WO2016045043A1 - Method for selective aluminide diffusion coating removal - Google Patents

Method for selective aluminide diffusion coating removal Download PDF

Info

Publication number
WO2016045043A1
WO2016045043A1 PCT/CN2014/087417 CN2014087417W WO2016045043A1 WO 2016045043 A1 WO2016045043 A1 WO 2016045043A1 CN 2014087417 W CN2014087417 W CN 2014087417W WO 2016045043 A1 WO2016045043 A1 WO 2016045043A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion coating
component
aluminum
coating
diffusion
Prior art date
Application number
PCT/CN2014/087417
Other languages
French (fr)
Inventor
Liming Zhang
Jere A. Johnson
Ying Zhou
Original Assignee
General Electric Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Company filed Critical General Electric Company
Priority to PCT/CN2014/087417 priority Critical patent/WO2016045043A1/en
Priority to EP14902582.7A priority patent/EP3198050B1/en
Priority to PL14902582T priority patent/PL3198050T3/en
Priority to US15/310,805 priority patent/US10590800B2/en
Publication of WO2016045043A1 publication Critical patent/WO2016045043A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • F01D25/145Thermally insulated casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/086Descaling; Removing coating films
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/60After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • C23F4/02Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00 by evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • C23F4/04Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00 by physical dissolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment

Definitions

  • the present invention is directed to a process of forming or refurbishing an aluminum diffusion coating. More particularly, the present invention is directed to a process for forming or refurbishing an aluminide coating by (1) selective removal of the diffusion coating and (2) minimizing the base metal removal.
  • aluminide coating which includes the diffusion zone
  • removing the diffusion zone can cause alloy depletion of the substrate surface and, for air-cooled components, excessively thinned walls and drastically altered airflow characteristics to the extent that the component must be scrapped. Therefore, rejuvenation processes have been developed for situations in which a diffusion aluminide coating must be refurbished in its entirety, but removal of the coating is not desired or allowed because of the effect on component life.
  • Known rejuvenation processes as shown in FIG. 1, generally include a deposition of an aluminum-infused additive layer 107 on the metallic substrate 101 along a substrate surface 103.
  • the diffusion coating 105 including the aluminum-infused additive layer 107 and an interdiffusion zone 109 generally below the substrate surface 103 are fully removed, leaving a post-treatment surface 111 below the original exposed surface 103, resulting in lost wall thickness 113.
  • the reduced wall thickness 113 results in a degradation of the component and reduced life cycles.
  • This known aluminide refurbishment process undesirably removes about 0.7 mil thick wall of base materials or more while stripping the diffusion coating including interdiffusion zone 109.
  • a method for selective aluminide diffusion coating removal includes diffusing aluminum into a substrate surface of a component to form a diffusion coating.
  • the diffusion coating includes an aluminum-infused additive layer and an interdiffusion zone.
  • the diffusion coating is solution heat treated at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone. Thereafter the aluminum-infused additive layer is selectively removed.
  • a method for aluminide diffusion coating removal from a substrate of a gas turbine component includes removing the component from a gas turbine after operation of the gas turbine.
  • the component includes a diffusion coating having an aluminum-infused additive layer and an interdiffusion zone.
  • the diffusion coating is solution heat treated at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone. Thereafter the aluminum-infused additive layer is selectively removed.
  • an aluminide diffusion coated turbine component in another embodiment, includes a substrate including a nickel-based or cobalt-based superalloy.
  • the coated turbine component having an aluminide diffusion coating on a surface of the substrate.
  • the aluminide diffusion coating has a dissolved interdiffusion zone. The dissolved interdiffusion zone is resistant to removal.
  • FIG. 1 schematically shows a known process for forming a diffusion aluminide coating and stripping serviced coating for repair.
  • FIG. 2 schematically shows a process for forming a diffusion aluminide coating, and stripping serviced coating for repair, according to the present disclosure.
  • FIG. 3 shows a process flow diagram for a process for stripping a diffusion aluminide coating for serviced gas turbine components, according to the present disclosure.
  • FIG. 4 shows a micrograph showing a cross section of a coating on a component having an aluminide coating prior to a solution heat treatment under vacuum.
  • FIG. 5 shows a micrograph of the component of FIG. 4 after a solution heat treatment under vacuum.
  • Embodiments of the present disclosure in comparison to similar concepts failing to include one or more of the features disclosed herein, minimize base materials loss and permit retention of wall thickness in components, permit easy processing with available methods, such as light grit blasting or short term acid dips, reduce the risk of chemical corrosive attacks to metallic substrates (e. g., intergranular attack (IGA) or pitting or alloy depletion) , reduce the risk of component dimensional distortion, reduce scrap rate and facilitate subsequent processing, such as welding, brazing and re-coating repair.
  • IGA intergranular attack
  • FIGs. 2-3 illustrate a method 200, according to the present disclosure.
  • FIG. 2 shows a deposition of an aluminum-infused additive layer 107 on the metallic substrate 101 along a substrate surface 103.
  • metallic refers to substrates which are primarily formed of metal or metal alloys, but which may also include some nonmetallic components.
  • Non-limiting examples of metallic materials are those which comprise at least one element selected from the group consisting of iron, cobalt, nickel, aluminum, chromium, titanium, and mixtures which include any of the foregoing (e. g., stainless steel) .
  • a particularly suitable metallic material for substrate 101 includes a superalloy material.
  • the superalloy is typically nickel-, cobalt-, or iron-based, although nickel-and cobalt-based alloys are favored for high-performance applications.
  • the base element typically nickel or cobalt, is the single greatest element in the superalloy by weight.
  • Illustrative nickel-based superalloys include at least about 40%Ni by weight, and at least one component from the group consisting of cobalt, chromium, aluminum, tungsten, molybdenum, titanium, and iron.
  • Illustrative cobalt-based superalloys include at least about 30%Co by weight, and at least one component from the group consisting of nickel, chromium, tungsten, molybdenum, tantalum, manganese, carbon, and iron.
  • the actual configuration of a substrate 101 may vary widely.
  • a component having a diffusion coating 105, the diffusion coating including the aluminum-infused additive layer 107.
  • the component is a component that has been in service and requires refurbishment.
  • suitable components include combustor liners, combustor domes, shrouds, turbine blades (or buckets) , nozzles or vanes, are typical substrates that may be treated, according to embodiments of the disclosure.
  • the aluminum-infused additive layer is an intermediate coating overlying the substrate 101 and is disposed between the substrate 101 and a thermal barrier coating (TBC) .
  • TBC is a separate and distinct coating from the metallic bond coat.
  • the component is stripped of any overlying thermal barrier coatings (TBC) .
  • TBC may be removed by any suitable process. For example, the TBC may be removed by grit blasting.
  • the component including the aluminum-infused additive layer 107 is subjected to conditions, such as turbine operation, that result in diffusion of aluminum into the substrate surface 103.
  • the component including the diffusion coating 105 includes the aluminum-infused additive layer 107 and an interdiffusion zone 109.
  • the diffusion coating 105 includes an aluminum-infused additive layer 107 and an interdiffusion zone 109.
  • metallic "bond coat” or "diffusion coating” includes a variety of metallic materials applied to a substrate material to improve adherence of top coat materials while imparting high temperature oxidation resistance to the substrate materials comprising metallic alloys.
  • Non-limiting examples of such metallic bond coat materials include coatings of diffusion aluminides and overlay aluminides, such as nickel aluminides (NiAl) , platinum aluminides (PtAl) , NiPtAl, as well as MCrAlX, where M is an element selected from the group consisting of nickel (Ni) , cobalt (Co) , iron (Fe) and combinations thereof and X is one or more elements selected from the group of solid solution strengtheners; gamma prime formers selected from Y, Ti, Ta, Re, Mo and W; grain boundary strengtheners selected from B, C, Hf and Zr and combinations thereof.
  • aluminide bond coat or "aluminide diffusion coating” are used generally to refer to any of these metallic coatings commonly applied to superalloy and high temperature turbine components.
  • the diffusion process may include any known process for providing aluminide diffusion coatings.
  • the chemistry of the additive layer can be modified by the presence in the aluminum-containing composition of additional elements, such as platinum, chromium, silicon, rhodium, hafnium, yttrium and zirconium. Excess aluminum-infused additive coating may be deposited.
  • the aluminum-infused additive layer 107 has a thickness in excess of about 100 micrometers.
  • the interdiffusion zone 109 of the diffusion coating 105 extends below the original substrate surface 103 into the substrate 101.
  • the interdiffusion zone 109 contains various intermetallic and metastable phases that form during the coating reaction as a result of diffusional gradients and changes in elemental solubility in the local region of the substrate 101.
  • the intermetallics within the diffusion zone are the products of all alloying elements of the substrate 101 and diffusion coating 105.
  • Solution heat treatment includes a heat treatment at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone 109 into the substrate 101 to form a dissolved interdiffusion zone 201.
  • Suitable temperatures for the solution heat treatment include, but are not limited to, 2000 °F to 2300 °F or 2100 °F to 2250 °F or 2100 °F to 2200 °F.
  • Suitable times for the solution heat treatment include, but are not limited to, 1 to 4 hours, 2 to 4 hours or 2 to 3 hours.
  • the solution heat treatment includes heating at a temperature about 2100 °F for a time of about 2 hours. In another embodiment, the solution heat treatment includes heating at a temperature about 2200 °F for a time of about 2.5 hours.
  • the specific temperature and times for the solution heat treatment vary depending on the material of the substrate 101 and the material of the aluminide diffusion coating 105.
  • the dissolution mechanism may include, but is not limited to, incipient melting of the interdiffusion zone 109 into the substrate 101.
  • the additive layer is selectively removed (step 305) .
  • selective removal of the aluminide coating refers to the removal of at least a portion of the aluminum-infused additive layer 107, while removing only a very small portion or none of dissolved interdiffusion zone 201.
  • Suitable methods for selective removal of the additive layer include, but are not limited to, grit blasting, water jet abrasive stripping, laser ablation and acid dipping. Suitable processes for grit blasting include light grit blasting using, for example, 220# grit at 40-60 PSI.
  • Suitable methods for selective removal also include acid dips in acids, such as, HCl, a mixture of HCl and H 3 PO 4 , HCl and H 2 SO 4 , and HNO 3 and H 3 PO 4 .
  • Other removal techniques includes additive coating removal (ACR) methods, as recited in U.S. patent 6,758,914, which is hereby incorporated by reference in its entirety.
  • the selective removal includes an acid dipping for short periods of time, for example, a single cycle in an acid solution of 20-40 weight percent nitric acid solution to permit the acid to react with the aluminum-infused additive layer 107.
  • Selective removal of at least a portion of the additive layer includes a reduction in the thickness of the component of less than 0.3 mils, less than 0.2 mils or less than 0.1 mils, as measured from the position of the substrate surface 103 prior to diffusing the aluminum.
  • the process may further include deposition of an aluminide bond coat or aluminide diffusion coating, such as an aluminum-infused additive layer.
  • the deposition is provided prior to returning the component to service.
  • the deposition may include the same aluminum-infused additive layer present on the component having the diffusion coating.
  • the deposition may include a material different than the aluminum-infused additive layer originally formed on the component.
  • the deposition process may include any known process for providing aluminide diffusion coatings.
  • FIG. 4 show a micrograph of a component having an aluminide-infused additive layer 107 prior to solution heat treatment. As is visible in FIG. 4, after the diffusing of the aluminum into the component, the aluminum-infused additive layer 107 and the interdiffusion zone 109 are visible on the substrate 101, as well as the substrate surface 103.
  • FIG. 5 show a micrograph of the component from FIG. 4 after a solution heat treatment. As is visible in FIG. 5, the interdiffusion zone 109 is no longer visible due to dissolution into the substrate 101. In addition, the interface corresponding to the original substrate surface 103 is visible. Subsequent selective removal permits removal of the aluminum-infused additive layer 107 with little or no reduction or thickness.

Abstract

A method for selective aluminide diffusion coating removal. The method includes diffusing aluminum into a substrate surface of a component to form a diffusion coating. The diffusion coating includes an aluminum-infused additive layer and an interdiffusion zone. The diffusion coating is solution heat treated at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone. Thereafter the aluminum-infused additive layer is selectively removed. An aluminide diffusion coated turbine component is also disclosed.

Description

METHOD FOR SELECTIVE ALUMINIDE DIFFUSION COATING REMOVAL FIELD OF THE INVENTION
The present invention is directed to a process of forming or refurbishing an aluminum diffusion coating. More particularly, the present invention is directed to a process for forming or refurbishing an aluminide coating by (1) selective removal of the diffusion coating and (2) minimizing the base metal removal.
BACKGROUND OF THE INVENTION
Higher operating temperatures for gas turbines are continuously sought in order to increase their efficiency. However, as operating temperatures increase, the high temperature durability of the components of the turbine must correspondingly increase. Significant advances in high-temperature capabilities have been achieved through the formulation of nickel and cobalt-based superalloys, though without a protective coating components formed from superalloys typically cannot withstand long service exposures if located in certain sections of a gas turbine, such as the turbine or combustor. One such type of coating is referred to as an environmental coating, i. e., a coating that is resistant to oxidation and hot corrosion. Environmental coatings that have found wide use include diffusion aluminide coatings formed by diffusion processes, such as a pack cementation, vapor phase processes and slurry processes.
Though significant advances have been made with environmental coating materials and processes for forming such coatings, there is the inevitable requirement to repair these coatings under certain circumstances. For example, removal may be necessitated by erosion or thermal degradation of the diffusion coating, refurbishment of the component on which the coating is formed, or an in-process repair of the diffusion coating or a thermal barrier coating (if present) adhered to the component by the diffusion coating. Known repair processes completely remove the diffusion aluminide coating by treatment with an acidic solution capable of interacting with and removing both the additive and diffusion coatings. 
Removal of the entire aluminide coating, which includes the diffusion zone, results in the removal of a portion of the substrate surface. For gas turbine engine blade and vane airfoils, removing the diffusion zone can cause alloy depletion of the substrate surface and, for air-cooled components, excessively thinned walls and drastically altered airflow characteristics to the extent that the component must be scrapped. Therefore, rejuvenation processes have been developed for situations in which a diffusion aluminide coating must be refurbished in its entirety, but removal of the coating is not desired or allowed because of the effect on component life. Known rejuvenation processes, as shown in FIG. 1, generally include a deposition of an aluminum-infused additive layer 107 on the metallic substrate 101 along a substrate surface 103. When the component is in need of rejuvenation, such as after operation, the diffusion coating 105 including the aluminum-infused additive layer 107 and an interdiffusion zone 109 generally below the substrate surface 103 are fully removed, leaving a post-treatment surface 111 below the original exposed surface 103, resulting in lost wall thickness 113. The reduced wall thickness 113 results in a degradation of the component and reduced life cycles. This known aluminide refurbishment process undesirably removes about 0.7 mil thick wall of base materials or more while stripping the diffusion coating including interdiffusion zone 109.
From the above, it can be appreciated that improved methods for refurbishing a diffusion aluminide coating are desired. A method that can refurbish a coated article by forming diffusion aluminide coatings on metallic substrates that does not suffer from one or more of the above drawbacks would be desirable in the art.
SUMMARY OF THE INVENTION
In one embodiment, a method for selective aluminide diffusion coating removal. The method includes diffusing aluminum into a substrate surface of a component to form a diffusion coating. The diffusion coating includes an aluminum-infused additive layer and an interdiffusion zone. The diffusion coating is solution heat treated at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone. Thereafter the aluminum-infused additive layer is selectively removed.
In another embodiment, a method for aluminide diffusion coating removal from a substrate of a gas turbine component. The method includes removing the component from a  gas turbine after operation of the gas turbine. The component includes a diffusion coating having an aluminum-infused additive layer and an interdiffusion zone. The diffusion coating is solution heat treated at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone. Thereafter the aluminum-infused additive layer is selectively removed.
In another embodiment, an aluminide diffusion coated turbine component. The aluminide diffusion coated turbine component includes a substrate including a nickel-based or cobalt-based superalloy. The coated turbine component having an aluminide diffusion coating on a surface of the substrate. The aluminide diffusion coating has a dissolved interdiffusion zone. The dissolved interdiffusion zone is resistant to removal.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically shows a known process for forming a diffusion aluminide coating and stripping serviced coating for repair.
FIG. 2 schematically shows a process for forming a diffusion aluminide coating, and stripping serviced coating for repair, according to the present disclosure.
FIG. 3 shows a process flow diagram for a process for stripping a diffusion aluminide coating for serviced gas turbine components, according to the present disclosure.
FIG. 4 shows a micrograph showing a cross section of a coating on a component having an aluminide coating prior to a solution heat treatment under vacuum.
FIG. 5 shows a micrograph of the component of FIG. 4 after a solution heat treatment under vacuum.
Wherever possible, the same reference numbers will be used throughout the drawings to represent the same parts. 
DETAILED DESCRIPTION OF THE INVENTION
Provided is a process for forming or refurbishing a diffusion aluminide coating with selective removal of the diffusion coating. Embodiments of the present disclosure, in comparison to similar concepts failing to include one or more of the features disclosed herein, minimize base materials loss and permit retention of wall thickness in components, permit easy processing with available methods, such as light grit blasting or short term acid dips, reduce the risk of chemical corrosive attacks to metallic substrates (e. g., intergranular attack (IGA) or pitting or alloy depletion) , reduce the risk of component dimensional distortion, reduce scrap rate and facilitate subsequent processing, such as welding, brazing and re-coating repair.
FIGs. 2-3 illustrate a method 200, according to the present disclosure. FIG. 2 shows a deposition of an aluminum-infused additive layer 107 on the metallic substrate 101 along a substrate surface 103. As used herein, “metallic” refers to substrates which are primarily formed of metal or metal alloys, but which may also include some nonmetallic components. Non-limiting examples of metallic materials are those which comprise at least one element selected from the group consisting of iron, cobalt, nickel, aluminum, chromium, titanium, and mixtures which include any of the foregoing (e. g., stainless steel) . A particularly suitable metallic material for substrate 101 includes a superalloy material. Such materials are known for high-temperature performance, in terms of tensile strength, creep resistance, oxidation resistance, and corrosion resistance. The superalloy is typically nickel-, cobalt-, or iron-based, although nickel-and cobalt-based alloys are favored for high-performance applications. The base element, typically nickel or cobalt, is the single greatest element in the superalloy by weight. Illustrative nickel-based superalloys include at least about 40%Ni by weight, and at least one component from the group consisting of cobalt, chromium, aluminum, tungsten, molybdenum, titanium, and iron. Illustrative cobalt-based superalloys include at least about 30%Co by weight, and at least one component from the group consisting of nickel, chromium, tungsten, molybdenum, tantalum, manganese, carbon, and iron. The actual configuration of a substrate 101 may vary widely.
As shown in FIG. 3, a component is provided having a diffusion coating 105, the diffusion coating including the aluminum-infused additive layer 107. In one embodiment the  component is a component that has been in service and requires refurbishment. For example, suitable components include combustor liners, combustor domes, shrouds, turbine blades (or buckets) , nozzles or vanes, are typical substrates that may be treated, according to embodiments of the disclosure. In one embodiment, the aluminum-infused additive layer is an intermediate coating overlying the substrate 101 and is disposed between the substrate 101 and a thermal barrier coating (TBC) . The TBC is a separate and distinct coating from the metallic bond coat. In one embodiment, the component is stripped of any overlying thermal barrier coatings (TBC) . The TBC may be removed by any suitable process. For example, the TBC may be removed by grit blasting.
In one embodiment, the component including the aluminum-infused additive layer 107 is subjected to conditions, such as turbine operation, that result in diffusion of aluminum into the substrate surface 103. The component including the diffusion coating 105, as shown in FIGs. 2 and 3, includes the aluminum-infused additive layer 107 and an interdiffusion zone 109. The diffusion coating 105 includes an aluminum-infused additive layer 107 and an interdiffusion zone 109. The term metallic "bond coat" or "diffusion coating" includes a variety of metallic materials applied to a substrate material to improve adherence of top coat materials while imparting high temperature oxidation resistance to the substrate materials comprising metallic alloys. Non-limiting examples of such metallic bond coat materials include coatings of diffusion aluminides and overlay aluminides, such as nickel aluminides (NiAl) , platinum aluminides (PtAl) , NiPtAl, as well as MCrAlX, where M is an element selected from the group consisting of nickel (Ni) , cobalt (Co) , iron (Fe) and combinations thereof and X is one or more elements selected from the group of solid solution strengtheners; gamma prime formers selected from Y, Ti, Ta, Re, Mo and W; grain boundary strengtheners selected from B, C, Hf and Zr and combinations thereof. The terms "aluminide bond coat" or "aluminide diffusion coating" are used generally to refer to any of these metallic coatings commonly applied to superalloy and high temperature turbine components. The diffusion process may include any known process for providing aluminide diffusion coatings. The chemistry of the additive layer can be modified by the presence in the aluminum-containing composition of additional elements, such as platinum, chromium, silicon, rhodium, hafnium, yttrium and zirconium. Excess aluminum-infused additive coating may be deposited. For example, the aluminum-infused additive layer 107 has a thickness in excess of about 100  micrometers. The interdiffusion zone 109 of the diffusion coating 105 extends below the original substrate surface 103 into the substrate 101. The interdiffusion zone 109 contains various intermetallic and metastable phases that form during the coating reaction as a result of diffusional gradients and changes in elemental solubility in the local region of the substrate 101. The intermetallics within the diffusion zone are the products of all alloying elements of the substrate 101 and diffusion coating 105.
After the component is provided having the diffusion coating 105, the component is subjected to a solution heat treatment (step 303) . Solution heat treatment includes a heat treatment at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone 109 into the substrate 101 to form a dissolved interdiffusion zone 201. Suitable temperatures for the solution heat treatment include, but are not limited to, 2000 °F to 2300 °F or 2100 °F to 2250 °F or 2100 °F to 2200 °F. Suitable times for the solution heat treatment include, but are not limited to, 1 to 4 hours, 2 to 4 hours or 2 to 3 hours. In one embodiment, the solution heat treatment includes heating at a temperature about 2100 °F for a time of about 2 hours. In another embodiment, the solution heat treatment includes heating at a temperature about 2200 °F for a time of about 2.5 hours. The specific temperature and times for the solution heat treatment vary depending on the material of the substrate 101 and the material of the aluminide diffusion coating 105. The dissolution mechanism may include, but is not limited to, incipient melting of the interdiffusion zone 109 into the substrate 101.
After dissolution of at least a portion of the interdiffusion zone 109, the additive layer is selectively removed (step 305) . As used herein, the term "selective removal" of the aluminide coating refers to the removal of at least a portion of the aluminum-infused additive layer 107, while removing only a very small portion or none of dissolved interdiffusion zone 201. Suitable methods for selective removal of the additive layer include, but are not limited to, grit blasting, water jet abrasive stripping, laser ablation and acid dipping. Suitable processes for grit blasting include light grit blasting using, for example, 220# grit at 40-60 PSI. Suitable methods for selective removal also include acid dips in acids, such as, HCl, a mixture of HCl and H3PO4, HCl and H2SO4, and HNO3 and H3PO4. Other removal techniques includes additive coating removal (ACR) methods, as recited in U.S. patent 6,758,914, which is hereby incorporated by reference in its entirety. In one embodiment, the selective removal includes an acid dipping for short periods of time, for example, a single  cycle in an acid solution of 20-40 weight percent nitric acid solution to permit the acid to react with the aluminum-infused additive layer 107. Selective removal of at least a portion of the additive layer includes a reduction in the thickness of the component of less than 0.3 mils, less than 0.2 mils or less than 0.1 mils, as measured from the position of the substrate surface 103 prior to diffusing the aluminum.
Subsequent to the selective removal, the process may further include deposition of an aluminide bond coat or aluminide diffusion coating, such as an aluminum-infused additive layer. In one embodiment, the deposition is provided prior to returning the component to service. The deposition may include the same aluminum-infused additive layer present on the component having the diffusion coating. Alternatively, the deposition may include a material different than the aluminum-infused additive layer originally formed on the component. The deposition process may include any known process for providing aluminide diffusion coatings.
FIG. 4 show a micrograph of a component having an aluminide-infused additive layer 107 prior to solution heat treatment. As is visible in FIG. 4, after the diffusing of the aluminum into the component, the aluminum-infused additive layer 107 and the interdiffusion zone 109 are visible on the substrate 101, as well as the substrate surface 103. FIG. 5 show a micrograph of the component from FIG. 4 after a solution heat treatment. As is visible in FIG. 5, the interdiffusion zone 109 is no longer visible due to dissolution into the substrate 101. In addition, the interface corresponding to the original substrate surface 103 is visible. Subsequent selective removal permits removal of the aluminum-infused additive layer 107 with little or no reduction or thickness.
While the invention has been described with reference to one or more embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.  In addition, all numerical values identified in the detailed description shall be interpreted as though the precise and approximate values are both expressly identified. 

Claims (15)

  1. A method for selective aluminide diffusion coating removal, the method comprising:
    diffusing aluminum into a substrate (101) surface (103) of a component to form a diffusion coating (105) , the diffusion coating (105) comprising an aluminum-infused additive layer (107) and an interdiffusion zone (109) ;
    solution heat treating the diffusion coating (105) at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone (109) ; and thereafter
    selectively removing the aluminum-infused additive layer (107) .
  2. The method of claim 1, wherein the solution heat treatment includes heating the diffusion coating (105) to a temperature of from about 2000 °F to 2300 °F.
  3. The method of claim 2, wherein the solution heat treatment includes heating the diffusion coating (105) for a time between about 1 to 4 hours.
  4. The method of claim 1, wherein the selectively removing includes removing by one of the group selected from grit blasting, water jet abrasive stripping, laser ablation and acid dipping.
  5. The method of claim 1, wherein the selectively removing includes grit blasting.
  6. The method of claim 1, wherein the selectively removing includes a reduction in the thickness of the component of less than 0.3 mils.
  7. A method for aluminide diffusion coating (105) removal from a substrate of a gas turbine component, the method comprising:
    removing the component from a gas turbine after operation of the gas turbine, the component having a diffusion coating (105) , the diffusion coating (105) comprising an aluminum-infused additive layer (107) and an interdiffusion zone (109) ;
    solution heat treating the diffusion coating (105) at a temperature and for a time sufficient to dissolve at least a portion of the interdiffusion zone (109) ; and thereafter  selectively removing the aluminum-infused additive layer (107) .
  8. The method of claim 7, wherein the component is a component selected from the group consisting of a shroud, a turbine blade, a nozzle and a vane.
  9. The method of claim 7, wherein the solution heat treatment includes heating the diffusion coating (105) to a temperature of from about 2000 °F to 2300 °F.
  10. The method of claim 9, wherein the solution heat treatment includes heating the diffusion coating (105) for a time between about 1 to 4 hours.
  11. The method of claim 7, wherein the selectively removing includes removing by one of the group selected from grit blasting, water jet abrasive stripping, laser ablation and acid dipping.
  12. The method of claim 7, wherein the selectively removing includes grit blasting.
  13. The method of claim 7, wherein the selectively removing includes a reduction in the thickness of the component of less than 0.3 mils.
  14. An aluminide diffusion coated turbine component comprising:
    a substrate comprising a nickel-based or cobalt-based superalloy; and
    an aluminide diffusion coating (105) on a surface of the substrate, the aluminide diffusion coating (105) having a dissolved interdiffusion zone (201) ,
    wherein the dissolved interdiffusion zone (201) is resistant to removal.
  15. The aluminide diffusion coated turbine component of claim 14, wherein the component is a component selected from the group consisting of a shroud, a turbine blade, a nozzle and a vane.
PCT/CN2014/087417 2014-09-25 2014-09-25 Method for selective aluminide diffusion coating removal WO2016045043A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/087417 WO2016045043A1 (en) 2014-09-25 2014-09-25 Method for selective aluminide diffusion coating removal
EP14902582.7A EP3198050B1 (en) 2014-09-25 2014-09-25 Method for selective aluminide diffusion coating removal
PL14902582T PL3198050T3 (en) 2014-09-25 2014-09-25 Method for selective aluminide diffusion coating removal
US15/310,805 US10590800B2 (en) 2014-09-25 2014-09-25 Method for selective aluminide diffusion coating removal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087417 WO2016045043A1 (en) 2014-09-25 2014-09-25 Method for selective aluminide diffusion coating removal

Publications (1)

Publication Number Publication Date
WO2016045043A1 true WO2016045043A1 (en) 2016-03-31

Family

ID=55580091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087417 WO2016045043A1 (en) 2014-09-25 2014-09-25 Method for selective aluminide diffusion coating removal

Country Status (4)

Country Link
US (1) US10590800B2 (en)
EP (1) EP3198050B1 (en)
PL (1) PL3198050T3 (en)
WO (1) WO2016045043A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10202855B2 (en) * 2016-06-02 2019-02-12 General Electric Company Airfoil with improved coating system
CN112730487A (en) * 2020-12-17 2021-04-30 河钢股份有限公司 Preparation method and measurement method of aluminum-silicon coated steel residual stress measurement sample

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667663A (en) * 1994-12-24 1997-09-16 Chromalloy United Kingdom Limited Method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating
US6482469B1 (en) * 2000-04-11 2002-11-19 General Electric Company Method of forming an improved aluminide bond coat for a thermal barrier coating system
US7093335B2 (en) * 2000-07-18 2006-08-22 General Electric Company Coated article and method for repairing a coated surface
CN101613819A (en) * 2008-06-24 2009-12-30 霍尼韦尔国际公司 Single crystal nickel-based superalloy compositions, member and manufacture method thereof
US20100062180A1 (en) * 2008-09-08 2010-03-11 Rolls-Royce Plc Method of repairing a coating on an article
CN103382544A (en) * 2012-05-04 2013-11-06 通用电气公司 A method for removing a coating and a method for rejuvenating a coated superalloy component

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222282A (en) 1992-01-13 1993-06-29 Texas Instruments Incorporated Method for reducing thickness of a high-strength low-ductility metal foil on thin strip element
US5366765A (en) * 1993-05-17 1994-11-22 United Technologies Corporation Aqueous slurry coating system for aluminide coatings
EP0713957A1 (en) 1994-11-25 1996-05-29 FINMECCANICA S.p.A. AZIENDA ANSALDO Method of repairing the coating of turbine blades
US5728227A (en) * 1996-06-17 1998-03-17 General Electric Company Method for removing a diffusion coating from a nickel base alloy
US6036995A (en) 1997-01-31 2000-03-14 Sermatech International, Inc. Method for removal of surface layers of metallic coatings
US6174448B1 (en) 1998-03-02 2001-01-16 General Electric Company Method for stripping aluminum from a diffusion coating
US6334907B1 (en) * 1999-06-30 2002-01-01 General Electric Company Method of controlling thickness and aluminum content of a diffusion aluminide coating
US8252376B2 (en) 2001-04-27 2012-08-28 Siemens Aktiengesellschaft Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane
US6719853B2 (en) 2001-04-27 2004-04-13 Siemens Aktiengesellschaft Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane
US7015640B2 (en) 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
GB2401115B (en) 2003-05-01 2006-06-21 Diffusion Alloys Ltd Refurbishing corroded turbine blades
US20070116875A1 (en) 2005-11-22 2007-05-24 United Technologies Corporation Strip process for superalloys
US8021491B2 (en) 2006-12-07 2011-09-20 Lawrence Bernard Kool Method for selectively removing coatings from metal substrates
US8449262B2 (en) 2009-12-08 2013-05-28 Honeywell International Inc. Nickel-based superalloys, turbine blades, and methods of improving or repairing turbine engine components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667663A (en) * 1994-12-24 1997-09-16 Chromalloy United Kingdom Limited Method of applying a thermal barrier coating to a superalloy article and a thermal barrier coating
US6482469B1 (en) * 2000-04-11 2002-11-19 General Electric Company Method of forming an improved aluminide bond coat for a thermal barrier coating system
US7093335B2 (en) * 2000-07-18 2006-08-22 General Electric Company Coated article and method for repairing a coated surface
CN101613819A (en) * 2008-06-24 2009-12-30 霍尼韦尔国际公司 Single crystal nickel-based superalloy compositions, member and manufacture method thereof
US20100062180A1 (en) * 2008-09-08 2010-03-11 Rolls-Royce Plc Method of repairing a coating on an article
CN103382544A (en) * 2012-05-04 2013-11-06 通用电气公司 A method for removing a coating and a method for rejuvenating a coated superalloy component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3198050A4 *

Also Published As

Publication number Publication date
US20170081977A1 (en) 2017-03-23
EP3198050A4 (en) 2018-05-23
US10590800B2 (en) 2020-03-17
EP3198050A1 (en) 2017-08-02
PL3198050T3 (en) 2022-06-27
EP3198050B1 (en) 2022-04-27

Similar Documents

Publication Publication Date Title
US8741381B2 (en) Method for removing a coating and a method for rejuvenating a coated superalloy component
US6758914B2 (en) Process for partial stripping of diffusion aluminide coatings from metal substrates, and related compositions
US6296447B1 (en) Gas turbine component having location-dependent protective coatings thereon
JP6126852B2 (en) Gas turbine component coating and coating method
Schafrik et al. Gas turbine materials
EP1752559A2 (en) Method for restoring portion of turbine component
US6605364B1 (en) Coating article and method for repairing a coated surface
US20100330295A1 (en) Method for providing ductile environmental coating having fatigue and corrosion resistance
EP2690197A1 (en) Turbine blade for industrial gas turbine and industrial gas turbine
US10377968B2 (en) Cleaning compositions and methods for removing oxides from superalloy substrates
EP1321536B2 (en) Process for rejuvenating a diffusion aluminide coating
US10590800B2 (en) Method for selective aluminide diffusion coating removal
EP3213864A1 (en) Braze composition, brazing process, and brazed article
US20100330393A1 (en) Ductile environmental coating and coated article having fatigue and corrosion resistance
EP3351653A1 (en) Aluminide diffusion coating system and process for forming an aluminide diffusion coating system
US6719853B2 (en) Method for restoring the microstructure of a textured article and for refurbishing a gas turbine blade or vane
CA2442460C (en) Method for selective surface protection of a gas turbine blade which has previously been in service
EP2128307B1 (en) Method for removing a protective coating from a turbine blade airfoil in a repair process
JP2706328B2 (en) Heat treatment method for corrosion and oxidation resistant coating for Ni-base super heat resistant alloy
US20100260613A1 (en) Process for preventing the formation of secondary reaction zone in susceptible articles, and articles manufactured using same
US20220288653A1 (en) Method of removing contaminants from a diffusion-coated component
JP2002089205A (en) Method of removing metallic sulfide and method of forming corrosion resisting coating member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15310805

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014902582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902582

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE