WO2016045040A1 - Method and network node for facilitating timing synchronization in network - Google Patents

Method and network node for facilitating timing synchronization in network Download PDF

Info

Publication number
WO2016045040A1
WO2016045040A1 PCT/CN2014/087412 CN2014087412W WO2016045040A1 WO 2016045040 A1 WO2016045040 A1 WO 2016045040A1 CN 2014087412 W CN2014087412 W CN 2014087412W WO 2016045040 A1 WO2016045040 A1 WO 2016045040A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
network node
timing value
bias
value
Prior art date
Application number
PCT/CN2014/087412
Other languages
French (fr)
Inventor
Qianxi Lu
Qingyu Miao
Jonas Kronander
Original Assignee
Telefonaktiebolaget L M Ericsson (Publ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget L M Ericsson (Publ) filed Critical Telefonaktiebolaget L M Ericsson (Publ)
Priority to CN201480082095.4A priority Critical patent/CN106797247B/en
Priority to US14/422,168 priority patent/US9713110B2/en
Priority to PCT/CN2014/087412 priority patent/WO2016045040A1/en
Priority to EP14902445.7A priority patent/EP3198745A4/en
Publication of WO2016045040A1 publication Critical patent/WO2016045040A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the disclosure relates to communication technology, and more particularly, to a method and a network node for facilitating timing synchronization in a network.
  • Ultra Dense Network is a promising next step to the successful introduction of Long Term Evolution (LTE) for wide area and local area accesses.
  • LTE Long Term Evolution
  • the UDN can be deployed in areas with high traffic consumptions and thus provide an evolution towards the above goal. Due to overprovision of access nodes and thus low average load in the access network, the UDN creates ubiquitous access opportunities for providing users with desired data rates even under realistic assumption on user density and traffic.
  • the overprovision is achieved by an extremely dense grid of access nodes. Inter-access-node distances in the order of tens of meters or below are envisioned. In in-door deployments, one or more access nodes are possible in each room. In addition to increased network capacity, densification (via reduced transmit powers) also enables access to vast spectrums in millimeter-wave bands and thus increased data rates.
  • synchronization is critical to the UDN.
  • AN Access Node
  • eNB evolved NodeB
  • UE User Equipment
  • NDP Network Time Protocol
  • PTP Precision Time Protocol
  • GNSS Global Navigation Satellite System
  • Fig. 1 shows a scenario where this solution is applied. As shown, each node broadcasts a synchronization signal to all of its neighboring nodes and each node updates its local timing value based on the synchronization signals received from all of its neighboring nodes. This solution requires a number of iterations before the timing values of the nodes converge.
  • the distributed synchronization solution is adversely affected by propagation delay of the synchronization signals, which leads to timing and phase errors.
  • the effect of the propagation delay can be mitigated by means of timing advance update.
  • the propagation delay over the link can be mitigated by exchanging timing information between the nodes, estimating the propagation delay based on the timing information and removing the effect of estimated propagation delay from the timing values of the nodes.
  • the increase in signaling overhead required for exchanging the timing information between each pair of nodes may be significant, especially when there are a large number of nodes e. g. , in an UDN.
  • a method for facilitating timing synchronization in a network comprises, at a network node: updating a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determining that the timing value is in a stable state; calculating a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correcting the timing value based on the bias.
  • each of iterations of the updating comprises: estimating a timing value of each of the neighboring network nodes based on a synchronization signal received from that neighboring network node; and updating the timing value of the network node based on the estimated timing values of all the neighboring network nodes.
  • timing value it is determined that the timing value is in the stable state if the timing value has been updated for at least a predetermined number of times.
  • each delta is defined as a difference between two consecutive timing values of the network node.
  • the step of calculating comprises: calculating, as the bias, an arithmetic average of a predetermined number of most recent deltas.
  • each delta is defined as a difference between two consecutive timing values of the network node.
  • the step of calculating comprises: calculating, as the bias, a moving average of deltas.
  • each delta is defined as a difference between two consecutive timing values of the network node.
  • the step of correcting comprises: subtracting from the timing value a value obtained by applying a factor to the bias.
  • the step of correcting comprises: subtracting from the timing value a constant value if the bias is larger than 0.
  • a network node for facilitating timing synchronization in a network.
  • the network node comprises: an updating unit configured to update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; a determining unit configured to determine that the timing value is in a stable state; a calculating unit configured to calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and a correcting unit configured to correct the timing value based on the bias.
  • a network node for facilitating timing synchronization in a network.
  • the network node comprises means adapted to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
  • a network node for facilitating timing synchronization in a network.
  • the network node comprises a transceiver, a processor and a memory.
  • the memory contains instructions executable by the processor whereby the network node is operative to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
  • a bias due to propagation delays of the synchronization signals is calculated based on local observation and the timing value is corrected based on the bias. In this way, the effect of propagation delay can be removed, or at least mitigated, from the timing update procedure. No additional signaling overhead is required.
