WO2016042466A2 - Iterative image reconstruction with a sharpness driven regularization parameter - Google Patents

Iterative image reconstruction with a sharpness driven regularization parameter Download PDF

Info

Publication number
WO2016042466A2
WO2016042466A2 PCT/IB2015/057072 IB2015057072W WO2016042466A2 WO 2016042466 A2 WO2016042466 A2 WO 2016042466A2 IB 2015057072 W IB2015057072 W IB 2015057072W WO 2016042466 A2 WO2016042466 A2 WO 2016042466A2
Authority
WO
WIPO (PCT)
Prior art keywords
spectral
image
regularization parameter
spectral image
sharpness
Prior art date
Application number
PCT/IB2015/057072
Other languages
French (fr)
Other versions
WO2016042466A3 (en
Inventor
Thomas Koehler
Roland Proksa
Michael Grass
Original Assignee
Koninklijke Philips N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips N.V. filed Critical Koninklijke Philips N.V.
Priority to EP15778736.7A priority Critical patent/EP3195265B1/en
Priority to JP2016571341A priority patent/JP6275287B2/en
Priority to US15/308,378 priority patent/US9959640B2/en
Priority to CN201580030837.3A priority patent/CN106462985B/en
Publication of WO2016042466A2 publication Critical patent/WO2016042466A2/en
Publication of WO2016042466A3 publication Critical patent/WO2016042466A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5282Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to scatter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/408Dual energy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/424Iterative

Definitions

  • CT computed tomography
  • a CT scanner includes an x-ray tube mounted on a rotatable gantry that rotates around an examination region about a z-axis.
  • a detector array subtends an angular arc opposite the examination region from the x-ray tube.
  • the x-ray tube emits radiation that traverses the examination region.
  • the detector array detects radiation that traverses the examination region and generates projection data indicative thereof.
  • a reconstructor processes the projection data using an iterative or non-iterative reconstruction algorithm and generates volumetric image data indicative of the examination region.
  • the volumetric image data does not reflect the spectral characteristics as the signal output by the detector array is proportional to the energy fluence integrated over the energy spectrum.
  • a CT scanner configured for spectral CT has included a single broad spectrum x-ray tube and an energy-resolving detector array with energy-resolving detectors (e.g., with photon counting detectors, at least two sets of photodiodes with different spectral
  • a signal decomposer decomposes the energy-resolved signals into various energy dependent components, and a reconstructor reconstructs the individual components, generating volumetric image data that reflects the spectral characteristics.
  • Cost(x) -L(Ax
  • voxels representing sharp edges e.g., bone
  • low contrast structure e.g., soft tissue
  • a final image noise level is typically used (e.g., decrease image noise by 30%) to determine the regularization parameter ⁇ that provides a uniform decrease in noise across the image.
  • Spectral images are separately reconstructed, and then combined, through a linear combination, to produce an image for display.
  • the spectral images may have similar noise; however, there is no guarantee that they will have a similar spatial resolution, and, unfortunately, a linear combination of spectral images having different spatial resolution may introduce artifact and/or have incorrect quantitative values.
  • a method includes performing a first pass of an iterative reconstruction in which an intermediate photoelectric image and an intermediate Compton scatter image are generated using an iterative reconstruction algorithm, a start photoelectric image, a start Compton scatter image, an initial photoelectric regularization parameter, and an initial Compton scatter regularization parameter.
  • the method further includes updating at least one of the initial photoelectric regularization parameter or the initial Compton scatter regularization parameter, thereby creating an updated photoelectric regularization parameter or an updated Compton scatter regularization parameter, based on at least a sharpness of one of the intermediate photoelectric image or the intermediate Compton scatter image.
  • the method further includes performing a subsequent pass of the iterative reconstruction in which an updated intermediate photoelectric image and an updated intermediate Compton scatter image are generated using the iterative reconstruction algorithm, the intermediate
  • an image reconstructor includes a reconstruction processor that performs a first pass of an iterative reconstruction in which an intermediate photoelectric image and an intermediate Compton scatter image are generated using an iterative reconstruction algorithm, a start photoelectric image, a start Compton scatter image, an initial photoelectric regularization parameter, and an initial Compton scatter regularization parameter.
  • the image reconstructor further includes an updater that updates at least one of the initial photoelectric regularization parameter or the initial Compton scatter regularization parameter, thereby creating an updated photoelectric regularization parameter or an updated Compton scatter regularization parameter, based on at least a sharpness of one of the intermediate photoelectric image or the intermediate Compton scatter image.
  • the reconstruction processor performs a subsequent pass of the iterative reconstruction in which an updated intermediate photoelectric image and an updated intermediate Compton scatter image are generated using the iterative reconstruction algorithm, the intermediate
  • a computer readable storage medium is encoded with computer readable instructions, which, when executed by a processer, causes the processor to: perform a first pass of an iterative reconstruction in which an intermediate photoelectric image and an intermediate Compton scatter image are generated using an iterative reconstruction algorithm, a start photoelectric image, a start Compton scatter image, an initial photoelectric regularization parameter, and an initial Compton scatter regularization parameter; update at least one of the initial photoelectric regularization parameter or the initial Compton scatter regularization parameter, thereby creating an updated photoelectric regularization parameter or an updated Compton scatter regularization parameter, based on at least a sharpness of one of the intermediate photoelectric image or the intermediate Compton scatter image, and perform a subsequent pass of the iterative reconstruction in which an updated intermediate photoelectric image and an updated intermediate Compton scatter image are generated using the iterative reconstruction algorithm, the intermediate
  • FIGURE 1 schematically illustrates an example imaging system including a reconstructor that employs a statistical iterative image reconstruction algorithm with a sharpness dependent regularization parameter.
  • FIGURE 2 schematically illustrates an example of the statistical iterative image reconstruction algorithm.
  • FIGURE 3 illustrates an example method for driving the regularization parameter for one of the photoelectric image or the Compton scatter image, based on the other image.
  • FIGURE 4 illustrates an example method for independently driving the regularization parameter for the photoelectric image or the Compton scatter image, based on a predetermined sharpness.
  • the following describes an approach that employs a tissue dependent statistical iterative reconstruction update term in a statistical iterative reconstruction.
  • FIGURE 1 illustrates an example imaging system 100 such as a computed tomography (CT) system.
  • CT computed tomography
  • the imaging system 100 includes a stationary gantry 102 and a rotating gantry 104, which is rotatably supported by the stationary gantry 102.
  • the rotating gantry 104 rotates around an examination region 106 about a longitudinal or z-axis "Z".
  • a radiation source 110 such as an x-ray tube, is rotatably supported by the rotating gantry 104, rotates with the rotating gantry 104, and emits x-ray radiation that traverses the examination region 106.
  • the radiation source 110 is configured to switch an emission voltage between two or more emission voltages (e.g., 80 and 140 kVp, 100 and 120 kVp, etc.) within an integration period and/or otherwise.
  • the imaging system 100 includes multiple radiation sources 110 that emit radiation at different emission voltages.
  • the radiation source 110 includes a single broad spectrum x-ray tube.
  • a detector array 112 subtends an angular arc opposite the examination region 106 relative to the radiation source 110.
  • the detector array 112 detects radiation that traverses the examination region 106 and generates a signal indicative thereof. Where the radiation source voltage is switched between at least two emission voltages and/or two or more x-ray tubes emit radiation at two different emission voltages, the detector array 112 generates a signal for each of the radiation source voltages.
  • the detector array 112 includes an energy-resolving detector (e.g., multi-layered scintillator/photodiode, a direct conversion photon counting, etc.) that produces the signals.
  • a signal decomposer 114 decomposes the signals into energy-dependent components.
  • the signal can be decomposed into a photoelectric component, a Compton scatter component, and/or one or more other energy-dependent (e.g., K-edge) components.
  • a reconstructor 116 reconstructs the energy-dependent components, generating volumetric image data for each of the components.
  • the reconstructor 116 employs an iterative image reconstruction algorithm with a sharpness driven regularization 118 from a reconstruction algorithm memory 120.
  • a suitable iterative image reconstruction algorithm includes a spatial resolution (i.e., sharpness) driven regularization parameter in the update term for at least one of a plurality of independently reconstructed different spectral images such as photoelectric and/or Compton scatter images, high and/or low kVp images, etc.
  • the iterative reconstruction can be driven so that reconstructed spectral component images are reconstructed to have a same spatial resolution, or a same spatial resolution within a predetermined tolerance of each other.
  • this mitigates a spatial resolution mismatch between spectral component images that may occur with configurations in which the regularization parameter is not dependent on spatial resolution.
  • artifacts and/or incorrect quantitative values which may arise due to a resolution mismatch, are mitigated.
  • the reconstructor 116 can be implemented via one or more processors.
  • processors include a central processing unit (CPU), a microprocessor, and/or other processor.
  • the one or more processors execute one or more computer executable instructions embedded or encoded on computer readable storage medium, which excludes transitory medium and includes physical memory and/or other non- transitory medium.
  • a computer executable instruction is carried by transitory medium such as a carrier wave, signal, and/or other transitory medium, and the processor(s) executes the computer executable instructions.
  • a computer serves as an operator console 122.
  • the operator console 122 includes a human readable output device such as a monitor and an input device such as a keyboard, mouse, etc.
  • Software resident on the console 122 allows the operator to interact with and/or operate the scanner 100 via a graphical user interface (GUI) or otherwise.
  • GUI graphical user interface
  • the console 122 allows the operator to select the iterative image reconstruction algorithm 118 with the sharpness dependent regularization parameter, perform post-process the spectral images by combining the spectral images through a linear combination, etc.
  • a subject support 124 such as a couch supports a a human or animal subject or an object in the examination region 106.
  • the subject support 124 is movable in coordination with scanning so as to guide the a human or animal subject or object with respect to the examination region 106 before, during and/or after scanning, for loading, scanning, and/or unloading.
  • FIGURE 2 illustrates an example of the reconstructor 116.
  • a start image generator 202 receives the decomposed spectral components
  • the start spectral component images are generated using a filtered back-projection (FBP) reconstruction algorithm.
  • FBP filtered back-projection
  • the start image generator 202 generates the start spectral component images using a different reconstruction algorithm, through simulation, etc. In some embodiments, the start image generator 202 also generates a combined (non- spectral) image. For this, for example, the decomposed spectral components can be combined and then reconstructed via a FBP reconstruction algorithm, simulation, etc. to generate the combined image.
  • the start spectral component images include at least a photoelectric image and a Compton scatter image.
  • a reconstruction processor 204 receives the start spectral component images and performs a first pass reconstruction with an iterative reconstruction (IR) algorithm, using initial regularization parameters ⁇ ⁇ or ? C5 , which may be default, empirically determined, etc., and generates intermediate spectral component images.
  • IR iterative reconstruction
  • a suitable cost function is: -L(Ax
  • a suitable cost function is: -h(Ax ⁇ y) + ? C5 ⁇ i?(x).
  • Example IR algorithms are described in Schirra et al., "Statistical Reconstruction of Material Decomposed Data in Spectral CT," IEEE Trans. Med. Imag., 32(7): 1249- 1257, 2013, and international application s/n PCT/IB2012/056929, filed on December 4, 2012, and entitled “Automatic Determination of Regularization Factor for Iterative Image Reconstruction with Regularization and/or Image De-Noising,” the entirety of which is incorporated herein by reference.
  • Other algorithms are also contemplated herein.
  • the IR algorithm includes an update term, which is updated for each iteration.
  • An example update term ( x ( " +i) ) is shown EQUATION 1 :
  • n an iteration index
  • a is the index representing the image, i.e., PE or CS
  • x ⁇ represents the previous term
  • i represents a projection value index
  • TV represents the total number of measured line integrals
  • j represents a voxel index
  • c tj represents an element of the system matrix, i.e., it represents to influence of the image voxel j to the detector pixel i
  • i (f) 2—
  • a ai represents a measured line integral value for data set a
  • I represents the argument of the function (in Eq. 1, the function is evaluated at the forward projected image)
  • R( ) Mj is a neighborhood of the image voxel j
  • v1 ⁇ 4 are geometrical weights, for instance the inverse of the Euclidian distance between voxel j and k.
  • Other penalties are also contemplated.
  • a metric determiner 206 receives at least the intermediate spectral component images, and, in one instance, the start spectral images and/or the combined image, and generates metrics therefrom.
  • the metric determiner 206 includes a mask generator 208.
  • the generator 208 generates a noise mask and/or a sharpness mask, which are employed to identify one or more sub-regions in which noise and/or sharpness estimates are taken. In other embodiments, the mask generator 208 is omitted.
  • the mask generator 208 identifies one or more flat regions (i.e., homogenous regions or regions without edges) in the start Compton scatter image and generates the noise mask based thereon.
  • flat regions i.e., homogenous regions or regions without edges
  • An example approach for identifying a flat region is described in Bergner et al., "Robust Automated Regularization Factor Selection for Statistical Reconstructions," Second International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, USA, 24-27 June 2012.
  • the mask generator 208 first identifies one or more edges in the combined image.
  • the mask generator 208 can apply a Canny filter and/or other approach for identifying these edges.
  • the mask generator 208 generates the sharpness mask, in one instance, by thresholding to extract only a set of edges greater than a predetermined threshold value.
  • the resulting mask is a binary ⁇ 0,1 ⁇ edge image. Dilation may be used to get the surrounding, smoothing and avoid edge-artifacts.
  • the metric determiner 206 further includes a noise estimator 210, which determines a noise estimate for the intermediate spectral component images. This includes estimating the noise level in one or more sub-regions of the intermediate Compton scatter image that correspond to the one or more flat regions in the start Compton scatter image by applying the noise mask to the intermediate Compton scatter image and then estimating the noise level.
  • the noise level estimate may include determining a root mean square.
  • the metric determiner 206 further includes a sharpness estimator 212.
  • the sharpness estimator 212 determines a sharpness (i.e., spatial resolution) estimate for the start and/or intermediate Compton scatter images and/or the start and/or intermediate photoelectric spectral images. In one instance, this includes applying the sharpness mask to the Compton scatter image(s) and/or the photoelectric spectral image(s), and determining the sharpness within the one or more sub-regions identified by the mask.
  • Example approaches for estimating sharpness is described in Wee et al., "Measure of image sharpness using eigenvalues," Information Sciences 177 (2007), 2533 - 2552.
  • Such approaches include determining a variance of gray level values, a J ⁇ -norm of the image or a second derivative of the image gradient, an energy of the Laplacian of the image, an energy of a high-pass band to an energy of a low-pass band, a similarity of the image to a reference image, etc.
  • Other sharpness estimation approaches are also contemplated herein.
  • Stopping criteria can include, but is not limited to, achieving a spatial resolution of interest (e.g., a same resolution (within a tolerance) between the spectral component images) or a noise level of interest, reaching a maximum number of iterations, lapse of a pre-determined time interval, and/or other criteria. Once the stopping criteria is satisfied, the Logic 214 outputs of the intermediate spectral component images as final spectral component images. If the stopping criteria is not satisfied, then the logic 214 invokes a subsequent reconstruction pass.
  • a spatial resolution of interest e.g., a same resolution (within a tolerance) between the spectral component images
  • a noise level of interest reaching a maximum number of iterations, lapse of a pre-determined time interval, and/or other criteria.
  • a regularization parameter ( ?) updater 216 updates at least one of the two regularization parameters ⁇ ⁇ or ? C5 , in response to the stopping criteria not being satisfied and the logic 214 invoking a subsequent reconstruction pass.
  • An approach for updating nonspectral data based on a target noise is described in Bergner et al., "Robust Automated Regularization Factor Selection for Statistical Reconstructions," Second International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, USA, 24- 27 June 2012. The approach in Bergner et al. is based on proportional-integrating-derivative (PID) control.
  • PID proportional-integrating-derivative
  • the approach herein can also be based on PID control.
  • the regularization parameter(s) is updated based on a difference between the estimated noise of an intermediate image and a target noise level.
  • the regularization parameter(s) is updated based on a difference between a sharpness of an intermediate spectral image and a sharpness of a start image or a sharpness difference between the two
  • both ⁇ ⁇ or ⁇ ⁇ 5 are independently driven based on an absolute sharpness measure, such as a sharpness of a start image and/or other sharpness.
  • one of ⁇ ⁇ or ⁇ ⁇ 5 is sharpness driven, e.g., based on the sharpness of the other spectral image, so as to reach a same resolution between the photoelectric image and the Compton scatter image.
  • the other of ⁇ ⁇ or ⁇ ⁇ 5 can be noise driven, e.g., based on the target noise and/or otherwise.
  • the above describes a projection domain approach. A material decomposition in the image domain is also contemplated herein.
  • i is a pixel index in the projection space
  • j, f and k are pixel indices in the image space
  • a is an index for the image (high kV, low kV, or upper layer, lower layer)
  • ⁇ ⁇ represents the image values in an nth iteration
  • c represents elements of the system matrix
  • y represents measured projection values (i.e., measured photon counts)
  • Nj represents pixels neighboring pixel j
  • w represents weights that weight a difference between two pixels
  • b is the regularization parameter for image a and is dependent on which image is being reconstructed.
  • FIGURE 3 illustrates an example method for driving the regularization parameter for one of the Compton scatter or the photoelectric image based on a
  • start images are generated from spectral projection data. As described herein, this may include generating a start photoelectric image, a start Compton scatter image, and, optionally, a start combined image.
  • an intermediate photoelectric image and an intermediate Compton scatter image are generated based on the start images, an iterative image reconstruction algorithm, and initial regularization parameters.
  • a sharpness estimate is determined for the intermediate photoelectric image.
  • the sharpness estimate can be determined for a predetermined sub-region of interest, such as a sub-region corresponding to a sub-region of the combined image, as identified through the sharpness mask.
  • a noise estimate of the intermediate Compton scatter image is determined.
  • the noise estimate can be determined for a predetermined sub-region of interest, such as a sub-region corresponding to a homogenous region of the start Compton scatter image, as identified through the noise mask.
  • stopping criterion it is determined if stopping criterion has been satisfied.
  • suitable stopping criteria includes the sharpness estimate of the intermediate photoelectric image being within a tolerance of a sharpness of the intermediate Compton scatter image, the noise estimate of the intermediate Compton scatter image satisfying a predetermined target noise level, and/or other criteria.
  • intermediate Compton scatter image are output as a final photoelectric image and a final Compton scatter image.
  • the regularization parameters for the photoelectric image and the Compton scatter image are updated, and acts 304 to 310 are repeated. As described herein, this includes updating the regularization parameter for the photoelectric image based on a difference between sharpness of the intermediate photoelectric image and the sharpness of the intermediate Compton scatter image and updating the regularization parameter for the Compton scatter image based on a difference between the noise estimate of the intermediate Compton scatter image and the target noise.
  • FIGURE 4 illustrates an example method for independently driving the regularization parameter for the Compton scatter image and the regularization parameter for the photoelectric image based on a predetermined sharpness.
  • start images are generated from spectral projection data. As described herein, this may include generating a start photoelectric image, a start Compton scatter image, and, optionally, a start combined image.
  • an intermediate photoelectric image and an intermediate Compton scatter image are generated based on the start images, an iterative image reconstruction algorithm, and initial regularization parameters.
  • a sharpness estimate is determined for the intermediate photoelectric and Compton scatter images.
  • the sharpness estimate can be determined for a predetermined sub-region of interest, such as a sub-region corresponding to a sub-region of the combined image, as identified through the sharpness mask.
  • suitable stopping criteria includes whether the sharpness of the intermediate spectral images are within a tolerance of a predetermined sharpness (or each other).
  • intermediate Compton scatter image are output as a final photoelectric image and a final Compton scatter image.
  • the regularization parameters for the photoelectric image and the Compton scatter image are updated and acts 404 to 408 are repeated.
  • the updating of the regularization parameters is based on a difference between the sharpness of the intermediate spectral images and a predetermined resolution of interest or each other.
  • the above may be implemented by way of computer readable instructions, encoded or embedded on computer readable storage medium, which, when executed by a computer processor(s), cause the processor(s) to carry out the described acts. Additionally or alternatively, at least one of the computer readable instructions is carried by a signal, carrier wave or other transitory medium.
  • grating-based phase contrast CT such as that discussed in Pfeiffer et al. "Hard X- ray Phase Tomography with Low-Brilliance Sources", Physical Review Letters 98, 108105, (2007), and Zanette et al. "Trimodal low-dose X-ray tomography", PNAS, 109(26) 10199- 10204 (2012).
  • the beam refraction and the small angle scattering also known as dark-field imaging
  • These signal components are typically retrieved from the measurements of the transmitted intensity for different relative positions of the gratings. This is conceptually the same as in spectral imaging where the signal components for Compton scatter and photoelectric absorption are also retrieved from measurements of transmitted intensity at different system configurations, i.e., beam filtrations or tube voltages).
  • the signals are typically assumed to follow a second order statistics, as discussed in Weber et al., "Noise in x-ray grating-based phase-contrast imaging", Medical Physics 38(7), 4133-4140 (2011). Since the mathematical pre -requisites are thus the same as for dual energy CT as stated in Equation 1, namely, that the signal depends linearly on the underlying image and that the noise is Gaussian, the very same update equation can be used to reconstruct the attenuation image, the phase image, and the dark field image from the individual signals, although the forward operator needs to be differential for the phase image, which is discussed in Koehler et al.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Data Mining & Analysis (AREA)
  • Pulmonology (AREA)
  • Quality & Reliability (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

A method includes performing a first pass of an iterative image reconstruction in which an intermediate first spectral image and an intermediate second spectral image are generated using an iterative image reconstruction algorithm, start first spectral and second spectral images, and initial first spectral regularization and second spectral regularization parameters, updating at least one of the initial first spectral regularization or second spectral regularization parameters, thereby creating an updated first spectral regularization or second spectral regularization parameter, based at least on a sharpness of one of the intermediate first spectral or second spectral images, and performing a subsequent pass of the iterative image reconstruction in which an updated intermediate first spectral and second spectral image is generated using the iterative image reconstruction algorithm, the intermediate first spectral and second spectral images, and the updated first spectral regularization and Compton scatter regularization parameters.

Description

Iterative Image Reconstruction With A Sharpness Driven Regularization Parameter
FIELD OF THE INVENTION
The following generally relates to iterative image reconstruction with a sharpness driven regularization and finds particular application to computed tomography (CT). The following is also amenable to other imaging modalities.
BACKGROUND OF THE INVENTION
A CT scanner includes an x-ray tube mounted on a rotatable gantry that rotates around an examination region about a z-axis. A detector array subtends an angular arc opposite the examination region from the x-ray tube. The x-ray tube emits radiation that traverses the examination region. The detector array detects radiation that traverses the examination region and generates projection data indicative thereof. A reconstructor processes the projection data using an iterative or non-iterative reconstruction algorithm and generates volumetric image data indicative of the examination region. The volumetric image data does not reflect the spectral characteristics as the signal output by the detector array is proportional to the energy fluence integrated over the energy spectrum.
A CT scanner configured for spectral CT has included a single broad spectrum x-ray tube and an energy-resolving detector array with energy-resolving detectors (e.g., with photon counting detectors, at least two sets of photodiodes with different spectral
sensitivities, etc.) and discrimination electronics, a single x-ray tube configured to switch between at least two different emission voltages (e.g., 80k Vp and 140 kVp) during scanning, or two or more x-ray tubes configured to emit radiation having different mean spectra. A signal decomposer decomposes the energy-resolved signals into various energy dependent components, and a reconstructor reconstructs the individual components, generating volumetric image data that reflects the spectral characteristics.
Reconstruction techniques have included filtered back-projection, statistical iterative image reconstruction, etc. An example statistical iterative image reconstruction algorithm has been based on a cost function, which includes a data fidelity term and an image noise penalty term. A general formulation of such a cost function is: Cost(x) = -L(Ax | y) + β R(x), where Cost(x) represents the cost function, L(Ax | y) represents a likelihood term that compares a forward projected image (Ax, where A is a forward projection operator and x is the image) to measured data (y), R (x) represents a roughness penalty term that penalizes noise (or "roughness") in the reconstructed image (x), and β represents a regularization term that controls a strength of the regularization.
With the above iterative image reconstruction formulation, in particular if the roughness penalty contains only linear or quadratic terms of the voxel values, voxels representing sharp edges (e.g., bone) and low contrast structure (e.g., soft tissue) are similarly smoothed. For example, with a current state of the art approach, a final image noise level is typically used (e.g., decrease image noise by 30%) to determine the regularization parameter β that provides a uniform decrease in noise across the image. Spectral images are separately reconstructed, and then combined, through a linear combination, to produce an image for display. With the above iterative image reconstruction formulation, the spectral images may have similar noise; however, there is no guarantee that they will have a similar spatial resolution, and, unfortunately, a linear combination of spectral images having different spatial resolution may introduce artifact and/or have incorrect quantitative values.
SUMMARY OF THE INVENTION
Aspects described herein address the above-referenced problems and others.
In one aspect, a method includes performing a first pass of an iterative reconstruction in which an intermediate photoelectric image and an intermediate Compton scatter image are generated using an iterative reconstruction algorithm, a start photoelectric image, a start Compton scatter image, an initial photoelectric regularization parameter, and an initial Compton scatter regularization parameter. The method further includes updating at least one of the initial photoelectric regularization parameter or the initial Compton scatter regularization parameter, thereby creating an updated photoelectric regularization parameter or an updated Compton scatter regularization parameter, based on at least a sharpness of one of the intermediate photoelectric image or the intermediate Compton scatter image. The method further includes performing a subsequent pass of the iterative reconstruction in which an updated intermediate photoelectric image and an updated intermediate Compton scatter image are generated using the iterative reconstruction algorithm, the intermediate
photoelectric image, the intermediate Compton scatter image, the updated photoelectric regularization parameter, and the updated Compton scatter regularization parameter.
In another aspect, an image reconstructor includes a reconstruction processor that performs a first pass of an iterative reconstruction in which an intermediate photoelectric image and an intermediate Compton scatter image are generated using an iterative reconstruction algorithm, a start photoelectric image, a start Compton scatter image, an initial photoelectric regularization parameter, and an initial Compton scatter regularization parameter. The image reconstructor further includes an updater that updates at least one of the initial photoelectric regularization parameter or the initial Compton scatter regularization parameter, thereby creating an updated photoelectric regularization parameter or an updated Compton scatter regularization parameter, based on at least a sharpness of one of the intermediate photoelectric image or the intermediate Compton scatter image. The reconstruction processor performs a subsequent pass of the iterative reconstruction in which an updated intermediate photoelectric image and an updated intermediate Compton scatter image are generated using the iterative reconstruction algorithm, the intermediate
photoelectric image, the intermediate Compton scatter image, the updated photoelectric regularization parameter, and the updated Compton scatter regularization parameter.
In another aspect, a computer readable storage medium is encoded with computer readable instructions, which, when executed by a processer, causes the processor to: perform a first pass of an iterative reconstruction in which an intermediate photoelectric image and an intermediate Compton scatter image are generated using an iterative reconstruction algorithm, a start photoelectric image, a start Compton scatter image, an initial photoelectric regularization parameter, and an initial Compton scatter regularization parameter; update at least one of the initial photoelectric regularization parameter or the initial Compton scatter regularization parameter, thereby creating an updated photoelectric regularization parameter or an updated Compton scatter regularization parameter, based on at least a sharpness of one of the intermediate photoelectric image or the intermediate Compton scatter image, and perform a subsequent pass of the iterative reconstruction in which an updated intermediate photoelectric image and an updated intermediate Compton scatter image are generated using the iterative reconstruction algorithm, the intermediate
photoelectric image, the intermediate Compton scatter image, the updated photoelectric regularization parameter, and the updated Compton scatter regularization parameter.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention. BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 schematically illustrates an example imaging system including a reconstructor that employs a statistical iterative image reconstruction algorithm with a sharpness dependent regularization parameter.
FIGURE 2 schematically illustrates an example of the statistical iterative image reconstruction algorithm.
FIGURE 3 illustrates an example method for driving the regularization parameter for one of the photoelectric image or the Compton scatter image, based on the other image.
FIGURE 4 illustrates an example method for independently driving the regularization parameter for the photoelectric image or the Compton scatter image, based on a predetermined sharpness.
The following describes an approach that employs a tissue dependent statistical iterative reconstruction update term in a statistical iterative reconstruction.
DETAILED DESCRIPTION OF EMBODIMENTS
FIGURE 1 illustrates an example imaging system 100 such as a computed tomography (CT) system.
The imaging system 100 includes a stationary gantry 102 and a rotating gantry 104, which is rotatably supported by the stationary gantry 102. The rotating gantry 104 rotates around an examination region 106 about a longitudinal or z-axis "Z".
A radiation source 110, such as an x-ray tube, is rotatably supported by the rotating gantry 104, rotates with the rotating gantry 104, and emits x-ray radiation that traverses the examination region 106. In one instance, the radiation source 110 is configured to switch an emission voltage between two or more emission voltages (e.g., 80 and 140 kVp, 100 and 120 kVp, etc.) within an integration period and/or otherwise. In a variation, the imaging system 100 includes multiple radiation sources 110 that emit radiation at different emission voltages. In another variation, the radiation source 110 includes a single broad spectrum x-ray tube.
A detector array 112 subtends an angular arc opposite the examination region 106 relative to the radiation source 110. The detector array 112 detects radiation that traverses the examination region 106 and generates a signal indicative thereof. Where the radiation source voltage is switched between at least two emission voltages and/or two or more x-ray tubes emit radiation at two different emission voltages, the detector array 112 generates a signal for each of the radiation source voltages. For a single broad spectrum x- ray tube, the detector array 112 includes an energy-resolving detector (e.g., multi-layered scintillator/photodiode, a direct conversion photon counting, etc.) that produces the signals.
A signal decomposer 114 decomposes the signals into energy-dependent components. For example, the signal can be decomposed into a photoelectric component, a Compton scatter component, and/or one or more other energy-dependent (e.g., K-edge) components.
A reconstructor 116 reconstructs the energy-dependent components, generating volumetric image data for each of the components. In this example, the reconstructor 116 employs an iterative image reconstruction algorithm with a sharpness driven regularization 118 from a reconstruction algorithm memory 120. As described in greater detail below, a suitable iterative image reconstruction algorithm includes a spatial resolution (i.e., sharpness) driven regularization parameter in the update term for at least one of a plurality of independently reconstructed different spectral images such as photoelectric and/or Compton scatter images, high and/or low kVp images, etc.
As such, the iterative reconstruction can be driven so that reconstructed spectral component images are reconstructed to have a same spatial resolution, or a same spatial resolution within a predetermined tolerance of each other. In one instance, this mitigates a spatial resolution mismatch between spectral component images that may occur with configurations in which the regularization parameter is not dependent on spatial resolution. As a result, artifacts and/or incorrect quantitative values, which may arise due to a resolution mismatch, are mitigated.
It is to be appreciated that the reconstructor 116 can be implemented via one or more processors. Examples of such processor include a central processing unit (CPU), a microprocessor, and/or other processor. The one or more processors execute one or more computer executable instructions embedded or encoded on computer readable storage medium, which excludes transitory medium and includes physical memory and/or other non- transitory medium. In a variation, a computer executable instruction is carried by transitory medium such as a carrier wave, signal, and/or other transitory medium, and the processor(s) executes the computer executable instructions.
A computer serves as an operator console 122. The operator console 122 includes a human readable output device such as a monitor and an input device such as a keyboard, mouse, etc. Software resident on the console 122 allows the operator to interact with and/or operate the scanner 100 via a graphical user interface (GUI) or otherwise. For example, the console 122 allows the operator to select the iterative image reconstruction algorithm 118 with the sharpness dependent regularization parameter, perform post-process the spectral images by combining the spectral images through a linear combination, etc.
A subject support 124 such as a couch supports a a human or animal subject or an object in the examination region 106. The subject support 124 is movable in coordination with scanning so as to guide the a human or animal subject or object with respect to the examination region 106 before, during and/or after scanning, for loading, scanning, and/or unloading.
FIGURE 2 illustrates an example of the reconstructor 116.
A start image generator 202 receives the decomposed spectral components
(e.g., the photoelectric component, the Compton scatter component, etc.) and generates, at least, start or initial spectral component images for each of the spectral components. In one instance, the start spectral component images are generated using a filtered back-projection (FBP) reconstruction algorithm. By using a FBP reconstruction algorithm, the start spectral component images will have a same spatial resolution.
In a variation, the start image generator 202 generates the start spectral component images using a different reconstruction algorithm, through simulation, etc. In some embodiments, the start image generator 202 also generates a combined (non- spectral) image. For this, for example, the decomposed spectral components can be combined and then reconstructed via a FBP reconstruction algorithm, simulation, etc. to generate the combined image. The start spectral component images include at least a photoelectric image and a Compton scatter image.
A reconstruction processor 204 receives the start spectral component images and performs a first pass reconstruction with an iterative reconstruction (IR) algorithm, using initial regularization parameters βΡΕ or ?C5, which may be default, empirically determined, etc., and generates intermediate spectral component images. For the photoelectric image, a suitable cost function is: -L(Ax | y) + βΡΕ R(x), and for the Compton scatter image, a suitable cost function is: -h(Ax \ y) + ?C5 i?(x).
Example IR algorithms are described in Schirra et al., "Statistical Reconstruction of Material Decomposed Data in Spectral CT," IEEE Trans. Med. Imag., 32(7): 1249- 1257, 2013, and international application s/n PCT/IB2012/056929, filed on December 4, 2012, and entitled "Automatic Determination of Regularization Factor for Iterative Image Reconstruction with Regularization and/or Image De-Noising," the entirety of which is incorporated herein by reference. Other algorithms are also contemplated herein. The IR algorithm includes an update term, which is updated for each iteration. An example update term ( x("+i) ) is shown EQUATION 1 :
EQUATION 1 :
Figure imgf000008_0001
where n represents an iteration index, a is the index representing the image, i.e., PE or CS, x^( represents the previous term, i represents a projection value index, TV represents the total number of measured line integrals, j represents a voxel index, ctj represents an element of the system matrix, i.e., it represents to influence of the image voxel j to the detector pixel i, i (f) = 2— where Aai represents a measured line integral value for data set a, I represents the argument of the function (in Eq. 1, the function is evaluated at the forward projected image) and cr represents a variance of the sample Aaj , = [C ^ ]^
^^ CyXa describes the forward projection of material image a (for the measured detector pixel i), hai = , CI represents a forward projection of a unity image and [CI], represents the zth element of the forward projection, and xa represents a material density function, βα represents the regularization parameter βΡΕ or ?C5, depending on which image is being reconstructed, and R represents the roughness penalty which may take the form of a
Figure imgf000008_0002
quadratic penalty: R( ) = Mj is a neighborhood of the image voxel j, and v¼ are geometrical weights, for instance the inverse of the Euclidian distance between voxel j and k. Other penalties are also contemplated.
A metric determiner 206 receives at least the intermediate spectral component images, and, in one instance, the start spectral images and/or the combined image, and generates metrics therefrom. The metric determiner 206 includes a mask generator 208. The generator 208 generates a noise mask and/or a sharpness mask, which are employed to identify one or more sub-regions in which noise and/or sharpness estimates are taken. In other embodiments, the mask generator 208 is omitted.
For the noise mask, the mask generator 208 identifies one or more flat regions (i.e., homogenous regions or regions without edges) in the start Compton scatter image and generates the noise mask based thereon. An example approach for identifying a flat region is described in Bergner et al., "Robust Automated Regularization Factor Selection for Statistical Reconstructions," Second International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, USA, 24-27 June 2012.
For the sharpness mask, the mask generator 208 first identifies one or more edges in the combined image. The mask generator 208 can apply a Canny filter and/or other approach for identifying these edges. The mask generator 208 generates the sharpness mask, in one instance, by thresholding to extract only a set of edges greater than a predetermined threshold value. The resulting mask is a binary {0,1 } edge image. Dilation may be used to get the surrounding, smoothing and avoid edge-artifacts.
Other approaches for creating the noise mask and/or the sharpness mask are also contemplated herein.
The metric determiner 206 further includes a noise estimator 210, which determines a noise estimate for the intermediate spectral component images. This includes estimating the noise level in one or more sub-regions of the intermediate Compton scatter image that correspond to the one or more flat regions in the start Compton scatter image by applying the noise mask to the intermediate Compton scatter image and then estimating the noise level. The noise level estimate may include determining a root mean square.
Another example approach for estimating noise is described in Bergner et al., "Robust Automated Regularization Factor Selection for Statistical Reconstructions," Second International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, USA, 24-27 June 2012. Other approaches are also contemplated herein. This includes estimating a noise for the entire intermediate Compton scatter image and/or other sub- region(s) of the intermediate Compton scatter image.
The metric determiner 206 further includes a sharpness estimator 212. The sharpness estimator 212 determines a sharpness (i.e., spatial resolution) estimate for the start and/or intermediate Compton scatter images and/or the start and/or intermediate photoelectric spectral images. In one instance, this includes applying the sharpness mask to the Compton scatter image(s) and/or the photoelectric spectral image(s), and determining the sharpness within the one or more sub-regions identified by the mask. Example approaches for estimating sharpness is described in Wee et al., "Measure of image sharpness using eigenvalues," Information Sciences 177 (2007), 2533 - 2552. Such approaches include determining a variance of gray level values, a J^-norm of the image or a second derivative of the image gradient, an energy of the Laplacian of the image, an energy of a high-pass band to an energy of a low-pass band, a similarity of the image to a reference image, etc. Other sharpness estimation approaches are also contemplated herein.
Logic 214 determines whether a subsequent pass is performed. Stopping criteria can include, but is not limited to, achieving a spatial resolution of interest (e.g., a same resolution (within a tolerance) between the spectral component images) or a noise level of interest, reaching a maximum number of iterations, lapse of a pre-determined time interval, and/or other criteria. Once the stopping criteria is satisfied, the Logic 214 outputs of the intermediate spectral component images as final spectral component images. If the stopping criteria is not satisfied, then the logic 214 invokes a subsequent reconstruction pass.
A regularization parameter ( ?) updater 216 updates at least one of the two regularization parameters βΡΕ or ?C5, in response to the stopping criteria not being satisfied and the logic 214 invoking a subsequent reconstruction pass. An approach for updating nonspectral data based on a target noise is described in Bergner et al., "Robust Automated Regularization Factor Selection for Statistical Reconstructions," Second International Conference on Image Formation in X-Ray Computed Tomography, Salt Lake City, USA, 24- 27 June 2012. The approach in Bergner et al. is based on proportional-integrating-derivative (PID) control.
The approach herein can also be based on PID control. In this case, for noise, the regularization parameter(s) is updated based on a difference between the estimated noise of an intermediate image and a target noise level. For sharpness, the regularization parameter(s) is updated based on a difference between a sharpness of an intermediate spectral image and a sharpness of a start image or a sharpness difference between the two
intermediate spectral images. Where FBP is used to generate the start spectral images, the sharpness of the start spectral is the same (within a tolerance).
In one instance, both βΡΕ or βα5 are independently driven based on an absolute sharpness measure, such as a sharpness of a start image and/or other sharpness. In another instance, one of βΡΕ or βα5 is sharpness driven, e.g., based on the sharpness of the other spectral image, so as to reach a same resolution between the photoelectric image and the Compton scatter image. With this instance, the other of βΡΕ or βα5 can be noise driven, e.g., based on the target noise and/or otherwise. The above describes a projection domain approach. A material decomposition in the image domain is also contemplated herein. For this, the iterative approach described above iterates on the high and the low kVp images for a dual kVp acquisition (or on the projection data acquired by the upper and lower detector layer for an acquisition with a dual layer detector) instead of the photoelectric and Compton scatter images. An example update term for the image domain approach is shown EQUATION 2:
EQUATION 2:
Figure imgf000011_0001
where i is a pixel index in the projection space, j, f and k are pixel indices in the image space, a is an index for the image (high kV, low kV, or upper layer, lower layer), μη represents the image values in an nth iteration, c represents elements of the system matrix, y represents measured projection values (i.e., measured photon counts), Nj represents pixels neighboring pixel j, w represents weights that weight a difference between two pixels, and b is the regularization parameter for image a and is dependent on which image is being reconstructed.
FIGURE 3 illustrates an example method for driving the regularization parameter for one of the Compton scatter or the photoelectric image based on a
predetermined sharpness.
It is to be appreciated that the ordering of the acts in the methods described herein is not limiting. As such, other orderings are contemplated herein. In addition, one or more acts may be omitted and/or one or more additional acts may be included.
At 302, start images are generated from spectral projection data. As described herein, this may include generating a start photoelectric image, a start Compton scatter image, and, optionally, a start combined image.
At 304, an intermediate photoelectric image and an intermediate Compton scatter image are generated based on the start images, an iterative image reconstruction algorithm, and initial regularization parameters.
At 306, a sharpness estimate is determined for the intermediate photoelectric image. As described herein, the sharpness estimate can be determined for a predetermined sub-region of interest, such as a sub-region corresponding to a sub-region of the combined image, as identified through the sharpness mask.
At 308, a noise estimate of the intermediate Compton scatter image is determined. As described herein, the noise estimate can be determined for a predetermined sub-region of interest, such as a sub-region corresponding to a homogenous region of the start Compton scatter image, as identified through the noise mask.
At 310, it is determined if stopping criterion has been satisfied. In this instance, suitable stopping criteria includes the sharpness estimate of the intermediate photoelectric image being within a tolerance of a sharpness of the intermediate Compton scatter image, the noise estimate of the intermediate Compton scatter image satisfying a predetermined target noise level, and/or other criteria.
If it is determined that the stopping criterion has been satisfied, then another iteration is not required, and at 312, the intermediate photoelectric image and the
intermediate Compton scatter image are output as a final photoelectric image and a final Compton scatter image.
If it is determined that the stopping criterion has not been satisfied, then another iteration is required, and at 314, the regularization parameters for the photoelectric image and the Compton scatter image are updated, and acts 304 to 310 are repeated. As described herein, this includes updating the regularization parameter for the photoelectric image based on a difference between sharpness of the intermediate photoelectric image and the sharpness of the intermediate Compton scatter image and updating the regularization parameter for the Compton scatter image based on a difference between the noise estimate of the intermediate Compton scatter image and the target noise.
FIGURE 4 illustrates an example method for independently driving the regularization parameter for the Compton scatter image and the regularization parameter for the photoelectric image based on a predetermined sharpness.
It is to be appreciated that the ordering of the acts in the methods described herein is not limiting. As such, other orderings are contemplated herein. In addition, one or more acts may be omitted and/or one or more additional acts may be included.
At 402, start images are generated from spectral projection data. As described herein, this may include generating a start photoelectric image, a start Compton scatter image, and, optionally, a start combined image. At 404, an intermediate photoelectric image and an intermediate Compton scatter image are generated based on the start images, an iterative image reconstruction algorithm, and initial regularization parameters.
At 406, a sharpness estimate is determined for the intermediate photoelectric and Compton scatter images. As described herein, the sharpness estimate can be determined for a predetermined sub-region of interest, such as a sub-region corresponding to a sub-region of the combined image, as identified through the sharpness mask.
At 408, it is determined if stopping criterion has been satisfied. In this instance, suitable stopping criteria includes whether the sharpness of the intermediate spectral images are within a tolerance of a predetermined sharpness (or each other).
If it is determined that the stopping criterion has been satisfied, then another iteration is not required, and at 410, the intermediate photoelectric image and the
intermediate Compton scatter image are output as a final photoelectric image and a final Compton scatter image.
If it is determined the stopping criterion has not been satisfied, then another iteration is required, and at 412 the regularization parameters for the photoelectric image and the Compton scatter image are updated and acts 404 to 408 are repeated. As described herein, the updating of the regularization parameters is based on a difference between the sharpness of the intermediate spectral images and a predetermined resolution of interest or each other.
The above may be implemented by way of computer readable instructions, encoded or embedded on computer readable storage medium, which, when executed by a computer processor(s), cause the processor(s) to carry out the described acts. Additionally or alternatively, at least one of the computer readable instructions is carried by a signal, carrier wave or other transitory medium.
The approach described herein can also be applied to other applications, for example, grating-based phase contrast CT such as that discussed in Pfeiffer et al. "Hard X- ray Phase Tomography with Low-Brilliance Sources", Physical Review Letters 98, 108105, (2007), and Zanette et al. "Trimodal low-dose X-ray tomography", PNAS, 109(26) 10199- 10204 (2012). By the insertion of some additional gratings into the beam path, the beam refraction and the small angle scattering (also known as dark-field imaging) can be measured in addition to the x-ray attenuation. These signal components are typically retrieved from the measurements of the transmitted intensity for different relative positions of the gratings. This is conceptually the same as in spectral imaging where the signal components for Compton scatter and photoelectric absorption are also retrieved from measurements of transmitted intensity at different system configurations, i.e., beam filtrations or tube voltages).
The signals are typically assumed to follow a second order statistics, as discussed in Weber et al., "Noise in x-ray grating-based phase-contrast imaging", Medical Physics 38(7), 4133-4140 (2011). Since the mathematical pre -requisites are thus the same as for dual energy CT as stated in Equation 1, namely, that the signal depends linearly on the underlying image and that the noise is Gaussian, the very same update equation can be used to reconstruct the attenuation image, the phase image, and the dark field image from the individual signals, although the forward operator needs to be differential for the phase image, which is discussed in Koehler et al. "Iterative reconstruction for differential phase contrast imaging using spherically symmetric basis functions", Medical Physics, 38(8), 4542-4545, (2011). Therefore the same concept as describe above for dual energy CT can be applied, by identifying the index a with the attenuation, the phase, or the dark field image rather than with the Compton scatter or photoelectric image.
The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be constructed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims

CLAIMS:
1. A method, comprising:
performing a first pass of an iterative reconstruction in which an intermediate first spectral image and an intermediate second spectral image are generated using an iterative image reconstruction algorithm, a start first spectral image, a start second spectral image, an initial first spectral regularization parameter, and an initial second spectral regularization parameter;
updating at least one of the initial first spectral regularization parameter or the initial second spectral regularization parameter, thereby creating an updated first spectral regularization parameter or an updated second spectral regularization parameter, based on at least a sharpness of one of the intermediate first spectral image or the intermediate second spectral image; and
performing a subsequent pass of the iterative image reconstruction in which an updated intermediate first spectral image and an updated intermediate second spectral image are generated using the iterative image reconstruction algorithm, the intermediate first spectral image, the intermediate second spectral image, the updated first spectral
regularization parameter, and the updated second spectral regularization parameter.
2. The method of claim 1, further comprising:
receiving spectral projection data;
decomposing the spectral projection data into a first spectral component and a second spectral component; and
generating the start first spectral image by reconstructing the first spectral component and the start second spectral image by reconstructing the second spectral component.
3. The method of any of claims 1 to 2, further comprising:
updating the initial first spectral regularization parameter, thereby creating the updated first spectral regularization parameter, based on the sharpness of the intermediate second spectral image; and updating the initial second spectral regularization parameter, thereby creating the updated second spectral regularization parameter, based at least on a predetermined target noise.
4. The method of claim 3, further comprising:
updating the initial first spectral regularization parameter, thereby creating the updated first spectral regularization parameter, based on a difference between the sharpness of the intermediate first spectral image and the sharpness of the intermediate second spectral image.
5. The method of any of claims 3 to 4, further comprising:
combining the first spectral component and the second spectral component, thereby creating combined data;
generating a combined image by reconstructing the combined data;
detecting edges in the combined image;
creating a sharpness mask that identifies one or more sub-regions in the combined image that includes edges;
applying the sharpness mask to the intermediate first spectral image; and determining the sharpness of the intermediate first spectral image within the masked one or more sub-regions.
6. The method of claim 5, further comprising:
determining a difference between the sharpness of the intermediate first spectral image and the sharpness of the intermediate second spectral image; and
in response to the difference being within a predetermined tolerance, outputting the intermediate first spectral image and the intermediate second spectral image as a final first spectral image and a final second spectral image, and in response to the difference being outside of the predetermined tolerance, performing another pass of the iterative reconstruction.
The method of any of claims 3 to 6, further comprising:
identifying one or more homogenous regions in the start second creating a noise mask for the one or more homogenous regions; applying the noise mask to the intermediate second spectral image; and determining a noise of the intermediate first spectral image within the masked one or more sub-regions.
8. The method of claim 7, further comprising:
determining a difference between the determined noise and the predetermined target noise; and
in response to the difference being within a predetermined tolerance of the predetermined target noise, outputting the intermediate first spectral image and the intermediate second spectral image as a final first spectral image and a final second spectral image, and in response to the difference being outside of the predetermined tolerance of the predetermined target noise, performing another pass of the iterative reconstruction.
9. The method of any of claims 1-8, further comprising:
updating, independently, the initial first spectral regularization parameter and the initial second spectral regularization parameter, thereby creating the updated first spectral regularization parameter and the updated second spectral regularization parameter, based at least on a predetermined sharpness.
10. The method of claim 9, further comprising:
combining the first spectral component and the second spectral component, thereby creating combined data;
generating a combined image by reconstructing the combined data;
detecting edges in the combined image;
creating a sharpness mask that identifies one or more sub-regions in the combined image that includes edges;
applying the sharpness mask to the intermediate first spectral image; and determining the sharpness of the intermediate first spectral image and the second spectral image within the masked one or more sub-regions.
11. The method of any of claims 1 to 9, further comprising:
determining a difference between the sharpness of the intermediate first spectral image and a predetermined sharpness and between the second spectral image and the predetermined sharpness; and in response to the difference being within a predetermined tolerance, outputting the intermediate first spectral image and the intermediate second spectral image as a final first spectral image and a final second spectral image, and in response to the difference being outside of the predetermined tolerance, performing another pass of the iterative reconstruction.
12. The method of any of claims 1 to 11, further comprising:
updating the at least one of the initial first spectral regularization parameter or the initial second spectral regularization parameter based on position-integration-derivative control.
13. An image reconstructor (116), comprising:
a reconstruction processor (204) configured to perform a first pass of an iterative reconstruction in which an intermediate first spectral image and an intermediate second spectral image are to be generated using an iterative reconstruction algorithm, a start first spectral image, a start second spectral image, an initial first spectral regularization parameter, and an initial second spectral regularization parameter; and
an updater (216) configured to update at least one of the initial first spectral regularization parameter or the initial second spectral regularization parameter, thereby creating an updated first spectral regularization parameter or an updated second spectral regularization parameter, based on at least a sharpness of one of the intermediate first spectral image or the intermediate second spectral image,
wherein the reconstruction processor is configured to perform a subsequent pass of the iterative reconstruction in which an updated intermediate first spectral image and an updated intermediate second spectral image are to be generated using the iterative reconstruction algorithm, the intermediate first spectral image, the intermediate second spectral image, the updated first spectral regularization parameter, and the updated second spectral regularization parameter.
14. The reconstructor of claim 13, further comprising:
a start image generator (202) configured to receive spectral projection data, to decompose the spectral projection data into a first spectral component and a second spectral component, and to generate the start first spectral image by reconstructing the first spectral component and the start second spectral image by reconstructing the second spectral component.
15. The reconstructor of any of claims 13 to 14, wherein the updater is configured to update the initial first spectral regularization parameter and to create the updated first spectral regularization parameter, based on the sharpness of the intermediate second spectral image, and to update the initial second spectral regularization parameter and to create the updated second spectral regularization parameter, based at least on a predetermined target noise.
16. The reconstructor of claim 15, further comprising:
a mask generator (208) configured to identify one or more homogenous regions in the start second spectral image and to create a noise mask for the one or more homogenous regions; and
a noise estimator (210) configured to apply the noise mask to the intermediate second spectral image and determines a noise of the intermediate first spectral image within the masked one or more sub-regions.
17. The reconstructor of claim 14, wherein the updater is configured to independently update the initial first spectral regularization parameter and the initial second spectral regularization parameter and to create the updated first spectral regularization parameter and the updated second spectral regularization parameter, based at least on a predetermined sharpness.
18. The reconstructor of claim 17, further comprising:
a mask generator (208) configured to combine the first spectral component and the second spectral component, thereby creating combined data, to generate a combined image by reconstructing the combined data, to detect edges in the combined image, and to create a sharpness mask that is to identify one or more sub-regions in the combined image that includes edges; and
a sharpness estimator (212) configured to apply the sharpness mask to the intermediate first spectral image and to determine the sharpness of the intermediate first spectral image within the masked one or more sub-regions.
19. The reconstructor of any of claims 13 to 18, further comprising: logic (214) configured to determine a difference between the sharpness of the intermediate first spectral image and one of a sharpness of the intermediate second spectral image or a predetermined sharpness of interest, and, one of, in response to the difference being within a predetermined tolerance, output the intermediate first spectral image and the intermediate second spectral image as a final first spectral image and a final second spectral image, or in response to the difference being outside of the predetermined tolerance, invoke the reconstruction processor to perform another pass of the iterative reconstruction.
20. A computer readable storage medium encoded with computer readable instructions, which, when executed by a processer, causes the processor to:
perform a first pass of an iterative reconstruction in which an intermediate first spectral image and an intermediate second spectral image are generated using an iterative reconstruction algorithm, a start first spectral image, a start second spectral image, an initial first spectral regularization parameter, and an initial second spectral regularization parameter;
update at least one of the initial first spectral regularization parameter or the initial second spectral regularization parameter, thereby creating an updated first spectral regularization parameter or an updated second spectral regularization parameter, based on at least a sharpness of one of the intermediate first spectral image or the intermediate second spectral image; and
perform a subsequent pass of the iterative reconstruction in which an updated intermediate first spectral image and an updated intermediate second spectral image are generated using the iterative reconstruction algorithm, the intermediate first spectral image, the intermediate second spectral image, the updated first spectral regularization parameter, and the updated second spectral regularization parameter.
PCT/IB2015/057072 2014-09-15 2015-09-15 Iterative image reconstruction with a sharpness driven regularization parameter WO2016042466A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15778736.7A EP3195265B1 (en) 2014-09-15 2015-09-15 Iterative image reconstruction with a sharpness driven regularization parameter
JP2016571341A JP6275287B2 (en) 2014-09-15 2015-09-15 Iterative image reconstruction using sharpness-driven regularization parameters
US15/308,378 US9959640B2 (en) 2014-09-15 2015-09-15 Iterative image reconstruction with a sharpness driven regularization parameter
CN201580030837.3A CN106462985B (en) 2014-09-15 2015-09-15 Utilize the iterative image reconstruction of the regularization parameter of acutance driving

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462050402P 2014-09-15 2014-09-15
US62/050,402 2014-09-15

Publications (2)

Publication Number Publication Date
WO2016042466A2 true WO2016042466A2 (en) 2016-03-24
WO2016042466A3 WO2016042466A3 (en) 2016-05-12

Family

ID=54292850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/057072 WO2016042466A2 (en) 2014-09-15 2015-09-15 Iterative image reconstruction with a sharpness driven regularization parameter

Country Status (5)

Country Link
US (1) US9959640B2 (en)
EP (1) EP3195265B1 (en)
JP (1) JP6275287B2 (en)
CN (1) CN106462985B (en)
WO (1) WO2016042466A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189612A (en) * 2016-04-11 2017-10-19 東芝メディカルシステムズ株式会社 Radiographic image diagnosis apparatus and medical image processing apparatus
WO2018037024A1 (en) * 2016-08-22 2018-03-01 Koninklijke Philips N.V. Feature-based image processing using feature images extracted from different iterations
EP3404616A1 (en) * 2017-05-19 2018-11-21 Shanghai United Imaging Healthcare Co., Ltd. System and method for image denoising
WO2018236748A1 (en) * 2017-06-19 2018-12-27 Washington University Deep learning-assisted image reconstruction for tomographic imaging
CN110574073A (en) * 2016-12-19 2019-12-13 皇家飞利浦有限公司 Detection and/or correction of residual iodine artifacts in spectral Computed Tomography (CT) imaging

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725099B1 (en) * 2014-12-05 2017-04-26 삼성전자주식회사 Computed tomography apparatus and control method for the same
US10732309B2 (en) * 2015-02-23 2020-08-04 Mayo Foundation For Medical Education And Research Methods for optimizing imaging technique parameters for photon-counting computed tomography
WO2016177588A1 (en) * 2015-05-06 2016-11-10 Koninklijke Philips N.V. Optimal energy weighting of dark field signal in differential phase contrast x-ray imaging
US10403006B2 (en) * 2016-08-26 2019-09-03 General Electric Company Guided filter for multiple level energy computed tomography (CT)
US10692251B2 (en) * 2017-01-13 2020-06-23 Canon Medical Systems Corporation Efficient variance-reduced method and apparatus for model-based iterative CT image reconstruction
US10866298B2 (en) * 2017-08-03 2020-12-15 Siemens Healthcare Gmbh Low rank and spatial regularization model for magnetic resonance fingerprinting
JP6932250B2 (en) * 2017-09-14 2021-09-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Scatter correction using emission image estimation reconstructed from narrow energy window counts in positron emission tomography
CN107638189B (en) * 2017-10-25 2021-06-01 东软医疗系统股份有限公司 CT imaging method and apparatus
WO2019090299A1 (en) 2017-11-06 2019-05-09 Rensselaer Polytechnic Institute Stationary in-vivo grating-enabled micro-ct architecture (sigma)
CN108549530B (en) * 2018-04-17 2021-03-12 兰州理工大学 Logo generation method based on natural mode and intelligent Logo generator
US11037339B2 (en) * 2019-04-17 2021-06-15 Uih America, Inc. Systems and methods for image reconstruction
CN110807821A (en) * 2019-10-12 2020-02-18 上海联影医疗科技有限公司 Image reconstruction method and system
EP3922183A1 (en) 2020-06-08 2021-12-15 Koninklijke Philips N.V. Apparatus for correction of collimator penumbra in an x-ray image
EP3922180A1 (en) 2020-06-09 2021-12-15 Koninklijke Philips N.V. Apparatus for processing data acquired by a dark-field and/or phase contrast x-ray imaging system
WO2022109928A1 (en) * 2020-11-26 2022-06-02 深圳先进技术研究院 Image reconstruction method and application
CN112489153B (en) * 2020-11-26 2024-06-21 深圳先进技术研究院 Image reconstruction method and application
WO2024206952A1 (en) * 2023-03-30 2024-10-03 California Institute Of Technology Angular ptychographic imaging with closed-form reconstruction

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898263B2 (en) * 2002-11-27 2005-05-24 Ge Medical Systems Global Technology Company, Llc Method and apparatus for soft-tissue volume visualization
US7760848B2 (en) 2006-09-08 2010-07-20 General Electric Company Method and system for generating a multi-spectral image of an object
DE102007020065A1 (en) * 2007-04-27 2008-10-30 Siemens Ag Method for the creation of mass occupation images on the basis of attenuation images recorded in different energy ranges
US8233682B2 (en) * 2007-06-05 2012-07-31 General Electric Company Methods and systems for improving spatial and temporal resolution of computed images of moving objects
US8135186B2 (en) * 2008-01-25 2012-03-13 Purdue Research Foundation Method and system for image reconstruction
US8194961B2 (en) * 2008-04-21 2012-06-05 Kabushiki Kaisha Toshiba Method, apparatus, and computer-readable medium for pre-reconstruction decomposition and calibration in dual energy computed tomography
DE102009014723B4 (en) 2009-03-25 2012-10-25 Siemens Aktiengesellschaft Contrast-dependent regularization strength in the iterative reconstruction of CT images
US8160206B2 (en) * 2009-12-23 2012-04-17 General Electric Company Dual-energy imaging at reduced sample rates
RU2571564C2 (en) * 2010-06-21 2015-12-20 Конинклейке Филипс Электроникс Н.В. Method and system for visualisation by low-dose computer tomography process
CN103299345B (en) * 2011-01-10 2016-10-19 皇家飞利浦电子股份有限公司 Dual energy tomographic imaging system
RU2585790C2 (en) * 2011-03-28 2016-06-10 Конинклейке Филипс Н.В. Image with contrast-dependent resolution
DE102011086456A1 (en) * 2011-11-16 2013-05-16 Siemens Aktiengesellschaft Reconstruction of image data
EP2748798B1 (en) * 2011-12-13 2018-04-11 Koninklijke Philips N.V. Automatic determination of regularization factor for iterative image reconstruction with regularization and/or image de-noising
DE102012204977B4 (en) 2012-03-28 2017-05-18 Siemens Healthcare Gmbh Method for iterative image reconstruction for bi-modal CT data and corresponding computation unit, computed tomography system, computer program and data carrier
US8917922B2 (en) * 2012-06-15 2014-12-23 Kabushiki Kaisha Toshiba Concurrent update iterative reconstruction (IR) method and system
US20130336562A1 (en) 2012-06-15 2013-12-19 Toshiba Medical Systems Corporation Adaptively determined parameter values in iterative reconstruction method and system
US8923583B2 (en) * 2012-06-22 2014-12-30 General Electric Company Methods and systems for performing model-based iterative reconstruction
US9734601B2 (en) * 2014-04-04 2017-08-15 The Board Of Trustees Of The University Of Illinois Highly accelerated imaging and image reconstruction using adaptive sparsifying transforms

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BERGNER ET AL.: "Robust Automated Regularization Factor Selection for Statistical Reconstructions", SECOND INTERNATIONAL CONFERENCE ON IMAGE FORMATION IN X-RAY COMPUTED TOMOGRAPHY, 24 June 2012 (2012-06-24)
KOEHLER ET AL.: "Iterative reconstruction for differential phase contrast imaging using spherically symmetric basis functions", MEDICAL PHYSICS, vol. 38, no. 8, 2011, pages 4542 - 4545
PFEIFFER ET AL.: "Hard X-ray Phase Tomography with Low-Brilliance Sources", PHYSICAL REVIEW LETTERS, vol. 98, 2007, pages 108105
SCHIRRA ET AL.: "Statistical Reconstruction of Material Decomposed Data in Spectral CT", IEEE TRANS. MED. IMAG., vol. 32, no. 7, 2013, pages 1249 - 1257
WEBER ET AL.: "Noise in x-ray grating-based phase-contrast imaging", MEDICAL PHYSICS, vol. 38, no. 7, 2011, pages 4133 - 4140
WEE ET AL.: "Measure of image sharpness using eigenvalues", INFORMATION SCIENCES, vol. 177, 2007, pages 2533 - 2552
ZANETTE ET AL.: "Trimodal low-dose X-ray tomography", PNAS, vol. 109, no. 26, 2012, pages 10199 - 10204

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189612A (en) * 2016-04-11 2017-10-19 東芝メディカルシステムズ株式会社 Radiographic image diagnosis apparatus and medical image processing apparatus
WO2018037024A1 (en) * 2016-08-22 2018-03-01 Koninklijke Philips N.V. Feature-based image processing using feature images extracted from different iterations
CN109844815A (en) * 2016-08-22 2019-06-04 皇家飞利浦有限公司 The image procossing based on feature is carried out using from the characteristic image of different iterative extractions
US11049230B2 (en) 2016-08-22 2021-06-29 Koninklijke Philips N.V. Feature-based image processing using feature images extracted from different iterations
CN110574073A (en) * 2016-12-19 2019-12-13 皇家飞利浦有限公司 Detection and/or correction of residual iodine artifacts in spectral Computed Tomography (CT) imaging
EP3404616A1 (en) * 2017-05-19 2018-11-21 Shanghai United Imaging Healthcare Co., Ltd. System and method for image denoising
WO2018236748A1 (en) * 2017-06-19 2018-12-27 Washington University Deep learning-assisted image reconstruction for tomographic imaging
US11403792B2 (en) 2017-06-19 2022-08-02 Washington University Deep learning-assisted image reconstruction for tomographic imaging
US12039639B2 (en) 2017-06-19 2024-07-16 Washington University Deep learning-assisted image reconstruction for tomographic imaging

Also Published As

Publication number Publication date
CN106462985A (en) 2017-02-22
JP2017521124A (en) 2017-08-03
US20170186194A1 (en) 2017-06-29
WO2016042466A3 (en) 2016-05-12
EP3195265A2 (en) 2017-07-26
EP3195265B1 (en) 2018-08-22
CN106462985B (en) 2018-09-21
JP6275287B2 (en) 2018-02-07
US9959640B2 (en) 2018-05-01

Similar Documents

Publication Publication Date Title
EP3195265B1 (en) Iterative image reconstruction with a sharpness driven regularization parameter
US10147168B2 (en) Spectral CT
US10621756B2 (en) Apparatus and method for correcting bias in low-count computed tomography projection data
JP6956505B2 (en) Image processing device, X-ray CT device and image processing method
CN105025794B (en) Structural propagation recovery for spectral CT
CN104471615B (en) Utilize the iterative image reconstruction of regularization
US20170039685A1 (en) Restoration of low contrast structure in de-noise image data
CN110073412B (en) Image noise estimation using alternating negatives
CN115039135A (en) Method of processing Computed Tomography (CT) data for Filtered Back Projection (FBP)
EP4295312B1 (en) Projection-domain material decomposition for spectral imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15778736

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15308378

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015778736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015778736

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016571341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE