WO2016038990A1 - Resonator, light source device and frequency filter - Google Patents

Resonator, light source device and frequency filter Download PDF

Info

Publication number
WO2016038990A1
WO2016038990A1 PCT/JP2015/068891 JP2015068891W WO2016038990A1 WO 2016038990 A1 WO2016038990 A1 WO 2016038990A1 JP 2015068891 W JP2015068891 W JP 2015068891W WO 2016038990 A1 WO2016038990 A1 WO 2016038990A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
spacer
state
resonator
mirror element
Prior art date
Application number
PCT/JP2015/068891
Other languages
French (fr)
Japanese (ja)
Inventor
真美子 鯨岡
市村 厚一
隼人 後藤
悟史 中村
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2016547748A priority Critical patent/JP6253793B2/en
Publication of WO2016038990A1 publication Critical patent/WO2016038990A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Definitions

  • Embodiments of the present invention relate to a resonator, a light source device, and a frequency filter.
  • the resonator is used in fields such as high resolution spectroscopy and optical communication, for example.
  • a light source having a stable frequency can be obtained by locking the frequency to a resonator having high frequency stability.
  • the resonator is also used as a frequency filter.
  • a resonator having a variable resonance frequency is desired.
  • Embodiments of the present invention provide a resonator having a variable resonance frequency, a light source device, and a frequency filter.
  • the resonator includes a first mirror, a second mirror, a first spacer, and a second spacer.
  • the first spacer is provided between the first mirror and the second mirror and is in contact with the first mirror.
  • the second spacer is provided between the first spacer and the second mirror and is in contact with the second mirror.
  • the first resonator length formed by the first mirror and the second mirror in a first state where the first spacer and the second spacer are in contact with each other is such that the first spacer and the second spacer are
  • the second resonator length formed by the first mirror and the second mirror in a second state that is in contact and different from the first state is different.
  • FIG. 1A to FIG. 1E are schematic views showing a resonator according to the first embodiment.
  • 1 is a schematic cross-sectional view showing a resonator according to a first embodiment.
  • FIG. 3A and FIG. 3B are schematic views showing the resonator according to the first embodiment.
  • FIG. 4A and FIG. 4B are schematic views showing another resonator according to the first embodiment.
  • FIGS. 5A to 5F are schematic views showing another resonator according to the first embodiment.
  • FIG. 6A and FIG. 6B are schematic views showing another resonator according to the first embodiment.
  • FIG. 7A to FIG. 7D are schematic views showing another resonator according to the first embodiment.
  • FIG. 8D are schematic perspective views showing the resonator according to the first embodiment.
  • FIG. 9A and FIG. 9B are schematic views showing another resonator according to the first embodiment.
  • FIG. 10A and FIG. 10B are schematic views showing another resonator according to the first embodiment.
  • FIG. 11A and FIG. 11B are schematic views showing another resonator according to the first embodiment.
  • FIG. 12A and FIG. 12B are schematic views illustrating a resonator according to the second embodiment.
  • FIG. 13A and FIG. 13B are schematic views showing another resonator according to the second embodiment.
  • FIG. 14A to FIG. 14D are schematic views showing another resonator according to the second embodiment.
  • FIG. 15A and FIG. 15B are schematic views showing the resonator according to the embodiment.
  • FIG. 16A and FIG. 16B are schematic views showing the resonator according to the embodiment.
  • FIG. 17A and FIG. 17B are schematic views showing the resonator according to the embodiment.
  • FIG. 18A and FIG. 18B are schematic views showing the resonator according to the embodiment.
  • FIG. 20A and FIG. 20B are schematic views illustrating the resonator according to the embodiment.
  • FIG. 21A and FIG. 21B are schematic views illustrating the resonator according to the embodiment.
  • FIG. 25A to FIG. 25F are schematic views showing a resonator according to the fifth embodiment.
  • FIG. 26A to FIG. 26D are schematic views showing another resonator according to the fifth embodiment.
  • FIG. 27A and FIG. 27B are schematic views showing another resonator according to the fifth embodiment.
  • FIG. 28A and FIG. 28B are schematic views showing another resonator according to the fifth embodiment.
  • FIG. 29A to FIG. 29D are schematic views showing another resonator according to the sixth embodiment.
  • FIG. 30A to FIG. 30D are schematic views showing another resonator according to the sixth embodiment.
  • FIG. 1A to FIG. 1E are schematic views illustrating the resonator according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating the resonator according to the first embodiment.
  • FIG. 1A is a schematic perspective view.
  • FIG. 1B is a schematic perspective view illustrating elements included in the resonator separately.
  • FIG. 1C and FIG. 1D are schematic cross-sectional views.
  • FIG.1 (e) is a top view from the arrow Ar direction shown to Fig.1 (a).
  • the resonator 110 includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, and a control unit 30. .
  • a fixing portion 81 is further provided.
  • the resonator 110 may include a container 80.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are arranged in the container 80.
  • the inside of the container 80 is decompressed, for example. The influence of external heat and atmospheric pressure is suppressed, and the resonator length expansion and contraction of the resonator is suppressed.
  • the container 80 may be provided with a temperature adjustment element 82. The temperature of the resonator 110 is adjusted to a desired temperature by the temperature adjustment element 82.
  • FIG. 1B the control unit 30 and the fixing unit 81 are omitted.
  • FIG. 1C illustrates the second mirror 20.
  • FIG. 1D illustrates the first mirror 10.
  • the second mirror 20 faces the first mirror 10.
  • the first mirror 10 has a first mirror surface 10a.
  • the second mirror 20 has a second mirror surface 20a.
  • the first mirror surface 10a and the second mirror surface 20a face each other.
  • the first mirror 10 and the second mirror 20 form, for example, a Fabry-Perot optical resonator.
  • the spatial arrangement between the first mirror 10 and the second mirror 20 is variable.
  • the direction connecting the first mirror 10 and the second mirror 20 is the Z-axis direction.
  • One direction perpendicular to the Z-axis direction is taken as an X-axis direction.
  • a direction perpendicular to the Z-axis direction and the X-axis direction is taken as a Y-axis direction.
  • the first spacer 50 is provided between the first mirror 10 and the second mirror 20.
  • the first spacer 50 is connected to the outer edge portion 10 r of the first mirror 10.
  • at least a part of the first spacer 50 may be provided between the first mirror 10 and the second mirror 20.
  • the first spacer 50 may be connected to at least a part of the outer edge portion 10r of the first mirror 10.
  • the first spacer 50 has, for example, a tubular shape (frame shape) whose axis is the Z-axis direction (a first direction connecting the first mirror 10 in the first state and the second mirror 20 in the first state).
  • the first spacer 50 may have a plurality of portions extending in the Z-axis direction.
  • the first spacer 50 may be connected to the first mirror 10 discontinuously by a plurality of portions.
  • the second spacer 60 is provided between the first spacer 50 and the second mirror 20.
  • the second spacer 60 is connected to the outer edge portion 20 r of the second mirror 20.
  • at least a part of the second spacer 60 may be provided between the first spacer 50 and the second mirror 20.
  • the second spacer 60 may be connected to at least a part of the outer edge portion 20r of the second mirror 20.
  • the second spacer 60 has a tubular shape (frame shape) with the Z-axis direction as an axis, for example.
  • the second spacer 60 may have a plurality of portions extending in the Z-axis direction.
  • the second spacer 60 may be connected to the second mirror 20 discontinuously by a plurality of portions.
  • a thin layer of lubricating oil or the like may be inserted between the first spacer 50 and the second spacer 60. Also in this case, the first spacer 50 and the second spacer 60 are substantially in contact with each other.
  • the outer shape (planar shape) of the first mirror 10 and the second mirror 20 projected onto the XY plane is a quadrangle.
  • Each outer shape (planar shape) when the first spacer 50 and the second spacer 60 are projected onto the XY plane is a square tube.
  • the planar shape of the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 may be a polygon other than a square, a circle (including a flat circle), or any other shape. .
  • first mirror surface 10a and the second mirror surface 20a For example, light reflected by the first mirror surface 10a and the second mirror surface 20a passes through cavities provided in the first spacer 50 and the second spacer 60, respectively. The light reflected by the first mirror surface 10 a and the second mirror surface 20 a does not pass through the first spacer 50 and the second spacer 60.
  • the set of the first mirror 10 and the first spacer 50 and the set of the second mirror 20 and the second spacer 60 can be interchanged with each other.
  • the first mirror 10 is a concave mirror. That is, the first mirror surface 10a is concave.
  • the second mirror 20 is a plane mirror. That is, the second mirror surface 20a is planar. As will be described later, the first mirror surface 10a and the second mirror surface 20a can be variously modified.
  • the first mirror 10 includes a plurality of first layers 17 and a plurality of second layers 18.
  • the first layer 17 and the second layer 18 are alternately arranged along the Z-axis direction.
  • the second mirror 20 includes a plurality of third layers 27 and a plurality of fourth layers 28.
  • the third layer 27 and the fourth layer 28 are alternately arranged along the Z-axis direction.
  • the refractive index of the first layer 17 is different from the refractive index of the second layer 18.
  • the refractive index of the third layer 27 is different from the refractive index of the fourth layer 28.
  • a dielectric is used for these layers.
  • Each of the first mirror 10 and the second mirror 20 includes, for example, a dielectric multilayer film. The embodiment is not limited to this, and any reflector can be used as the first mirror 10 and the second mirror 20.
  • the fixing portion 81 is connected to the first spacer 50.
  • the fixing portion 81 is fixed to the container 80, for example. Thereby, the spatial position of the first spacer 50 is fixed.
  • first to fourth moving devices 31 to 34 are used as the control unit 30.
  • the second spacer 60 is disposed between the first moving device 31 and the second moving device 32.
  • a second spacer 60 is disposed between the third moving device 33 and the fourth moving device 34.
  • these moving devices are separated from the second spacer 60.
  • the first moving device 31 pushes and moves the second spacer 60.
  • the second spacer 60 moves in the + X axis direction, for example.
  • the second moving device 32 pushes and moves the second spacer 60.
  • the second spacer 60 moves in the ⁇ X axis direction, for example.
  • the moving device is in contact with the second spacer 60. After the movement, the moving device moves away from the second spacer 60.
  • the moving device Since the moving device is separated from the second spacer 60 after the movement, the influence of the moving device is not exerted on the spacer in the state after the movement. A stable resonator length can be obtained.
  • the second spacer 60 is movable along the Y-axis direction by the operations of the third moving device 33 and the fourth moving device 34. In the embodiment, the moving device is allowed to be connected to the second spacer 60.
  • Each of the first to fourth moving devices 31 to 34 may include first to fourth micrometer heads 31a to 34a and first to fourth piezo actuators 31b to 34b.
  • a piezo actuator is disposed between the micrometer head and the second spacer 60. In the micrometer head, a large position change can be caused. In a piezo actuator, it is possible to cause a change in position with high accuracy. The second spacer 60 can be moved with high accuracy.
  • the direction of movement of the second spacer 60 intersects with the Z-axis direction, for example.
  • the first spacer 50 has a first surface 50a
  • the second spacer 60 has a second surface 60a.
  • the first surface 50 a faces the second spacer 60.
  • the second surface 60 a faces the first spacer 50.
  • the second surface 60a faces the first surface 50a.
  • the second surface 60a is along the first surface 50a.
  • the first surface 50a intersects the Z-axis direction (first direction).
  • the Z-axis direction is a direction connecting the first mirror 10 in one state (first state) and the second mirror 20 in that state (first state).
  • the first surface 50a is inclined with respect to the Z-axis direction.
  • the second surface 60a along the first surface 50a is also inclined with respect to the Z-axis direction.
  • the position of the second spacer 60 is changed by the operation of the control unit 30.
  • the second surface 60a In the second spacer 60 before movement, the second surface 60a is in contact with the first surface 50a.
  • the second surface 60a is in contact with the first surface 50a.
  • the second spacer 60 may move while the second surface 60a is in contact with the first surface 50a. Due to the movement, the resonator length of the resonator formed by the first mirror 10 and the second mirror 20 changes.
  • an example of a change in the resonator length will be described.
  • FIG. 3A and FIG. 3B are schematic views illustrating the resonator according to the first embodiment.
  • FIGS. 3A and 3B illustrate the first state ST1 and the second state ST2 provided in the resonator 110, respectively.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are illustrated, and other elements are omitted.
  • the first spacer 50 and the second spacer 60 are in contact with each other.
  • the position of the second spacer 60 is set to a first position relative to the first spacer 50.
  • the first resonator Rs1 is formed by the first mirror 10 and the second mirror 20.
  • This resonator has a first resonator length L1.
  • the first mirror 10 is a concave mirror.
  • the first mirror 10 has, for example, the spherical center of the concave mirror (first center 10c).
  • the first resonator length L1 corresponds to the distance between the first mirror 10 and the second mirror 20 on a straight line passing through the first center 10c and perpendicular to the second mirror surface 20a in the first state ST1. To do. Thus, in the first state ST1, the first mirror 10 and the second mirror 20 form the first resonator length L1.
  • the first spacer 50 and the second spacer 60 are in contact with each other even in the second state ST2.
  • the second spacer 60 is moved with respect to the first state ST1 by the operation of the control unit 30.
  • the first state ST1 and the second state ST2 are reversible.
  • the position of the second state ST2 is a position different from the first state ST1.
  • the second spacer 60 is set at a second position relative to the first spacer 50.
  • the second position is different from the first position.
  • the first resonator 10 and the second mirror 20 form a second resonator Rs2.
  • This resonator has a second resonator length L2.
  • the second resonator length L2 corresponds to the distance between the first mirror 10 and the second mirror 20 on a straight line passing through the first center 10c and perpendicular to the second mirror surface 20a in the second state ST2. To do.
  • control unit 30 causes the first resonator 10 and the second mirror 20 to form the second resonator length L2 in the second state ST2.
  • the second resonator length L2 is different from the first resonator length L1.
  • the second resonator length L2 is shorter than the first resonator length L1.
  • the direction that connects to the Z-axis direction has a component that intersects the Z-axis direction. That is, the direction connecting the first position and the second position intersects the first direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1. For example, the direction connecting the first position and the second position intersects the second direction connecting the first mirror 10 in the second state ST2 and the second mirror 20 in the second state ST2.
  • the resonator length can be changed by moving the second spacer 60 relative to the first spacer 50 in such a direction. Thereby, the resonant frequency in a resonator can be changed.
  • the change of the resonance frequency when the resonator length is changed will be described. It is assumed that the resonator length L is changed by the resonator length shift amount ⁇ L.
  • L is the first resonator length L1
  • ⁇ L is the difference between the first resonator length L1 and the second resonator length L2.
  • the resonator length is the optical length of the resonator mode formed inside the resonator.
  • a resonator mode is formed on a straight line connecting the centers of the respective spherical surfaces.
  • a resonator mode is formed on a straight line that passes through the center of the spherical surface of the concave mirror and is perpendicular to the plane mirror.
  • the resonator mode is formed on a straight line perpendicular to the plane of the plane mirror. In this case, the two planes are strictly parallel.
  • the configuration in which the resonator length is changed in the first state ST1 and the second state ST2 can be variously modified.
  • the second spacer 60 is moved along the direction inclined with respect to the plane of the plane mirror. Move relative to the spacer 50. As a result, the resonator length changes.
  • FIG. 4A and FIG. 4B are schematic views illustrating another resonator according to the first embodiment. These drawings illustrate another resonator 111 according to this embodiment. In these drawings, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are illustrated, and other elements are omitted.
  • FIGS. 4A and 4B illustrate a first state ST1 and a second state ST2 provided in the resonator 111, respectively.
  • the first mirror 10 is a concave mirror
  • the second mirror 20 is a plane mirror.
  • the mirror surface (second mirror surface 20a) of the second mirror 20 is a flat surface.
  • the second mirror surface 20a is inclined with respect to the Z-axis direction.
  • the first resonator length L1 is formed in the first state ST1
  • the second resonator length L2 is formed in the second state ST2.
  • the second resonator length L2 is different from the first resonator length L1.
  • the first surface 50a and the second surface 60a are perpendicular to the Z-axis direction.
  • the direction of movement of the second spacer 60 is perpendicular to the Z-axis direction.
  • the direction of movement may be any direction having a component that intersects the Z-axis direction.
  • FIG. 5A to FIG. 5F are schematic views illustrating another resonator according to the first embodiment.
  • FIGS. 5A and 5B illustrate the first state ST1 and the second state ST2 in the resonator 112a.
  • FIG. 5C and FIG. 5D illustrate the first state ST1 and the second state ST2 in the resonator 112b.
  • FIGS. 5E and 5F illustrate the first state ST1 and the second state ST2 in the resonator 112c.
  • the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are shown, and other elements are omitted.
  • the first mirror surface 10a of the first mirror 10 and the second mirror surface 20a of the second mirror 20 are concave mirrors.
  • the second mirror 20 has, for example, the spherical center of the concave mirror (second center 20c).
  • the resonator length corresponds to the distance between the first mirror 10 and the second mirror 20 on the straight line connecting the first center 10c and the second center 20c.
  • the first surface 50a of the first spacer 50 and the second surface 60a of the second spacer 60 are perpendicular to the Z-axis direction.
  • the first surface 50a and the second surface 60a are curved.
  • the first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction.
  • the second spacer 60 is relatively moved while being in contact with the second spacer 50, so that the resonator length can be increased between the first state ST1 and the second state ST2. Can be changed.
  • FIG. 6A and FIG. 6B are schematic views illustrating another resonator according to the first embodiment. These drawings illustrate the first state ST1 and the second state ST2 in the resonator 113. In these drawings, the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are shown, and other elements are omitted.
  • the first mirror 10 is a plane mirror
  • the second mirror 20 is also a plane mirror.
  • the first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction.
  • the second spacer 60 moves with the second surface 60a in contact with the first surface 50a.
  • the direction of movement intersects the Z-axis direction.
  • FIG. 7A to FIG. 7D are schematic views illustrating another resonator according to the first embodiment.
  • FIGS. 7A and 7B illustrate the first state ST1 and the second state ST2 in the resonator 114a.
  • FIG. 7C and FIG. 7D illustrate the first state ST1 and the second state ST2 in the resonator 114b.
  • the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are shown, and other elements are omitted.
  • the first mirror 10 is a convex mirror and the second mirror 20 is a concave mirror. That is, the first mirror surface 10a is convex, and the second mirror surface 20a is concave.
  • the first surface 50a of the first spacer 50 and the second surface 60a of the second spacer 60 are perpendicular to the Z-axis direction.
  • the first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction.
  • the second spacer 60 is moved relative to the first spacer 50 while being in contact with the first spacer 50. Thereby, the resonator length can be changed between the first state ST1 and the second state ST2.
  • FIG. 8A to FIG. 8D are schematic perspective views illustrating the resonator according to the first embodiment.
  • FIG. 8A illustrates the first state ST1.
  • FIG. 8B to FIG. 8D illustrate three types of second states ST2.
  • the first mirror 10 is a concave mirror
  • the second mirror 20 is a plane mirror
  • the planar shape is a square.
  • a rectangular parallelepiped is formed by the first spacer 50 and the second spacer 60.
  • the first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction.
  • the first surface 50 a and the second surface 60 a are inclined with respect to the respective mirror surfaces of the first mirror 10 and the second mirror 20. Accordingly, the first surface 50a and the second surface 60a are rectangular.
  • the moving direction Md of the second spacer 60 is along the long side direction of the rectangle of the first surface 50a and the second surface 60a. In this case, the resonator length changes between the first state ST1 and the second state ST2.
  • the resonator length is between the first state ST1 and the second state ST2. Does not change.
  • the moving direction Md of the second spacer 60 is along the diagonal direction of the rectangles of the first surface 50a and the second surface 60a.
  • the resonator length changes between the first state ST1 and the second state ST2.
  • the moving direction Md of the second spacer 60 includes a rotation component.
  • the axis of rotation includes a component in a direction that intersects the Z-axis direction.
  • the resonator length changes between the first state ST1 and the second state ST2.
  • the ratio of the change amount of the resonator length to the movement amount of the second spacer 60 depends on the direction of movement. In some cases, it is desired to obtain a large change in the resonator length with respect to the movement amount of the second spacer 60. On the other hand, there is a case where it is desired to change the resonator length with high accuracy with respect to the movement amount of the second spacer 60. Select the moving direction according to the application. This facilitates changing the resonator length to a desired size and with a desired accuracy.
  • the movement in the first spacer 50 and the second spacer 60 is a relative movement.
  • the second spacer 60 may be fixed and the first spacer 50 may move.
  • Each of the first spacer 50 and the sixth spacer 60 may move. That is, it is only necessary to form the first state ST1 and the second state ST2 having different relative positions.
  • FIG. 9A and FIG. 9B are schematic views illustrating another resonator according to the first embodiment. These drawings illustrate the first state ST1 and the second state ST2 in the resonator 115.
  • the first mirror 10 is a concave mirror
  • the second mirror 20 is a plane mirror.
  • the first connection portion 51 and the first intermediate portion 52 are provided in the first spacer 50.
  • the first connection unit 51 is connected to the first mirror 10.
  • the first intermediate part 52 is provided between the first connection part 51 and the second spacer 60.
  • the first connection part 51 has a surface 51 a that faces the first intermediate part 52.
  • the second intermediate part 52 has a surface 52 a that faces the first connection part 51.
  • the surface 52a is along the surface 51a. In this example, the surface 51a and the surface 52a are inclined with respect to the Z-axis direction.
  • the relative position of the second spacer 60 with respect to the first spacer 50 changes between the first state ST1 and the second state ST2. Furthermore, in the first spacer 50, the relative position of the first intermediate portion 52 with respect to the first connection portion 51 is changed. In the first state ST1 and the second state ST2, the first intermediate part 52 is in contact with the first connection part 51. In the first state ST1 and the second state ST2, the first intermediate part 52 is in contact with the second spacer 60.
  • one direction that intersects the Z-axis direction (a first direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1) is defined as a first intersecting direction.
  • the first intersecting direction is the X-axis direction.
  • the position of the first intermediate part 52 in the first intersecting direction can be changed with respect to the position of the first connecting part 51 in the first intersecting direction.
  • the movement of the first intermediate portion 52 changes the resonator length.
  • the resonator length can be changed greatly.
  • the first surface 50a is inclined with respect to the Z-axis direction.
  • the surface 51a (and the surface 52a) is also inclined with respect to the Z-axis direction.
  • the angle between the first surface 50a and the Z-axis direction is different from the angle between the surface 51a and the Z-axis direction.
  • the change rate of the resonator length with respect to the movement amount of the second spacer 60 is different from the change rate of the resonator length with respect to the movement amount of the first intermediate portion 52.
  • the inclination direction of the first surface 50a with respect to the Z-axis direction may be different from the inclination direction of the surface 51a with respect to the Z-axis direction.
  • the first surface 50a may be inclined with respect to the Z-axis direction and the X-axis direction
  • the surface 51a may be inclined with respect to the Z-axis direction and the Y-axis direction.
  • a plurality of first intermediate portions 52 may be provided in the first spacer 50.
  • the plurality of first intermediate portions 52 are arranged along the Z-axis direction.
  • the angle between the surface between the plurality of first intermediate portions 52 and the Z-axis direction may be changed in the plurality of first intermediate portions 52.
  • the first connecting portion 51 and the first intermediate portion 52 are a combination of a concave mirror and a plane mirror, a combination of a concave mirror and a concave mirror, a combination of a plane mirror and a plane mirror, and a combination of a concave mirror and a convex mirror. It may be provided in each of the above.
  • FIG. 10A and FIG. 10B are schematic views illustrating another resonator according to the first embodiment. These drawings illustrate the first state ST1 and the second state ST2 in the resonator 116.
  • the first mirror 10 is a concave mirror
  • the second mirror 20 is a plane mirror.
  • the second spacer 60 is provided with a second connection portion 61 and a second intermediate portion 62.
  • the second connection unit 61 is connected to the second mirror 20.
  • the second intermediate part 62 is provided between the second connection part 61 and the first spacer 50.
  • the second connection portion 61 has a surface 61 a that faces the second intermediate portion 62.
  • the second intermediate portion 62 has a surface 62 a that faces the second connection portion 61.
  • the surface 62a is along the surface 61a.
  • the surface 61a and the surface 62a are inclined with respect to the Z-axis direction.
  • the relative position of the second spacer 60 with respect to the first spacer 50 changes between the first state ST1 and the second state ST2.
  • the relative position of the second intermediate portion 62 with respect to the second connection portion 61 changes.
  • the second intermediate part 62 is in contact with the second connection part 61.
  • the second intermediate portion 62 is in contact with the first spacer 50.
  • the position of the second intermediate portion 62 in the second cross direction (for example, the X-axis direction) can be changed with respect to the position of the second connection portion 61 in the second cross direction.
  • the second intersecting direction is a direction intersecting the first direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1.
  • the movement of the second spacer 60 uses the relative movement between the second intermediate part 62 and the second connection part 61 to move the position of the second mirror 20 to the position of the first mirror 10.
  • the position can be changed greatly.
  • the resonator length can be changed greatly.
  • the first surface 50a is inclined with respect to the Z-axis direction.
  • the surface 61a (and the surface 62a) is also inclined with respect to the Z-axis direction.
  • the angle between the first surface 50a and the Z-axis direction is different from the angle between the surface 61a and the Z-axis direction.
  • the inclination direction of the first surface 50a with respect to the Z-axis direction may be different from the inclination direction of the surface 61a with respect to the Z-axis direction.
  • the first surface 50a may be inclined with respect to the Z-axis direction and the X-axis direction
  • the surface 61a may be inclined with respect to the Z-axis direction and the Y-axis direction.
  • a plurality of second intermediate portions 62 may be provided on the second spacer 60.
  • the plurality of second intermediate portions 62 are arranged along the Z-axis direction.
  • the angle between the surface between the plurality of second intermediate portions 62 and the Z-axis direction may be changed in the plurality of second intermediate portions 62.
  • the second connecting portion 61 and the second intermediate portion 62 are a combination of a concave mirror and a plane mirror, a combination of a concave mirror and a concave mirror, a combination of a plane mirror and a plane mirror, and a combination of a concave mirror and a convex mirror. It may be provided in each of the above.
  • a plurality of spacers (first spacer 50, first connection portion 51 of first spacer 50, first intermediate portion 52 of first spacer 50, second spacer 60, second spacer 60 first 2 connection part 61, the 2nd intermediate part 62 of the 2nd spacer 60, etc.) may be provided.
  • the number of the plurality of spacers may be two or three or more.
  • the first connection portion 51 may be regarded as the first spacer 50, and the first intermediate portion 52 may be regarded as the third spacer.
  • the second connecting portion 61 may be regarded as the second spacer 60, and the second intermediate portion 62 may be regarded as the third spacer or the fourth spacer.
  • at least one of the first spacer 50 and the second spacer 60 may include two or more spacers.
  • the resonator according to the present embodiment includes a first mirror 10, a second mirror 20, and a plurality of spacers.
  • the plurality of spacers are provided between the first mirror 10 and the second mirror 20.
  • the plurality of spacers are arranged in a direction connecting the first mirror 10 and the second mirror 20 (for example, the Z-axis direction).
  • the plurality of spacers include, for example, a first spacer 50 in contact with the first mirror 10 (at least one of the outer edge portion 10r and the side surface of the first mirror 10), and the second mirror 20 (the outer edge portion 20r and the side surface of the second mirror 20).
  • a second spacer 60 in contact with at least one of the above.
  • the control unit 30 changes the length of the resonator formed by the first mirror 10 and the second mirror 20 by changing the position of at least one of the plurality of spacers.
  • the first mirror 10 and the second mirror 20 form a first resonator length L1.
  • one of the plurality of spacers for example, the first spacer 50
  • the other one of the plurality of spacers for example, the second spacer 60
  • a plurality of closest spacers are in contact with the mirror 20 and in contact with each other.
  • the control unit 30 causes the first resonator 10 and the second mirror 20 to form the second resonator length L2 in the second state ST2.
  • the second resonator length L2 is different from the first resonator length L1.
  • one of the plurality of spacers for example, the first spacer 50
  • the other one of the plurality of spacers for example, the second spacer 60
  • a plurality of closest spacers are in contact with the mirror 20 and are in contact with each other.
  • the second state ST2 is a state different from the first state ST1. According to such a resonator, a resonator having a variable resonance frequency can be provided. That is, the resonance frequency can be changed while maintaining high frequency stability.
  • the closest spacers are mechanically formed by forming one or more contact states selected from point contact, line contact, and surface contact. It is preferable to form a stable state.
  • the mechanically stable state referred to here is a state in which the relative position can be naturally maintained, and a support device or the like for maintaining the contact state is unnecessary.
  • the first spacer 50 and the second spacer 60 are surfaces (first surface 50a and It is in contact with the second surface 60a). Thereby, the relative position of the 1st spacer 50 and the 2nd spacer 60 is stabilized.
  • the relative position is stable. It is preferable that three or more points in contact with each other are separated from each other. The relative position is more stable.
  • first spacer 50 and the second spacer 60 are preferably in contact with each other. Thereby, a relative position becomes more stable.
  • the first state ST1 it is preferable that at least three points of the first spacer 50 are in contact with the second spacer 60. Also in the second state ST2, it is preferable that at least three points of the first spacer 50 are in contact with the second spacer 60.
  • the first spacer 50 and the second spacer 60 preferably have a low coefficient of thermal expansion.
  • the coefficient of thermal expansion at 20 ° C. of at least one of the first spacer 50 and the second spacer 60 is preferably 10 ⁇ 6 K ⁇ 1 or less, for example.
  • a low thermal expansion material having a low thermal expansion coefficient for example, a ceramic material having a thermal expansion coefficient of zero near room temperature may be used.
  • a material obtained by adding a small amount of titanium to silicon dioxide can be used.
  • a thermal expansion coefficient of about 0 ⁇ 0.03 ⁇ 10 ⁇ 6 / K can be obtained at 5 ° C. to 35 ° C.
  • An alloy having a low coefficient of thermal expansion near room temperature may be used.
  • an alloy containing iron, nickel and cobalt for example, 32Ni-5Co—Fe is used.
  • the composition ratio of nickel is about 32%, the composition ratio of cobalt is about 5%, and the composition ratio of iron is 63%.
  • a thermal expansion coefficient of about 0.6 ⁇ 10 ⁇ 6 / K or less is obtained at 20 to 60 ° C.
  • the resonator is stored in a container 80 as described with respect to FIG.
  • the inside of the container 80 is depressurized.
  • the container 80 is, for example, a decompression container (vacuum container). Thereby, the resonator is thermally shielded. Furthermore, the influence of atmospheric pressure is suppressed.
  • the container 80 may be provided with a temperature adjusting element 82 such as a Peltier element so that the temperature in the container 80 is constant. Thereby, the ambient temperature of the resonator is kept constant.
  • FIG. 11A and FIG. 11B are schematic views illustrating another resonator according to the first embodiment.
  • FIG. 11A is a schematic perspective view.
  • FIG. 11B is a plan view.
  • the control unit 30 is omitted.
  • the first spacer 50 and the second spacer 60 may be cylindrical.
  • first to third moving devices 31 to 33 are used as the control unit 30.
  • the second spacer 60 is located between the two or more moving devices. After the state change (movement), the moving device is separated from the second spacer 60.
  • Frequency standards include atomic transitions, optical frequency combs, and reference resonators made of low thermal expansion materials.
  • a reference resonator made of a low thermal expansion material having a coefficient of thermal expansion of zero near room temperature is relatively inexpensive and can provide high frequency stability.
  • the reference resonator has a resonance frequency unique to the resonator length. Therefore, it is not always possible to obtain a reference resonator having a standard frequency that is substantially the same as the required frequency. Therefore, a method using a frequency shifter, a method of changing the resonator length by moving the resonator mirror in the optical axis direction by a piezo element, and the like are adopted.
  • the frequency shifter if the shift amount is large, the device is expensive to obtain high accuracy, and the frequency is unstable due to the drive power source of the frequency shifter.
  • the frequency is unstable due to the piezo element and the driving device. In these methods, high frequency stability is impaired by changing the frequency. In a resonator, it is desirable to change the resonance frequency without impairing the frequency stability.
  • a plurality of spacers are provided between two facing mirrors, and the spacers are moved relatively.
  • a Fabry-Perot type optical resonator capable of shifting the resonator length is obtained.
  • the resonator length is determined only by the spacer length. Simple and stable structure. In the state before and after the change in the resonator length, the external force applied to the resonator does not change. A mechanism that impairs the adhesion between a plurality of spacers (divided spacers) is not used. A mechanism that keeps pushing (pulling) continuously after changing the resonator length is not used. That is, the frequency can be changed without using a mechanism that causes frequency instability.
  • the resonance frequency of the resonator can be changed without impairing the frequency stability.
  • one mirror moves on one spacer.
  • the configuration and materials described in regard to the first embodiment can be applied to the mirror, the spacer, the fixing portion 81, and the container 80.
  • 2nd Embodiment a different part from 1st Embodiment is demonstrated. The description of the same parts as in the first embodiment will be omitted as appropriate.
  • FIGS. 12A and 12B are schematic views illustrating the resonator according to the second embodiment.
  • the resonator 120 according to the present embodiment includes a first mirror 10, a second mirror 20, a spacer 55 (first spacer), and a control unit 30.
  • a fixing portion 81 is further provided.
  • the resonator 120 can also be stored in the container 80 illustrated in FIG. 2 (for example, a decompression container).
  • the spacer 55 is provided between the first mirror 10 and the second mirror 20. At least a part of the spacer 55 may be provided between the first mirror 10 and the second mirror 20.
  • the spacer 55 is connected to, for example, the outer edge portion 10r of the first mirror 10 and at least a part of the side surface.
  • the spatial position of the spacer 55 is fixed by the fixing portion 81. Thereby, for example, the spatial position of the first mirror 10 is defined.
  • a direction (first direction) connecting the first mirror 10 and the second mirror 20 is defined as a Z-axis direction.
  • the spacer 55 has a tubular shape (frame shape) with the Z-axis direction as an axis, for example.
  • the spacer 55 may have a plurality of portions extending in the Z-axis direction.
  • the spacer 55 may be connected to the first mirror 10 discontinuously by a plurality of portions.
  • each of the first mirror 10 and the second mirror 20 is a concave mirror.
  • the spacer 55 has a first surface 55 a that faces the first mirror 10 and a second surface 55 b that faces the second mirror 20.
  • the control unit 30 changes the position of the second mirror 20 to change the resonator length formed by the first mirror 10 and the second mirror 20.
  • the second mirror 20 moves on the spacer 55.
  • the second mirror 20 moves along the second surface 55b. This movement is performed by the control unit 30.
  • a plurality of states first state ST1 and second state ST2 where the positions of the second mirror 20 are different from each other can be formed.
  • FIG. 12A and FIG. 12B illustrate the first state ST1 and the second state ST2, respectively.
  • the second mirror 20 is in contact with the spacer 55 (first spacer).
  • the second mirror 20 is set at a first position relative to the first mirror 10.
  • the first mirror 10 and the second mirror form a first resonator Rs1.
  • the first mirror 10 and the second mirror 20 form a first resonator length L1.
  • the second mirror 20 is in contact with the spacer 55 (first spacer).
  • the second mirror 20 is set to a second position relative to the first mirror 10.
  • the second position is different from the first position. That is, the second mirror 20 is moved from the first position in the first state ST1. This movement is performed by the control unit 30.
  • the movement of the second mirror 20 is a movement along the second surface 55 a of the spacer 55.
  • the controller 30 causes the first resonator 10 and the second mirror 20 to form the second resonator Rs2 in the second state ST2.
  • the controller 30 causes the first resonator 10 and the second mirror 20 to form the second resonator length L2 in the second state ST2.
  • the second resonator length L2 is different from the first resonator length L1.
  • the second resonator length L2 is shorter than the first resonator length L1.
  • the resonance frequency can be changed.
  • a resonator having a variable resonance frequency can be provided.
  • the second mirror 20 in the first state ST1, the second mirror 20 is located at a first position relative to the first mirror 10. In the second state ST2, the second mirror 20 is located at a second position relative to the first mirror 10.
  • the direction connecting the first position and the second position intersects the first direction (Z-axis direction) connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1.
  • the direction connecting the first position and the second position intersects the second direction (Z-axis direction) connecting the first mirror 10 in the second state ST2 and the second mirror 20 in the second state ST2.
  • FIG. 13A and FIG. 13B are schematic views illustrating another resonator according to the second embodiment.
  • FIGS. 13A and 13B illustrate the first state ST ⁇ b> 1 and the second state ST ⁇ b> 2 in the resonator 121.
  • the first mirror 10, the second mirror 20, and the spacer 55 are provided.
  • the control unit 30, the fixing unit 81, and the container 80 are omitted.
  • each of the first mirror 10 and the second mirror 20 is a concave mirror.
  • the spacer 55 has a first surface 55 a that faces the first mirror 10 and a second surface 55 b that faces the second mirror 20.
  • the second surface 55b is inclined with respect to the first surface 55a.
  • the second mirror 20 moves while the second mirror 20 is in contact with the spacer 55.
  • the movement of the second mirror 20 is a movement along the second surface 55 a of the spacer 55.
  • the first resonator length L1 in the first state ST1 is different from the second resonator length L2 in the second state ST2.
  • a resonator having a variable resonance frequency can be provided.
  • the direction connecting the first position and the second position intersects the first direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the first state ST1.
  • the direction connecting the first position and the second position intersects the second direction (substantially the Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the second state ST2.
  • FIG. 14A to FIG. 14D are schematic views illustrating another resonator according to the second embodiment.
  • FIGS. 14A to 14D illustrate one state (first state ST1) of the resonators 122 to 125 according to this embodiment.
  • the first mirror 10 is a plane mirror
  • the second mirror 20 is a concave mirror.
  • the first surface 55a and the second surface 55b are not parallel to each other.
  • the direction of inclination of the first surface 55a with respect to the second surface 55b is different.
  • the first mirror 10 is a convex mirror
  • the second mirror 20 is a concave mirror.
  • the second surface 55b of the spacer 55 is perpendicular to the Z-axis direction.
  • the second surface 55b of the spacer 55 is inclined with respect to the Z-axis direction.
  • the second mirror 20 moves while the second mirror 20 is in contact with the spacer 55.
  • the movement of the second mirror 20 is a movement along the second surface 55 a of the spacer 55.
  • the first resonator length L1 in the first state ST1 is different from the second resonator length L2 in the second state ST2.
  • a resonator having a variable resonance frequency can be provided.
  • the direction connecting the first position and the second position intersects the first direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the first state ST1.
  • the direction connecting the first position and the second position intersects the second direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the second state ST2.
  • a second spacer may be further provided in addition to the first spacer (spacer 55).
  • the second spacer is provided, for example, between the first spacer (spacer 55) and the first mirror 10.
  • the surface between the first spacer and the second spacer may be inclined with respect to the Z-axis direction, for example.
  • the amount of movement of the spacer can be increased. Set the tilt angle and tilt direction appropriately. As a result, it is possible to increase the amount of change in the resonator length with respect to the amount of movement of the spacer and to increase the accuracy of the amount of change in the resonator length.
  • the resonator length is determined only by the spacer length. Simple and stable structure. In the state before and after the change in the resonator length, the external force applied to the resonator does not change. According to this embodiment, for example, the resonance frequency of the resonator can be changed without impairing the frequency stability.
  • FIG. 15A and FIG. 15B are schematic views illustrating the resonator according to the embodiment.
  • FIGS. 15A and 15B illustrate the first state ST1 and the second state ST2 in the resonator 131 of the first embodiment, respectively.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided.
  • a spacer member made of a low thermal expansion material having an outer shape with a height of 150 mm, a width of 50 mm, and a depth of 50 mm is divided into upper and lower parts to form the first spacer 50 and the second spacer 60.
  • the first mirror 10 is connected to the bottom surface of the first spacer 50.
  • the second mirror 20 is connected to the upper surface of the second spacer 60.
  • the first mirror 10 is a concave mirror having a curvature radius of 1 m.
  • the second mirror 20 is a plane mirror.
  • the upper surface of the second spacer 60 is a plane.
  • the angle ⁇ between the plane including the contact surfaces of the first spacer 50 and the second spacer 60 and the plane including the upper surface of the second spacer 60 is 0.022 degrees.
  • This contact surface is, for example, perpendicular to the direction of gravity.
  • the first spacer 50 is stably held by the fixing portion 81.
  • the first spacer 50 is inclined at an angle of 0.022 degrees from a plane (ground) perpendicular to the direction of gravity.
  • the second spacer 60 is placed on the first spacer 50 by gravity, for example.
  • the side surface of the second spacer 60 is continuous with the side surface of the first spacer 50.
  • the resonator length (first resonator length L1) at this time is about 150 mm.
  • the second spacer 60 is moved so as to change the resonator length.
  • a control unit 30 combining a micrometer head and a piezo actuator is used.
  • the control unit 30 pushes the second spacer 60 from a direction perpendicular to the direction of gravity.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30 and the fixing unit 81 are stored in a decompressed container 80.
  • the temperature adjustment element 82 adjusts the temperature in the container 80.
  • the thermal expansion coefficients of the first spacer 50 and the second spacer 60 are substantially zero.
  • the central part of the first spacer 50 and the second spacer 60 is a cavity.
  • a resonator mode is formed at the center of the cavity. When light is incident on the resonator 131, this light passes through the mirror and the cavity. No influence such as scattering by the spacer occurs.
  • the position of the second spacer 60 is changed by the operation of the control unit 30 in the second state ST2. Thereby, the positions of the second spacer 60 and the second mirror 20 connected to the second spacer 60 are changed.
  • the movement distance ⁇ d of the second spacer 60 is 1.5 mm.
  • the direction of movement is perpendicular to gravity.
  • the control unit 30 contacts the second spacer 60. After the movement, the control unit 30 is separated from the second spacer 60.
  • the second resonator length L2 (that is, L1 + ⁇ L) in the second state ST2 is expressed as follows.
  • one resonance frequency ⁇ of the resonator in the first state ST1
  • 247 THz (terahertz)
  • the change in the resonance frequency in the second state ST2 from the first state ST1 that is, the frequency shift amount ⁇ is about 1 GHz (gigahertz).
  • FIG. 16A and FIG. 16B are schematic views illustrating the resonator according to the embodiment.
  • FIG. 16A and FIG. 16B illustrate the first state ST1 and the second state ST2 in the resonator 132 of the second embodiment, respectively.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided in the resonator 132.
  • the difference between the resonator 132 and the resonator 131 will be described.
  • a concave mirror having a curvature radius of 1 m is used for the first mirror 10.
  • a concave mirror with a radius of curvature of 1 m is also used for the second mirror 20.
  • Two concave surfaces oppose each other.
  • a distance d1 in the Z-axis direction between the first mirror 10 and the second mirror 20 is 150 mm.
  • a distance d2 in the Z-axis direction between the first center 10c of the first mirror 10 and the second center 20c of the second mirror 20 is 1850 mm.
  • the direction connecting the first mirror 10 and the second mirror 20 in the first state ST1 is, for example, parallel to gravity.
  • the contact surface between the first spacer 50 and the second spacer 60 is perpendicular to gravity.
  • the first resonator length L1 in the first state ST1 is 150 mm.
  • the control unit 30 moves the second spacer 60.
  • the direction of movement is perpendicular to gravity.
  • the movement distance ⁇ d of the second spacer 60 is 5.23 mm. After the movement, the control unit 30 is separated from the second spacer 60.
  • the second resonator length L2 (that is, L1 + ⁇ L) in the second state ST2 is expressed as follows.
  • one resonance frequency ⁇ of the resonator in the first state ST1
  • 247 THz.
  • the frequency shift amount ⁇ generated in the second state ST2 is about ⁇ 1 GHz.
  • FIG. 17A and FIG. 17B are schematic views illustrating the resonator according to the embodiment.
  • FIGS. 17A and 17B illustrate the first state ST1 and the second state ST2 in the resonator 133 according to the third embodiment, respectively.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided in the resonator 133.
  • the difference between the resonator 133 and the resonator 131 will be described.
  • planar mirrors are used for the first mirror 10 and the second mirror 20, respectively.
  • the distance between the first mirror 10 and the second mirror 20 is 150 mm.
  • the angle ⁇ between the plane including the contact surfaces of the first spacer 50 and the second spacer 60 and the plane including the upper surface of the second spacer 60 is 0.022 degrees.
  • the second spacer 60 is moved by the control unit 30 in the second state ST2.
  • the direction of movement is perpendicular to gravity.
  • the moving distance of the second spacer 60 is 1.5 mm.
  • the control unit 30 is separated from the second spacer 60.
  • the second resonator length L2 (that is, L1 + ⁇ L) in the second state ST2 is expressed as follows.
  • one resonance frequency ⁇ of the resonator in the first state ST1
  • 247 THz.
  • the frequency shift amount ⁇ that occurs in the second state ST2 is about 1 GHz.
  • FIGS. 18A and 18B are schematic views illustrating the resonator according to the embodiment.
  • FIGS. 18A and 18B illustrate the first state ST1 and the second state ST2 in the resonator 134 of the fourth embodiment, respectively.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided.
  • the difference between the resonator 134 and the resonator 131 will be described.
  • a convex mirror having a curvature radius of 1 m is used for the first mirror 10.
  • the second mirror 20 is a concave mirror having a curvature radius of 1 m.
  • the convex surface of the first mirror 10 and the concave surface of the second mirror 20 face each other.
  • a distance d1 in the Z-axis direction between the first mirror 10 and the second mirror 20 is 150 mm.
  • the distance d2 in the Z-axis direction between the first center 10c of the first mirror 10 and the second center 20c of the second mirror 20 is 1150 mm.
  • the mutual contact surfaces (first surface 50 a and second surface 60 a) of the first spacer 50 and the second spacer 60 are perpendicular to the direction connecting the first mirror 10 and the second mirror 20. This contact surface is perpendicular to the direction of gravity.
  • the first resonator length L1 in the first state ST1 is 150 mm.
  • the second spacer 60 is moved by the control unit 30 in the second state ST2.
  • the direction of movement is perpendicular to gravity.
  • the movement distance ⁇ d of the second spacer 60 is 0.42 mm.
  • the control unit 30 is separated from the second spacer 60.
  • the second resonator length L2 (that is, L1 + ⁇ L) in the second state ST2 is expressed as follows.
  • one resonance frequency ⁇ of the resonator in the first state ST1
  • ⁇ 1/2 150.0006 (mm)
  • FIG. 19 is a schematic view illustrating the resonator according to the embodiment.
  • FIG. 19 illustrates the first state ST1 in the resonator 135 of the fifth embodiment.
  • the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are provided in the resonator 135.
  • a spacer member 25 is further provided in the resonator 135.
  • a concave mirror with a radius of curvature of 1 m is used for the first mirror 10
  • a concave mirror with a radius of curvature of 1 m is also used for the second mirror 20.
  • Two concave surfaces oppose each other.
  • the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are provided on the spacer member 25.
  • the spacer member 25 is made of the same material as the first spacer 50 and the second spacer 60.
  • a direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 is, for example, perpendicular to gravity. That is, the resonator 135 is a horizontally placed resonator.
  • the first resonator length L1 in the first state ST1 is 150 mm.
  • the control unit 30 moves the second spacer 60, for example, along the Y-axis direction.
  • the moving distance of the second spacer 60 is, for example, 5.23 mm.
  • the second spacer 60 is in contact with the first spacer 50. After the movement, the control unit 30 is separated from the second spacer 60.
  • the second resonator length L2 (that is, L1 + ⁇ L) in the second state ST2 is expressed as follows.
  • one resonance frequency ⁇ of the resonator in the first state ST1
  • 247 THz.
  • the frequency shift amount ⁇ generated in the second state ST2 is about ⁇ 1 GHz.
  • a material having a coefficient of thermal expansion different from that of the resonator is disposed under the resonator (two spacers), for example, two spacers are caused by the thermal expansion of the material disposed below.
  • the positional relationship may change due to separation. Thereby, the stability of the frequency may be deteriorated.
  • a substance (spacer member 25) having the same thermal expansion coefficient under the resonator (two spacers) high frequency stability can be maintained before and after the resonator length shift.
  • FIG. 20A and FIG. 20B are schematic views illustrating the resonator according to the embodiment.
  • 20A and 20B illustrate the first state ST1 and the second state ST2 in the resonator 146 of the sixth embodiment, respectively.
  • the first mirror 10, the second mirror 20, and the spacer 55 are provided in the resonator 146.
  • the control unit 30, the container 80, the temperature adjusting element 82, and the like are omitted.
  • the width of the bottom surface of the spacer 55 is 70 mm, and the depth of the bottom surface is 70 mm.
  • the spacer 55 is made of a low thermal expansion material.
  • the angle ⁇ between the plane including the upper surface of the spacer 55 and the plane including the bottom surface is 0.022 degrees.
  • the upper surface of the spacer 55 is, for example, perpendicular to gravity.
  • the spacer 55 is stably held by the fixing portion 81.
  • the first mirror 10 is connected to the bottom surface of the spacer 55.
  • the second mirror 20 is disposed on the upper surface of the spacer 55.
  • the first mirror 10 is a plane mirror.
  • the second mirror 20 is a concave mirror.
  • the radius of curvature of the concave mirror is 0.2 m.
  • the second mirror 20 is on the spacer 55 by gravity.
  • the position of the second mirror 20 is changed by the operation of the control unit 30.
  • the second mirror 20 In the first state ST1 and the second state ST2, the second mirror 20 is in contact with the spacer 55.
  • the movement distance ⁇ d of the second mirror 20 is 1.5 mm.
  • the direction of movement is perpendicular to gravity.
  • the control unit 30 contacts the second spacer 60. After the movement, the control unit 30 is separated from the second spacer 60.
  • the second resonator length L2 (that is, L1 + ⁇ L) in the second state ST2 is expressed as follows.
  • one resonance frequency ⁇ of the resonator in the first state ST1
  • the change in the resonance frequency from the first state ST1 in the second state ST2, that is, the frequency shift amount ⁇ is about 1 GHz.
  • FIG. 21A and FIG. 21B are schematic views illustrating the resonator according to the embodiment.
  • FIGS. 21A and 21B illustrate the first state ST1 and the second state ST2 in the resonator 147 of the seventh embodiment, respectively. Also in the resonator 147, the first mirror 10, the second mirror 20, and the spacer 55 are provided.
  • the control unit 30, the fixing unit 81, the container 80, the temperature adjustment element 82, and the like are omitted.
  • the upper surface of the spacer 55 is parallel to the bottom surface of the spacer 55.
  • the first mirror 10 is connected to the bottom surface of the spacer 55.
  • the second mirror 20 is disposed on the upper surface of the spacer 55.
  • the first mirror 10 is a concave mirror having a radius of curvature of 1 m.
  • a concave mirror having a radius of curvature of 1 m is used for the second mirror 20.
  • the second mirror 20 is on the spacer 55 by gravity.
  • a distance d1 in the Z-axis direction between the first mirror 10 and the second mirror 20 is 150 mm.
  • a distance d2 in the Z-axis direction between the first center 10c of the first mirror 10 and the second center 20c of the second mirror 20 is 1850 mm.
  • the first resonator length L1 in the first state ST1 is 150 mm.
  • the second spacer 60 is moved by the control unit 30 in the second state ST2.
  • the direction of movement is perpendicular to gravity.
  • the moving distance of the second spacer 60 is 5.23 mm.
  • the control unit 30 is separated from the second spacer 60.
  • the second resonator length L2 (that is, L1 + ⁇ L) in the second state ST2 is expressed as follows.
  • one resonance frequency ⁇ of the resonator in the first state ST1
  • 247 THz.
  • the frequency shift amount ⁇ generated in the second state ST2 is about ⁇ 1 GHz.
  • the present embodiment relates to a light source device.
  • the light source device according to the embodiment includes a resonator and a light source.
  • FIG. 22 is a schematic view illustrating the light source device according to the third embodiment.
  • the light source device 210 according to the embodiment includes a resonator 131 and a light source 71.
  • a laser light source is used as the light source 71.
  • the frequency of the light source 71 is locked to the resonator 131.
  • a resonator 131 is used as the resonator.
  • any resonator according to the first and second embodiments and modifications thereof can be used.
  • a frequency control device 73 is further provided.
  • the light source 71 emits laser light. A part of the laser light is incident on the second mirror 20.
  • the frequency control device 73 controls the light source 71 so that the center frequency of the light source 71 matches one of the resonance frequencies of the resonator mode of the resonator 131.
  • the frequency control device 73 detects the laser light reflected by the second mirror 20 and adjusts the center frequency of the light source 71 based on the detection result.
  • a low thermal expansion material is used for the spacer, and the temperature of the container 80 is controlled to keep the spacer at a temperature at which the thermal expansion coefficient is lowered. Thereby, the resonance frequency of the resonator mode is stable.
  • the light source 71 whose frequency is locked in the resonator mode can obtain very high frequency stability.
  • a beam splitter 72 is further provided.
  • the beam splitter 72 is provided between the light source 71 and the second mirror 20 on the optical path of the light source 71.
  • the beam splitter 72 takes out the laser light generated by the light source 71 as output light of the light source device 210.
  • the resonance frequency of the resonator mode in the resonator 131 is adjusted by moving the second spacer 60.
  • the frequency of the output light of the light source device 210 can be adjusted.
  • the light source device uses the resonator according to the embodiment, so that the frequency of the output light is variable and high frequency stability can be realized.
  • FIG. 23 is a schematic view illustrating another light source device according to the third embodiment. As shown in FIG. 23, in another light source device 211 according to the present embodiment, a frequency shifter 74 is further provided. Other than this, the light source device 210 is the same as the light source device 210, and the description thereof is omitted.
  • the frequency of the light source 71 is shifted by the frequency shifter 74.
  • the resonator length is shifted by the control unit 30 to roughly shift the resonance frequency.
  • the shift amount of the resonance frequency is about 1 GHz.
  • the laser frequency is finely adjusted using the frequency shifter 74 with a small shift amount.
  • An inexpensive device can be used for the control unit 30, and an inexpensive device can be used for the frequency shifter 74.
  • the frequency shifter 74 when the frequency shifter 74 is not used, the frequency stability is high. By using the frequency shifter 74, the frequency stability may be lowered. However, by using the frequency shifter 74 for fine adjustment of the frequency shift, an inexpensive device with low shift accuracy can be used as the control unit 30. Therefore, a low-cost light source device can be obtained with an inexpensive configuration combining the inexpensive control unit 30 and the frequency shifter 74 with low movement accuracy.
  • the frequency shifter 74 By using an acousto-optic modulator or an electro-optic modulator as the frequency shifter 74, the frequency can be swept continuously repeatedly.
  • the light emitted from the light source 71 is, for example, at least one of a first frequency corresponding to the first resonator length L1 and a second frequency corresponding to the second resonator length L2.
  • the present embodiment relates to a frequency filter.
  • the frequency filter according to the embodiment includes a resonator.
  • FIG. 24 is a schematic view illustrating a frequency filter according to the fourth embodiment.
  • the frequency filter 310 according to the present embodiment includes a resonator 131.
  • the resonator 131 is used as the resonator, but the resonators according to the first and second embodiments and modifications thereof can be used.
  • a light source 75 is provided. Light emitted from the light source 75 enters the resonator 131. For example, the light enters the second mirror 20 and exits from the first mirror 10.
  • the light source 75 is, for example, a two-color light source.
  • the light source 75 emits, for example, first light and second light 2.
  • the spectral width of each of the first light and the second light is about 1 kHz.
  • the center frequencies of the first light and the second light are different from each other.
  • Each of the first light and the second light is laser light.
  • the frequency of the first light is, for example, 247 THz.
  • the frequency of the second light is, for example, 247 THz + 0.5 GHz. It is assumed that the spectrum width of the resonance frequency of the resonator 131 is 5 KHz.
  • the light emitted from the light source 75 has, for example, at least one of a first frequency corresponding to the first resonator length L1 and a second frequency corresponding to the second resonator length L2.
  • the laser light from the light source 75 enters the second mirror 20.
  • the resonator 110 functions as an optical selection filter. In this light selection filter, the second light is reflected and the first light is transmitted.
  • the second state ST2 is formed.
  • the movement distance is, for example, 0.75 mm.
  • the resonator 131 functions as a light selection filter that reflects the first light and transmits the second light.
  • a low thermal expansion material is used for the spacer, and the temperature of the container 80 is controlled to keep the spacer at a temperature at which the thermal expansion coefficient is lowered. Thereby, the resonance frequency of the resonator mode is stable.
  • the resonator 131 can be used as a frequency filter having very high frequency stability.
  • the resonator can be used as a frequency filter having a variable frequency and high frequency stability of the transmission spectrum.
  • the Z-axis direction connects, for example, the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1). Corresponds to the direction.
  • the resonators 110, 111, 112a to 112c, 113, 114a, 114b, 115, 116, and 131 to 135 include the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer. 60.
  • the second spacer 60 (for example, the second surface 60a) is in contact with at least a part of the first spacer 50 (the first surface 50a).
  • the second spacer 60 (for example, the second surface 60a) is in contact with at least a part of the first spacer 50 (first surface 50a).
  • the second spacer 60 (for example, the second surface 60a) is separated from the first spacer 50 (the first surface 50a). May be.
  • the control unit 30 is in contact with the spacer (for example, the second spacer 60).
  • the first spacer 50 has a spacer portion and a space between the spacer portion and the second spacer 60. And a layer (for example, a layer such as a lubricating oil) provided on the surface. The surface of this layer may form the first surface 50a.
  • the second spacer 60 may include a spacer portion and a layer (for example, a layer of lubricating oil) provided between the spacer portion and the first spacer 50. The surface of this layer may form the second surface 60a.
  • the resonators 120 to 125, 146, and 147 include the first mirror 10, the second mirror 20, and the spacer 55 (first spacer). These resonators may further include a control unit 30. At least a part of the spacer 55 is provided between the first mirror 10 and the second mirror 20. The spacer 55 is in contact with the first mirror 10. For example, the spacer 55 is coupled to the first mirror 10. In the first state ST1 where the spacer 55 and the second mirror 20 are in contact with each other, the first resonator length L1 formed by the first mirror 10 and the second mirror 20 is such that the spacer 55 and the second mirror 20 are The second resonator length L2 formed by the first mirror 10 and the second mirror 20 in the second state ST2 in contact with the second state ST2 is different.
  • the second state ST2 is different from the first state ST1.
  • the first relative position of the second mirror 20 with respect to the first mirror 10 in the first state ST1 is different from the second relative position of the second mirror 20 with respect to the first mirror 10 in the second state ST2.
  • the direction connecting the first position and the second position intersects the direction connecting the center of the first mirror 10 in the first state ST1 and the center of the second mirror 20 in the first state ST1.
  • the spacer 55 (for example, the second surface 55b) is in contact with at least a part of the second mirror 20 (second mirror surface 20a).
  • the spacer 55 (for example, the second surface 55b) is in contact with at least a part of the second mirror 20 (second mirror surface 20a).
  • the spacer 55 (for example, the second surface 55b) is separated from the second mirror 20 (second mirror surface 20a). Also good.
  • the control unit 30 is in contact with the second mirror 20.
  • FIG. 25A to FIG. 25F are schematic views illustrating the resonator according to the fifth embodiment.
  • FIG. 25A and FIG. 25B are perspective views.
  • 25 (c) and 25 (d) are plan views from the direction of the arrow Ar1 shown in FIG. 25 (a).
  • 25 (e) and 25 (f) are plan views from the direction of the arrow Ar2 shown in FIG. 25 (a).
  • FIG. 25A, FIG. 25C, and FIG. 25E correspond to the first state ST1.
  • FIG. 25B, FIG. 25D, and FIG. 25F correspond to the second state ST2.
  • the resonator 151 includes the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30. Including.
  • the “mirror” includes a case where one mirror element is included and a case where a plurality of mirror elements are included.
  • the first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12).
  • the second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24). Other than this, for example, it is the same as the resonator 110.
  • a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided in these drawings. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
  • one point of the first mirror 10 (for example, one point of the first mirror element 11) and one point of the second mirror 20 (for example, the third mirror element). 23) is defined as a Z-axis direction.
  • the Z-axis direction is a direction connecting the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1).
  • the center of the first mirror 10 is the midpoint between the first mirror element 11 and the second mirror element 12.
  • the center of the second mirror 20 is the midpoint between the third mirror element 23 and the fourth mirror element 24.
  • the second mirror element 12 is aligned with the first mirror element 11 in one direction that intersects the Z-axis direction (in this example, the X-axis direction).
  • the second mirror element 12 is separated from the first mirror element 11 in one direction that intersects the Z-axis direction (in this example, the X-axis direction).
  • the fourth mirror element 24 is aligned with the third mirror element 23 in one direction that intersects the Z-axis direction (in this example, the X-axis direction).
  • the fourth mirror element 24 is separated from the third mirror element 23 in one direction that intersects the Z-axis direction (in this example, the X-axis direction).
  • the first mirror element 11, the second mirror element 12, the third mirror element 23, and the fourth mirror element are provided in the XZ plane.
  • these mirror elements are plane mirrors.
  • the third mirror element 23 and the fourth mirror element 24 may be concave mirrors.
  • the curvature of the fourth mirror element 24 may be set substantially the same as the curvature of the third mirror element 23.
  • the first spacer 50 is in contact with the first mirror 10 and the second spacer 60.
  • the second spacer 60 is in contact with the second mirror 20 and the first spacer 50.
  • the first spacer 50 is in contact with the first mirror 10 and the second spacer 60.
  • the second spacer 60 is in contact with the second mirror 20 and the first spacer 50.
  • the relative position (second position) of the second spacer 60 to the first spacer 50 in the second state ST2 is the relative position (first position) of the second spacer 60 to the first spacer 50 in the first state ST1. Is different.
  • the first surface 50a of the first spacer 50 is inclined with respect to the Z-axis direction.
  • the second surface 60a of the second spacer 60 is along the first surface 50a.
  • a plane including the first mirror element 11 and the second mirror element 12 is a plane including the third mirror element 23 and the fourth mirror element 24 ( And a plane parallel to the XZ plane).
  • a cavity is provided in the first spacer 50 and in the second spacer 60.
  • a cavity is provided in the central portion of the first spacer 50 and the central portion of the second spacer 60. Light can pass through these cavities. When light enters the resonator 151, the light passes through the cavity. For this reason, for example, the influence such as light scattering by the spacer material does not substantially occur.
  • the light Li is incident on the first mirror element 11.
  • the reflectance of the first mirror element 11 is 99%, and the transmittance of the first mirror element 11 is 1%.
  • a part of the light Li, LL enters from the first mirror element 11 toward the second mirror element 12 and is reflected by the second mirror element 12.
  • the traveling direction of the light LL changes due to reflection.
  • the angle of change is 90 degrees.
  • the light LL reflected by the second mirror element 12 enters the fourth mirror element 24, and the light LL is reflected by the fourth mirror element 24.
  • the traveling direction of the light LL changes due to reflection.
  • the angle of change is 90 degrees.
  • the light LL reflected by the fourth mirror element 24 enters the third mirror element 23, and the light LL is reflected by the third mirror element 23.
  • the traveling direction of the light LL changes due to reflection.
  • the angle of change is 90 degrees.
  • the light LL reflected by the third mirror element 23 enters the first mirror element 11.
  • a part of the light LL incident on the first mirror element 11 passes through the first mirror element 11 and is emitted to the outside.
  • the first resonator Rs1 is formed.
  • the first resonator length L1 is formed.
  • the second state ST2 for example, a part of the light LL is incident on the first mirror element 11, reflected by the second mirror element 12, and the fourth mirror element. 24, reflected by the third mirror element 23, and incident on the first mirror element 11. A part of the light LL incident on the first mirror element 11 passes through the first mirror element 11 and is emitted to the outside.
  • the second resonator Rs2 is formed.
  • the second resonator length L2 is formed.
  • the relative position of the second spacer 60 with respect to the first spacer 50 in the second state ST2 is different from the relative position of the second spacer 60 with respect to the first spacer 50 in the first state ST1. Accordingly, the second resonator length L2 is different from the first resonator length L1.
  • the first mirror 10 and the second mirror 20 form, for example, a ring type optical resonator.
  • the first mirror 10 and the second mirror 20 form, for example, a loop type optical resonator.
  • the first mirror 10 and the second mirror 20 form, for example, a circulating optical resonator.
  • at least one of the first mirror 10 and the second mirror 20 includes a plurality of mirror elements. That is, in the resonator, the number of mirror elements may be three or more.
  • mirror elements For example, in the case of a Fabry-Perot resonator, two mirrors (mirror elements) are provided. The number of mirror elements is two. For example, in a Fabry-Perot resonator, the distance between the first mirror 10 and the second mirror 20 corresponds to the resonator length.
  • the number of mirror elements is three or more.
  • the number of mirror elements is four.
  • the light LL is reflected by a plurality of mirror elements and returns to the mirror element (first mirror element 11) on which the light LL is incident.
  • the light LL that has passed through the first mirror element 11 is another mirror element (the second mirror element 12, the fourth mirror element 24, and the third mirror element 23).
  • the length of the path of the light LL until it enters the first mirror element 11 via the line corresponds to the resonator length.
  • the resonator length is the distance between the first mirror element 11 and the second mirror element 12 (distance on the optical path) and the distance between the second mirror element 12 and the fourth mirror element 24.
  • the distance between the second mirror element 12 and the fourth mirror element 24 in the second state ST2 is The distance between the second mirror element 12 and the fourth mirror element 24 in the first state ST1 is different.
  • the distance between the third mirror element 23 and the first mirror element 11 in the second state ST2 is different from the distance between the third mirror element 23 and the first mirror element 11 in the first state ST1.
  • an angle between the first surface 50a of the first spacer 50 and the XY plane is, for example, 0.022 degrees.
  • the angle between the second surface 60a of the second spacer 60 and the XY plane is, for example, 0.022 degrees.
  • the first surface 50a and the second surface 60a are inclined with respect to the XY plane.
  • the first surface 50a and the second surface 60a are set perpendicular to the direction of gravity. This setting is performed by, for example, the fixing unit 81 (not shown in FIGS. 25A to 25F).
  • the second spacer 60 is disposed on the first spacer 50, for example.
  • the relative position of the second spacer 60 along the direction of gravity with respect to the first spacer 50 is fixed.
  • one side surface of the second spacer 60 is continuous with one side surface of the first spacer 50.
  • the first resonator length L1 in the first state ST1 is about 150 mm.
  • the second state ST2 is formed by the control unit 30.
  • the control unit 30 changes the relative position of the second spacer 60 (or at least one of the second spacer 60 and the second mirror 20) with respect to the first spacer 50.
  • the change of the position is performed in a plane along the first surface 50a and the second surface 60a, for example.
  • the position is changed, for example, in a plane perpendicular to the direction of gravity.
  • the direction in which the position is changed intersects, for example, the direction connecting the first mirror element 11 and the third mirror element 23.
  • the direction in which the position is changed is, for example, the direction connecting the second mirror element 12 and the fourth mirror element 24, the direction connecting the first mirror element 11 and the fourth mirror element, and the second mirror element 12 It further intersects with the direction connecting the third mirror element 23.
  • the position is changed in, for example, a plurality of directions (for example, four directions) in a plane perpendicular to the direction of gravity.
  • one side surface of the second spacer 60 is discontinuous with one side surface of the first spacer 50.
  • the distance of movement accompanying the change of the relative position is, for example, 0.75 mm.
  • the direction of movement is perpendicular to gravity.
  • the control unit 30 is in contact with the second spacer 60 (or at least one of the second spacer 60 and the second mirror 20). After the movement, the control unit 30 is separated from the second spacer 60 (or at least one of the second spacer 60 and the second mirror 20). Thereby, the second state ST2 is formed.
  • the distance (second state distance) between the third mirror element 23 and the first mirror element 11 in the second state ST2 is the distance between the third mirror element 23 and the first mirror element 11 in the first state ST1. Shorter than (first state distance). The difference between the second state distance and the first state distance is, for example, 0.75 ⁇ sin (0.022 degrees) mm, which is about 0.0003 mm.
  • the distance (second state distance) between the second mirror element 12 and the fourth mirror element 24 in the second state ST2 is the distance between the second mirror element 12 and the fourth mirror element 24 in the first state ST1. Shorter than (first state distance). The difference between the second state distance and the first state distance is, for example, 0.75 ⁇ sin (0.022 degrees) mm, which is about 0.0003 mm.
  • the second resonator length L2 in the second state ST2 is as follows.
  • resonance frequencies ⁇ first resonance frequency corresponding to the first resonator length L1 (resonator length before the resonator length is changed) is 247 THz.
  • the resonance frequency (second resonance frequency) corresponding to the second resonator length L2 (resonator length after the resonator length has changed) is different from the first resonance frequency.
  • the difference (frequency shift amount ⁇ ) between the second resonance frequency and the first resonance frequency is about 1 GHz. In the embodiment, the resonance frequency can be shifted greatly.
  • the position in the X-axis direction of the first mirror element 11 in the second state ST2 is the same as the position in the X-axis direction of the first mirror element 11 in the first state ST1.
  • the position in the X-axis direction of the second mirror element 12 in the second state ST2 is the same as the position in the X-axis direction of the second mirror element 12 in the first state ST1.
  • the position in the X-axis direction of the third mirror element 23 in the second state ST2 is the same as the position in the X-axis direction of the third mirror element 23 in the first state ST1.
  • the position in the X-axis direction of the fourth mirror element 24 in the second state ST2 is the same as the position in the X-axis direction of the fourth mirror element 24 in the first state ST1.
  • the number of the plurality of mirror elements 10e provided in the first mirror 10 may be three or more.
  • the number of the plurality of mirror elements 20e provided in the second mirror 20 may be three or more.
  • FIGS. 26A to 26D are schematic views illustrating another resonator according to the fifth embodiment.
  • FIG. 26A and FIG. 26C correspond to the first state ST1.
  • FIG. 26B and FIG. 26D correspond to the second state ST2.
  • another resonator 152 includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including.
  • the first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12).
  • the second mirror 20 includes a third mirror element 23. Other than this, for example, it is the same as the resonator 110.
  • a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided in these drawings. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
  • the Z-axis direction is, for example, a direction connecting the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1).
  • the center of the first mirror 10 is the midpoint between the first mirror element 11 and the second mirror element 12.
  • the direction connecting this midpoint and the center of the second mirror 20 (third mirror element 23) is the Z-axis direction.
  • the first mirror element 11, the second mirror element 12, and the third mirror element 23 are plane mirrors.
  • Each of the plane including the first mirror element 11, the plane including the second mirror element 12, and the plane including the third mirror element 23 is parallel to the Y-axis direction.
  • light Li is incident on the first mirror element 11.
  • the reflectance of the first mirror element 11 is 99%, and the transmittance of the first mirror element 11 is 1%.
  • a part of the light Li, LL passes through the first mirror element 11 and then enters the second mirror element 12.
  • the light LL is reflected by the second mirror element 12.
  • the incident angle at the second mirror element 12 is 35 degrees and the reflection angle is 35 degrees.
  • the incident angle is an angle between the direction perpendicular to the surface of the second mirror element 12 and the light LL incident on the second mirror element 12.
  • the reflection angle is an angle between a direction perpendicular to the surface of the second mirror element 12 and the light LL reflected by the second mirror element 12.
  • the light LL reflected by the second mirror element 12 travels toward the second mirror 20 (third mirror element 23).
  • the light LL is reflected by the second mirror 20.
  • the light LL reflected by the second mirror 20 enters the first mirror element 11. A part of the light LL incident on the first mirror element 11 is emitted to the outside.
  • the first resonator length L1 is determined by the distance between the first mirror element 11 and the second mirror element 12 (distance on the optical path), the second mirror element 12 and the second mirror 20 (first 3 (the distance on the optical path) and the distance between the second mirror 20 (the third mirror element 23) and the first mirror element 11 (the distance on the optical path). It is.
  • the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction).
  • the second surface 60a of the second spacer 60 is inclined with respect to the XY plane.
  • the relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30.
  • the direction in which the position is changed intersects with the direction connecting the first mirror element 11 and the third mirror element 23, for example.
  • the direction in which the position is changed further intersects with the direction connecting the second mirror element 12 and the third mirror element 23.
  • the second state ST2 is formed.
  • the second resonator length L2 in the second state ST2 is shorter than the first resonator length L1.
  • the resonance frequency can be greatly shifted. High stability is obtained at the resonance frequency.
  • FIG. 27A and FIG. 27B are schematic views illustrating another resonator according to the fifth embodiment. These figures correspond to the first state ST1.
  • another resonator 153 according to this embodiment includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including.
  • the first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11, the second mirror element 12, the fifth mirror element 15, and the like).
  • the second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24). The rest is the same as the resonator 151.
  • a part of the light Li that has entered the first mirror element 11 passes through the first mirror element 11, is reflected by the third mirror element 23, is then reflected by the fourth mirror element 24, and is then reflected by the fifth mirror. Reflected by the element 15, then reflected by the second mirror element 12 and then incident on the first mirror element 11. A part of the light LL passes through the first mirror element 11 and is emitted to the outside.
  • the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction), and the second surface 60a of the second spacer 60 is in the XY plane. It is inclined with respect to it.
  • the relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. Thereby, the second state ST2 is formed.
  • the second resonator length L2 in the second state ST2 is different from the first resonator length L1.
  • FIG. 28A and FIG. 28B are schematic views illustrating another resonator according to the fifth embodiment. These figures correspond to the first state ST1.
  • another resonator 154 according to this embodiment includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including.
  • the first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11, the second mirror element 12, the fifth mirror element 15, and the like).
  • the second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23, a fourth mirror element 24, a sixth mirror element 26, etc.). The rest is the same as the resonator 151.
  • a part of the light Li that has entered the first mirror element 11 passes through the first mirror element 11, is reflected by the third mirror element 23, is then reflected by the fourth mirror element 24, and is then reflected by the sixth mirror. Reflected by the element 26, then reflected by the fifth mirror element 15, then reflected by the second mirror element 12, and then incident on the first mirror element 11. A part of the light LL passes through the first mirror element 11 and is emitted to the outside.
  • the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction), and the second surface 60a of the second spacer 60 is in the XY plane. It is inclined with respect to it.
  • the relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. Thereby, the second state ST2 is formed.
  • the second resonator length L2 in the second state ST2 is different from the first resonator length L1.
  • the resonance frequency can be greatly shifted. High stability is obtained at the resonance frequency.
  • FIGS. 29A to 29D are schematic views illustrating another resonator according to the sixth embodiment.
  • FIG. 29A and FIG. 29C correspond to the first state ST1.
  • FIG. 29B and FIG. 29D correspond to the second state ST2.
  • the resonator 161 includes the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30.
  • the first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12).
  • the second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24). Other than this, for example, it is the same as the resonator 110.
  • a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
  • the Z-axis direction is, for example, a direction connecting the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1).
  • the center of the first mirror 10 is the midpoint between the first mirror element 11 and the second mirror element 12.
  • the center of the second mirror 20 is the midpoint between the third mirror element 23 and the fourth mirror element 24.
  • the direction connecting these midpoints is the Z-axis direction.
  • the first mirror element 11, the second mirror element 12, the third mirror element 23, and the fourth mirror element 24 are plane mirrors.
  • the angle between the plane (plane) including the second mirror element 12 and the plane (plane) including the first mirror element 11 is, for example, 30 degrees.
  • the angle between the plane (plane) including the fourth mirror element 24 and the plane (plane) including the third mirror element 23 is, for example, 30 degrees.
  • the second mirror element 12 is aligned with the first mirror element 11 along the X-axis direction.
  • the fourth mirror element 24 is aligned with the third mirror element 23 along the X-axis direction.
  • the fourth mirror element 24 is aligned with the second mirror element 12 along the Z-axis direction.
  • the third mirror element 23 is aligned with the first mirror element 11 along the Z-axis direction. In the first state ST1, these mirror elements are arranged in the XZ plane.
  • the light Li is incident on the first mirror element 11.
  • a part of the light Li LL passes through the first mirror element 11 and then enters the third mirror element 23.
  • the light LL is reflected by the third mirror element 23.
  • the incident angle in the third mirror element 23 is 15 degrees, and the reflection angle is 15 degrees.
  • the light LL reflected by the third mirror element 23 travels toward the second mirror element 12.
  • the light LL is reflected by the second mirror element 12.
  • the incident angle in the second mirror element 12 is 15 degrees and the reflection angle is 15 degrees.
  • the light LL reflected by the second mirror element 12 travels toward the fourth mirror element 24.
  • the light LL is reflected by the fourth mirror element 24.
  • the incident angle at the fourth mirror element 24 is 15 degrees and the reflection angle is 15 degrees.
  • the light LL reflected by the fourth mirror element 24 travels toward the first mirror element 11.
  • the light LL is incident on the first mirror element 11.
  • a part of the light LL incident on the first mirror element 11 is emitted to the outside.
  • the incident angle in a mirror element is an angle between the direction perpendicular to the surface of the mirror element and the light LL incident on the mirror element.
  • the reflection angle is an angle between a direction perpendicular to the surface of the mirror element and the light LL reflected by the mirror element.
  • the first mirror 10 and the second mirror 20 form, for example, a bowtie type optical resonator.
  • the bow tie type optical resonator is one of ring type resonators.
  • the distance between the first mirror element 11 and the third mirror element 23 is, for example, 34.8076 mm.
  • the distance (distance on the optical path) between the third mirror element 23 and the second mirror element 12 is 40.1924 mm.
  • the distance (distance on the optical path) between the second mirror element 12 and the fourth mirror element 24 is, for example, 34.8076 mm.
  • the distance (distance on the optical path) between the fourth mirror element 24 and the first mirror element 11 is 40.1924 mm.
  • the first resonator length L1 is the sum of these distances and is 150 mm.
  • one side surface of the second spacer 60 is continuous with one side surface of the first spacer 50.
  • the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction).
  • the two surfaces 60a are inclined with respect to the XY plane.
  • the angle between the first surface 50a of the first spacer 50 (the second surface 60a of the second spacer 60) and the XY plane is, for example, 0.022 degrees.
  • the first surface 50a and the second surface 60a are set perpendicular to the direction of gravity.
  • the relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. The position is changed along the first surface 50a. When the position is changed (moving), the control unit 30 contacts the second spacer 60. After changing the position (after movement), the control unit 30 is separated from the second spacer 60. Thereby, the second state ST2 is formed.
  • one of the side surfaces of the second spacer 60 is discontinuous with one side surface of the first spacer 50.
  • the second resonator length L2 in the second state ST2 is shorter than the first resonator length L1.
  • the difference between the position of the second spacer 60 in the second state ST2 and the position of the second spacer 60 in the first state ST1 (the length along the first surface 50a, for example, relative to the direction of gravity
  • the length along the vertical direction is 0.475 mm, for example.
  • the difference between the length along the axial direction is 0.475 ⁇ sin (0.022 degrees) mm, which is about 0.00018 mm.
  • the difference between the length along the axial direction is 0.475 ⁇ sin (0.022 degrees) mm, which is about 0.00018 mm.
  • the incident angle at each of the plurality of mirror elements in the second state ST2 is the same as the incident angle at each of the plurality of mirror elements in the first state ST1.
  • the reflection angle in each of the plurality of mirror elements in the second state ST2 is the same as the reflection angle in each of the plurality of mirror elements in the first state ST1.
  • the position where the light Li is incident is different between the first state ST1 and the second state ST2.
  • the second resonator length L2 in the second state ST2 is a distance between the first mirror element 11 and the third mirror element 23 (a distance on the optical path, 34.8075 mm), the third mirror element 23, and the second mirror length 23.
  • the distance between two mirror elements 12 (distance on the optical path, 40.1922 mm) and the distance between the second mirror element 12 and the fourth mirror element 24 (distance on the optical path, 34.8075 mm) ) And the distance between the fourth mirror element 24 and the first mirror element 11 (the distance on the optical path, 40.1922 mm).
  • the second resonator length L2 is 149.9994 mm.
  • resonance frequencies ⁇ first resonance frequency corresponding to the first resonator length L1 (resonator length before the resonator length is changed) is 247 THz.
  • the difference (frequency shift amount ⁇ ) between the resonance frequency (second resonance frequency) corresponding to the second resonator length L2 (resonator length after the resonator length has changed) and the first resonance frequency is about 1 GHz. It is.
  • the resonance frequency can be shifted greatly. Also in this example, before and after the change in the resonator length, the external force that causes the frequency instability is suppressed from being applied to the resonator. High stability is obtained at the resonance frequency.
  • FIG. 30A to FIG. 30D are schematic views illustrating another resonator according to the sixth embodiment.
  • FIG. 30A and FIG. 30C correspond to the first state ST1.
  • FIG. 30B and FIG. 30D correspond to the second state ST2.
  • another resonator 162 includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including.
  • the first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12).
  • the second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24).
  • a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided in these drawings. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
  • the first mirror element 11, the second mirror element 12, the third mirror element 23, and the fourth mirror element 24 are plane mirrors.
  • the angle between the plane (plane) including the second mirror element 12 and the plane (plane) including the first mirror element 11 is, for example, 60 degrees.
  • the angle between the plane (plane) including the fourth mirror element 24 and the plane (plane) including the third mirror element 23 is, for example, 60 degrees.
  • the light Li is incident on the first mirror element 11 in the first state ST1.
  • a part of the light Li LL passes through the first mirror element 11, is reflected by the second mirror element 12, and travels toward the third mirror element 23.
  • the light LL is reflected by the third mirror element 23 and travels toward the fourth mirror element 24.
  • the light LL is reflected by the fourth mirror element 24 and travels toward the first mirror element 11.
  • a bowtie type optical resonator is formed.
  • the distance between the first mirror element 11 and the second mirror element 12 (distance on the optical path) is 25 mm.
  • the distance (distance on the optical path) between the second mirror element 12 and the third mirror element 23 is 50 mm.
  • the distance (distance on the optical path) between the third mirror element 23 and the fourth mirror element 24 is 25 mm.
  • the distance (distance on the optical path) between the fourth mirror element 24 and the first mirror element 11 is 50 mm.
  • the first resonator length L1 corresponds to the sum of these distances and is 150 mm.
  • one side surface of the second spacer 60 is continuous with one side surface of the first spacer 50.
  • the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction).
  • the two surfaces 60a are inclined with respect to the XY plane.
  • the angle between the first surface 50a of the first spacer 50 (the second surface 60a of the second spacer 60) and the XY plane is, for example, 0.022 degrees.
  • the first surface 50a and the second surface 60a are set perpendicular to the direction of gravity.
  • the relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. The position is changed along the first surface 50a. When the position is changed (moving), the control unit 30 contacts the second spacer 60. After changing the position (after movement), the control unit 30 is separated from the second spacer 60. Thereby, the second state ST2 is formed.
  • one side surface of the second spacer 60 is discontinuous with one side surface of the first spacer 50.
  • the second resonator length L2 in the second state ST2 is shorter than the first resonator length L1.
  • the difference between the position of the second spacer 60 in the second state ST2 and the position of the second spacer 60 in the first state ST1 is, for example, 0.045 mm.
  • the distance (the distance along the Z-axis direction) between the third mirror element 23 and the first mirror element 11 in the second state ST2, and the third mirror element 23 and the first mirror element 11 in the first state ST1 The difference between the distance (the distance along the Z-axis direction) is 0.45 ⁇ sin (0.022 degrees) mm, which is about 0.00017 mm.
  • the distance between the fourth mirror element 24 and the second mirror element 12 in the second state ST2 (the distance along the Z-axis direction) and the fourth mirror element 24 and the second mirror element 12 in the first state ST1 The difference between the distance (the distance along the Z-axis direction) is 0.45 ⁇ sin (0.022 degrees) mm, which is about 0.00017 mm.
  • the incident angle at each of the plurality of mirror elements in the second state ST2 is the same as the incident angle at each of the plurality of mirror elements in the first state ST1.
  • the reflection angle in each of the plurality of mirror elements in the second state ST2 is the same as the reflection angle in each of the plurality of mirror elements in the first state ST1.
  • the position where the light Li is incident is different between the first state ST1 and the second state ST2.
  • the distance between the first mirror element 11 and the second mirror element 12 is 24.998 mm.
  • the distance (distance on the optical path) between the second mirror element 12 and the third mirror element 23 is 49.9998 mm.
  • the distance (distance on the optical path) between the third mirror element 23 and the fourth mirror element 24 is 25 mm.
  • the distance (distance on the optical path) between the fourth mirror element 24 and the first mirror element 11 is 49.9998 mm.
  • the second resonator length L2 corresponds to the sum of these distances and is 1499.9994 mm.
  • one of resonance frequencies ⁇ (first resonance frequency) corresponding to the first resonator length L1 (resonator length before the resonator length is changed) is 247 THz.
  • the difference (frequency shift amount ⁇ ) between the resonance frequency (second resonance frequency) corresponding to the second resonator length L2 (resonator length after the resonator length has changed) and the first resonance frequency is about 1 GHz. It is. Also in the resonator 162, the resonance frequency can be greatly shifted. Also in this example, before and after the change of the resonator length, the external force that causes the frequency instability is suppressed from being applied to the resonator, so that high stability can be obtained at the resonance frequency.
  • the first mirror 10 includes a plurality of mirror elements 10e (such as the first mirror element 11, the second mirror element 12, and the fifth mirror element 15).
  • the positions of the plurality of mirror elements 10e with respect to the first spacer 50 are fixed.
  • the plurality of mirror elements 10 e are physically coupled to the first spacer 50.
  • the plurality of mirror elements 10e may be physically coupled to each other, and at least one of the plurality of mirror elements 10e may be physically coupled to the first spacer 50.
  • One of the plurality of mirror elements 10e included in the first mirror 10 (for example, the first mirror element 11) and another one of the plurality of mirror elements 10e included in the first mirror 20 (for example, the second mirror element 12).
  • Intersects the first direction (Z-axis direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1).
  • the second mirror 20 may include a plurality of mirror elements 20e (such as the third mirror element 23, the fourth mirror element 24, and the sixth mirror element 26).
  • the positions of the plurality of mirror elements 20e with respect to the second spacer 60 are fixed.
  • the plurality of mirror elements 20 e are physically coupled to the second spacer 60.
  • the plurality of mirror elements 20e may be physically coupled to each other, and at least one of the plurality of mirror elements 20e may be physically coupled to the second spacer 60.
  • One of the plurality of mirror elements 20e included in the second mirror 20 for example, the third mirror element 23
  • another one of the plurality of mirror elements 20e included in the second mirror 20 for example, the fourth mirror element 24).
  • the first spacer 50 has a first surface 50 a facing the second spacer 60.
  • the first surface 50a is inclined with respect to the first direction.
  • the second spacer 60 has a second surface 60a.
  • the second surface 60a faces the first spacer 50 and extends along the first surface 50a.
  • the first position of the second spacer 60 relative to the first spacer 50 in the first state ST1 is the first position of the second spacer 60 in the second state ST2. This is different from the second position relative to the spacer 50.
  • the direction connecting the first position and the second position intersects at least a part of the optical path formed between the first mirror 10 and the second mirror 20 in the first state ST1.
  • the direction connecting the first position and the second position is one of the plurality of mirror elements 10e included in the first mirror 10 in the first state ST1 and the plurality of mirror elements included in the second mirror 20 in the first state ST1. It intersects with the direction connecting one of the mirror elements 20e.
  • the direction connecting the first position and the second position intersects at least one of “a plurality of connecting directions” (described below).
  • Each of the “plurality of connecting directions” includes “one or more mirror elements” included in the first mirror 10 in the first state ST1 and “1” included in the second mirror 20 in the first state ST1. Each of the one or more mirror elements ".
  • the position of at least one of the first spacer 50 and the second spacer 60 is changed.
  • This change is performed by the control unit 30, for example.
  • the direction in which the position is changed is the direction connecting the first mirror 10 and the second mirror 20. Intersect.
  • the direction in which the position is changed is the plurality of directions included in the first mirror 10 and the second mirror 20. It intersects one of a plurality of directions connecting any of the mirror elements.
  • the direction in which the position change is performed is any one of the plurality of mirror elements included in the first mirror 10 and the first mirror 10. It intersects with any one of a plurality of mirror elements included in the two mirrors 20 and any one of a plurality of directions to be connected.
  • the first mirror element 11 is the first mirror 10
  • the third mirror element 23 is the second mirror 20
  • the second mirror element 12 is the third mirror
  • the fourth mirror element You may consider that 24 is a 4th mirror.
  • the third mirror second mirror element 12
  • the fourth mirror element 24 is arranged on the optical path between the first mirror 10 (first mirror element 11) and the second mirror 20 (third mirror element 23).
  • the resonator according to the fifth embodiment, the resonator according to the sixth embodiment, and a modified resonator of those resonators can be used, for example, in a light source device or a frequency filter.
  • vertical and parallel include not only strictly vertical and strictly parallel, but also include, for example, variations in the manufacturing process, and may be substantially vertical and substantially parallel. It ’s fine.
  • 82 temperature adjustment element, ⁇ d ... distance 110, 111, 112a to 112c, 113, 114a, 114b, 115, 116, 120 to 125, 131 to 135, 146, 147, 151 to 154, 161, 162 ... resonator, 210, 211 ... light source device, 310 ... frequency filter, Ar, Ar1, Ar2 ... arrows, L1, L2 ... first and second resonator lengths, Li, LL ... light, Md ... direction Direction, Rs1, Rs2 ... first and second resonators, ST1, ST2 ... first and second states, d1, d2 ... distance

Abstract

A resonator according to one embodiment of the present invention comprises a first mirror, a second mirror, a first spacer and a second spacer. The first spacer is arranged between the first mirror and the second mirror, and is in contact with the first mirror. The second spacer is arranged between the first spacer and the second mirror, and is in contact with the second mirror. A first resonator length which is formed of the first mirror and the second mirror in a first state wherein the first spacer and the second spacer are in contact with each other is different from a second resonator length which is formed of the first mirror and the second mirror in a second state which is different from the first state and wherein the first spacer and the second spacer are in contact with each other.

Description

共振器、光源装置及び周波数フィルタResonator, light source device, and frequency filter
 本発明の実施形態は、共振器、光源装置及び周波数フィルタに関する。 Embodiments of the present invention relate to a resonator, a light source device, and a frequency filter.
 共振器は、例えば、高分解能分光や光通信等の分野に用いられる。周波数安定性の高い共振器に周波数をロックすることで、周波数が安定な光源が得られる。共振器は、周波数フィルタとしても用いられる。分光や光通信等の応用分野における実用性を高めるために、共鳴周波数が可変の共振器が望まれる。 The resonator is used in fields such as high resolution spectroscopy and optical communication, for example. A light source having a stable frequency can be obtained by locking the frequency to a resonator having high frequency stability. The resonator is also used as a frequency filter. In order to enhance practicality in application fields such as spectroscopy and optical communication, a resonator having a variable resonance frequency is desired.
特開平9-129957号公報Japanese Patent Laid-Open No. 9-129957
 本発明の実施形態は、共鳴周波数が可変の共振器、光源装置及び周波数フィルタを提供する。 Embodiments of the present invention provide a resonator having a variable resonance frequency, a light source device, and a frequency filter.
 本発明の実施形態によれば、共振器は、第1ミラーと、第2ミラーと、第1スペーサと、第2スペーサと、を含む。前記第1スペーサは、前記第1ミラーと前記第2ミラーとの間に設けられ前記第1ミラーと接する。前記第2スペーサは、前記第1スペーサと前記第2ミラーとの間に設けられ前記第2ミラーと接する。前記第1スペーサと前記第2スペーサとが互いに接する第1状態において前記第1ミラーと前記第2ミラーとによって形成される第1共振器長は、前記第1スペーサと前記第2スペーサとが互いに接し前記第1状態とは異なる第2状態において前記第1ミラーと前記第2ミラーとによって形成される第2共振器長とは異なる。 According to the embodiment of the present invention, the resonator includes a first mirror, a second mirror, a first spacer, and a second spacer. The first spacer is provided between the first mirror and the second mirror and is in contact with the first mirror. The second spacer is provided between the first spacer and the second mirror and is in contact with the second mirror. The first resonator length formed by the first mirror and the second mirror in a first state where the first spacer and the second spacer are in contact with each other is such that the first spacer and the second spacer are The second resonator length formed by the first mirror and the second mirror in a second state that is in contact and different from the first state is different.
図1(a)~図1(e)は、第1の実施形態に係る共振器を示す模式図である。FIG. 1A to FIG. 1E are schematic views showing a resonator according to the first embodiment. 第1の実施形態に係る共振器を示す模式的断面図である。1 is a schematic cross-sectional view showing a resonator according to a first embodiment. 図3(a)及び図3(b)は、第1の実施形態に係る共振器を示す模式図である。FIG. 3A and FIG. 3B are schematic views showing the resonator according to the first embodiment. 図4(a)及び図4(b)は、第1の実施形態に係る別の共振器を示す模式図である。FIG. 4A and FIG. 4B are schematic views showing another resonator according to the first embodiment. 図5(a)~図5(f)は、第1の実施形態に係る別の共振器を示す模式図である。FIGS. 5A to 5F are schematic views showing another resonator according to the first embodiment. 図6(a)及び図6(b)は、第1の実施形態に係る別の共振器を示す模式図である。FIG. 6A and FIG. 6B are schematic views showing another resonator according to the first embodiment. 図7(a)~図7(d)は、第1の実施形態に係る別の共振器を示す模式図である。FIG. 7A to FIG. 7D are schematic views showing another resonator according to the first embodiment. 図8(a)~図8(d)は、第1の実施形態に係る共振器を示す模式的斜視図である。FIG. 8A to FIG. 8D are schematic perspective views showing the resonator according to the first embodiment. 図9(a)及び図9(b)は、第1の実施形態に係る別の共振器を示す模式図である。FIG. 9A and FIG. 9B are schematic views showing another resonator according to the first embodiment. 図10(a)及び図10(b)は、第1の実施形態に係る別の共振器を示す模式図である。FIG. 10A and FIG. 10B are schematic views showing another resonator according to the first embodiment. 図11(a)及び図11(b)は、第1の実施形態に係る別の共振器を示す模式図である。FIG. 11A and FIG. 11B are schematic views showing another resonator according to the first embodiment. 図12(a)及び図12(b)は、第2の実施形態に係る共振器を示す模式図である。FIG. 12A and FIG. 12B are schematic views illustrating a resonator according to the second embodiment. 図13(a)及び図13(b)は、第2の実施形態に係る別の共振器を示す模式図である。FIG. 13A and FIG. 13B are schematic views showing another resonator according to the second embodiment. 図14(a)~図14(d)は、第2の実施形態に係る別の共振器を示す模式図である。FIG. 14A to FIG. 14D are schematic views showing another resonator according to the second embodiment. 図15(a)及び図15(b)は、実施形態に係る共振器を示す模式図である。FIG. 15A and FIG. 15B are schematic views showing the resonator according to the embodiment. 図16(a)及び図16(b)は、実施形態に係る共振器を示す模式図である。FIG. 16A and FIG. 16B are schematic views showing the resonator according to the embodiment. 図17(a)及び図17(b)は、実施形態に係る共振器を示す模式図である。FIG. 17A and FIG. 17B are schematic views showing the resonator according to the embodiment. 図18(a)及び図18(b)は、実施形態に係る共振器を示す模式図である。FIG. 18A and FIG. 18B are schematic views showing the resonator according to the embodiment. 実施形態に係る共振器を示す模式図である。It is a schematic diagram which shows the resonator which concerns on embodiment. 図20(a)及び図20(b)は、実施形態に係る共振器を示す模式図である。FIG. 20A and FIG. 20B are schematic views illustrating the resonator according to the embodiment. 図21(a)及び図21(b)は、実施形態に係る共振器を示す模式図である。FIG. 21A and FIG. 21B are schematic views illustrating the resonator according to the embodiment. 第3の実施形態に係る光源装置を示す模式図である。It is a schematic diagram which shows the light source device which concerns on 3rd Embodiment. 第3の実施形態に係る別の光源装置を示す模式図である。It is a schematic diagram which shows another light source device which concerns on 3rd Embodiment. 第4の実施形態に係る周波数フィルタを示す模式図である。It is a schematic diagram which shows the frequency filter which concerns on 4th Embodiment. 図25(a)~図25(f)は、第5の実施形態に係る共振器を示す模式図である。FIG. 25A to FIG. 25F are schematic views showing a resonator according to the fifth embodiment. 図26(a)~図26(d)は、第5の実施形態に係る別の共振器を示す模式図である。FIG. 26A to FIG. 26D are schematic views showing another resonator according to the fifth embodiment. 図27(a)及び図27(b)は、第5の実施形態に係る別の共振器を示す模式図である。FIG. 27A and FIG. 27B are schematic views showing another resonator according to the fifth embodiment. 図28(a)及び図28(b)は、第5の実施形態に係る別の共振器を示す模式図である。FIG. 28A and FIG. 28B are schematic views showing another resonator according to the fifth embodiment. 図29(a)~図29(d)は、第6の実施形態に係る別の共振器を示す模式図である。FIG. 29A to FIG. 29D are schematic views showing another resonator according to the sixth embodiment. 図30(a)~図30(d)は、第6の実施形態に係る別の共振器を示す模式図である。FIG. 30A to FIG. 30D are schematic views showing another resonator according to the sixth embodiment.
 以下に、本発明の各実施の形態について図面を参照しつつ説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Embodiments of the present invention will be described below with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
 (第1の実施形態) 
 図1(a)~図1(e)は、第1の実施形態に係る共振器を例示する模式図である。 
 図2は、第1の実施形態に係る共振器を例示する模式的断面図である。 
 図1(a)は、模式的斜視図である。図1(b)は、共振器に含まれる要素を分離して例示した模式的斜視図である。図1(c)及び図1(d)は、模式的断面図である。図1(e)は、図1(a)に示した矢印Ar方向からの平面図である。
(First embodiment)
FIG. 1A to FIG. 1E are schematic views illustrating the resonator according to the first embodiment.
FIG. 2 is a schematic cross-sectional view illustrating the resonator according to the first embodiment.
FIG. 1A is a schematic perspective view. FIG. 1B is a schematic perspective view illustrating elements included in the resonator separately. FIG. 1C and FIG. 1D are schematic cross-sectional views. FIG.1 (e) is a top view from the arrow Ar direction shown to Fig.1 (a).
 図1(a)に示すように、実施形態に係る共振器110は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、制御部30と、を含む。この例では、固定部81がさらに設けられている。 As shown in FIG. 1A, the resonator 110 according to the embodiment includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, and a control unit 30. . In this example, a fixing portion 81 is further provided.
 図2に示すように、共振器110は、容器80を含んでも良い。容器80の中に、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60及び制御部30が配置される。容器80の内部は、例えば減圧されている。外部の熱と気圧の影響が抑制され、共振器の共振器長伸縮が抑制される。容器80には、温度調整素子82が設けられても良い。温度調整素子82により共振器110の温度が所望の温度に調整される。 As shown in FIG. 2, the resonator 110 may include a container 80. In the container 80, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are arranged. The inside of the container 80 is decompressed, for example. The influence of external heat and atmospheric pressure is suppressed, and the resonator length expansion and contraction of the resonator is suppressed. The container 80 may be provided with a temperature adjustment element 82. The temperature of the resonator 110 is adjusted to a desired temperature by the temperature adjustment element 82.
 図1(b)においては、制御部30及び固定部81は省略されている。図1(c)は、第2ミラー20を例示している。図1(d)は、第1ミラー10を例示している。 In FIG. 1B, the control unit 30 and the fixing unit 81 are omitted. FIG. 1C illustrates the second mirror 20. FIG. 1D illustrates the first mirror 10.
 図1(a)及び図1(b)に示すように、第2ミラー20は、第1ミラー10と対向する。第1ミラー10は、第1ミラー面10aを有する。第2ミラー20は、第2ミラー面20aを有する。第1ミラー面10aと第2ミラー面20aとは、互いに対向する。第1ミラー10及び第2ミラー20は、例えば、ファブリペロー型光共振器を形成する。 As shown in FIGS. 1A and 1B, the second mirror 20 faces the first mirror 10. The first mirror 10 has a first mirror surface 10a. The second mirror 20 has a second mirror surface 20a. The first mirror surface 10a and the second mirror surface 20a face each other. The first mirror 10 and the second mirror 20 form, for example, a Fabry-Perot optical resonator.
 後述するように、第1ミラー10と第2ミラー20との間の空間的配置は可変である。例えば、1つの状態(例えば、第1状態)において、第1ミラー10と第2ミラー20とを結ぶ方向をZ軸方向とする。Z軸方向に対して垂直な1つの方向をX軸方向とする。Z軸方向とX軸方向とに対して垂直な方向をY軸方向とする。 As will be described later, the spatial arrangement between the first mirror 10 and the second mirror 20 is variable. For example, in one state (for example, the first state), the direction connecting the first mirror 10 and the second mirror 20 is the Z-axis direction. One direction perpendicular to the Z-axis direction is taken as an X-axis direction. A direction perpendicular to the Z-axis direction and the X-axis direction is taken as a Y-axis direction.
 第1スペーサ50は、第1ミラー10と第2ミラー20との間に設けられる。第1スペーサ50は、第1ミラー10の外縁部10rと接続される。実施形態において、第1スペーサ50の少なくとも一部が、第1ミラー10と第2ミラー20との間に設けられても良い。第1スペーサ50は、第1ミラー10の外縁部10rの少なくとも一部と接続されても良い。 The first spacer 50 is provided between the first mirror 10 and the second mirror 20. The first spacer 50 is connected to the outer edge portion 10 r of the first mirror 10. In the embodiment, at least a part of the first spacer 50 may be provided between the first mirror 10 and the second mirror 20. The first spacer 50 may be connected to at least a part of the outer edge portion 10r of the first mirror 10.
 第1スペーサ50は、例えば、Z軸方向(第1状態における第1ミラー10と第1状態における第2ミラー20とを結ぶ第1方向)を軸とした管状(枠状)である。第1スペーサ50は、Z軸方向に延びる複数の部分を有しても良い。第1スペーサ50は、複数の部分により不連続的に第1ミラー10と接続されても良い。 The first spacer 50 has, for example, a tubular shape (frame shape) whose axis is the Z-axis direction (a first direction connecting the first mirror 10 in the first state and the second mirror 20 in the first state). The first spacer 50 may have a plurality of portions extending in the Z-axis direction. The first spacer 50 may be connected to the first mirror 10 discontinuously by a plurality of portions.
 第2スペーサ60は、第1スペーサ50と第2ミラー20との間に設けられる。第2スペーサ60は、第2ミラー20の外縁部20rと接続される。実施形態において、第2スペーサ60の少なくとも一部が、第1スペーサ50と第2ミラー20との間に設けられても良い。第2スペーサ60は、第2ミラー20の外縁部20rの少なくとも一部と接続されても良い。第2スペーサ60は、例えば、Z軸方向を軸とした管状(枠状)である。第2スペーサ60は、Z軸方向に延びる複数の部分を有しても良い。第2スペーサ60は、複数の部分により不連続的に第2ミラー20と接続されても良い。第1スペーサ50と第2スペーサ60との間に、潤滑油等の薄い層が挿入されても良い。この場合も、第1スペーサ50と第2スペーサ60とは、実質的に接触している。 The second spacer 60 is provided between the first spacer 50 and the second mirror 20. The second spacer 60 is connected to the outer edge portion 20 r of the second mirror 20. In the embodiment, at least a part of the second spacer 60 may be provided between the first spacer 50 and the second mirror 20. The second spacer 60 may be connected to at least a part of the outer edge portion 20r of the second mirror 20. The second spacer 60 has a tubular shape (frame shape) with the Z-axis direction as an axis, for example. The second spacer 60 may have a plurality of portions extending in the Z-axis direction. The second spacer 60 may be connected to the second mirror 20 discontinuously by a plurality of portions. A thin layer of lubricating oil or the like may be inserted between the first spacer 50 and the second spacer 60. Also in this case, the first spacer 50 and the second spacer 60 are substantially in contact with each other.
 この例では、第1ミラー10及び第2ミラー20をX-Y平面に投影した時のそれぞれの外形(平面形状)は、四角形である。第1スペーサ50及び第2スペーサ60をX-Y平面に投影した時のそれぞれの外形(平面形状)は、四角管状である。実施形態において、第1ミラー10、第2ミラー20、第1スペーサ50及び第2スペーサ60の平面形状は、四角形以外の多角形でも良く、円状(扁平円を含む)でも良く、任意である。 In this example, the outer shape (planar shape) of the first mirror 10 and the second mirror 20 projected onto the XY plane is a quadrangle. Each outer shape (planar shape) when the first spacer 50 and the second spacer 60 are projected onto the XY plane is a square tube. In the embodiment, the planar shape of the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 may be a polygon other than a square, a circle (including a flat circle), or any other shape. .
 例えば、第1ミラー面10aと第2ミラー面20aとで反射する光は、第1スペーサ50及び第2スペーサ60のそれぞれに設けられる空洞を通過する。第1ミラー面10aと第2ミラー面20aとで反射する光は、第1スペーサ50及び第2スペーサ60を通過しない。 For example, light reflected by the first mirror surface 10a and the second mirror surface 20a passes through cavities provided in the first spacer 50 and the second spacer 60, respectively. The light reflected by the first mirror surface 10 a and the second mirror surface 20 a does not pass through the first spacer 50 and the second spacer 60.
 第1ミラー10及び第1スペーサ50の組みと、第2ミラー20及び第2スペーサ60の組みと、は、互いに入れ替えが可能である。 The set of the first mirror 10 and the first spacer 50 and the set of the second mirror 20 and the second spacer 60 can be interchanged with each other.
 この例では、第1ミラー10は、凹面ミラーである。すなわち、第1ミラー面10aは、凹状である。この例では、第2ミラー20は、平面ミラーである。すなわち、第2ミラー面20aは、平面状である。後述するように、第1ミラー面10a及び第2ミラー面20aは、種々の変形が可能である。 In this example, the first mirror 10 is a concave mirror. That is, the first mirror surface 10a is concave. In this example, the second mirror 20 is a plane mirror. That is, the second mirror surface 20a is planar. As will be described later, the first mirror surface 10a and the second mirror surface 20a can be variously modified.
 図1(d)に例示したように、第1ミラー10は、複数の第1層17と複数の第2層18とを含む。第1層17と第2層18とは、Z軸方向に沿って交互に配置される。 As illustrated in FIG. 1D, the first mirror 10 includes a plurality of first layers 17 and a plurality of second layers 18. The first layer 17 and the second layer 18 are alternately arranged along the Z-axis direction.
 図1(c)に例示したように、第2ミラー20は、複数の第3層27と複数の第4層28とを含む。第3層27と第4層28とは、Z軸方向に沿って交互に配置される。 As illustrated in FIG. 1C, the second mirror 20 includes a plurality of third layers 27 and a plurality of fourth layers 28. The third layer 27 and the fourth layer 28 are alternately arranged along the Z-axis direction.
 第1層17の屈折率は、第2層18の屈折率とは異なる。第3層27の屈折率は、第4層28の屈折率とは異なる。これらの層には、例えば、誘電体が用いられる。第1ミラー10及び第2ミラー20のそれぞれは、例えば、誘電体多層膜を含む。実施形態は、これに限らず、第1ミラー10及び第2ミラー20として、任意の反射体を用いることができる。 The refractive index of the first layer 17 is different from the refractive index of the second layer 18. The refractive index of the third layer 27 is different from the refractive index of the fourth layer 28. For these layers, for example, a dielectric is used. Each of the first mirror 10 and the second mirror 20 includes, for example, a dielectric multilayer film. The embodiment is not limited to this, and any reflector can be used as the first mirror 10 and the second mirror 20.
 図1(a)に示すように、固定部81は、第1スペーサ50に連結されている。固定部81は、例えば容器80などに固定されている。これにより、第1スペーサ50の空間的な位置が、固定される。 As shown in FIG. 1A, the fixing portion 81 is connected to the first spacer 50. The fixing portion 81 is fixed to the container 80, for example. Thereby, the spatial position of the first spacer 50 is fixed.
 図1(a)及び図1(e)に示したように、制御部30が第2スペーサ60に接する状態が形成可能である。この例では、制御部30として、第1~第4移動装置31~34が用いられる。 As shown in FIGS. 1A and 1E, a state in which the control unit 30 is in contact with the second spacer 60 can be formed. In this example, first to fourth moving devices 31 to 34 are used as the control unit 30.
 第1移動装置31と第2移動装置32との間に第2スペーサ60が配置される。第3移動装置33と第4移動装置34との間に第2スペーサ60が配置される。初期状態において、これらの移動装置は、第2スペーサ60から離間している。例えば、第1移動装置31が第2スペーサ60を押して移動させる。これにより、第2スペーサ60は、例えば、+X軸方向に移動する。例えば、第2移動装置32が第2スペーサ60を押して移動させる。これにより、第2スペーサ60は、例えば、-X軸方向に移動する。例えば、移動中は、移動装置は第2スペーサ60に接している。移動の後、移動装置は、第2スペーサ60から離間する。移動後に移動装置が第2スペーサ60から離間することで、移動後の状態において、移動装置の影響がスペーサに及ぼされない。安定した共振器長が得られる。同様に、第3移動装置33及び第4移動装置34の動作により、第2スペーサ60は、Y軸方向に沿って移動可能である。実施形態において、移動装置が第2スペーサ60と連結されていることを許容する。 The second spacer 60 is disposed between the first moving device 31 and the second moving device 32. A second spacer 60 is disposed between the third moving device 33 and the fourth moving device 34. In the initial state, these moving devices are separated from the second spacer 60. For example, the first moving device 31 pushes and moves the second spacer 60. Thereby, the second spacer 60 moves in the + X axis direction, for example. For example, the second moving device 32 pushes and moves the second spacer 60. As a result, the second spacer 60 moves in the −X axis direction, for example. For example, during movement, the moving device is in contact with the second spacer 60. After the movement, the moving device moves away from the second spacer 60. Since the moving device is separated from the second spacer 60 after the movement, the influence of the moving device is not exerted on the spacer in the state after the movement. A stable resonator length can be obtained. Similarly, the second spacer 60 is movable along the Y-axis direction by the operations of the third moving device 33 and the fourth moving device 34. In the embodiment, the moving device is allowed to be connected to the second spacer 60.
 第1~第4移動装置31~34のそれぞれは、第1~第4マイクロメータヘッド31a~34aと、第1~第4ピエゾアクチュエータ31b~34bと、を含んでも良い。例えば、マイクロメータヘッドと第2スペーサ60との間にピエゾアクチュエータが配置される。マイクロメータヘッドにおいては、大きな位置の変化を生じさせることができる。ピエゾアクチュエータにおいては、精度の高い位置の変化を生じさせることができる。高精度に第2スペーサ60を移動させることができる。 Each of the first to fourth moving devices 31 to 34 may include first to fourth micrometer heads 31a to 34a and first to fourth piezo actuators 31b to 34b. For example, a piezo actuator is disposed between the micrometer head and the second spacer 60. In the micrometer head, a large position change can be caused. In a piezo actuator, it is possible to cause a change in position with high accuracy. The second spacer 60 can be moved with high accuracy.
 第2スペーサ60の移動の方向は、例えば、Z軸方向と交差する。 The direction of movement of the second spacer 60 intersects with the Z-axis direction, for example.
 図1(a)及び図1(b)に示すように、第1スペーサ50は、第1面50aを有し、第2スペーサ60は、第2面60aを有する。第1面50aは、第2スペーサ60と対向する。第2面60aは、第1スペーサ50と対向する。第2面60aは、第1面50aと対向する。第2面60aは、第1面50aに沿っている。 1A and 1B, the first spacer 50 has a first surface 50a, and the second spacer 60 has a second surface 60a. The first surface 50 a faces the second spacer 60. The second surface 60 a faces the first spacer 50. The second surface 60a faces the first surface 50a. The second surface 60a is along the first surface 50a.
 この例では、第1面50aは、Z軸方向(第1方向)と交差する。Z軸方向は、1つの状態(第1状態)における第1ミラー10とその状態(第1状態)における第2ミラー20とを結ぶ方向である。第1面50aは、Z軸方向に対して傾斜している。第1面50aに沿っている第2面60aもZ軸方向に対して傾斜している。 In this example, the first surface 50a intersects the Z-axis direction (first direction). The Z-axis direction is a direction connecting the first mirror 10 in one state (first state) and the second mirror 20 in that state (first state). The first surface 50a is inclined with respect to the Z-axis direction. The second surface 60a along the first surface 50a is also inclined with respect to the Z-axis direction.
 制御部30の動作により、第2スペーサ60の位置が変化する。移動前の第2スペーサ60において、第2面60aは第1面50aに接している。移動後の第2スペーサ60において、第2面60aは、第1面50aに接している。第2面60aが第1面50aに接した状態で、第2スペーサ60が移動しても良い。移動により、第1ミラー10と第2ミラー20とにより形成される共振器の共振器長が変化する。以下、共振器長の変化の例について説明する。 The position of the second spacer 60 is changed by the operation of the control unit 30. In the second spacer 60 before movement, the second surface 60a is in contact with the first surface 50a. In the second spacer 60 after movement, the second surface 60a is in contact with the first surface 50a. The second spacer 60 may move while the second surface 60a is in contact with the first surface 50a. Due to the movement, the resonator length of the resonator formed by the first mirror 10 and the second mirror 20 changes. Hereinafter, an example of a change in the resonator length will be described.
 図3(a)及び図3(b)は、第1の実施形態に係る共振器を例示する模式図である。 図3(a)及び図3(b)は、それぞれ、共振器110に設けられる第1状態ST1と第2状態ST2とを例示している。これらの図においては、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60及び制御部30が図示され、他の要素は省略されている。 FIG. 3A and FIG. 3B are schematic views illustrating the resonator according to the first embodiment. FIGS. 3A and 3B illustrate the first state ST1 and the second state ST2 provided in the resonator 110, respectively. In these drawings, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are illustrated, and other elements are omitted.
 図3(a)に示すように、第1状態ST1において、第1スペーサ50と第2スペーサ60とは、互いに接している。第1状態ST1において、第2スペーサ60の位置は、第1スペーサ50に対する相対的な第1位置に設定されている。このとき、第1ミラー10と第2ミラー20とにより、第1共振器Rs1が形成される。この共振器は、第1共振器長L1を有する。この例では、第1ミラー10が凹面ミラーである。第1ミラー10は、例えば、凹面ミラーの球面の中心(第1中心10c)を有する。第1共振器長L1は、第1状態ST1における、第1中心10cを通り第2ミラー面20aに対して垂直な直線上における、第1ミラー10と第2ミラー20との間の距離に対応する。このように、第1状態ST1において、第1ミラー10と第2ミラー20とは、第1共振器長L1を形成する。 As shown in FIG. 3A, in the first state ST1, the first spacer 50 and the second spacer 60 are in contact with each other. In the first state ST <b> 1, the position of the second spacer 60 is set to a first position relative to the first spacer 50. At this time, the first resonator Rs1 is formed by the first mirror 10 and the second mirror 20. This resonator has a first resonator length L1. In this example, the first mirror 10 is a concave mirror. The first mirror 10 has, for example, the spherical center of the concave mirror (first center 10c). The first resonator length L1 corresponds to the distance between the first mirror 10 and the second mirror 20 on a straight line passing through the first center 10c and perpendicular to the second mirror surface 20a in the first state ST1. To do. Thus, in the first state ST1, the first mirror 10 and the second mirror 20 form the first resonator length L1.
 図3(b)に示すように、第2状態ST2においても、第1スペーサ50と第2スペーサ60とは、互いに接している。第2状態ST2においては、制御部30の動作により、第2スペーサ60が、第1状態ST1に対して移動している。第1状態ST1と第2状態ST2と、は、可逆性である。 As shown in FIG. 3B, the first spacer 50 and the second spacer 60 are in contact with each other even in the second state ST2. In the second state ST2, the second spacer 60 is moved with respect to the first state ST1 by the operation of the control unit 30. The first state ST1 and the second state ST2 are reversible.
 第2状態ST2の位置は、第1状態ST1とは異なる位置である。第2状態ST2において、第2スペーサ60は、第1スペーサ50に対する相対的な第2位置に設定されている。第2位置は、第1位置とは異なる。このとき、第1ミラー10と第2ミラー20とにより、第2共振器Rs2が形成される。この共振器は、第2共振器長L2を有する。第2共振器長L2は、第2状態ST2における、第1中心10cを通り第2ミラー面20aに対して垂直な直線上における、第1ミラー10と第2ミラー20との間の距離に対応する。このように、制御部30は、第2状態ST2において、第1ミラー10及び第2ミラー20に第2共振器長L2を形成させる。第2共振器長L2は、第1共振器長L1とは異なる。この例では、第2共振器長L2は、第1共振器長L1よりも短い。 The position of the second state ST2 is a position different from the first state ST1. In the second state ST <b> 2, the second spacer 60 is set at a second position relative to the first spacer 50. The second position is different from the first position. At this time, the first resonator 10 and the second mirror 20 form a second resonator Rs2. This resonator has a second resonator length L2. The second resonator length L2 corresponds to the distance between the first mirror 10 and the second mirror 20 on a straight line passing through the first center 10c and perpendicular to the second mirror surface 20a in the second state ST2. To do. Thus, the control unit 30 causes the first resonator 10 and the second mirror 20 to form the second resonator length L2 in the second state ST2. The second resonator length L2 is different from the first resonator length L1. In this example, the second resonator length L2 is shorter than the first resonator length L1.
 第1位置(第1状態ST1における、第2スペーサ60の、第1スペーサ50に対する相対的な位置)と、第2位置(第2状態ST2における、第2スペーサ60の、第1スペーサ50に対する相対的な位置)と、を結ぶ方向は、Z軸方向に対して交差する成分を有する。すなわち、第1位置と第2位置とを結ぶ方向は、第1状態ST1における第1ミラー10と第1状態ST1における第2ミラー20とを結ぶ第1方向と交差する。例えば、第1位置と第2位置とを結ぶ方向は、第2状態ST2における第1ミラー10と第2状態ST2における第2ミラー20とを結ぶ第2方向と交差する。 The first position (relative position of the second spacer 60 with respect to the first spacer 50 in the first state ST1) and the second position (relative of the second spacer 60 with respect to the first spacer 50 in the second state ST2). The direction that connects to the Z-axis direction has a component that intersects the Z-axis direction. That is, the direction connecting the first position and the second position intersects the first direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1. For example, the direction connecting the first position and the second position intersects the second direction connecting the first mirror 10 in the second state ST2 and the second mirror 20 in the second state ST2.
 このような方向に、第2スペーサ60を第1スペーサ50に対して相対的に移動させることで、共振器長を変化させることができる。これにより、共振器における共鳴周波数を変化させることができる。 The resonator length can be changed by moving the second spacer 60 relative to the first spacer 50 in such a direction. Thereby, the resonant frequency in a resonator can be changed.
 共振器長が変化したときの共鳴周波数の変化について、説明する。共振器長Lが、共振器長シフト量ΔLだけ変化したとする。元の共鳴周波数νに対する周波数シフト量Δνは、以下の第1式で表される。

 Δν/ν=-ΔL/(L+ΔL)     (1)

 例えば、Lは、第1共振器長L1であり、ΔLは、第1共振器長L1と第2共振器長L2との差である。
The change of the resonance frequency when the resonator length is changed will be described. It is assumed that the resonator length L is changed by the resonator length shift amount ΔL. The frequency shift amount Δν with respect to the original resonance frequency ν is expressed by the following first equation.

Δν / ν = -ΔL / (L + ΔL) (1)

For example, L is the first resonator length L1, and ΔL is the difference between the first resonator length L1 and the second resonator length L2.
 従って、第2共振器長L2の第2状態ST2において、第1共振器長L1の第1状態ST1の共鳴周波数とは異なる共鳴周波数が得られる。 Therefore, in the second state ST2 of the second resonator length L2, a resonance frequency different from the resonance frequency of the first state ST1 of the first resonator length L1 is obtained.
 共振器長は、共振器の内部に形成される共振器モードの光学的長さである。ファブリペロー型光共振器において2枚の球面鏡が設けられる場合、それぞれの球面の中心を結んだ直線上に、共振器モードが形成される。凹面鏡と平面鏡とが設けられる場合、凹面鏡の球面の中心を通り、平面鏡に対して垂直な直線上に、共振器モードが形成される。2枚の平面鏡が設けられる場合は、平面鏡の平面に対して垂直な直線上に、共振器モードが形成される。この場合には、2つの平面は、厳密に平行である。 The resonator length is the optical length of the resonator mode formed inside the resonator. When two spherical mirrors are provided in a Fabry-Perot optical resonator, a resonator mode is formed on a straight line connecting the centers of the respective spherical surfaces. When a concave mirror and a plane mirror are provided, a resonator mode is formed on a straight line that passes through the center of the spherical surface of the concave mirror and is perpendicular to the plane mirror. When two plane mirrors are provided, the resonator mode is formed on a straight line perpendicular to the plane of the plane mirror. In this case, the two planes are strictly parallel.
 実施形態において、第1状態ST1と第2状態ST2とにおいて共振器長を変化させる構成は、種々の変形が可能である。 In the embodiment, the configuration in which the resonator length is changed in the first state ST1 and the second state ST2 can be variously modified.
 凹面鏡と平面鏡とが設けられる場合には、例えば、図3(a)及び図3(b)に例示したように、平面鏡の平面に対して傾斜した方向に沿って、第2スペーサ60を第1スペーサ50に対して相対的に移動させる。これにより、共振器長が変化する。 When the concave mirror and the plane mirror are provided, for example, as illustrated in FIGS. 3A and 3B, the second spacer 60 is moved along the direction inclined with respect to the plane of the plane mirror. Move relative to the spacer 50. As a result, the resonator length changes.
 図4(a)及び図4(b)は、第1の実施形態に係る別の共振器を例示する模式図である。 
 これらの図は、本実施形態に係る別の共振器111を例示する。これらの図には、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60及び制御部30が図示され、他の要素は省略されている。図4(a)及び図4(b)は、それぞれ、共振器111に設けられる第1状態ST1と第2状態ST2とを例示している。
FIG. 4A and FIG. 4B are schematic views illustrating another resonator according to the first embodiment.
These drawings illustrate another resonator 111 according to this embodiment. In these drawings, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are illustrated, and other elements are omitted. FIGS. 4A and 4B illustrate a first state ST1 and a second state ST2 provided in the resonator 111, respectively.
 共振器111においても、第1ミラー10は、凹面ミラーであり、第2ミラー20は、平面ミラーである。第2ミラー20のミラー面(第2ミラー面20a)は、平面である。第2ミラー面20aは、Z軸方向に対して傾斜している。 Also in the resonator 111, the first mirror 10 is a concave mirror, and the second mirror 20 is a plane mirror. The mirror surface (second mirror surface 20a) of the second mirror 20 is a flat surface. The second mirror surface 20a is inclined with respect to the Z-axis direction.
 この場合も、第1状態ST1において第1共振器長L1が形成され、第2状態ST2において第2共振器長L2が形成される。第2共振器長L2は、第1共振器長L1とは異なる。この例においては、第1面50a及び第2面60aは、Z軸方向に対して垂直である。この場合は、第2スペーサ60の移動の方向(第1スペーサ50に対する相対的な位置の変化の方向)は、Z軸方向に対して垂直である。 Also in this case, the first resonator length L1 is formed in the first state ST1, and the second resonator length L2 is formed in the second state ST2. The second resonator length L2 is different from the first resonator length L1. In this example, the first surface 50a and the second surface 60a are perpendicular to the Z-axis direction. In this case, the direction of movement of the second spacer 60 (the direction of change in the position relative to the first spacer 50) is perpendicular to the Z-axis direction.
 凹面ミラーと平面ミラーとが用いられる場合には、移動の方向は、Z軸方向に対して交差する成分を有する任意の方向で良い。 When a concave mirror and a plane mirror are used, the direction of movement may be any direction having a component that intersects the Z-axis direction.
 図5(a)~図5(f)は、第1の実施形態に係る別の共振器を例示する模式図である。 
 図5(a)及び図5(b)は、共振器112aにおける第1状態ST1と第2状態ST2とを例示している。図5(c)及び図5(d)は、共振器112bにおける第1状態ST1と第2状態ST2とを例示している。図5(e)及び図5(f)は、共振器112cにおける第1状態ST1と第2状態ST2とを例示している。これらの図には、第1ミラー10、第2ミラー20、第1スペーサ50及び第2スペーサ60が図示され、他の要素は省略されている。
FIG. 5A to FIG. 5F are schematic views illustrating another resonator according to the first embodiment.
FIGS. 5A and 5B illustrate the first state ST1 and the second state ST2 in the resonator 112a. FIG. 5C and FIG. 5D illustrate the first state ST1 and the second state ST2 in the resonator 112b. FIGS. 5E and 5F illustrate the first state ST1 and the second state ST2 in the resonator 112c. In these drawings, the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are shown, and other elements are omitted.
 共振器112a~112cにおいては、第1ミラー10の第1ミラー面10a及び第2ミラー20の第2ミラー面20aは、凹面ミラーである。第2ミラー20は、例えば、凹面ミラーの球面の中心(第2中心20c)を有する。共振器長は、第1中心10cと第2中心20cとを結ぶ直線上における、第1ミラー10と第2ミラー20との間の距離に対応する。 In the resonators 112a to 112c, the first mirror surface 10a of the first mirror 10 and the second mirror surface 20a of the second mirror 20 are concave mirrors. The second mirror 20 has, for example, the spherical center of the concave mirror (second center 20c). The resonator length corresponds to the distance between the first mirror 10 and the second mirror 20 on the straight line connecting the first center 10c and the second center 20c.
 共振器112aにおいては、第1スペーサ50の第1面50a及び第2スペーサ60の第2面60aは、Z軸方向に対して垂直である。共振器112bにおいては、第1面50a及び第2面60aは、曲面状である。共振器112cにおいては、第1面50a及び第2面60aは、Z軸方向に対して傾斜している。 In the resonator 112a, the first surface 50a of the first spacer 50 and the second surface 60a of the second spacer 60 are perpendicular to the Z-axis direction. In the resonator 112b, the first surface 50a and the second surface 60a are curved. In the resonator 112c, the first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction.
 このような共振器112a~112cにおいて、第2スペーサ60を第2スペーサ50と接した状態で、相対的に移動させることで、第1状態ST1と第2状態ST2と間において、共振器長を変化させることができる。 In such resonators 112a to 112c, the second spacer 60 is relatively moved while being in contact with the second spacer 50, so that the resonator length can be increased between the first state ST1 and the second state ST2. Can be changed.
 図6(a)及び図6(b)は、第1の実施形態に係る別の共振器を例示する模式図である。 
 これらの図は、共振器113における第1状態ST1と第2状態ST2とを例示している。これらの図には、第1ミラー10、第2ミラー20、第1スペーサ50及び第2スペーサ60が図示され、他の要素は省略されている。
FIG. 6A and FIG. 6B are schematic views illustrating another resonator according to the first embodiment.
These drawings illustrate the first state ST1 and the second state ST2 in the resonator 113. In these drawings, the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are shown, and other elements are omitted.
 共振器113においては、第1ミラー10は、平面ミラーであり、第2ミラー20も、平面ミラーである。 In the resonator 113, the first mirror 10 is a plane mirror, and the second mirror 20 is also a plane mirror.
 第1面50a及び第2面60aは、Z軸方向に対して傾斜している。第2スペーサ60は、第2面60aが第1面50aに接した状態で、移動する。移動の方向は、Z軸方向と交差する。これにより、第1ミラー10と第2ミラー20とにより形成される共振器の共振器長が変化する。 The first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction. The second spacer 60 moves with the second surface 60a in contact with the first surface 50a. The direction of movement intersects the Z-axis direction. Thereby, the resonator length of the resonator formed by the first mirror 10 and the second mirror 20 changes.
 図7(a)~図7(d)は、第1の実施形態に係る別の共振器を例示する模式図である。 
 図7(a)及び図7(b)は、共振器114aにおける第1状態ST1と第2状態ST2とを例示している。図7(c)及び図7(d)は、共振器114bにおける第1状態ST1と第2状態ST2とを例示している。これらの図には、第1ミラー10、第2ミラー20、第1スペーサ50及び第2スペーサ60が図示され、他の要素は省略されている。
FIG. 7A to FIG. 7D are schematic views illustrating another resonator according to the first embodiment.
FIGS. 7A and 7B illustrate the first state ST1 and the second state ST2 in the resonator 114a. FIG. 7C and FIG. 7D illustrate the first state ST1 and the second state ST2 in the resonator 114b. In these drawings, the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are shown, and other elements are omitted.
 共振器114a及び114bにおいては、第1ミラー10は凸面ミラーであり、第2ミラー20は凹面ミラーである。すなわち、第1ミラー面10aは凸状であり、第2ミラー面20aは、凹状である。 In the resonators 114a and 114b, the first mirror 10 is a convex mirror and the second mirror 20 is a concave mirror. That is, the first mirror surface 10a is convex, and the second mirror surface 20a is concave.
 共振器114aにおいては、第1スペーサ50の第1面50a及び第2スペーサ60の第2面60aは、Z軸方向に対して垂直である。共振器112bにおいては、第1面50a及び第2面60aは、Z軸方向に対して傾斜している。 In the resonator 114a, the first surface 50a of the first spacer 50 and the second surface 60a of the second spacer 60 are perpendicular to the Z-axis direction. In the resonator 112b, the first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction.
 このような共振器114a及び114bにおいて、第2スペーサ60を第1スペーサ50と接した状態で、第1スペーサ50に対して相対的に移動させる。これにより、第1状態ST1と第2状態ST2と間において、共振器長を変化させることができる。 In such resonators 114 a and 114 b, the second spacer 60 is moved relative to the first spacer 50 while being in contact with the first spacer 50. Thereby, the resonator length can be changed between the first state ST1 and the second state ST2.
 以下、第1スペーサ50と第2スペーサ60との相対的な移動の例について説明する。以下では、第1スペーサ50(及び第1ミラー10)が固定され、第2スペーサ60(及び第2ミラー20)が移動される場合について説明する。 Hereinafter, an example of relative movement between the first spacer 50 and the second spacer 60 will be described. Hereinafter, a case where the first spacer 50 (and the first mirror 10) is fixed and the second spacer 60 (and the second mirror 20) is moved will be described.
 図8(a)~図8(d)は、第1の実施形態に係る共振器を例示する模式的斜視図である。 
 図8(a)は、第1状態ST1を例示している。図8(b)~図8(d)は、3種類の第2状態ST2を例示している。 
 この例では、第1ミラー10は、凹面ミラーであり、第2ミラー20は、平面ミラーであり、平面形状が正方形である。第1スペーサ50及び第2スペーサ60により、直方体が形成される。第1面50a及び第2面60aは、Z軸方向に対して傾斜している。第1面50a及び第2面60aは、第1ミラー10及び第2ミラー20のそれぞれのミラー面に対して傾斜している。従って、第1面50a及び第2面60aは、長方形である。
FIG. 8A to FIG. 8D are schematic perspective views illustrating the resonator according to the first embodiment.
FIG. 8A illustrates the first state ST1. FIG. 8B to FIG. 8D illustrate three types of second states ST2.
In this example, the first mirror 10 is a concave mirror, the second mirror 20 is a plane mirror, and the planar shape is a square. A rectangular parallelepiped is formed by the first spacer 50 and the second spacer 60. The first surface 50a and the second surface 60a are inclined with respect to the Z-axis direction. The first surface 50 a and the second surface 60 a are inclined with respect to the respective mirror surfaces of the first mirror 10 and the second mirror 20. Accordingly, the first surface 50a and the second surface 60a are rectangular.
 図8(a)に示した第1状態ST1から、図8(b)に示した第2状態ST2に移行する。第2スペーサ60の移動の方向Mdは、第1面50a及び第2面60aの長方形の長辺方向に沿っている。この場合、第1状態ST1と第2状態ST2との間において、共振器長が変化する。 Transition from the first state ST1 shown in FIG. 8A to the second state ST2 shown in FIG. 8B. The moving direction Md of the second spacer 60 is along the long side direction of the rectangle of the first surface 50a and the second surface 60a. In this case, the resonator length changes between the first state ST1 and the second state ST2.
 なお、第2スペーサ60の移動の方向Mdが、第1面50a及び第2面60aの長方形の短辺方向に沿う場合は、第1状態ST1と第2状態ST2との間において、共振器長は変化しない。 When the moving direction Md of the second spacer 60 is along the rectangular short side direction of the first surface 50a and the second surface 60a, the resonator length is between the first state ST1 and the second state ST2. Does not change.
 図8(c)に示した第2状態ST2においては、第2スペーサ60の移動の方向Mdは、第1面50a及び第2面60aの長方形の対角線方向に沿っている。この場合、第1状態ST1と第2状態ST2との間において、共振器長が変化する。 In the second state ST2 shown in FIG. 8C, the moving direction Md of the second spacer 60 is along the diagonal direction of the rectangles of the first surface 50a and the second surface 60a. In this case, the resonator length changes between the first state ST1 and the second state ST2.
 図8(d)に示した第2状態ST2においては、第2スペーサ60の移動の方向Mdは、回転の成分を含む。回転の軸は、Z軸方向と交差する方向の成分を含む。この場合、第1状態ST1と第2状態ST2との間において、共振器長は変化する。 In the second state ST2 shown in FIG. 8D, the moving direction Md of the second spacer 60 includes a rotation component. The axis of rotation includes a component in a direction that intersects the Z-axis direction. In this case, the resonator length changes between the first state ST1 and the second state ST2.
 このように、第2スペーサ60の移動量(移動距離)に対する共振器長の変化量の変化(例えば比)を変えることができる場合がある。 Thus, there are cases where the change (for example, ratio) of the change amount of the resonator length with respect to the movement amount (movement distance) of the second spacer 60 can be changed.
 第2スペーサ60の移動量に対する共振器長の変化量の比は、移動の方向に依存する。第2スペーサ60の移動量に対して、共振器長において大きな変化を得たい場合がある。一方、第2スペーサ60の移動量に対して、高精度で共振器長を変化させたい場合がある。用途に応じて、移動方向を選択する。これにより、共振器長を所望の大きさで、所望の精度で、変化させることが容易になる。 The ratio of the change amount of the resonator length to the movement amount of the second spacer 60 depends on the direction of movement. In some cases, it is desired to obtain a large change in the resonator length with respect to the movement amount of the second spacer 60. On the other hand, there is a case where it is desired to change the resonator length with high accuracy with respect to the movement amount of the second spacer 60. Select the moving direction according to the application. This facilitates changing the resonator length to a desired size and with a desired accuracy.
 実施形態において、第1スペーサ50及び第2スペーサ60における移動は、相対的な移動である。第2スペーサ60が固定され、第1スペーサ50が移動しても良い。第1スペーサ50及び第6スペーサ60のそれぞれが移動しても良い。すなわち、相対的な位置が異なる第1状態ST1と第2状態ST2とが形成されれば良い。 In the embodiment, the movement in the first spacer 50 and the second spacer 60 is a relative movement. The second spacer 60 may be fixed and the first spacer 50 may move. Each of the first spacer 50 and the sixth spacer 60 may move. That is, it is only necessary to form the first state ST1 and the second state ST2 having different relative positions.
 図9(a)及び図9(b)は、第1の実施形態に係る別の共振器を例示する模式図である。 
 これらの図は、共振器115における第1状態ST1と第2状態ST2とを例示している。
FIG. 9A and FIG. 9B are schematic views illustrating another resonator according to the first embodiment.
These drawings illustrate the first state ST1 and the second state ST2 in the resonator 115.
 共振器115においては、第1ミラー10は、凹面ミラーであり、第2ミラー20は、平面ミラーである。この例においては、第1スペーサ50に、第1接続部51と、第1中間部52と、が設けられる。第1接続部51は、第1ミラー10と接続される。第1中間部52は、第1接続部51と第2スペーサ60との間に設けられる。 In the resonator 115, the first mirror 10 is a concave mirror, and the second mirror 20 is a plane mirror. In this example, the first connection portion 51 and the first intermediate portion 52 are provided in the first spacer 50. The first connection unit 51 is connected to the first mirror 10. The first intermediate part 52 is provided between the first connection part 51 and the second spacer 60.
 第1接続部51は、第1中間部52に対向する面51aを有する。第2中間部52は、第1接続部51に対向する面52aを有する。面52aは、面51aに沿っている。この例では、面51a及び面52aは、Z軸方向に対して傾斜している。 The first connection part 51 has a surface 51 a that faces the first intermediate part 52. The second intermediate part 52 has a surface 52 a that faces the first connection part 51. The surface 52a is along the surface 51a. In this example, the surface 51a and the surface 52a are inclined with respect to the Z-axis direction.
 図9(a)及び図9(b)に示すように、第1状態ST1と第2状態ST2との間において、第2スペーサ60の第1スペーサ50に対する相対的な位置が変化する。さらに、第1スペーサ50の中において、第1中間部52の第1接続部51に対する相対的な位置が変化している。第1状態ST1及び第2状態ST2において、第1中間部52は、第1接続部51と接する。第1状態ST1及び第2状態ST2において、第1中間部52は、第2スペーサ60と接する。 As shown in FIGS. 9A and 9B, the relative position of the second spacer 60 with respect to the first spacer 50 changes between the first state ST1 and the second state ST2. Furthermore, in the first spacer 50, the relative position of the first intermediate portion 52 with respect to the first connection portion 51 is changed. In the first state ST1 and the second state ST2, the first intermediate part 52 is in contact with the first connection part 51. In the first state ST1 and the second state ST2, the first intermediate part 52 is in contact with the second spacer 60.
 例えば、Z軸方向(第1状態ST1における第1ミラー10と第1状態ST1における第2ミラー20とを結ぶ第1方向)と交差する1つの方向を第1交差方向とする。この例では、第1交差方向は、X軸方向である。第1交差方向上の第1中間部52の位置は、第1交差方向上の第1接続部51の位置に対して変化可能である。 For example, one direction that intersects the Z-axis direction (a first direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1) is defined as a first intersecting direction. In this example, the first intersecting direction is the X-axis direction. The position of the first intermediate part 52 in the first intersecting direction can be changed with respect to the position of the first connecting part 51 in the first intersecting direction.
 共振器115において、第2スペーサ60の移動に加えて、第1中間部52の移動により、共振器長が変化する。例えば、共振器長を大きく変化させることができる。 In the resonator 115, in addition to the movement of the second spacer 60, the movement of the first intermediate portion 52 changes the resonator length. For example, the resonator length can be changed greatly.
 この例では、第1面50aは、Z軸方向に対して傾斜している。面51a(及び面52a)もZ軸方向に対して傾斜している。この例では、第1面50aとZ軸方向との間の角度は、面51aとZ軸方向との間の角度とは異なる。第2スペーサ60の移動量に対する共振器長の変化率は、第1中間部52の移動量に対する共振器長の変化率とは、異なる。これらの面の角度を変えることで、共振器長の変化を大きく変化させることと、高精度に変化させることと、が、可能になる。 In this example, the first surface 50a is inclined with respect to the Z-axis direction. The surface 51a (and the surface 52a) is also inclined with respect to the Z-axis direction. In this example, the angle between the first surface 50a and the Z-axis direction is different from the angle between the surface 51a and the Z-axis direction. The change rate of the resonator length with respect to the movement amount of the second spacer 60 is different from the change rate of the resonator length with respect to the movement amount of the first intermediate portion 52. By changing the angles of these surfaces, it is possible to change the resonator length largely and to change it with high accuracy.
 第1面50aのZ軸方向に対する傾斜方向が、面51aのZ軸方向に対する傾斜方向と異なっても良い。例えば、第1面50aがZ軸方向及びX軸方向と傾斜し、面51aがZ軸方向及びY軸方向と傾斜しても良い。 The inclination direction of the first surface 50a with respect to the Z-axis direction may be different from the inclination direction of the surface 51a with respect to the Z-axis direction. For example, the first surface 50a may be inclined with respect to the Z-axis direction and the X-axis direction, and the surface 51a may be inclined with respect to the Z-axis direction and the Y-axis direction.
 第1スペーサ50に、複数の第1中間部52が設けられても良い。複数の第1中間部52は、Z軸方向に沿って並ぶ。複数の第1中間部52どうしの間の面とZ軸方向との間の角度は、複数の第1中間部52において変更されても良い。 A plurality of first intermediate portions 52 may be provided in the first spacer 50. The plurality of first intermediate portions 52 are arranged along the Z-axis direction. The angle between the surface between the plurality of first intermediate portions 52 and the Z-axis direction may be changed in the plurality of first intermediate portions 52.
 第1接続部51及び第1中間部52は、凹面ミラーと平面ミラーとの組み合わせ、凹面ミラーと凹面ミラーとの組み合わせ、平面ミラーと平面ミラーとの組み合わせ、及び、凹面ミラーと凸面ミラーとの組み合わせのそれぞれにおいて、設けても良い。 The first connecting portion 51 and the first intermediate portion 52 are a combination of a concave mirror and a plane mirror, a combination of a concave mirror and a concave mirror, a combination of a plane mirror and a plane mirror, and a combination of a concave mirror and a convex mirror. It may be provided in each of the above.
 図10(a)及び図10(b)は、第1の実施形態に係る別の共振器を例示する模式図である。 
 これらの図は、共振器116における第1状態ST1と第2状態ST2とを例示している。
FIG. 10A and FIG. 10B are schematic views illustrating another resonator according to the first embodiment.
These drawings illustrate the first state ST1 and the second state ST2 in the resonator 116.
 共振器116においても、第1ミラー10は、凹面ミラーであり、第2ミラー20は、平面ミラーである。この例においては、第2スペーサ60に、第2接続部61と、第2中間部62と、が設けられる。第2接続部61は、第2ミラー20と接続される。第2中間部62は、第2接続部61と第1スペーサ50との間に設けられる。 Also in the resonator 116, the first mirror 10 is a concave mirror, and the second mirror 20 is a plane mirror. In this example, the second spacer 60 is provided with a second connection portion 61 and a second intermediate portion 62. The second connection unit 61 is connected to the second mirror 20. The second intermediate part 62 is provided between the second connection part 61 and the first spacer 50.
 この例では、第2接続部61は、第2中間部62に対向する面61aを有する。第2中間部62は、第2接続部61に対向する面62aを有する。面62aは、面61aに沿っている。この例では、面61a及び面62aは、Z軸方向に対して傾斜している。 In this example, the second connection portion 61 has a surface 61 a that faces the second intermediate portion 62. The second intermediate portion 62 has a surface 62 a that faces the second connection portion 61. The surface 62a is along the surface 61a. In this example, the surface 61a and the surface 62a are inclined with respect to the Z-axis direction.
 図10(a)及び図10(b)に示すように、第1状態ST1と第2状態ST2との間において、第2スペーサ60の第1スペーサ50に対する相対的な位置が変化する。このとき、第2スペーサ60の中において、第2中間部62の第2接続部61に対する相対的な位置が変化している。第1状態ST1及び第2状態ST2において、第2中間部62は、第2接続部61と接する。第1状態ST1及び第2状態ST2において、第2中間部62は、第1スペーサ50と接する。 As shown in FIGS. 10A and 10B, the relative position of the second spacer 60 with respect to the first spacer 50 changes between the first state ST1 and the second state ST2. At this time, in the second spacer 60, the relative position of the second intermediate portion 62 with respect to the second connection portion 61 changes. In the first state ST1 and the second state ST2, the second intermediate part 62 is in contact with the second connection part 61. In the first state ST1 and the second state ST2, the second intermediate portion 62 is in contact with the first spacer 50.
 例えば、第2交差方向(例えばX軸方向)上の第2中間部62の位置は、第2交差方向上の第2接続部61の位置に対して変化可能である。第2交差方向は、第1状態ST1における第1ミラー10と第1状態ST1における第2ミラー20とを結ぶ第1方向と交差す方向である。 For example, the position of the second intermediate portion 62 in the second cross direction (for example, the X-axis direction) can be changed with respect to the position of the second connection portion 61 in the second cross direction. The second intersecting direction is a direction intersecting the first direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1.
 共振器116において、第2スペーサ60の移動において、第2中間部62と第2接続部61との間の相対的な移動を利用することで、第2ミラー20の位置を第1ミラー10の位置に対して大きく変化させることができる。これにより、共振器長を大きく変化させることができる。 In the resonator 116, the movement of the second spacer 60 uses the relative movement between the second intermediate part 62 and the second connection part 61 to move the position of the second mirror 20 to the position of the first mirror 10. The position can be changed greatly. Thereby, the resonator length can be changed greatly.
 この例では、第1面50aは、Z軸方向に対して傾斜している。そして、面61a(及び面62a)もZ軸方向に対して傾斜している。第1面50aとZ軸方向との間の角度は、面61aとZ軸方向との間の角度とは異なる。第2スペーサ60を移動させる際に、第2接続部61の第2中間部62に対する相対的な移動量に対する共振器長の変化率は、第2中間部62の第1スペーサ50に対する相対的な移動量に対する共振器長の変化率とは、異なる。これらの面の角度を変えることで、共振器長の変化を大きく変化させることと、高精度に変化させることと、が、可能になる。 In this example, the first surface 50a is inclined with respect to the Z-axis direction. The surface 61a (and the surface 62a) is also inclined with respect to the Z-axis direction. The angle between the first surface 50a and the Z-axis direction is different from the angle between the surface 61a and the Z-axis direction. When the second spacer 60 is moved, the change rate of the resonator length with respect to the relative movement amount of the second connecting portion 61 with respect to the second intermediate portion 62 is relative to the first spacer 50 of the second intermediate portion 62. The rate of change of the resonator length with respect to the amount of movement is different. By changing the angles of these surfaces, it is possible to change the resonator length largely and to change it with high accuracy.
 第1面50aのZ軸方向に対する傾斜方向が、面61aのZ軸方向に対する傾斜方向と異なっても良い。例えば、第1面50aがZ軸方向及びX軸方向に対して傾斜し、面61aがZ軸方向及びY軸方向に対して傾斜しても良い。 The inclination direction of the first surface 50a with respect to the Z-axis direction may be different from the inclination direction of the surface 61a with respect to the Z-axis direction. For example, the first surface 50a may be inclined with respect to the Z-axis direction and the X-axis direction, and the surface 61a may be inclined with respect to the Z-axis direction and the Y-axis direction.
 第2スペーサ60に、複数の第2中間部62が設けられても良い。複数の第2中間部62は、Z軸方向に沿って並ぶ。複数の第2中間部62どうしの間の面とZ軸方向との間の角度は、複数の第2中間部62において変更されても良い。 A plurality of second intermediate portions 62 may be provided on the second spacer 60. The plurality of second intermediate portions 62 are arranged along the Z-axis direction. The angle between the surface between the plurality of second intermediate portions 62 and the Z-axis direction may be changed in the plurality of second intermediate portions 62.
 第2接続部61及び第2中間部62は、凹面ミラーと平面ミラーとの組み合わせ、凹面ミラーと凹面ミラーとの組み合わせ、平面ミラーと平面ミラーとの組み合わせ、及び、凹面ミラーと凸面ミラーとの組み合わせのそれぞれにおいて、設けても良い。 The second connecting portion 61 and the second intermediate portion 62 are a combination of a concave mirror and a plane mirror, a combination of a concave mirror and a concave mirror, a combination of a plane mirror and a plane mirror, and a combination of a concave mirror and a convex mirror. It may be provided in each of the above.
 実施形態に係る共振器において、複数のスペーサ(第1スペーサ50、第1スペーサ50の第1接続部51、第1スペーサ50の第1中間部52、第2スペーサ60、第2スペーサ60の第2接続部61、及び、第2スペーサ60の第2中間部62など)が設けられても良い。複数のスペーサの数は、2でも良く、3以上でも良い。 In the resonator according to the embodiment, a plurality of spacers (first spacer 50, first connection portion 51 of first spacer 50, first intermediate portion 52 of first spacer 50, second spacer 60, second spacer 60 first 2 connection part 61, the 2nd intermediate part 62 of the 2nd spacer 60, etc.) may be provided. The number of the plurality of spacers may be two or three or more.
 第1接続部51を第1スペーサ50とみなし、第1中間部52を第3スペーサとみなしてもよい。第2接続部61を第2スペーサ60とみなし、第2中間部62を第3スペーサまたは第4スペーサとみなしても良い。例えば、第1スペーサ50及び第2スペーサ60の少なくともいずれかが、2つ以上のスペーサを含んでも良い。 The first connection portion 51 may be regarded as the first spacer 50, and the first intermediate portion 52 may be regarded as the third spacer. The second connecting portion 61 may be regarded as the second spacer 60, and the second intermediate portion 62 may be regarded as the third spacer or the fourth spacer. For example, at least one of the first spacer 50 and the second spacer 60 may include two or more spacers.
 例えば、本実施形態に係る共振器は、第1ミラー10と、第2ミラー20と、複数のスペーサと、を含む。複数のスペーサは、第1ミラー10と第2ミラー20との間に設けられる。複数のスペーサは、第1ミラー10と第2ミラー20とを結ぶ方向(例えばZ軸方向)に並ぶ。複数のスペーサは、例えば、第1ミラー10(第1ミラー10の外縁部10r及び側面の少なくともいずれか)と接する第1スペーサ50と、第2ミラー20(第2ミラー20の外縁部20r及び側面の少なくともいずれか)と接する第2スペーサ60と、を含む。 For example, the resonator according to the present embodiment includes a first mirror 10, a second mirror 20, and a plurality of spacers. The plurality of spacers are provided between the first mirror 10 and the second mirror 20. The plurality of spacers are arranged in a direction connecting the first mirror 10 and the second mirror 20 (for example, the Z-axis direction). The plurality of spacers include, for example, a first spacer 50 in contact with the first mirror 10 (at least one of the outer edge portion 10r and the side surface of the first mirror 10), and the second mirror 20 (the outer edge portion 20r and the side surface of the second mirror 20). And a second spacer 60 in contact with at least one of the above.
 制御部30は、複数のスペーサの少なくともいずれかの位置を変更して、第1ミラー10と第2ミラー20とで形成される共振器長を変化させる。例えば、第1状態ST1において、第1ミラー10と第2ミラー20とは、第1共振器長L1を形成する。第1状態ST1においては、複数のスペーサのうちの1つ(例えば第1スペーサ50)が第1ミラー10と接し、複数のスペーサのうちの他の1つ(例えば第2スペーサ60)が第2ミラー20と接し、最近接の複数のスペーサが互いに接する。 The control unit 30 changes the length of the resonator formed by the first mirror 10 and the second mirror 20 by changing the position of at least one of the plurality of spacers. For example, in the first state ST1, the first mirror 10 and the second mirror 20 form a first resonator length L1. In the first state ST1, one of the plurality of spacers (for example, the first spacer 50) is in contact with the first mirror 10, and the other one of the plurality of spacers (for example, the second spacer 60) is the second. A plurality of closest spacers are in contact with the mirror 20 and in contact with each other.
 制御部30は、第2状態ST2において第1ミラー10及び第2ミラー20に第2共振器長L2を形成させる。第2共振器長L2は、第1共振器長L1とは異なる。第2状態ST2においては、複数のスペーサのうちの1つ(例えば第1スペーサ50)が第1ミラー10と接し、複数のスペーサのうちの他の1つ(例えば第2スペーサ60)が第2ミラー20と接し、最近接の複数のスペーサが互いに接する。第2状態ST2は、第1状態ST1とは異なる状態である。 
 このような共振器によれば、共鳴周波数が可変の共振器が提供できる。すなわち、高い周波数安定性を維持しつつ、共鳴周波数を変更できる。
The control unit 30 causes the first resonator 10 and the second mirror 20 to form the second resonator length L2 in the second state ST2. The second resonator length L2 is different from the first resonator length L1. In the second state ST2, one of the plurality of spacers (for example, the first spacer 50) is in contact with the first mirror 10, and the other one of the plurality of spacers (for example, the second spacer 60) is the second. A plurality of closest spacers are in contact with the mirror 20 and are in contact with each other. The second state ST2 is a state different from the first state ST1.
According to such a resonator, a resonator having a variable resonance frequency can be provided. That is, the resonance frequency can be changed while maintaining high frequency stability.
 実施形態において、最近接のスペーサ(例えば、第1スペーサ50及び第2スペーサ60など)は、点接触、線接触及び面接触から選択される1つまたは複数の接触状態を形成することにより力学的に安定した状態を形成していることが好ましい。ここで言う力学的に安定した状態とは、相対的な位置を自然に保つことができ、その接触状態を維持するための支持装置等が不要な状態である。例えば、図3(a)及び図3(b)に示した例においては、第1状態ST1及び第2状態ST2において、第1スペーサ50と第2スペーサ60とは、面(第1面50a及び第2面60a)で接している。これにより、第1スペーサ50と第2スペーサ60との相対的な位置が安定する。点で接触する場合には、3つ以上の点で接触することが好ましい。相対的な位置が安定する。接する3つ以上の点は、互いに離れていることが好ましい。相対的位置がより安定する。 In an embodiment, the closest spacers (eg, first spacer 50 and second spacer 60, etc.) are mechanically formed by forming one or more contact states selected from point contact, line contact, and surface contact. It is preferable to form a stable state. The mechanically stable state referred to here is a state in which the relative position can be naturally maintained, and a support device or the like for maintaining the contact state is unnecessary. For example, in the example shown in FIGS. 3A and 3B, in the first state ST1 and the second state ST2, the first spacer 50 and the second spacer 60 are surfaces (first surface 50a and It is in contact with the second surface 60a). Thereby, the relative position of the 1st spacer 50 and the 2nd spacer 60 is stabilized. When contacting at a point, it is preferable to contact at three or more points. The relative position is stable. It is preferable that three or more points in contact with each other are separated from each other. The relative position is more stable.
 例えば、X軸方向の成分を有する方向に沿って離間する第1及び第2の点と、Y軸方向の成分を有する方向に沿って第1及び第2の点から離間した第2の点において、第1スペーサ50と第2スペーサ60とが接することが好ましい。これにより、相対的位置がより安定する。 For example, at the first and second points that are separated along the direction having the component in the X-axis direction and at the second point that is separated from the first and second points along the direction having the component in the Y-axis direction The first spacer 50 and the second spacer 60 are preferably in contact with each other. Thereby, a relative position becomes more stable.
 例えば、第1状態ST1において、第1スペーサ50の少なくとも3点は、第2スペーサ60と接していることが好ましい。第2状態ST2においても、第1スペーサ50の少なくとも3点は、第2スペーサ60と接していることが好ましい。 For example, in the first state ST1, it is preferable that at least three points of the first spacer 50 are in contact with the second spacer 60. Also in the second state ST2, it is preferable that at least three points of the first spacer 50 are in contact with the second spacer 60.
 実施形態において、第1スペーサ50及び第2スペーサ60の熱膨張係数は低いことが好ましい。第1スペーサ50及び第2スペーサ60の少なくともいずれかの、20℃における熱膨張係数は、例えば、10-6-1以下であることが好ましい。これにより、温度の変化の影響が抑制でき、共振器長、すなわち、共鳴周波数をより安定にすることができる。 In the embodiment, the first spacer 50 and the second spacer 60 preferably have a low coefficient of thermal expansion. The coefficient of thermal expansion at 20 ° C. of at least one of the first spacer 50 and the second spacer 60 is preferably 10 −6 K −1 or less, for example. Thereby, the influence of the temperature change can be suppressed, and the resonator length, that is, the resonance frequency can be made more stable.
 第1スペーサ50及び第2スペーサ60には、例えば、熱膨張係数が低い低熱膨張材料を用いることが好ましい。低熱膨張係数材料として、例えば、室温近傍で熱膨張係数が零になるセラミクス材料を用いても良い。例えば、二酸化ケイ素に少量のチタンを添加した物などを用いることができる。例えば、5℃~35℃において0±0.03×10-6/K程度の熱膨張係数が得られる。室温近傍で熱膨張係数が低くなる合金を用いても良い。例えば、鉄、ニッケル及びコバルト含む合金(例えば、32Ni-5Co-Fe)が用いられる。32Ni-5Co-Feにおいて、ニッケルの組成比は、約32%であり、コバルトの組成比は、約5%であり、鉄の組成比は、63%である。20~60℃において、約0.6×10-6/K以下の熱膨張係数が得られる。 For the first spacer 50 and the second spacer 60, for example, it is preferable to use a low thermal expansion material having a low thermal expansion coefficient. As the low thermal expansion coefficient material, for example, a ceramic material having a thermal expansion coefficient of zero near room temperature may be used. For example, a material obtained by adding a small amount of titanium to silicon dioxide can be used. For example, a thermal expansion coefficient of about 0 ± 0.03 × 10 −6 / K can be obtained at 5 ° C. to 35 ° C. An alloy having a low coefficient of thermal expansion near room temperature may be used. For example, an alloy containing iron, nickel and cobalt (for example, 32Ni-5Co—Fe) is used. In 32Ni-5Co-Fe, the composition ratio of nickel is about 32%, the composition ratio of cobalt is about 5%, and the composition ratio of iron is 63%. A thermal expansion coefficient of about 0.6 × 10 −6 / K or less is obtained at 20 to 60 ° C.
 実施形態において、図2に関して説明したように、共振器は、容器80の中に格納される。容器80内は、減圧される。容器80は、例えば、減圧容器(真空容器)である。これにより、共振器が熱的に遮蔽される。さらに気圧の影響が抑制される。容器80にペルチェ素子などの温度調整素子82を設け、容器80内の温度を一定にしても良い。これにより、共振器の周辺温度が一定に維持される。 In an embodiment, the resonator is stored in a container 80 as described with respect to FIG. The inside of the container 80 is depressurized. The container 80 is, for example, a decompression container (vacuum container). Thereby, the resonator is thermally shielded. Furthermore, the influence of atmospheric pressure is suppressed. The container 80 may be provided with a temperature adjusting element 82 such as a Peltier element so that the temperature in the container 80 is constant. Thereby, the ambient temperature of the resonator is kept constant.
 図11(a)及び図11(b)は、第1の実施形態に係る別の共振器を例示する模式図である。 
 図11(a)は、模式的斜視図である。図11(b)は、平面図である。
 図11(a)において、制御部30は、省略されている。図11(a)に示すように、第1スペーサ50及び第2スペーサ60は、円筒状でも良い。
FIG. 11A and FIG. 11B are schematic views illustrating another resonator according to the first embodiment.
FIG. 11A is a schematic perspective view. FIG. 11B is a plan view.
In FIG. 11A, the control unit 30 is omitted. As shown in FIG. 11A, the first spacer 50 and the second spacer 60 may be cylindrical.
 図11(b)に示すように、制御部30として、第1~第3移動装置31~33が用いられる。第1状態と第2状態との間で状態を変化させる際に、2つ以上の移動装置の間に、第2スペーサ60が位置する。状態の変化(移動)の後に移動装置は、第2スペーサ60から離間する。 As shown in FIG. 11 (b), first to third moving devices 31 to 33 are used as the control unit 30. When changing the state between the first state and the second state, the second spacer 60 is located between the two or more moving devices. After the state change (movement), the moving device is separated from the second spacer 60.
 高分解能分光や光通信等の分野において、極めて周波数安定な光源や精度の高い周波数測定器が用いられる。周波数安定な光源や、精度の高い周波数測定器を得るに、例えば、極めて周波数安定な周波数標準を用意し光源の周波数をロックする手法が用いられる。周波数標準として、原子遷移や、光周波数コムや、低熱膨張材料製参照用共振器がある。室温近傍で熱膨張係数が零となる低熱膨張材料で作製された参照用共振器は、比較的安価で高い周波数安定性を得られる。 In the fields of high resolution spectroscopy and optical communication, extremely frequency stable light sources and highly accurate frequency measuring instruments are used. In order to obtain a frequency-stable light source and a highly accurate frequency measuring device, for example, a method of preparing an extremely frequency-stable frequency standard and locking the frequency of the light source is used. Frequency standards include atomic transitions, optical frequency combs, and reference resonators made of low thermal expansion materials. A reference resonator made of a low thermal expansion material having a coefficient of thermal expansion of zero near room temperature is relatively inexpensive and can provide high frequency stability.
 参照用共振器は、共振器長固有の共鳴周波数を有する。このため、必要な周波数とほぼ同じ標準周波数を有する参照用共振器が得られるとは限らない。そこで、周波数シフタを用いる手法や、ピエゾ素子により共振器ミラーを光軸方向に移動させて共振器長を変える方法などが採用される。周波数シフタの場合は、シフト量が大きいと、高い精度を得るには装置が高価であり、周波数シフタの駆動電源に起因して、周波数が不安定である。一方、ピエゾ素子を用いる場合は、ピエゾ素子や駆動装置に起因して、周波数が不安定である。これらの手法においては、周波数を変更することにより、高い周波数安定性を損ねる。共振器において、周波数安定性を損ねることなく共鳴周波数を変更することが望まれる。 The reference resonator has a resonance frequency unique to the resonator length. Therefore, it is not always possible to obtain a reference resonator having a standard frequency that is substantially the same as the required frequency. Therefore, a method using a frequency shifter, a method of changing the resonator length by moving the resonator mirror in the optical axis direction by a piezo element, and the like are adopted. In the case of the frequency shifter, if the shift amount is large, the device is expensive to obtain high accuracy, and the frequency is unstable due to the drive power source of the frequency shifter. On the other hand, when a piezo element is used, the frequency is unstable due to the piezo element and the driving device. In these methods, high frequency stability is impaired by changing the frequency. In a resonator, it is desirable to change the resonance frequency without impairing the frequency stability.
 本実施形態においては、例えば、2つの向かい合わせのミラーの間に、複数のスペーサを設け、スペーサを相対的に移動させる。これにより、共振器長をシフトできるファブリペロー型光共振器が得られる。実施形態においては、スペーサ長だけで共振器長が決まる。単純かつ安定な構造である。共振器長の変化の前後の状態において、共振器に与えられる外力が変化しない。複数のスペーサ(分割したスペーサ)どうしの密着性を損ねる機構が、使用されない。共振器長を変化した後に継続して押し続ける(引っ張り続ける)機構が、使用されない。すなわち、周波数の不安定性を生じる機構を用いずに、周波数を変更することができる。 In this embodiment, for example, a plurality of spacers are provided between two facing mirrors, and the spacers are moved relatively. Thereby, a Fabry-Perot type optical resonator capable of shifting the resonator length is obtained. In the embodiment, the resonator length is determined only by the spacer length. Simple and stable structure. In the state before and after the change in the resonator length, the external force applied to the resonator does not change. A mechanism that impairs the adhesion between a plurality of spacers (divided spacers) is not used. A mechanism that keeps pushing (pulling) continuously after changing the resonator length is not used. That is, the frequency can be changed without using a mechanism that causes frequency instability.
 本実施形態によれば、周波数安定性を損ねることなく、共振器の共鳴周波数を変更することができる。 According to this embodiment, the resonance frequency of the resonator can be changed without impairing the frequency stability.
 (第2の実施形態) 
 本実施形態においては、1つのスペーサ上で1つのミラーが移動する。本実施形態において、ミラー、スペーサ、固定部81及び容器80には、第1の実施形態に関して説明した構成及び材料が適用できる。以下では、第2の実施形態について、第1の実施形態とは異なる部分について説明する。第1の実施形態と同様な部分については、適宜説明を省略する。
(Second Embodiment)
In the present embodiment, one mirror moves on one spacer. In the present embodiment, the configuration and materials described in regard to the first embodiment can be applied to the mirror, the spacer, the fixing portion 81, and the container 80. Below, about 2nd Embodiment, a different part from 1st Embodiment is demonstrated. The description of the same parts as in the first embodiment will be omitted as appropriate.
 図12(a)及び図12(b)は、第2の実施形態に係る共振器を例示する模式図である。 
 本実施形態に係る共振器120は、第1ミラー10と、第2ミラー20と、スペーサ55(第1スペーサ)と、制御部30と、を含む。この例では、固定部81がさらに設けられている。共振器120も、図2に例示した容器80(例えば減圧容器)に格納できる。
FIGS. 12A and 12B are schematic views illustrating the resonator according to the second embodiment.
The resonator 120 according to the present embodiment includes a first mirror 10, a second mirror 20, a spacer 55 (first spacer), and a control unit 30. In this example, a fixing portion 81 is further provided. The resonator 120 can also be stored in the container 80 illustrated in FIG. 2 (for example, a decompression container).
 スペーサ55は、第1ミラー10と第2ミラー20との間に設けられる。スペーサ55の少なくとも一部が、第1ミラー10と第2ミラー20との間に設けられても良い。スペーサ55は、例えば、第1ミラー10の外縁部10r及び側面の少なくとも一部と接続される。例えばスペーサ55の空間的位置は、固定部81により固定される。これにより、例えば、第1ミラー10の空間的位置が規定される。 The spacer 55 is provided between the first mirror 10 and the second mirror 20. At least a part of the spacer 55 may be provided between the first mirror 10 and the second mirror 20. The spacer 55 is connected to, for example, the outer edge portion 10r of the first mirror 10 and at least a part of the side surface. For example, the spatial position of the spacer 55 is fixed by the fixing portion 81. Thereby, for example, the spatial position of the first mirror 10 is defined.
 1つの状態(例えば第1状態ST1)において、第1ミラー10と第2ミラー20とを結ぶ方向(第1方向)をZ軸方向とする。 In one state (for example, the first state ST1), a direction (first direction) connecting the first mirror 10 and the second mirror 20 is defined as a Z-axis direction.
 スペーサ55は、図1(b)に例示したように、例えば、Z軸方向を軸とした管状(枠状)である。スペーサ55は、Z軸方向に延びる複数の部分を有しても良い。スペーサ55は、複数の部分により不連続的に第1ミラー10と接続されても良い。 As illustrated in FIG. 1B, the spacer 55 has a tubular shape (frame shape) with the Z-axis direction as an axis, for example. The spacer 55 may have a plurality of portions extending in the Z-axis direction. The spacer 55 may be connected to the first mirror 10 discontinuously by a plurality of portions.
 スペーサ55の内側に形成される空洞を、第1ミラー10と第2ミラー20とで反射する光が通過する。この場合も、第1ミラー10及び第2ミラー20は、ファブリペロー型光共振器を形成する。第1ミラー面10aと第2ミラー面20aとで反射する光は、スペーサ55を通過しない。この例では、第1ミラー10及び第2ミラー20のそれぞれは、凹面ミラーである。 The light reflected by the first mirror 10 and the second mirror 20 passes through the cavity formed inside the spacer 55. Also in this case, the first mirror 10 and the second mirror 20 form a Fabry-Perot type optical resonator. The light reflected by the first mirror surface 10 a and the second mirror surface 20 a does not pass through the spacer 55. In this example, each of the first mirror 10 and the second mirror 20 is a concave mirror.
 スペーサ55は、第1ミラー10に対向する第1面55aと、第2ミラー20に対向する第2面55bと、を有する。 The spacer 55 has a first surface 55 a that faces the first mirror 10 and a second surface 55 b that faces the second mirror 20.
 制御部30は、第2ミラー20の位置を変更して、第1ミラー10と第2ミラー20とで形成される共振器長を変化させる。例えば、第2ミラー20は、スペーサ55上で移動する。例えば、第2ミラー20は、第2面55bに沿って移動する。この移動は、制御部30により行われる。これにより、第2ミラー20の位置が互いに異なる複数の状態(第1状態ST1及び第2状態ST2)が形成できる。 The control unit 30 changes the position of the second mirror 20 to change the resonator length formed by the first mirror 10 and the second mirror 20. For example, the second mirror 20 moves on the spacer 55. For example, the second mirror 20 moves along the second surface 55b. This movement is performed by the control unit 30. Thereby, a plurality of states (first state ST1 and second state ST2) where the positions of the second mirror 20 are different from each other can be formed.
 図12(a)及び図12(b)は、それぞれ第1状態ST1と第2状態ST2とを例示している。 
 第1状態ST1においては、第2ミラー20がスペーサ55(第1スペーサ)と接している。第1状態ST1においては、第2ミラー20は、第1ミラー10に対する相対的な第1位置に設定されている。第1状態ST1において、第1ミラー10と第2ミラーとは、第1共振器Rs1を形成す。第1状態ST1において、第1ミラー10と第2ミラー20とは、第1共振器長L1を形成する。
FIG. 12A and FIG. 12B illustrate the first state ST1 and the second state ST2, respectively.
In the first state ST1, the second mirror 20 is in contact with the spacer 55 (first spacer). In the first state ST1, the second mirror 20 is set at a first position relative to the first mirror 10. In the first state ST1, the first mirror 10 and the second mirror form a first resonator Rs1. In the first state ST1, the first mirror 10 and the second mirror 20 form a first resonator length L1.
 第2状態ST2においても、第2ミラー20がスペーサ55(第1スペーサ)と接している。第2状態ST2においては、第2ミラー20は、第1ミラー10に対する相対的な第2位置に設定される。第2位置は、第1位置とは異なる。すなわち、第2ミラー20が、第1状態ST1の第1位置から移動される。この移動は、制御部30により行われる。第2ミラー20の移動は、スペーサ55の第2面55aに沿った移動である。制御部30は、このような第2状態ST2において、第1ミラー10及び第2ミラー20に第2共振器Rs2を形成させる。制御部30は、第2状態ST2において、第1ミラー10及び第2ミラー20に第2共振器長L2を形成させる。第2共振器長L2は、第1共振器長L1とは異なる。この例では、第2共振器長L2は、第1共振器長L1よりも短い。これにより、共鳴周波数を変更できる。本実施形態によっても共鳴周波数が可変の共振器が提供できる。 Also in the second state ST2, the second mirror 20 is in contact with the spacer 55 (first spacer). In the second state ST2, the second mirror 20 is set to a second position relative to the first mirror 10. The second position is different from the first position. That is, the second mirror 20 is moved from the first position in the first state ST1. This movement is performed by the control unit 30. The movement of the second mirror 20 is a movement along the second surface 55 a of the spacer 55. The controller 30 causes the first resonator 10 and the second mirror 20 to form the second resonator Rs2 in the second state ST2. The controller 30 causes the first resonator 10 and the second mirror 20 to form the second resonator length L2 in the second state ST2. The second resonator length L2 is different from the first resonator length L1. In this example, the second resonator length L2 is shorter than the first resonator length L1. Thereby, the resonance frequency can be changed. Also according to this embodiment, a resonator having a variable resonance frequency can be provided.
 本実施形態において、第1状態ST1において、第2ミラー20は、第1ミラー10に対する相対的な第1位置に位置する。第2状態ST2において、第2ミラー20は、第1ミラー10に対する相対的な第2位置に位置する。第1位置と第2位置とを結ぶ方向は、第1状態ST1における第1ミラー10と第1状態ST1における第2ミラー20とを結ぶ第1方向(Z軸方向)と交差する。第1位置と第2位置とを結ぶ方向は、第2状態ST2における第1ミラー10と第2状態ST2における第2ミラー20とを結ぶ第2方向(Z軸方向)と交差する。 In the present embodiment, in the first state ST1, the second mirror 20 is located at a first position relative to the first mirror 10. In the second state ST2, the second mirror 20 is located at a second position relative to the first mirror 10. The direction connecting the first position and the second position intersects the first direction (Z-axis direction) connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1. The direction connecting the first position and the second position intersects the second direction (Z-axis direction) connecting the first mirror 10 in the second state ST2 and the second mirror 20 in the second state ST2.
 図13(a)及び図13(b)は、第2の実施形態に係る別の共振器を例示する模式図である。 
 図13(a)及び図13(b)は、共振器121における、第1状態ST1と第2状態ST2とを例示している。
FIG. 13A and FIG. 13B are schematic views illustrating another resonator according to the second embodiment.
FIGS. 13A and 13B illustrate the first state ST <b> 1 and the second state ST <b> 2 in the resonator 121.
 共振器121においても、第1ミラー10、第2ミラー20及びスペーサ55が設けられる。これらの図においては、制御部30、固定部81及び容器80は、省略されている。 Also in the resonator 121, the first mirror 10, the second mirror 20, and the spacer 55 are provided. In these drawings, the control unit 30, the fixing unit 81, and the container 80 are omitted.
 この例では、第1ミラー10及び第2ミラー20のそれぞれは、凹面ミラーである。スペーサ55は、第1ミラー10に対向する第1面55aと、第2ミラー20に対向する第2面55bと、を有する。第2面55bは、第1面55aに対して傾斜している。 In this example, each of the first mirror 10 and the second mirror 20 is a concave mirror. The spacer 55 has a first surface 55 a that faces the first mirror 10 and a second surface 55 b that faces the second mirror 20. The second surface 55b is inclined with respect to the first surface 55a.
 この例においても、第2ミラー20がスペーサ55と接している状態において、第2ミラー20が移動する。第2ミラー20の移動は、スペーサ55の第2面55aに沿った移動である。この場合も、第1状態ST1の第1共振器長L1は、第2状態ST2の第2共振器長L2は、互いに異なる。共鳴周波数が可変の共振器が提供できる。 Also in this example, the second mirror 20 moves while the second mirror 20 is in contact with the spacer 55. The movement of the second mirror 20 is a movement along the second surface 55 a of the spacer 55. Also in this case, the first resonator length L1 in the first state ST1 is different from the second resonator length L2 in the second state ST2. A resonator having a variable resonance frequency can be provided.
 この場合も、第1位置と第2位置とを結ぶ方向は、第1状態ST1における第1ミラー10と第2ミラー20とを結ぶ第1方向(Z軸方向)と交差する。例えば、第1位置と第2位置とを結ぶ方向は、第2状態ST2における第1ミラー10と第2ミラー20とを結ぶ第2方向(実質的にZ軸方向)と交差する。 Also in this case, the direction connecting the first position and the second position intersects the first direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the first state ST1. For example, the direction connecting the first position and the second position intersects the second direction (substantially the Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the second state ST2.
 図14(a)~図14(d)は、第2の実施形態に係る別の共振器を例示する模式図である。 
 図14(a)~図14(d)は、本実施形態に係る共振器122~125の1つの状態(第1状態ST1)を例示している。
FIG. 14A to FIG. 14D are schematic views illustrating another resonator according to the second embodiment.
FIGS. 14A to 14D illustrate one state (first state ST1) of the resonators 122 to 125 according to this embodiment.
 共振器122及び共振器123においては、第1ミラー10は、平面ミラーであり、第2ミラー20は、凹面ミラーである。第1面55aと第2面55bとは、互いに非平行である。共振器122と共振器123とおいては、第2面55bに対する第1面55aの傾斜の方向が異なる。 In the resonator 122 and the resonator 123, the first mirror 10 is a plane mirror, and the second mirror 20 is a concave mirror. The first surface 55a and the second surface 55b are not parallel to each other. In the resonator 122 and the resonator 123, the direction of inclination of the first surface 55a with respect to the second surface 55b is different.
 共振器124及び共振器125においては、第1ミラー10は、凸面ミラーであり、第2ミラー20は、凹面ミラーである。共振器124においては、スペーサ55の第2面55bは、Z軸方向に対して垂直である。共振器125においては、スペーサ55の第2面55bは、Z軸方向に対して傾斜している。 In the resonator 124 and the resonator 125, the first mirror 10 is a convex mirror, and the second mirror 20 is a concave mirror. In the resonator 124, the second surface 55b of the spacer 55 is perpendicular to the Z-axis direction. In the resonator 125, the second surface 55b of the spacer 55 is inclined with respect to the Z-axis direction.
 共振器122~125においても、第2ミラー20がスペーサ55と接している状態において、第2ミラー20が移動する。第2ミラー20の移動は、スペーサ55の第2面55aに沿った移動である。この場合も、第1状態ST1の第1共振器長L1は、第2状態ST2の第2共振器長L2は、互いに異なる。共鳴周波数が可変の共振器が提供できる。 Also in the resonators 122 to 125, the second mirror 20 moves while the second mirror 20 is in contact with the spacer 55. The movement of the second mirror 20 is a movement along the second surface 55 a of the spacer 55. Also in this case, the first resonator length L1 in the first state ST1 is different from the second resonator length L2 in the second state ST2. A resonator having a variable resonance frequency can be provided.
 共振器122~125においても、第1位置と第2位置とを結ぶ方向は、第1状態ST1における第1ミラー10と第2ミラー20とを結ぶ第1方向(Z軸方向)と交差する。例えば、第1位置と第2位置とを結ぶ方向は、第2状態ST2における第1ミラー10と第2ミラー20とを結ぶ第2方向(Z軸方向)と交差する。 Also in the resonators 122 to 125, the direction connecting the first position and the second position intersects the first direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the first state ST1. For example, the direction connecting the first position and the second position intersects the second direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 in the second state ST2.
 本実施形態において、第1スペーサ(スペーサ55)に加えて、第2スペーサをさらに設けても良い。第2スペーサは、例えば、第1スペーサ(スペーサ55)と第1ミラー10との間に設けられる。第1スペーサと第2スペーサとの間の面が、例えばZ軸方向に対して傾斜しても良い。例えば、スペーサの移動量を大きくすることができる。傾斜の角度と傾斜の方向を適切に設定する。これにより、スペーサの移動量に対しての共振器長の変化量を大きくすること、及び、共振器長の変化量の精度を高めることができる。 In this embodiment, a second spacer may be further provided in addition to the first spacer (spacer 55). The second spacer is provided, for example, between the first spacer (spacer 55) and the first mirror 10. The surface between the first spacer and the second spacer may be inclined with respect to the Z-axis direction, for example. For example, the amount of movement of the spacer can be increased. Set the tilt angle and tilt direction appropriately. As a result, it is possible to increase the amount of change in the resonator length with respect to the amount of movement of the spacer and to increase the accuracy of the amount of change in the resonator length.
 本実施形態においても、スペーサ長だけで共振器長が決まる。単純かつ安定な構造である。共振器長の変化の前後の状態において、共振器に与えられる外力が変化しない。本実施形態によれば、例えば、周波数安定性を損ねることなく、共振器の共鳴周波数を変更することができる。 Also in this embodiment, the resonator length is determined only by the spacer length. Simple and stable structure. In the state before and after the change in the resonator length, the external force applied to the resonator does not change. According to this embodiment, for example, the resonance frequency of the resonator can be changed without impairing the frequency stability.
 図15(a)及び図15(b)は、実施形態に係る共振器を例示する模式図である。 
 図15(a)及び図15(b)は、第1実施例の共振器131における第1状態ST1及び第2状態ST2をそれぞれ例示している。共振器131において、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60、制御部30及び固定部81が設けられる。
FIG. 15A and FIG. 15B are schematic views illustrating the resonator according to the embodiment.
FIGS. 15A and 15B illustrate the first state ST1 and the second state ST2 in the resonator 131 of the first embodiment, respectively. In the resonator 131, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided.
 高さ150mm、幅50mm、奥行き50mmの外形の低熱膨張材料のスペーサ部材が、上下2つに分割されて、第1スペーサ50及び第2スペーサ60が形成される。第1スペーサ50の底面に第1ミラー10が接続される。第2スペーサ60の上面に第2ミラー20が接続される。第1ミラー10は、曲率半径が1mの凹面ミラーである。第2ミラー20は、平面ミラーである。第2スペーサ60の上面は平面である。 A spacer member made of a low thermal expansion material having an outer shape with a height of 150 mm, a width of 50 mm, and a depth of 50 mm is divided into upper and lower parts to form the first spacer 50 and the second spacer 60. The first mirror 10 is connected to the bottom surface of the first spacer 50. The second mirror 20 is connected to the upper surface of the second spacer 60. The first mirror 10 is a concave mirror having a curvature radius of 1 m. The second mirror 20 is a plane mirror. The upper surface of the second spacer 60 is a plane.
 第1スペーサ50と第2スペーサ60との互いの接触面を含む平面と、第2スペーサ60の上面を含む平面との間の角度θは、0.022度である。この接触面は、例えば、重力の方向に対して垂直である。第1スペーサ50は、固定部81により安定して保持されている。第1スペーサ50は、重力の方向に対して垂直な面(地面)から0.022度の角度で傾斜している。第2スペーサ60は、例えば、第1スペーサ50の上に、重力により載っている。 The angle θ between the plane including the contact surfaces of the first spacer 50 and the second spacer 60 and the plane including the upper surface of the second spacer 60 is 0.022 degrees. This contact surface is, for example, perpendicular to the direction of gravity. The first spacer 50 is stably held by the fixing portion 81. The first spacer 50 is inclined at an angle of 0.022 degrees from a plane (ground) perpendicular to the direction of gravity. The second spacer 60 is placed on the first spacer 50 by gravity, for example.
 例えば、第1状態ST1において、第2スペーサ60の側面は、第1スペーサ50の側面と連続している。このときの共振器長(第1共振器長L1)は、約150mmである。 For example, in the first state ST1, the side surface of the second spacer 60 is continuous with the side surface of the first spacer 50. The resonator length (first resonator length L1) at this time is about 150 mm.
 共振器長を変化させるように第2スペーサ60を移動する。例えば、マイクロメータヘッドとピエゾアクチュエータとを組み合わせた制御部30が用いられる。この制御部30は、例えば、重力の方向に対して垂直な方向から、第2スペーサ60を押す。 The second spacer 60 is moved so as to change the resonator length. For example, a control unit 30 combining a micrometer head and a piezo actuator is used. For example, the control unit 30 pushes the second spacer 60 from a direction perpendicular to the direction of gravity.
 第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60、制御部30及び固定部81は、減圧された容器80に格納される。温度調整素子82は、容器80内の温度を調整する。第1スペーサ50及び第2スペーサ60の熱膨張係数は、ほぼ零である。 The first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30 and the fixing unit 81 are stored in a decompressed container 80. The temperature adjustment element 82 adjusts the temperature in the container 80. The thermal expansion coefficients of the first spacer 50 and the second spacer 60 are substantially zero.
 第1スペーサ50及び第2スペーサ60の中心部は、空洞である。空洞の中心部に、共振器モードが形成される。共振器131に光を入射した場合、この光は、ミラーと空洞を通過する。スペーサによる散乱などの影響は、生じない。 The central part of the first spacer 50 and the second spacer 60 is a cavity. A resonator mode is formed at the center of the cavity. When light is incident on the resonator 131, this light passes through the mirror and the cavity. No influence such as scattering by the spacer occurs.
 図15(b)に示すように、第2状態ST2において、制御部30の動作により第2スペーサ60の位置が変化する。これにより、第2スペーサ60、及び、第2スペーサ60に接続された第2ミラー20の位置を変化させる。例えば、第2スペーサ60の移動の距離Δdは、1.5mmである。移動の方向は、重力に対して垂直である。移動中は、制御部30は、第2スペーサ60と接する。移動の後、制御部30は、第2スペーサ60と離間する。 As shown in FIG. 15B, the position of the second spacer 60 is changed by the operation of the control unit 30 in the second state ST2. Thereby, the positions of the second spacer 60 and the second mirror 20 connected to the second spacer 60 are changed. For example, the movement distance Δd of the second spacer 60 is 1.5 mm. The direction of movement is perpendicular to gravity. During the movement, the control unit 30 contacts the second spacer 60. After the movement, the control unit 30 is separated from the second spacer 60.
 第2状態ST2における第2共振器長L2(すなわち、L1+ΔL)は、以下のように表される。

 L1+ΔL=150-1.5×sin(0.022°)=149.9994 (mm)

 第1状態ST1における共振器の1つの共鳴周波数νが247THz(テラヘルツ)であるとする。このとき、第1式から、第2状態ST2における第1状態ST1からの共鳴周波数の変化、すなわち、周波数シフト量Δνは、約1GHz(ギガヘルツ)となる。
The second resonator length L2 (that is, L1 + ΔL) in the second state ST2 is expressed as follows.

L1 + ΔL = 150−1.5 × sin (0.022 °) = 149.994 (mm)

It is assumed that one resonance frequency ν of the resonator in the first state ST1 is 247 THz (terahertz). At this time, from the first equation, the change in the resonance frequency in the second state ST2 from the first state ST1, that is, the frequency shift amount Δν is about 1 GHz (gigahertz).
 図16(a)及び図16(b)は、実施形態に係る共振器を例示する模式図である。 
 図16(a)及び図16(b)は、第2実施例の共振器132における第1状態ST1及び第2状態ST2をそれぞれ例示している。共振器132においても、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60、制御部30及び固定部81が設けられる。以下、共振器132について、共振器131とは異なる点について説明する。
FIG. 16A and FIG. 16B are schematic views illustrating the resonator according to the embodiment.
FIG. 16A and FIG. 16B illustrate the first state ST1 and the second state ST2 in the resonator 132 of the second embodiment, respectively. Also in the resonator 132, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided. Hereinafter, the difference between the resonator 132 and the resonator 131 will be described.
 共振器132においては、第1ミラー10には、曲率半径が1mの凹面ミラーが用いられる。第2ミラー20にも、曲率半径が1mの凹面ミラーが用いられる。2つの凹面が互いに対向する。第1ミラー10と第2ミラー20との間のZ軸方向の距離d1は、150mmである。第1ミラー10の第1中心10cと、第2ミラー20の第2中心20cと、の間のZ軸方向の距離d2は、1850mmである。 In the resonator 132, a concave mirror having a curvature radius of 1 m is used for the first mirror 10. A concave mirror with a radius of curvature of 1 m is also used for the second mirror 20. Two concave surfaces oppose each other. A distance d1 in the Z-axis direction between the first mirror 10 and the second mirror 20 is 150 mm. A distance d2 in the Z-axis direction between the first center 10c of the first mirror 10 and the second center 20c of the second mirror 20 is 1850 mm.
 第1状態ST1における第1ミラー10と第2ミラー20とを結ぶ方向は、例えば、重力に対して平行である。第1スペーサ50と第2スペーサ60との間の接触面は、重力に対して垂直である。 
 第1状態ST1における第1共振器長L1は、150mmである。
The direction connecting the first mirror 10 and the second mirror 20 in the first state ST1 is, for example, parallel to gravity. The contact surface between the first spacer 50 and the second spacer 60 is perpendicular to gravity.
The first resonator length L1 in the first state ST1 is 150 mm.
 第2状態ST2において、制御部30により第2スペーサ60を移動させる。移動方向は、重力に対して垂直である。第2スペーサ60の移動の距離Δdは、5.23mmである。移動の後、制御部30は、第2スペーサ60と離間する。 In the second state ST2, the control unit 30 moves the second spacer 60. The direction of movement is perpendicular to gravity. The movement distance Δd of the second spacer 60 is 5.23 mm. After the movement, the control unit 30 is separated from the second spacer 60.
 第2状態ST2における第2共振器長L2(すなわち、L1+ΔL)は、以下のように表される。

 L1+ΔL=150/cos{tan-1(5.23/1850)}=150.0006(mm)

 第1状態ST1における共振器の1つの共鳴周波数νが247THzであるとする。このとき、第1式から、第2状態ST2で生じる周波数シフト量Δνは、約-1GHzとなる。
The second resonator length L2 (that is, L1 + ΔL) in the second state ST2 is expressed as follows.

L1 + ΔL = 150 / cos {tan −1 (5.23 / 1850)} = 150.0006 (mm)

Assume that one resonance frequency ν of the resonator in the first state ST1 is 247 THz. At this time, from the first equation, the frequency shift amount Δν generated in the second state ST2 is about −1 GHz.
 図17(a)及び図17(b)は、実施形態に係る共振器を例示する模式図である。 
 図17(a)及び図17(b)は、第3実施例の共振器133における第1状態ST1及び第2状態ST2をそれぞれ例示している。共振器133においても、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60、制御部30及び固定部81が設けられる。以下、共振器133について、共振器131とは異なる点について説明する。
FIG. 17A and FIG. 17B are schematic views illustrating the resonator according to the embodiment.
FIGS. 17A and 17B illustrate the first state ST1 and the second state ST2 in the resonator 133 according to the third embodiment, respectively. Also in the resonator 133, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided. Hereinafter, the difference between the resonator 133 and the resonator 131 will be described.
 共振器133においては、第1ミラー10及び第2ミラー20のそれぞれに平面ミラーが用いられている。第1状態ST1において、第1ミラー10と第2ミラー20との間の距離は、150mmである。第1スペーサ50と第2スペーサ60との互いの接触面を含む平面と、第2スペーサ60の上面を含む平面との間の角度θは、0.022度である。 In the resonator 133, planar mirrors are used for the first mirror 10 and the second mirror 20, respectively. In the first state ST1, the distance between the first mirror 10 and the second mirror 20 is 150 mm. The angle θ between the plane including the contact surfaces of the first spacer 50 and the second spacer 60 and the plane including the upper surface of the second spacer 60 is 0.022 degrees.
 図17(b)に示すように、第2状態ST2において、制御部30により第2スペーサ60を移動させる。移動方向は、重力に対して垂直である。第2スペーサ60の移動の距離は、1.5mmである。移動の後、制御部30は、第2スペーサ60と離間する。 As shown in FIG. 17B, the second spacer 60 is moved by the control unit 30 in the second state ST2. The direction of movement is perpendicular to gravity. The moving distance of the second spacer 60 is 1.5 mm. After the movement, the control unit 30 is separated from the second spacer 60.
 第2状態ST2における第2共振器長L2(すなわち、L1+ΔL)は、以下のように表される。

 L1+ΔL=150-1.5×sin(0.022°)=149.9994 (mm)

 第1状態ST1における共振器の1つの共鳴周波数νが247THzであるとする。このとき、第1式から、第2状態ST2で生じる周波数シフト量Δνは、約1GHzとなる。
The second resonator length L2 (that is, L1 + ΔL) in the second state ST2 is expressed as follows.

L1 + ΔL = 150−1.5 × sin (0.022 °) = 149.994 (mm)

Assume that one resonance frequency ν of the resonator in the first state ST1 is 247 THz. At this time, from the first equation, the frequency shift amount Δν that occurs in the second state ST2 is about 1 GHz.
 図18(a)及び図18(b)は、実施形態に係る共振器を例示する模式図である。 
 図18(a)及び図18(b)は、第4実施例の共振器134における第1状態ST1及び第2状態ST2をそれぞれ例示している。共振器134においても、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60、制御部30及び固定部81が設けられる。以下、共振器134について、共振器131とは異なる点について説明する。
18A and 18B are schematic views illustrating the resonator according to the embodiment.
FIGS. 18A and 18B illustrate the first state ST1 and the second state ST2 in the resonator 134 of the fourth embodiment, respectively. Also in the resonator 134, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, the control unit 30, and the fixing unit 81 are provided. Hereinafter, the difference between the resonator 134 and the resonator 131 will be described.
 共振器134においては、第1ミラー10には、曲率半径が1mの凸面ミラーが用いられている。第2ミラー20には、曲率半径が1mの凹面ミラーが用いられている。第1ミラー10の凸面と、第2ミラー20の凹面とが、互いに対向する。第1ミラー10と第2ミラー20との間のZ軸方向の距離d1は、150mmである。第1ミラー10の第1中心10cと、第2ミラー20の第2中心20cと、の間のZ軸方向の距離d2は、1150mmである。第1スペーサ50と第2スペーサ60との互いの接触面(第1面50a及び第2面60a)は、第1ミラー10と第2ミラー20とを結ぶ方向に対して垂直である。この接触面は、重力の方向に対して垂直である。 In the resonator 134, a convex mirror having a curvature radius of 1 m is used for the first mirror 10. The second mirror 20 is a concave mirror having a curvature radius of 1 m. The convex surface of the first mirror 10 and the concave surface of the second mirror 20 face each other. A distance d1 in the Z-axis direction between the first mirror 10 and the second mirror 20 is 150 mm. The distance d2 in the Z-axis direction between the first center 10c of the first mirror 10 and the second center 20c of the second mirror 20 is 1150 mm. The mutual contact surfaces (first surface 50 a and second surface 60 a) of the first spacer 50 and the second spacer 60 are perpendicular to the direction connecting the first mirror 10 and the second mirror 20. This contact surface is perpendicular to the direction of gravity.
 第1状態ST1における第1共振器長L1は、150mmである。 The first resonator length L1 in the first state ST1 is 150 mm.
 図18(b)に表したように、第2状態ST2において、制御部30により第2スペーサ60を移動させる。移動方向は、重力に対して垂直である。第2スペーサ60の移動の距離Δdは、0.42mmである。移動の後、制御部30は、第2スペーサ60と離間する。 As shown in FIG. 18B, the second spacer 60 is moved by the control unit 30 in the second state ST2. The direction of movement is perpendicular to gravity. The movement distance Δd of the second spacer 60 is 0.42 mm. After the movement, the control unit 30 is separated from the second spacer 60.
 第2状態ST2における第2共振器長L2(すなわち、L1+ΔL)は、以下のように表される。

 L1+ΔL={150+0.42}1/2 =150.0006 (mm)

 第1状態ST1における共振器の1つの共鳴周波数νが247THzであるとする。このとき、第1式から、第2状態ST2で生じる周波数シフト量Δνは、約-1GHzとなる。
The second resonator length L2 (that is, L1 + ΔL) in the second state ST2 is expressed as follows.

L1 + ΔL = {150 2 +0.42 2 } 1/2 = 150.0006 (mm)

Assume that one resonance frequency ν of the resonator in the first state ST1 is 247 THz. At this time, from the first equation, the frequency shift amount Δν generated in the second state ST2 is about −1 GHz.
 上記の共振器131~134において、共振器長変化の前後で周波数不安定の原因となるような新たな外力が加わることが無い。このため、高い周波数安定性を損なうことなく、共鳴周波数を大きくシフトさせることができる。 In the above-described resonators 131 to 134, a new external force that causes frequency instability before and after the resonator length change is not applied. For this reason, the resonance frequency can be greatly shifted without impairing high frequency stability.
 図19は、実施形態に係る共振器を例示する模式図である。 
 図19は、第5実施例の共振器135における第1状態ST1を例示している。共振器135においても、第1ミラー10、第2ミラー20、第1スペーサ50、第2スペーサ60及び制御部30が設けられる。共振器135においては、スペーサ部材25がさらに設けられている。
FIG. 19 is a schematic view illustrating the resonator according to the embodiment.
FIG. 19 illustrates the first state ST1 in the resonator 135 of the fifth embodiment. Also in the resonator 135, the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30 are provided. In the resonator 135, a spacer member 25 is further provided.
 共振器135においては、第1ミラー10には、曲率半径が1mの凹面ミラーが用いられ、第2ミラー20にも、曲率半径が1mの凹面ミラーが用いられる。2つの凹面が互いに対向する。以下、共振器135について、共振器132とは異なる点について説明する。 In the resonator 135, a concave mirror with a radius of curvature of 1 m is used for the first mirror 10, and a concave mirror with a radius of curvature of 1 m is also used for the second mirror 20. Two concave surfaces oppose each other. Hereinafter, the difference between the resonator 135 and the resonator 132 will be described.
 共振器135においては、スペーサ部材25の上に、第1ミラー10、第2ミラー20、第1スペーサ50及び第2スペーサ60が設けられている。スペーサ部材25には、第1スペーサ50及び第2スペーサ60と同様の材料が用いられる。第1ミラー10と第2ミラー20とを結ぶ方向(Z軸方向)は、例えば、重力に対して垂直である。すなわち、共振器135は、横置き型の共振器である。 In the resonator 135, the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer 60 are provided on the spacer member 25. The spacer member 25 is made of the same material as the first spacer 50 and the second spacer 60. A direction (Z-axis direction) connecting the first mirror 10 and the second mirror 20 is, for example, perpendicular to gravity. That is, the resonator 135 is a horizontally placed resonator.
 第1状態ST1における第1共振器長L1は、150mmである。 The first resonator length L1 in the first state ST1 is 150 mm.
 制御部30により、第2スペーサ60が、例えば、Y軸方向沿って移動する。第2スペーサ60の移動の距離は、例えば、5.23mmである。第1状態ST1及び第2状態ST2において、第2スペーサ60は、第1スペーサ50に接している。移動の後、制御部30は、第2スペーサ60と離間する。 The control unit 30 moves the second spacer 60, for example, along the Y-axis direction. The moving distance of the second spacer 60 is, for example, 5.23 mm. In the first state ST1 and the second state ST2, the second spacer 60 is in contact with the first spacer 50. After the movement, the control unit 30 is separated from the second spacer 60.
 第2状態ST2における第2共振器長L2(すなわち、L1+ΔL)は、以下のように表される。

 L1+ΔL=150/cos{tan-1(5.23/1850)}=150.0006(mm)

 第1状態ST1における共振器の1つの共鳴周波数νが247THzであるとする。このとき、第1式から、第2状態ST2で生じる周波数シフト量Δνは、約-1GHzとなる。
The second resonator length L2 (that is, L1 + ΔL) in the second state ST2 is expressed as follows.

L1 + ΔL = 150 / cos {tan −1 (5.23 / 1850)} = 150.0006 (mm)

Assume that one resonance frequency ν of the resonator in the first state ST1 is 247 THz. At this time, from the first equation, the frequency shift amount Δν generated in the second state ST2 is about −1 GHz.
 横置き形の共振器において、共振器(2つのスペーサ)の下に共振器と異なる熱膨張係数の物質が配置されていると、下に配置された物質の熱膨張により、例えば、2つのスペーサが離間するなどして位置関係が変化する場合がある。これにより、周波数の安定性が劣化する場合がある。共振器(2つのスペーサ)の下に、同じ熱膨張係数の物質(スペーサ部材25)を設けることで、共振器長のシフトの前後で、高い周波数安定性を維持することができる。 In a horizontally mounted resonator, if a material having a coefficient of thermal expansion different from that of the resonator is disposed under the resonator (two spacers), for example, two spacers are caused by the thermal expansion of the material disposed below. In some cases, the positional relationship may change due to separation. Thereby, the stability of the frequency may be deteriorated. By providing a substance (spacer member 25) having the same thermal expansion coefficient under the resonator (two spacers), high frequency stability can be maintained before and after the resonator length shift.
 図20(a)及び図20(b)は、実施形態に係る共振器を例示する模式図である。 
 図20(a)及び図20(b)は、第6実施例の共振器146における第1状態ST1及び第2状態ST2をそれぞれ例示している。共振器146においては、第1ミラー10、第2ミラー20及びスペーサ55が設けられる。これらの図においては、制御部30、容器80及び温度調整素子82などは、省略されている。
FIG. 20A and FIG. 20B are schematic views illustrating the resonator according to the embodiment.
20A and 20B illustrate the first state ST1 and the second state ST2 in the resonator 146 of the sixth embodiment, respectively. In the resonator 146, the first mirror 10, the second mirror 20, and the spacer 55 are provided. In these drawings, the control unit 30, the container 80, the temperature adjusting element 82, and the like are omitted.
 スペーサ55の底面の幅は70mmであり、底面の奥行きは、70mmである。スペーサ55には、低熱膨張材料が用いられている。スペーサ55の上面を含む平面と、底面を含む平面との間の角度θは、0.022度である。スペーサ55の上面は、例えば、重力に対して垂直である。スペーサ55は、固定部81により安定して保持されている。 The width of the bottom surface of the spacer 55 is 70 mm, and the depth of the bottom surface is 70 mm. The spacer 55 is made of a low thermal expansion material. The angle θ between the plane including the upper surface of the spacer 55 and the plane including the bottom surface is 0.022 degrees. The upper surface of the spacer 55 is, for example, perpendicular to gravity. The spacer 55 is stably held by the fixing portion 81.
 スペーサ55の底面に第1ミラー10が接続されている。スペーサ55の上面に第2ミラー20が配置される。第1ミラー10は、平面ミラーである。第2ミラー20は、凹面ミラーである。凹面ミラーの曲率半径は、0.2mである。第2ミラー20は、重力により、スペーサ55の上に乗っている。 The first mirror 10 is connected to the bottom surface of the spacer 55. The second mirror 20 is disposed on the upper surface of the spacer 55. The first mirror 10 is a plane mirror. The second mirror 20 is a concave mirror. The radius of curvature of the concave mirror is 0.2 m. The second mirror 20 is on the spacer 55 by gravity.
 図20(b)に示すように、第2状態ST2において、制御部30の動作により第2ミラー20の位置が変化する。第1状態ST1及び第2状態ST2において、第2ミラー20は、スペーサ55に接している。第2ミラー20の移動の距離Δdは、1.5mmである。移動の方向は、重力に対して垂直である。移動中は、制御部30は、第2スペーサ60と接する。移動の後、制御部30は、第2スペーサ60と離間する。 20B, in the second state ST2, the position of the second mirror 20 is changed by the operation of the control unit 30. In the first state ST1 and the second state ST2, the second mirror 20 is in contact with the spacer 55. The movement distance Δd of the second mirror 20 is 1.5 mm. The direction of movement is perpendicular to gravity. During the movement, the control unit 30 contacts the second spacer 60. After the movement, the control unit 30 is separated from the second spacer 60.
 第2状態ST2における第2共振器長L2(すなわち、L1+ΔL)は、以下のように表される。

 L1+ΔL=150-1.5×sin(0.022°)=149.9994 (mm)

 第1状態ST1における共振器の1つの共鳴周波数νが247THzであるとする。このとき、第1式から、第2状態ST2における第1状態ST1からの共鳴周波数の変化、すなわち、周波数シフト量Δνは、約1GHzとなる。
The second resonator length L2 (that is, L1 + ΔL) in the second state ST2 is expressed as follows.

L1 + ΔL = 150−1.5 × sin (0.022 °) = 149.994 (mm)

Assume that one resonance frequency ν of the resonator in the first state ST1 is 247 THz. At this time, from the first equation, the change in the resonance frequency from the first state ST1 in the second state ST2, that is, the frequency shift amount Δν is about 1 GHz.
 図21(a)及び図21(b)は、実施形態に係る共振器を例示する模式図である。 
 図21(a)及び図21(b)は、第7実施例の共振器147における第1状態ST1及び第2状態ST2をそれぞれ例示している。共振器147においても、第1ミラー10、第2ミラー20及びスペーサ55が設けられる。これらの図においては、制御部30、固定部81、容器80及び温度調整素子82などは、省略されている。
FIG. 21A and FIG. 21B are schematic views illustrating the resonator according to the embodiment.
FIGS. 21A and 21B illustrate the first state ST1 and the second state ST2 in the resonator 147 of the seventh embodiment, respectively. Also in the resonator 147, the first mirror 10, the second mirror 20, and the spacer 55 are provided. In these drawings, the control unit 30, the fixing unit 81, the container 80, the temperature adjustment element 82, and the like are omitted.
 スペーサ55の上面は、スペーサ55の底面と平行である。スペーサ55の底面に第1ミラー10が接続されている。スペーサ55の上面に第2ミラー20が配置される。第1ミラー10には、曲率半径は1mの凹面ミラーが用いられる。第2ミラー20には、曲率半径が1mの凹面ミラーが用いられる。第2ミラー20は、重力により、スペーサ55の上に乗っている。 The upper surface of the spacer 55 is parallel to the bottom surface of the spacer 55. The first mirror 10 is connected to the bottom surface of the spacer 55. The second mirror 20 is disposed on the upper surface of the spacer 55. The first mirror 10 is a concave mirror having a radius of curvature of 1 m. A concave mirror having a radius of curvature of 1 m is used for the second mirror 20. The second mirror 20 is on the spacer 55 by gravity.
 第1ミラー10と第2ミラー20との間のZ軸方向の距離d1は、150mmである。第1ミラー10の第1中心10cと、第2ミラー20の第2中心20cとの間のZ軸方向の距離d2は、1850mmである。 
 第1状態ST1における第1共振器長L1は、150mmである。
A distance d1 in the Z-axis direction between the first mirror 10 and the second mirror 20 is 150 mm. A distance d2 in the Z-axis direction between the first center 10c of the first mirror 10 and the second center 20c of the second mirror 20 is 1850 mm.
The first resonator length L1 in the first state ST1 is 150 mm.
 図21(b)に表したように、第2状態ST2において、制御部30により第2スペーサ60を移動させる。移動方向は、重力に対して垂直である。第2スペーサ60の移動の距離は、5.23mmである。移動の後、制御部30は、第2スペーサ60と離間する。 21B, the second spacer 60 is moved by the control unit 30 in the second state ST2. The direction of movement is perpendicular to gravity. The moving distance of the second spacer 60 is 5.23 mm. After the movement, the control unit 30 is separated from the second spacer 60.
 第2状態ST2における第2共振器長L2(すなわち、L1+ΔL)は、以下のように表される。

 L1+ΔL=150/cos{tan-1(5.23/1850)}=150.0006(mm)

 第1状態ST1における共振器の1つの共鳴周波数νが247THzであるとする。このとき、第1式から、第2状態ST2で生じる周波数シフト量Δνは、約-1GHzとなる。
The second resonator length L2 (that is, L1 + ΔL) in the second state ST2 is expressed as follows.

L1 + ΔL = 150 / cos {tan −1 (5.23 / 1850)} = 150.0006 (mm)

Assume that one resonance frequency ν of the resonator in the first state ST1 is 247 THz. At this time, from the first equation, the frequency shift amount Δν generated in the second state ST2 is about −1 GHz.
 上記の共振器146及び147において、共振器長変化の前後で周波数不安定の原因となるような新たな外力が加わることが無い。このため、高い周波数安定性を損なうことなく、共鳴周波数を大きくシフトさせることができる。 In the above-described resonators 146 and 147, new external force that causes frequency instability before and after the resonator length change is not applied. For this reason, the resonance frequency can be greatly shifted without impairing high frequency stability.
 (第3の実施形態)
 本実施形態は、光源装置に係る。実施形態に係る光源装置は、共振器と光源とを含む。 図22は、第3の実施形態に係る光源装置を例示する模式図である。 
 図22に示すように、実施形態に係る光源装置210は、共振器131と、光源71と、を含む。光源71には、例えば、レーザ光源が用いられる。光源71の周波数は、共振器131にロックされる。この例では、共振器として、共振器131が用いられている。本実施形態において、第1及び第2の実施形態に係る任意の共振器及びその変形を用いることができる。
(Third embodiment)
The present embodiment relates to a light source device. The light source device according to the embodiment includes a resonator and a light source. FIG. 22 is a schematic view illustrating the light source device according to the third embodiment.
As illustrated in FIG. 22, the light source device 210 according to the embodiment includes a resonator 131 and a light source 71. For example, a laser light source is used as the light source 71. The frequency of the light source 71 is locked to the resonator 131. In this example, a resonator 131 is used as the resonator. In the present embodiment, any resonator according to the first and second embodiments and modifications thereof can be used.
 この例では、周波数制御装置73がさらに設けられている。光源71は、レーザ光を出射する。レーザ光の一部は、第2ミラー20に入射する。周波数制御装置73は、光源71の中心周波数が共振器131の共振器モードの共鳴周波数の1つに一致するように、光源71を制御する。例えば、周波数制御装置73は、第2ミラー20で反射されたレーザ光を検出し、検出結果に基づいて光源71の中心周波数を調整する。 In this example, a frequency control device 73 is further provided. The light source 71 emits laser light. A part of the laser light is incident on the second mirror 20. The frequency control device 73 controls the light source 71 so that the center frequency of the light source 71 matches one of the resonance frequencies of the resonator mode of the resonator 131. For example, the frequency control device 73 detects the laser light reflected by the second mirror 20 and adjusts the center frequency of the light source 71 based on the detection result.
 例えば、スペーサに低熱膨張材料を使用し、かつ容器80の温度制御により、スペーサが熱膨張係数の低くなる温度に保たれる。これにより、共振器モードの共鳴周波数は、安定している。この共振器モードに周波数をロックしている光源71は、非常に高い周波数安定性を得ることができる。 For example, a low thermal expansion material is used for the spacer, and the temperature of the container 80 is controlled to keep the spacer at a temperature at which the thermal expansion coefficient is lowered. Thereby, the resonance frequency of the resonator mode is stable. The light source 71 whose frequency is locked in the resonator mode can obtain very high frequency stability.
 この例では、ビームスプリッタ72がさらに設けられている。ビームスプリッタ72は、光源71の光路上において、光源71と第2ミラー20との間に設けられる。ビームスプリッタ72は、光源71で生成されたレーザ光を、光源装置210の出力光として取り出す。 In this example, a beam splitter 72 is further provided. The beam splitter 72 is provided between the light source 71 and the second mirror 20 on the optical path of the light source 71. The beam splitter 72 takes out the laser light generated by the light source 71 as output light of the light source device 210.
 共振器131における共振器モードの共鳴周波数は第2スペーサ60を移動することにより調節される。第2スペーサ60の移動によって共振器モードの共鳴周波数を調節することで、光源装置210の出力光の周波数を調節することができる。 The resonance frequency of the resonator mode in the resonator 131 is adjusted by moving the second spacer 60. By adjusting the resonance frequency of the resonator mode by moving the second spacer 60, the frequency of the output light of the light source device 210 can be adjusted.
 本実施形態に係る光源装置は、実施形態に係る共振器を利用することにより、出力光の周波数が可変であるとともに、高い周波数安定性を実現することができる。 The light source device according to the present embodiment uses the resonator according to the embodiment, so that the frequency of the output light is variable and high frequency stability can be realized.
 図23は、第3の実施形態に係る別の光源装置を例示する模式図である。
 図23に示すように、本実施形態に係る別の光源装置211において、周波数シフタ74がさらに設けられる。これ以外は、光源装置210と同様であるので説明を省略する。
FIG. 23 is a schematic view illustrating another light source device according to the third embodiment.
As shown in FIG. 23, in another light source device 211 according to the present embodiment, a frequency shifter 74 is further provided. Other than this, the light source device 210 is the same as the light source device 210, and the description thereof is omitted.
 光源装置211においては、光源71の周波数が、周波数シフタ74によってシフトされる。例えば、制御部30によって共振器長をシフトさせて、共鳴周波数を大まかにシフトさせる。共鳴周波数のシフト量は、約1GHzである。そして、シフト量の小さい周波数シフタ74を用いて、レーザ周波数を微調整する。この制御部30には、安価な装置を用い、そして、周波数シフタ74にも安価な装置を用いることができる。 In the light source device 211, the frequency of the light source 71 is shifted by the frequency shifter 74. For example, the resonator length is shifted by the control unit 30 to roughly shift the resonance frequency. The shift amount of the resonance frequency is about 1 GHz. Then, the laser frequency is finely adjusted using the frequency shifter 74 with a small shift amount. An inexpensive device can be used for the control unit 30, and an inexpensive device can be used for the frequency shifter 74.
 例えば、周波数シフタ74を用いない場合には、周波数安定性は高い。周波数シフタ74を用いることで、周波数安定性が低下する場合がある。しかしながら、周波数シフタ74を周波数シフトの微調整に用いることで、制御部30として、シフト精度の低い安価な装置を用いることができる。よって、移動精度の低い安価な制御部30及び周波数シフタ74を組み合わせた安価な構成により、低コストの光源装置を得ることができる。 For example, when the frequency shifter 74 is not used, the frequency stability is high. By using the frequency shifter 74, the frequency stability may be lowered. However, by using the frequency shifter 74 for fine adjustment of the frequency shift, an inexpensive device with low shift accuracy can be used as the control unit 30. Therefore, a low-cost light source device can be obtained with an inexpensive configuration combining the inexpensive control unit 30 and the frequency shifter 74 with low movement accuracy.
 周波数シフタ74として、音響光学変調器または電気光学変調器を用いることで、周波数を連続的に繰り返して掃引することもできる。 By using an acousto-optic modulator or an electro-optic modulator as the frequency shifter 74, the frequency can be swept continuously repeatedly.
 本実施形態に係る光源装置において、光源71から放出される光は、例えば、第1共振器長L1に対応する第1周波数、及び、第2共振器長L2に対応する第2周波数の少なくともいずれかを有する。 In the light source device according to the present embodiment, the light emitted from the light source 71 is, for example, at least one of a first frequency corresponding to the first resonator length L1 and a second frequency corresponding to the second resonator length L2. Have
 (第4の実施形態)
 本実施形態は、周波数フィルタに係る。実施形態に係る周波数フィルタは、共振器を含む。 
 図24は、第4の実施形態に係る周波数フィルタを例示する模式図である。 
 図24に示すように、本実施形態に係る周波数フィルタ310は、共振器131を含む。この例では、共振器として、共振器131が用いられているが、第1及び第2の実施形態に係る共振器及びその変形を用いることができる。
(Fourth embodiment)
The present embodiment relates to a frequency filter. The frequency filter according to the embodiment includes a resonator.
FIG. 24 is a schematic view illustrating a frequency filter according to the fourth embodiment.
As shown in FIG. 24, the frequency filter 310 according to the present embodiment includes a resonator 131. In this example, the resonator 131 is used as the resonator, but the resonators according to the first and second embodiments and modifications thereof can be used.
 この例においては、光源75が設けられる。光源75から出射した光が共振器131に入射する。光は、例えば第2ミラー20に入射し、第1ミラー10から出射する。 In this example, a light source 75 is provided. Light emitted from the light source 75 enters the resonator 131. For example, the light enters the second mirror 20 and exits from the first mirror 10.
 光源75は、例えば、2色光源である。光源75は、例えば、第1光及び第2光2を出射する。第1光及び第2光のそれぞれのスペクトル幅は、約1kHzである。第1光及び第2光のそれぞれの中心周波数は、互いに異なる。第1光及び第2光のそれぞれは、レーザ光である。第1光の周波数は、例えば、247THzである。第2光の周波数は、例えば、247THz+0.5GHzである。共振器131の共鳴周波数のスペクトル幅は、5KHzであるとする。本実施形態において、光源75から放出される光は、例えば、第1共振器長L1に対応する第1周波数、及び、第2共振器長L2に対応する第2周波数の少なくともいずれかを有する。 The light source 75 is, for example, a two-color light source. The light source 75 emits, for example, first light and second light 2. The spectral width of each of the first light and the second light is about 1 kHz. The center frequencies of the first light and the second light are different from each other. Each of the first light and the second light is laser light. The frequency of the first light is, for example, 247 THz. The frequency of the second light is, for example, 247 THz + 0.5 GHz. It is assumed that the spectrum width of the resonance frequency of the resonator 131 is 5 KHz. In the present embodiment, the light emitted from the light source 75 has, for example, at least one of a first frequency corresponding to the first resonator length L1 and a second frequency corresponding to the second resonator length L2.
 第2スペーサ60を移動する前の第1状態ST1において、光源75からのレーザ光が第2ミラー20に入射する。共振器110は、光選択フィルタとして機能する。この光選択フィルタにおいては、第2光を反射して第1光を透過する。 In the first state ST1 before moving the second spacer 60, the laser light from the light source 75 enters the second mirror 20. The resonator 110 functions as an optical selection filter. In this light selection filter, the second light is reflected and the first light is transmitted.
 第2スペーサ60を移動した後に第2状態ST2が形成される。移動の距離は、例えば、0.75mmである。このとき、共振器131は、第1光を反射して第2光を透過する光選択フィルタとして機能する。 After moving the second spacer 60, the second state ST2 is formed. The movement distance is, for example, 0.75 mm. At this time, the resonator 131 functions as a light selection filter that reflects the first light and transmits the second light.
 例えば、スペーサに低熱膨張材料を使用し、かつ容器80の温度制御により、スペーサが熱膨張係数の低くなる温度に保たれる。これにより、共振器モードの共鳴周波数は、安定している。共振器131は、非常に高い周波数安定性を持つ周波数フィルタとして利用することができる。 For example, a low thermal expansion material is used for the spacer, and the temperature of the container 80 is controlled to keep the spacer at a temperature at which the thermal expansion coefficient is lowered. Thereby, the resonance frequency of the resonator mode is stable. The resonator 131 can be used as a frequency filter having very high frequency stability.
 本実施形態によれば、共振器を、周波数が可変で透過スペクトルの周波数安定性の高い周波数フィルタとして利用することができる。 According to this embodiment, the resonator can be used as a frequency filter having a variable frequency and high frequency stability of the transmission spectrum.
 上記の第1~第4の実施形態において、Z軸方向は、例えば、1つの状態(例えば、第1状態ST1)において、第1ミラー10の中心と、第2ミラー20の中心と、を結ぶ方向に対応する。 In the first to fourth embodiments, the Z-axis direction connects, for example, the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1). Corresponds to the direction.
 ファブリペロー型光共振器において、凹面鏡と平面鏡とが設けられる場合には、例えば、図3(a)及び図3(b)に例示したように、平面鏡の平面に対して傾斜した方向に沿って、第2スペーサ60を第1スペーサ50に対して相対的に移動させる。これにより、共振器長が変化する。 In the Fabry-Perot type optical resonator, when a concave mirror and a plane mirror are provided, for example, as illustrated in FIGS. 3A and 3B, along a direction inclined with respect to the plane of the plane mirror. The second spacer 60 is moved relative to the first spacer 50. As a result, the resonator length changes.
 上記の共振器110、111、112a~112c、113、114a、114b、115、116、及び、131~135は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、を含む。これらの共振器において、第1状態ST1において、第2スペーサ60(例えば、第2面60a)は、第1スペーサ50(第1面50a)の少なくとも一部と接している。これらの共振器において、第2状態ST2において、第2スペーサ60(例えば、第2面60a)は、第1スペーサ50(第1面50a)の少なくとも一部と接している。第1状態ST1と第2状態ST2との間の状態(例えば移動中)においては、第2スペーサ60(例えば、第2面60a)は、第1スペーサ50(第1面50a)と離間していても良い。第1状態ST1と第2状態ST2との間の状態(例えば移動中)において、制御部30は、スペーサ(例えば、第2スペーサ60)と接している。 The resonators 110, 111, 112a to 112c, 113, 114a, 114b, 115, 116, and 131 to 135 include the first mirror 10, the second mirror 20, the first spacer 50, and the second spacer. 60. In these resonators, in the first state ST1, the second spacer 60 (for example, the second surface 60a) is in contact with at least a part of the first spacer 50 (the first surface 50a). In these resonators, in the second state ST2, the second spacer 60 (for example, the second surface 60a) is in contact with at least a part of the first spacer 50 (first surface 50a). In a state (for example, moving) between the first state ST1 and the second state ST2, the second spacer 60 (for example, the second surface 60a) is separated from the first spacer 50 (the first surface 50a). May be. In a state (for example, moving) between the first state ST1 and the second state ST2, the control unit 30 is in contact with the spacer (for example, the second spacer 60).
 上記の共振器110、111、112a~112c、113、114a、114b、115、116、及び、131~135において、第1スペーサ50は、スペーサ部分と、そのスペーサ部分と第2スペーサ60との間に設けられた層(例えば、潤滑油などの層)と、を含んでも良い。この層の表面が、第1面50aを形成しても良い。第2スペーサ60は、スペーサ部分と、そのスペーサ部分と第1スペーサ50との間に設けられた層(例えば、潤滑油などの層)と、を含んでも良い。この層の表面が、第2面60aを形成しても良い。 In the resonators 110, 111, 112 a to 112 c, 113, 114 a, 114 b, 115, 116, and 131 to 135, the first spacer 50 has a spacer portion and a space between the spacer portion and the second spacer 60. And a layer (for example, a layer such as a lubricating oil) provided on the surface. The surface of this layer may form the first surface 50a. The second spacer 60 may include a spacer portion and a layer (for example, a layer of lubricating oil) provided between the spacer portion and the first spacer 50. The surface of this layer may form the second surface 60a.
 上記の共振器120~125、146及び147は、第1ミラー10と、第2ミラー20と、スペーサ55(第1スペーサ)と、を含む。これらの共振器は、制御部30をさらに含んでも良い。スペーサ55の少なくとも一部は、第1ミラー10と第2ミラー20との間に設けられる。スペーサ55は、第1ミラー10と接する。例えば、スペーサ55は、第1ミラー10と結合されている。スペーサ55と第2ミラー20とが互いに接している第1状態ST1において第1ミラー10と第2ミラー20とによって形成される第1共振器長L1は、スペーサ55と第2ミラー20とが互いに接している第2状態ST2において第1ミラー10と第2ミラー20とによって形成される第2共振器長L2とは、異なる。第2状態ST2は、第1状態ST1とは異なる。第1状態ST1における第2ミラー20の第1ミラー10に対する相対的な第1位置は、第2状態ST2における第2ミラー20の第1ミラー10に対する相対的な第2位置とは異なる。第1位置と第2位置とを結ぶ方向は、第1状態ST1における第1ミラー10の中心と、第1状態ST1における第2ミラー20の中心と、を結ぶ方向と、交差する。 The resonators 120 to 125, 146, and 147 include the first mirror 10, the second mirror 20, and the spacer 55 (first spacer). These resonators may further include a control unit 30. At least a part of the spacer 55 is provided between the first mirror 10 and the second mirror 20. The spacer 55 is in contact with the first mirror 10. For example, the spacer 55 is coupled to the first mirror 10. In the first state ST1 where the spacer 55 and the second mirror 20 are in contact with each other, the first resonator length L1 formed by the first mirror 10 and the second mirror 20 is such that the spacer 55 and the second mirror 20 are The second resonator length L2 formed by the first mirror 10 and the second mirror 20 in the second state ST2 in contact with the second state ST2 is different. The second state ST2 is different from the first state ST1. The first relative position of the second mirror 20 with respect to the first mirror 10 in the first state ST1 is different from the second relative position of the second mirror 20 with respect to the first mirror 10 in the second state ST2. The direction connecting the first position and the second position intersects the direction connecting the center of the first mirror 10 in the first state ST1 and the center of the second mirror 20 in the first state ST1.
 上記の共振器120~125、146及び147において、第1状態ST1において、スペーサ55(例えば、第2面55b)は、第2ミラー20(第2ミラー面20a)の少なくとも一部と接している。これらの共振器において、第2状態ST2において、スペーサ55(例えば、第2面55b)は、第2ミラー20(第2ミラー面20a)の少なくとも一部と接している。第1状態ST1と第2状態ST2との間の状態(例えば移動中)においては、スペーサ55(例えば、第2面55b)は、第2ミラー20(第2ミラー面20a)と離間していても良い。第1状態ST1と第2状態ST2との間の状態(例えば移動中)において、制御部30は、第2ミラー20と接している。 In the resonators 120 to 125, 146, and 147, in the first state ST1, the spacer 55 (for example, the second surface 55b) is in contact with at least a part of the second mirror 20 (second mirror surface 20a). . In these resonators, in the second state ST2, the spacer 55 (for example, the second surface 55b) is in contact with at least a part of the second mirror 20 (second mirror surface 20a). In a state (for example, moving) between the first state ST1 and the second state ST2, the spacer 55 (for example, the second surface 55b) is separated from the second mirror 20 (second mirror surface 20a). Also good. In a state (for example, during movement) between the first state ST1 and the second state ST2, the control unit 30 is in contact with the second mirror 20.
 (第5の実施形態) 
 図25(a)~図25(f)は、第5の実施形態に係る共振器を例示する模式図である。 
 図25(a)及び図25(b)は、斜視図である。図25(c)及び図25(d)は、図25(a)に示した矢印Ar1方向からの平面図である。図25(e)及び図25(f)は、図25(a)に示した矢印Ar2方向からの平面図である。図25(a)、図25(c)及び図25(e)は、第1状態ST1に対応する。図25(b)、図25(d)及び図25(f)は、第2状態ST2に対応する。
(Fifth embodiment)
FIG. 25A to FIG. 25F are schematic views illustrating the resonator according to the fifth embodiment.
FIG. 25A and FIG. 25B are perspective views. 25 (c) and 25 (d) are plan views from the direction of the arrow Ar1 shown in FIG. 25 (a). 25 (e) and 25 (f) are plan views from the direction of the arrow Ar2 shown in FIG. 25 (a). FIG. 25A, FIG. 25C, and FIG. 25E correspond to the first state ST1. FIG. 25B, FIG. 25D, and FIG. 25F correspond to the second state ST2.
 図25(a)に示すように、本実施形態に係る共振器151は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、制御部30と、を含む。「ミラー」は、1つのミラー要素を含む場合と、複数のミラー要素を含む場合と、を有する。第1ミラー10は、複数のミラー要素10e(例えば、第1ミラー要素11及び第2ミラー要素12など)を含む。第2ミラー20は、複数のミラー要素20e(例えば、第3ミラー要素23及び第4ミラー要素24など)を含む。これ以外は、例えば、共振器110と同様である。共振器151において、固定部81、容器80及び温度調整素子82が設けられても良い。これらの図において、固定部81、容器80及び温度調整素子82は、省略されている。 As shown in FIG. 25A, the resonator 151 according to this embodiment includes the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30. Including. The “mirror” includes a case where one mirror element is included and a case where a plurality of mirror elements are included. The first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12). The second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24). Other than this, for example, it is the same as the resonator 110. In the resonator 151, a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
 図25(a)に示す第1状態ST1において、第1ミラー10の1つの点(例えば、第1ミラー要素11の1つの点)と、第2ミラー20の1つの点(例えば第3ミラー要素23の1つの点)と、を結ぶ方向をZ軸方向とする。例えば、Z軸方向は、1つの状態(例えば、第1状態ST1)において、第1ミラー10の中心と、第2ミラー20の中心と、を結ぶ方向である。この例では、第1ミラー10の中心は、第1ミラー要素11と第2ミラー要素12との間の中点である。第2ミラー20の中心は、第3ミラー要素23と第4ミラー要素24との間の中点である。 In the first state ST1 shown in FIG. 25A, one point of the first mirror 10 (for example, one point of the first mirror element 11) and one point of the second mirror 20 (for example, the third mirror element). 23) is defined as a Z-axis direction. For example, the Z-axis direction is a direction connecting the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1). In this example, the center of the first mirror 10 is the midpoint between the first mirror element 11 and the second mirror element 12. The center of the second mirror 20 is the midpoint between the third mirror element 23 and the fourth mirror element 24.
 第2ミラー要素12は、第1ミラー要素11と、Z軸方向と交差する1つの方向(この例では、X軸方向)において、並ぶ。第2ミラー要素12は、第1ミラー要素11と、Z軸方向と交差する1つの方向(この例では、X軸方向)において、離間している。 The second mirror element 12 is aligned with the first mirror element 11 in one direction that intersects the Z-axis direction (in this example, the X-axis direction). The second mirror element 12 is separated from the first mirror element 11 in one direction that intersects the Z-axis direction (in this example, the X-axis direction).
 第4ミラー要素24は、第3ミラー要素23と、Z軸方向と交差する1つの方向(この例では、X軸方向)において、並ぶ。第4ミラー要素24は、第3ミラー要素23と、Z軸方向と交差する1つの方向(この例では、X軸方向)において、離間している。 The fourth mirror element 24 is aligned with the third mirror element 23 in one direction that intersects the Z-axis direction (in this example, the X-axis direction). The fourth mirror element 24 is separated from the third mirror element 23 in one direction that intersects the Z-axis direction (in this example, the X-axis direction).
 この例では、第1ミラー要素11、第2ミラー要素12、第3ミラー要素23及び第4ミラー要素は、X-Z平面内に設けられている。 In this example, the first mirror element 11, the second mirror element 12, the third mirror element 23, and the fourth mirror element are provided in the XZ plane.
 この例では、これらのミラー要素は、平面鏡である。実施形態において、第3ミラー要素23及び第4ミラー要素24が凹面鏡でも良い。この場合、第4ミラー要素24の曲率は、第3ミラー要素23の曲率と、実質的に同じに設定されても良い。 In this example, these mirror elements are plane mirrors. In the embodiment, the third mirror element 23 and the fourth mirror element 24 may be concave mirrors. In this case, the curvature of the fourth mirror element 24 may be set substantially the same as the curvature of the third mirror element 23.
 図25(a)に示す第1状態ST1において、第1スペーサ50は、第1ミラー10及び第2スペーサ60と接している。第2スペーサ60は、第2ミラー20及び第1スペーサ50と接している。 In the first state ST1 shown in FIG. 25A, the first spacer 50 is in contact with the first mirror 10 and the second spacer 60. The second spacer 60 is in contact with the second mirror 20 and the first spacer 50.
 図25(b)に示す第2状態ST2において、第1スペーサ50は、第1ミラー10及び第2スペーサ60と接している。第2スペーサ60は、第2ミラー20及び第1スペーサ50と接している。第2状態ST2における第2スペーサ60の第1スペーサ50に対する相対的な位置(第2位置)は、第1状態ST1における第2スペーサ60の第1スペーサ50に対する相対的な位置(第1位置)とは異なる。 In the second state ST2 shown in FIG. 25B, the first spacer 50 is in contact with the first mirror 10 and the second spacer 60. The second spacer 60 is in contact with the second mirror 20 and the first spacer 50. The relative position (second position) of the second spacer 60 to the first spacer 50 in the second state ST2 is the relative position (first position) of the second spacer 60 to the first spacer 50 in the first state ST1. Is different.
 この例では、第1スペーサ50の第1面50aは、Z軸方向に対して傾斜している。そして、第2スペーサ60の第2面60aは、第1面50aに沿っている。第2状態ST2においては、第1ミラー要素11及び第2ミラー要素12を含む平面(X-Z平面に対して平行な平面)は、第3ミラー要素23及び第4ミラー要素24を含む平面(X-Z平面に対して平行な平面)とは、異なる。 In this example, the first surface 50a of the first spacer 50 is inclined with respect to the Z-axis direction. The second surface 60a of the second spacer 60 is along the first surface 50a. In the second state ST2, a plane including the first mirror element 11 and the second mirror element 12 (a plane parallel to the XZ plane) is a plane including the third mirror element 23 and the fourth mirror element 24 ( And a plane parallel to the XZ plane).
 例えば、第1スペーサ50の内部、及び、第2スペーサ60の内部には、空洞が設けられている。第1スペーサ50の中心部分、及び、第2スペーサ60の中心部分に、空洞が設けられている。これらの空洞を光が通過可能である。共振器151に光を入射したときに、光は、空洞を通過する。このため、例えば、スペーサの物質による光の散乱などの影響は、実質的に生じない。 For example, a cavity is provided in the first spacer 50 and in the second spacer 60. A cavity is provided in the central portion of the first spacer 50 and the central portion of the second spacer 60. Light can pass through these cavities. When light enters the resonator 151, the light passes through the cavity. For this reason, for example, the influence such as light scattering by the spacer material does not substantially occur.
 図25(c)に示すように、第1状態ST1において、例えば、光Liが、第1ミラー要素11に入射する。例えば、第1ミラー要素11の反射率は99%であり、第1ミラー要素11の透過率は1%である。光Liの一部の光LLは、第1ミラー要素11から第2ミラー要素12に向けて進入し、第2ミラー要素12で反射する。反射により光LLの進行方向が変化する。変化の角度は、90度である。第2ミラー要素12で反射した光LLは、第4ミラー要素24に入射し、光LLは、第4ミラー要素24で反射する。反射により光LLの進行方向が変化する。変化の角度は、90度である。第4ミラー要素24で反射した光LLは、第3ミラー要素23に入射し、光LLは、第3ミラー要素23で反射する。反射により光LLの進行方向が変化する。変化の角度は、90度である。第3ミラー要素23で反射した光LLは、第1ミラー要素11に入射する。第1ミラー要素11に入射した光LLの一部が、第1ミラー要素11を通過して外部に出射する。第1状態ST1において、第1共振器Rs1が形成される。第1状態ST1において、第1共振器長L1が形成される。 As shown in FIG. 25C, in the first state ST1, for example, the light Li is incident on the first mirror element 11. For example, the reflectance of the first mirror element 11 is 99%, and the transmittance of the first mirror element 11 is 1%. A part of the light Li, LL, enters from the first mirror element 11 toward the second mirror element 12 and is reflected by the second mirror element 12. The traveling direction of the light LL changes due to reflection. The angle of change is 90 degrees. The light LL reflected by the second mirror element 12 enters the fourth mirror element 24, and the light LL is reflected by the fourth mirror element 24. The traveling direction of the light LL changes due to reflection. The angle of change is 90 degrees. The light LL reflected by the fourth mirror element 24 enters the third mirror element 23, and the light LL is reflected by the third mirror element 23. The traveling direction of the light LL changes due to reflection. The angle of change is 90 degrees. The light LL reflected by the third mirror element 23 enters the first mirror element 11. A part of the light LL incident on the first mirror element 11 passes through the first mirror element 11 and is emitted to the outside. In the first state ST1, the first resonator Rs1 is formed. In the first state ST1, the first resonator length L1 is formed.
 図25(d)に示すように、第2状態ST2において、例えば、光Liの一部の光LLが、第1ミラー要素11に入射し、第2ミラー要素12で反射し、第4ミラー要素24で反射し、第3ミラー要素23で反射し、第1ミラー要素11に入射する。第1ミラー要素11に入射した光LLの一部が、第1ミラー要素11を通過して外部に出射する。第2状態ST2において、第2共振器Rs2が形成される。第2状態ST2において、第2共振器長L2が形成される。 As shown in FIG. 25 (d), in the second state ST2, for example, a part of the light LL is incident on the first mirror element 11, reflected by the second mirror element 12, and the fourth mirror element. 24, reflected by the third mirror element 23, and incident on the first mirror element 11. A part of the light LL incident on the first mirror element 11 passes through the first mirror element 11 and is emitted to the outside. In the second state ST2, the second resonator Rs2 is formed. In the second state ST2, the second resonator length L2 is formed.
 第2状態ST2における第2スペーサ60の第1スペーサ50に対する相対的位置は、第1状態ST1における第2スペーサ60の第1スペーサ50に対する相対的位置とは異なる。従って、第2共振器長L2は、第1共振器長L1とは異なる。 The relative position of the second spacer 60 with respect to the first spacer 50 in the second state ST2 is different from the relative position of the second spacer 60 with respect to the first spacer 50 in the first state ST1. Accordingly, the second resonator length L2 is different from the first resonator length L1.
 共振器151において、第1ミラー10及び第2ミラー20は、例えば、リング型光共振器を形成する。第1ミラー10及び第2ミラー20は、例えば、ループ型光共振器を形成する。第1ミラー10及び第2ミラー20は、例えば、循環型光共振器を形成する。これらの共振器においては、第1ミラー10及び第2ミラー20の少なくともいずれかは、複数のミラー要素を含む。すなわち、共振器において、ミラー要素の数は、3以上でも良い。 In the resonator 151, the first mirror 10 and the second mirror 20 form, for example, a ring type optical resonator. The first mirror 10 and the second mirror 20 form, for example, a loop type optical resonator. The first mirror 10 and the second mirror 20 form, for example, a circulating optical resonator. In these resonators, at least one of the first mirror 10 and the second mirror 20 includes a plurality of mirror elements. That is, in the resonator, the number of mirror elements may be three or more.
 例えば、ファブリペロー型共振器の場合、2つミラー(ミラー要素)が設けられる。ミラー要素の数は、2である。例えば、ファブリペロー型共振器においては、第1ミラー10と第2ミラー20との間の距離が、共振器長に対応する。 For example, in the case of a Fabry-Perot resonator, two mirrors (mirror elements) are provided. The number of mirror elements is two. For example, in a Fabry-Perot resonator, the distance between the first mirror 10 and the second mirror 20 corresponds to the resonator length.
 一方、リング型光共振器(例えば、ループ型光共振器または循環型光共振器)においては、ミラー要素の数は、3以上である。共振器151においては、ミラー要素の数は、4である。共振器151においては、光LLは、複数のミラー要素で反射して、光LLが入射したミラー要素(第1ミラー要素11)に戻る。第1ミラー要素11を通過した光LL(第1ミラー要素11に入射した光Liの一部)が、他のミラー要素(第2ミラー要素12、第4ミラー要素24及び第3ミラー要素23)を経由して、第1ミラー要素11に入射するまでの、光LLの経路の長さが、共振器長に相当する。 On the other hand, in a ring type optical resonator (for example, a loop type optical resonator or a circulation type optical resonator), the number of mirror elements is three or more. In the resonator 151, the number of mirror elements is four. In the resonator 151, the light LL is reflected by a plurality of mirror elements and returns to the mirror element (first mirror element 11) on which the light LL is incident. The light LL that has passed through the first mirror element 11 (a part of the light Li that has entered the first mirror element 11) is another mirror element (the second mirror element 12, the fourth mirror element 24, and the third mirror element 23). The length of the path of the light LL until it enters the first mirror element 11 via the line corresponds to the resonator length.
 共振器151においては、共振器長は、第1ミラー要素11と第2ミラー要素12との間の距離(光路上の距離)と、第2ミラー要素12と第4ミラー要素24との間の距離(光路上の距離)と、第4ミラー要素24と第3ミラー要素23との間の距離(光路上の距離)と、第3ミラー要素23と第1ミラー要素11との間の距離(光路上の距離)と、の和に対応する。 In the resonator 151, the resonator length is the distance between the first mirror element 11 and the second mirror element 12 (distance on the optical path) and the distance between the second mirror element 12 and the fourth mirror element 24. The distance (distance on the optical path), the distance between the fourth mirror element 24 and the third mirror element 23 (distance on the optical path), and the distance between the third mirror element 23 and the first mirror element 11 ( The distance on the optical path).
 図25(c)、図25(d)、図25(e)及び図25(f)に示すように、第2状態ST2における第2ミラー要素12と第4ミラー要素24との間の距離は、第1状態ST1における第2ミラー要素12と第4ミラー要素24との間の距離とは異なる。第2状態ST2における、第3ミラー要素23と第1ミラー要素11との間の距離は、第1状態ST1における、第3ミラー要素23と第1ミラー要素11との間の距離とは異なる。 As shown in FIG. 25C, FIG. 25D, FIG. 25E, and FIG. 25F, the distance between the second mirror element 12 and the fourth mirror element 24 in the second state ST2 is The distance between the second mirror element 12 and the fourth mirror element 24 in the first state ST1 is different. The distance between the third mirror element 23 and the first mirror element 11 in the second state ST2 is different from the distance between the third mirror element 23 and the first mirror element 11 in the first state ST1.
 共振器151において、第1スペーサ50の第1面50aと、X-Y平面(Z軸方向に対して垂直な平面)と、の間の角度は、例えば、0.022度である。第2スペーサ60の第2面60aと、X-Y平面と、の間の角度は、例えば、0.022度である。第1面50a及び第2面60aは、X-Y平面に対して傾斜している。 In the resonator 151, an angle between the first surface 50a of the first spacer 50 and the XY plane (a plane perpendicular to the Z-axis direction) is, for example, 0.022 degrees. The angle between the second surface 60a of the second spacer 60 and the XY plane is, for example, 0.022 degrees. The first surface 50a and the second surface 60a are inclined with respect to the XY plane.
 例えば、第1面50a及び第2面60aは、重力の方向に対して垂直に設定される。この設定は、例えば、固定部81(図25(a)~図25(f)では図示しない)などによって行われる。 For example, the first surface 50a and the second surface 60a are set perpendicular to the direction of gravity. This setting is performed by, for example, the fixing unit 81 (not shown in FIGS. 25A to 25F).
 第2スペーサ60は、例えば、第1スペーサ50の上に配置されている。第2スペーサ60の、第1スペーサ50に対する重力の方向に沿った相対的な位置が、固定されている。 The second spacer 60 is disposed on the first spacer 50, for example. The relative position of the second spacer 60 along the direction of gravity with respect to the first spacer 50 is fixed.
 例えば、第1状態ST1において、第2スペーサ60の1つの側面は、第1スペーサ50の1つの側面と連続している。第1状態ST1における第1共振器長L1は、約150mmである。 For example, in the first state ST1, one side surface of the second spacer 60 is continuous with one side surface of the first spacer 50. The first resonator length L1 in the first state ST1 is about 150 mm.
 制御部30により、第2状態ST2が形成される。制御部30は、例えば、第2スペーサ60(または、第2スペーサ60及び第2ミラー20の少なくともいずれか)の第1スペーサ50に対する相対的な位置を変更する。位置の変更は、例えば、第1面50a及び第2面60aに沿った面内で行われる。位置の変更は、例えば、重力の方向に対して垂直な面内で行われる。位置の変更が行われる方向は、例えば、第1ミラー要素11と第3ミラー要素23とを結ぶ方向と、交差する。位置の変更が行われる方向は、例えば、第2ミラー要素12と第4ミラー要素24とを結ぶ方向、第1ミラー要素11と第4ミラー要素とを結ぶ方向、及び、第2ミラー要素12と第3ミラー要素23とを結ぶ方向と、さらに交差する。位置の変更は、例えば、重力の方向に対して垂直な面内の複数の方向(例えば4つの方向)において行われる。第2状態ST2において、第2スペーサ60の1つの側面は、第1スペーサ50の1つの側面と、不連続である。 The second state ST2 is formed by the control unit 30. For example, the control unit 30 changes the relative position of the second spacer 60 (or at least one of the second spacer 60 and the second mirror 20) with respect to the first spacer 50. The change of the position is performed in a plane along the first surface 50a and the second surface 60a, for example. The position is changed, for example, in a plane perpendicular to the direction of gravity. The direction in which the position is changed intersects, for example, the direction connecting the first mirror element 11 and the third mirror element 23. The direction in which the position is changed is, for example, the direction connecting the second mirror element 12 and the fourth mirror element 24, the direction connecting the first mirror element 11 and the fourth mirror element, and the second mirror element 12 It further intersects with the direction connecting the third mirror element 23. The position is changed in, for example, a plurality of directions (for example, four directions) in a plane perpendicular to the direction of gravity. In the second state ST2, one side surface of the second spacer 60 is discontinuous with one side surface of the first spacer 50.
 例えば、図25(e)に示す第1状態ST1と、図26(f)に示す第2状態ST2と、の間において、第2スペーサ60の第1スペーサ60との間の相対的な位置が変更される。相対的な位置の変更に伴う移動の距離は、例えば、0.75mmである。移動の方向は、重力に対して垂直である。移動中において、制御部30は、第2スペーサ60(または、第2スペーサ60及び第2ミラー20の少なくともいずれか)と接している。移動の後、制御部30は、第2スペーサ60(または、第2スペーサ60及び第2ミラー20の少なくともいずれか)と離間する。これにより第2状態ST2が形成される。 For example, the relative position between the first spacer 60 of the second spacer 60 and the first state ST1 shown in FIG. 25E and the second state ST2 shown in FIG. Be changed. The distance of movement accompanying the change of the relative position is, for example, 0.75 mm. The direction of movement is perpendicular to gravity. During the movement, the control unit 30 is in contact with the second spacer 60 (or at least one of the second spacer 60 and the second mirror 20). After the movement, the control unit 30 is separated from the second spacer 60 (or at least one of the second spacer 60 and the second mirror 20). Thereby, the second state ST2 is formed.
 移動により、第3ミラー要素23と第1ミラー要素11との間の距離が変化し、第2ミラー要素12と第4ミラー要素24との間の距離が変化する。第2状態ST2における第3ミラー要素23と第1ミラー要素11との間の距離(第2状態距離)は、第1状態ST1における第3ミラー要素23と第1ミラー要素11との間の距離(第1状態距離)よりも短い。第2状態距離と第1状態距離との差は、例えば、0.75×sin(0.022度)mmであり、約0.0003mmである。第2状態ST2における第2ミラー要素12と第4ミラー要素24との間の距離(第2状態距離)は、第1状態ST1における第2ミラー要素12と第4ミラー要素24との間の距離(第1状態距離)よりも短い。第2状態距離と第1状態距離との差は、例えば、0.75×sin(0.022度)mmであり、約0.0003mmである。 Due to the movement, the distance between the third mirror element 23 and the first mirror element 11 changes, and the distance between the second mirror element 12 and the fourth mirror element 24 changes. The distance (second state distance) between the third mirror element 23 and the first mirror element 11 in the second state ST2 is the distance between the third mirror element 23 and the first mirror element 11 in the first state ST1. Shorter than (first state distance). The difference between the second state distance and the first state distance is, for example, 0.75 × sin (0.022 degrees) mm, which is about 0.0003 mm. The distance (second state distance) between the second mirror element 12 and the fourth mirror element 24 in the second state ST2 is the distance between the second mirror element 12 and the fourth mirror element 24 in the first state ST1. Shorter than (first state distance). The difference between the second state distance and the first state distance is, for example, 0.75 × sin (0.022 degrees) mm, which is about 0.0003 mm.
 従って、第2状態ST2における第2共振器長L2は、以下となる。 
 L2=L1+ΔL=150+(-0.0003-0.0003)=149.9994(mm)。
Accordingly, the second resonator length L2 in the second state ST2 is as follows.
L2 = L1 + ΔL = 150 + (− 0.0003−0.0003) = 149.994 (mm).
 第1共振器長L1(共振器長が変化する前の共振器長)に対応する共鳴周波数の1つν(第1共鳴周波数)が、247THzであるとする。第2共振器長L2(共振器長が変化した後の共振器長)に対応する共鳴周波数(第2共鳴周波数)は、第1共鳴周波数とは、異なる。第2共鳴周波数と第1共鳴周波数との差(周波数シフト量Δν)は、約1GHzである。実施形態において、共鳴周波数を大きくシフトさせることができる。 Suppose that one of resonance frequencies ν (first resonance frequency) corresponding to the first resonator length L1 (resonator length before the resonator length is changed) is 247 THz. The resonance frequency (second resonance frequency) corresponding to the second resonator length L2 (resonator length after the resonator length has changed) is different from the first resonance frequency. The difference (frequency shift amount Δν) between the second resonance frequency and the first resonance frequency is about 1 GHz. In the embodiment, the resonance frequency can be shifted greatly.
 実施形態においては、共振器長の変化の前後において、周波数不安定の原因となる外力が共振器に加わることが抑制される。共鳴周波数において、高い安定性が得られる。 In the embodiment, before and after the change of the resonator length, an external force that causes frequency instability is suppressed from being applied to the resonator. High stability is obtained at the resonance frequency.
 共振器151において、第2状態ST2における第1ミラー要素11のX軸方向の位置は、第1状態ST1における第1ミラー要素11のX軸方向の位置と同じである。第2状態ST2における第2ミラー要素12のX軸方向の位置は、第1状態ST1における第2ミラー要素12のX軸方向の位置と同じである。第2状態ST2における第3ミラー要素23のX軸方向の位置は、第1状態ST1における第3ミラー要素23のX軸方向の位置と同じである。第2状態ST2における第4ミラー要素24のX軸方向の位置は、第1状態ST1における第4ミラー要素24のX軸方向の位置と同じである。 In the resonator 151, the position in the X-axis direction of the first mirror element 11 in the second state ST2 is the same as the position in the X-axis direction of the first mirror element 11 in the first state ST1. The position in the X-axis direction of the second mirror element 12 in the second state ST2 is the same as the position in the X-axis direction of the second mirror element 12 in the first state ST1. The position in the X-axis direction of the third mirror element 23 in the second state ST2 is the same as the position in the X-axis direction of the third mirror element 23 in the first state ST1. The position in the X-axis direction of the fourth mirror element 24 in the second state ST2 is the same as the position in the X-axis direction of the fourth mirror element 24 in the first state ST1.
 実施形態において、第1ミラー10に設けられる複数のミラー要素10eの数は、3以上でも良い。第2ミラー20に設けられる複数のミラー要素20eの数は、3以上でも良い。 In the embodiment, the number of the plurality of mirror elements 10e provided in the first mirror 10 may be three or more. The number of the plurality of mirror elements 20e provided in the second mirror 20 may be three or more.
 図26(a)~図26(d)は、第5の実施形態に係る別の共振器を例示する模式図である。 
 図26(a)及び図26(c)は、第1状態ST1に対応する。図26(b)及び図26(d)は、第2状態ST2に対応する。
FIGS. 26A to 26D are schematic views illustrating another resonator according to the fifth embodiment.
FIG. 26A and FIG. 26C correspond to the first state ST1. FIG. 26B and FIG. 26D correspond to the second state ST2.
 図26(a)に示すように、本実施形態に係る別の共振器152は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、制御部30と、を含む。第1ミラー10は、複数のミラー要素10e(例えば、第1ミラー要素11及び第2ミラー要素12など)を含む。第2ミラー20は、第3ミラー要素23を含む。これ以外は、例えば、共振器110と同様である。共振器152において、固定部81、容器80及び温度調整素子82が設けられても良い。これらの図において、固定部81、容器80及び温度調整素子82は、省略されている。 As shown in FIG. 26A, another resonator 152 according to the present embodiment includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including. The first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12). The second mirror 20 includes a third mirror element 23. Other than this, for example, it is the same as the resonator 110. In the resonator 152, a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
 共振器152において、例えば、Z軸方向は、例えば、1つの状態(例えば、第1状態ST1)において、第1ミラー10の中心と、第2ミラー20の中心と、を結ぶ方向である。この例では、第1ミラー10の中心は、第1ミラー要素11と第2ミラー要素12との間の中点である。この中点と、第2ミラー20(第3ミラー要素23)の中心と、を結ぶ方向が、Z軸方向となる。 In the resonator 152, for example, the Z-axis direction is, for example, a direction connecting the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1). In this example, the center of the first mirror 10 is the midpoint between the first mirror element 11 and the second mirror element 12. The direction connecting this midpoint and the center of the second mirror 20 (third mirror element 23) is the Z-axis direction.
 共振器152において、第1ミラー要素11、第2ミラー要素12及び第3ミラー要素23は、平面鏡である。第1ミラー要素11を含む平面、第2ミラー要素12を含む平面、及び、第3ミラー要素23を含む平面のそれぞれは、Y軸方向に対して平行である。 In the resonator 152, the first mirror element 11, the second mirror element 12, and the third mirror element 23 are plane mirrors. Each of the plane including the first mirror element 11, the plane including the second mirror element 12, and the plane including the third mirror element 23 is parallel to the Y-axis direction.
 図26(a)に示すように、第1ミラー要素11に光Liが入射する。例えば、第1ミラー要素11の反射率は99%であり、第1ミラー要素11の透過率は1%である。光Liの一部の光LLは、第1ミラー要素11を通過した後、第2ミラー要素12に入射する。光LLは、第2ミラー要素12で反射する。第2ミラー要素12における入射角は35度であり、反射角は35度である。入射角は、第2ミラー要素12の表面に対して垂直な方向と、第2ミラー要素12へ入射する光LLとの間の角度である。反射角は、第2ミラー要素12の表面に対して垂直な方向と、第2ミラー要素12で反射された光LLとの間の角度である。第2ミラー要素12で反射した光LLは、第2ミラー20(第3ミラー要素23)に向かって進行する。光LLは、第2ミラー20で反射する。第2ミラー20で反射した光LLは、第1ミラー要素11に入射する。第1ミラー要素11に入射した光LLの一部が、外部に出射する。 As shown in FIG. 26A, light Li is incident on the first mirror element 11. For example, the reflectance of the first mirror element 11 is 99%, and the transmittance of the first mirror element 11 is 1%. A part of the light Li, LL, passes through the first mirror element 11 and then enters the second mirror element 12. The light LL is reflected by the second mirror element 12. The incident angle at the second mirror element 12 is 35 degrees and the reflection angle is 35 degrees. The incident angle is an angle between the direction perpendicular to the surface of the second mirror element 12 and the light LL incident on the second mirror element 12. The reflection angle is an angle between a direction perpendicular to the surface of the second mirror element 12 and the light LL reflected by the second mirror element 12. The light LL reflected by the second mirror element 12 travels toward the second mirror 20 (third mirror element 23). The light LL is reflected by the second mirror 20. The light LL reflected by the second mirror 20 enters the first mirror element 11. A part of the light LL incident on the first mirror element 11 is emitted to the outside.
 第1状態ST1において、第1共振器長L1は、第1ミラー要素11と第2ミラー要素12との間の距離(光路上の距離)と、第2ミラー要素12と第2ミラー20(第3ミラー要素23)との間の距離(光路上の距離)と、第2ミラー20(第3ミラー要素23)と第1ミラー要素11との間の距離(光路上の距離)と、の和である。 In the first state ST1, the first resonator length L1 is determined by the distance between the first mirror element 11 and the second mirror element 12 (distance on the optical path), the second mirror element 12 and the second mirror 20 (first 3 (the distance on the optical path) and the distance between the second mirror 20 (the third mirror element 23) and the first mirror element 11 (the distance on the optical path). It is.
 図26(a)及び図26(c)に示すように、第1スペーサ50の第1面50aは、X-Y平面(Z軸方向に対して垂直な平面)に対して傾斜しており、第2スペーサ60の第2面60aは、X-Y平面に対して傾斜している。制御部30により、第2スペーサ60の第1スペーサ50に対する相対的な位置が、変更される。位置の変更が行われる方向は、例えば、第1ミラー要素11と第3ミラー要素23とを結ぶ方向と交差する。位置の変更が行われる方向は、第2ミラー要素12と第3ミラー要素23とを結ぶ方向と、さらに交差する。これにより、第2状態ST2が形成される。 As shown in FIGS. 26A and 26C, the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction). The second surface 60a of the second spacer 60 is inclined with respect to the XY plane. The relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. The direction in which the position is changed intersects with the direction connecting the first mirror element 11 and the third mirror element 23, for example. The direction in which the position is changed further intersects with the direction connecting the second mirror element 12 and the third mirror element 23. Thereby, the second state ST2 is formed.
 図26(b)及び図26(d)に示すように、第2状態ST2における第2共振器長L2は、第1共振器長L1よりも短い。 As shown in FIGS. 26B and 26D, the second resonator length L2 in the second state ST2 is shorter than the first resonator length L1.
 共振器152においても、共鳴周波数を大きくシフトさせることができる。共鳴周波数において、高い安定性が得られる。 Also in the resonator 152, the resonance frequency can be greatly shifted. High stability is obtained at the resonance frequency.
 図27(a)及び図27(b)は、第5の実施形態に係る別の共振器を例示する模式図である。 
 これらの図は、第1状態ST1に対応する。 
 図27(a)に示すように、本実施形態に係る別の共振器153は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、制御部30と、を含む。第1ミラー10は、複数のミラー要素10e(例えば、第1ミラー要素11、第2ミラー要素12及び第5ミラー要素15など)を含む。第2ミラー20は、複数のミラー要素20e(例えば、第3ミラー要素23及び第4ミラー要素24など)を含む。これ以外は、共振器151と同様である。
FIG. 27A and FIG. 27B are schematic views illustrating another resonator according to the fifth embodiment.
These figures correspond to the first state ST1.
As shown in FIG. 27A, another resonator 153 according to this embodiment includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including. The first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11, the second mirror element 12, the fifth mirror element 15, and the like). The second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24). The rest is the same as the resonator 151.
 第1ミラー要素11に入射した光Liの一部の光LLは、第1ミラー要素11を通過し、第3ミラー要素23で反射し、その後第4ミラー要素24で反射し、その後第5ミラー要素15で反射し、その後第2ミラー要素12で反射し、その後第1ミラー要素11に入射する。光LLの一部が、第1ミラー要素11を通過して、外部に出射する。 A part of the light Li that has entered the first mirror element 11 passes through the first mirror element 11, is reflected by the third mirror element 23, is then reflected by the fourth mirror element 24, and is then reflected by the fifth mirror. Reflected by the element 15, then reflected by the second mirror element 12 and then incident on the first mirror element 11. A part of the light LL passes through the first mirror element 11 and is emitted to the outside.
 第1スペーサ50の第1面50aは、X-Y平面(Z軸方向に対して垂直な平面)に対して傾斜しており、第2スペーサ60の第2面60aは、X-Y平面に対して傾斜している。制御部30により、第2スペーサ60の第1スペーサ50に対する相対的な位置が、変更される。これにより、第2状態ST2が形成される。第2状態ST2における第2共振器長L2は、第1共振器長L1とは異なる。 The first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction), and the second surface 60a of the second spacer 60 is in the XY plane. It is inclined with respect to it. The relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. Thereby, the second state ST2 is formed. The second resonator length L2 in the second state ST2 is different from the first resonator length L1.
 図28(a)及び図28(b)は、第5の実施形態に係る別の共振器を例示する模式図である。 
 これらの図は、第1状態ST1に対応する。 
 図28(a)に示すように、本実施形態に係る別の共振器154は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、制御部30と、を含む。第1ミラー10は、複数のミラー要素10e(例えば、第1ミラー要素11、第2ミラー要素12及び第5ミラー要素15など)を含む。第2ミラー20は、複数のミラー要素20e(例えば、第3ミラー要素23、第4ミラー要素24及び第6ミラー要素26など)を含む。これ以外は、共振器151と同様である。
FIG. 28A and FIG. 28B are schematic views illustrating another resonator according to the fifth embodiment.
These figures correspond to the first state ST1.
As shown in FIG. 28A, another resonator 154 according to this embodiment includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including. The first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11, the second mirror element 12, the fifth mirror element 15, and the like). The second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23, a fourth mirror element 24, a sixth mirror element 26, etc.). The rest is the same as the resonator 151.
 第1ミラー要素11に入射した光Liの一部の光LLは、第1ミラー要素11を通過し、第3ミラー要素23で反射し、その後第4ミラー要素24で反射し、その後第6ミラー要素26で反射し、その後第5ミラー要素15で反射し、その後第2ミラー要素12で反射し、その後第1ミラー要素11に入射する。光LLの一部が、第1ミラー要素11を通過して、外部に出射する。 A part of the light Li that has entered the first mirror element 11 passes through the first mirror element 11, is reflected by the third mirror element 23, is then reflected by the fourth mirror element 24, and is then reflected by the sixth mirror. Reflected by the element 26, then reflected by the fifth mirror element 15, then reflected by the second mirror element 12, and then incident on the first mirror element 11. A part of the light LL passes through the first mirror element 11 and is emitted to the outside.
 第1スペーサ50の第1面50aは、X-Y平面(Z軸方向に対して垂直な平面)に対して傾斜しており、第2スペーサ60の第2面60aは、X-Y平面に対して傾斜している。制御部30により、第2スペーサ60の第1スペーサ50に対する相対的な位置が、変更される。これにより、第2状態ST2が形成される。第2状態ST2における第2共振器長L2は、第1共振器長L1とは異なる。 The first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction), and the second surface 60a of the second spacer 60 is in the XY plane. It is inclined with respect to it. The relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. Thereby, the second state ST2 is formed. The second resonator length L2 in the second state ST2 is different from the first resonator length L1.
 共振器153及び154においても、共鳴周波数を大きくシフトさせることができる。共鳴周波数において、高い安定性が得られる。 Also in the resonators 153 and 154, the resonance frequency can be greatly shifted. High stability is obtained at the resonance frequency.
 (第6の実施形態) 
 図29(a)~図29(d)は、第6の実施形態に係る別の共振器を例示する模式図である。 
 図29(a)及び図29(c)は、第1状態ST1に対応する。図29(b)及び図29(d)は、第2状態ST2に対応する。
(Sixth embodiment)
FIGS. 29A to 29D are schematic views illustrating another resonator according to the sixth embodiment.
FIG. 29A and FIG. 29C correspond to the first state ST1. FIG. 29B and FIG. 29D correspond to the second state ST2.
 図29(a)に示すように、本実施形態に係る共振器161は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、制御部30と、を含む。第1ミラー10は、複数のミラー要素10e(例えば、第1ミラー要素11及び第2ミラー要素12など)を含む。第2ミラー20は、複数のミラー要素20e(例えば、第3ミラー要素23及び第4ミラー要素24など)を含む。これ以外は、例えば、共振器110と同様である。共振器161において、固定部81、容器80及び温度調整素子82が設けられても良い。これらの図において、固定部81、容器80及び温度調整素子82は、省略されている。 As illustrated in FIG. 29A, the resonator 161 according to the present embodiment includes the first mirror 10, the second mirror 20, the first spacer 50, the second spacer 60, and the control unit 30. Including. The first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12). The second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24). Other than this, for example, it is the same as the resonator 110. In the resonator 161, a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
 共振器161において、例えば、Z軸方向は、例えば、1つの状態(例えば、第1状態ST1)において、第1ミラー10の中心と、第2ミラー20の中心と、を結ぶ方向である。この例では、第1ミラー10の中心は、第1ミラー要素11と第2ミラー要素12との間の中点である。第2ミラー20の中心は、第3ミラー要素23と第4ミラー要素24との間の中点である。これらの中点を結ぶ方向が、Z軸方向となる。 In the resonator 161, for example, the Z-axis direction is, for example, a direction connecting the center of the first mirror 10 and the center of the second mirror 20 in one state (for example, the first state ST1). In this example, the center of the first mirror 10 is the midpoint between the first mirror element 11 and the second mirror element 12. The center of the second mirror 20 is the midpoint between the third mirror element 23 and the fourth mirror element 24. The direction connecting these midpoints is the Z-axis direction.
 共振器161において、第1ミラー要素11、第2ミラー要素12、第3ミラー要素23及び第4ミラー要素24は、平面鏡である。第2ミラー要素12を含む面(平面)と、第1ミラー要素11を含む面(平面)と、の間の角度は、例えば、30度である。第4ミラー要素24を含む面(平面)と、第3ミラー要素23を含む面(平面)と、の間の角度は、例えば、30度である。 In the resonator 161, the first mirror element 11, the second mirror element 12, the third mirror element 23, and the fourth mirror element 24 are plane mirrors. The angle between the plane (plane) including the second mirror element 12 and the plane (plane) including the first mirror element 11 is, for example, 30 degrees. The angle between the plane (plane) including the fourth mirror element 24 and the plane (plane) including the third mirror element 23 is, for example, 30 degrees.
 第2ミラー要素12は、X軸方向に沿って第1ミラー要素11と並ぶ。第4ミラー要素24は、X軸方向に沿って第3ミラー要素23と並ぶ。第4ミラー要素24は、Z軸方向に沿って第2ミラー要素12と並ぶ。第3ミラー要素23は、Z軸方向に沿って第1ミラー要素11と並ぶ。第1状態ST1において、これらのミラー要素は、X-Z平面内で並ぶ。 The second mirror element 12 is aligned with the first mirror element 11 along the X-axis direction. The fourth mirror element 24 is aligned with the third mirror element 23 along the X-axis direction. The fourth mirror element 24 is aligned with the second mirror element 12 along the Z-axis direction. The third mirror element 23 is aligned with the first mirror element 11 along the Z-axis direction. In the first state ST1, these mirror elements are arranged in the XZ plane.
 図29(a)に示すように、第1ミラー要素11に光Liが入射する。光Liの一部の光LLは、第1ミラー要素11を通過した後、第3ミラー要素23に入射する。光LLは、第3ミラー要素23で反射する。第3ミラー要素23における入射角は15度であり、反射角は15度である。第3ミラー要素23で反射した光LLは、第2ミラー要素12に向かって進行する。光LLは、第2ミラー要素12で反射する。第2ミラー要素12における入射角は15度であり、反射角は15度である。第2ミラー要素12で反射した光LLは、第4ミラー要素24に向かって進行する。光LLは、第4ミラー要素24で反射する。第4ミラー要素24における入射角は15度であり、反射角は15度である。第4ミラー要素24で反射した光LLは、第1ミラー要素11に向かって進行する。光LLは、第1ミラー要素11に入射する。第1ミラー要素11に入射した光LLの一部が、外部に出射する。上記において、ミラー要素における入射角は、そのミラー要素の表面に対して垂直な方向と、そのミラー要素へ入射する光LLと、の間の角度である。反射角は、そのミラー要素の表面に対して垂直な方向と、そのミラー要素で反射された光LLと、の間の角度である。 As shown in FIG. 29A, the light Li is incident on the first mirror element 11. A part of the light Li LL passes through the first mirror element 11 and then enters the third mirror element 23. The light LL is reflected by the third mirror element 23. The incident angle in the third mirror element 23 is 15 degrees, and the reflection angle is 15 degrees. The light LL reflected by the third mirror element 23 travels toward the second mirror element 12. The light LL is reflected by the second mirror element 12. The incident angle in the second mirror element 12 is 15 degrees and the reflection angle is 15 degrees. The light LL reflected by the second mirror element 12 travels toward the fourth mirror element 24. The light LL is reflected by the fourth mirror element 24. The incident angle at the fourth mirror element 24 is 15 degrees and the reflection angle is 15 degrees. The light LL reflected by the fourth mirror element 24 travels toward the first mirror element 11. The light LL is incident on the first mirror element 11. A part of the light LL incident on the first mirror element 11 is emitted to the outside. In the above, the incident angle in a mirror element is an angle between the direction perpendicular to the surface of the mirror element and the light LL incident on the mirror element. The reflection angle is an angle between a direction perpendicular to the surface of the mirror element and the light LL reflected by the mirror element.
 共振器161において、第1ミラー10及び第2ミラー20は、例えば、ボウタイ型光共振器を形成する。ボウタイ型光共振器は、リング型共振器の1つである。 In the resonator 161, the first mirror 10 and the second mirror 20 form, for example, a bowtie type optical resonator. The bow tie type optical resonator is one of ring type resonators.
 第1状態ST1において、第1ミラー要素11と第3ミラー要素23との間の距離(光路上の距離)は、例えば、34.8076mmである。第3ミラー要素23と第2ミラー要素12との間の距離(光路上の距離)は、40.1924mmである。第2ミラー要素12と第4ミラー要素24との間の距離(光路上の距離)は、例えば、34.8076mmである。第4ミラー要素24と第1ミラー要素11との間の距離(光路上の距離)は、40.1924mmである。第1状態ST1において、第1共振器長L1は、これらの距離の和であり、150mmである。第1状態ST1において、第2スペーサ60の1つの側面は、第1スペーサ50の1つの側面と連続している。 In the first state ST1, the distance between the first mirror element 11 and the third mirror element 23 (distance on the optical path) is, for example, 34.8076 mm. The distance (distance on the optical path) between the third mirror element 23 and the second mirror element 12 is 40.1924 mm. The distance (distance on the optical path) between the second mirror element 12 and the fourth mirror element 24 is, for example, 34.8076 mm. The distance (distance on the optical path) between the fourth mirror element 24 and the first mirror element 11 is 40.1924 mm. In the first state ST1, the first resonator length L1 is the sum of these distances and is 150 mm. In the first state ST <b> 1, one side surface of the second spacer 60 is continuous with one side surface of the first spacer 50.
 図29(c)に示すように、第1スペーサ50の第1面50aは、X-Y平面(Z軸方向に対して垂直な平面)に対して傾斜しており、第2スペーサ60の第2面60aは、X-Y平面に対して傾斜している。例えば、第1スペーサ50の第1面50a(第2スペーサ60の第2面60a)と、X-Y平面と、の間の角度は、例えば、0.022度である。例えば、第1面50a及び第2面60aは、重力の方向に対して垂直に設定される。例えば、制御部30により、第2スペーサ60の第1スペーサ50に対する相対的な位置が、変更される。位置の変更は、第1面50aに沿って行われる。位置の変更(移動中)において、制御部30は、第2スペーサ60と接する。位置の変更後(移動後)、制御部30は、第2スペーサ60から離間する。これにより、第2状態ST2が形成される。 As shown in FIG. 29C, the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction). The two surfaces 60a are inclined with respect to the XY plane. For example, the angle between the first surface 50a of the first spacer 50 (the second surface 60a of the second spacer 60) and the XY plane is, for example, 0.022 degrees. For example, the first surface 50a and the second surface 60a are set perpendicular to the direction of gravity. For example, the relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. The position is changed along the first surface 50a. When the position is changed (moving), the control unit 30 contacts the second spacer 60. After changing the position (after movement), the control unit 30 is separated from the second spacer 60. Thereby, the second state ST2 is formed.
 図29(d)に示すように、第2状態ST2において、第2スペーサ60の側面の1つは、第1スペーサ50の1つの側面と、不連続である。 As shown in FIG. 29 (d), in the second state ST2, one of the side surfaces of the second spacer 60 is discontinuous with one side surface of the first spacer 50.
 図29(b)及び図29(d)に示すように、第2状態ST2における第2共振器長L2は、第1共振器長L1よりも短い。例えば、第2状態ST2における第2スペーサ60の位置と、第1状態ST1における第2スペーサ60の位置と、の差(第1面50aに沿った長さであり、例えば、重力の方向に対して垂直な方向に沿った長さ)は、例えば、0.475mmである。 As shown in FIGS. 29B and 29D, the second resonator length L2 in the second state ST2 is shorter than the first resonator length L1. For example, the difference between the position of the second spacer 60 in the second state ST2 and the position of the second spacer 60 in the first state ST1 (the length along the first surface 50a, for example, relative to the direction of gravity The length along the vertical direction is 0.475 mm, for example.
 第2状態ST2における第1ミラー要素11と第3ミラー要素23との間のZ軸方向に沿った長さと、第1状態ST1における第1ミラー要素11と第3ミラー要素23との間のZ軸方向に沿った長さと、の差は、0.475×sin(0.022度)mmであり、約0.00018mmである。第2状態ST2における第2ミラー要素12と第4ミラー要素24との間のZ軸方向に沿った長さと、第1状態ST1における第2ミラー要素12と第4ミラー要素24との間のZ軸方向に沿った長さと、の差は、0.475×sin(0.022度)mmであり、約0.00018mmである。 The length along the Z-axis direction between the first mirror element 11 and the third mirror element 23 in the second state ST2, and the Z between the first mirror element 11 and the third mirror element 23 in the first state ST1. The difference between the length along the axial direction is 0.475 × sin (0.022 degrees) mm, which is about 0.00018 mm. The length along the Z-axis direction between the second mirror element 12 and the fourth mirror element 24 in the second state ST2, and the Z between the second mirror element 12 and the fourth mirror element 24 in the first state ST1. The difference between the length along the axial direction is 0.475 × sin (0.022 degrees) mm, which is about 0.00018 mm.
 第2状態ST2における複数のミラー要素のそれぞれにおける入射角は、第1状態ST1における複数のミラー要素のそれぞれにおける入射角と同じである。第2状態ST2における複数のミラー要素のそれぞれにおける反射角は、第1状態ST1における複数のミラー要素のそれぞれにおける反射角と同じである。複数のミラー要素の1つにおいて、光Liが入射する位置は、第1状態ST1と第2状態ST2とで異なる。第2状態ST2における第2共振器長L2は、第1ミラー要素11と第3ミラー要素23との間の距離(光路上の距離であり、34.8075mm)と、第3ミラー要素23と第2ミラー要素12との間の距離(光路上の距離であり、40.1922mm)と、第2ミラー要素12と第4ミラー要素24との間の距離(光路上の距離であり、34.8075mm)と、第4ミラー要素24と第1ミラー要素11との間の距離(光路上の距離であり、40.1922mm)の和である。第2共振器長L2は、149.9994mmである。 The incident angle at each of the plurality of mirror elements in the second state ST2 is the same as the incident angle at each of the plurality of mirror elements in the first state ST1. The reflection angle in each of the plurality of mirror elements in the second state ST2 is the same as the reflection angle in each of the plurality of mirror elements in the first state ST1. In one of the plurality of mirror elements, the position where the light Li is incident is different between the first state ST1 and the second state ST2. The second resonator length L2 in the second state ST2 is a distance between the first mirror element 11 and the third mirror element 23 (a distance on the optical path, 34.8075 mm), the third mirror element 23, and the second mirror length 23. The distance between two mirror elements 12 (distance on the optical path, 40.1922 mm) and the distance between the second mirror element 12 and the fourth mirror element 24 (distance on the optical path, 34.8075 mm) ) And the distance between the fourth mirror element 24 and the first mirror element 11 (the distance on the optical path, 40.1922 mm). The second resonator length L2 is 149.9994 mm.
 第1共振器長L1(共振器長が変化する前の共振器長)に対応する共鳴周波数の1つν(第1共鳴周波数)が、247THzであるとする。第2共振器長L2(共振器長が変化した後の共振器長)に対応する共鳴周波数(第2共鳴周波数)と、第1共鳴周波数と、の差(周波数シフト量Δν)は、約1GHzである。実施形態において、共鳴周波数を大きくシフトさせることができる。この例においても、共振器長の変化の前後において、周波数不安定の原因となる外力が共振器に加わることが抑制される。共鳴周波数において、高い安定性が得られる。 Suppose that one of resonance frequencies ν (first resonance frequency) corresponding to the first resonator length L1 (resonator length before the resonator length is changed) is 247 THz. The difference (frequency shift amount Δν) between the resonance frequency (second resonance frequency) corresponding to the second resonator length L2 (resonator length after the resonator length has changed) and the first resonance frequency is about 1 GHz. It is. In the embodiment, the resonance frequency can be shifted greatly. Also in this example, before and after the change in the resonator length, the external force that causes the frequency instability is suppressed from being applied to the resonator. High stability is obtained at the resonance frequency.
 図30(a)~図30(d)は、第6の実施形態に係る別の共振器を例示する模式図である。 
 図30(a)及び図30(c)は、第1状態ST1に対応する。図30(b)及び図30(d)は、第2状態ST2に対応する。
FIG. 30A to FIG. 30D are schematic views illustrating another resonator according to the sixth embodiment.
FIG. 30A and FIG. 30C correspond to the first state ST1. FIG. 30B and FIG. 30D correspond to the second state ST2.
 図30(a)に示すように、本実施形態に係る別の共振器162は、第1ミラー10と、第2ミラー20と、第1スペーサ50と、第2スペーサ60と、制御部30と、を含む。第1ミラー10は、複数のミラー要素10e(例えば、第1ミラー要素11及び第2ミラー要素12など)を含む。第2ミラー20は、複数のミラー要素20e(例えば、第3ミラー要素23及び第4ミラー要素24など)を含む。共振器162において、固定部81、容器80及び温度調整素子82が設けられても良い。これらの図において、固定部81、容器80及び温度調整素子82は、省略されている。 As shown in FIG. 30A, another resonator 162 according to this embodiment includes a first mirror 10, a second mirror 20, a first spacer 50, a second spacer 60, a control unit 30, and the like. ,including. The first mirror 10 includes a plurality of mirror elements 10e (for example, the first mirror element 11 and the second mirror element 12). The second mirror 20 includes a plurality of mirror elements 20e (for example, a third mirror element 23 and a fourth mirror element 24). In the resonator 162, a fixing part 81, a container 80, and a temperature adjustment element 82 may be provided. In these drawings, the fixing portion 81, the container 80, and the temperature adjustment element 82 are omitted.
 共振器162において、第1ミラー要素11、第2ミラー要素12、第3ミラー要素23及び第4ミラー要素24は、平面鏡である。第2ミラー要素12を含む面(平面)と、第1ミラー要素11を含む面(平面)と、の間の角度は、例えば、60度である。第4ミラー要素24を含む面(平面)と、第3ミラー要素23を含む面(平面)と、の間の角度は、例えば、60度である。 In the resonator 162, the first mirror element 11, the second mirror element 12, the third mirror element 23, and the fourth mirror element 24 are plane mirrors. The angle between the plane (plane) including the second mirror element 12 and the plane (plane) including the first mirror element 11 is, for example, 60 degrees. The angle between the plane (plane) including the fourth mirror element 24 and the plane (plane) including the third mirror element 23 is, for example, 60 degrees.
 図30(a)に示すように、第1状態ST1において、光Liが第1ミラー要素11に入射する。光Liの一部の光LLは、第1ミラー要素11を通過して、第2ミラー要素12で反射して、第3ミラー要素23に向けて進む。光LLは、第3ミラー要素23で反射して第4ミラー要素24に向けて進む。光LLは、第4ミラー要素24で反射して第1ミラー要素11に向けて進む。ボウタイ型光共振器が形成される。 30A, the light Li is incident on the first mirror element 11 in the first state ST1. A part of the light Li LL passes through the first mirror element 11, is reflected by the second mirror element 12, and travels toward the third mirror element 23. The light LL is reflected by the third mirror element 23 and travels toward the fourth mirror element 24. The light LL is reflected by the fourth mirror element 24 and travels toward the first mirror element 11. A bowtie type optical resonator is formed.
 第1状態ST1において、第1ミラー要素11と第2ミラー要素12との間の距離(光路上の距離)は、25mmである。第2ミラー要素12と第3ミラー要素23との間の距離(光路上の距離)は、50mmである。第3ミラー要素23と第4ミラー要素24との間の距離(光路上の距離)は、25mmである。第4ミラー要素24と第1ミラー要素11との間の距離(光路上の距離)は、50mmである。第1状態ST1において、第1共振器長L1は、これらの距離の和に対応し、150mmである。第1状態ST1において、第2スペーサ60の1つの側面は、第1スペーサ50の1つの側面と連続している。 In the first state ST1, the distance between the first mirror element 11 and the second mirror element 12 (distance on the optical path) is 25 mm. The distance (distance on the optical path) between the second mirror element 12 and the third mirror element 23 is 50 mm. The distance (distance on the optical path) between the third mirror element 23 and the fourth mirror element 24 is 25 mm. The distance (distance on the optical path) between the fourth mirror element 24 and the first mirror element 11 is 50 mm. In the first state ST1, the first resonator length L1 corresponds to the sum of these distances and is 150 mm. In the first state ST <b> 1, one side surface of the second spacer 60 is continuous with one side surface of the first spacer 50.
 図30(c)に示すように、第1スペーサ50の第1面50aは、X-Y平面(Z軸方向に対して垂直な平面)に対して傾斜しており、第2スペーサ60の第2面60aは、X-Y平面に対して傾斜している。例えば、第1スペーサ50の第1面50a(第2スペーサ60の第2面60a)と、X-Y平面と、の間の角度は、例えば、0.022度である。例えば、第1面50a及び第2面60aは、重力の方向に対して垂直に設定される。例えば、制御部30により、第2スペーサ60の第1スペーサ50に対する相対的な位置が、変更される。位置の変更は、第1面50aに沿って行われる。位置の変更(移動中)において、制御部30は、第2スペーサ60と接する。位置の変更後(移動後)は、制御部30は、第2スペーサ60から離間する。これにより、第2状態ST2が形成される。 As shown in FIG. 30C, the first surface 50a of the first spacer 50 is inclined with respect to the XY plane (a plane perpendicular to the Z-axis direction). The two surfaces 60a are inclined with respect to the XY plane. For example, the angle between the first surface 50a of the first spacer 50 (the second surface 60a of the second spacer 60) and the XY plane is, for example, 0.022 degrees. For example, the first surface 50a and the second surface 60a are set perpendicular to the direction of gravity. For example, the relative position of the second spacer 60 with respect to the first spacer 50 is changed by the control unit 30. The position is changed along the first surface 50a. When the position is changed (moving), the control unit 30 contacts the second spacer 60. After changing the position (after movement), the control unit 30 is separated from the second spacer 60. Thereby, the second state ST2 is formed.
 図30(d)に示すように、第2状態ST2において、第2スペーサ60の1つの側面は、第1スペーサ50の1つの側面と不連続である。 30 (d), in the second state ST2, one side surface of the second spacer 60 is discontinuous with one side surface of the first spacer 50.
 図30(b)及び図30(d)に示すように、第2状態ST2における第2共振器長L2は、第1共振器長L1よりも短い。例えば、第2状態ST2における第2スペーサ60の位置と、第1状態ST1における第2スペーサ60の位置と、の差(第1面50aに沿った長さであり、例えば、重力の方向に対して垂直な方向に沿った長さ)は、例えば、0.045mmである。 30 (b) and 30 (d), the second resonator length L2 in the second state ST2 is shorter than the first resonator length L1. For example, the difference between the position of the second spacer 60 in the second state ST2 and the position of the second spacer 60 in the first state ST1 (the length along the first surface 50a, for example, relative to the direction of gravity The length along the vertical direction) is, for example, 0.045 mm.
 第2状態ST2における第3ミラー要素23と第1ミラー要素11との間の距離(Z軸方向に沿った距離)と、第1状態ST1における第3ミラー要素23と第1ミラー要素11との間の距離(Z軸方向に沿った距離)と、の差は、0.45×sin(0.022度)mmであり、約0.00017mmである。第2状態ST2における第4ミラー要素24と第2ミラー要素12との間の距離(Z軸方向に沿った距離)と、第1状態ST1における第4ミラー要素24と第2ミラー要素12との間の距離(Z軸方向に沿った距離)と、の差は、0.45×sin(0.022度)mmであり、約0.00017mmである。 The distance (the distance along the Z-axis direction) between the third mirror element 23 and the first mirror element 11 in the second state ST2, and the third mirror element 23 and the first mirror element 11 in the first state ST1 The difference between the distance (the distance along the Z-axis direction) is 0.45 × sin (0.022 degrees) mm, which is about 0.00017 mm. The distance between the fourth mirror element 24 and the second mirror element 12 in the second state ST2 (the distance along the Z-axis direction) and the fourth mirror element 24 and the second mirror element 12 in the first state ST1 The difference between the distance (the distance along the Z-axis direction) is 0.45 × sin (0.022 degrees) mm, which is about 0.00017 mm.
 第2状態ST2における複数のミラー要素のそれぞれにおける入射角は、第1状態ST1における複数のミラー要素のそれぞれにおける入射角と同じである。第2状態ST2における複数のミラー要素のそれぞれにおける反射角は、第1状態ST1における複数のミラー要素のそれぞれにおける反射角と同じである。複数のミラー要素の1つにおいて、光Liが入射する位置は、第1状態ST1と第2状態ST2とで異なる。第2状態ST2において、第1ミラー要素11と第2ミラー要素12との間の距離(光路上の距離)は、24.9998mmである。第2ミラー要素12と第3ミラー要素23との間の距離(光路上の距離)は、49.9998mmである。第3ミラー要素23と第4ミラー要素24との間の距離(光路上の距離)は、25mmである。第4ミラー要素24と第1ミラー要素11との間の距離(光路上の距離)は、49.9998mmである。第2状態ST2において、第2共振器長L2は、これらの距離の和に対応し、149.9994mmである。 The incident angle at each of the plurality of mirror elements in the second state ST2 is the same as the incident angle at each of the plurality of mirror elements in the first state ST1. The reflection angle in each of the plurality of mirror elements in the second state ST2 is the same as the reflection angle in each of the plurality of mirror elements in the first state ST1. In one of the plurality of mirror elements, the position where the light Li is incident is different between the first state ST1 and the second state ST2. In the second state ST2, the distance between the first mirror element 11 and the second mirror element 12 (distance on the optical path) is 24.998 mm. The distance (distance on the optical path) between the second mirror element 12 and the third mirror element 23 is 49.9998 mm. The distance (distance on the optical path) between the third mirror element 23 and the fourth mirror element 24 is 25 mm. The distance (distance on the optical path) between the fourth mirror element 24 and the first mirror element 11 is 49.9998 mm. In the second state ST2, the second resonator length L2 corresponds to the sum of these distances and is 1499.9994 mm.
 第1共振器長L1(共振器長が変化する前の共振器長)に対応する共鳴周波数の1つν(第1共鳴周波数)が、247THzであるとする。第2共振器長L2(共振器長が変化した後の共振器長)に対応する共鳴周波数(第2共鳴周波数)と、第1共鳴周波数と、の差(周波数シフト量Δν)は、約1GHzである。共振器162においても、共鳴周波数を大きくシフトさせることができる。この例においても、共振器長の変化の前後において、周波数不安定の原因となる外力が共振器に加わることが抑制されるため、共鳴周波数において、高い安定性が得られる。 Suppose that one of resonance frequencies ν (first resonance frequency) corresponding to the first resonator length L1 (resonator length before the resonator length is changed) is 247 THz. The difference (frequency shift amount Δν) between the resonance frequency (second resonance frequency) corresponding to the second resonator length L2 (resonator length after the resonator length has changed) and the first resonance frequency is about 1 GHz. It is. Also in the resonator 162, the resonance frequency can be greatly shifted. Also in this example, before and after the change of the resonator length, the external force that causes the frequency instability is suppressed from being applied to the resonator, so that high stability can be obtained at the resonance frequency.
 上記の第5の実施形態及び第6の実施形態においては、第1ミラー10は、複数のミラー要素10e(第1ミラー要素11、第2ミラー要素12及び第5ミラー要素15など)を含む。複数のミラー要素10eの第1スペーサ50に対する位置は、固定されている。例えば、複数のミラー要素10eは、第1スペーサ50と物理的に結合されている。例えば、複数のミラー要素10eどうしが物理的に結合されており、複数のミラー要素10eの少なくともいずれかが第1スペーサ50と物理的に結合されていても良い。第1ミラー10に含まれる複数のミラー要素10eの1つ(例えば第1ミラー要素11)と、第1ミラー20に含まれる複数のミラー要素10eの別の1つ(例えば、第2ミラー要素12)と、を結ぶ方向は、第1方向(第1状態ST1における第1ミラー10と、第1状態ST1における第2ミラー20と、を結ぶZ軸方向)と交差する。 In the fifth and sixth embodiments described above, the first mirror 10 includes a plurality of mirror elements 10e (such as the first mirror element 11, the second mirror element 12, and the fifth mirror element 15). The positions of the plurality of mirror elements 10e with respect to the first spacer 50 are fixed. For example, the plurality of mirror elements 10 e are physically coupled to the first spacer 50. For example, the plurality of mirror elements 10e may be physically coupled to each other, and at least one of the plurality of mirror elements 10e may be physically coupled to the first spacer 50. One of the plurality of mirror elements 10e included in the first mirror 10 (for example, the first mirror element 11) and another one of the plurality of mirror elements 10e included in the first mirror 20 (for example, the second mirror element 12). ) Intersects the first direction (Z-axis direction connecting the first mirror 10 in the first state ST1 and the second mirror 20 in the first state ST1).
 これらの実施形態において、第2ミラー20は、複数のミラー要素20e(第3ミラー要素23、第4ミラー要素24及び第6ミラー要素26など)を含んでも良い。複数のミラー要素20eの第2スペーサ60に対する位置は、固定されている。例えば、複数のミラー要素20eは、第2スペーサ60と物理的に結合されている。例えば、複数のミラー要素20eどうしが物理的に結合されており、複数のミラー要素20eの少なくともいずれかが第2スペーサ60と物理的に結合されていても良い。第2ミラー20に含まれる複数のミラー要素20eの1つ(例えば第3ミラー要素23)と、第2ミラー20に含まれる複数のミラー要素20eの別の1つ(例えば、第4ミラー要素24)と、を結ぶ方向は、上記の第1方向(Z軸方向)と交差する。 In these embodiments, the second mirror 20 may include a plurality of mirror elements 20e (such as the third mirror element 23, the fourth mirror element 24, and the sixth mirror element 26). The positions of the plurality of mirror elements 20e with respect to the second spacer 60 are fixed. For example, the plurality of mirror elements 20 e are physically coupled to the second spacer 60. For example, the plurality of mirror elements 20e may be physically coupled to each other, and at least one of the plurality of mirror elements 20e may be physically coupled to the second spacer 60. One of the plurality of mirror elements 20e included in the second mirror 20 (for example, the third mirror element 23) and another one of the plurality of mirror elements 20e included in the second mirror 20 (for example, the fourth mirror element 24). ) Intersects with the first direction (Z-axis direction).
 第5の実施形態及び第6の実施形態において、第1スペーサ50は、第2スペーサ60と対向する第1面50aを有する。第1面50aは、上記の第1方向に対して傾斜している。第2スペーサ60は、第2面60aを有する。第2面60aは、第1スペーサ50と対向し、第1面50aに沿う。 In the fifth embodiment and the sixth embodiment, the first spacer 50 has a first surface 50 a facing the second spacer 60. The first surface 50a is inclined with respect to the first direction. The second spacer 60 has a second surface 60a. The second surface 60a faces the first spacer 50 and extends along the first surface 50a.
 例えば、第5の実施形態及び第6の実施形態において、第1状態ST1における第2スペーサ60の第1スペーサ50に対する相対的な第1位置は、第2状態ST2における第2スペーサ60の第1スペーサ50に対する相対的な第2位置とは異なる。第1位置と第2位置とを結ぶ方向は、第1状態ST1において第1ミラー10と第2ミラー20との間に形成される光路の少なくとも一部と交差する。例えば、第1位置と第2位置とを結ぶ方向は、第1状態ST1における第1ミラー10に含まれる複数のミラー要素10eの1つと、第1状態ST1における第2ミラー20に含まれる複数のミラー要素20eの1つと、を結ぶ方向と、交差する。 For example, in the fifth embodiment and the sixth embodiment, the first position of the second spacer 60 relative to the first spacer 50 in the first state ST1 is the first position of the second spacer 60 in the second state ST2. This is different from the second position relative to the spacer 50. The direction connecting the first position and the second position intersects at least a part of the optical path formed between the first mirror 10 and the second mirror 20 in the first state ST1. For example, the direction connecting the first position and the second position is one of the plurality of mirror elements 10e included in the first mirror 10 in the first state ST1 and the plurality of mirror elements included in the second mirror 20 in the first state ST1. It intersects with the direction connecting one of the mirror elements 20e.
 第1位置と第2位置とを結ぶ方向は、「複数の結ぶ方向」(以下に記載)の少なくともいずれかと交差する。この「複数の結ぶ方向」のそれぞれは、第1状態ST1における第1ミラー10に含まれる「1つまたは複数のミラー要素のそれぞれ」と、第1状態ST1における第2ミラー20に含まれる「1つまたは複数のミラー要素のそれぞれ」と、を結ぶ。 The direction connecting the first position and the second position intersects at least one of “a plurality of connecting directions” (described below). Each of the “plurality of connecting directions” includes “one or more mirror elements” included in the first mirror 10 in the first state ST1 and “1” included in the second mirror 20 in the first state ST1. Each of the one or more mirror elements ".
 例えば、第1スペーサ50及び第2スペーサ60の少なくともいずれかスペーサの位置が変更される。この変更は、例えば、制御部30によって行われる。第1ミラー10に1つのミラー要素が設けられ第2ミラー20に1つのミラー要素が設けられる場合は、位置の変更が行われる方向は、第1ミラー10と第2ミラー20とを結ぶ方向と交差する。第1ミラー10に1つのミラー要素が設けられ第2ミラー20が複数のミラー要素を含む場合は、位置の変更が行われる方向は、第1ミラー10と、第2ミラー20に含まれる複数のミラー要素のいずれかを結ぶ複数の方向のいずれかと交差する。第1ミラー10が複数のミラー要素を含み第2ミラー20が複数のミラー要素を含む場合は、位置の変更が行われる方向は、第1ミラー10に含まれる複数のミラー要素のいずれかと、第2ミラー20に含まれる複数のミラー要素のいずれかと、結ぶ複数の方向のいずれかと交差する。 For example, the position of at least one of the first spacer 50 and the second spacer 60 is changed. This change is performed by the control unit 30, for example. When one mirror element is provided in the first mirror 10 and one mirror element is provided in the second mirror 20, the direction in which the position is changed is the direction connecting the first mirror 10 and the second mirror 20. Intersect. In the case where one mirror element is provided in the first mirror 10 and the second mirror 20 includes a plurality of mirror elements, the direction in which the position is changed is the plurality of directions included in the first mirror 10 and the second mirror 20. It intersects one of a plurality of directions connecting any of the mirror elements. When the first mirror 10 includes a plurality of mirror elements and the second mirror 20 includes a plurality of mirror elements, the direction in which the position change is performed is any one of the plurality of mirror elements included in the first mirror 10 and the first mirror 10. It intersects with any one of a plurality of mirror elements included in the two mirrors 20 and any one of a plurality of directions to be connected.
 スペーサの位置の変更の方向についての共振器151及び152を参照した説明は、他の共振器(例えば共振器153、154、161及び162など)について、同様に適用される。 The description with reference to the resonators 151 and 152 regarding the change direction of the spacer position is similarly applied to other resonators (for example, the resonators 153, 154, 161, and 162).
 例えば、共振器151などにおいて、第1ミラー要素11が第1ミラー10であり、第3ミラー要素23が第2ミラー20であり、第2ミラー要素12が第3ミラーであり、第4ミラー要素24が第4ミラーであると見なしても良い。この場合、第1ミラー10(第1ミラー要素11)と第2ミラー20(第3ミラー要素23)と、の間の光路上に、第3ミラー(第2ミラー要素12)及び第4ミラー(第4ミラー要素24)が配置されている、と見なされる。 For example, in the resonator 151, the first mirror element 11 is the first mirror 10, the third mirror element 23 is the second mirror 20, the second mirror element 12 is the third mirror, and the fourth mirror element. You may consider that 24 is a 4th mirror. In this case, on the optical path between the first mirror 10 (first mirror element 11) and the second mirror 20 (third mirror element 23), the third mirror (second mirror element 12) and the fourth mirror ( It is assumed that the fourth mirror element 24) is arranged.
 第5の実施形態に係る共振器、第6の実施形態に共振器、及び、それらの共振器の変形の共振器は、例えば、光源装置または周波数フィルタに用いることができる。 The resonator according to the fifth embodiment, the resonator according to the sixth embodiment, and a modified resonator of those resonators can be used, for example, in a light source device or a frequency filter.
 実施形態によれば、共鳴周波数が可変の共振器、光源装置及び周波数フィルタを提供が提供できる。 According to the embodiment, it is possible to provide a resonator, a light source device, and a frequency filter having a variable resonance frequency.
 なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。 In the present specification, “vertical” and “parallel” include not only strictly vertical and strictly parallel, but also include, for example, variations in the manufacturing process, and may be substantially vertical and substantially parallel. It ’s fine.
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、共振器に含まれるミラー、スペーサ、制御部、固定部及び温度調整素子などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, regarding the specific configuration of each element such as a mirror, a spacer, a control unit, a fixed unit, and a temperature adjustment element included in the resonator, the present invention is similarly implemented by appropriately selecting from a known range by those skilled in the art. As long as the same effect can be obtained, it is included in the scope of the present invention.
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。 Further, combinations of any two or more elements of each specific example within the technically possible range are also included in the scope of the present invention as long as they include the gist of the present invention.
 その他、本発明の実施の形態として上述した共振器、光源装置及び周波数フィルタを基にして、当業者が適宜設計変更して実施し得る全ての共振器、光源装置及び周波数フィルタも、本発明の要旨を包含する限り、本発明の範囲に属する。 In addition, all resonators, light source devices and frequency filters that can be implemented by those skilled in the art based on the resonators, light source devices, and frequency filters described above as embodiments of the present invention are also included in the present invention. As long as the gist is included, it belongs to the scope of the present invention.
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。 In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 10…第1ミラー、 10a…第1ミラー面、 10c…第1中心、 10e…ミラー要素、 10r…外縁部、 11…第1ミラー要素、 12…第2ミラー要素、 15…第5ミラー要素、 17…第1層、 18…第2層、 20…第2ミラー、 20a…第2ミラー面、 20c…第2中心、 20e…ミラー要素、 20r…外縁、 23…第3ミラー要素、 24…第4ミラー要素、 25…スペーサ部材、 26…第6ミラー要素、 27…第3層、 28…第4層、 30…制御部、 31~34…第1~第4移動装置、 31a~34a…第1~第4マイクロメータヘッド、 31b~34b…第1~第4ピエゾアクチュエータ、 50…第1スペーサ、 50a…第1面、 51…第1接続部、 51a…面、 52…第1中間部、 52a…面、 55…スペーサ、 55a、55b…第1、第2面、 60…第2スペーサ、 60a…第2面、 61…第2接続部、 61a…面、 62…第2中間部、 62a…面、 71…光源、 72…ビームスプリッタ、 73…周波数制御装置、 74…周波数シフタ、 75…光源、 80…容器、 81…固定部、 82…温度調整素子、 Δd…距離、 110、111、112a~112c、113、114a、114b、115、116、120~125、131~135、146、147、151~154、161、162…共振器、 210、211…光源装置、 310…周波数フィルタ、 Ar、Ar1、Ar2…矢印、 L1、L2…第1、第2共振器長、 Li、LL…光、 Md…方向、 Rs1、Rs2…第1、第2共振器、 ST1、ST2…第1、第2状態、 d1、d2…距離 10 ... 1st mirror, 10a ... 1st mirror surface, 10c ... 1st center, 10e ... Mirror element, 10r ... Outer edge part, 11 ... 1st mirror element, 12 ... 2nd mirror element, 15 ... 5th mirror element, 17 ... first layer, 18 ... second layer, 20 ... second mirror, 20a ... second mirror surface, 20c ... second center, 20e ... mirror element, 20r ... outer edge, 23 ... third mirror element, 24 ... second 4 mirror elements, 25 ... spacer member, 26 ... sixth mirror element, 27 ... third layer, 28 ... fourth layer, 30 ... control unit, 31-34 ... first to fourth moving devices, 31a-34a ... first 1st to 4th micrometer heads, 31b to 34b ... 1st to 4th piezo actuators, 50 ... 1st spacer, 50a ... 1st surface, 51 ... 1st connection part, 51a ... surface, 52 1st intermediate part, 52a ... surface, 55 ... spacer, 55a, 55b ... 1st, 2nd surface, 60 ... 2nd spacer, 60a ... 2nd surface, 61 ... 2nd connection part, 61a ... surface, 62 ... 1st 2 intermediate part, 62a ... surface, 71 ... light source, 72 ... beam splitter, 73 ... frequency control device, 74 ... frequency shifter, 75 ... light source, 80 ... container, 81 ... fixed part, 82 ... temperature adjustment element, Δd ... distance 110, 111, 112a to 112c, 113, 114a, 114b, 115, 116, 120 to 125, 131 to 135, 146, 147, 151 to 154, 161, 162 ... resonator, 210, 211 ... light source device, 310 ... frequency filter, Ar, Ar1, Ar2 ... arrows, L1, L2 ... first and second resonator lengths, Li, LL ... light, Md ... direction Direction, Rs1, Rs2 ... first and second resonators, ST1, ST2 ... first and second states, d1, d2 ... distance

Claims (20)

  1.  第1ミラーと、
     第2ミラーと、
     前記第1ミラーと前記第2ミラーとの間に設けられ前記第1ミラーと接する第1スペーサと、
     前記第1スペーサと前記第2ミラーとの間に設けられ前記第2ミラーと接する第2スペーサと、
     を備え、
     前記第1スペーサと前記第2スペーサとが互いに接する第1状態において前記第1ミラーと前記第2ミラーとによって形成される第1共振器長は、前記第1スペーサと前記第2スペーサとが互いに接し前記第1状態とは異なる第2状態において前記第1ミラーと前記第2ミラーとによって形成される第2共振器長とは異なる共振器。
    A first mirror;
    A second mirror,
    A first spacer provided between the first mirror and the second mirror and in contact with the first mirror;
    A second spacer provided between the first spacer and the second mirror and in contact with the second mirror;
    With
    The first resonator length formed by the first mirror and the second mirror in a first state where the first spacer and the second spacer are in contact with each other is such that the first spacer and the second spacer are A resonator that is different from a second resonator length formed by the first mirror and the second mirror in a second state that is in contact and different from the first state.
  2.  前記第1状態における前記第2スペーサの前記第1スペーサに対する相対的な第1位置は、前記第2状態における前記第2スペーサの前記第1スペーサに対する相対的な第2位置とは異なり、
     前記第1位置と前記第2位置とを結ぶ方向は、前記第1状態における前記第1ミラーと前記第1状態における前記第2ミラーとを結ぶ第1方向と交差する請求項1記載の共振器。
    The first position of the second spacer relative to the first spacer in the first state is different from the second position of the second spacer relative to the first spacer in the second state;
    The resonator according to claim 1, wherein a direction connecting the first position and the second position intersects a first direction connecting the first mirror in the first state and the second mirror in the first state. .
  3.  前記第1スペーサは、前記第2スペーサと対向する第1面を有し、
     前記第1面は、前記第1方向と交差し、
     前記第2スペーサは、前記第1スペーサと対向し前記第1面に沿う第2面を有する請求項1または2に記載の共振器。
    The first spacer has a first surface facing the second spacer,
    The first surface intersects the first direction;
    The resonator according to claim 1, wherein the second spacer has a second surface that faces the first spacer and extends along the first surface.
  4.  前記第1面は、前記第1方向に対して傾斜している請求項3記載の共振器。 The resonator according to claim 3, wherein the first surface is inclined with respect to the first direction.
  5.  前記第1スペーサは、前記第1ミラーの外縁部及び側面の少なくともいずれかと接し、
     前記第2スペーサは、前記第2ミラーの外縁部及び側面の少なくともいずれかと接する請求項1~4のいずれか1つに記載の共振器。
    The first spacer is in contact with at least one of an outer edge and a side surface of the first mirror;
    The resonator according to any one of claims 1 to 4, wherein the second spacer is in contact with at least one of an outer edge portion and a side surface of the second mirror.
  6.  前記第1状態において、前記第1スペーサと前記第2スペーサとが、点接触、線接触及び面接触の少なくともいずれかの接触状態を形成することにより力学的に安定した状態を形成し、
     前記第2状態において、前記第1スペーサと前記第2スペーサとが、点接触、線接触及び面接触の少なくともいずれかの接触状態を形成することにより力学的に安定した状態を形成している請求項1~5のいずれか1つに記載の共振器。
    In the first state, the first spacer and the second spacer form a mechanically stable state by forming a contact state of at least one of point contact, line contact, and surface contact,
    In the second state, the first spacer and the second spacer form a mechanically stable state by forming a contact state of at least one of point contact, line contact, and surface contact. Item 6. The resonator according to any one of Items 1 to 5.
  7.  前記第1スペーサ及び第2スペーサの少なくともいずれかは、2つ以上のスペーサを含む請求項1~6のいずれか1つに記載の共振器。 The resonator according to any one of claims 1 to 6, wherein at least one of the first spacer and the second spacer includes two or more spacers.
  8.  前記第1スペーサ及び前記第2スペーサの少なくともいずれかスペーサの位置を変更する制御部をさらに備えた請求項1~7のいずれか1つに記載の共振器。 The resonator according to any one of claims 1 to 7, further comprising a control unit that changes a position of at least one of the first spacer and the second spacer.
  9.  第1ミラーと、
     第2ミラーと、
     前記第1ミラーと前記第2ミラーとの間に設けられ前記第1ミラーと接する第1スペーサと、
     を備え、
     第1状態における前記第2ミラーの前記第1スペーサに対する相対的な第1位置は、
     第2状態における前記第2ミラーの前記第1スペーサに対する相対的な第2位置とは異なり、
     前記第1状態において前記第1ミラーと前記第2ミラーとによって形成される第1共振器長は、前記第2状態において前記第1ミラーと前記第2ミラーとによって形成される第2共振器長とは異なる共振器。
    A first mirror;
    A second mirror,
    A first spacer provided between the first mirror and the second mirror and in contact with the first mirror;
    With
    The first position of the second mirror relative to the first spacer in the first state is:
    Unlike the second position of the second mirror relative to the first spacer in the second state,
    The first resonator length formed by the first mirror and the second mirror in the first state is the second resonator length formed by the first mirror and the second mirror in the second state. A different resonator.
  10.  前記第1位置と前記第2位置とを結ぶ方向は、前記第1状態における前記第1ミラーと前記第1状態における前記第2ミラーとを結ぶ第1方向と交差する請求項9記載の共振器。 The resonator according to claim 9, wherein a direction connecting the first position and the second position intersects a first direction connecting the first mirror in the first state and the second mirror in the first state. .
  11.  前記第1スペーサまたは前記第2ミラーの少なくともいずれかの位置を変更する制御部をさらに備えた請求項9または10に記載の共振器。 The resonator according to claim 9 or 10, further comprising a controller that changes a position of at least one of the first spacer or the second mirror.
  12.  前記第1スペーサは、管状である請求項1~11のいずれか1つに記載の共振器。 The resonator according to any one of claims 1 to 11, wherein the first spacer is tubular.
  13.  前記第2スペーサは、管状である請求項1~12のいずれか1つに記載の共振器。 The resonator according to any one of claims 1 to 12, wherein the second spacer is tubular.
  14.  前記第1スペーサの20℃における熱膨張係数は、10-6-1以下である請求項1~13のいずれか1つに記載の共振器。 The resonator according to any one of claims 1 to 13, wherein a thermal expansion coefficient of the first spacer at 20 ° C is 10 -6 K -1 or less.
  15.  前記第2スペーサの20℃における熱膨張係数は、10-6-1以下である請求項1~14のいずれか1つに記載の共振器。 The resonator according to any one of claims 1 to 14, wherein a thermal expansion coefficient of the second spacer at 20 ° C is 10 -6 K -1 or less.
  16.  前記第1ミラー及び前記第2ミラーは、
     (A)前記第1ミラー及び前記第2ミラーの一方は、平面ミラーであり、前記第1ミラー及び前記第2ミラーの他方は、凹面ミラーである第1の関係、
     (B)前記第1ミラー及び前記第2ミラーのそれぞれは、凹面ミラーである第2の関係、
     (C)前記第1ミラー及び前記第2ミラーのそれぞれは、平面ミラーである第3の関係、及び、
     (D)前記第1ミラー及び前記第2ミラーの一方は、凸面ミラーであり、前記第1ミラー及び前記第2ミラーの他方は、凹面ミラーである第4の関係、
     のいずれかを満たす請求項1~15のいずれか1つに記載の共振器。
    The first mirror and the second mirror are:
    (A) A first relationship in which one of the first mirror and the second mirror is a plane mirror, and the other of the first mirror and the second mirror is a concave mirror,
    (B) Each of the first mirror and the second mirror is a concave relationship, a second relationship,
    (C) a third relationship in which each of the first mirror and the second mirror is a plane mirror; and
    (D) A fourth relationship in which one of the first mirror and the second mirror is a convex mirror, and the other of the first mirror and the second mirror is a concave mirror,
    The resonator according to any one of claims 1 to 15, wherein any one of the above is satisfied.
  17.  1つまたは複数のミラー要素を含む第1ミラーと、
     1つまたは複数のミラー要素を含む第2ミラーと、
     前記第1ミラーと前記第2ミラーとの間に設けられ前記第1ミラーと接する第1スペーサと、
     前記第1スペーサと前記第2ミラーとの間に設けられ前記第2ミラーと接する第2スペーサと、
     を備え、
     前記第1スペーサと前記第2スペーサとが互いに接する第1状態において前記第1ミラーと前記第2ミラーとによって形成される第1共振器長は、前記第1スペーサと前記第2スペーサとが互いに接し前記第1状態とは異なる第2状態において前記第1ミラーと前記第2ミラーとによって形成される第2共振器長とは異なる共振器。
    A first mirror comprising one or more mirror elements;
    A second mirror comprising one or more mirror elements;
    A first spacer provided between the first mirror and the second mirror and in contact with the first mirror;
    A second spacer provided between the first spacer and the second mirror and in contact with the second mirror;
    With
    The first resonator length formed by the first mirror and the second mirror in a first state where the first spacer and the second spacer are in contact with each other is such that the first spacer and the second spacer are A resonator that is different from a second resonator length formed by the first mirror and the second mirror in a second state that is in contact and different from the first state.
  18.  前記第1状態における前記第2スペーサの前記第1スペーサに対する相対的な第1位置は、前記第2状態における前記第2スペーサの前記第1スペーサに対する相対的な第2位置とは異なり、
     前記第1位置と前記第2位置とを結ぶ方向は、複数の結ぶ方向の少なくともいずれかと交差し、
     前記複数の結ぶ方向のそれぞれは、前記第1状態における前記第1ミラーに含まれる前記1つまたは前記複数のミラー要素のそれぞれと、前記第1状態における前記第2ミラーに含まれる前記1つまたは前記複数のミラー要素のそれぞれと、を結ぶ、請求項17記載の共振器。
    The first position of the second spacer relative to the first spacer in the first state is different from the second position of the second spacer relative to the first spacer in the second state;
    A direction connecting the first position and the second position intersects at least one of a plurality of connecting directions;
    Each of the plurality of connecting directions includes the one or the plurality of mirror elements included in the first mirror in the first state, and the one or the plurality of mirror elements included in the second mirror in the first state. The resonator according to claim 17, wherein each of the plurality of mirror elements is connected.
  19.  請求項1~18のいずれか1つに記載の共振器と、
     前記共振器に周波数をロックされる光源と、
     を備えた光源装置。
    A resonator according to any one of claims 1 to 18;
    A light source whose frequency is locked to the resonator;
    A light source device.
  20.  請求項1~18のいずれか1つに記載の共振器を備えた周波数フィルタ。 A frequency filter comprising the resonator according to any one of claims 1 to 18.
PCT/JP2015/068891 2014-09-08 2015-06-30 Resonator, light source device and frequency filter WO2016038990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547748A JP6253793B2 (en) 2014-09-08 2015-06-30 Resonator, light source device, and frequency filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182405 2014-09-08
JP2014182405 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016038990A1 true WO2016038990A1 (en) 2016-03-17

Family

ID=55458752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068891 WO2016038990A1 (en) 2014-09-08 2015-06-30 Resonator, light source device and frequency filter

Country Status (2)

Country Link
JP (1) JP6253793B2 (en)
WO (1) WO2016038990A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454754B2 (en) 2020-06-19 2024-03-25 国立大学法人東海国立大学機構 Absorption spectroscopy systems and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049532A (en) * 2003-07-31 2005-02-24 Furukawa Electric Co Ltd:The Variable dispersion compensation device
JP2008186923A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd External resonator type laser light source device
JP2009016396A (en) * 2007-06-29 2009-01-22 Optical Comb Inc Wavelength scanning type fiber laser light source
JP2009267037A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Semiconductor laser device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6981804B2 (en) * 1998-06-08 2006-01-03 Arrayed Fiberoptics Corporation Vertically integrated optical devices coupled to optical fibers
JP2003204104A (en) * 2002-01-10 2003-07-18 Gigaphoton Inc Laser unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005049532A (en) * 2003-07-31 2005-02-24 Furukawa Electric Co Ltd:The Variable dispersion compensation device
JP2008186923A (en) * 2007-01-29 2008-08-14 Matsushita Electric Ind Co Ltd External resonator type laser light source device
JP2009016396A (en) * 2007-06-29 2009-01-22 Optical Comb Inc Wavelength scanning type fiber laser light source
JP2009267037A (en) * 2008-04-24 2009-11-12 Hitachi Ltd Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454754B2 (en) 2020-06-19 2024-03-25 国立大学法人東海国立大学機構 Absorption spectroscopy systems and methods

Also Published As

Publication number Publication date
JPWO2016038990A1 (en) 2017-04-27
JP6253793B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
US10288870B2 (en) Wavelength tunable MEMS-Fabry Perot filter
US7151629B2 (en) Three-dimensional photonic crystal and optical device including the same
US8929409B2 (en) External cavity tunable laser with an air gap etalon comprising wedges
US20170082842A1 (en) Ultra-small cavity with reflecting metasurfaces
US9557556B2 (en) Integrated apertured micromirror and applications thereof
JP2013522920A (en) Surface emitting semiconductor laser and manufacturing method thereof
JP2008130805A (en) External resonator wavelength variable light source
US7680382B2 (en) Method for fabricating three-dimensional photonic crystal
JP4677276B2 (en) Method for producing three-dimensional photonic crystal
US20060083477A1 (en) Resonator, light emitting device, and wavelength conversion device
Wang et al. Deterministic yet flexible directional light emission from spiral nanomembrane cavities
JP6253793B2 (en) Resonator, light source device, and frequency filter
JP2006313267A5 (en)
JP6917076B2 (en) Optical elements and optical circuits
US7313307B2 (en) Waveguide and device including the same
JP2007299773A (en) Wavelength variable optical filter and external resonator type semiconductor laser device using the same
US20130114795A1 (en) X-ray waveguide, method for manufacturing x-ray waveguide, and method for controlling x-ray waveguide
JP2012074445A (en) Wavelength-variable laser
US20220390756A1 (en) Laser interferometer and method for controlling laser interferometer
US8934172B2 (en) Mirror
US7697810B2 (en) Three-dimensional photonic crystal and manufacturing method thereof
WO2023017048A1 (en) An optical antenna for optical phased antenna arrays
Yang Wavelength tuning of the soft-approached whispering gallery mode microlasers for display and sensing
JP2009094206A (en) External resonator-type wavelength variable light source, and light source apparatus
JP2011204942A (en) Laser oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839184

Country of ref document: EP

Kind code of ref document: A1