  • Fig. 1 is a schematic diagram showing a scenario of distributed synchronization
  • Fig. 2 is a schematic diagram showing a simulation result of iteratively updated timing values
  • Fig. 3 is a flowchart illustrating a method for facilitating timing synchronization in a network according to an embodiment of the present disclosure
  • Fig. 4 is a block diagram of a network node for facilitating timing synchronization in a network according to an embodiment of the present disclosure.
  • Fig. 5 is a block diagram of a network node for facilitating timing synchronization in a network according to another embodiment of the present disclosure.
  • the timing value of a node j is estimated and can be represented as:
  • ⁇ j is the actual timing value of the node j (i. e. , the timing at which the node j actually transmitted a synchronization signal)
  • ⁇ ′ j is an estimation error due to e. g. , quality of the radio link between the node i and the node j
  • PD ji denotes the propagation delay of the synchronization signal from the node j to the node i.
  • the timing value can be estimated by utilizing a non-coherent detection algorithm, e. g. , Maximum Likelihood (ML) algorithm or Minimum Mean Square Error (MMSE) algorithm.
  • ML Maximum Likelihood
  • MMSE Minimum Mean Square Error
  • the node i updates its local timing value according to the following iteration equation:
  • n is the iteration index
  • ⁇ i is the timing value of the node i
  • M is the number of neighboring nodes.
  • Equation (3) It can be seen from the last term of Equation (3) that the effect of aggregate propagation delay will be included each time the timing value is updated iteratively. As a result, the timing value of each node will continuously increase.
  • Fig. 2 shows a simulation result of iteratively updated timing values.
  • AWGN Additive White Gaussian Noise
  • the horizontal axis of Fig. 2 represents the number of iterations and the vertical axis of Fig. 2 represents the timing values of the nodes in Cyclic Prefix (CP) lengths.
  • CP Cyclic Prefix
  • the difference between the timing values of any pair of nodes is smaller than a predetermined threshold. It can also be seen from Fig. 2 that, after the convergence, the timing value of each node keeps increasing. While the continuous increase in the timing values may not compromise the communication between the nodes, it becomes problematic when these nodes are ANs (eNBs) . For example, in order for communication between an eNB and the UEs it serves, it is required that the timing value of the eNB shall not increase by more than one CP length within the resynchronization interval between the eNB and the UEs.
  • the continuous increase in the timing value of the eNB will lead to a short resynchronization interval between the eNB and the UEs, which is inefficient and will result in increased signaling overhead between the eNB and the UEs as well as increased power consumptions at the UEs.
  • the inventors of the present invention realize that, the increase in the timing values is substantially linear, as shown in Fig. 2, and this is because, after the convergence, the term ( ⁇ j (n) + ⁇ ′ j (n) ) in Equation (3) will converge to a similar value for different nodes and thus the increase is mainly caused by the aggregate delay, which is a substantially constant component (in the sense that it does not vary as the iteration runs) . It is further realized by the inventors that the effect of the propagation delay can be removed, or at least mitigated, by cancelling the substantially constant component from the timing values.
  • Fig. 3 is a flowchart illustrating a method 300 for facilitating timing synchronization in a network according to an embodiment of the present disclosure.
  • the method 300 can be applied in a UDN consisting of a number of network nodes (e. g. , eNBs) and can be performed at a network node (e. g. , eNB) . It is to be noted here that the application of the method 300 is not limited to the UDN or any specific network or network topology. Rather, it can be applied to any network where synchronization among network nodes is performed in a distributed manner.
  • the method 300 includes the following steps.
  • a timing value of the network node is updated iteratively based on synchronization signals from neighboring network nodes.
  • a timing value of each of the neighboring network nodes may be estimated based on a synchronization signal received from that neighboring network node.
  • the estimated timing value can be represented by the above Equation (1) .
  • a non-coherent detection algorithm e. g. , ML or MMSE, can be used in the estimation.
  • the timing value of the network node can be updated based on the estimated timing values of all the neighboring network nodes.
  • the timing value ⁇ i of the network node i can be updated iteratively according to the above Equation (2) .
  • the timing value ⁇ i of the network node i has been updated iteratively for k times in the step S310 and the current timing value of the network node is ⁇ i (k) .
  • step S320 it is determined that the timing value ⁇ i is in a stable state.
  • the stable state means that the timing value ⁇ i of the network node i varies substantially uniformly over time. For example, as shown in Fig. 2, after about 100 iterations, the timing value of each network node varies (e. g. increases) uniformly over time. In this case, from the perspective of the entire network, the timing values of all the network nodes converge.
  • step S320 it can be determined that the timing value ⁇ i is in the stable state if the timing value ⁇ i has been updated for at least a predetermined number of times.
  • the timing value ⁇ i is in the stable state if the timing value ⁇ i has been updated for at least 100 times, i. e. , k ⁇ 100.
  • each delta is defined as a difference between two consecutive timing values of the network node.
  • a delta as used herein is defined as:
  • ⁇ i (n) ⁇ i (n) - ⁇ i (n-1) .
  • timing value ⁇ i is in the stable state if:
  • ⁇ i (k) and ⁇ i (k-1) denote the two most recent deltas (recall that the current iteration index is k) and TH 1 denotes the threshold.
  • a bias due to propagation delays of the synchronization signals is calculated based on a number of timing values obtained in iterations of the updating.
  • each delta is defined as a difference between two consecutive timing values of the network node according to Equation (4) .
  • the bias can be calculated according to:
  • B i denotes the bias
  • L ⁇ 1 is the predetermined number and thus denotes the L most recent deltas (recall that the current iteration index is k) .
  • the bias B i is an estimate of the aggregate delay (i. e. , the term in Equation (3)) .
  • each delta is defined as a difference between two consecutive timing values of the network node according to Equation (4) .
  • the bias can be calculated according to:
  • x1 is an iteration index at which the timing value ⁇ i is determined to be stable for the first time
  • 0 ⁇ 1 is a moving filtering coefficient which can be e. g. , 0.1 or 0.2.
  • step S340 the timing value ⁇ i (k) is corrected based on the bias.
  • the timing value ⁇ i (k) can be corrected by subtracting from the timing value ⁇ i (k) a value obtained by applying a factor to the bias.
  • the timing value ⁇ i (k) can be corrected according to:
  • Equation (8) where is the corrected timing value, 0 ⁇ y ⁇ 1 is a factor applied to the bias B i and can be e. g. , 0.1 or 0.2, and the purpose for comparison between ⁇ *B i and 0 is to filter out a negative bias which is not reasonable.
  • the term B i in Equation (8) should be replaced with B i (n) .
  • the timing value ⁇ i (k) can be corrected by subtracting from the timing value ⁇ i (k) a constant value if the bias is larger than 0. That is, the timing value ⁇ i (k) can be corrected according to:
  • Equation (7) the term B i in Equation (9) should be replaced with B i (n) .
  • the network node i transmits a synchronization signal at the corrected timing value
  • a network node for facilitating timing synchronization in a network includes means adapted to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
  • Fig. 4 is a block diagram of a network node 400 for facilitating timing synchronization in a network according to an embodiment of the present disclosure.
  • the network node 400 includes an updating unit 410 configured to update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes.
  • the network node 400 further includes a determining unit 420 configured to determine that the timing value is in a stable state.
  • the network node 400 further includes a calculating unit 430 configured to calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating.
  • the network node 400 further includes: a correcting unit 440 configured to correct the timing value based on the bias.
  • the updating unit 410 is configured to, in each of iterations: estimate a timing value of each of the neighboring network nodes based on a synchronization signal received from that neighboring network node; and update the timing value of the network node based on the estimated timing values of all the neighboring network nodes.
  • the determining unit 420 is configured to determine that the timing value is in the stable state if the timing value of the network node has been updated for at least a predetermined number of times.
  • the determining unit 420 is configured to determine that the timing value is in the stable state if a difference between two most recent deltas is smaller than a predetermined threshold, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  • the calculating unit 430 is configured to calculate, as the bias, an arithmetic average of a predetermined number of most recent deltas, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  • the calculating unit 430 is configured to calculate, as the bias, a moving average of deltas, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  • the correcting unit 440 is configured to subtract from the timing value a value obtained by applying a factor to the bias.
  • the correcting unit 440 is configured to subtracting from the timing value a constant value if the bias is larger than 0.
  • Each of the units 410-440 can be implemented as a pure hardware solution or as a combination of software and hardware, e. g. , by one or more of: a processor or a micro processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e. g. , in Fig. 3.
  • PLD Programmable Logic Device
  • Fig. 5 is a block diagram of a network node 500 for facilitating timing synchronization in a network according to another embodiment of the present disclosure.
  • the network node 500 includes a transceiver 510, a processor 520 and a memory 530.
  • the memory 530 contains instructions executable by the processor 520 whereby the network node 500 is operative to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
  • the present disclosure also provides at least one computer program product in the form of a non-volatile or volatile memory, e. g. , an Electrically Erasable Programmable Read-Only Memory (EEPROM) , a flash memory and a hard drive.
  • the computer program product includes a computer program.
  • the computer program includes: code/computer readable instructions, which when executed by the processor 520 causes the network node 500 to perform the actions, e. g. , of the procedure described earlier in conjunction with Fig. 3.
  • the computer program product may be configured as a computer program code structured in computer program modules.
  • the computer program modules could essentially perform the actions of the flow illustrated in Fig. 3.
  • the processor may be a single CPU (Central processing unit) , but could also comprise two or more processing units.
  • the processor may include general purpose microprocessors; instruction set processors and/or related chips sets and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) .
  • the processor may also comprise board memory for caching purposes.
  • the computer program may be carried by a computer program product connected to the processor.
  • the computer program product may comprise a computer readable medium on which the computer program is stored.
  • the computer program product may be a flash memory, a Random-access memory (RAM) , a Read-Only Memory (ROM) , or an EEPROM, and the computer program modules described above could in alternative embodiments be distributed on different computer program products in the form of memories.

Abstract

The disclosure provides a method (300) for facilitating timing synchronization in a network. The method (300) comprises, at a network node: updating (S310) a timing value of the network node iteratively based on synchronization signals from neighboring network nodes: determining (S320) that the timing value is in a stable state; calculating (S330) a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correcting (S340) the timing value based on the bias.

Description

METHOD AND NETWORK NODE FOR FACILITATING TIMING SYNCHRONIZATION IN NETWORK TECHNICAL FIELD
The disclosure relates to communication technology, and more particularly, to a method and a network node for facilitating timing synchronization in a network.
BACKGROUND
The ultimate goal of mobile broadband is ubiquitous and sustainable provision of unlimited data rates to anyone or anything at anytime. Ultra Dense Network (UDN) is a promising next step to the successful introduction of Long Term Evolution (LTE) for wide area and local area accesses. The UDN can be deployed in areas with high traffic consumptions and thus provide an evolution towards the above goal. Due to overprovision of access nodes and thus low average load in the access network, the UDN creates ubiquitous access opportunities for providing users with desired data rates even under realistic assumption on user density and traffic.
The overprovision is achieved by an extremely dense grid of access nodes. Inter-access-node distances in the order of tens of meters or below are envisioned. In in-door deployments, one or more access nodes are possible in each room. In addition to increased network capacity, densification (via reduced transmit powers) also enables access to vast spectrums in millimeter-wave bands and thus increased data rates.
As the very first step of communication, synchronization is critical to the UDN. Compared with access link synchronization between an Access Node (AN, e. g. , an evolved NodeB (eNB) ) and a User Equipment (UE) , it is more challenging to achieve backhaul link synchronization between ANs, which is necessary for avoiding collisions between uplink and downlink (when Time Division Duplex (TDD) is applied) and achieving intelligent inter-cell interference coordination (e. g. , enhanced Inter-Cell Interference Cooperation (elCIC) ) . In traditional cellular networks, the backhaul link synchronization is achieved via wired connections, including e. g. , packet based synchronization (Network Time Protocol (NTP) or Precision Time Protocol (PTP) (IEEE1588) ) or Global Navigation Satellite System (GNSS) based synchronization (Global Positioning System (GPS) or Galileo) .
However, these solutions are not applicable in the UDN where ANs are deployed in an in-door scenario with wireless backhaul links.
Simeone, Spagnolini, Bar-Ness and Strogatz, Distributed Synchronization in Wireless Networks, IEEE Sig. Proc Magazine, 2008, discloses a solution for distributed synchronization in a wireless network. Fig. 1 shows a scenario where this solution is applied. As shown, each node broadcasts a synchronization signal to all of its neighboring nodes and each node updates its local timing value based on the synchronization signals received from all of its neighboring nodes. This solution requires a number of iterations before the timing values of the nodes converge.
However, the distributed synchronization solution is adversely affected by propagation delay of the synchronization signals, which leads to timing and phase errors.
Conventionally, the effect of the propagation delay can be mitigated by means of timing advance update. For a link between a pair of nodes, the propagation delay over the link can be mitigated by exchanging timing information between the nodes, estimating the propagation delay based on the timing information and removing the effect of estimated propagation delay from the timing values of the nodes. However, the increase in signaling overhead required for exchanging the timing information between each pair of nodes may be significant, especially when there are a large number of nodes e. g. , in an UDN.
There is thus a need for an improved solution for distributed synchronization.
SUMMARY
It is an object of the present disclosure to provide a method and a network node for facilitating timing synchronization in a network, capable of removing, or at least mitigating, the effect of propagation delay from the timing update procedure without increase in signaling overhead.
In a first aspect, a method for facilitating timing synchronization in a network is provided. The method comprises, at a network node: updating a timing value of the network node iteratively based on synchronization signals from neighboring  network nodes; determining that the timing value is in a stable state; calculating a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correcting the timing value based on the bias.
In an embodiment, each of iterations of the updating comprises: estimating a timing value of each of the neighboring network nodes based on a synchronization signal received from that neighboring network node; and updating the timing value of the network node based on the estimated timing values of all the neighboring network nodes.
In an embodiment, it is determined that the timing value is in the stable state if the timing value has been updated for at least a predetermined number of times.
In an embodiment, it is determined that the timing value is in the stable state if a difference between two most recent deltas is smaller than a predetermined threshold. Here, each delta is defined as a difference between two consecutive timing values of the network node.
In an embodiment, the step of calculating comprises: calculating, as the bias, an arithmetic average of a predetermined number of most recent deltas. Here, each delta is defined as a difference between two consecutive timing values of the network node.
In an embodiment, the step of calculating comprises: calculating, as the bias, a moving average of deltas. Here, each delta is defined as a difference between two consecutive timing values of the network node.
In an embodiment, the step of correcting comprises: subtracting from the timing value a value obtained by applying a factor to the bias.
In an embodiment, the step of correcting comprises: subtracting from the timing value a constant value if the bias is larger than 0.
In a second aspect, a network node for facilitating timing synchronization in a network is provided. The network node comprises: an updating unit configured to  update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; a determining unit configured to determine that the timing value is in a stable state; a calculating unit configured to calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and a correcting unit configured to correct the timing value based on the bias.
In a third aspect, a network node for facilitating timing synchronization in a network is provided. The network node comprises means adapted to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
In a fourth aspect, a network node for facilitating timing synchronization in a network is provided. The network node comprises a transceiver, a processor and a memory. The memory contains instructions executable by the processor whereby the network node is operative to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
The above embodiments of the first aspect are also applicable for the second, third and fourth aspects.
With the embodiments of the present disclosure, a bias due to propagation delays of the synchronization signals is calculated based on local observation and the timing value is corrected based on the bias. In this way, the effect of propagation delay can be removed, or at least mitigated, from the timing update procedure. No additional signaling overhead is required.
BRIEF DESCRIPTION OF THE DRAWINGS 
The above and other objects, features and advantages will be more apparent from the following description of embodiments with reference to the figures, in which:
Fig. 1 is a schematic diagram showing a scenario of distributed synchronization;
Fig. 2 is a schematic diagram showing a simulation result of iteratively updated timing values;
Fig. 3 is a flowchart illustrating a method for facilitating timing synchronization in a network according to an embodiment of the present disclosure;
Fig. 4 is a block diagram of a network node for facilitating timing synchronization in a network according to an embodiment of the present disclosure; and
Fig. 5 is a block diagram of a network node for facilitating timing synchronization in a network according to another embodiment of the present disclosure.
DETAILED DESCRIPTION
The embodiments of the disclosure will be detailed below with reference to the drawings. It should be noted that the following embodiments are illustrative only, rather than limiting the scope of the disclosure.
Before describing the embodiments of the disclosure, the mathematical model of timing estimation will be introduced first. At a node i, the timing value of a node j is estimated and can be represented as:
Figure PCTCN2014087412-appb-000001
where
Figure PCTCN2014087412-appb-000002
is the estimated timing value of the node j, βj is the actual timing value of the node j (i. e. , the timing at which the node j actually transmitted a synchronization signal) , β′j is an estimation error due to e. g. , quality of the radio link between the node i and the node j, and PDji denotes the propagation delay of the synchronization signal from the node j to the node i. The timing value
Figure PCTCN2014087412-appb-000003
 can be estimated by utilizing a non-coherent detection algorithm, e. g. , Maximum Likelihood (ML) algorithm or Minimum Mean Square Error (MMSE) algorithm.
Then, the node i updates its local timing value according to the following iteration equation: 
Figure PCTCN2014087412-appb-000004
where n is the iteration index, βi is the timing value of the node i and M is the number of neighboring nodes.
Substituting (1) into (2) yields:
Figure PCTCN2014087412-appb-000005
It can be seen from the last term of Equation (3) that the effect of aggregate propagation delay will be included each time the timing value is updated iteratively. As a result, the timing value of each node will continuously increase.
Reference is now made to Fig. 2, which shows a simulation result of iteratively updated timing values. In this simulation, it is assumed that there are 100 nodes in total and 62-point LTE synchronization signals are transmitted over Additive White Gaussian Noise (AWGN) channels with free-space path loss models. The horizontal axis of Fig. 2 represents the number of iterations and the vertical axis of Fig. 2 represents the timing values of the nodes in Cyclic Prefix (CP) lengths. It can be seen from Fig. 2 that the initial timing values of the nodes are distributed within a range from -3 CP lengths to 1 CP length and, after about 100 iterations, the timing values of the nodes converge, i. e. , the difference between the timing values of any pair of nodes is smaller than a predetermined threshold. It can also be seen from Fig. 2 that, after the convergence, the timing value of each node keeps increasing. While the continuous increase in the timing values may not compromise the communication between the nodes, it becomes problematic when these nodes are ANs (eNBs) . For example, in order for communication between an eNB and the UEs it serves, it is required that the timing value of the eNB shall not increase by more than one CP length within the resynchronization interval between the eNB and the UEs. Hence, the continuous increase in the timing value of the eNB will lead to a short resynchronization interval between the eNB and the UEs, which is inefficient and will result in increased signaling overhead between the eNB and the UEs as well as increased power consumptions at the UEs.
The inventors of the present invention realize that, the increase in the timing values is substantially linear, as shown in Fig. 2, and this is because, after the convergence, the term (βj (n) +β′j (n) ) in Equation (3) will converge to a similar value for different nodes and thus the increase is mainly caused by the aggregate delay, which is a substantially constant component (in the sense that it does not vary as the iteration runs) . It is further realized by the inventors that the effect of the propagation delay can be removed, or at least mitigated, by cancelling the substantially constant component from the timing values.
Fig. 3 is a flowchart illustrating a method 300 for facilitating timing synchronization in a network according to an embodiment of the present disclosure. The method 300 can be applied in a UDN consisting of a number of network nodes (e. g. , eNBs) and can be performed at a network node (e. g. , eNB) . It is to be noted here that the application of the method 300 is not limited to the UDN or any specific network or network topology. Rather, it can be applied to any network where synchronization among network nodes is performed in a distributed manner.
The method 300 includes the following steps.
At step S310, a timing value of the network node is updated iteratively based on synchronization signals from neighboring network nodes.
In the step S310, according to an example, in each of iterations of the updating, a timing value of each of the neighboring network nodes may be estimated based on a synchronization signal received from that neighboring network node. The estimated timing value can be represented by the above Equation (1) . As mentioned above in connection with Equation (1) , a non-coherent detection algorithm, e. g. , ML or MMSE, can be used in the estimation. Then, the timing value of the network node can be updated based on the estimated timing values of all the neighboring network nodes. In particular, assuming that the network node is denoted as the node i and the neighboring network nodes are denoted as nodes j, j=1, ... , M, the timing value βi of the network node i can be updated iteratively according to the above Equation (2) . Here, it is assumed that the iteration index n is currently n=k i. e. , the timing value βi of the network node i has been updated iteratively for k times in the step S310 and the current timing value of the network node is βi (k) .
At step S320, it is determined that the timing value βi is in a stable state.
Here, the stable state means that the timing value βi of the network node i varies substantially uniformly over time. For example, as shown in Fig. 2, after about 100 iterations, the timing value of each network node varies (e. g. increases) uniformly over time. In this case, from the perspective of the entire network, the timing values of all the network nodes converge.
In the step S320, according to an example, it can be determined that the timing value βi is in the stable state if the timing value βi has been updated for at least a predetermined number of times.
For example, in the example shown in Fig. 2, it can be determined that the timing value βi is in the stable state if the timing value βi has been updated for at least 100 times, i. e. , k ≥ 100.
Alternatively, it can be determined that the timing value βi is in the stable state if a difference between two most recent deltas is smaller than a predetermined threshold. Here each delta is defined as a difference between two consecutive timing values of the network node.
In particular, a delta as used herein is defined as:
Δi (n) =βi (n) -βi (n-1) .            (4) 
Accordingly, it can be determined that the timing value βi is in the stable state if:
i (k) -Δi (k-1) | < TH1                 (5) 
where Δi (k) and Δi (k-1) denote the two most recent deltas (recall that the current iteration index is k) and TH1 denotes the threshold.
At step S330, a bias due to propagation delays of the synchronization signals is calculated based on a number of timing values obtained in iterations of the updating.
In particular, in the step S330, according to an example, an arithmetic average of a predetermined number of most recent deltas can be calculated as the bias. Again, each delta is defined as a difference between two consecutive timing  values of the network node according to Equation (4) .
In other words, the bias can be calculated according to:
Figure PCTCN2014087412-appb-000006
where Bi denotes the bias, L≥1 is the predetermined number and thus 
Figure PCTCN2014087412-appb-000007
denotes the L most recent deltas (recall that the current iteration index is k) . The bias Bi is an estimate of the aggregate delay (i. e. , the term 
Figure PCTCN2014087412-appb-000008
in Equation (3)) .
Alternatively, a moving average of deltas can be calculated as the bias. Again, each delta is defined as a difference between two consecutive timing values of the network node according to Equation (4) .
In other words, the bias can be calculated according to:
Bi(n) =α*Δi (n) + (1-α) *Bi (n-1)               (7) 
where Bi (n) is the bias and Bi (x) =0 for x≤x1 where x1 is an iteration index at which the timing value βi is determined to be stable for the first time, and 0<α<1 is a moving filtering coefficient which can be e. g. , 0.1 or 0.2.
At step S340, the timing value βi (k) is corrected based on the bias.
In particular, according to an example, the timing value βi (k) can be corrected by subtracting from the timing value βi (k) a value obtained by applying a factor to the bias. For example, when the bias is calculated according to Equation (6) , the timing value βi (k) can be corrected according to:
Figure PCTCN2014087412-appb-000009
where
Figure PCTCN2014087412-appb-000010
is the corrected timing value, 0 < y≤ 1 is a factor applied to the bias Bi and can be e. g. , 0.1 or 0.2, and the purpose for comparison between γ*Bi and 0 is to filter out a negative bias which is not reasonable. When the bias is calculated according to Equation (7) , the term Bi in Equation (8) should be replaced with Bi (n) .
Alternatively, the timing value βi (k) can be corrected by subtracting from the timing value βi (k) a constant value if the bias is larger than 0. That is, the timing value βi (k) can be corrected according to:
Figure PCTCN2014087412-appb-000011
where
Figure PCTCN2014087412-appb-000012
is the corrected timing value, δ > 0 is the constant value and can be e. g. , 10 or 50 μs, and the purpose for comparison between Bi and 0 is to filter out a negative bias which is not reasonable. When the bias is calculated according to Equation (7) , the term Bi in Equation (9) should be replaced with Bi (n) .
Then, in the next iteration (n=k+1) , the network node i transmits a synchronization signal at the corrected timing value
Figure PCTCN2014087412-appb-000013
In this way, the effect of the aggregate propagation delay can removed, or at least mitigated, from the timing update procedure without increase in signaling overhead. Unlike the conventional timing advance update, there is no need in the method 300 to estimate the propagation delay over every individual link between each pair of nodes, which would be computationally demanding.
Correspondingly to the method 300 as described above, a network node for facilitating timing synchronization in a network is provided. The network node includes means adapted to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
Fig. 4 is a block diagram of a network node 400 for facilitating timing synchronization in a network according to an embodiment of the present disclosure.
As shown in Fig. 4, the network node 400 includes an updating unit 410 configured to update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes. The network node 400 further includes a determining unit 420 configured to determine that the timing value is in a stable state. The network node 400 further includes a calculating unit 430 configured to calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating. The network node 400 further includes: a correcting unit 440 configured to correct the timing value based on the bias.
In an embodiment, the updating unit 410 is configured to, in each of iterations: estimate a timing value of each of the neighboring network nodes based on a synchronization signal received from that neighboring network node; and update the timing value of the network node based on the estimated timing values of all the neighboring network nodes.
In an embodiment, the determining unit 420 is configured to determine that the timing value is in the stable state if the timing value of the network node has been updated for at least a predetermined number of times.
In an embodiment, the determining unit 420 is configured to determine that the timing value is in the stable state if a difference between two most recent deltas is smaller than a predetermined threshold, wherein each delta is defined as a difference between two consecutive timing values of the network node.
In an embodiment, the calculating unit 430 is configured to calculate, as the bias, an arithmetic average of a predetermined number of most recent deltas, wherein each delta is defined as a difference between two consecutive timing values of the network node.
In an embodiment, the calculating unit 430 is configured to calculate, as the bias, a moving average of deltas, wherein each delta is defined as a difference between two consecutive timing values of the network node.
In an embodiment, the correcting unit 440 is configured to subtract from the timing value a value obtained by applying a factor to the bias.
In an embodiment, the correcting unit 440 is configured to subtracting from the timing value a constant value if the bias is larger than 0.
Each of the units 410-440 can be implemented as a pure hardware solution or as a combination of software and hardware, e. g. , by one or more of: a processor or a micro processor and adequate software and memory for storing of the software, a Programmable Logic Device (PLD) or other electronic component (s) or processing circuitry configured to perform the actions described above, and illustrated, e. g. , in Fig. 3.
Fig. 5 is a block diagram of a network node 500 for facilitating timing synchronization in a network according to another embodiment of the present disclosure.
The network node 500 includes a transceiver 510, a processor 520 and a memory 530. The memory 530 contains instructions executable by the processor 520 whereby the network node 500 is operative to: update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes; determine that the timing value is in a stable state; calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and correct the timing value based on the bias.
The present disclosure also provides at least one computer program product in the form of a non-volatile or volatile memory, e. g. , an Electrically Erasable Programmable Read-Only Memory (EEPROM) , a flash memory and a hard drive. The computer program product includes a computer program. The computer program includes: code/computer readable instructions, which when executed by the processor 520 causes the network node 500 to perform the actions, e. g. , of the procedure described earlier in conjunction with Fig. 3.
The computer program product may be configured as a computer program code structured in computer program modules. The computer program modules could essentially perform the actions of the flow illustrated in Fig. 3.
The processor may be a single CPU (Central processing unit) , but could also comprise two or more processing units. For example, the processor may include general purpose microprocessors; instruction set processors and/or related chips sets and/or special purpose microprocessors such as Application Specific Integrated Circuit (ASICs) . The processor may also comprise board memory for caching purposes. The computer program may be carried by a computer program product connected to the processor. The computer program product may comprise a computer readable medium on which the computer program is stored. For example, the computer program product may be a flash memory, a Random-access memory (RAM) , a Read-Only Memory (ROM) , or an EEPROM, and the computer program modules described above could in alternative embodiments be distributed on different computer program products in the form of memories.
The disclosure has been described above with reference to embodiments thereof. It should be understood that various modifications, alternations and additions can be made by those skilled in the art without departing from the spirits and scope of the disclosure. Therefore, the scope of the disclosure is not limited to the above particular embodiments but only defined by the claims as attached.

Claims (16)

  1. Amethod (300) for facilitating timing synchronization in a network, comprising, at a network node:
    -updating (S310) a timing value of the network node iteratively based on synchronization signals from neighboring network nodes;
    -determining (S320) that the timing value is in a stable state;
    -calculating (S330) a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and
    -correcting (S340) the timing value based on the bias.
  2. The method (300) of claim 1, wherein each of iterations of said updating (S310) comprises:
    -estimating a timing value of each of the neighboring network nodes based on a synchronization signal received from that neighboring network node; and
    -updating the timing value of the network node based on the estimated timing values of all the neighboring network nodes.
  3. The method (300) of claim 1, wherein it is determined (S320) that the timing value is in the stable state if the timing value has been updated for at least a predetermined number of times.
  4. The method (300) of claim 1, wherein it is determined (S320) that the timing value is in the stable state if a difference between two most recent deltas is smaller than a predetermined threshold, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  5. The method (300) of claim 1, wherein said calculating (S330) comprises:
    -calculating, as the bias, an arithmetic average of a predetermined number of most recent deltas, wherein each delta is defined as a  difference between two consecutive timing values of the network node.
  6. The method (300) of claim 1, wherein said calculating (S330) comprises:
    -calculating, as the bias, a moving average of deltas, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  7. The method (S300) of claim 1, wherein said correcting (S340) comprises:
    -subtracting from the timing value a value obtained by applying a factor to the bias.
  8. The method (300) of claim 1, wherein said correcting (S340) comprises:
    -subtracting from the timing value a constant value if the bias is larger than 0.
  9. A network node (400) for facilitating timing synchronization in a network, comprising:
    -an updating unit (410) configured to update a timing value of the network node iteratively based on synchronization signals from neighboring network nodes;
    -a determining unit (420) configured to determine that the timing value is in a stable state;
    -a calculating unit (430) configured to calculate a bias due to propagation delays of the synchronization signals based on a number of timing values obtained in iterations of said updating; and
    -a correcting unit (440) configured to correct the timing value based on the bias.
  10. The network node (400) of claim 9, wherein the updating unit (410) is configured to, in each of iterations:
    -estimate a timing value of each of the neighboring network nodes  based on a synchronization signal received from that neighboring network node; and
    -update the timing value of the network node based on the estimated timing values of all the neighboring network nodes.
  11. The network node (400) of claim 9, wherein the determining unit (420) is configured to:
    -determine that the timing value is in the stable state if the timing value of the network node has been updated for at least a predetermined number of times.
  12. The network node (400) of claim 9, wherein the determining unit (420) is configured to:
    -determine that the timing value is in the stable state if a difference between two most recent deltas is smaller than a predetermined threshold, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  13. The network node (400) of claim 9, wherein the calculating unit (430) is configured to:
    -calculate, as the bias, an arithmetic average of a predetermined number of most recent deltas, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  14. The network node (400) of claim 9, wherein the calculating unit (430) is configured to:
    -calculate, as the bias, a moving average of deltas, wherein each delta is defined as a difference between two consecutive timing values of the network node.
  15. The network node (400) of claim 9, wherein the correcting unit (440) is configured to:
    -subtract from the timing value a value obtained by applying a factor to the bias.
  16. The network node (400) of claim 9, wherein the correcting unit (440) is configured to:
    -subtracting from the timing value a constant value if the bias is larger than 0.
PCT/CN2014/087412 2014-09-25 2014-09-25 Method and network node for facilitating timing synchronization in network WO2016045040A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480082095.4A CN106797247B (en) 2014-09-25 2014-09-25 For promoting the method and network node of the Timing Synchronization in network
US14/422,168 US9713110B2 (en) 2014-09-25 2014-09-25 Method and network node for facilitating timing synchronization in network
PCT/CN2014/087412 WO2016045040A1 (en) 2014-09-25 2014-09-25 Method and network node for facilitating timing synchronization in network
EP14902445.7A EP3198745A4 (en) 2014-09-25 2014-09-25 Method and network node for facilitating timing synchronization in network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087412 WO2016045040A1 (en) 2014-09-25 2014-09-25 Method and network node for facilitating timing synchronization in network

Publications (1)

Publication Number Publication Date
WO2016045040A1 true WO2016045040A1 (en) 2016-03-31

Family

ID=55580088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087412 WO2016045040A1 (en) 2014-09-25 2014-09-25 Method and network node for facilitating timing synchronization in network

Country Status (4)

Country Link
US (1) US9713110B2 (en)
EP (1) EP3198745A4 (en)
CN (1) CN106797247B (en)
WO (1) WO2016045040A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10820290B2 (en) 2018-08-13 2020-10-27 At&T Intellectual Property I, L.P. Over the air synchronization by means of a protocol in a next generation wireless network
US11064449B2 (en) 2019-08-16 2021-07-13 At&T Intellectual Property I, L.P. Over the air synchronization of network nodes
CN113746611B (en) * 2021-08-31 2023-01-13 爱浦路网络技术(南京)有限公司 Method for configuring timing value of signaling in communication, computer device and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641048A (en) * 1984-08-24 1987-02-03 Tektronix, Inc. Digital integrated circuit propagation delay time controller
CN1391737A (en) * 1999-11-26 2003-01-15 罗克马诺尔研究有限公司 Improvements in or relating to mobile telecommunications systems
EP2568632A2 (en) * 2011-09-09 2013-03-13 Simmonds Precision Products, Inc. Synchronization within wireless devices

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5959980A (en) * 1995-06-05 1999-09-28 Omnipoint Corporation Timing adjustment control for efficient time division duplex communication
US7499712B2 (en) * 2002-09-05 2009-03-03 Qualcomm Incorporated Position computation in a positioning system using synchronization time bias
AU2003904045A0 (en) * 2003-08-04 2003-08-14 Locata Corporation A method and device for the mitigation of cdma cross-correlation artifacts and the improvement of signal-to-noise ratios in tdma positioning signals
US7404114B2 (en) * 2005-02-15 2008-07-22 International Business Machines Corporation System and method for balancing delay of signal communication paths through well voltage adjustment
US8243712B2 (en) * 2005-05-10 2012-08-14 Qualcomm Incorporated Base station synchronization using multi-communication mode user equipment
US8326319B2 (en) * 2009-01-23 2012-12-04 At&T Mobility Ii Llc Compensation of propagation delays of wireless signals
WO2010093294A1 (en) * 2009-02-11 2010-08-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for determining terminal position
WO2013144760A1 (en) * 2012-03-29 2013-10-03 Ramot At Tel-Aviv University Ltd Localization, synchronization and navigation using passive sensor networks
CN104125589A (en) * 2013-04-25 2014-10-29 中兴通讯股份有限公司 Measuring method of deviation calibration information among multiple access points and device thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641048A (en) * 1984-08-24 1987-02-03 Tektronix, Inc. Digital integrated circuit propagation delay time controller
CN1391737A (en) * 1999-11-26 2003-01-15 罗克马诺尔研究有限公司 Improvements in or relating to mobile telecommunications systems
EP2568632A2 (en) * 2011-09-09 2013-03-13 Simmonds Precision Products, Inc. Synchronization within wireless devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3198745A4 *

Also Published As

Publication number Publication date
EP3198745A1 (en) 2017-08-02
EP3198745A4 (en) 2018-05-16
CN106797247A (en) 2017-05-31
CN106797247B (en) 2019-05-31
US9713110B2 (en) 2017-07-18
US20160262121A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US10362555B2 (en) Cellular telecommunications network
US9602270B2 (en) Clock drift compensation in a time synchronous channel hopping network
KR102067479B1 (en) Method and apparatus for correcting reference time for distributed time synchronization
US9955447B2 (en) Clock synchronization method, mobile network system, network controller and network switch
EP2734904A2 (en) Systems and methods of network synchronization
US9713110B2 (en) Method and network node for facilitating timing synchronization in network
US20130272352A1 (en) Transmission device, transmission method and computer program
JP5782560B2 (en) Node and communication control method
KR102118276B1 (en) Communication system and small cell base station
US10244475B2 (en) Method and network node for facilitating synchronization in network
CN111770551B (en) Method, system and equipment for communication between gateways of high-dynamic uncertain link
US9912693B1 (en) Identification of malicious precise time protocol (PTP) nodes
JP6254028B2 (en) Slave node and time synchronization method
Anyaegbu et al. Dealing with packet delay variation in IEEE 1588 synchronization using a sample-mode filter
US8879428B2 (en) Systems and method for graph-based distributed parameter coordination in a communication network
US8798032B2 (en) Virtual timing indication
CN106604387B (en) Wireless sensor time synchronization method based on game theory
CN111756472B (en) Uplink communication method and communication device
JP5883970B1 (en) COMMUNICATION SYSTEM, BASE STATION, AND DELAY MANAGEMENT DEVICE
KR102174089B1 (en) Apparatus and method for improving average consensus based time synchronization protocol with virtual links
Guchhait et al. Joint minimum variance unbiased and maximum likelihood estimation of clock offset and skew in one-way packet transmission
KR102042835B1 (en) Method and Apparatus for Small Cell Synchronization Based on the Precision Time Protocol and Network Listening
JP6531761B2 (en) Base station, communication system, method and program
CN116761247A (en) Consistency synchronization method based on Bayesian estimation and interval value optimization
Lee et al. Signal processing techniques for synchronization of wireless sensor networks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14422168

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902445

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014902445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902445

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE