WO2016043551A1 - 통신 자원의 효율 개선을 위한 rts/cts 핸드쉐이킹 방법 - Google Patents

통신 자원의 효율 개선을 위한 rts/cts 핸드쉐이킹 방법 Download PDF

Info

Publication number
WO2016043551A1
WO2016043551A1 PCT/KR2015/009825 KR2015009825W WO2016043551A1 WO 2016043551 A1 WO2016043551 A1 WO 2016043551A1 KR 2015009825 W KR2015009825 W KR 2015009825W WO 2016043551 A1 WO2016043551 A1 WO 2016043551A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
nav
rts
cts
setting
Prior art date
Application number
PCT/KR2015/009825
Other languages
English (en)
French (fr)
Inventor
송나옥
김준혁
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150040038A external-priority patent/KR101657884B1/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US15/506,220 priority Critical patent/US10893441B2/en
Publication of WO2016043551A1 publication Critical patent/WO2016043551A1/ko
Priority to US17/114,236 priority patent/US20210092644A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • the present invention relates to a communication system, and more particularly, to an RTS / CTS handshaking method capable of maximizing the use of communication resources in a RTS / CTS handshaking process used in a distributed MAC protocol.
  • WLAN wireless local area network
  • PDA personal digital assistant
  • laptop computer a portable multimedia player
  • PMP portable multimedia player
  • the communication system can be divided into centralized communication and distributed communication according to the presence or absence of a subject who supervises the communication of the terminal.
  • CSMA / CA Carrier Sensing Multiple Access with Collision Avoidance
  • DCF Distributed Coordination Function
  • the transmission range of nodes is limited like the wireless communication system.
  • RTS request to send or ready to send
  • CTS clear to send
  • the proposed RTS / CTS method has a problem of wasting by setting the NAV even when the RTS or CTS is not properly received, and the proposed RTS / CTS method has an exposed terminal or exposed node problem that lowers the utilization of the channel. (exposed terminal problem) occurs.
  • the RTS / CTS handshaking method for solving the hidden node problem is widely used in wireless communication systems such as IEEE 802.11 and IEEE 802.15.4, as well as wired communication systems such as RS-232 and power line communication.
  • Embodiments of the present invention prevent the existing RTS / CTS method from causing waste of resources by setting the NAV even when the RTS or CTS is not properly received.
  • embodiments of the present invention provides an RTS / CTS handshaking method capable of maximizing the use efficiency of wireless or wired communication resources by minimizing exposed nodes generated by RTS / CTS handshaking. do.
  • embodiments of the present invention provide a network allocation vector (NAV) setting mechanism that can maximize the use efficiency of communication resources.
  • NAV network allocation vector
  • the RTS / CTS handshaking method sets a first NAV (Network Allocation Vector) during a predetermined Clear to Send (CTS) packet transmission interval when a RTS (Ready to Send) packet is received. Doing; And setting a second NAV during the predetermined data packet transmission interval when the CTS packet is received.
  • NAV Network Allocation Vector
  • the RTS / CTS handshaking method may further include setting a third NAV during a predetermined ACK (ACKnowledge) packet transmission interval when a data packet is received.
  • ACK ACKnowledge
  • the setting of the first NAV may include setting the first NAV when the first NAV is located within a communication range of a first terminal that transmits the RTS packet, and setting the second NAV may include setting a second NAV. When located within the communication range of the terminal, the second NAV may be set.
  • RTS / CTS handshaking method comprises the steps of detecting whether one of a control packet or a data packet; And setting a network allocation vector (NAV) for a next packet transmission interval predetermined for the received packet when either the control packet or the data packet is received.
  • NAV network allocation vector
  • the first NAV may be set only during a predetermined CTS packet transmission interval, and the first NAV is located within a communication range of the first terminal transmitting the RTS packet. NAV can be set.
  • the second NAV may be set only during a predetermined data packet transmission interval, and the second NAV is located within a communication range of the second terminal transmitting the CTS packet. NAV can be set.
  • the third NAV may be set during a predetermined ACK packet transmission interval.
  • Terminal includes a detection unit for detecting whether any one of a control packet or a data packet; And a setting unit configured to set a network allocation vector (NAV) for a next packet transmission interval predetermined for the received packet when any one of the control packet or the data packet is received.
  • NAV network allocation vector
  • the setting unit may set the first NAV only during a predetermined CTS packet transmission interval when the received packet is an RTS packet, and set the first NAV when located within a communication range of the first terminal transmitting the RTS packet. have.
  • the setting unit may set a second NAV only during a predetermined data packet transmission interval when the received packet is a CTS packet, and set the second NAV when located within a communication range of a second terminal transmitting the CTS packet. have.
  • the setting unit may set a third NAV during a predetermined ACK packet transmission interval if the received packet is a data packet.
  • Embodiments of the present invention prevent the existing RTS / CTS method from causing waste of resources by setting the NAV even when the RTS or CTS is not properly received.
  • embodiments of the present invention expose exposed nodes generated by RTS / CTS handshaking by receiving a control packet or data packet and setting the NAV only during a predetermined next packet transmission interval for the received packet. Nodes can be minimized to maximize the use of communication resources.
  • Such embodiments of the present invention can be applied to a standard of wired communication systems as well as various wireless communication systems such as IEEE 802.11, IEEE 802.15, and can be applied to a general communication system even if the standard is not.
  • Figure 1 shows an exemplary view for explaining the conventional RTS / CTS handshaking.
  • Figure 2 shows an exemplary view for explaining the concept of a communication range used in the present invention.
  • FIG. 3 illustrates an exemplary diagram for describing a communication range when a transmitter and a receiver are in close proximity.
  • FIG. 4 is a diagram illustrating an example of a communication range when the transmitter and the receiver are not in close proximity.
  • FIG. 5 is a flowchart illustrating an operation of an RTS / CTS handshaking method according to an embodiment of the present invention.
  • FIG. 6 shows an exemplary diagram for explaining NAV setting of exposed nodes in a communication range of an RTS packet.
  • FIG. 7 illustrates an exemplary diagram for explaining NAV configuration of exposed nodes in a communication range of a CTS packet.
  • FIG. 8 illustrates an example diagram for describing NAV setting of exposed nodes in a communication range of a DATA packet.
  • FIG. 9 illustrates an exemplary diagram for explaining NAV configuration of exposed nodes according to packet transmission and reception between a transmitter and a receiver.
  • FIG. 10 illustrates a configuration of a terminal according to an embodiment of the present invention.
  • Embodiments of the present invention when transmitting and receiving packets between a sender and a receiver, are exposed to a communication range for transmission of a control packet and a data packet of a transmitter and a communication range for transmission of a control packet of a receiver.
  • exposed nodes by setting the NAV only during a predetermined transmission interval according to the received packet, minimizing the exposed nodes generated by RTS / CTS handshaking to maximize the use of communication resources. Make a point.
  • the exposed nodes receiving the RTS packet set the NAV only during the CTS packet transmission interval
  • the exposed nodes receiving the CTS packet set the NAV only during the DATA packet transmission interval
  • the exposed nodes receiving the DATA packet are the ACK packet.
  • the RTS / CTS handshaking method according to the embodiment of the present invention can be performed without modifying the specifications of the communication system, it is applicable to the standards of wired communication systems as well as the standards of various wireless communication systems such as IEEE 802.11 and IEEE 802.15. In addition, it can be applied to a general-purpose communication system even if it is not a standard.
  • Figure 1 shows an exemplary view for explaining the conventional RTS / CTS handshaking.
  • a transmitter transmits an RTS packet and a receiver transmits a CTS packet for an RTS packet.
  • the transmitter transmits a data packet to the receiver, and the receiver transmits an ACK packet in response to receiving the data packet.
  • a transmitter transmits an RTS packet PD RTS to a receiver
  • exposed nodes located within a communication range of a control packet of the transmitter receive an RTS packet and a transmission interval preset for the RTS packet. That is, by setting the NAV (RTS) 110 from the CTS packet transmission interval to the ACK packet transmission interval, it delays the transmission of the packet during the NAV (RTS).
  • RTS NAV
  • the exposed nodes located within the communication range of the control packet of the receiver also receive the CTS packet.
  • the NAV (CTS) 120 is delayed during the NAV (CTS) by setting the NAV (CTS) 120 during the preset transmission interval for the CTS packet, that is, the DATA packet transmission interval to the ACK packet transmission interval.
  • the conventional RTS / CTS handshaking method includes terminals or nodes located in a communication range of a control packet of a transmitter as exposed nodes during a CTS packet transmission interval, and transmits a DATA packet transmission interval and an ACK packet. Terminals located within the communication range of the control packet of the transmitter and the control packet of the receiver during the interval includes the exposure nodes.
  • Figure 2 shows an exemplary view for explaining the concept of a communication range used in the present invention.
  • a PAC device that transmits or receives a control packet or a data packet, for example, a terminal, an access point (AP), or the like, may control a communication range (R_control) of a control packet and a communication range (R_data) of a data packet. It can have
  • the communication range R_control of the control packet means a communication range in which control packets such as RTS, CTS, and ACK can be transmitted
  • the communication range R_data of the data packet means a communication range in which a data packet can be transmitted.
  • the communication range R_control of the control packet may be regarded as wider than the communication range R_data of the data packet.
  • the communication range R_control of the control packet may be viewed in the same manner as the carrier sensing range.
  • FIG. 3 illustrates an exemplary diagram for describing a communication range when a transmitter and a receiver are in close proximity.
  • the communication range of the data packet may vary according to the transmission speed of the data packet, and the communication range of the data packet may be shortened or narrowed as the transmission speed of the data packet increases.
  • the receiver In the left figure of FIG. 3, although the transmission range of the data packet is high due to the high transmission rate of the data packet, the receiver is located close enough to the transmitter and the receiver, even though the communication range of the data packet of the transmitter is narrow. It can be located within the communication range. On the other hand, in the case of the right figure of FIG. 3, since the transmission range of the data packet is high and the communication range of the data packet of the transmitter is narrow, the receiver may be out of the communication range of the data packet of the transmitter even if the transmitter and the receiver are slightly separated. .
  • FIG. 4 is a diagram illustrating an example of a communication range when the transmitter and the receiver are not in close proximity.
  • the communication range of the data packet may be formed wider or longer than the communication range of the data packet shown in FIG. 3. Can be.
  • the transmitter and the receiver may be located within the communication range of the data packet of the transmitter even if the receiver is far from the transmitter as shown in the left figure of FIG.
  • the receiver may be out of the communication range of the data packet of the transmitter.
  • FIG. 5 is a flowchart illustrating an operation of an RTS / CTS handshaking method according to an embodiment of the present invention, and illustrates an operation flowchart of exposed nodes located within a communication range of a control packet or a data packet.
  • the method according to an embodiment of the present invention is applicable not only to the exposure nodes but also to the transmitter and the receiver.
  • the steps of receiving the packet and confirming the received packet type differ from the NAV according to the identified packet type.
  • Step S530 is a process of determining whether the received packet is one of an RTS packet, a CTS packet, and a DATA packet, and steps S540 to S560 set NAVs according to whether the type of the determined packet is an RTS packet, a CTS packet, or a DATA packet. It's a process.
  • the step of setting the NAV is the next packet transmission if the terminal is located within the communication range of the control packet of the transmitter transmitting the RTS packet or the data packet of the transmitter transmitting the data packet NAV (RTS) or NAV (DATA) may be set during the interval, and if the corresponding terminal is located within the communication range of the control packet of the receiver transmitting the CTS packet, the NAV (CTS) may be set during the next packet transmission interval.
  • FIG. 6 shows an exemplary diagram for explaining NAV settings and generated exposure nodes of exposed nodes in a communication range of an RTS packet.
  • exposed nodes located in the communication range R_control of the transmitter's RTS packet also receive the RTS packet.
  • Each of the exposed nodes located within the communication range of the control packet of the transmitter receives the RTS packet and sets the NAV (RTS) 620 only during the CTS packet transmission interval 610.
  • R_control which is a communication range of the RTS packet, means a communication range of control packets such as RTS, CTS, and ACK of the transmitter.
  • FIG. 7 illustrates an example diagram for describing NAV settings and generated exposure nodes of exposed nodes in a communication range of a CTS packet, in which a transmission rate of a data packet is low (left diagram) and high (right diagram). It is shown together.
  • a receiver receiving an RTS packet transmits a CTS packet PD CTS for an RTS packet
  • exposed nodes located in the communication range R_control of the CTS packet of the receiver also receive the CTS packet.
  • Each of the exposed nodes located within the communication range of the control packet of the receiver receives the CTS packet and sets the NAV (CTS) 640 only during the DATA packet transmission interval 630.
  • CTS NAV
  • R_control which is a communication range of the CTS packet
  • nodes located within the communication range of the control packet of the transmitter and located outside the communication range of the control packet of the receiver do not set the NAV during the DATA packet transmission interval 630.
  • the number of exposed nodes generated during the operation can be reduced, thereby increasing the use efficiency of radio resources.
  • FIG. 8 shows an example diagram for explaining NAV setting of exposed nodes and generated exposed nodes in a communication range of a DATA packet, in which the transmission speed of the data packet is low (left diagram) and high (right diagram). It is shown together.
  • exposed nodes located within a communication range R_data of the transmitter's DATA packet also receive a DATA packet.
  • Each of the exposed nodes located within the communication range of the data packet of the transmitter receives the DATA packet and sets the NAV (DATA) 660 only during the ACK packet transmission interval 650.
  • the nodes located within the communication range of the control packet of the receiver and located outside the communication range of the data packet of the transmitter do not set the NAV during the ACK packet transmission interval 650, and thus are exposed nodes generated during the ACK packet transmission interval 650.
  • the efficiency of using radio resources can be increased.
  • the case where the transmission rate of the data packet is higher than the case where the transmission rate of the data packet is narrow can be further reduced because of the narrow communication range of the data packet.
  • FIG. 9 illustrates an exemplary diagram for explaining NAV configuration of exposed nodes and generated exposed nodes according to packet transmission and reception between a transmitter and a receiver.
  • the transmitter transmits an RTS packet
  • only nodes located within a communication range of the transmitter's control packet become exposed nodes, and each exposed node receives an RTS packet to receive a CTS packet.
  • the NAV (RTS) 620 is set only during the transmission interval 610.
  • NAV (CTS) 640 is set only during That is, nodes located within the communication range of the control packet of the transmitter and located outside the communication range of the control packet of the receiver are out of the exposure node.
  • NAV (DATA) 660 is set only during That is, nodes located within the communication range of the control packet of the receiver and located outside the communication range of the data packet of the transmitter are out of the exposure node.
  • the RTS / CTS handshaking method maximizes the use efficiency of radio resources by minimizing exposed nodes by setting the NAV only for the next packet transmission interval for the received control packet or data packet. You can.
  • the NAV value set in each of the exposed nodes may be included in the received control packet or data packet, and the NAV setting value and the setting interval according to the packet type are previously stored in each of the exposed nodes according to the situation. It may be.
  • FIG. 10 illustrates a configuration of a terminal according to an embodiment of the present invention.
  • the terminal 1000 is a terminal to which the above-described RTS / CTS handshaking method is applied, and includes a detector 1010 and a setting unit 1020.
  • the detector 1010 detects whether one of the control packet and the data packet transmitted from the transmitter or the receiver is received.
  • the detector 1010 may detect whether the received packet is an RTS packet, a CTS packet, or a data packet. Of course, the detector 1010 may detect a NAV value to be set from the received packet.
  • the setting unit 1020 sets the NAV only during the next predetermined packet transmission interval for the received packet when the detection unit 1010 detects the reception of either the control packet or the data packet.
  • the setting unit 1020 sets the NAV only during the CTS packet transmission interval. If the received packet is the CTS packet, the setting unit 1020 sets the NAV only during the data packet transmission interval. If it is a data packet, the NAV is set only during the ACK packet transmission interval.
  • the setting unit 1020 may set the NAV only during the corresponding transmission section using the NAV value included in the received packet, or the corresponding transmission section using the predetermined section and the NAV value according to the type of the received packet. You can also set the NAV value only during.
  • the setting unit 1020 may set the NAV during the next packet transmission interval when the terminal is located within the communication range of the control packet of the transmitter transmitting the RTS packet or the data packet of the transmitter transmitting the data packet.
  • the NAV may be set during the next packet transmission interval.

Abstract

무선 통신 자원의 효율 개선을 위한 RTS/CTS 핸드쉐이킹 방법이 개시된다. 본 발명의 일 실시예에 따른 RTS/CTS 핸드쉐이킹 방법은 RTS(Ready to Send) 패킷이 수신되면 미리 결정된 CTS(Clear to Send) 패킷 전송 구간 동안 제1 NAV(Network Allocation Vector)를 설정(setting)하는 단계; 및 CTS 패킷이 수신되면 미리 결정된 데이터 패킷 전송 구간 동안 제2 NAV를 설정하는 단계를 포함한다.

Description

통신 자원의 효율 개선을 위한 RTS/CTS 핸드쉐이킹 방법
본 발명은 통신 시스템에 관한 것으로서, 분산 맥 프로토콜(MAC Protocol)에서 사용하는RTS/CTS 핸드쉐이킹 과정에서 통신 자원의 사용 효율을 극대화할 수 있는 RTS/CTS 핸드쉐이킹 방법에 관한 것이다.
정보통신 기술의 발전과 더불어 다양한 무선 통신 기술이 개발되고 있다. 이 중에서 무선랜(wireless local area network, WLAN)은 분산 맥 프로토콜(MAC Protocol)기반의 무선 기술을 바탕으로 개인용 휴대 정보 단말기(personal digital assistant, PDA), 랩탑 컴퓨터(laptop computer), 휴대형 멀티미디어 플레이어(portable multimedia player, PMP) 등과 같은 휴대형 단말기를 사용하여 가정이나 기업 또는 특정 서비스 제공지역에서 무선으로 인터넷에 접속할 수 있도록 하는 기술이다.
통신 시스템은 그 단말의 통신을 감독하는 주체의 유무에 따라 중앙 집중형(centralized) 통신과 분산형(distributed) 통신으로 나눌 수 있다.
중앙 집중형 통신은 중심(center)이 되는 노드가 모든 것을 파악하고 해결할 수 있지만, 분산형 통신은 각각의 노드가 상황을 파악하고 서로 통신을 해야 하기 때문에 이에 대해 많은 맥 프로토콜(MAC protocol)이 연구되고 있다.
특히, 무선 네트워크에서 널리 쓰이는 분산 맥 프로토콜(MAC Protocol)인 IEEE 802.11 DCF(Distributed Coordination Function)와 같은 CSMA/CA(Carrier Sensing Multiple Access with Collision Avoidance) 맥 프로토콜에서는 무선 통신 시스템과 같이 노드의 전송범위 한계 때문에 발생하는 히든 노드 문제(hidden node problem) 를 해결하기 위해 RTS(Request to Send 또는 Ready to Send)/CTS(Clear to Send) 방법이 제안되었다. 다만, 제안된 RTS/CTS 방법은 RTS 또는 CTS가 제대로 수신되지 않는 경우에도 NAV를 설정함으로써 낭비를 일으키는 문제가 있으며, 그리고, 제안된 RTS/CTS 방법은 채널의 활용도를 낮추는 노출 터미널 또는 노출 노드 문제(exposed terminal problem)가 발생한다.
히든 노드 문제 해결을 위한 RTS/CTS 핸드쉐이킹 방법은 IEEE 802.11과 IEEE 802.15.4와 같은 무선 통신 시스템뿐만 아니라 RS-232와 전력전송통신 (Power Line Communication)과 같은 유선 통신 시스템에서도 널리 사용되고 있다.
본 발명의 실시예들은 기존의 RTS/CTS 방법이 RTS 또는 CTS가 제대로 수신되지 않는 경우에도 NAV를 설정함으로써 자원의 낭비를 유발하는 것을 방지한다.
또한, 본 발명의 실시예들은, RTS/CTS 핸드쉐이킹에 의하여 생성되는 노출 노드들(exposed nodes)을 최소화하여 무선 통신 또는 유선 통신 자원의 사용 효율을 극대화할 수 있는 RTS/CTS 핸드쉐이킹 방법을 제공한다.
또한, 본 발명의 실시예들은, 통신 자원의 사용 효율을 극대화할 수 있는 NAV(Network Allocation Vector) 설정 메커니즘을 제공한다.
본 발명의 일실시예에 따른 RTS/CTS 핸드쉐이킹 방법은 RTS(Ready to Send) 패킷이 수신되면 미리 결정된 CTS(Clear to Send) 패킷 전송 구간 동안 제1 NAV(Network Allocation Vector)를 설정(setting)하는 단계; 및 CTS 패킷이 수신되면 미리 결정된 데이터 패킷 전송 구간 동안 제2 NAV를 설정하는 단계를 포함한다.
나아가, 본 발명의 일 실시예에 따른 RTS/CTS 핸드쉐이킹 방법은 데이터 패킷이 수신되면 미리 결정된 ACK(ACKnowledge) 패킷 전송 구간 동안 제3 NAV를 설정하는 단계를 더 포함할 수 있다.
상기 제1 NAV를 설정하는 단계는 상기 RTS 패킷을 전송하는 제1 단말기의 통신 레인지 내에 위치하는 경우 상기 제1 NAV를 설정하고, 상기 제2 NAV를 설정하는 단계는 상기 CTS 패킷을 전송하는 제2 단말기의 통신 레인지 내에 위치하는 경우 상기 제2 NAV를 설정할 수 있다.
본 발명의 다른 일 실시예에 따른 RTS/CTS 핸드쉐이킹 방법은 컨트롤 패킷 또는 데이터 패킷 중 어느 하나의 수신 여부를 검출하는 단계; 및 상기 컨트롤 패킷 또는 상기 데이터 패킷 중 어느 하나가 수신되면 수신된 패킷에 대해 미리 결정된 다음 패킷 전송 구간 동안 NAV(Network Allocation Vector)를 설정하는 단계를 포함한다.
상기 NAV를 설정하는 단계는 상기 수신된 패킷이 RTS 패킷이면 미리 결정된 CTS 패킷 전송 구간 동안에만 제1 NAV를 설정할 수 있고, 상기 RTS 패킷을 전송하는 제1 단말기의 통신 레인지 내에 위치하는 경우 상기 제1 NAV를 설정할 수 있다.
상기 NAV를 설정하는 단계는 상기 수신된 패킷이 CTS 패킷이면 미리 결정된 데이터 패킷 전송 구간 동안에만 제2 NAV를 설정할 수 있고, 상기 CTS 패킷을 전송하는 제2 단말기의 통신 레인지 내에 위치하는 경우 상기 제2 NAV를 설정할 수 있다.
상기 NAV를 설정하는 단계는 상기 수신된 패킷이 데이터 패킷이면 미리 결정된 ACK 패킷 전송 구간 동안 제3 NAV를 설정할 수 있다.
본 발명의 일 실시예에 따른 단말기는 컨트롤 패킷 또는 데이터 패킷 중 어느 하나의 수신 여부를 검출하는 검출부; 및 상기 컨트롤 패킷 또는 상기 데이터 패킷 중 어느 하나가 수신되면 수신된 패킷에 대해 미리 결정된 다음 패킷 전송 구간 동안 NAV(Network Allocation Vector)를 설정하는 설정부를 포함한다.
상기 설정부는 상기 수신된 패킷이 RTS 패킷이면 미리 결정된 CTS 패킷 전송 구간 동안에만 제1 NAV를 설정할 수 있고, 상기 RTS 패킷을 전송하는 제1 단말기의 통신 레인지 내에 위치하는 경우 상기 제1 NAV를 설정할 수 있다.
상기 설정부는 상기 수신된 패킷이 CTS 패킷이면 미리 결정된 데이터 패킷 전송 구간 동안에만 제2 NAV를 설정할 수 있고, 상기 CTS 패킷을 전송하는 제2 단말기의 통신 레인지 내에 위치하는 경우 상기 제2 NAV를 설정할 수 있다.
상기 설정부는 상기 수신된 패킷이 데이터 패킷이면 미리 결정된 ACK 패킷 전송 구간 동안 제3 NAV를 설정할 수 있다.
본 발명의 실시예들은 기존의 RTS/CTS 방법이 RTS 또는 CTS가 제대로 수신되지 않는 경우에도 NAV를 설정함으로써 자원의 낭비를 유발하는 것을 방지한다.
또한, 본 발명의 실시예들은, 컨트롤 패킷 또는 데이터 패킷을 수신하고, 수신된 패킷에 대해 미리 결정된 다음 패킷 전송 구간 동안에만 NAV를 설정함으로써, RTS/CTS 핸드쉐이킹에 의하여 생성되는 노출 노드들(exposed nodes)을 최소화하여 통신 자원의 사용 효율을 극대화할 수 있다.
이러한 본 발명의 실시예들은, IEEE 802.11, IEEE 802.15 등 다양한 무선 통신 시스템 뿐만 아니라 유선 통신 시스템의 표준에 적용할 수도 있고, 표준이 아니더라도 범용적인 통신 시스템에 적용할 수 있다.
도 1은 종래 RTS/CTS 핸드쉐이킹을 설명하기 위한 일 예시도를 나타낸 것이다.
도 2는 본 발명에서 사용되는 통신 레인지의 개념을 설명하기 위한 일 예시도를 나타낸 것이다.
도 3은 송신기와 수신기가 가까이 근접한 경우 통신 레인지를 설명하기 위한 일 예시도를 나타낸 것이다.
도 4는 송신기와 수신기가 가까이 근접하지 않은 경우 통신 레인지를 설명하기 위한 일 예시도를 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 RTS/CTS 핸드쉐이킹 방법에 대한 동작 흐름도를 나타낸 것이다.
도 6은 RTS 패킷의 통신 레인지에 있는 노출 노드들의 NAV 설정을 설명하기 위한 일 예시도를 나타낸 것이다.
도 7은 CTS 패킷의 통신 레인지에 있는 노출 노드들의 NAV 설정을 설명하기 위한 일 예시도를 나타낸 것이다.
도 8은 DATA 패킷의 통신 레인지에 있는 노출 노드들의 NAV 설정을 설명하기 위한 일 예시도를 나타낸 것이다.
도 9는 송신기와 수신기 간의 패킷 송수신에 따라 노출 노드들의 NAV 설정을 설명하기 위한 일 예시도를 나타낸 것이다.
도 10은 본 발명의 일 실시예에 따른 단말기에 대한 구성을 나타낸 것이다.
이하, 본 발명에 따른 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다. 그러나 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 또한, 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
본 발명의 실시예들은, 송신기(sender)와 수신기(receiver) 간 패킷을 송수신할 때, 송신기의 컨트롤 패킷과 데이터 패킷의 전송에 대한 통신 레인지와 수신기의 컨트롤 패킷의 전송에 대한 통신 레인지에 노출되는 노출 노드들에서, 수신되는 패킷에 따라 미리 결정된 전송 구간 동안에만 NAV를 설정함으로써, RTS/CTS 핸드쉐이킹에 의하여 생성되는 노출 노드들(exposed nodes)을 최소화하여 통신 자원의 사용 효율을 극대화하는 것을 그 요지로 한다.
여기서, RTS 패킷을 수신하는 노출 노드들은 CTS 패킷 전송 구간 동안에만 NAV를 설정하고, CTS 패킷을 수신하는 노출 노드들은 DATA 패킷 전송 구간 동안에만 NAV를 설정하며, DATA 패킷을 수신하는 노출 노드들은 ACK 패킷 전송 구간 동안에만 NAV를 설정함으로써, RTS/CTS 핸드쉐이킹에 의하여 생성되는 노출 노드들(exposed nodes)을 최소화할 수 있다.
이러한 본 발명의 실시예에 따른 RTS/CTS 핸드쉐이킹 방법은 통신 시스템의 스펙을 수정하지 않고도 수행될 수 있기 때문에 IEEE 802.11, IEEE 802.15 등 다양한 무선 통신 시스템의 표준 뿐만 아니라 유선 통신 시스템의 표준에도 적용할 수 있고, 나아가 표준이 아니더라도 범용적인 통신 시스템에 적용할 수도 있다.
도 1은 종래 RTS/CTS 핸드쉐이킹을 설명하기 위한 일 예시도를 나타낸 것이다.
송신기와 수신기 간 패킷 송수신 과정에 대해 간략하게 설명하면, 송신기는 RTS 패킷을 전송하고, 수신기는 RTS 패킷에 대한 CTS 패킷을 송신한다. RTS와 CTS 패킷의 송수신이 완료되면, 송신기는 데이터 패킷을 수신기로 전송하고, 수신기는 데이터 패킷을 수신하는 것에 응답하여 ACK 패킷을 전송한다.
도 1을 참조하여 종래 RTS/CTS 핸드쉐이킹 방법을 설명한다.
도 1의 왼쪽 도면과 같이, 송신기가 RTS 패킷(PDRTS)을 수신기로 전송하게 되면, 송신기의 컨트롤 패킷의 통신 레인지 내에 위치하고 있는 노출 노드들은 RTS 패킷을 수신하고, RTS 패킷에 대해 미리 설정된 전송 구간 동안 즉, CTS 패킷 전송 구간부터 ACK 패킷 전송 구간까지 NAV(RTS)(110)를 설정함으로써, NAV(RTS) 동안 패킷의 전송을 미루게 된다.
그리고 도 1의 오른쪽 도면과 같이, 수신기는 송신기로부터 전송된 RTS 패킷을 수신하고 이에 대한 CTS 패킷을 송신기로 전송하게 되면, 수신기의 컨트롤 패킷의 통신 레인지 내에 위치하고 있는 노출 노드들 또한 CTS 패킷을 수신하고, CTS 패킷에 대해 미리 설정된 전송 구간 동안 즉, DATA 패킷 전송 구간부터 ACK 패킷 전송 구간까지 NAV(CTS)(120)를 설정함으로써, NAV(CTS) 동안 패킷의 전송을 미루게 된다.
도 1을 통해 알 수 있듯이, 종래 RTS/CTS 핸드쉐이킹 방법은 CTS 패킷 전송 구간 동안 송신기의 컨트롤 패킷의 통신 레인지 내에 위치한 단말기들 또는 노드들을 노출 노드들로 포함하고, DATA 패킷 전송 구간과 ACK 패킷 전송 구간 동안 송신기의 컨트롤 패킷의 통신 레인지와 수신기의 컨트롤 패킷의 통신 레인지 내에 위치한 단말기들을 노출 노드들로 포함한다.
따라서, 종래 RTS/CTS 핸드쉐이킹 방법은 송신기의 컨트롤 패킷의 통신 레인지와 수신기의 컨트롤 패킷의 통신 레인지 내에 위치한 단말기들 모두를 노출 노드들로 생성하기 때문에 무선 자원의 사용 효율이 떨어지게 된다.
도 1에서 설명한 통신 레인지에 대한 개념을 도 2 내지 도 4를 참조하여 설명하면 다음과 같다.
도 2는 본 발명에서 사용되는 통신 레인지의 개념을 설명하기 위한 일 예시도를 나타낸 것이다.
도 2에 도시된 바와 같이, 컨트롤 패킷 또는 데이터 패킷을 송신하거나 수신하는 PAC 기기 예를 들어, 단말기, AP(Access Point) 등은 컨트롤 패킷의 통신 레인지(R_control)와 데이터 패킷의 통신 레인지(R_data)를 가질 수 있다.
컨트롤 패킷의 통신 레인지(R_control)는 RTS, CTS, ACK와 같은 컨트롤 패킷이 전송될 수 있는 통신 레인지를 의미하고, 데이터 패킷의 통신 레인지(R_data)는 데이터 패킷이 전송될 수 있는 통신 레인지를 의미한다.
이 때, 컨트롤 패킷의 전송 속도는 데이터 패킷의 전송 속도보다 낮기 때문에 컨트롤 패킷의 통신 레인지(R_control)는 데이터 패킷의 통신 레인지(R_data)보다 넓은 것으로 간주될 수 있다.
그리고, 컨트롤 패킷의 통신 레인지(R_control)는 캐리어 센싱 레인지와 동일하게 볼 수 있다.
도 3은 송신기와 수신기가 가까이 근접한 경우 통신 레인지를 설명하기 위한 일 예시도를 나타낸 것이다.
도 3에 도시된 바와 같이, 데이터 패킷의 통신 레인지는 데이터 패킷의 전송 속도에 따라 달라질 수 있으며, 데이터 패킷의 통신 레인지는 데이터 패킷의 전송 속도가 높아질수록 짧아지거나 좁아질 수 있다.
도 3의 왼쪽 그림의 경우, 데이터 패킷의 전송 속도가 높아 송신기의 데이터 패킷의 통신 레인지가 좁은 상태임에도 불구하고 송신기(sender)와 수신기(receiver)가 충분히 가까운 위치에 있기 때문에 수신기는 송신기의 데이터 패킷의 통신 레인지 내에 위치 할 수 있다. 반면, 도 3의 오른쪽 그림의 경우, 데이터 패킷의 전송 속도가 높아 송신기의 데이터 패킷의 통신 레인지가 좁은 상태이기 때문에 송신기와 수신기가 조금만 멀어지더라도 수신기는 송신기의 데이터 패킷의 통신 레인지를 벗어날 수 있다.
도 4는 송신기와 수신기가 가까이 근접하지 않은 경우 통신 레인지를 설명하기 위한 일 예시도를 나타낸 것이다.
도 4에 도시된 바와 같이, 데이터 패킷의 전송 속도가 도3에 도시된 데이터 패킷의 전송 속도보다 낮기 때문에 데이터 패킷의 통신 레인지는 도 3에 도시된 데이터 패킷의 통신 레인지보다 더 넓게 또는 길게 형성될 수 있다.
즉, 송신기와 수신기는 송신기의 데이터 패킷의 전송 속도가 높지 않기 때문에 수신기가 도 4의 왼쪽 도면과 같이 송신기로부터 어느 정도 멀어지더라도 송신기의 데이터 패킷의 통신 레인지 내에 위치할 수 있다. 물론, 수신기가 도 4의 오른쪽 그림과 같이 송신기로부터 많이 멀어지는 경우에는 송신기의 데이터 패킷의 통신 레인지를 벗어날 수 있다.
도 5는 본 발명의 일 실시예에 따른 RTS/CTS 핸드쉐이킹 방법에 대한 동작 흐름도를 나타낸 것으로, 컨트롤 패킷 또는 데이터 패킷의 통신 레인지 내에 위치하는 노출 노드들에서의 동작 흐름도를 나타낸 것이다. 물론, 본 발명의 일 실시예에 따른 방법은 노출 노드들에만 적용되는 것이 아니라 송신기와 수신기에도 적용할 수 있다.
도 5를 참조하면, 본 발명의 일 실시예에 따른 RTS/CTS 핸드쉐이킹 방법은 패킷을 수신하고 수신된 패킷의 종류를 확인하는 단계(S510, S520)와 확인된 패킷의 종류에 따라 NAV를 상이하게 설정하는 단계(S530 내지 S560)를 포함한다.
단계 S530은 수신된 패킷이 RTS 패킷, CTS 패킷, DATA 패킷 중 어느 하나인지 판단하는 과정이고, 단계 S540 내지 S560은 판단된 패킷의 종류가 RTS 패킷인지 CTS 패킷인지 DATA 패킷인지에 따라 각각 NAV를 설정하는 과정이다.
이 때, NAV를 설정하는 단계(S530 내지 S560)는 해당 단말기가 RTS 패킷을 전송하는 송신기의 컨트롤 패킷의 통신 레인지 또는 데이터 패킷을 전송하는 송신기의 데이터 패킷의 통신 레인지 내에 위치하는 경우 그 다음 패킷 전송 구간 동안에 NAV(RTS) 또는 NAV(DATA)를 설정할 수 있으며, 해당 단말기가 CTS 패킷을 전송하는 수신기의 컨트롤 패킷의 통신 레인지 내에 위치하는 경우 그 다음 패킷 전송 구간 동안에 NAV(CTS)를 설정할 수 있다.
이러한 본 발명의 일 실시예에 따른 방법을 도 6 내지 도 9를 참조하여 상세히 설명하면 다음과 같다.
도 6은 RTS 패킷의 통신 레인지에 있는 노출 노드들의 NAV 설정과 생성되는 노출 노드들을 설명하기 위한 일 예시도를 나타낸 것이다.
도 6을 참조하면, 송신기(sender)가 수신기(receiver)로 RTS 패킷(PDRTS)을 전송하면, 송신기의 RTS 패킷의 통신 레인지(R_control) 내에 위치한 노출 노드들 또한 RTS 패킷을 수신한다.
송신기의 컨트롤 패킷의 통신 레인지 내에 위치한 노출 노드들 각각은 RTS 패킷을 수신하고 CTS 패킷 전송 구간(610) 동안에만 NAV(RTS)(620)를 설정한다.
이 때, RTS 패킷의 통신 레인지인 R_control은 송신기의 RTS, CTS, ACK와 같은 컨트롤 패킷의 통신 레인지를 의미한다.
도 7은 CTS 패킷의 통신 레인지에 있는 노출 노드들의 NAV 설정과 생성되는 노출 노드들을 설명하기 위한 일 예시도를 나타낸 것으로, 데이터 패킷의 전송 속도가 낮은 경우(왼쪽 도면)와 높은 경우(오른쪽 도면)를 함께 나타낸 것이다.
도 7을 참조하면, RTS 패킷을 수신한 수신기가 RTS 패킷에 대한 CTS 패킷(PDCTS)을 전송하면, 수신기의 CTS 패킷의 통신 레인지(R_control) 내에 위치한 노출 노드들 또한 CTS 패킷을 수신한다.
수신기의 컨트롤 패킷의 통신 레인지 내에 위치한 노출 노드들 각각은 CTS 패킷을 수신하고 DATA 패킷 전송 구간(630) 동안에만 NAV(CTS)(640)를 설정한다.
이 때, CTS 패킷의 통신 레인지인 R_control은 수신기의 RTS, CTS, ACK와 같은 컨트롤 패킷의 통신 레인지를 의미한다.
도 7를 통해 알 수 있듯이, 송신기의 컨트롤 패킷의 통신 레인지 내에 위치하면서 수신기의 컨트롤 패킷의 통신 레인지 바깥에 위치한 노드들은 DATA 패킷 전송 구간(630) 동안 NAV를 설정하지 않기 때문에 DATA 패킷 전송 구간(630) 동안 생성되는 노출 노드들을 줄일 수 있고, 따라서 무선 자원의 사용 효율을 높일 수 있다.
도 8은 DATA 패킷의 통신 레인지에 있는 노출 노드들의 NAV 설정과 생성되는 노출 노드들을 설명하기 위한 일 예시도를 나타낸 것으로, 데이터 패킷의 전송 속도가 낮은 경우(왼쪽 도면)와 높은 경우(오른쪽 도면)를 함께 나타낸 것이다.
도 8을 참조하면, CTS 패킷을 수신한 송신기가 데이터 패킷(PDDATA)을 전송하면, 송신기의 DATA 패킷의 통신 레인지(R_data) 내에 위치한 노출 노드들 또한 DATA 패킷을 수신한다.
송신기의 데이터 패킷의 통신 레인지 내에 위치한 노출 노드들 각각은 DATA 패킷을 수신하고 ACK 패킷 전송 구간(650) 동안에만 NAV(DATA)(660)를 설정한다.
여기서, 수신기의 컨트롤 패킷의 통신 레인지 내에 위치하면서 송신기의 데이터 패킷의 통신 레인지 바깥에 위치한 노드들은 ACK 패킷 전송 구간(650) 동안 NAV를 설정하지 않기 때문에 ACK 패킷 전송 구간(650) 동안 생성되는 노출 노드들을 줄여 무선 자원의 사용 효율을 높일 수 있다.
물론, 데이터 패킷의 전송 속도가 낮은 경우보다 높은 경우가 데이터 패킷의 통신 레인지가 좁기 때문에 생성되는 노출 노드들이 더 줄어들 수 있다.
도 9는 송신기와 수신기 간의 패킷 송수신에 따라 노출 노드들의 NAV 설정과 생성되는 노출 노드들을 설명하기 위한 일 예시도를 나타낸 것이다.
도 9를 참조하면, 도 9의 왼쪽 도면과 같이, 송신기에서 RTS 패킷을 전송하게 되면 송신기의 컨트롤 패킷의 통신 레인지 내에 위치한 노드들만 노출 노드들이 되고, 노출 노드들 각각은 RTS 패킷을 수신하여 CTS 패킷 전송 구간(610) 동안에만 NAV(RTS)(620)를 설정한다.
그리고, 도 9의 중앙 도면과 같이, 수신기에서 CTS 패킷을 전송하게 되면 수신기의 컨트롤 패킷의 통신 레인지 내에 위치한 노드들만 노출 노드들이 되고, 노출 노드들 각각은 CTS 패킷을 수신하여 DATA 패킷 전송 구간(630) 동안에만 NAV(CTS)(640)를 설정한다. 즉, 송신기의 컨트롤 패킷의 통신 레인지 내에 위치하면서 수신기의 컨트롤 패킷의 통신 레인지 바깥에 위치한 노드들은 노출 노드에서 벗어나게 된다.
그리고, 도 9의 오른쪽 도면과 같이, 송신기에서 DATA 패킷을 전송하게 되면 송신기의 데이터 패킷의 통신 레인지 내에 위치한 노드들만 노출 노드들이 되고, 노출 노드들 각각은 DATA 패킷을 수신하여 ACK 패킷 전송 구간(650) 동안에만 NAV(DATA)(660)를 설정한다. 즉, 수신기의 컨트롤 패킷의 통신 레인지 내에 위치하면서 송신기의 데이터 패킷의 통신 레인지 바깥에 위치한 노드들은 노출 노드에서 벗어나게 된다.
이와 같이, 본 발명의 실시예에 따른 RTS/CTS 핸드쉐이킹 방법은 수신된 컨트롤 패킷 또는 데이터 패킷에 대해 그 다음 패킷 전송 구간 동안에만 NAV를 설정함으로써, 노출 노드들을 최소화하여 무선 자원의 사용 효율을 극대화시킬 수 있다.
본 발명의 실시예에서, 노출 노드들 각각에서 설정하는NAV 값은 수신되는 컨트롤 패킷 또는 데이터 패킷에 포함될 수 있으며, 상황에 따라 패킷 종류에 따른 NAV 설정 값과 설정 구간이 노출 노드들 각각에 미리 저장되어 있을 수도 있다.
도 10은 본 발명의 일 실시예에 따른 단말기에 대한 구성을 나타낸 것이다.
도 10을 참조하면, 본 발명의 일 실시예에 따른 단말기(1000)는 상술한 RTS/CTS 핸드쉐이킹 방법이 적용된 단말기로, 검출부(1010) 및 설정부(1020)를 포함한다.
검출부(1010)는 패킷을 송신기 또는 수신기로부터 전송된 컨트롤 패킷 또는 데이터 패킷 중 어느 하나의 수신 여부를 검출한다.
검출부(1010)는 수신된 패킷이 RTS 패킷, CTS 패킷, 데이터 패킷인지 검출할 수 있다. 물론, 검출부(1010)는 수신된 패킷으로부터 설정하고자 하는 NAV 값을 검출할 수도 있다.
설정부(1020)는 검출부(1010)에 의해 컨트롤 패킷 또는 데이터 패킷 중 어느 하나의 수신이 검출되면 수신된 패킷에 대해 미리 결정된 다음 패킷 전송 구간 동안에만 NAV를 설정한다.
예를 들어, 설정부(1020)는 수신된 패킷이 RTS 패킷이면 CTS 패킷 전송 구간 동안에만 NAV를 설정하고, 수신된 패킷이 CTS 패킷이면 데이터 패킷 전송 구간 동안에만 NAV를 설정하며, 수신된 패킷이 데이터 패킷이면 ACK 패킷 전송 구간 동안에만 NAV를 설정한다.
이 때, 설정부(1020)는 수신된 패킷에 포함된 NAV 값을 이용하여 해당 전송 구간 동안에만 NAV를 설정할 수도 있고, 수신된 패킷의 종류에 따라 미리 결정된 구간과 NAV 값을 이용하여 해당 전송 구간 동안에만 NAV 값을 설정할 수도 있다.
이러한 설정부(1020)는 해당 단말기가 RTS 패킷을 전송하는 송신기의 컨트롤 패킷의 통신 레인지 또는 데이터 패킷을 전송하는 송신기의 데이터 패킷의 통신 레인지 내에 위치하는 경우 그 다음 패킷 전송 구간 동안에 NAV를 설정할 수 있으며, 해당 단말기가 CTS 패킷을 전송하는 수신기의 컨트롤 패킷의 통신 레인지 내에 위치하는 경우 그 다음 패킷 전송 구간 동안에 NAV를 설정할 수 있다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (15)

  1. RTS(Ready to Send) 패킷이 수신되면 미리 결정된 CTS(Clear to Send) 패킷 전송 구간 동안 제1 NAV(Network Allocation Vector)를 설정(setting)하는 단계; 및
    CTS 패킷이 수신되면 미리 결정된 데이터 패킷 전송 구간 동안 제2 NAV를 설정하는 단계
    를 포함하는 RTS/CTS 핸드쉐이킹 방법.
  2. 제1항에 있어서,
    데이터 패킷이 수신되면 미리 결정된 ACK(ACKnowledge) 패킷 전송 구간 동안 제3 NAV를 설정하는 단계
    를 더 포함하는 RTS/CTS 핸드쉐이킹 방법.
  3. 제1항에 있어서,
    상기 제1 NAV를 설정하는 단계는
    상기 RTS 패킷을 전송하는 제1 단말기의 통신 레인지 내에 위치하는 경우 상기 제1 NAV를 설정하고,
    상기 제2 NAV를 설정하는 단계는
    상기 CTS 패킷을 전송하는 제2 단말기의 통신 레인지 내에 위치하는 경우 상기 제2 NAV를 설정하는 RTS/CTS 핸드쉐이킹 방법.
  4. 컨트롤 패킷 또는 데이터 패킷 중 어느 하나의 수신 여부를 검출하는 단계; 및
    상기 컨트롤 패킷 또는 상기 데이터 패킷 중 어느 하나가 수신되면 수신된 패킷에 대해 미리 결정된 다음 패킷 전송 구간 동안 NAV(Network Allocation Vector)를 설정하는 단계
    를 포함하는 RTS/CTS 핸드쉐이킹 방법.
  5. 제4항에 있어서,
    상기 NAV를 설정하는 단계는
    상기 수신된 패킷이 RTS 패킷이면 미리 결정된 CTS 패킷 전송 구간 동안에만 제1 NAV를 설정하는 RTS/CTS 핸드쉐이킹 방법.
  6. 제5항에 있어서,
    상기 NAV를 설정하는 단계는
    상기 RTS 패킷을 전송하는 제1 단말기의 통신 레인지 내에 위치하는 경우 상기 제1 NAV를 설정하는 RTS/CTS 핸드쉐이킹 방법.
  7. 제4항에 있어서,
    상기 NAV를 설정하는 단계는
    상기 수신된 패킷이 CTS 패킷이면 미리 결정된 데이터 패킷 전송 구간 동안에만 제2 NAV를 설정하는 RTS/CTS 핸드쉐이킹 방법.
  8. 제7항에 있어서,
    상기 NAV를 설정하는 단계는
    상기 CTS 패킷을 전송하는 제2 단말기의 통신 레인지 내에 위치하는 경우 상기 제2 NAV를 설정하는 RTS/CTS 핸드쉐이킹 방법.
  9. 제4항에 있어서,
    상기 NAV를 설정하는 단계는
    상기 수신된 패킷이 데이터 패킷이면 미리 결정된 ACK 패킷 전송 구간 동안 제3 NAV를 설정하는 RTS/CTS 핸드쉐이킹 방법.
  10. 컨트롤 패킷 또는 데이터 패킷 중 어느 하나의 수신 여부를 검출하는 검출부; 및
    상기 컨트롤 패킷 또는 상기 데이터 패킷 중 어느 하나가 수신되면 수신된 패킷에 대해 미리 결정된 다음 패킷 전송 구간 동안 NAV(Network Allocation Vector)를 설정하는 설정부
    를 포함하는 단말기.
  11. 제10항에 있어서,
    상기 설정부는
    상기 수신된 패킷이 RTS 패킷이면 미리 결정된 CTS 패킷 전송 구간 동안에만 제1 NAV를 설정하는 단말기.
  12. 제11항에 있어서,
    상기 설정부는
    상기 RTS 패킷을 전송하는 제1 단말기의 통신 레인지 내에 위치하는 경우 상기 제1 NAV를 설정하는 단말기.
  13. 제10항에 있어서,
    상기 설정부는
    상기 수신된 패킷이 CTS 패킷이면 미리 결정된 데이터 패킷 전송 구간 동안에만 제2 NAV를 설정하는 단말기.
  14. 제13항에 있어서,
    상기 설정부는
    상기 CTS 패킷을 전송하는 제2 단말기의 통신 레인지 내에 위치하는 경우 상기 제2 NAV를 설정하는 단말기.
  15. 제10에 있어서,
    상기 설정부는
    상기 수신된 패킷이 데이터 패킷이면 미리 결정된 ACK 패킷 전송 구간 동안 제3 NAV를 설정하는 단말기.
PCT/KR2015/009825 2014-09-18 2015-09-18 통신 자원의 효율 개선을 위한 rts/cts 핸드쉐이킹 방법 WO2016043551A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/506,220 US10893441B2 (en) 2014-09-18 2015-09-18 RTS/CTS handshaking method for improving efficiency of communication resources
US17/114,236 US20210092644A1 (en) 2014-09-18 2020-12-07 Rts/cts handshaking method for improving efficiency of communication resources

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0124135 2014-09-18
KR20140124135 2014-09-18
KR10-2015-0040038 2015-03-23
KR1020150040038A KR101657884B1 (ko) 2014-09-18 2015-03-23 통신 자원의 효율 개선을 위한 rts/cts 핸드쉐이킹 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/506,220 A-371-Of-International US10893441B2 (en) 2014-09-18 2015-09-18 RTS/CTS handshaking method for improving efficiency of communication resources
US17/114,236 Continuation US20210092644A1 (en) 2014-09-18 2020-12-07 Rts/cts handshaking method for improving efficiency of communication resources

Publications (1)

Publication Number Publication Date
WO2016043551A1 true WO2016043551A1 (ko) 2016-03-24

Family

ID=55533516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009825 WO2016043551A1 (ko) 2014-09-18 2015-09-18 통신 자원의 효율 개선을 위한 rts/cts 핸드쉐이킹 방법

Country Status (1)

Country Link
WO (1) WO2016043551A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129423A (ja) * 2005-11-02 2007-05-24 Kddi Corp 許容遅延時間を考慮した無線アクセス制御方法、アクセスポイント、端末及びプログラム
JP2008252867A (ja) * 2007-03-05 2008-10-16 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
KR20080099602A (ko) * 2007-05-10 2008-11-13 엘지전자 주식회사 무선 네트워크의 전송 보호 방법
KR20110058710A (ko) * 2009-11-24 2011-06-01 한국전자통신연구원 다중 사용자 다중 안테나 기반 무선통신 시스템에서 데이터 보호 방법
US20130070668A1 (en) * 2011-09-16 2013-03-21 Qualcomm Incorporated Apparatus and method for transmission and recovery modes for an rts/cts system that utilizes multichannels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129423A (ja) * 2005-11-02 2007-05-24 Kddi Corp 許容遅延時間を考慮した無線アクセス制御方法、アクセスポイント、端末及びプログラム
JP2008252867A (ja) * 2007-03-05 2008-10-16 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
KR20080099602A (ko) * 2007-05-10 2008-11-13 엘지전자 주식회사 무선 네트워크의 전송 보호 방법
KR20110058710A (ko) * 2009-11-24 2011-06-01 한국전자통신연구원 다중 사용자 다중 안테나 기반 무선통신 시스템에서 데이터 보호 방법
US20130070668A1 (en) * 2011-09-16 2013-03-21 Qualcomm Incorporated Apparatus and method for transmission and recovery modes for an rts/cts system that utilizes multichannels

Similar Documents

Publication Publication Date Title
WO2012070811A2 (en) Method and system for minimizing latencies for content protection in audio/video networks
WO2009136724A2 (en) Device and method for multicast in wireless local access network
WO2012118258A1 (en) Communication method of terminals and access point for uplink mu-mimo channel access
WO2015182968A1 (ko) 데이터 동시 송수신을 위한 무선 통신 방법 및 이를 이용한 무선 통신 장치
WO2010077075A2 (en) System and method for contention-based channel access for peer-to-peer connection in wireless networks
WO2011065746A2 (ko) 다중 사용자 기반 무선통신 시스템에서 전송 실패 프레임의 복구 방법
WO2011065743A2 (ko) 다중 사용자 기반 무선통신 시스템에서의 프레임 전송방법
WO2010095793A1 (en) Channel access method for very high throughput (vht) wireless local access network system
WO2010044624A2 (en) Method for multicast frame transmission and duplicated multicast frame detection
WO2011037405A9 (en) Method and system for announcement time of idle timeout for power saving operations in wireless networks
WO2013036014A2 (en) Apparatus and method for setting channel in wireless network
WO2013122418A1 (en) Method and apparatus for supporting device-to-device communications
WO2017026824A1 (ko) 무선랜 시스템에서 nav 동작 방법 및 이를 위한 스테이션 장치
WO2011105738A2 (en) Method and apparatus for performing handover
WO2014109467A1 (ko) 무선랜 네트워크에 기반한 정보 제공 방법 및 장치
WO2012015281A2 (en) Apparatus and method for supporting agps traffic class in mobile communication system
WO2012043965A1 (en) Communication method using multi-radio and communication apparatus
WO2011014036A2 (ko) 무선 근거리 통신망에서의 패킷 송신 방법 및 장치
WO2020196989A1 (ko) 무선 통신 신호 송수신 방법 및 무선 통신 신호 송수신 단말 장치
WO2019231215A1 (ko) 단말 장치 및 이에 의한 악성 ap의 식별 방법
WO2016043551A1 (ko) 통신 자원의 효율 개선을 위한 rts/cts 핸드쉐이킹 방법
WO2011068384A2 (ko) 광대역 무선 통신 시스템에서 고정 자원 할당 방법 및 장치
WO2018012765A1 (ko) 무선랜 시스템에서의 자동 채널 변경 방법 및 그 장치
WO2011021765A1 (ko) 근거리 영역에서의 방송 서비스 시스템 및 방법, 그리고 이에 적용되는 장치
WO2015122556A1 (ko) 다중 주파수 네트워크에서 단말간 직접 통신 기법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841266

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15506220

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841266

Country of ref document: EP

Kind code of ref document: A1