい。熱伝導率の低いガスの混合比を高めることによってガスを介した熱伝導により伝わる熱量を少なくし、混合比を低くすることによってガスを介した熱伝導により伝わる熱量を多くすることができる。 In this embodiment, the temperature is controlled by using a gas having high thermal conductivity. Conversely, a gas having a low thermal conductivity (particularly a gas having a lower thermal conductivity than N 2 gas) is supplied. The amount of heat transferred by heat conduction may be controlled by controlling the flow rate. By increasing the mixing ratio of the gas having low thermal conductivity, the amount of heat transmitted by heat conduction through the gas can be reduced, and by decreasing the mixing ratio, the amount of heat transmitted by heat conduction through the gas can be increased.
 また、本実施態様では、熱処理工程における温度制御のために熱伝導性の高いガスとしてHeガスやHガスを用い、希釈用のガスとしてNガスを用いた。しかし、これらのガスに限られず、希釈用のガスと、当該希釈用のガスに対して熱伝導性の高いガスの少なくともそれぞれ1種類ずつのガスを用いて、それぞれのガスの流量、混合比を制御することによって、効率的にウェハの温度を制御することができる。 Further, in this embodiment, He gas or H 2 gas is used as a gas having high thermal conductivity and N 2 gas is used as a dilution gas for temperature control in the heat treatment process. However, the present invention is not limited to these gases, and the flow rate and mixing ratio of each gas are set using at least one kind of gas, ie, a gas for dilution and a gas having high thermal conductivity with respect to the gas for dilution. By controlling, the temperature of the wafer can be controlled efficiently.
 なお、本実施態様では、実際にハンダバンプのリフロー処理を行うウェハ(プロダクトウェハ)ではなく、温度測定用の熱センサを備えたダミーウェハを用いて各種プロセス条件における温度特性を予め測定し、所望の温度特性となるプロセス条件を決定する。そして、予め決定したプロセス条件に従ってプロダクトウェハのリフロー処理を実行する。但し、本実施形態のように予め決定されたプロセス条件に基づき温度制御を行うのではなく、例えば処理室445内にウェハ600の温度を測定するセンサを設けて、コントローラ700がセンサから取得したウェハ600の温度に基づいて逐次、供給するガスの種類や流量、処理室内445の圧力、ウェハ600とサセプタテーブル411との距離等を制御し、ウェハ温度の制御を行ってもよい。 In this embodiment, temperature characteristics under various process conditions are measured in advance using a dummy wafer provided with a temperature sensor for temperature measurement, instead of a wafer (product wafer) that actually performs reflow processing of solder bumps. Determine the characteristic process conditions. Then, the product wafer reflow process is executed in accordance with the predetermined process conditions. However, the temperature control is not performed based on the process conditions determined in advance as in the present embodiment. For example, a sensor for measuring the temperature of the wafer 600 is provided in the processing chamber 445, and the wafer acquired by the controller 700 from the sensor is provided. The wafer temperature may be controlled by sequentially controlling the type and flow rate of the supplied gas, the pressure in the processing chamber 445, the distance between the wafer 600 and the susceptor table 411, and the like based on the temperature of 600.
(基板搬出工程)
 熱処理工程S160が実行された後、図6のステップS180では、処理室445内からウェハ600を搬出する工程が行われる。即ち、基板搬出工程S180では、コントローラ700は、フィンガー321とリフターピン413とを制御して、熱処理工程を経てリフロー処理が完了したウェハ600を処理室445内から搬出させる。
(Substrate unloading process)
After the heat treatment step S160 is performed, a step of unloading the wafer 600 from the processing chamber 445 is performed in step S180 of FIG. That is, in the substrate unloading step S180, the controller 700 controls the fingers 321 and the lifter pins 413 to unload the wafer 600 that has undergone the reflow process through the heat treatment step from the inside of the processing chamber 445.
 本実施形態によれば、以下に示す1つまたは複数の効果を奏する。(a)本実施形態によれば、ウェハを加熱する熱処理工程において、処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させるように制御する。これにより、ヒータからウェハに伝わる熱量、特にガスを介して熱伝導で伝わる熱量を変化させることができるので、ウェハを所望の温度となるように制御することできる。また特に、所望の昇温レート、降温レートでウェハを加熱するように制御することができる。 According to the present embodiment, one or more of the following effects are achieved. (A) According to the present embodiment, in the heat treatment process for heating the wafer, control is performed so as to change at least one of the flow rates and mixing ratios of a plurality of types of gases introduced into the processing chamber. Accordingly, the amount of heat transmitted from the heater to the wafer, particularly the amount of heat transmitted by heat conduction through the gas, can be changed, so that the wafer can be controlled to have a desired temperature. In particular, it is possible to control to heat the wafer at a desired temperature increase rate and temperature decrease rate.
(b)本実施形態によれば、熱処理工程において処理室へ導入されるガスのうち少なくとも1種類を熱伝導性の高いガス(特に、処理室へ導入される他のガスよりも熱伝導性の高いガス)とする。熱伝導性の高いガスの流量や他のガスとの混合比を変化させて、ヒータからウェハに伝わる熱量、特にガスを介して熱伝導で伝わる熱量を制御できるため、ウェハの温度制御を行うことができる。 (B) According to the present embodiment, at least one of the gases introduced into the processing chamber in the heat treatment step is a gas having a high thermal conductivity (particularly, more thermally conductive than other gases introduced into the processing chamber). High gas). The temperature of the wafer should be controlled because the amount of heat transferred from the heater to the wafer, especially the amount of heat transferred through the gas, can be controlled by changing the flow rate of gas with high thermal conductivity and the mixing ratio with other gases. Can do.
(c)本実施形態によれば、熱処理工程において、処理室内の雰囲気の圧力を変化させるように制御する。これにより、ヒータからウェハに伝わる熱量、特にガスを介して熱伝導で伝わる熱量を変化させることができるので、ウェハを所望の温度となるように制御することできる。また特に、所望の昇温レート、降温レートでウェハを加熱するように制御することができる。 (C) According to this embodiment, in the heat treatment step, control is performed so as to change the pressure of the atmosphere in the processing chamber. Accordingly, the amount of heat transmitted from the heater to the wafer, particularly the amount of heat transmitted by heat conduction through the gas, can be changed, so that the wafer can be controlled to have a desired temperature. In particular, it is possible to control to heat the wafer at a desired temperature increase rate and temperature decrease rate.
(d)本実施形態によれば、熱処理工程において、ウェハとヒータの間の距離を変化させるように制御する。これにより、ヒータからウェハに伝わる熱量を変化させることができるので、ウェハを所望の温度となるように制御することできる。また特に、所望の昇温レート、降温レートでウェハを加熱するように制御することができる。 (D) According to this embodiment, in the heat treatment step, control is performed so as to change the distance between the wafer and the heater. Thus, the amount of heat transferred from the heater to the wafer can be changed, so that the wafer can be controlled to have a desired temperature. In particular, it is possible to control to heat the wafer at a desired temperature increase rate and temperature decrease rate.
(e)本実施形態によれば、酸化膜還元工程と熱処理工程を同一のプロセスチャンバ内にて連続して行う。これにより、酸化膜除去工程から熱処理工程へウェハを移送する時間を短縮することができるとともに、移送時にハンダバンプ表面で再酸化が生じたり、水分等の不純物がウェハに付着したりするのを防ぐこともできる。 (E) According to this embodiment, the oxide film reduction step and the heat treatment step are continuously performed in the same process chamber. As a result, the time for transferring the wafer from the oxide film removal process to the heat treatment process can be shortened, and re-oxidation can be prevented on the surface of the solder bumps during transfer, and impurities such as moisture can be prevented from adhering to the wafer. You can also.
(f)本実施形態、特に熱処理工程における上述のパターン2及び3によれば、酸化膜還元工程で還元性ガスとして用いたHガスをそのまま、熱処理工程における熱伝導率の高いガスとして用いている。従って、酸化膜還元工程において処理室内に残留したHガスを排気する必要もなく、熱処理工程を連続的に開始することができるのでスループットを大幅に向上させることができる。また、上述のパターン1のように新たなガス(Heガス)を供給するための構成を備える必要もなく、酸化膜還元工程における装置構成をそのまま利用することができる。 (F) According to the patterns 2 and 3 in the present embodiment, particularly in the heat treatment step, the H 2 gas used as the reducing gas in the oxide film reduction step is used as it is as a gas having high thermal conductivity in the heat treatment step. Yes. Therefore, it is not necessary to exhaust the H 2 gas remaining in the processing chamber in the oxide film reduction step, and the heat treatment step can be started continuously, so that the throughput can be greatly improved. Further, it is not necessary to provide a configuration for supplying new gas (He gas) as in the above-described pattern 1, and the apparatus configuration in the oxide film reduction process can be used as it is.
(g)ヒータの温度が室温~300℃程度である場合、ヒータからの輻射波長とウェハの吸収波長との差異が大きく、輻射によってウェハが受け取る熱量が少ない。本実施形態によれば、ヒータとウェハを取り巻くガス(特にヒータとウェハの間の空間に存在するガス)を介して熱伝導により伝わる熱量を制御することが可能であるため、上記温度帯においてウェハの温度制御を行うのに特に好適である。 (G) When the heater temperature is about room temperature to 300 ° C., the difference between the radiation wavelength from the heater and the absorption wavelength of the wafer is large, and the amount of heat received by the wafer by radiation is small. According to the present embodiment, it is possible to control the amount of heat transferred by heat conduction via the gas surrounding the heater and the wafer (particularly the gas existing in the space between the heater and the wafer). It is particularly suitable for controlling the temperature.
<本発明の他の実施形態> <Other Embodiments of the Present Invention>
 上述の実施態様では、熱処理工程における温度制御のために熱伝導性の高いガスとしてHeガスやHガスを用い、希釈用のガスとしてNガスを用いた。しかし、これらのガスに限られず、希釈用のガスと、当該希釈用のガスに対して熱伝導性の高いガスを、少なくともそれぞれ1種類ずつ用いて、それぞれのガスの流量、混合比を制御することによって、効率的にウェハの温度を制御することが可能となる。 In the above-described embodiment, He gas or H 2 gas is used as the gas having high thermal conductivity and N 2 gas is used as the dilution gas for temperature control in the heat treatment process. However, the present invention is not limited to these gases, and the flow rate and mixing ratio of each gas are controlled by using at least one kind of gas for dilution and one having high thermal conductivity for the gas for dilution. As a result, the temperature of the wafer can be controlled efficiently.
 また同様に、希釈用のガスと、当該希釈用のガスに対して熱伝導性の低いガスを、少なくともそれぞれ1種類ずつ用いて、それぞれのガスの流量、混合比を制御することによって、ウェハの温度を制御することもできる。 Similarly, by using at least one type of gas for dilution and one having low thermal conductivity for the gas for dilution, and controlling the flow rate and mixing ratio of each gas, The temperature can also be controlled.
 また、上述の実施形態では、バンプハンダの酸化膜還元工程の後に熱処理工程を行ったが、酸化膜還元工程の有無や方法に限らず、バンプハンダのリフロー処理における熱処理工程一般で、上述の実施形態における熱処理工程の構成及び方法を実施することができる。さらに、バンプハンダのリフロー処理に限らず、処理対象のウェハをヒータで加熱する際に、ウェハ温度を制御する目的で適用することも可能である。 In the above-described embodiment, the heat treatment process is performed after the oxide film reduction process of the bump solder. However, the heat treatment process is not limited to the presence or absence of the oxide film reduction process and the method, and the general heat treatment process in the reflow process of the bump solder. The structure and method of the heat treatment process can be implemented. Furthermore, the present invention is not limited to the reflow process of the bump solder, but can be applied for the purpose of controlling the wafer temperature when the wafer to be processed is heated by the heater.
 また、ハンダバンプが形成されたリフロー処理対象は、単一のウェハに限らず、異なる基板を接着剤又はハンダを介して貼り合わせた積層基板であってもよい。この場合、熱処理工程における積層基板の上限温度は、基板の張り合わせに用いられている接着剤の耐熱温度若しくはハンダが溶融したりする温度よりも低い温度とする。 Also, the reflow processing target on which the solder bumps are formed is not limited to a single wafer, but may be a laminated substrate in which different substrates are bonded together with an adhesive or solder. In this case, the upper limit temperature of the laminated substrate in the heat treatment step is set to a temperature lower than the heat resistant temperature of the adhesive used for bonding the substrates or the temperature at which the solder melts.
 また、ハンダバンプが形成されたリフロー処理対象は、ハンダバンプが形成されたシリコン基板とサポートガラス基板を貼り合わせた積層基板であってもよい。このサポートガラス基板は、薄く形成されたシリコン基板をサポートする目的で貼り合わされるものである。 Further, the reflow processing target on which the solder bumps are formed may be a laminated substrate in which a silicon substrate on which solder bumps are formed and a support glass substrate are bonded together. This support glass substrate is bonded to support a thin silicon substrate.
 また、ハンダバンプが形成されたリフロー処理対象は、ダイス状に加工されたウェハと他の基板が貼り合わされたものであってもよい。 In addition, the reflow processing target on which the solder bumps are formed may be a wafer obtained by bonding a die processed wafer and another substrate.
<本発明の好ましい態様>
 以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.
(付記1) 基板を処理する処理室内に設けられた基板支持機構上に基板を載置する工程と、前記処理室へ複数の種類のガスを導入し、前記処理室内に設けられたヒータと前記基板との間の空間に前記複数の種類のガスを供給する工程と、前記ヒータにより前記基板を加熱する工程と、を有し、前記ヒータにより前記基板を加熱する工程では、前記処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させることにより前記基板の温度を制御する、半導体装置の製造方法、が提供される。 (Appendix 1) A step of placing a substrate on a substrate support mechanism provided in a processing chamber for processing a substrate, a plurality of types of gases introduced into the processing chamber, a heater provided in the processing chamber, A step of supplying the plurality of types of gases to a space between the substrate and a step of heating the substrate by the heater; and the step of heating the substrate by the heater is introduced into the processing chamber. There is provided a method for manufacturing a semiconductor device, wherein the temperature of the substrate is controlled by changing at least one of flow rates and mixing ratios of a plurality of types of gases.
(付記2) 前記ヒータにより前記基板を加熱する工程では、前記処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させて、前記基板の昇温レート又は降温レートの少なくとも一方を制御する、付記1記載の半導体装置の製造方法、が提供される。 (Supplementary Note 2) In the step of heating the substrate with the heater, at least one of the flow rate and the mixing ratio of a plurality of types of gases introduced into the processing chamber is changed to increase or decrease the temperature of the substrate. A method for manufacturing a semiconductor device according to appendix 1, wherein at least one of the above is controlled.
(付記3) 前記ヒータにより前記基板を加熱する工程では、前記処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させて、前記基板の温度を所定の温度となるように制御する、付記1記載の半導体装置の製造方法、が提供される。 (Supplementary Note 3) In the step of heating the substrate by the heater, the temperature of the substrate is set to a predetermined temperature by changing at least one of a flow rate and a mixing ratio of a plurality of types of gases introduced into the processing chamber. A method for manufacturing a semiconductor device according to appendix 1, which is controlled so as to be, is provided.
(付記4) 前記複数の種類のガスのうち少なくとも1種類のガスは、前記少なくとも1種類のガス以外の他の種類のガスに比べて熱伝導性が高いガスである、付記1記載の半導体装置の製造方法、が提供される。 (Supplementary note 4) The semiconductor device according to supplementary note 1, wherein at least one of the plurality of types of gases is a gas having higher thermal conductivity than other types of gases other than the at least one type of gas. A manufacturing method is provided.
(付記5) 前記ヒータにより前記基板を加熱する工程では、前記少なくとも1種類のガスの流量と、前記他の種類のガスに対する前記少なくとも1種類のガスの混合比のうち、少なくとも一方を増加させることにより前記基板の昇温レートを大きくする、若しくは降温レートを小さくする、付記4記載の半導体装置の製造方法、が提供される。 (Supplementary Note 5) In the step of heating the substrate by the heater, at least one of a flow rate of the at least one gas and a mixing ratio of the at least one gas to the other gas is increased. The method for manufacturing a semiconductor device according to appendix 4, wherein the substrate temperature increasing rate is increased or the temperature decreasing rate is decreased.
(付記6) 前記ヒータにより前記基板を加熱する工程では、前記基板上に形成されたハンダバンプを溶融させる温度となるように前記基板の温度を制御する、付記1乃至5のいずれか1つに記載の半導体装置の製造方法、が提供される。 (Appendix 6) In any one of appendices 1 to 5, in the step of heating the substrate by the heater, the temperature of the substrate is controlled to be a temperature at which the solder bumps formed on the substrate are melted. A method for manufacturing a semiconductor device is provided.
(付記7) 前記基板支持機構は複数のピンにより構成され、前記基板と前記ヒータとの間には空隙が形成される、付記1乃至6のいずれか1つに記載の半導体装置の製造方法、が提供される。 (Supplementary note 7) The method for manufacturing a semiconductor device according to any one of supplementary notes 1 to 6, wherein the substrate support mechanism includes a plurality of pins, and a gap is formed between the substrate and the heater. Is provided.
(付記8) 前記基板上にはハンダバンプが形成されており、前記基板支持機構上に基板を載置する工程の後、前記処理室へ還元性ガスを供給する工程と、前記還元性ガスのプラズマを生成する工程と、前記還元性ガスのプラズマにより前記基板上のハンダバンプ表面の酸化膜を還元する工程と、をさらに有する、付記1乃至7のいずれか1つに記載の半導体装置の製造方法、が提供される。 (Supplementary Note 8) Solder bumps are formed on the substrate, and after the step of placing the substrate on the substrate support mechanism, a step of supplying a reducing gas to the processing chamber, and a plasma of the reducing gas The method for manufacturing a semiconductor device according to any one of appendices 1 to 7, further comprising: a step of generating an oxide film on a surface of the solder bump on the substrate by plasma of the reducing gas; Is provided.
(付記9) 前記還元性ガスと、前記複数の種類のガスのうちのいずれか一つは同じガスである、付記8記載の半導体装置の製造方法、が提供される。 (Additional remark 9) The manufacturing method of the semiconductor device of Additional remark 8 whose any one of the said reducing gas and said several types of gas is the same gas is provided.
(付記10) 前記ヒータにより前記基板を加熱する工程では、前記処理室の雰囲気の圧力及び前記ヒータと前記基板との間の距離の少なくともいずれかを変化させて、前記基板の温度を所定の温度となるように制御する、付記1乃至9のいずれか1つに記載の半導体装置の製造方法、が提供される。 (Supplementary Note 10) In the step of heating the substrate by the heater, the temperature of the substrate is changed to a predetermined temperature by changing at least one of the pressure of the atmosphere in the processing chamber and the distance between the heater and the substrate. The method of manufacturing a semiconductor device according to any one of appendices 1 to 9, which is controlled to be
(付記11) 前記基板は、複数の異なる基板を接着剤で貼りあわせた積層基板であり、前記ヒータにより前記基板を加熱する工程では、前記接着剤の耐熱温度を超えないように前記基板の温度を制御する、付記1乃至10のいずれか1つに記載の半導体装置の製造方法、が提供される。 (Additional remark 11) The said board | substrate is a laminated substrate which bonded together the several different board | substrate with the adhesive agent, and the process temperature of the said board | substrate is not exceeded in the process of heating the said board | substrate with the said heater. A method of manufacturing a semiconductor device according to any one of appendices 1 to 10, wherein the method is controlled.
(付記12) 前記ヒータの温度は300℃以下である、付記1乃至11のいずれか1つに記載の半導体装置の製造方法、が提供される。 (Additional remark 12) The temperature of the said heater is 300 degrees C or less, The manufacturing method of the semiconductor device as described in any one of Additional remark 1 thru | or 11 is provided.
(付記13) また、本発明の他の態様によれば、基板を処理する処理室と、前記処理室内に設けられ、前記基板を支持する基板支持機構と、前記処理室内に設けられ、前記基板を加熱するヒータと、それぞれ異なる種類のガスを前記処理室へ供給する複数のガス供給部と、前記処理室内の雰囲気を排気する排気部と、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記複数のガス供給部のそれぞれから供給されるガスの流量、混合比の少なくともいずれかを変化させて、前記基板の温度を制御するよう構成される制御部と、を有する基板処理装置、が提供される。 (Additional remark 13) Moreover, according to the other aspect of this invention, the process chamber which processes a substrate, the substrate support mechanism provided in the said process chamber, and supporting the said substrate, provided in the said process chamber, the said substrate A heater that heats the substrate, a plurality of gas supply units that supply different types of gases to the processing chamber, an exhaust unit that exhausts the atmosphere in the processing chamber, and the substrate supported by the substrate support mechanism. A control unit configured to control the temperature of the substrate by changing at least one of a flow rate and a mixing ratio of the gas supplied from each of the plurality of gas supply units when heating by A processing device is provided.
(付記14) 前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記複数のガス供給部のそれぞれから供給されるガスの流量、混合比の少なくともいずれかを変化させて、前記基板の昇温レート又は降温レートの少なくとも一方を制御する、付記13記載の基板処理装置、が提供される。 (Additional remark 14) When the said control part heats the said board | substrate supported by the said board | substrate support mechanism with the said heater, at least any one of the flow volume of gas supplied from each of these gas supply part, and a mixing ratio The substrate processing apparatus according to appendix 13, wherein the substrate processing apparatus is controlled to change at least one of a temperature rising rate and a temperature falling rate of the substrate.
(付記15) 前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記複数のガス供給部のそれぞれから供給されるガスの流量、混合比の少なくともいずれかを変化させて、前記基板の温度を所定の温度となるように制御する、付記13記載の基板処理装置、が提供される。 (Additional remark 15) When the said support part heats the said board | substrate supported by the said board | substrate support mechanism with the said heater, at least any one of the flow volume of the gas supplied from each of these gas supply part, and a mixing ratio 14. A substrate processing apparatus according to appendix 13, wherein the substrate processing apparatus is controlled to change the temperature of the substrate to a predetermined temperature.
(付記16) 前記複数のガス供給部のそれぞれから供給されるガスのうち、少なくとも1つのガス供給部から供給されるガスは、前記少なくとも1つのガス供給部以外の他のガス供給部から供給されるガスに比べて熱伝導性が高いガスである、付記13記載の基板処理装置、が提供される。 (Supplementary Note 16) Of the gases supplied from each of the plurality of gas supply units, the gas supplied from at least one gas supply unit is supplied from a gas supply unit other than the at least one gas supply unit. A substrate processing apparatus according to appendix 13, which is a gas having higher thermal conductivity than a gas to be provided.
(付記17)前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記少なくとも1つのガス供給部から供給されるガスの流量と、前記他のガス供給部から供給されるガスに対する前記少なくとも1つのガス供給部から供給されるガスの混合比のうち、少なくとも一方が増加するように前記複数のガス供給部を制御して、前記基板の昇温レートを大きくする、若しくは降温レートを小さくするよう構成される、付記16記載の基板処理装置、が提供される。 (Supplementary Note 17) When the control unit heats the substrate supported by the substrate support mechanism with the heater, the flow rate of the gas supplied from the at least one gas supply unit and the other gas supply unit The temperature increase rate of the substrate is increased by controlling the plurality of gas supply units so that at least one of the mixing ratio of the gas supplied from the at least one gas supply unit to the supplied gas increases. Or a substrate processing apparatus according to appendix 16, which is configured to reduce a temperature drop rate.
(付記18) 前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記熱伝導性が高いガスを供給する前記ガス供給部を制御して、前記熱伝導性が高いガスの流量を大きくする、付記17記載の基板処理装置、が提供される。 (Supplementary Note 18) When the substrate supported by the substrate support mechanism is heated by the heater, the control unit controls the gas supply unit that supplies the gas having high thermal conductivity to thereby control the thermal conductivity. A substrate processing apparatus according to appendix 17, wherein a high gas flow rate is increased.
(付記19) 前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記熱伝導性が高いガス以外のガスを供給する前記ガス供給部のうち、少なくとも1つのガスを供給するガス供給部を制御して、前記熱伝導性が高いガス以外のガスの流量を小さくする、付記17記載の基板処理装置、が提供される。 (Additional remark 19) When the said support part heats the said board | substrate supported by the said board | substrate support mechanism with the said heater, at least 1 of the said gas supply parts which supplies gas other than the said gas with high thermal conductivity The substrate processing apparatus according to appendix 17, wherein a gas supply unit that supplies a gas is controlled to reduce a flow rate of a gas other than the gas having a high thermal conductivity.
(付記20) 前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記基板上に形成されたハンダバンプを溶融させる温度となるように前記基板の温度を制御する、付記13乃至19のいずれか1つに記載の基板処理装置、が提供される。 (Additional remark 20) The said control part controls the temperature of the said board | substrate so that it may become the temperature which fuse | melts the solder bump formed on the said board | substrate, when heating the said board | substrate supported by the said board | substrate support mechanism with the said heater. A substrate processing apparatus according to any one of appendices 13 to 19 is provided.
(付記21) 前記複数のガス供給部のうち少なくとも一つは還元性ガスを供給するガス供給部であり、前記還元性ガスを供給するガス供給部から供給された還元性ガスのプラズマを生成するプラズマ生成部を、さらに備え、前記制御部は、前記プラズマ生成部を制御して、前記還元性ガスのプラズマにより、前記基板支持機構に支持された前記基板上に形成されたハンダバンプの表面酸化膜を還元させた後、前記ヒータにより前記基板を加熱する、付記13乃至20のいずれか1つに記載の基板処理装置、が提供される。 (Supplementary Note 21) At least one of the plurality of gas supply units is a gas supply unit that supplies a reducing gas, and generates plasma of the reducing gas supplied from the gas supply unit that supplies the reducing gas. A plasma generation unit is further provided, and the control unit controls the plasma generation unit, and the surface oxide film of the solder bump formed on the substrate supported by the substrate support mechanism by the plasma of the reducing gas The substrate processing apparatus according to any one of appendices 13 to 20, wherein the substrate is heated by the heater after the substrate is reduced.
(付記22) 前記ヒータの温度は300℃以下である、付記13乃至21のいずれか1つに記載の基板処理装置、が提供される。 (Additional remark 22) The substrate processing apparatus as described in any one of additional remark 13 thru | or 21 whose temperature of the said heater is 300 degrees C or less is provided.
(付記23) また、本発明の他の態様によれば、基板を処理する処理室内に設けられた基板支持機構上に基板を載置する手順と、前記処理室へ複数の種類のガスを導入し、前記処理室内に設けられたヒータと前記基板との間の空間に前記複数の種類のガスを供給する手順と、前記ヒータにより前記基板を加熱する手順と、をコンピュータに実行させ、前記ヒータにより前記基板を加熱する手順では、前記処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させることにより前記基板の温度を制御する、プログラムを記録したコンピュータ読み取り可能な記録媒体、が提供される。 (Additional remark 23) Moreover, according to the other aspect of this invention, the procedure which mounts a board | substrate on the board | substrate support mechanism provided in the process chamber which processes a substrate, and introduce | transduces several types of gas into the said process chamber And causing a computer to execute a procedure of supplying the plurality of types of gases to a space between the heater provided in the processing chamber and the substrate, and a procedure of heating the substrate by the heater. In the procedure of heating the substrate according to the above, the temperature of the substrate is controlled by changing the flow rate and / or the mixing ratio of a plurality of types of gases introduced into the processing chamber. Recording medium is provided.
 本発明に係る半導体装置の製造方法、基板処理装置等によれば、基板の温度を制御して熱処理を行うので、半導体装置の製造品質を向上させることができる。 According to the method for manufacturing a semiconductor device, the substrate processing apparatus, and the like according to the present invention, since the heat treatment is performed by controlling the temperature of the substrate, the manufacturing quality of the semiconductor device can be improved.
 410・・・プロセスチャンバ、411・・・サセプタテーブル、413・・・リフターピン、430・・・プラズマ発生室、432・・・共振コイル、445・・・処理室、459・・・サセプタ、463・・・ヒータ、477・・・マスフローコントローラ、479・・・排気装置、483・・・マスフローコントローラ、600・・・ウェハ
 
410 ... Process chamber, 411 ... susceptor table, 413 ... lifter pin, 430 ... plasma generating chamber, 432 ... resonance coil, 445 ... processing chamber, 458 ... susceptor, 463 ... Heater, 477 ... Mass flow controller, 479 ... Exhaust device, 483 ... Mass flow controller, 600 ... Wafer

Claims (14)

  1. 基板を処理する処理室内に設けられた基板支持機構上に基板を載置する工程と、
    前記処理室へ複数の種類のガスを導入し、前記処理室内に設けられたヒータと前記基板との間の空間に前記複数の種類のガスを供給する工程と、
    前記ヒータにより前記基板を加熱する工程と、を有し、
    前記ヒータにより前記基板を加熱する工程では、前記処理室へ導入される前記複数の種類のガスの流量、混合比の少なくともいずれかを変化させることにより前記基板の温度を制御する、
    半導体装置の製造方法。
    Placing the substrate on a substrate support mechanism provided in a processing chamber for processing the substrate;
    Introducing a plurality of types of gases into the processing chamber and supplying the plurality of types of gases into a space between a heater provided in the processing chamber and the substrate;
    Heating the substrate with the heater, and
    In the step of heating the substrate by the heater, the temperature of the substrate is controlled by changing at least one of the flow rate and mixing ratio of the plurality of types of gases introduced into the processing chamber.
    A method for manufacturing a semiconductor device.
  2. 前記複数の種類のガスのうち少なくとも1種類のガスは、前記少なくとも1種類のガス以外の他の種類のガスに比べて熱伝導性が高いガスである、
    請求項1記載の半導体装置の製造方法。
    At least one type of the plurality of types of gases is a gas having a higher thermal conductivity than other types of gases other than the at least one type of gas.
    A method for manufacturing a semiconductor device according to claim 1.
  3. 前記ヒータにより前記基板を加熱する工程では、
    前記少なくとも1種類のガスの流量と、前記他の種類のガスに対する前記少なくとも1種類のガスの混合比のうち、少なくとも一方を増加させることにより前記基板の昇温レートを大きくする、若しくは降温レートを小さくする、
    請求項2記載の半導体装置の製造方法。
    In the step of heating the substrate by the heater,
    Increasing at least one of the flow rate of the at least one kind of gas and the mixing ratio of the at least one kind of gas to the other kind of gas increases the temperature rising rate of the substrate, Make it smaller,
    A method for manufacturing a semiconductor device according to claim 2.
  4. 前記ヒータにより前記基板を加熱する工程では、
    前記基板上に形成されたハンダバンプを溶融させる温度となるように前記基板の温度を制御する、
    請求項1記載の半導体装置の製造方法。
    In the step of heating the substrate by the heater,
    Controlling the temperature of the substrate so as to be a temperature for melting the solder bumps formed on the substrate;
    A method for manufacturing a semiconductor device according to claim 1.
  5. 前記基板支持機構は複数のピンにより構成され、前記基板と前記ヒータとの間には空隙が形成される、
    請求項1記載の半導体装置の製造方法。
    The substrate support mechanism is composed of a plurality of pins, and a gap is formed between the substrate and the heater.
    A method for manufacturing a semiconductor device according to claim 1.
  6. 前記基板上にはハンダバンプが形成されており、
    前記基板支持機構上に基板を載置する工程の後、
    前記処理室へ還元性ガスを供給する工程と、
    前記還元性ガスのプラズマを生成する工程と、
    前記還元性ガスのプラズマにより前記基板上のハンダバンプ表面の酸化膜を還元する工程と、をさらに有する、
    請求項1記載の半導体装置の製造方法。
    Solder bumps are formed on the substrate,
    After the step of placing the substrate on the substrate support mechanism,
    Supplying a reducing gas to the processing chamber;
    Generating a plasma of the reducing gas;
    A step of reducing the oxide film on the surface of the solder bump on the substrate by the plasma of the reducing gas,
    A method for manufacturing a semiconductor device according to claim 1.
  7. 前記還元性ガスと、前記複数の種類のガスのうちのいずれか一つは同じガスである、
    請求項6記載の半導体装置の製造方法。
    Any one of the reducing gas and the plurality of types of gases is the same gas.
    A method for manufacturing a semiconductor device according to claim 6.
  8. 前記ヒータにより前記基板を加熱する工程では、
    前記処理室の雰囲気の圧力又は前記ヒータと前記基板との間の距離の少なくともいずれかを変化させて、前記基板の温度を所定の温度となるように制御する、
    請求項1記載の半導体装置の製造方法。
    In the step of heating the substrate by the heater,
    Changing at least one of the pressure of the atmosphere in the processing chamber or the distance between the heater and the substrate to control the temperature of the substrate to be a predetermined temperature;
    A method for manufacturing a semiconductor device according to claim 1.
  9. 基板を処理する処理室と、
    前記処理室内に設けられ、前記基板を支持する基板支持機構と、
    前記処理室内に設けられ、前記基板を加熱するヒータと、
    それぞれ異なる種類のガスを前記処理室へ供給する複数のガス供給部と、
    前記処理室内の雰囲気を排気する排気部と、
    前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記複数のガス供給部のそれぞれから供給されるガスの流量、又は前記複数のガス供給部のそれぞれから供給されるガスの前記処理室内における混合比のうち、少なくともいずれかを変化させることにより前記基板の温度を制御するよう構成される制御部と、
    を有する基板処理装置。
    A processing chamber for processing the substrate;
    A substrate support mechanism provided in the processing chamber and supporting the substrate;
    A heater provided in the processing chamber for heating the substrate;
    A plurality of gas supply units for supplying different types of gases to the processing chamber;
    An exhaust section for exhausting the atmosphere in the processing chamber;
    When the substrate supported by the substrate support mechanism is heated by the heater, the flow rate of the gas supplied from each of the plurality of gas supply units, or the gas supplied from each of the plurality of gas supply units A controller configured to control the temperature of the substrate by changing at least one of the mixing ratios in the processing chamber;
    A substrate processing apparatus.
  10. 前記複数のガス供給部のそれぞれから供給されるガスのうち、少なくとも1つのガス供給部から供給されるガスは、前記少なくとも1つのガス供給部以外の他のガス供給部から供給されるガスに比べて熱伝導性が高いガスである、
    請求項9記載の基板処理装置。
    Of the gases supplied from each of the plurality of gas supply units, the gas supplied from at least one gas supply unit is compared with the gas supplied from another gas supply unit other than the at least one gas supply unit. Is a gas with high thermal conductivity,
    The substrate processing apparatus according to claim 9.
  11. 前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記少なくとも1つのガス供給部から供給されるガスの流量、又は、前記他のガス供給部から供給されるガスに対する、前記少なくとも1つのガス供給部から供給されるガスの前記処理室内における混合比のうち、少なくとも一方が増加するように前記複数のガス供給部を制御して、前記基板の昇温レートを大きくする、若しくは降温レートを小さくするよう構成される、
    請求項10記載の基板処理装置。
    The control unit is supplied from the flow rate of the gas supplied from the at least one gas supply unit or the other gas supply unit when the substrate supported by the substrate support mechanism is heated by the heater. The temperature increase rate of the substrate is controlled by controlling the plurality of gas supply units so that at least one of the mixing ratio of the gas supplied from the at least one gas supply unit to the gas in the processing chamber increases. Configured to increase or decrease the cooling rate,
    The substrate processing apparatus according to claim 10.
  12. 前記制御部は、前記基板支持機構に支持された前記基板を前記ヒータにより加熱する際、前記基板の温度を、前記基板上に形成されたハンダバンプを溶融させる温度となるように制御するよう構成される、
    請求項9記載の基板処理装置。
    The control unit is configured to control the temperature of the substrate to be a temperature at which a solder bump formed on the substrate is melted when the substrate supported by the substrate support mechanism is heated by the heater. The
    The substrate processing apparatus according to claim 9.
  13. 前記複数のガス供給部のうち少なくとも一つは還元性ガスを供給するガス供給部であり、
    前記還元性ガスを供給するガス供給部から供給された還元性ガスのプラズマを生成するプラズマ生成部を、さらに備え、
    前記制御部は、前記プラズマ生成部を制御して、前記還元性ガスのプラズマにより、前記基板支持機構に支持された前記基板上に形成されたハンダバンプの表面酸化膜を還元させた後、前記ヒータにより前記基板を加熱するよう構成される、
    請求項9記載の基板処理装置。
    At least one of the plurality of gas supply units is a gas supply unit that supplies a reducing gas,
    A plasma generation unit that generates plasma of the reducing gas supplied from the gas supply unit that supplies the reducing gas;
    The control unit controls the plasma generation unit to reduce a surface oxide film of a solder bump formed on the substrate supported by the substrate support mechanism with plasma of the reducing gas, and then the heater. Configured to heat the substrate by
    The substrate processing apparatus according to claim 9.
  14. 基板を処理する処理室内に設けられた基板支持機構上に基板を載置する手順と、
    前記処理室へ複数の種類のガスを導入し、前記処理室内に設けられたヒータと前記基板との間の空間に前記複数の種類のガスを供給する手順と、
    前記ヒータにより前記基板を加熱する手順と、をコンピュータに実行させ、
    前記ヒータにより前記基板を加熱する手順では、前記処理室へ導入される複数の種類のガスの流量、混合比の少なくともいずれかを変化させることにより前記基板の温度を制御する、
    プログラムを記録したコンピュータ読み取り可能な記録媒体。
     
    A procedure for placing the substrate on a substrate support mechanism provided in a processing chamber for processing the substrate;
    Introducing a plurality of types of gases into the processing chamber and supplying the plurality of types of gases to a space between a heater provided in the processing chamber and the substrate;
    Causing the computer to execute a procedure of heating the substrate by the heater;
    In the procedure of heating the substrate by the heater, the temperature of the substrate is controlled by changing at least one of the flow rate and mixing ratio of a plurality of types of gases introduced into the processing chamber.
    A computer-readable recording medium on which a program is recorded.
PCT/JP2014/075645 2014-09-26 2014-09-26 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium WO2016046957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075645 WO2016046957A1 (en) 2014-09-26 2014-09-26 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075645 WO2016046957A1 (en) 2014-09-26 2014-09-26 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2016046957A1 true WO2016046957A1 (en) 2016-03-31

Family

ID=55580516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075645 WO2016046957A1 (en) 2014-09-26 2014-09-26 Semiconductor device manufacturing method, substrate processing apparatus, and recording medium

Country Status (1)

Country Link
WO (1) WO2016046957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033700A (en) * 2017-09-20 2020-04-17 株式会社国际电气 Substrate processing apparatus, method of manufacturing semiconductor device, and program
CN116313946A (en) * 2023-05-24 2023-06-23 长鑫存储技术有限公司 Temperature adjusting system and adjusting method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115702A1 (en) * 2013-01-24 2014-07-31 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate treatment apparatus and recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115702A1 (en) * 2013-01-24 2014-07-31 株式会社日立国際電気 Method for manufacturing semiconductor device, substrate treatment apparatus and recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111033700A (en) * 2017-09-20 2020-04-17 株式会社国际电气 Substrate processing apparatus, method of manufacturing semiconductor device, and program
CN116313946A (en) * 2023-05-24 2023-06-23 长鑫存储技术有限公司 Temperature adjusting system and adjusting method
CN116313946B (en) * 2023-05-24 2023-10-17 长鑫存储技术有限公司 Temperature adjusting system and adjusting method

Similar Documents

Publication Publication Date Title
JP6045610B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
CN109075071B (en) Substrate processing apparatus, method for manufacturing semiconductor device, and recording medium
JP2016091829A (en) Plasma processing device and plasma processing method
TWI785317B (en) Substrate processing apparatus, method and program for manufacturing semiconductor device
US11908682B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JPWO2015016149A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP5837793B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and baffle structure of substrate processing apparatus
JP2009094115A (en) Production process of semiconductor device
WO2019058597A1 (en) Substrate processing device, semiconductor device production method, and program
WO2016046957A1 (en) Semiconductor device manufacturing method, substrate processing apparatus, and recording medium
JP4865352B2 (en) Plasma processing apparatus and plasma processing method
JP2010206139A (en) Substrate processing apparatus
JP6281964B2 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus
JP7121786B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
JP6883620B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
KR102452913B1 (en) Semiconductor device manufacturing method, substrate processing apparatus and recording medium
JP6976279B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
WO2023095374A1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
TWI814137B (en) Substrate processing apparatus, semiconductor device manufacturing method, substrate processing method and program
JP2022061860A (en) Substrate processing method and substrate processing apparatus
JP2009124069A (en) Semiconductor manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP