WO2016041511A1 - Benzo-heterocyclic compounds and their applications - Google Patents

Benzo-heterocyclic compounds and their applications Download PDF

Info

Publication number
WO2016041511A1
WO2016041511A1 PCT/CN2015/089865 CN2015089865W WO2016041511A1 WO 2016041511 A1 WO2016041511 A1 WO 2016041511A1 CN 2015089865 W CN2015089865 W CN 2015089865W WO 2016041511 A1 WO2016041511 A1 WO 2016041511A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
halogen
nitro
hydrogen
compound
Prior art date
Application number
PCT/CN2015/089865
Other languages
French (fr)
Inventor
Yen-Ta Lu
Tzenge-Lien SHIH
Chia-Ming Chang
Tsai-Yin WEI
Jen-Wei Liu
Original Assignee
Yen-Ta Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yen-Ta Lu filed Critical Yen-Ta Lu
Priority to KR1020177010627A priority Critical patent/KR20170090408A/en
Priority to CN201580050353.5A priority patent/CN107087409B/en
Priority to JP2017534871A priority patent/JP6777638B2/en
Priority to AU2015317566A priority patent/AU2015317566B2/en
Priority to EP15843004.1A priority patent/EP3194368B1/en
Priority to US15/512,248 priority patent/US20170283408A1/en
Publication of WO2016041511A1 publication Critical patent/WO2016041511A1/en
Priority to US16/925,309 priority patent/US20200339557A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/4035Isoindoles, e.g. phthalimide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/423Oxazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/473Quinolines; Isoquinolines ortho- or peri-condensed with carbocyclic ring systems, e.g. acridines, phenanthridines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • A61K31/635Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide having a heterocyclic ring, e.g. sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • C07D221/06Ring systems of three rings
    • C07D221/14Aza-phenalenes, e.g. 1,8-naphthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present disclosure relates to compounds for treatment or prophylaxis of sepsis or septic shock and cancers. More particularly, the present invention relates to benzo-heterocyclic derivatives and the applications thereof in inhibiting PD-L1 expression and increasing HLA-DR expression.
  • Sepsis is defined as Systemic Inflammatory Response Syndrome (SIRS) resulting from microbial invasion that may originate anywhere in the body, such as genitourinary tract, liver or biliary tract, gastrointestinal tract, lungs, surgical wounds, etc.
  • SIRS Systemic Inflammatory Response Syndrome
  • the infection is usually confirmed by a positive blood culture, and may lead to shock, termed septic shock, which is a consequence of sepsis that leads to vital organ failure.
  • septic shock which is a consequence of sepsis that leads to vital organ failure.
  • SRS Systemic Inflammatory Response Syndrome
  • Infection is suspected when an above-normal white blood cell (WBC) count is noted, or by a chest radiograph consistent with pneumonia.
  • WBC white blood cell
  • Evidence of SIRS includes derangement of vital signs.
  • HLA-DR human leukocyte antigen
  • PD-L1 programmed death-ligand 1
  • Curr Mol Med 12: 259-267) leading to inhibition of T cell effector function recognized as ′′T-cell exhaustion′′ (Watanabe T, Bertoletti A, Tanoto TA (2010) PD-1/PD-L1 pathway and T-cell exhaustion in chronic hepatitis virus infection. J Viral Hepat 17: 453-458) .
  • Similar immune impairment with an increase in PD-L1/PD-1 interaction has also been observed in patients with different forms and stages of cancers (Chen IH, Lai YL, Wu CL, Chang YF, Chu CC, et al. (2010) Immune impairment in patients with terminal cancers: influence of cancer treatments and cytomegalovirus infection. Cancer Immunol Immunother 59: 323-334) .
  • agent that may reverse characteristic expression of HLA-DR and PD-L1 associated with sepsis patients.
  • agent may be useful as a lead compound for the manufacture of a medicament for treating patients having or suspected of having sepsis or septic shock and cancers.
  • the invention provides a compound of Formula (I) ,
  • n 0 or 1
  • R 1 is selected from halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, haloC 1-10 alkyl, hydroxyC 1- 10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by-SO 2 NH 2 , or-CONH 2 ;
  • R 2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2- 10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
  • R 3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2- 10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
  • R 2 and R 3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, C 1- 10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
  • R 4 , R 5 and R 6 are each independently selected from hydrogen, halogen, amino, hydroxy, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1- 10 alky1, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R 2 to R 6 may be unsubstituted or substituted by one to four groups selected from halogen, hydroxy, amino, cyano, nitro, C 1- 10 al
  • n is 1;
  • R 1 is (C 1-10 (di) alkylamino) C 1-10 alkyl, hydroxyC 1-10 alkyl or C 6-10 aryl substituted by-SO 2 NH 2 or-CO 2 NH 2 ;
  • R 2 and R 3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, amino, cyano, nitro or C 1-10 alkyl;
  • R 4 is H, halogen or 5-to 10-membered mono-or bi-cyclic, unsubstituted or substituted heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; and
  • R 5 and R 6 are each independently hydrogen, halogen, amino, cyano, nitro, C 1-10 alkyl or haloC 1-10 alkyl.
  • n is 0, R 1 is C 6-10 aryl substituted by-SO 2 NH 2 or-CO 2 NH 2 ; and R 3 , R 4 , R 5 and R 6 are each independently selected from hydrogen, halogen, amino, cyano, nitro or C 1-10 alkyl.
  • the invention also provides a pharmaceutical composition comprising an effective amount of a compound of the invention and a pharmaceutically acceptable carrier.
  • the invention also provides a method for inhibiting PD-L1 expression in a subject, comprising administering an effective amount of a compound or a pharmaceutical composition of the invention to the subject.
  • the invention also provides a method for increasing HLA-1 expression in a subject, comprising administering an effective amount of a compound or a pharmaceutical composition of the invention to the subject.
  • the invention further provides a method for treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock in a subject, comprising administering an effective amount of a compound or a pharmaceutical composition of the invention to a subject.
  • the invention provides a use of a compound or a pharmaceutical composition of the invention for the manufacture of a medicament in inhibiting PD-L1 level in a subject. Also provided is a use of a compound or a pharmaceutical composition of the invention for the manufacture of a medicament in treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock in a subject.
  • Figure 1 shows the respective levels of PD-L1 and HLA-DR in a septic shock patient and a normal healthy subject.
  • Figure 2 shows line graphs depicting the increase in PD-L1 and decrease in HLA-DR in LPS-primed monocyte model system.
  • Figure 3 shows line graphs depicting the effects of ML-C19-A, ML-C19-B, ML-A1-B, or ML-A1-C on the expression levels of PD-L1 and HLA-DR in LPS-primed monocyte model system.
  • Figure 4 shows the dose dependency of ML-C19-A, ML-C19-B, ML-A1-B, or ML-A1-C on the level of PD-L1 in LPS-primed monocyte model system.
  • Figure 5 shows the Effect on PD-L1 expression on IFN- ⁇ stimulated B16F10 cancer line.
  • IFN- ⁇ stimulated-monocytes were incubated in the presence of either a DMSO vehicle control, ML-A1-B or ML-A1-C for 1 day.
  • Treated cells were harvested and the PD-L1 molecules were analyzed using flow cytometry.
  • Surface molecule expression is presented as the MFI relative to each day that the cells were treated with the DMSO vehicle control medium. Values are presented as the mean ⁇ SEM from 3 independent experiments.
  • Figure 6 shows the direct cytotoxicity to B16F10 cancer cell line and human PBMCs.
  • the B16F10 and human PBMCs were incubated in the presence of various concentrations of ML-A1-B and ML-A1-C compounds for 1 day.
  • the cell cytotoxicity was monitored through MTS assay.
  • Optical density of DMSO control groups was taken as 100 %of cell viability. Values are presented as the mean ⁇ SEM from 3 independent experiments.
  • Figure 7 shows the lung metastases after i.v. injection of B16F10 tumor cells.
  • Two mg/kg of ML-A1-B, ML-A1-C, or with DMSO vehicle control were used.
  • the animals were killed on day 14 and tumor nodules in the lungs were counted. Data are presented as the number of each individual mouse and the mean of each group. Representative photographs of the lung of each group are also shown (left) .
  • Figure 8 shows the lung metastases after i.v. injection of B16F10 tumor cells.
  • the animals were killed on day 14 and tumor nodules in the lungs were counted. Data are presented as the number of each individual mouse and the mean of each group. Representative photographs of the lung of each group are also shown (left) .
  • Figure 9 shows toxic assay results of the compounds ML-A1-B and ML-A1-C.
  • Figure 10 shows the combination therapy of anti-PD-1 antibody with compounds, ML-C19-A and ML-A1-C.
  • the invention found a series of benzo-heterocyclic derivatives and their applications in inhibiting PD-L1 expression and increasing HLA-DR expression. Accordingly, the compounds are able to treat and/or prevent PD-L1 associated diseases such as PD-L1-associated cancers and sepsis or septic shock. Particularly, the cancer treatment through the compounds involves cancer immunotherapy rather than cytotoxicity. In other words, the compounds are able to immunologically treat cancers without killing the cells.
  • treatment′′ or ′′treating′′ as used herein is intended to mean obtaining a desired pharmacological and/or physiologic effect, e.g., ameliorating the symptoms associated with a disease.
  • the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease.
  • Treatment includes preventative (e.g., prophylactic) , curative or palliative treatment of a disease in a mammal, particularly human; and includes: (1) preventative (e.g., prophylactic) , curative or palliative treatment of a disease or condition (e.g., a cancer or heart failure) from occurring in an individual who may be pre-disposed to the disease but has not yet been diagnosed as having it; (2) inhibiting a disease (e.g., by arresting its development) ; or (3) relieving a disease (e.g., reducing symptoms associated with the disease) .
  • preventative e.g., prophylactic
  • a disease or condition e.g., a cancer or heart failure
  • ′′administered, ′′ ′′administering′′ or ′′administration′′ are used interchangeably herein to refer a mode of delivery, including, without limitation, intravenously, intramuscularly, intraperitoneally, intraarterially, subcutaneously, or transdermally administering an agent (e.g., compound or a composition) of the present invention.
  • an agent e.g., compound or a composition
  • the terms ′′prevent, ′′ ′′preventing′′ and ′′prevention′′ refer to the prevention of the onset, recurrence or spread of a disease or disorder, or of one or more symptoms thereof.
  • the terms refer to the treatment with or administration of a compound or an antibody or dosage form provided herein, with or without one or more other additional active agent (s) , prior to the onset of symptoms, particularly to patients at risk of disease or disorders provided herein.
  • the terms encompass the inhibition or reduction of a symptom of the particular disease.
  • the term ′′prevention′′ may be interchangeably used with the term ′′prophylactic treatment.
  • an effective amount′′ refers to an amount effective at a certain dosage and period of time to achieve the desired result with respect to the treatment of a disease.
  • an agent i.e., a compound or a composition
  • An effective amount of an agent is not required to cure a disease or condition but will provide a treatment for a disease or condition such that the onset of the disease or condition is delayed, hindered or prevented, or the disease or condition symptoms are ameliorated.
  • the effective amount may be a single dose or divided into two or more doses in a suitable form to be administered at one, two or more times throughout a designated time period.
  • the term ′′subject′′ or ′′patient′′ refers to an animal, including the human species, that is treatable with the method of the present invention.
  • the term ′′subject′′ or ′′patient′′ is intended to refer to both the male and female gender unless one gender is specifically indicated. Accordingly, the term ′′subject′′ or ′′patient′′ comprises any mammal which may benefit from the treatment method of the present disclosure.
  • anticancer agent′′ or ′′cancer therapeutic agent′′ is meant to include anti-proliferative agents and chemotherapeutic agents.
  • the terms ′′co-administration′′ and ′′in combination with′′ include the administration of two or more therapeutic agents simultaneously, concurrently or sequentially within no specific time limits unless otherwise indicated.
  • the therapeutic agents are in the same composition or unit dosage form. In other embodiments, the therapeutic agents are in separate compositions or unit dosage forms.
  • pharmaceutically acceptable is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, and commensurate with a reasonable benefit/risk ratio.
  • salts refers to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines, pyridine, pyrimidine and quinazoline; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
  • the term ′′pharmaceutically acceptable carrier′′ refers to any of the standard pharmaceutical carriers, e.g., a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents.
  • the compositions may also include stabilizers and preservatives and any of the above noted carriers with the additional proviso that they be acceptable for use in vivo.
  • stabilizers and adjuvants see Martin REMINGTON′S PHARM. SCI., 18th Ed., Mack Publ. Co., Easton, Pa. (1995) , and the ′′PHYSICIAN′S DESK REFERENCE, ′′ 58th ed., Medical Economics, Montvale, N.J. (2004) .
  • the term ′′stereoisomer′′ is a general term for all isomers of individual molecules that differ only in the orientation of their atoms in space. It includes enantiomers and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereoisomers) .
  • ′′chiral center′′ refers to a carbon atom to which four different groups are attached.
  • ′′enantiomer′′ and ′′enantiomeric′′ refer to a molecule that cannot be superimposed on its mirror image and hence is optically active, wherein the enantiomer rotates the plane of polarized light in one direction and its mirror image compound rotates the plane of polarized light in the opposite direction.
  • halo or halogen refers to fiuoro, chloro, bromo or iodo.
  • ′′halo′′ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one halogen.
  • hydrocarbyl′′ refers to a univalent group formed by removing a hydrogen atom from a hydrocarbon, such as alkyl, alkenyl, alkynyl, etc. as further illustrated as follows.
  • ′′alkyl′′ refers to straight or branched hydrocarbon chains containing the specified number of carbon atoms.
  • ′′C 1 -C 6 alkyl′′ is selected from straight-chained and branched non-cyclic hydrocarbons having from 1 to 6 carbon atoms.
  • Representative straight chain C 1 -C 6 alkyl groups include-methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, and-n-hexyl.
  • Representative branched C 1 -C 6 alkyls include-isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, -neopentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 3-ethylbutyl, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2, 2-dimethylbutyl, 2, 3-dimethylbutyl, and 3, 3-dimethylbutyl.
  • alkenyl′′ refers to straight or branched chain hydrocarbon chains containing the specified number of carbon atoms and one or more double bonds.
  • ′′C 2 -C 6 alkenyl′′ is selected from straight chain and branched non-cyclic hydrocarbons having from 2 to 6 carbon atoms and including at least one carbon-carbon double bond.
  • Representative straight chain and branched C 2 -C 6 alkenyl groups include-vinyl, -allyl, -1- butenyl, -2-butenyl, -isobutylenyl, -1-pentenyl, -2-pentenyl, -3-methyl-1-butenyl, -2-methyl-2-butenyl, -2, 3-dimethyl-2-butenyl, -1-hexenyl, 2-hexenyl, and 3-hexenyl.
  • alkynyl′′ refers to straight or branched chain hydrocarbon chains containing the specified number of carbon atoms and one or more triple bonds.
  • ′′C 2 -C 6 alkynyl′′ is selected from straight chain and branched non-cyclic hydrocarbon having from 2 to 6 carbon atoms and including at least one carbon-carbon triple bond.
  • Representative straight chain and branched C 2 -C 6 alkynyl groups include-acetylenyl, -propynyl, -1-butyryl, -2-butyryl, -1-pentynyl, -2-pentynyl, -3-methyl-1-butynyl, -4-pentynyl, -1-hexynyl, -2-hexynyl, and-5-hexynyl.
  • ′′cycloalkyl′′ refers to a group selected from C 3 -C 12 cycloalkyl, and preferably a C 3-8 cycloalkyl.
  • Typical cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and cyclononyl.
  • ′′alkoxy′′ refers to a straight or branched alkoxy group containing the specified number of carbon atoms.
  • C 1-6 alkoxy means a straight or branched alkoxy group containing at least 1, and at most 6, carbon atoms.
  • Examples of ′′alkoxy′′ as used herein include, but are not limited to, methoxy, ethoxy, propoxy, prop-2-oxy, butoxy, but-2-oxy, 2-methylprop-1-oxy, 2-methylprop-2-oxy, pentoxy and hexyloxy.
  • alkylthio′′ refers to straight-chain or branched alkyl groups (preferably having 1 to 6 carbon atoms, e.g. 1 to 4 carbon atoms (C 1 -C 6 -alkylthio) , which are bound to the remainder of the molecule via a sulfur atom at any bond in the alkyl group.
  • Examples of C 1 -C 4 -alkylthio include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio, isobutylthio and tert-butylthio.
  • C 1 -C 6 -alkylthio examples include, apart from those mentioned for C 1 -C 4 -alkylthio, 1-, 2-and 3-pentylthio, 1-, 2-and 3-hexylthio and the positional isomers thereof.
  • alkoxyalkyl′′ refers to the group-alk 1 -O-alk 2 where alk 1 is alkyl or alkenyl, and alk 2 is alkyl or alkenyl.
  • alkylamino′′ refers to the group--NRR′ where R is alkyl and R′ is hydrogen or alkyl.
  • ′′aryl′′ refers to a group selected from C 6-14 aryl, especially C 6-10 aryl.
  • Typical C 6-14 aryl groups include phenyl, naphthyl, phenanthryl, anthracyl, indenyl, azulenyl, biphenyl, biphenylenyl and fluorenyl groups.
  • heteroaryl refers to a group having from 5 to 14 ring atoms; 6, 10 or 14 pi electrons shared in a cyclic array; and containing carbon atoms and 1, 2 or 3 oxygen, nitrogen and/or sulfur heteroatoms.
  • heteroaryl groups include indazolyl, furyl, thienyl, pyrrolyl, imidazolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, tetrazolyl, triazinyl, azepinyl, oxazepinyl, morpholinyl, thiazepinyl, diazepinyl, thiazolinyl, benzimidazolyl, benzoxazolyl, imidazopyridinyl, benzoxazinyl, benzothiazinyl, benzothiophenyl oxazolopyridinyl, benzofuranyl, quinolinyl, quina
  • the term ′′amino′′ or ′′amino group′′ refers to--NH 2 .
  • the term ′′amino′′ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one amino group.
  • ′′cyano′′ refers to-C ⁇ N.
  • ′′cyano′′ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one cyano group.
  • the term ′′nitro′′ refers to-NO 2 .
  • ′′nitro′′ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one nitro group.
  • the term ′′hydroxy′′ refers to-OH.
  • ′′hydroxy′′ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one hydroyl group.
  • the term ′′optionally substituted′′ refers to a group that is unsubstituted or substituted with one or more substituents.
  • substituents For example, where the groups C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, --O--C 1 -C 6 alkyl, --O--C 2 -C 6 alkenyl, and--O--C 2 -C 5 alkynyl are referred to as being optionally substituted, they may or may not be substituted.
  • the invention provides a compound having the following Formula (I) ,
  • n 0 or 1
  • R 1 is selected from halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, haloC 1-10 alkyl, hydroxyC 1- 10 alkyl, aminoC 1-10 alkyl, C 3 - 10 cycloalkyl, 3-to 10-membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5-to 10-membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by-SO 2 NH 2 , or-CONH 2 ;
  • R 2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2- 10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
  • R 3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2- 10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
  • R 2 and R 3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, C 1- 10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
  • R 4 , R 5 and R 6 are each independently selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1- 10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5-to 10-membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R 2 to R 6 may be unsubstituted or substituted by one to four groups selected from halogen, hydroxy, amino, cyano, nitro, C 1- 10
  • n is 1;
  • R 1 is (C 1-10 (di) alkylamino) C 1-10 alkyl, hydroxyC 1-10 alkyl or C 6-10 aryl substituted by-SO 2 NH 2 or-CO 2 NH 2 ;
  • R 2 and R 3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, amino, cyano, nitro or C 1-10 alkyl;
  • R 4 is H, halogen or 5 to 10 membered mono-or bi-cyclic, unsubstituted or substituted heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; and
  • R 5 and R 6 are each independently hydrogen, halogen, amino, cyano, nitro, C 1-10 alkyl or haloC 1-10 alkyl.
  • n is 1,
  • R 1 is (C 1-6 (di) alkylamino) C 1-6 alkyl, hydroxyC 1-6 alkyl or phenyl substituted by-SO 2 NH 2 ;
  • R 2 and R 3 together with carbon atoms to which they attach form an unsubstituted benzene ring;
  • R 4 is H, halogen or 9 to 10 membered bi-cyclic, unsubstituted or substituted heteroaryl having from two heteroatoms selected from N, S and O;
  • R 5 and R 6 are each independently hydrogen, halogen, nitro or C 1-6 alkyl.
  • n is 1, R 1 is- CH 2 CH 2 N (CH 3 ) 2 , -CH 2 CH 2 OH, - (CH 2 ) 3 CH 3 or phenyl substituted by-SO 2 NH 2 ; R 2 and R 3 together with carbon atoms to which they attach form an unsubstituted benzene ring; R 4 is or and R 5 and R 6 are each independently hydrogen, halogen, nitro or C 1-4 alkyl.
  • n is 0, R 1 is C 6-10 aryl substituted by-SO 2 NH 2 or-CO 2 NH 2 ; R 3 , R 4 , R 5 and R 6 are each independently selected from hydrogen, halogen, amino, cyano, nitro or C 1-10 alkyl.
  • R 1 is phenyl substituted by-SO 2 NH 2 ; R 3 and R 6 are each independently hydrogen, halogen or C 1-6 alkyl; and R 4 and R 5 are each independently selected from hydrogen, halogen, nitro or C 1-6 alkyl.
  • n is 0, R 1 is phenyl substituted by-SO 2 NH 2 ; R 3 and R 6 are each independently selected from hydrogen, halogen or C 1-4 alkyl; and R 4 and R 5 are each independently selected from hydrogen, halogen, nitro or C 1- 4 alkyl. More preferably, n is 0, R 1 is phenyl substituted by-SO 2 NH 2 ; R 3 and R 6 are each independently selected from hydrogen or halogen; and R 4 and R 5 are each independently selected from hydrogen, halogen, nitro or C 1-4 alkyl.
  • the compounds include but are not limited to the following:
  • the compounds include but are not limited to the following:
  • X is Br, i.e., 4- (6-bromo-1, 3-dioxo-1H-benzo [de] isoquinolin-2 (3H) -yl) benzene-sulfonamide (compound ML-C19-B) ; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  • the compounds include but are not limited to the following:
  • X is O or S or N; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  • the compounds include but are not limited to the following:
  • Compound ML-C19-B is prepared by heating with 1, 8-naphthanhydride and sulfanilamide under reflux condition and may be prepared by the method set forth in working example 1.1 of the present disclosure.
  • Both compounds ML-A1-B and ML-A1-C derive from 6-bromo-2- (2-(dimethylamino) ethyl) -1H-benzo [de]isoquinoline-1, 3- (2H) -dione (compound A1) , and may be prepared by the method set forth in working example 1.2 of the present disclosure.
  • all compounds of the present invention are found to possess the ability to decrease PD-L1 level and optionally increase HLA-DR level.
  • prodrugs are considered to be any covalently bonded carriers that release an active compound of Formula (I) in vivo.
  • Non-limiting examples of prodrugs include esters of compounds of Formula (I) , and these may be prepared by reacting such compounds with anhydrides such as succinic anhydride.
  • the present invention also encompasses pharmaceutically acceptable salts of the disclosed compounds.
  • the present invention includes any and all non-toxic, pharmaceutically acceptable salts of the disclosed compounds, comprising inorganic and organic acid addition salts and basic salts.
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a sufficient amount of the appropriate base or acid in water or in an organic diluent like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile, or a mixture thereof.
  • such salts include acetates, ascorbates, benzenesulfonates, benzoates, besylates, bicarbonates, bitartrates, bromides/hydrobromides, Ca-edetates/edetates, camsylates, carbonates, chlorides/hydrochlorides, citrates, edisylates, ethane disulfonates, estolates esylates, fumarates, gluceptates, gluconates, glutamates, glycolates, glycollylarsnilates, hexylresorcinates, hydrabamines, hydroxymaleates, hydroxynaphthoates, iodides, isothionates, lactates, lactobionates, malates, maleates, mandelates, methanesulfonates, mesylates, methylbromides, methylnitrates, methylsulfates, mucates
  • the invention disclosed herein also encompasses solvates of the disclosed compounds.
  • One type of solvate is a hydrate. Solvates typically do not contribute significantly to the physiological activity or toxicity of the compounds and as such can function as pharmacological equivalents.
  • the invention disclosed herein also encompasses tautomers and isomers of the disclosed compounds.
  • a given chemical formula or name shall encompass tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, E/Z isomers etc. ) and racemates thereof as well as mixtures in different proportions of the separate enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms where such isomers and enantiomers exist, as well as salts, including pharmaceutically acceptable salts thereof and solvates thereof such as, for instance, hydrates including solvates of the free compounds or solvates of a salt of the compound.
  • the compounds of the present invention can be prepared using methods known to those skilled in the art in view of this disclosure.
  • the general scheme in synthesis of the compounds of the invention is shown as follows:
  • the compounds of the present invention are found to possess the ability to reverse the unique characteristics of a septic or cancer patient, i.e., an increase in PD-L1 level and optionally a decrease in HLA-DR level, suggesting that the compounds of the invention can be used in cancer immunotherapy and treatment or prevention of sepsis or septic shock and cancers.
  • the invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising an effective amount of a compound of the invention and a pharmaceutically acceptable carrier.
  • the amount of the compound ranges from 50 ⁇ g to 500 ⁇ g, preferably, 100 ⁇ g to 300 ⁇ g or 100 ⁇ g to 200 ⁇ g.
  • the compound or composition of the invention may be formulated into liquid pharmaceutical compositions, which are sterile solutions, or suspensions that can be administered by, for example, intravenous, intramuscular, subcutaneous, or intraperitoneal injection.
  • suitable diluents or solvent for manufacturing sterile injectable solution or suspension include, but are not limited to, 1, 3-butanediol, mannitol, water, Ringer’s solution, and isotonic sodium chloride solution.
  • Fatty acids, such as oleic acid and its glyceride derivatives are also useful for preparing injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil.
  • oil solutions or suspensions may also contain alcohol diluent or carboxymethyl cellulose or similar dispersing agents.
  • Other commonly used surfactants such as Tweens or Spans or other similar emulsifying agents or bioavailability enhancers that are commonly used in manufacturing pharmaceutically acceptable dosage forms can also be used for the purpose of formulation.
  • Oral administration may be either liquid or solid composition form.
  • the pharmaceutical composition of the invention further comprises a second active agent.
  • the second active agent is an anticancer agent or an immune checkpoint inhibitor.
  • the immune checkpoint inhibitor is a PD-L1 inhibitor, PD-1 inhibitor or CTLA-1 inhibitor.
  • the second anticancer agent includes, but is not limited to, an antimetabolite (e.g., 5-fiuoro uracil, methotrexate, fiudarabine, cytarabine (also known as cytosine arabinoside or Ara-C) , and high dose cytarabine) , antimicrotubule agent (e.g., vinca alkaloids, such as vincristine and vinblastine; and taxane, such as paclitaxel and docetaxel) , alkylating agent (e.g., mechlorethamine, chlorambucil, cyclophosphamide, melphalan, melphalan, ifosfamide, carmustine, azacitidine, decitabine, busulfan, cyclophosphamide, dacarbazine, ifosfamide, and nitrosoureas, such as carmustine, lomustine, bischloroe
  • the anticancer agent or cancer therapeutic agent is a cytotoxic agent, an anti-metabolite, an antifolate, an HDAC inhibitor such as MGCD0103 (a.k.a. N- (2-aminophenyl) -4- ( (4- (pyridin-3-yl) pyrimidin-2-ylamino) methyl) benzamid-e) , a DNA intercalating agent, a DNA cross-linking agent, a DNA alkylating agent, a DNA cleaving agent, a topoisomerase inhibitor, a CDK inhibitor, a JAK inhibitor, an anti-angiogenic agent, a Bcr-Abl inhibitor, an HER2 inhibitor, an EGFR inhibitor, a VEGFR inhibitor, a PDGFR inhibitor, an HGFR inhibitor, an IGFR inhibitor, a c-Kit inhibitor, a Ras pathway inhibitor, a PI3K inhibitor, a multi-targeted kinase inhibitor, an mTOR inhibitor
  • the PD-L1 inhibitor is a small interfering RNA (siRNA) of PD-L1, a small hairpin (sh) RNA of PD-L1 or an antisense RNA of PD-L1, an anti-PD-L1 antibody such as lambrolizumab, MPDL3280A, MEDI4736 and avelumab or an antigen-binding fragment thereof, that binds to a PD-L1 protein.
  • siRNA small interfering RNA
  • sh small hairpin
  • anti-PD-L1 antibody such as lambrolizumab, MPDL3280A, MEDI4736 and avelumab or an antigen-binding fragment thereof, that binds to a PD-L1 protein.
  • the PD-1 inhibitor includes a small interfering RNA (siRNA) of PD-1, a small hairpin (sh) RNA of PD-1 or an antisense RNA of PD-1, an anti-PD-1 antibody such as lambrolizumab, nivolumab, or an antigen-binding fragment thereof, that binds to a PD-1 protein.
  • siRNA small interfering RNA
  • sh small hairpin
  • anti-PD-1 antibody such as lambrolizumab, nivolumab, or an antigen-binding fragment thereof, that binds to a PD-1 protein.
  • the CTLA-4 inhibitor is a small interfering RNA (siRNA) of CTLA-4, a small hairpin (sh) RNA of CTLA-4 or an antisense RNA of CTLA-4, an anti-CTLA-4 antibody such as ipilimumab. or an antigen-binding fragment thereof, that binds to a CTLA-4 protein.
  • siRNA small interfering RNA
  • sh small hairpin
  • anti-CTLA-4 antibody such as ipilimumab. or an antigen-binding fragment thereof, that binds to a CTLA-4 protein.
  • the invention provides a method for inhibiting PD-L1 level in a subject, comprising administering an effective amount of a compound of the following formula or a pharmaceutical composition of the invention to the subject;
  • n 0 or 1
  • R 1 is selected from halogen, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, haloC 1-10 alkyl, hydroxyC 1- 10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by-SO 2 NH 2 , or-CONH 2 ;
  • R 2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2- 10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
  • R 3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2- 10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
  • R 2 and R 3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, C 1- 10 alkylthio, C 1-10 alkylamino, haloC 1-10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
  • R 4 , R 5 and R 6 are each independently selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C 1-10 alkyl, C 2-10 alkenyl, C 2-10 alkynyl, C 1-10 alkoxy, C 1-10 alkylthio, C 1-10 alkylamino, haloC 1- 10 alkyl, hydroxyC 1-10 alkyl, aminoC 1-10 alkyl, C 3-10 cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C 6-10 aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R 2 to R 6 may be unsubstituted or substituted by one to four groups selected from halogen, hydroxy, amino, cyano, nitro, C 1- 10
  • the compounds used in the treatment methods of the invention are as follows:
  • the compounds used in the treatment methods of the invention are as follows.
  • the method can increase HLA-DR level.
  • the invention provides a method for treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock in a subject, comprising administering an effective amount of a compound as mentioned herein or a pharmaceutical composition of the invention to a subject.
  • the PD-L1-associated cancer is renal cell carcinoma, ovarian cancer, lung cancer, NSCLC, colon cancer, hepatocellular carcinoma or melanoma.
  • the methods for inhibition of PD-L1 level or treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock comprise an additional step of sequentially, simultaneously, separately or subsequently administering an immune checkpoint inhibitor.
  • the immune checkpoint inhibitor includes, but is not limited to, an anti-PD-L1 antibody, an anti-PD-1 antibody and an anti-CTLA-4 antibody.
  • the immune checkpoint inhibitor is ipilimumab, lambrolizumab, MPDL3280A, MEDI4736 or avelumab.
  • the compound or composition of the invention may be administered to a mammal, preferably human, by any route that may effectively transport the compound or composition of the invention to the appropriate or desired site of action, such as oral, nasal, pulmonary, transdermal, such as passive or iontophoretic delivery, or parenteral, e.g., rectal, depot, subcutaneous, intravenous, intramuscular, intranasal, intra-cerebella, ophthalmic solution or ointment. Further, the administration of the compound of the formula or composition of the invention may be in single dose or in multiple applications.
  • the subject may be a mammal, preferably a human.
  • the compound of the invention is ML-A1-B or ML-A1-C.
  • Either compound i.e., ML-A1-B or ML-A1-C
  • the dosage of the compound or composition of the invention will vary from patient to patient not only for the particular compound selected, the route of administration, and the ability of the compound to elicit a desired response in the patient, but also factors such as disease state or severity of the condition to be alleviated, age, sex, weight of the patient, the state of being of the patient, and the severity of the pathological condition being treated, concurrent medication or special diets then being followed by the patient, and other factors which those skilled in the art will recognize, with the appropriate dosage ultimately being at the discretion of the attendant physician. Dosage regimens may be adjusted to provide the desired response.
  • the compound of the present invention is administered at an amount of about 1 ⁇ g/kg/day to about 500 ⁇ g/kg/day, assuming the subject is about 60 kg in weight. More preferably, the compound of the present invention is administered at an amount of about 50 ⁇ g/kg/day to about 400 ⁇ g/kg/day; still more preferably, about 100 ⁇ g/kg/day to about 300 ⁇ g/kg/day; most preferably, about 160 ⁇ g/kg/day, and for a time such as 1 day, such that improved therapeutic response may be elicited in the subject.
  • the compound or composition of the invention is administered in single dosages. In other embodiments, the compound or composition of the invention is administered in multiple independent dosages.
  • PBMCs peripheral blood mononuclear cells
  • CD14 MACS microbeads CD14 MACS microbeads
  • Monocytes were incubated with endotoxin LPS (100 ng/ml) for 72 hours. At the indicated time point, the cells were harvested and the PD-L1 and HLA-DR molecules were analyzed using flow cytometry.
  • Murine B16F10 cell lines maintained in Dulbecco’s modified Eagle’s medium (DMEM) , 10%heat-inactivated fetal calf serum, 2mM L-glutamine, penicillin (100U/ml) , and streptomycin (100 ⁇ g/ml) at 37C in a 5%CO 2 humidified atmosphere.
  • DMEM Dulbecco’s modified Eagle’s medium
  • penicillin 100U/ml
  • streptomycin 100 ⁇ g/ml
  • the cells were incubated for 30 minutes on ice in the dark with the following mAbs diluted in phosphate-buffered saline (PBS) containing 1%BSA: PD-L1-FITC, HLA-DR-PE, CD14-PerCP (BD Biosciences) .
  • PBS phosphate-buffered saline
  • Monocytes were gated based on their FSC/SSC properties. Fluorescence was detected using FACS Calibur, and data analysis was performed using FCS Express version 3 (De Novo Software) .
  • the APACHE II scoring system is a severity-of-disease classification system which has been validated in the first 24 hours of admission of patients to an intensive care unit (ICU) .
  • the score is calculated from 12 physiological variables during the first 24 hours after admission and ranges from 0 to 71 points.
  • the SOFA scoring system is a patient’s organ dysfunction and morbidity severity score during the patient’s stay in an ICU.
  • the score is calculated from 6 variables: 1. respiratory system; 2. cardiovascular systems; 3. hepatic systems; 4. coagulation systems; 5. renal systems; 6. neurological systems.
  • Each variable is given a point value from 0 to 4 (normal to high degree of organ dysfunction) .
  • Total score ranges from 0 to 24.
  • mice C57BL/6 mice (6 to 8 weeks old) and NOD/SCID mice (6 to 8 weeks old) were purchased from the National Laboratory Animal Center (Taipei, Taiwan) . All animal experiments were performed under specific pathogen-free conditions and in accordance with guidelines approved by the Animal Care and Usage Committee of Mackay memorial hospital (Taipei, Taiwan) .
  • mice were injected intravenously with 2xl0 5 B16F10 cells, a dose consistently yielding lung metastases in 100%of animals. 2mg/kg compounds and 5%DMSO vehicle control were given ip daily to test the effect of compounds on tumor metastatsis. The amount of tumor seeding was counted as total numbers of black nodules presented in the lungs under microscopy.
  • C57BL/6 mice were ip injected daily with 20 mg/kg of ML-A1-B, or ML-A1-C, or 5%DMSO vehicle control, and their body weight were measured on the indicated days.
  • mice C57BL/6 mice were injected iv with 2 x 10 5 B16F10 cells on Day0.
  • mice were injected ip with either control hamster Ig (CTRL IgG) or hamster anti-mouse-PD-1 (J43) at 5 mg/kg every 3-4 days.
  • CRL IgG control hamster Ig
  • J43 hamster anti-mouse-PD-1
  • mice were daily injected with 2 mg/kg of ML-C19-A or ML-A1-C combined with anti-mouse PD-1 (5mg/kg) every 3-4 days. Long-term of survival of treated mice in each of the experimental groups were observed.
  • ML-C19-B compound was prepared in accordance with the following scheme:
  • ML-A1-B and ML-A1-C compounds were prepared in accordance with the following scheme:
  • septic shock patients in the present study have a median SOFA score of 11, suggesting multiple organ dysfunction, and a median APACHE II score of 25, suggesting patients were in the early stage of severe sepsis.
  • an LPS-primed monocyte model was established and then used to evaluate the function of the compound of example 1. Specifically, monocytes isolated from healthy subjects according to procedures described in the ′′Materials and methods′′ section were incubated with LPS (100 ng/mL) for 72 hours, then respective levels of PD-L1 and HLA-DR were determined. Results are illustrated in Fig. 2.
  • LPS-primed monocyte is a suitable cell model system for screening a potential candidate compound (s) for the treatment of sepsis or septic shock.
  • the compounds ML-C19-A, ML-A1-B, and ML-A1-C were effective in reversing the LPS-induced increase in PD-L1; with the expression level of PD-L1 in LPS-primed monocytes reduced to about 37.5%, 9.4%, and 50.8%of that of the control (dashed line) .
  • ML-C19-B it appeared to be less potent than ML-C19-A,merely 20%reduction in PD-L1 level was observed, as compared with that of the control.
  • ML-C19-B, ML-A1-B, and ML-A1-C were capable of altering the levels of HLA-DR expression.
  • the dose dependency of ML-C19-A ML-C19-B, ML-A1-B, or ML-A1-C on the level of PD-L1 is illustrated in Fig. 4.
  • IFN- ⁇ stimulated B16F10 cells were treated with various concentrations of ML-A1-B or ML-A1-C compounds for 1 day.
  • the up-regulation of PD-L1 by IFN- ⁇ can be blocked by administration of ML-A1-B and ML-A1-C compounds.
  • ML-A1-B and ML-A1-C significantly suppresses PD-L1 on IFN- ⁇ stimulated murine B16F10 melanoma cell line.
  • ML-A1-B and ML-A1-C significantly increases cell damage (MTS assay) to melanoma cell line (B16F10) with a dose-dependent response (IC 50 of ML-A1-C: 7.8 ⁇ 0.05 uM; IC 50 of ML-A1-C: 4.5 ⁇ 0.06 uM) .
  • mice were iv injected with 2 x 10 5 B 16F 10 tumor cells and treated with, per mouse, 2 mg/kg of ML-A1-B, ML-A1-C, or with DMSO vehicle control.
  • the number of lung nodules in each individual mouse in each group is shown in Fig. 7.
  • Mice treated with ML-A1-B showed a reduction in the number of lung metastases (mean 41; range 2-90) as compared with mice receiving the DMSO vehicle control (mean 60; range 37-94) .
  • the 2 mg/kg of ML-A1-C had a marked effect in reducing metastasis to the lung, with a mean of 30 lung nodules (range 3-59) .
  • ML-A1-B and ML-A1-C may provide a novel therapeutic cancer drug to treat PD-L1 associated cancer by simultaneously modulating PD-L1 expression on cancer cells and inhibiting tumor growth.
  • ML-A1-B and ML-A1-C would be the first-in-class small molecule for cancer immunotherapy, if it can succeed in future trials.
  • ML-A1-B and ML-A1-C may not only inhibit tumor growth but also contribute to amelioration of the immune deficiency observed in cancer patients. If the results demonstrated here hold true in clinical, ML-A1-B and ML-A1-C treatment in patients with cancer may help to achieve optimal outcomes and improved survival.
  • Compared with clinically available therapeutic antibodies anti-PD-1, CTLA-4) , the cost of treatment and manufacturing requirements are certainly lower than those of antibodies.
  • mice were injected ip daily with 20 mg/kg of ML-A1-B or ML-A1-C or 5%DMSO vehicle control.
  • the compounds of the invention, ML-A1-B and ML-A1-C do not significantly reduce the body weight of the mice and no visible sign of toxicity were observed in high dose of ML-A1-B and ML-A1-C treated mice.
  • mice were injected ip with compounds and anti-PD-1 antibody. As shown in Fig. 10, mice receiving concurrent treatments of compounds (2mg/kg) and anti-PD-1 (5mg/kg) demonstrated an increase in overall survival.

Abstract

The present invention relates to benzoxazole derivatives having Formula (I). The compounds of the present invention are found to possess the ability to decrease PD-L1 level, suggesting that the compounds of the invention can be used in cancer immunotherapy and treatment or prevention of sepsis or septic shock.

Description

BENZO-HETEROCYCLIC COMPOUNDS AND THEIR APPLICATIONS Field of the Invention
The present disclosure relates to compounds for treatment or prophylaxis of sepsis or septic shock and cancers. More particularly, the present invention relates to benzo-heterocyclic derivatives and the applications thereof in inhibiting PD-L1 expression and increasing HLA-DR expression.
Background of the Invention
Sepsis is defined as Systemic Inflammatory Response Syndrome (SIRS) resulting from microbial invasion that may originate anywhere in the body, such as genitourinary tract, liver or biliary tract, gastrointestinal tract, lungs, surgical wounds, etc. The infection is usually confirmed by a positive blood culture, and may lead to shock, termed septic shock, which is a consequence of sepsis that leads to vital organ failure. Clinically, sepsis is defined by both the infection and SIRS. Infection is suspected when an above-normal white blood cell (WBC) count is noted, or by a chest radiograph consistent with pneumonia. Evidence of SIRS includes derangement of vital signs.
Currently, sepsis represents a major clinical problem with limited treatment options. Only one drug has been approved by FDA for the treatment of severe sepsis, a recombinant human activated protein C
Figure PCTCN2015089865-appb-000001
. However, significant side effects (e.g., serious bleeding) have been reported in a significant number of patients. Further,
Figure PCTCN2015089865-appb-000002
has no effect on severe sepsis patients with an Acute Physiology and Chronic Health Evaluation (APACHE) II score of ≤ 25 (Abraham E et al., N Engl J Med (2005) 353, 1332-1341. ) .
Sepsis has recently been reported to associate with a form of immunosuppression called ″immunoparalysis″ characterized in a decrease in the expression of human leukocyte antigen (HLA) DR (HLA-DR) and increase in the expression of programmed death-ligand 1 (PD-L1) in monocytes (Hotchkiss RS and Opal S, (2010) N Engl J Med 363, 87-89) . Thus, if an agent were successful in reverting the unique expression of HLA-DR and PD-L1 associated with sepsis patients, such agent may be useful for the treatment or prophylaxis of sepsis or septic shock.
On the other hand, clinically, up-regulation of PD-L1 on monocytes/APCs has been documented in a variety of human chronic infectious diseases such as HIV, viral hepatitis, cytomegalovirus infection and latent mycobacterium tuberculosis (Saresella M, Rainone V, , Al-Daghri NM, Clerici M, Trabattoni D (2012) The PD-1/PD-L1 pathway in human pathology.  Curr Mol Med 12: 259-267) , leading to inhibition of T cell effector function recognized as ″T-cell exhaustion″ (Watanabe T, Bertoletti A, Tanoto TA (2010) PD-1/PD-L1 pathway and T-cell exhaustion in chronic hepatitis virus infection. J Viral Hepat 17: 453-458) . Similar immune impairment with an increase in PD-L1/PD-1 interaction has also been observed in patients with different forms and stages of cancers (Chen IH, Lai YL, Wu CL, Chang YF, Chu CC, et al. (2010) Immune impairment in patients with terminal cancers: influence of cancer treatments and cytomegalovirus infection. Cancer Immunol Immunother 59: 323-334) . Recently, there are 3 immunotherapeutic drugs, two anti-PD-1 mAbs (Keytruda, MDS; Nivolumab, BMS) and one anti-CTLA-4 mAb (Yervoy, BMS) marketed for the treatment of cancers. All 3 biologics are currently approved for the treatment of melanoma; however trials are actively conducted on a variety of cancers including lung cancers, reno-urinary cancers, breast cancers and other solid tumors. Early results from several global trials hail surprising results not only with clinical efficacy but also showing durable effects (Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, et al. (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366: 2443-2454. ; Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, , Topalian SL, et al. (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366: 2455-2465) . Therefore, cancer immunotherapy has been projected to feature in more than 60%of all cancer treatment plans.
In view of the foregoing, there exists in this art a need of an agent that may reverse characteristic expression of HLA-DR and PD-L1 associated with sepsis patients. Such agent may be useful as a lead compound for the manufacture of a medicament for treating patients having or suspected of having sepsis or septic shock and cancers.
Summary of the Invention
The invention provides a compound of Formula (I) ,
Figure PCTCN2015089865-appb-000003
wherein
n is 0 or 1,
R1 is selected from halogen, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, hydroxyC1- 10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by-SO2NH2, or-CONH2
R2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
R3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1- 10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
R4, R5 and R6 are each independently selected from hydrogen, halogen, amino, hydroxy, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1- 10alky1, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R2 to R6 may be unsubstituted or substituted by one to four groups selected from halogen, hydroxy, amino, cyano, nitro, C1- 10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl;
with provisos that (1) when n is 1, R1 is
Figure PCTCN2015089865-appb-000004
and R2 and R3 together with carbon atoms to which they attach form a benzene ring, R4, R5 and R6 cannot simultaneously represent hydrogen; (2) when n is 0 and R1 is selected from the cycloalkyl, heterocycloalkyl, aryl or heteroaryl, R3, R4, R5 and R6 are not simultaneously hydrogen; (3) when n is 0, R1 is 
Figure PCTCN2015089865-appb-000005
and R3 and R6 simultaneously represent hydrogen, if one of R4 and R5 is hydrogen, the other cannot be methyl, tert-butyl or nitro; (4) when n is 0, R1 is
Figure PCTCN2015089865-appb-000006
and R3 and R6 simultaneously represent hydrogen, R4 and R5 cannot simultaneously represent chloro; and (5) when n is 0 and R1 is
Figure PCTCN2015089865-appb-000007
R3, R4, R5 and R6 cannot simultaneously represent chloro
or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
In some embodiments of Formula (I) , n is 1; R1 is (C1-10 (di) alkylamino) C1-10alkyl, hydroxyC1-10alkyl or C6-10aryl substituted by-SO2NH2 or-CO2NH2; R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, amino, cyano, nitro or C1-10alkyl; R4 is H, halogen or 5-to 10-membered mono-or bi-cyclic, unsubstituted or substituted heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; and R5 and R6 are each independently hydrogen, halogen, amino, cyano, nitro, C1-10alkyl or haloC1-10alkyl. In some embodiments of Formula (I) , n is 0, R1 is C6-10aryl substituted by-SO2NH2 or-CO2NH2; and R3, R4, R5 and R6 are each independently selected from hydrogen, halogen, amino, cyano, nitro or C1-10alkyl.
The invention also provides a pharmaceutical composition comprising an effective amount of a compound of the invention and a pharmaceutically acceptable carrier. The invention also provides a method for inhibiting PD-L1 expression in a subject, comprising administering an effective amount of a compound or a pharmaceutical composition of the  invention to the subject. The invention also provides a method for increasing HLA-1 expression in a subject, comprising administering an effective amount of a compound or a pharmaceutical composition of the invention to the subject. The invention further provides a method for treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock in a subject, comprising administering an effective amount of a compound or a pharmaceutical composition of the invention to a subject. Accordingly, the invention provides a use of a compound or a pharmaceutical composition of the invention for the manufacture of a medicament in inhibiting PD-L1 level in a subject. Also provided is a use of a compound or a pharmaceutical composition of the invention for the manufacture of a medicament in treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock in a subject.
Brief Description of the Drawings
Figure 1 shows the respective levels of PD-L1 and HLA-DR in a septic shock patient and a normal healthy subject.
Figure 2 shows line graphs depicting the increase in PD-L1 and decrease in HLA-DR in LPS-primed monocyte model system.
Figure 3 shows line graphs depicting the effects of ML-C19-A, ML-C19-B, ML-A1-B, or ML-A1-C on the expression levels of PD-L1 and HLA-DR in LPS-primed monocyte model system.
Figure 4 shows the dose dependency of ML-C19-A, ML-C19-B, ML-A1-B, or ML-A1-C on the level of PD-L1 in LPS-primed monocyte model system.
Figure 5 shows the Effect on PD-L1 expression on IFN-γ stimulated B16F10 cancer line. IFN-γ stimulated-monocytes were incubated in the presence of either a DMSO vehicle control, ML-A1-B or ML-A1-C for 1 day. Treated cells were harvested and the PD-L1 molecules were analyzed using flow cytometry. Surface molecule expression is presented as the MFI relative to each day that the cells were treated with the DMSO vehicle control medium. Values are presented as the mean ± SEM from 3 independent experiments.
Figure 6 shows the direct cytotoxicity to B16F10 cancer cell line and human PBMCs. The B16F10 and human PBMCs were incubated in the presence of various concentrations of ML-A1-B and ML-A1-C compounds for 1 day. The cell cytotoxicity was monitored through MTS assay. Optical density of DMSO control groups was taken as 100 %of cell viability. Values are presented as the mean ± SEM from 3 independent experiments.
Figure 7 shows the lung metastases after i.v. injection of B16F10 tumor cells. C57BL/6 (n=11/group) mice were injected i.v. with 2 × 105 of the B16F10 tumor cells. Two mg/kg of ML-A1-B, ML-A1-C, or with DMSO vehicle control were used. The animals were killed on day 14 and tumor nodules in the lungs were counted. Data are presented as the number of each individual mouse and the mean of each group. Representative photographs of the lung of each group are also shown (left) .
Figure 8 shows the lung metastases after i.v. injection of B16F10 tumor cells. NOD/SCID (n=5/group) mice were injected i.v. with 2 × 105 of the B16F10 tumor cells. Two mg/kg of ML-A1-B, ML-A1-C, or with DMSO vehicle control were used. The animals were killed on day 14 and tumor nodules in the lungs were counted. Data are presented as the number of each individual mouse and the mean of each group. Representative photographs of the lung of each group are also shown (left) .
Figure 9 shows toxic assay results of the compounds ML-A1-B and ML-A1-C.
Figure 10 shows the combination therapy of anti-PD-1 antibody with compounds, ML-C19-A and ML-A1-C.
Detailed Description of the Invention
The invention found a series of benzo-heterocyclic derivatives and their applications in inhibiting PD-L1 expression and increasing HLA-DR expression. Accordingly, the compounds are able to treat and/or prevent PD-L1 associated diseases such as PD-L1-associated cancers and sepsis or septic shock. Particularly, the cancer treatment through the compounds involves cancer immunotherapy rather than cytotoxicity. In other words, the compounds are able to immunologically treat cancers without killing the cells.
The detailed description provided below in connection with the appended drawings is intended as a description of the present examples and is not intended to represent the only forms in which the present examples may be constructed or utilized. The description sets forth the functions of the examples and the sequence of steps for constructing and operating the examples. However, the same or equivalent functions and sequences may be accomplished by different examples.
Definitions
For convenience, certain terms employed in the context of the present disclosure are collected here. Unless defined otherwise, all technical and scientific terms used herein have the  same meaning as commonly understood by one of the ordinary skill in the art to which this invention belongs.
The singular forms ″a, ″ ″an, ″ and ″the″ are used herein to include plural referents unless the context clearly dictates otherwise.
The term ″treatment″ or ″treating″ as used herein is intended to mean obtaining a desired pharmacological and/or physiologic effect, e.g., ameliorating the symptoms associated with a disease. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or therapeutic in terms of a partial or complete cure for a disease and/or adverse effect attributable to the disease. “Treatment” as used herein includes preventative (e.g., prophylactic) , curative or palliative treatment of a disease in a mammal, particularly human; and includes: (1) preventative (e.g., prophylactic) , curative or palliative treatment of a disease or condition (e.g., a cancer or heart failure) from occurring in an individual who may be pre-disposed to the disease but has not yet been diagnosed as having it; (2) inhibiting a disease (e.g., by arresting its development) ; or (3) relieving a disease (e.g., reducing symptoms associated with the disease) .
The term ″administered, ″ ″administering″ or ″administration″ are used interchangeably herein to refer a mode of delivery, including, without limitation, intravenously, intramuscularly, intraperitoneally, intraarterially, subcutaneously, or transdermally administering an agent (e.g., compound or a composition) of the present invention.
As used herein, the terms ″prevent, ″ ″preventing″ and ″prevention″ refer to the prevention of the onset, recurrence or spread of a disease or disorder, or of one or more symptoms thereof. In certain embodiments, the terms refer to the treatment with or administration of a compound or an antibody or dosage form provided herein, with or without one or more other additional active agent (s) , prior to the onset of symptoms, particularly to patients at risk of disease or disorders provided herein. The terms encompass the inhibition or reduction of a symptom of the particular disease. In this regard, the term ″prevention″ may be interchangeably used with the term ″prophylactic treatment.
The term ″an effective amount″ as used herein refers to an amount effective at a certain dosage and period of time to achieve the desired result with respect to the treatment of a disease. For example, in the treatment of sepsis, an agent (i.e., a compound or a composition) which decreases, prevents, delays, suppresses or arrests any symptoms of sepsis would be effective. An effective amount of an agent is not required to cure a disease or condition but will  provide a treatment for a disease or condition such that the onset of the disease or condition is delayed, hindered or prevented, or the disease or condition symptoms are ameliorated. The effective amount may be a single dose or divided into two or more doses in a suitable form to be administered at one, two or more times throughout a designated time period.
The term ″subject″ or ″patient″ refers to an animal, including the human species, that is treatable with the method of the present invention. The term ″subject″ or ″patient″ is intended to refer to both the male and female gender unless one gender is specifically indicated. Accordingly, the term ″subject″ or ″patient″ comprises any mammal which may benefit from the treatment method of the present disclosure.
As used herein, the term ″anticancer agent″ or ″cancer therapeutic agent″ is meant to include anti-proliferative agents and chemotherapeutic agents.
As used herein, the terms ″co-administration″ and ″in combination with″ include the administration of two or more therapeutic agents simultaneously, concurrently or sequentially within no specific time limits unless otherwise indicated. In one embodiment, the therapeutic agents are in the same composition or unit dosage form. In other embodiments, the therapeutic agents are in separate compositions or unit dosage forms.
The term ″pharmaceutically acceptable″ is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, and commensurate with a reasonable benefit/risk ratio.
As used herein, ″pharmaceutically acceptable salts″ refers to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines, pyridine, pyrimidine and quinazoline; alkali or organic salts of acidic residues such as carboxylic acids; and the like.
As used herein, the term ″pharmaceutically acceptable carrier″ refers to any of the standard pharmaceutical carriers, e.g., a phosphate buffered saline solution, water, and emulsions, such as an oil/water or water/oil emulsion, and various types of wetting agents. The compositions may also include stabilizers and preservatives and any of the above noted carriers with the additional proviso that they be acceptable for use in vivo. For examples of carriers, stabilizers and adjuvants, see Martin REMINGTON′S PHARM. SCI., 18th Ed., Mack Publ. Co.,  Easton, Pa. (1995) , and the ″PHYSICIAN′S DESK REFERENCE, ″ 58th ed., Medical Economics, Montvale, N.J. (2004) .
As used herein, the term ″stereoisomer″ is a general term for all isomers of individual molecules that differ only in the orientation of their atoms in space. It includes enantiomers and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereoisomers) .
The term ″chiral center″ refers to a carbon atom to which four different groups are attached.
The terms ″enantiomer″ and ″enantiomeric″ refer to a molecule that cannot be superimposed on its mirror image and hence is optically active, wherein the enantiomer rotates the plane of polarized light in one direction and its mirror image compound rotates the plane of polarized light in the opposite direction.
As used herein, halo or halogen refers to fiuoro, chloro, bromo or iodo. When the term ″halo″ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one halogen.
As used herein, the term ″hydrocarbyl″ refers to a univalent group formed by removing a hydrogen atom from a hydrocarbon, such as alkyl, alkenyl, alkynyl, etc. as further illustrated as follows.
As used herein, the term ″alkyl″ refers to straight or branched hydrocarbon chains containing the specified number of carbon atoms. For example, ″C1-C6 alkyl″ is selected from straight-chained and branched non-cyclic hydrocarbons having from 1 to 6 carbon atoms. Representative straight chain C1-C6 alkyl groups include-methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, and-n-hexyl. Representative branched C1-C6 alkyls include-isopropyl, -sec-butyl, -isobutyl, -tert-butyl, -isopentyl, -neopentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1, 1-dimethylpropyl, 1, 2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, 3-ethylbutyl, 1, 1-dimethylbutyl, 1, 2-dimethylbutyl, 1, 3-dimethylbutyl, 2, 2-dimethylbutyl, 2, 3-dimethylbutyl, and 3, 3-dimethylbutyl.
As used herein, the term ″alkenyl″ refers to straight or branched chain hydrocarbon chains containing the specified number of carbon atoms and one or more double bonds. For example, ″C2-C6 alkenyl″ is selected from straight chain and branched non-cyclic hydrocarbons having from 2 to 6 carbon atoms and including at least one carbon-carbon double bond. Representative straight chain and branched C2-C6 alkenyl groups include-vinyl, -allyl, -1- butenyl, -2-butenyl, -isobutylenyl, -1-pentenyl, -2-pentenyl, -3-methyl-1-butenyl, -2-methyl-2-butenyl, -2, 3-dimethyl-2-butenyl, -1-hexenyl, 2-hexenyl, and 3-hexenyl.
As used herein, the term ″alkynyl″ refers to straight or branched chain hydrocarbon chains containing the specified number of carbon atoms and one or more triple bonds. For example, ″C2-C6 alkynyl″ is selected from straight chain and branched non-cyclic hydrocarbon having from 2 to 6 carbon atoms and including at least one carbon-carbon triple bond. Representative straight chain and branched C2-C6 alkynyl groups include-acetylenyl, -propynyl, -1-butyryl, -2-butyryl, -1-pentynyl, -2-pentynyl, -3-methyl-1-butynyl, -4-pentynyl, -1-hexynyl, -2-hexynyl, and-5-hexynyl.
As used herein, ″cycloalkyl″ refers to a group selected from C3-C12 cycloalkyl, and preferably a C3-8 cycloalkyl. Typical cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and cyclononyl.
As used herein, the term ″alkoxy″ refers to a straight or branched alkoxy group containing the specified number of carbon atoms. For example, C1-6alkoxy means a straight or branched alkoxy group containing at least 1, and at most 6, carbon atoms. Examples of ″alkoxy″ as used herein include, but are not limited to, methoxy, ethoxy, propoxy, prop-2-oxy, butoxy, but-2-oxy, 2-methylprop-1-oxy, 2-methylprop-2-oxy, pentoxy and hexyloxy.
As used herein, the term ″alkylthio″ (also termed as alkylsulfanyl) refers to straight-chain or branched alkyl groups (preferably having 1 to 6 carbon atoms, e.g. 1 to 4 carbon atoms (C1-C6-alkylthio) , which are bound to the remainder of the molecule via a sulfur atom at any bond in the alkyl group. Examples of C1-C4-alkylthio include methylthio, ethylthio, n-propylthio, isopropylthio, n-butylthio, sec-butylthio, isobutylthio and tert-butylthio. Examples of C1-C6-alkylthio include, apart from those mentioned for C1-C4-alkylthio, 1-, 2-and 3-pentylthio, 1-, 2-and 3-hexylthio and the positional isomers thereof.
As used herein, the term ″alkoxyalkyl″ refers to the group-alk1-O-alk2 where alk1 is alkyl or alkenyl, and alk2 is alkyl or alkenyl.
As used herein, the term ″ (di) alkylamino″ refers to the group--NRR′ where R is alkyl and R′ is hydrogen or alkyl.
As used herein, ″aryl″ refers to a group selected from C6-14 aryl, especially C6-10 aryl. Typical C6-14 aryl groups include phenyl, naphthyl, phenanthryl, anthracyl, indenyl, azulenyl, biphenyl, biphenylenyl and fluorenyl groups.
As used herein, ″heteroaryl″ refers to a group having from 5 to 14 ring atoms; 6, 10 or 14 pi electrons shared in a cyclic array; and containing carbon atoms and 1, 2 or 3 oxygen, nitrogen and/or sulfur heteroatoms. Examples of heteroaryl groups include indazolyl, furyl, thienyl, pyrrolyl, imidazolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, tetrazolyl, triazinyl, azepinyl, oxazepinyl, morpholinyl, thiazepinyl, diazepinyl, thiazolinyl, benzimidazolyl, benzoxazolyl, imidazopyridinyl, benzoxazinyl, benzothiazinyl, benzothiophenyl oxazolopyridinyl, benzofuranyl, quinolinyl, quinazolinyl, quinoxalinyl, benzothiazolyl, phthalimido, benzofuranyl, benzodiazepinyl, indolyl, indanyl, azaindazolyl, deazapurinyl and isoindolyl.
As used herein, the term ″amino″ or ″amino group″ refers to--NH2. When the term ″amino″ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one amino group.
As used herein, the term ″cyano″ refers to-C≡N. When the term ″cyano″ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one cyano group.
As used herein, the term ″nitro″ refers to-NO2. When the term ″nitro″ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one nitro group.
As used herein, the term ″hydroxy″ refers to-OH. When the term ″hydroxy″ is used as a prefix of, for example, a hydrocarbyl, it means that the hydrocarbyl is substituted by at least one hydroyl group.
As used herein, the term ″optionally substituted″ refers to a group that is unsubstituted or substituted with one or more substituents. For example, where the groups C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, --O--C1-C6 alkyl, --O--C2-C6 alkenyl, and--O--C2-C5 alkynyl are referred to as being optionally substituted, they may or may not be substituted.
Compounds of the Invention
In one aspect, the invention provides a compound having the following Formula (I) ,
Figure PCTCN2015089865-appb-000008
wherein
n is 0 or 1,
R1 is selected from halogen, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, hydroxyC1- 10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3-to 10-membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5-to 10-membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by-SO2NH2, or-CONH2
R2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
R3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1- 10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
R4, R5 and R6 are each independently selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1- 10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5-to 10-membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and  O; wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R2 to R6 may be unsubstituted or substituted by one to four groups selected from halogen, hydroxy, amino, cyano, nitro, C1- 10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl or C3-10cycloalkyl;
with provisos that (1) when n is 1, R1 is
Figure PCTCN2015089865-appb-000009
and R2 and R3 together with carbon atoms to which they attach form a benzene ring, R4, R5 and R6 cannot simltaneously represent hydrogen; (2) when n is 0 and R1 is selected from the cycloalkyl, heterocycloalkyl, aryl or heteroaryl, R3, R4, R5 and R6 are not simultaneously hydrogen; (3) when n is 0, R1 is 
Figure PCTCN2015089865-appb-000010
and R3 and R6 simultaneously represent hydrogen, if one of R4 and R5 is hydrogen, the other cannot be methyl, tert-butyl or nitro; (4) when n is 0, R1 is
Figure PCTCN2015089865-appb-000011
and R3 and R6 simultaneously represent hydrogen, R4 and R5 cannot simultaneously represent chloro; and (5) when n is 0 and R1 is
Figure PCTCN2015089865-appb-000012
R3, R4, R5 and R6 cannot simultaneously represent chloro;
or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
In some embodiments of Formula (I) , n is 1; R1 is (C1-10 (di) alkylamino) C1-10alkyl, hydroxyC1-10alkyl or C6-10aryl substituted by-SO2NH2 or-CO2NH2; R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, amino, cyano, nitro or C1-10alkyl; R4 is H, halogen or 5 to 10 membered mono-or bi-cyclic, unsubstituted or substituted heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; and R5 and R6 are each independently hydrogen, halogen, amino, cyano, nitro, C1-10alkyl or haloC1-10alkyl. Preferably, n is 1, R1 is (C1-6 (di) alkylamino) C1-6alkyl, hydroxyC1-6alkyl or phenyl substituted by-SO2NH2; R2 and R3 together with carbon atoms to which they attach form an unsubstituted benzene ring; R4 is H, halogen or 9 to 10 membered bi-cyclic, unsubstituted or substituted heteroaryl having from two heteroatoms selected from N, S and O; and R5 and R6 are each independently hydrogen, halogen, nitro or C1-6alkyl. More preferably, n is 1, R1 is- CH2CH2N (CH32, -CH2CH2OH, - (CH23CH3 or phenyl substituted by-SO2NH2; R2 and R3 together with carbon atoms to which they attach form an unsubstituted benzene ring; R4 is 
Figure PCTCN2015089865-appb-000013
or
Figure PCTCN2015089865-appb-000014
and R5 and R6 are each independently hydrogen, halogen, nitro or C1-4alkyl.
In some embodiments of Formula (I) , n is 0, R1 is C6-10aryl substituted by-SO2NH2 or-CO2NH2; R3, R4, R5 and R6 are each independently selected from hydrogen, halogen, amino, cyano, nitro or C1-10alkyl. Preferably, n is 0, R1 is phenyl substituted by-SO2NH2; R3 and R6 are each independently hydrogen, halogen or C1-6alkyl; and R4 and R5 are each independently selected from hydrogen, halogen, nitro or C1-6alkyl. More preferably, n is 0, R1 is phenyl substituted by-SO2NH2; R3 and R6 are each independently selected from hydrogen, halogen or C1-4alkyl; and R4 and R5 are each independently selected from hydrogen, halogen, nitro or C1- 4alkyl. More preferably, n is 0, R1 is phenyl substituted by-SO2NH2; R3 and R6 are each independently selected from hydrogen or halogen; and R4 and R5 are each independently selected from hydrogen, halogen, nitro or C1-4alkyl.
In some preferred embodiments of Formula (I) , the compounds include but are not limited to the following:
Figure PCTCN2015089865-appb-000015
Figure PCTCN2015089865-appb-000016
or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
In some preferred embodiments, the compounds include but are not limited to the following:
Figure PCTCN2015089865-appb-000017
wherein X is Br, i.e., 4- (6-bromo-1, 3-dioxo-1H-benzo [de] isoquinolin-2 (3H) -yl) benzene-sulfonamide (compound ML-C19-B) ; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
In some preferred embodiments, the compounds include but are not limited to the following:
Figure PCTCN2015089865-appb-000018
wherein X is O or S or N; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
In some more preferred embodiments, the compounds include but are not limited to the following:
Figure PCTCN2015089865-appb-000019
Compound ML-C19-B is prepared by heating with 1, 8-naphthanhydride and sulfanilamide under reflux condition and may be prepared by the method set forth in working example 1.1 of the present disclosure.
Both compounds ML-A1-B and ML-A1-C derive from 6-bromo-2- (2-(dimethylamino) ethyl) -1H-benzo [de]isoquinoline-1, 3- (2H) -dione (compound A1) , and may be prepared by the method set forth in working example 1.2 of the present disclosure.
Further, according to the present invention, all compounds of the present invention are found to possess the ability to decrease PD-L1 level and optionally increase HLA-DR level.
The invention disclosed herein also encompasses prodrugs of the disclosed compounds. Prodrugs are considered to be any covalently bonded carriers that release an active compound of Formula (I) in vivo. Non-limiting examples of prodrugs include esters of compounds of Formula (I) , and these may be prepared by reacting such compounds with anhydrides such as succinic anhydride.
The invention disclosed herein also encompasses pharmaceutically acceptable salts of the disclosed compounds. In one embodiment, the present invention includes any and all non-toxic, pharmaceutically acceptable salts of the disclosed compounds, comprising inorganic and organic acid addition salts and basic salts. The pharmaceutically acceptable salts of the present invention can be synthesized from the parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting the free acid or base forms of these compounds with a sufficient amount of the appropriate base or acid in water or in an organic diluent like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile, or a mixture thereof. For example, such salts include acetates, ascorbates, benzenesulfonates, benzoates, besylates, bicarbonates, bitartrates, bromides/hydrobromides, Ca-edetates/edetates, camsylates, carbonates, chlorides/hydrochlorides, citrates, edisylates, ethane disulfonates, estolates esylates, fumarates, gluceptates, gluconates, glutamates, glycolates, glycollylarsnilates, hexylresorcinates, hydrabamines, hydroxymaleates, hydroxynaphthoates, iodides, isothionates, lactates, lactobionates, malates, maleates, mandelates, methanesulfonates, mesylates, methylbromides, methylnitrates, methylsulfates, mucates, napsylates, nitrates, oxalates, pamoates, pantothenates, phenylacetates, phosphates/diphosphates, polygalacturonates, propionates, salicylates, stearates subacetates, succinates, sulfamides, sulfates, tannates, tartrates, teoclates, toluenesulfonates, triethiodides, ammonium, benzathines, chloroprocaines, cholines, diethanolamines, ethylenediamines, meglumines and procaines. Further pharmaceutically acceptable salts can be formed with cations from metals like aluminium, calcium, lithium, magnesium, potassium, sodium, zinc and the like. (See Pharmaceutical salts, Birge, S. M. et al., J. Pharm. Sci., (1977) , 66, 1-19. )
The invention disclosed herein also encompasses solvates of the disclosed compounds. One type of solvate is a hydrate. Solvates typically do not contribute significantly to the physiological activity or toxicity of the compounds and as such can function as pharmacological equivalents.
The invention disclosed herein also encompasses tautomers and isomers of the disclosed compounds. A given chemical formula or name shall encompass tautomers and all stereo, optical and geometrical isomers (e.g. enantiomers, diastereomers, E/Z isomers etc. ) and racemates thereof as well as mixtures in different proportions of the separate enantiomers, mixtures of diastereomers, or mixtures of any of the foregoing forms where such isomers and enantiomers exist, as well as salts, including pharmaceutically acceptable salts thereof and solvates thereof such as, for instance, hydrates including solvates of the free compounds or solvates of a salt of the compound.
Preparation of the Compounds of the Invention
The compounds of the present invention can be prepared using methods known to those skilled in the art in view of this disclosure. For example, the general scheme in synthesis of the compounds of the invention is shown as follows:
Figure PCTCN2015089865-appb-000020
The general scheme in syntheses of the preferred compounds of the invention, ML-A1-B, ML-A1-C, and other derivatives is shown as follows:
Figure PCTCN2015089865-appb-000021
The general scheme in syntheses of the preferred compounds of the invention, ML-C19-PH2, ML-C19-PH3, ML-C19-PH4 and ML-C19-PH6 is shown as follows:
Figure PCTCN2015089865-appb-000022
Pharmaceutical Compositions
The compounds of the present invention are found to possess the ability to reverse the unique characteristics of a septic or cancer patient, i.e., an increase in PD-L1 level and optionally a decrease in HLA-DR level, suggesting that the compounds of the invention can be used in cancer immunotherapy and treatment or prevention of sepsis or septic shock and cancers.
In one aspect, the invention provides a pharmaceutical composition comprising an effective amount of a compound of the invention and a pharmaceutically acceptable carrier. In some embodiments, the amount of the compound ranges from 50 μg to 500 μg, preferably, 100 μg to 300 μg or 100 μg to 200μg.
Preferably, the compound or composition of the invention may be formulated into liquid pharmaceutical compositions, which are sterile solutions, or suspensions that can be administered by, for example, intravenous, intramuscular, subcutaneous, or intraperitoneal injection. Suitable diluents or solvent for manufacturing sterile injectable solution or suspension include, but are not limited to, 1, 3-butanediol, mannitol, water, Ringer’s solution, and isotonic sodium chloride solution. Fatty acids, such as oleic acid and its glyceride derivatives, are also useful for preparing injectables, as are natural pharmaceutically-acceptable oils, such as olive oil  or castor oil. These oil solutions or suspensions may also contain alcohol diluent or carboxymethyl cellulose or similar dispersing agents. Other commonly used surfactants such as Tweens or Spans or other similar emulsifying agents or bioavailability enhancers that are commonly used in manufacturing pharmaceutically acceptable dosage forms can also be used for the purpose of formulation. Oral administration may be either liquid or solid composition form.
In some embodiments, the pharmaceutical composition of the invention further comprises a second active agent. In some preferred embodiments, the second active agent is an anticancer agent or an immune checkpoint inhibitor. In some embodiments, the immune checkpoint inhibitor is a PD-L1 inhibitor, PD-1 inhibitor or CTLA-1 inhibitor.
In some embodiments, the second anticancer agent includes, but is not limited to, an antimetabolite (e.g., 5-fiuoro uracil, methotrexate, fiudarabine, cytarabine (also known as cytosine arabinoside or Ara-C) , and high dose cytarabine) , antimicrotubule agent (e.g., vinca alkaloids, such as vincristine and vinblastine; and taxane, such as paclitaxel and docetaxel) , alkylating agent (e.g., mechlorethamine, chlorambucil, cyclophosphamide, melphalan, melphalan, ifosfamide, carmustine, azacitidine, decitabine, busulfan, cyclophosphamide, dacarbazine, ifosfamide, and nitrosoureas, such as carmustine, lomustine, bischloroethylnitrosurea, and hydroxyurea) , platinum agent (e.g., cisplatin, carboplatin, oxaliplatin, satraplatin (JM-216) , and CI-973) , anthracycline (e.g., doxorubicin and daunorubicin) , antitumor antibiotic (e.g., mitomycin, bleomycin, idarubicin, adriamycin, daunomycin (also known as daunorubicin, rubidomycin, or cerubidine) , and mitoxantrone) , topoisomerase inhibitor (e.g., etoposide and camptothecin) , purine antagonist or pyrimidine antagonist (e.g., 6-mercaptopurine, 5-fiuorouracil, cytarabine, clofarabine, and gemcitabine) , cell maturing agent (e.g., arsenic trioxide and tretinoin) , DNA repair enzyme inhibitor (e.g., podophyllotoxine, etoposide, irinotecan, topotecan, and teniposide) , enzyme that prevents cell survival (e.g., asparaginase and pegaspargase) , histone deacetylase inhibitors (e.g., vorinostat) , any other cytotoxic agents (e.g., estramustine phosphate, dexamethasone, prednimustine, and procarbazine) , hormone (e.g., dexamethasone, prednisone, methylprednisolone, tamoxifen, leuprolide, fiutamide, and megestrol) , monoclonal antibody (e.g., gemtuzumab ozogamicin, alemtuzumab, rituximab, and yttrium-90-ibritumomab tiuxetan) , immuno-modulator (e.g., thalidomide and lenalidomide) , Bcr-Abl kinase inhibitor (e.g., AP23464, AZD0530, CGP76030, PD180970, SKI-606, imatinib, BMS354825 (dasatinib) , AMN107 (nilotinib) , and VX-680) , hormone agonist or antagonist, partial agonist or partial antagonist, kinase inhibitor, surgery, radiotherapy (e.g., gamma-radiation, neutron bean  radiotherapy, electron beam radiotherapy, proton therapy, brachytherapy, and systemic radioactive isotopes) , endocrine therapy, biological response modifiers (e.g., interferons, interleukins, and tumor necrosis factor) , hyperthermia and cryotherapy, and agents to attenuate any adverse effect (e.g., antiemetics) . In one embodiment, the anticancer agent or cancer therapeutic agent is a cytotoxic agent, an anti-metabolite, an antifolate, an HDAC inhibitor such as MGCD0103 (a.k.a. N- (2-aminophenyl) -4- ( (4- (pyridin-3-yl) pyrimidin-2-ylamino) methyl) benzamid-e) , a DNA intercalating agent, a DNA cross-linking agent, a DNA alkylating agent, a DNA cleaving agent, a topoisomerase inhibitor, a CDK inhibitor, a JAK inhibitor, an anti-angiogenic agent, a Bcr-Abl inhibitor, an HER2 inhibitor, an EGFR inhibitor, a VEGFR inhibitor, a PDGFR inhibitor, an HGFR inhibitor, an IGFR inhibitor, a c-Kit inhibitor, a Ras pathway inhibitor, a PI3K inhibitor, a multi-targeted kinase inhibitor, an mTOR inhibitor, an anti-estrogen, an anti-androgen, an aromatase inhibitor, a somatostatin analog, an ER modulator, an anti-tubulin agent, a vinca alkaloid, a taxane, an HSP inhibitor, a Smoothened antagonist, a telomerase inhibitor, an anti-metastatic agent, an immunosuppressant, a biologic such as antibody or hormonal therapy.
In some embodiments of the invention, the PD-L1 inhibitor is a small interfering RNA (siRNA) of PD-L1, a small hairpin (sh) RNA of PD-L1 or an antisense RNA of PD-L1, an anti-PD-L1 antibody such as lambrolizumab, MPDL3280A, MEDI4736 and avelumab or an antigen-binding fragment thereof, that binds to a PD-L1 protein.
In some embodiments, the PD-1 inhibitor includes a small interfering RNA (siRNA) of PD-1, a small hairpin (sh) RNA of PD-1 or an antisense RNA of PD-1, an anti-PD-1 antibody such as lambrolizumab, nivolumab, or an antigen-binding fragment thereof, that binds to a PD-1 protein.
In some embodiments, the CTLA-4 inhibitor is a small interfering RNA (siRNA) of CTLA-4, a small hairpin (sh) RNA of CTLA-4 or an antisense RNA of CTLA-4, an anti-CTLA-4 antibody such as ipilimumab. or an antigen-binding fragment thereof, that binds to a CTLA-4 protein.
Treatment Methods
In another aspect, the invention provides a method for inhibiting PD-L1 level in a subject, comprising administering an effective amount of a compound of the following formula or a pharmaceutical composition of the invention to the subject;
Figure PCTCN2015089865-appb-000023
wherein
n is 0 or 1,
R1 is selected from halogen, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, hydroxyC1- 10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by-SO2NH2, or-CONH2
R2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
R3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1- 10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
R4, R5 and R6 are each independently selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1- 10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R2 to R6 may be unsubstituted or substituted by one to four groups selected from halogen, hydroxy, amino, cyano, nitro, C1- 10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl;
or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
In some embodiments, the compounds used in the treatment methods of the invention are as follows:
Figure PCTCN2015089865-appb-000024
Figure PCTCN2015089865-appb-000025
In further embodiments, the compounds used in the treatment methods of the invention are as follows.
Figure PCTCN2015089865-appb-000026
Preferably, the method can increase HLA-DR level.
In another aspect, the invention provides a method for treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock in a subject, comprising administering an effective amount of a compound as mentioned herein or a pharmaceutical composition of the invention to a subject. Preferably, the PD-L1-associated cancer is renal cell carcinoma, ovarian cancer, lung cancer, NSCLC, colon cancer, hepatocellular carcinoma or melanoma.
In some embodiments, the methods for inhibition of PD-L1 level or treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock comprise an additional step of sequentially, simultaneously, separately or subsequently administering an immune checkpoint inhibitor. Preferably, the immune checkpoint inhibitor includes, but is not limited to, an anti-PD-L1 antibody, an anti-PD-1 antibody and an anti-CTLA-4 antibody. Preferably, the immune checkpoint inhibitor is ipilimumab, lambrolizumab, MPDL3280A, MEDI4736 or avelumab.
The compound or composition of the invention may be administered to a mammal, preferably human, by any route that may effectively transport the compound or composition of the invention to the appropriate or desired site of action, such as oral, nasal, pulmonary, transdermal, such as passive or iontophoretic delivery, or parenteral, e.g., rectal, depot, subcutaneous, intravenous, intramuscular, intranasal, intra-cerebella, ophthalmic solution or ointment. Further, the administration of the compound of the formula or composition of the invention may be in single dose or in multiple applications.
In some embodiments, the subject may be a mammal, preferably a human. In some embodiments, the compound of the invention is ML-A1-B or ML-A1-C. Either compound (i.e., ML-A1-B or ML-A1-C) may be administered to the subject in a dose of about 1 to 21,600 μg/Kg/day; preferably, 100 to 20,000, 100 to 15,000, 100 to 10,000, 100 to 5,000, 100 to 2,500, 100 to 1,000, 100 to 500, 500 to 20,000, 500 to 10,000, 500 to 5,000, 500 to 2,500 or 500 to 1,000μg/Kg/day
It will be appreciated that the dosage of the compound or composition of the invention will vary from patient to patient not only for the particular compound selected, the route of administration, and the ability of the compound to elicit a desired response in the patient, but also factors such as disease state or severity of the condition to be alleviated, age, sex, weight of the patient, the state of being of the patient, and the severity of the pathological condition being treated, concurrent medication or special diets then being followed by the patient, and other factors which those skilled in the art will recognize, with the appropriate dosage ultimately being at the discretion of the attendant physician. Dosage regimens may be adjusted to provide the desired response. Preferably, the compound of the present invention is administered at an amount of about 1 μg/kg/day to about 500 μg/kg/day, assuming the subject is about 60 kg in weight. More preferably, the compound of the present invention is administered at an amount of about 50 μg/kg/day to about 400 μg/kg/day; still more preferably, about 100 μg/kg/day to about 300 μg/kg/day; most preferably, about 160 μg/kg/day, and for a time such as 1 day, such that  improved therapeutic response may be elicited in the subject. In some embodiments, the compound or composition of the invention is administered in single dosages. In other embodiments, the compound or composition of the invention is administered in multiple independent dosages.
The present invention will now be described more specifically with reference to the following embodiments, which are provided for the purpose of demonstration rather than limitation.
Examples
Materials and Methods
Human cell isolation and cell culture
White blood cells of test subjects including healthy volunteers recruited from the Taiwan Blood Service Foundation (Taipei, Taiwan) and septic patients were obtained with written informed consents. Human monocytes were then isolated in accordance with procedures described previously (Chen IH et al., Cancer Immunol Immunother (2010) 59, 323-334) . Briefly, peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque Plus (GE Healthcare) gradient centrifugation. The monocytes were further purified by conducting CD14 selection using CD14 MACS microbeads (Miltenyi Biotec) . The purity of monocytes confirmed using flow cytometry analysis was approximately 90%. Monocytes were incubated with endotoxin LPS (100 ng/ml) for 72 hours. At the indicated time point, the cells were harvested and the PD-L1 and HLA-DR molecules were analyzed using flow cytometry. Murine B16F10 cell lines maintained in Dulbecco’s modified Eagle’s medium (DMEM) , 10%heat-inactivated fetal calf serum, 2mM L-glutamine, penicillin (100U/ml) , and streptomycin (100 μg/ml) at 37C in a 5%CO2 humidified atmosphere.
Flow cytometrv analysis
To analyze the surface phenotype of the monocytes, the cells were incubated for 30 minutes on ice in the dark with the following mAbs diluted in phosphate-buffered saline (PBS) containing 1%BSA: PD-L1-FITC, HLA-DR-PE, CD14-PerCP (BD Biosciences) . Monocytes were gated based on their FSC/SSC properties. Fluorescence was detected using FACS Calibur, and data analysis was performed using FCS Express version 3 (De Novo Software) .
Patient inclusion criteria
21 patients with septic shock and 20 healthy volunteers in an observational study were enrolled in this study with written informed consent from each subject, and the study was  approved by the Institutional Review Board of Mackay Memorial Hospital (Taipei, Taiwan) . Septic shock was judged according to the criteria established at the American College of Chest Physicians/Society of Critical Care Medicine Conference. Exclusion criteria included the following: age < 20; leukemia; and receiving chemotherapy or immunosuppressive therapy. The following clinical and biological data were collected when patients were admitted to an intensive care unit: age; sex; acute physiology and chronic health evaluation (APACHE II) score (see Knaus WA et al., Crit Care Med. (1985) 13, 818-829) ; and sepsis-related organ failure assessment (SOFA) scores (see Vincent JL et al., Intensive Care Med. (1996) 22, 707-710) .
The APACHE II scoring system is a severity-of-disease classification system which has been validated in the first 24 hours of admission of patients to an intensive care unit (ICU) . The score is calculated from 12 physiological variables during the first 24 hours after admission and ranges from 0 to 71 points.
The SOFA scoring system, the sequential organ failure assessment score, is a patient’s organ dysfunction and morbidity severity score during the patient’s stay in an ICU. The score is calculated from 6 variables: 1. respiratory system; 2. cardiovascular systems; 3. hepatic systems; 4. coagulation systems; 5. renal systems; 6. neurological systems. Each variable is given a point value from 0 to 4 (normal to high degree of organ dysfunction) . Total score ranges from 0 to 24.
Cell viability assay
5 x 103 of B16F10 cells were seeded into 96-well plates and treated with the following: DMSO control, various concentrations of naphthalimide derived compounds for 2 day. For the MTS assay (Promega) , 40 ul of the MTS reagent was added into each well. Cells were incubated at 37 ℃ for 4hr. The absorbance was detected at OD490 nm.
Compounds therapy in B16F10 lung metastasis model
C57BL/6 mice (6 to 8 weeks old) and NOD/SCID mice (6 to 8 weeks old) were purchased from the National Laboratory Animal Center (Taipei, Taiwan) . All animal experiments were performed under specific pathogen-free conditions and in accordance with guidelines approved by the Animal Care and Usage Committee of Mackay memorial hospital (Taipei, Taiwan) .
To generate lung metastases, mice were injected intravenously with 2xl05 B16F10 cells, a dose consistently yielding lung metastases in 100%of animals. 2mg/kg compounds and 5%DMSO vehicle control were given ip daily to test the effect of compounds on tumor  metastatsis. The amount of tumor seeding was counted as total numbers of black nodules presented in the lungs under microscopy.
In vivo toxic study
C57BL/6 mice were ip injected daily with 20 mg/kg of ML-A1-B, or ML-A1-C, or 5%DMSO vehicle control, and their body weight were measured on the indicated days.
Compounds and anti-PD-1 antibody combination therapy in B16F10 lung metastasis model
C57BL/6 mice were injected iv with 2 x 105 B16F10 cells on Day0. On Dayl, mice were injected ip with either control hamster Ig (CTRL IgG) or hamster anti-mouse-PD-1 (J43) at 5 mg/kg every 3-4 days. For combination therapies, mice were daily injected with 2 mg/kg of ML-C19-A or ML-A1-C combined with anti-mouse PD-1 (5mg/kg) every 3-4 days. Long-term of survival of treated mice in each of the experimental groups were observed.
Statistical analysis
All data were analyzed using Prism 6.0 (GraphPad) and expressed as mean ±standard error of mean (SEM) unless otherwise indicated. Comparisons between groups were performed using the Student t test. Correlations were determined using the Pearson’s correlation coefficient. A probability value of p <0.05 was considered statistically significant.
Example 1 Synthesis of the Compound of the Present Invention
1.1 Synthesis of the Compound ML-C19-B
ML-C19-B compound was prepared in accordance with the following scheme:
Figure PCTCN2015089865-appb-000027
4-bromo-1, 8, -naphthalic anhydride (1.0 mmol) , sulfanilamide (0.1894 g, 1.1 mmol) , and 5 mL of glacial acetic acid were thoroughly mixed and heated under reflux for 8 hours. After the reaction was completed, the mixture was cooled and the product was precipitated by  the addition of cold water. The resulting solid was filtered and washed several times with cold water. The solid was recrystallized from 95%ethanol to yield the target molecule ML-C19-B.
Compound ML-C19-B: 4- (6-bromo-1, 3-dioxo-1H-benzo [de] isoquinolin-2 (3H) -yl) benzene-sulfonamide. MS electrospray (+ion) 432.300 (MH+) . 1H NMR (600 MHz, DMSO -d6) : δ 8.54 (d, J=8.4 Hz, 2H) , 8.32 (d, J=8.4 Hz, 2H) , 8.22 (d, J=7.6 Hz, 2H) , 8.01 (t, J=13.2 Hz, 2H) , 7.73 (d, J=8.4 Hz, 1H) , 7.62 (d, J=7.8 Hz, 1H) , 7.50 (s, NH) . 13C NMR (150 MHz, DMSO-d6) : δ 168.77, 162.9, 160.5, 143.9. 142.1, 138.7, 133.2, 132.6, 131.5, 130.9, 129.1, 129.3, 128.7, 127.3, 126.4, 119.8, 112.4.
1.2 Synthesis of the Compounds ML-A1-B and ML-A1-C
ML-A1-B and ML-A1-C compounds were prepared in accordance with the following scheme:
Figure PCTCN2015089865-appb-000028
4-bromo-1, 8-naphthalic anhydride (1.000 g, 3.610 mmol) and N, N-Dimethyl ethylene-diamine (0.3819 g, 4.3320 mmol) were dissolved in ethanol (20 mL) and subjected to heating under reflux for 8 hours. The reaction mixture was then cooled to room temperature, and the yellowish sediments were collected by filtration and dried overnight at room temperature under vacuum to produce Compound A1 (1.0250 g, 2.952 mmol) .
Benzoazoles (2.8816 mmol) , compound A1 (0.500 g, 1.4408 mmol) , Pd (PPh34 (14.4 mg,1.0 mol%) , Cu (OAc) 2 ·H2O (57.5 mg, 20 mol%) , and Na2CO3 (0.3050 g, 2.880 mmol) were dissolved in toluene (10 mL) and subjected to heating under reflux for 10 hours. This mixture was then cooled to room temperature, filtered and the filtrate was evaporated under reduced pressure. The residue was purified by column chromatography (silica gel, Hexane/EtOAc as eluent) to give arylated benzoxazole ML-A1-B and ML-A1-C.
Compound ML-A1-B: 6- (Benzo [d] oxazol-2-yl) -2- (2- (dimethylamino) ethyl) -1H-benzo [de] isoquinoline-1, 3 (2H) -dione. MS electrospray (+ion) 386.500 (MH+) . 1H NMR (600 MHz, DMSO-d6) : δ 9.86 (d, J=8.4 Hz, 1H) , 8.72 (d, J=7.8 Hz, 1H) , 8.65 (d, J=8.4 Hz, 1H) , 8.62 (d, J=7.2 Hz, 1H) , 8.09 (t, J=16.2 Hz, 1H) , 7.99 (d, J=7.8 Hz, 7.91 (d, J=7.8 Hz, 1H) , 7.56 (t, J=15.6 Hz, 1H) , 7.51 (t, J=15.0 Hz, 1H) , 4.17 (t, J=13.8 Hz, 2H) , 2.57 (t, J=10.8 Hz, 2H) , 2.23 (s, 6H) . 13C NMR (150 MHz, DMSO-d6) : δ 163.2, 162.8, 160.4, 149.7, 141.5, 132.4, 131.2, 130.0, 129.5, 128.9, 128.3, 128.1, 127.7, 126.8, 125.3, 124.6, 122.7, 120.5, 111.2, 59.4, 45.4, 37.8. HRMS (ESI) Calculated for C23H20N3O3 ( [M+H] +) 386.4153, Found: 386.1499.
Compound ML-A1-C: 6- (Benzo [d] thiazol-2-yl) -2- (2- (dimethylamino) ethyl) -1H-benzo [de] isoquinoline-1, 3 (2H) -dione. MS electrospray (+ion) 402.400 (MH+) . 1H NMR (600 MHz, CD3OD) : δ 9.41 (d, J=8.4 Hz, 1H) , 8.64 (t, J=13.2 Hz, 2H) , 8.25 (d, J=7.2 Hz, 1H) , 8.15 (d, J=8.4 Hz, 1H) , 8.08 (d, J=7.8 Hz, 1H) , 7.91 (t, J=15.6 Hz, 1H) , 7.61 (t, J=15.0 Hz, 1H), 7.53 (t, J=15.0 Hz, 1H) , 4.55 (t, J=11.4 Hz, 2H) , 3.57 (t, J=10.8 Hz, 2H) , 3.05 (s, 6H) . 13C NMR (150 MHz, CD3OD) : δ 167.1, 166.0, 165.6, 155.5, 137.8, 136.9, 134.8, 133.1, 131.8, 131.2, 130.4, 130.3, 129.6, 128.3, 127.7, 125.1, 124.9, 123.8, 123.11, 57.7, 44.5, 36.9. HRMS (ESI) Calculated for C23H19N3O2S ( [M+H] +) 402.4809, Found: 403.1404.
1.3 Synthesis of the Compounds ML-C19-PH2, ML-C19-PH3, ML-C19-PH4 and ML-C19-PH6
Figure PCTCN2015089865-appb-000029
The substituted phthalic anhydride and sulfanilamide were heated with excess amount of AcOH under reflux condition for 20h. The solid was then filtrated and washed with EtOH.
ML-C19-PH2: 1H NMR (300 MHz, DMSO-d6) δ: 8.20 (d, J=1.6 Hz, 1H) , 8.10 (dd, J =8.0, 6.4 Hz, 1H) , 7.99-7.67 (m, 3H) , 7.66 (d, J=7.1 Hz, 2H) , 7.47 (s, 2H) . HRMS calculated for C14H9BtN2O4S 379.9466. Found: 379.9465.
ML-C19-PH3: 1H NMR (300 MHz, DMSO-d6) δ: 7.99 (d, J=8.6 Hz, 2H) , 7.64 (d, J =8.6 Hz, 2H) , 7.49 (s, 2H) .
ML-C19-PH4: 1H NMR (300 MHz, DMSO-d6) δ: 7.96 (dd, J=6.6, 1.5 Hz, 2H) , 7.88 (d, J=7.6 Hz, 1H) , 7.82 (s, 1H) , 7.70 (d, J=10.2 Hz, 1H) , 7.65 (dd, J=7.0, 1.7 Hz, 2H) , 7.46 (s, 2H) , 2.53 (s, 3H) . HRMS calculated for C15H12N2O4S 316.0518. Found: 316.0523.
ML-C19-PH6: HRMS calculated for C14H9N3O6S 347.0212. Found: 347.0218.
Example 2 Levels of PD-L1 and HLA-DR are Respectively Up-and Down-regulated in Septic Shock Patients
To identify the protein target responsible for sepsis or septic shock, a group of septic shock patient and healthy volunteers were recruited in the present study from April 2013 to April 2014 based on the inclusion criteria set forth in the ″Materials and Methods″ section, and blood samples were taken within 6 hours upon admission, and cell-surface PD-L1 and HLA-DR expression in CD14+monocytes were measured via flow cytometry analysis.
Respective clinical characteristics of the septic shock patients and the healthy volunteers are summarized in Table 1; and the expression levels of PD-L1 and HLA-DR on monocytes are depicted in FIG 1.
Table 1 Clinical characteristics of septic shock patients and healthy volunteers
Figure PCTCN2015089865-appb-000030
According to clinical characteristics summarized in Table 1, septic shock patients in the present study have a median SOFA score of 11, suggesting multiple organ dysfunction, and a median APACHE II score of 25, suggesting patients were in the early stage of severe sepsis.
According to the results illustrated in Fig. 1, the enrolled septic shock patients exhibited significantly elevated levels of PD-L1 (septic shock: 6.3 ± 0.5 vs normal: 4.1 ± 0.2, P <0.001) . By contrast, the levels of HLA-DR in patients with septic shock were significantly lower as compared with those of healthy volunteers (septic shock: 22.4 ± 5.9 vs normal: 171.3 ± 14, P<0.0001) . These findings led to the hypothesis that PD-L1, HLA-DR or both may serve as the protein target (s) responsible for immunoparalysis in septic shock patients.
Example 3 Therapeutic Effects of the Compound
3.1 Lipopolysaccharide (LPS) -primed monocyte model system
In this example, an LPS-primed monocyte model was established and then used to evaluate the function of the compound of example 1. Specifically, monocytes isolated from healthy subjects according to procedures described in the ″Materials and methods″ section were incubated with LPS (100 ng/mL) for 72 hours, then respective levels of PD-L1 and HLA-DR were determined. Results are illustrated in Fig. 2.
As depicted in Fig. 2, after LPS treatment, the levels of PD-L1 on monocytes increased along with time, whereas a decrease in the levels of HLA-DR was observed at the same time; such observation is similar to the phenomenon seen in a septic shock patient of Example 2. Thus, LPS-primed monocyte is a suitable cell model system for screening a potential candidate compound (s) for the treatment of sepsis or septic shock.
3.2 Effects of the compounds of example 1 on the levels of PD-L1 and HLA-DR in LPS-primed monocyte model of section 3.1
The effects of the compounds of example 1 were tested in the LPS-primed monocyte model of example 3.1, in which various concentrations of ML-C19-A, ML-C19-B, ML-A1-B, and ML-A1-C were incubated with LPS-primed monocytes of example 3.1; results are illustrated in Figs. 3 and 4.
As depicted in Fig. 3, the compounds ML-C19-A, ML-A1-B, and ML-A1-C (respectively at 10 μM) were effective in reversing the LPS-induced increase in PD-L1; with the expression level of PD-L1 in LPS-primed monocytes reduced to about 37.5%, 9.4%, and 50.8%of that of the control (dashed line) . As to ML-C19-B, it appeared to be less potent than ML-C19-A,merely 20%reduction in PD-L1 level was observed, as compared with that of the control. In contrast, ML-C19-B, ML-A1-B, and ML-A1-C, were capable of altering the levels of HLA-DR expression. The dose dependency of ML-C19-A ML-C19-B, ML-A1-B, or ML-A1-C on the level of PD-L1 is illustrated in Fig. 4.
Taken together, the results suggest that compounds ML-C19-A, ML-C19-B, ML-A1-B, and ML-A1-C may serve as potential lead compounds for manufacturing a medicament for treating sepsis or septic shock, for each compound is capable of reversing the increase in PD-L1 observed in a septic shock patient.
Example 4 In vitro effect on PDL1 expression of B16F10
To evaluate the effect of ML-A1-B and ML-A1-C on PD-L1 expression of on B16F10 melanoma cells, IFN-γ stimulated B16F10 cells were treated with various concentrations of ML-A1-B or ML-A1-C compounds for 1 day. As shown in Fig. 5, the up-regulation of PD-L1 by IFN-γ can be blocked by administration of ML-A1-B and ML-A1-C compounds. ML-A1-B and ML-A1-C significantly suppresses PD-L1 on IFN-γ stimulated murine B16F10 melanoma cell line. The inhibition increased sharply at concentration higher than 10 μM, partly because of cell toxicity effect by both compounds. Together, these results suggest that ML-A1-B and ML-A1-C play a crucial role in the inhibition of PD-L1 expression on IFN-γ stimulated B 16F 10 cancer cells and LPS-primed monocytes.
Example 5 In vitro cytotoxic effect
The cytotoxicity of various concentrations of ML-A1-B and ML-A1-C against murine B16F10 melanoma cells and human PBMCs were examined by MTS assay. As shown in Fig. 6, ML-A1-B and ML-A1-C significantly increases cell damage (MTS assay) to melanoma cell line (B16F10) with a dose-dependent response (IC50 of ML-A1-C: 7.8 ± 0.05 uM; IC50 of ML-A1-C: 4.5 ± 0.06 uM) . In contrast, human PMBCs are relatively resistant to ML-A1-B and ML-A1-C treatment (IC50 of ML-A1-C: 48.3 ± 0.14 uM; IC50 of ML-A1-C: 25.3 ± 0.08 uM) . Therapeutic index by MTS assay is about 5.62.
Example 6 In vivo effects on B16F10 lung metastatic models
To examine the therapeutic effect of ML-A1-B and ML-A1-C against pre-established B 16Fl 0 lung metastases, mice were iv injected with 2 x 105 B 16F 10 tumor cells and treated with, per mouse, 2 mg/kg of ML-A1-B, ML-A1-C, or with DMSO vehicle control. The number of lung nodules in each individual mouse in each group is shown in Fig. 7. Mice treated with ML-A1-B showed a reduction in the number of lung metastases (mean 41; range 2-90) as compared with mice receiving the DMSO vehicle control (mean 60; range 37-94) . In contrast, the 2 mg/kg of ML-A1-C had a marked effect in reducing metastasis to the lung, with a mean of 30 lung nodules (range 3-59) .
To answer the question of whether ML-A1-B and ML-A1-C are still capable of directly inhibiting tumor growth in the absence of an adaptive immune response, we injected 2 x 105 B16F10 tumor cells and treated them with, per mouse, 2 mg/kg of ML-A1-B, ML-A1-C, or with DMSO vehicle control in NOD/SCID mice. As shown in Fig 8, treatment with ML-A1-B or ML-A1-C failed to inhibit lung metastasis in immune deficient NOD/SCID mice, suggesting that anti-tumor activity of ML-A1-B and ML-A1-C is through modulating the immune system against tumor growth, not through directly killing tumors.
It can be concluded that ML-A1-B and ML-A1-C may provide a novel therapeutic cancer drug to treat PD-L1 associated cancer by simultaneously modulating PD-L1 expression on cancer cells and inhibiting tumor growth. ML-A1-B and ML-A1-C would be the first-in-class small molecule for cancer immunotherapy, if it can succeed in future trials. We anticipate that ML-A1-B and ML-A1-C may not only inhibit tumor growth but also contribute to amelioration of the immune deficiency observed in cancer patients. If the results demonstrated here hold true in clinical, ML-A1-B and ML-A1-C treatment in patients with cancer may help to achieve optimal outcomes and improved survival. Compared with clinically available therapeutic antibodies (anti-PD-1, CTLA-4) , the cost of treatment and manufacturing requirements are certainly lower than those of antibodies.
Example 7 In vivo toxic assay
To investigate toxicity of ML-A1-B and ML-A1-C, mice were injected ip daily with 20 mg/kg of ML-A1-B or ML-A1-C or 5%DMSO vehicle control. As shown in Fig. 9, the compounds of the invention, ML-A1-B and ML-A1-C, do not significantly reduce the body weight of the mice and no visible sign of toxicity were observed in high dose of ML-A1-B and ML-A1-C treated mice.
Example 8 Combination of anti-PD-1 with compounds ML-C19-A and M-A1-C 
To examine whether combination of ML-C19-A or ML-A1-C with anti-PD-1 antibody would prolong mice survival in B16F10 lung metastasis model, mice were injected ip with compounds and anti-PD-1 antibody. As shown in Fig. 10, mice receiving concurrent treatments of compounds (2mg/kg) and anti-PD-1 (5mg/kg) demonstrated an increase in overall survival.
It will be understood that the above description of embodiments is given by way of example only and that various modifications may be made by those with ordinary skill in the art. The above specification, examples and data provide a complete description of the structure and  use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those with ordinary skill in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention.

Claims (30)

  1. A compound having the following Formula (I) ,
    Figure PCTCN2015089865-appb-100001
    wherein
    n is 0 or 1;
    R1 is selected from halogen, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, hydroxyC1- 10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by –SO2NH2, or -CONH2
    R2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
    R3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
    R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1- 10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O,  C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
    R4, R5 and R6 are each independently selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1- 10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
    wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R2 to R6 may be unsubstituted or substituted by one to four groups selected from halogen, amino, cyano, nitro, C1-10alkyl, C2- 10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1- 10alkyl, aminoC1-10alkyl, C3-10cycloalkyl;
    with provisos that (1) when n is 1, R1 is
    Figure PCTCN2015089865-appb-100002
    and R2 and R3 together with carbon atoms to which they attach form a benzene ring, R4, R5 and R6 cannot simltaneously represent hydrogen; (2) when n is 0 and R1 is selected from the cycloalkyl, heterocycloalkyl, aryl or heteroaryl, R3, R4, R5 and R6 are not simultaneously hydrogen; (3) when n is 0, R1 is 
    Figure PCTCN2015089865-appb-100003
    and R3 and R6 simultaneously represent hydrogen, if one of R4 and R5 is hydrogen, the other cannot be methyl, tert-butyl or nitro; (4) when n is 0, R1 is
    Figure PCTCN2015089865-appb-100004
    and R3 and R6 simultaneously represent hydrogen, R4 and R5 cannot simultaneously represent chloro; and (5) when n is 0 and R1 is
    Figure PCTCN2015089865-appb-100005
    R3, R4, R5 and R6 cannot simultaneously represent chloro;
    or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  2. The compound of Claim 1, wherein n is 1; R1 is (C1-10 (di) alkylamino) C1-10alkyl, hydroxyC1-10alkyl or C6-10aryl substituted by –SO2NH2 or –CO2NH2; R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is  unsubstituted or substituted by one or more groups independently selected from halogen, amino, cyano, nitro or C1-10alkyl; R4 is H, halogen or 5 to 10 membered mono-or bi-cyclic, unsubstituted or substituted heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; and R5 and R6 are each independently hydrogen, halogen, amino, cyano, nitro, C1-10alkyl or haloC1-10alkyl; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  3. The compound of Claim 1, wherein n is 1, R1 is (C1-6 (di) alkylamino) C1-6alkyl, hydroxyC1-6alkyl or phenyl substituted by –SO2NH2; R2 and R3 together with carbon atoms to which they attach form an unsubstituted benzene ring; R4 is H, halogen or 9 to 10 membered bi-cyclic, unsubstituted or substituted heteroaryl having from two heteroatoms selected from N, S and O; and R5 and R6 are each independently hydrogen, halogen, nitro or C1-6alkyl; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  4. The compound of Claim 1, wherein n is 1, R1 is -CH2CH2N (CH32, -CH2CH2OH, -(CH23CH3 or phenyl substituted by –SO2NH2; R2 and R3 together with carbon atoms to which they attach form an unsubstituted benzene ring; R4 is
    Figure PCTCN2015089865-appb-100006
    and R5 and R6 are each independently hydrogen, halogen, nitro or C1-4alkyl; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  5. The compound of Claim 1, wherein n is 0, R1 is C6-10aryl substituted by –SO2NH2 or –CO2NH2; and R3, R4, R5 and R6 are each independently selected from hydrogen, halogen, amino, cyano, nitro or C1-10alkyl; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  6. The compound of Claim 1, wherein n is 0, R1 is phenyl substituted by –SO2NH2; R3 and R6 are each independently selected from hydrogen, halogen or C1-6alkyl; and R4 and R5 are each independently selected from hydrogen, halogen, nitro or C1-6alkyl; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  7. The compound of Claim 1, wherein n is 0, R1 is phenyl substituted by –SO2NH2; R3 and R6 are each independently selected from hydrogen, halogen or C1-4alkyl; and R4 and R5 are each independently selected from hydrogen, halogen, nitro or C1-4alkyl; or a tautomer,  stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  8. The compound of Claim 1, wherein n is 0, R1 is phenyl substituted by –SO2NH2; R3 and R6 are each independently selected from hydrogen or halogen; and R4 and R5 are each independently selected from hydrogen, halogen, nitro or C1-4alkyl; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  9. The compound of Claim 1, which is selected from the group consisting of the following:
    Figure PCTCN2015089865-appb-100007
    or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  10. The compound of Claim 1, which is 4- (6-bromo-1, 3-dioxo-1H-benzo [de] isoquinolin-2(3H) -yl) benzene-sulfonamide (compound ML-C19-B) and has the following formula:
    Figure PCTCN2015089865-appb-100008
    ;or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  11. The compound of Claim 1, which has the following formula:
    Figure PCTCN2015089865-appb-100009
    wherein X is O or S or N; or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  12. The compound of Claim 1, which is
    Figure PCTCN2015089865-appb-100010
    or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  13. A pharmaceutical composition comprising an effective amount of a compound of Claim 1 and a pharmaceutically acceptable carrier.
  14. The pharmaceutical composition of Claim 13, further comprising a second active agent.
  15. The pharmaceutical composition of Claim 14, wherein the second active agent is an anticancer agent or an immune checkpoint inhibitor.
  16. The pharmaceutical composition of Claim 15, wherein the immune checkpoint inhibitor is an anti-PD-L1 antibody, an anti-PD-1 antibody or an anti-CTLA-4 antibody.
  17. The pharmaceutical composition of Claim 15, wherein the immune checkpoint inhibitor is ipilimumab, lambrolizumab, MPDL3280A, MEDI4736 or avelumab.
  18. The pharmaceutical composition of Claim 15, wherein the second anticancer agent is an antimetabolite, antimicrotubule agent, alkylating agent, platinum agent, anthracycline, antitumor antibiotic, topoisomerase inhibitor, purine antagonist or pyrimidine antagonist, cell maturing agent, DNA repair enzyme inhibitor, histone deacetylase inhibitor, cytotoxic agent,  hormone, anti-cancer monoclonal antibody, immuno-modulator, Bcr-Abl kinase inhibitor or hormone agonist or antagonist.
  19. A method for inhibiting PD-L1 level in a subject, comprising administering an effective amount of a compound as defined below or a pharmaceutical composition of Claim 13 to the subject;
    Figure PCTCN2015089865-appb-100011
    wherein
    n is 0 or 1,
    R1 is selected from halogen, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, haloC1-10alkyl, hydroxyC1- 10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, wherein the amino moiety of aminoalkyl is unsubstituted or substituted by one or two alkyl groups, and the cycloalkyl, heterocycloalkyl, aryl and heteroaryl are substituted by –SO2NH2, or -CONH2
    R2 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
    R3 is selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2- 10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O; or
    R2 and R3 together with carbon atoms to which they attach form a benzene ring, wherein the benzene ring is unsubstituted or substituted by one or more groups independently selected from halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1- 10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O, with the proviso that n is 1; and
    R4, R5 and R6 are each independently selected from hydrogen, halogen, hydroxy, amino, cyano, nitro, C1-10alkyl, C2-10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1- 10alkyl, hydroxyC1-10alkyl, aminoC1-10alkyl, C3-10cycloalkyl, 3 to 10 membered cyclic heterocycloalkyl having 1 to 3 heteroatoms selected from N, S and O, C6-10aryl or 5 to 10 membered mono-or bi-cyclic heteroaryl having from 1 to 3 heteroatoms selected from N, S and O;
    wherein the cycloalkyl, heterocycloalkyl, aryl and heteroaryl in R2 to R6 may be unsubstituted or substituted by one to four groups selected from halogen, amino, cyano, nitro, C1-10alkyl, C2- 10alkenyl, C2-10alkynyl, C1-10alkoxy, C1-10alkylthio, C1-10alkylamino, haloC1-10alkyl, hydroxyC1- 10alkyl, aminoC1-10alkyl, C3-10cycloalkyl;
    or a tautomer, stereoisomer or enantiomer thereof, or a solvate, prodrug or a pharmaceutically acceptable salt thereof.
  20. The method of Claim 19, wherein the compound is shown below:
    Figure PCTCN2015089865-appb-100012
    Figure PCTCN2015089865-appb-100013
  21. The method of Claim 19, wherein the compound is
    Figure PCTCN2015089865-appb-100014
  22. The method of Claim 19, wherein the administration increases HLA-DR level.
  23. A method for treatment or prevention of a PD-L1-associated cancer or sepsis or septic shock in a subject, comprising administering an effective amount of a compound as defined in Claim 19 or a pharmaceutical composition of the invention to a subject.
  24. The method of Claim 23, wherein the PD-L1-associated cancer is renal cell carcinoma, ovarian cancer, lung cancer, NSCLC, colon cancer, hepatocellular carcinoma or melanoma.
  25. The method of Claim 23, which comprises an additional step of sequentially, simultaneously, separately or subsequently administering an immune checkpoint inhibitor.
  26. The method of Claim 25, wherein the immune checkpoint inhibitor is an anti-PD-L1 antibody, an anti-PD-1 antibody or an anti-CTLA-4 antibody.
  27. The method of Claim 25, wherein the immune checkpoint inhibitor is ipilimumab, lambrolizumab, MPDL3280A, MEDI4736 or avelumab.
  28. The method of Claim 24, which comprises an additional step of sequentially, simultaneously, separately or subsequently administering an immune checkpoint inhibitor.
  29. The method of Claim 28, wherein the immune checkpoint inhibitor is an anti-PD-L1 antibody, an anti-PD-1 antibody or an anti-CTLA-4 antibody.
  30. The method of Claim 28, wherein the immune checkpoint inhibitor is ipilimumab, lambrolizumab, MPDL3280A, MEDI4736 or avelumab.
PCT/CN2015/089865 2014-09-19 2015-09-17 Benzo-heterocyclic compounds and their applications WO2016041511A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177010627A KR20170090408A (en) 2014-09-19 2015-09-17 Benzo-heterocyclic compounds and their applications
CN201580050353.5A CN107087409B (en) 2014-09-19 2015-09-17 Benzoheterocyclic compounds and their use
JP2017534871A JP6777638B2 (en) 2014-09-19 2015-09-17 Benzodiazepine compounds and drugs
AU2015317566A AU2015317566B2 (en) 2014-09-19 2015-09-17 Benzo-heterocyclic compounds and their applications
EP15843004.1A EP3194368B1 (en) 2014-09-19 2015-09-17 Benzo-heterocyclic compounds and their applications
US15/512,248 US20170283408A1 (en) 2014-09-19 2015-09-17 Benzo-heterocyclic compounds and their applications
US16/925,309 US20200339557A1 (en) 2014-09-19 2020-07-09 Benzo-heterocyclic compounds and their applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462052617P 2014-09-19 2014-09-19
US62/052,617 2014-09-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/512,248 A-371-Of-International US20170283408A1 (en) 2014-09-19 2015-09-17 Benzo-heterocyclic compounds and their applications
US16/925,309 Continuation US20200339557A1 (en) 2014-09-19 2020-07-09 Benzo-heterocyclic compounds and their applications

Publications (1)

Publication Number Publication Date
WO2016041511A1 true WO2016041511A1 (en) 2016-03-24

Family

ID=55532567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089865 WO2016041511A1 (en) 2014-09-19 2015-09-17 Benzo-heterocyclic compounds and their applications

Country Status (8)

Country Link
US (2) US20170283408A1 (en)
EP (1) EP3194368B1 (en)
JP (2) JP6777638B2 (en)
KR (1) KR20170090408A (en)
CN (1) CN107087409B (en)
AU (1) AU2015317566B2 (en)
TW (1) TW201625527A (en)
WO (1) WO2016041511A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195321A1 (en) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019204609A1 (en) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020014643A1 (en) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2021011891A1 (en) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
WO2021226206A2 (en) 2020-05-05 2021-11-11 Teon Therapeutics, Inc. Cannabinoid receptor type 2 (cb2) modulators and uses thereof
WO2023034530A1 (en) 2021-09-02 2023-03-09 Teon Therapeutics, Inc. Methods of improving growth and function of immune cells
WO2023081730A1 (en) 2021-11-03 2023-05-11 Teon Therapeutics, Inc. 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer
WO2023097211A1 (en) 2021-11-24 2023-06-01 The University Of Southern California Methods for enhancing immune checkpoint inhibitor therapy
WO2024015372A1 (en) 2022-07-14 2024-01-18 Teon Therapeutics, Inc. Adenosine receptor antagonists and uses thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109391A1 (en) 2014-01-24 2015-07-30 Children's Hospital Of Eastern Ontario Research Institute Inc. Smc combination therapy for the treatment of cancer
EP4141002A1 (en) 2015-11-19 2023-03-01 Incyte Corporation Heterocyclic compounds as immunomodulators
PL3394033T3 (en) 2015-12-22 2021-05-31 Incyte Corporation Heterocyclic compounds as immunomodulators
TW201808950A (en) 2016-05-06 2018-03-16 英塞特公司 Heterocyclic compounds as immunomodulators
TWI808055B (en) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-1 inhibitors
TWI794171B (en) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-l1 inhibitors
MA45116A (en) 2016-05-26 2021-06-02 Incyte Corp HETEROCYCLIC COMPOUNDS AS IMMUNOMODULATORS
MX2018016273A (en) 2016-06-20 2019-07-04 Incyte Corp Heterocyclic compounds as immunomodulators.
EP3484866B1 (en) 2016-07-14 2022-09-07 Incyte Corporation Heterocyclic compounds as immunomodulators
MA46045A (en) 2016-08-29 2021-04-28 Incyte Corp HETEROCYCLIC COMPOUNDS USED AS IMMUNOMODULATORS
EP3558989B1 (en) 2016-12-22 2021-04-14 Incyte Corporation Triazolo[1,5-a]pyridine derivatives as immunomodulators
CN110582493B (en) * 2016-12-22 2024-03-08 因赛特公司 Benzoxazole derivatives as immunomodulators
DK3790877T3 (en) 2018-05-11 2023-04-24 Incyte Corp TETRAHYDRO-IMIDAZO[4,5-C]PYRIDINE DERIVATIVES AS PD-L1 IMMUNE MODULATORS
CN108774219B (en) * 2018-05-17 2021-05-04 中国药科大学 Small molecule compound for inhibiting PD-1/PD-L1 and application thereof
KR102211062B1 (en) 2019-02-27 2021-02-02 충남대학교산학협력단 Novel naththalimide-benzothiazole based compounds and chemosensor for selective detection of cyanide ion and tryptophan amino acid comprising the same
CN109970729B (en) * 2019-03-12 2024-01-26 西北农林科技大学 Synthesis method of fluorine ion probe aggregation state fluorescence enhancement type dye
CN110407865B (en) * 2019-08-02 2022-04-15 山东师范大学 Benzene sulfonamide structure-based compound shown as formula (I) and preparation method and application thereof
WO2021030162A1 (en) 2019-08-09 2021-02-18 Incyte Corporation Salts of a pd-1/pd-l1 inhibitor
TW202120504A (en) 2019-11-11 2021-06-01 美商英塞特公司 Salts and crystalline forms of a pd-1/pd-l1 inhibitor
CN112250682B (en) * 2020-11-02 2021-12-07 河南大学 Aromatic heterocycle modified naphthalimide derivative and preparation method and application thereof
AU2021373044A1 (en) 2020-11-06 2023-06-08 Incyte Corporation Process for making a pd-1/pd-l1 inhibitor and salts and crystalline forms thereof
TW202233615A (en) 2020-11-06 2022-09-01 美商英塞特公司 Crystalline form of a pd-1/pd-l1 inhibitor
WO2022099018A1 (en) 2020-11-06 2022-05-12 Incyte Corporation Process of preparing a pd-1/pd-l1 inhibitor
CN115385890B (en) * 2022-07-19 2023-08-08 杭州庆正鸿科技有限公司 1,8 naphthalimide derivative and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032577A2 (en) 1998-11-25 2000-06-08 Merck Patent Gmbh Substituted benzo[de]isoquinoline-1,3-diones
CN1857221A (en) * 2006-04-14 2006-11-08 济南帅华医药科技有限公司 Slow released anticancer medicien containing both platinum compound and its synergist
WO2008084496A1 (en) 2007-01-11 2008-07-17 Council Of Scientific & Industrial Research Novel substituted 1h-benz [de] isoquinoline-1, 3 -diones
CN102206203A (en) 2011-04-04 2011-10-05 大连理工大学 Synthesis of benzimidazole-containing naphthalimide derivatives and applications of benzimidazole-containing naphthalimide derivatives on cancer resistance
CN102731493A (en) 2012-07-08 2012-10-17 大连理工大学 Anti-tumor compound containing benzothiazole heterocyclic structure and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2423548C2 (en) * 1974-05-15 1984-08-23 Hoechst Ag, 6230 Frankfurt Process for the preparation of 4-amino1,8-naphthalimide compounds
DE3942280A1 (en) * 1989-12-21 1991-06-27 Knoll Ag N-SUBSTITUTED NAPHTHALIMIDES, THEIR PRODUCTION AND USE
HUP0700433A2 (en) * 2007-06-21 2009-03-30 Avidin Kutato Compounds influencing development or functioning of cellular vesicular systems particularly lipid droplets, pharmaceutical compositions containing these compounds and use them for treatment of illnesses
US8420665B2 (en) * 2008-01-11 2013-04-16 Northwestern University Anti-cancer compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032577A2 (en) 1998-11-25 2000-06-08 Merck Patent Gmbh Substituted benzo[de]isoquinoline-1,3-diones
CN1857221A (en) * 2006-04-14 2006-11-08 济南帅华医药科技有限公司 Slow released anticancer medicien containing both platinum compound and its synergist
WO2008084496A1 (en) 2007-01-11 2008-07-17 Council Of Scientific & Industrial Research Novel substituted 1h-benz [de] isoquinoline-1, 3 -diones
CN102206203A (en) 2011-04-04 2011-10-05 大连理工大学 Synthesis of benzimidazole-containing naphthalimide derivatives and applications of benzimidazole-containing naphthalimide derivatives on cancer resistance
CN102731493A (en) 2012-07-08 2012-10-17 大连理工大学 Anti-tumor compound containing benzothiazole heterocyclic structure and application thereof

Non-Patent Citations (29)

* Cited by examiner, † Cited by third party
Title
"Hotchkiss RS and Opal S", N ENGL J MED, vol. 363, 2010, pages 87 - 89
"Martin REMINGTON'S PHARM. SCI.", 1995, MACK PUBL. CO.
"Medical Economics", 2004, article "PHYSICIAN'S DESK REFERENCE"
ABDEL-AZIZ ALAA A-M ET AL., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 24, no. 22, 2014, pages 5185 - 5189
ABRAHAM E ET AL., N ENGL J MED, vol. 353, 2005, pages 1332 - 1341
AIBIN WU ET AL., CHEMICAL BIOLOGY & DRUG DESIGN, vol. 78, no. 6, 2011, pages 941 - 947
AIBIN WU ET AL., EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 44, no. 11, 2009, pages 4674 - 4680
AIBIN WU ET AL.: "Novel naphthalimide derivatives as potential apoptosis-inducing agents: Design, synthesis and biological evaluation.", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 44, 16 July 2009 (2009-07-16), pages 4674 - 4680, XP055419614 *
AIBIN WU ET AL.: "Novel naphthalimide-benzoic acid conjugates as potential apoptosis-inducing agents: design, synthesis, and biological activity.", CHEMICAL BIOLOGY & DRUG DESIGN., vol. 78, no. 6, 22 August 2011 (2011-08-22), pages 941 - 947, XP055419616 *
ALAA A.-M. ABDEL-AZIZ ET AL.: "Carbonic anhydrase inhibitory activity of sulfonamides and carboxylic acids incorporating cyclic imide scaffolds.", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 24, no. 22, 2 October 2014 (2014-10-02), pages 5185 - 5189, XP029088724, DOI: doi:10.1016/j.bmcl.2014.09.076 *
ANDERSSON, C. DAVID ET AL.: "Discovery of Ligands for ADP-Ribosyltransferases via Docking- Based Virtual Screening.", JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 17, 23 July 2012 (2012-07-23), pages 7706 - 7718, XP055419618 *
BRAHMER JRTYKODI SSCHOW LQHWU WJTOPALIAN SL ET AL.: "Safety and activity of anti-PD-Ll antibody in patients with advanced cancer", N ENGL J MED, vol. 366, 2012, pages 2455 - 2465, XP002685330, doi:10.1056/NEJMoa1200694
BUU-HOI N P ET AL., JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 5, no. 4, 1968, pages 545 - 547
C. DAVID ANDERSSON ET AL., JOURNAL OF MEDICINAL CHEMISTRY, vol. 55, no. 17, 2012, pages 7706 - 7718
CHEN IH ET AL., CANCER IMMUNOL IMMUNOTHER, vol. 59, 2010, pages 323 - 334
CHEN IHLAI YLWU CLCHANG YFCHU CC, ET AL.: "Immune impairment in patients with terminal cancers: influence of cancer treatments and cytomegalovirus infection", CANCER IMMUNOL IMMUNOTHER, vol. 59, 2010, pages 323 - 334, XP019757717
KNAUS WA ET AL., CRIT CARE MED., vol. 13, 1985, pages 818 - 829
MCKENNEY ET AL., ORGANIC AND BIOMOLECULAR CHEMISTRY, vol. 1, no. 26, 2013, pages 4390 - 4396
MIAO ET AL., JOURNAL OF MOLECULAR STRUCTURE (THEOCHEM, vol. 865, no. 1-3, 2008, pages 79 - 87
PHARMACEUTICAL SALTSBIRGE, S. M. ET AL., J. PHARM. SCI., vol. 66, 1977, pages 1 - 19
SARESELLA MRAINONE VAL-DAGHRI NMCLERICI MTRABATTONI D: "The PD-1/PD-L1 pathway in human pathology", CURR MOL MED, vol. 12, 2012, pages 259 - 267
SETHI KALYAN K ET AL., BIOORGANIC & MEDICINAL CHEMISTRY, vol. 21, no. 19, 2013, pages 5973 - 5982
SETHI KALYAN K ET AL., BIOORGANIC & MEDICINAL CHEMISTRY, vol. 22, no. 5, 2014, pages 1586 - 1595
SETHI, KALYAN K. ET AL.: "Carbonic anhydrase inhibitors: Synthesis and inhibition of the human carbonic anhydrase isoforms I, II, IX and XII with benzene sulfonamides incorporating 4- and 3-nitrophthalimide moieties.", BIOORGANIC & MEDICINAL CHEMISTRY., vol. 22, no. 5, 31 January 2014 (2014-01-31), pages 1586 - 1595, XP028616700, DOI: doi:10.1016/j.bmc.2014.01.031 *
SETHI, KALYAN K. ET AL.: "Carbonic anhydrase inhibitors: Synthesis and inhibition of the human carbonic anhydrase isoforms I, II, VII, IX and XII with benzene sulfonamides incorporating 4, 5, 6, 7-tetrabromophthalimide moiety.", BIOORGANIC & MEDICINAL CHEMISTRY., vol. 21, no. 19, 2 August 2013 (2013-08-02), pages 5973 - 5982, XP028706279, DOI: doi:10.1016/j.bmc.2013.07.044 *
TOPALIAN SLHODI FSBRAHMER JRGETTINGER SNSMITH DC ET AL.: "Safety, activity, and immune correlates of anti-PD-1 antibody in cancer", N ENGL J MED, vol. 366, 2012, pages 2443 - 2454, XP055098235, doi:10.1056/NEJMoa1200690
VINCENT JL ET AL., INTENSIVE CARE MED., vol. 22, 1996, pages 707 - 710
WATANABE TBERTOLETTI ATANOTO TA: "PD-1/PD-L1 pathway and T-cell exhaustion in chronic hepatitis virus infection", J VIRAL HEPAT, vol. 17, 2010, pages 453 - 458
ZHENGNENG JIN ET AL., DYES AND PIGMENTS, vol. 96, no. 1, 2012, pages 204 - 210

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026835A2 (en) 2017-04-20 2022-07-13 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2018195321A1 (en) 2017-04-20 2018-10-25 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US11555029B2 (en) 2018-02-13 2023-01-17 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
US10710986B2 (en) 2018-02-13 2020-07-14 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
EP4227302A1 (en) 2018-02-13 2023-08-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US10899735B2 (en) 2018-04-19 2021-01-26 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
WO2019204609A1 (en) 2018-04-19 2019-10-24 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US10774071B2 (en) 2018-07-13 2020-09-15 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
WO2020014643A1 (en) 2018-07-13 2020-01-16 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
EP4234030A2 (en) 2018-07-13 2023-08-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
US11236085B2 (en) 2018-10-24 2022-02-01 Gilead Sciences, Inc. PD-1/PD-L1 inhibitors
WO2020086556A1 (en) 2018-10-24 2020-04-30 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
WO2021011891A1 (en) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
WO2021188959A1 (en) 2020-03-20 2021-09-23 Gilead Sciences, Inc. Prodrugs of 4'-c-substituted-2-halo-2'-deoxyadenosine nucleosides and methods of making and using the same
WO2021226206A2 (en) 2020-05-05 2021-11-11 Teon Therapeutics, Inc. Cannabinoid receptor type 2 (cb2) modulators and uses thereof
WO2023034530A1 (en) 2021-09-02 2023-03-09 Teon Therapeutics, Inc. Methods of improving growth and function of immune cells
WO2023081730A1 (en) 2021-11-03 2023-05-11 Teon Therapeutics, Inc. 4-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide derivatives as cannabinoid cb2 receptor modulators for the treatment of cancer
WO2023097211A1 (en) 2021-11-24 2023-06-01 The University Of Southern California Methods for enhancing immune checkpoint inhibitor therapy
WO2024015372A1 (en) 2022-07-14 2024-01-18 Teon Therapeutics, Inc. Adenosine receptor antagonists and uses thereof

Also Published As

Publication number Publication date
AU2015317566B2 (en) 2019-10-10
US20170283408A1 (en) 2017-10-05
CN107087409B (en) 2020-07-31
TW201625527A (en) 2016-07-16
CN107087409A (en) 2017-08-22
KR20170090408A (en) 2017-08-07
EP3194368A1 (en) 2017-07-26
EP3194368A4 (en) 2018-03-21
EP3194368B1 (en) 2020-12-23
JP2017528524A (en) 2017-09-28
JP2021008502A (en) 2021-01-28
US20200339557A1 (en) 2020-10-29
AU2015317566A1 (en) 2017-04-06
JP6777638B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US20200339557A1 (en) Benzo-heterocyclic compounds and their applications
US20220401529A1 (en) Treatment of diseases involving mucin
JP6440212B2 (en) Combination medicine containing metformin and dihydroquercetin, and use for cancer treatment
TW201242601A (en) Methods of treating cancer using 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione
US9833431B2 (en) Pharmaceutical combinations for the treatment of cancer
CN109819649B (en) Solid forms of aminopurine compounds and methods of use thereof
AU2018222881A1 (en) Method for treating drug resistant cancer
WO2014007998A1 (en) SORAFENIB DERIVATIVES AS p21 INHIBITORS
JP2010507626A (en) Macrocyclic quinazoline derivatives as VEGFR3 inhibitors
TW202313016A (en) Methods of treating b-cell malignancy using bcl-2 inhibitor
CN111643502A (en) Quinoline derivatives combined with chemotherapeutic drugs for treating non-small cell lung cancer
US20130129841A1 (en) Therapeutic combination comprising a parp-1 inhibitor and an anti-neoplastic agent
US20210128683A1 (en) Pharmaceutical compositions and use thereof for relieving resistance due to cancer chemotherapy and enhancing effect of cancer chemotherapy
US9872882B2 (en) Aurantiamide dipeptide derivatives for treatment or prevention of angiogenesis-related diseases
JP2024516848A (en) Methods for Treating Blood Cancer
AU2021200121A1 (en) Pharmaceutical compositions and use thereof for relieving resistance due to cancer chemotherapy and enhancing effect of cancer chemotherapy
ES2702698T3 (en) Polymorph of the dihydropyrazolopyrimidinone derivative as an inhibitor of the Wee1 kinase

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534871

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15512248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015317566

Country of ref document: AU

Date of ref document: 20150917

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015843004

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177010627

Country of ref document: KR

Kind code of ref document: A