WO2016035638A1 - Fabric and fiber product - Google Patents

Fabric and fiber product Download PDF

Info

Publication number
WO2016035638A1
WO2016035638A1 PCT/JP2015/074013 JP2015074013W WO2016035638A1 WO 2016035638 A1 WO2016035638 A1 WO 2016035638A1 JP 2015074013 W JP2015074013 W JP 2015074013W WO 2016035638 A1 WO2016035638 A1 WO 2016035638A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fabric
fabric according
meta
aromatic polyamide
Prior art date
Application number
PCT/JP2015/074013
Other languages
French (fr)
Japanese (ja)
Inventor
憲二 岩下
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CA2960129A priority Critical patent/CA2960129C/en
Priority to CN201580046898.9A priority patent/CN106661783B/en
Priority to AU2015313044A priority patent/AU2015313044A1/en
Priority to US15/508,154 priority patent/US20170292210A1/en
Priority to RU2017110597A priority patent/RU2671648C2/en
Priority to KR1020177005025A priority patent/KR20170047241A/en
Priority to EP15837488.4A priority patent/EP3192908B1/en
Priority to ES15837488T priority patent/ES2703347T3/en
Priority to JP2016546582A priority patent/JP6388659B2/en
Priority to BR112017003977-0A priority patent/BR112017003977B1/en
Publication of WO2016035638A1 publication Critical patent/WO2016035638A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/08Heat resistant; Fire retardant
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/047Blended or other yarns or threads containing components made from different materials including aramid fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/30Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments
    • D03D15/37Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the fibres or filaments with specific cross-section or surface shape
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/533Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads antistatic; electrically conductive
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/27Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of alkylpolyalkylene glycol esters of unsaturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • D06M15/568Reaction products of isocyanates with polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/647Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/82Textiles which contain different kinds of fibres
    • D06P3/8204Textiles which contain different kinds of fibres fibres of different chemical nature
    • D06P3/8214Textiles which contain different kinds of fibres fibres of different chemical nature mixtures of fibres containing ester and amide groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • D10B2401/022Moisture-responsive characteristics hydrophylic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments

Definitions

  • the present invention relates to a fabric and a textile product having not only flame retardancy but also durable water absorption.
  • the present invention has been made in view of the above background, and an object of the present invention is to provide a fabric and a textile product having not only flame retardancy but also durable water absorption.
  • the present inventors have obtained a fabric having not only flame retardancy but also durable water absorption by adding a hydrophilizing agent to the fabric containing aramid fibers. As a result, the present invention has been completed.
  • a fabric including an aramid fiber and characterized by being provided with a hydrophilizing agent there is provided “a fabric including an aramid fiber and characterized by being provided with a hydrophilizing agent”.
  • the aramid fiber contains 30 to 97% by weight of meta-aramid fiber and 3 to 70% by weight of para-aramid fiber.
  • the crystallinity of the meta-type wholly aromatic polyamide fiber is in the range of 15 to 25%.
  • the meta type wholly aromatic polyamide forming the meta type wholly aromatic polyamide fiber is an aromatic polyamide skeleton including a repeating structural unit represented by the following formula (1): A meta-type wholly aromatic polyamide obtained by copolymerizing different aromatic diamine components or aromatic dicarboxylic acid halide components as a third component so as to be 1 to 10 mol% based on the total amount of repeating structural units of the aromatic polyamide. It is preferable.
  • Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.
  • the aromatic diamine as the third component is the formula (2), (3), or the aromatic dicarboxylic acid halide is the formula (4), (5).
  • Ar2 is a divalent aromatic group different from Ar1
  • Ar3 is a divalent aromatic group different from Ar1
  • Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group Or it is a functional group and X represents a halogen atom.
  • mold aromatic polyamide fiber is 0.1 weight% or less.
  • a fabric contains a conductive fiber further.
  • a fabric contains a polyester fiber further.
  • the said polyester fiber is a polyester fiber containing a flame retardant.
  • the aramid fiber and / or the conductive fiber and / or the polyester fiber are contained in the fabric as spun yarn.
  • the said aramid fiber and the said polyester fiber are contained in a fabric as a blended yarn.
  • the fabric preferably has a double woven structure.
  • the hydrophilizing agent is preferably polyethylene glycol diacrylate, a polyethylene glycol diacrylate derivative, a polyethylene terephthalate-polyethylene glycol copolymer, or a water-soluble polyurethane.
  • the fabric weight is preferably within the range of 130 to 260 g / m 2 .
  • the fabric is dyed.
  • the afterflame is preferably 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method.
  • regulated by AATCC79 is 10 seconds or less. Further, after 20 washings specified by ISO 6339; 2012 (6N-F), the water absorption performance specified by AATCC 79 is preferably 30 seconds or less.
  • FIG. 6 is a woven structure diagram used in Example 3.
  • FIG. 6 is a woven structure diagram used in Example 3.
  • the fabric of the present invention includes an aramid fiber (fully aromatic polyamide fiber).
  • aramid fiber fully aromatic polyamide fiber.
  • Such aramid fibers may be meta-aramid fibers or para-aramid fibers.
  • the meta-aramid fiber may be either an original type or a dyed type.
  • a flame retardant type containing a flame retardant may also be used.
  • the smaller the residual solvent of the meta-aramid fiber the better. Since the self-extinguishing property of the fiber itself is higher when the residual solvent is smaller, it is preferably 1% by weight or less (more preferably 0.3% by weight or less).
  • Such meta-aramid fibers are those in which the aromatic ring constituting the main skeleton is bonded to meta by an amide bond, and 85 mol% or more of all repeating units of the polymer are metaphenylene isophthalamide units. To do.
  • polymetaphenylene isophthalamide homopolymer is preferable.
  • the third component that can be copolymerized at 15 mol% or less (preferably 5 mol% or less) of all repeating units include those described below.
  • aromatic diamines such as 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, and 1,5-naphthalenediamine.
  • the acid component examples include aromatic dicarboxylic acids such as terephthalic acid, naphthalene-2,6-dicarboxylic acid, and naphthalene-2,7-dicarboxylic acid.
  • aromatic diamines and aromatic dicarboxylic acids part of the hydrogen atoms of the aromatic ring may be substituted with an alkyl group such as a halogen atom or a methyl group.
  • meta-aramid fibers may contain a pigment such as carbon black, and a flame retardant, an ultraviolet absorber, and other functional agents in order to maintain functional characteristics.
  • a pigment such as carbon black
  • a flame retardant such as carbon black
  • an ultraviolet absorber such as ultraviolet absorber
  • other functional agents such as ultraviolet absorber, and other functional agents in order to maintain functional characteristics.
  • commercially available products include Conex (registered trademark) and Nomex (registered trademark).
  • Such a meta-type wholly aromatic polyamide can be produced by a conventionally known interfacial polymerization method.
  • the polymerization degree of the polymer is N-methyl-2-pyrrolidone solution having a concentration of 0.5 g / 100 ml.
  • Those having a measured intrinsic viscosity (IV) in the range of 1.3 to 1.9 dl / g are preferably used.
  • the meta-type wholly aromatic polyamide may contain an alkylbenzene sulfonic acid onium salt.
  • alkylbenzene sulfonic acid onium salt examples include tetrabutyl phosphonium salt of hexyl benzene sulfonate, tributyl benzyl phosphonium salt of hexyl benzene sulfonate, tetraphenyl phosphonium salt of dodecyl benzene sulfonate, tributyl tetradecyl phosphonate of dodecyl benzene sulfonate.
  • Preferred examples include compounds such as a nium salt, tetrabutylphosphonium salt of dodecylbenzenesulfonate, and tributylbenzylammonium salt of dodecylbenzenesulfonate.
  • dodecylbenzenesulfonic acid tetrabutylphosphonium salt or dodecylbenzenesulfonic acid tributylbenzylammonium salt is particularly easy to obtain and has good thermal stability and high solubility in N-methyl-2-pyrrolidone.
  • tributylbenzylammonium salt is particularly easy to obtain and has good thermal stability and high solubility in N-methyl-2-pyrrolidone.
  • the content ratio of the alkylbenzenesulfonic acid onium salt is 2.5 mol% or more, preferably 3.0 to 7.0 mol, relative to poly-m-phenyleneisophthalamide in order to obtain a sufficient dyeing effect. Those in the range of% are preferred.
  • poly-m-phenylene isophthalamide As a method of mixing poly-m-phenylene isophthalamide and alkylbenzene sulfonic acid onium salt, poly-m-phenylene isophthalamide is mixed and dissolved in a solvent, and alkylbenzene sulfonic acid onium salt is dissolved in the solvent. Any of these may be used.
  • the dope thus obtained is formed into fibers by a conventionally known method.
  • the polymer used for the meta-type wholly aromatic polyamide fiber is used in the aromatic polyamide skeleton containing a repeating structural unit represented by the following formula (1) for the purpose of improving dyeability and resistance to discoloration.
  • An aromatic diamine component or an aromatic dicarboxylic acid halide component different from the main structural unit of the structure may be copolymerized so as to be 1 to 10 mol% based on the total amount of the repeating structural units of the aromatic polyamide as the third component. Is possible.
  • Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.
  • aromatic diamines represented by the formulas (2) and (3) include, for example, p-phenylenediamine, chlorophenylenediamine, methylphenylenediamine, acetylphenylenediamine, aminoanisidine, benzidine, and bis (aminophenyl).
  • aromatic diamines represented by the formulas (2) and (3) include, for example, p-phenylenediamine, chlorophenylenediamine, methylphenylenediamine, acetylphenylenediamine, aminoanisidine, benzidine, and bis (aminophenyl).
  • examples include ether, bis (aminophenyl) sulfone, diaminobenzanilide, diaminoazobenzene and the like.
  • aromatic dicarboxylic acid dichloride represented by the formulas (4) and (5) include, for example, terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4 Examples include '-biphenyldicarboxylic acid chloride, 5-chloroisophthalic acid chloride, 5-methoxyisophthalic acid chloride, bis (chlorocarbonylphenyl) ether, and the like.
  • Ar2 is a divalent aromatic group different from Ar1
  • Ar3 is a divalent aromatic group different from Ar1
  • Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group Or it is a functional group and X represents a halogen atom.
  • the crystallinity of the meta-type wholly aromatic polyamide fiber is 5 to 35% in terms of good exhaustibility of the dye and easy adjustment to the target color even with less dye or weak dyeing conditions. Preferably there is. Further, it is more preferably 15 to 25% in that the surface uneven distribution of the dye hardly occurs, the discoloration resistance is high, and the dimensional stability necessary for practical use can be secured.
  • the residual solvent amount of the meta-type wholly aromatic polyamide fiber is 0 in that it does not impair the excellent flame retardant performance of the meta-type wholly aromatic polyamide fiber, and the surface unevenness of the dye hardly occurs, and the discoloration resistance is high. .1% by weight or less is preferable.
  • the meta-type wholly aromatic polyamide fiber can be produced by the following method, and in particular, the crystallinity and the residual solvent amount can be within the above ranges by the method described later.
  • the polymerization method of the meta-type wholly aromatic polyamide polymer is not particularly limited.
  • the solution weight described in Japanese Patent Publication No. 35-14399, US Pat. No. 3,360,595, Japanese Patent Publication No. 47-10863, etc. A combination method or an interfacial polymerization method may be used.
  • the spinning solution is not particularly limited, but an amide solvent solution containing an aromatic copolyamide polymer obtained by the above solution polymerization or interfacial polymerization may be used, or the polymer may be removed from the polymerization solution. You may use what was isolated and melt
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), and dimethyl sulfoxide. N-dimethylacetamide is preferred.
  • the copolymerized aromatic polyamide polymer solution obtained as described above is preferably stabilized by containing an alkali metal salt or an alkaline earth metal salt, and can be used at a higher concentration and lower temperature.
  • the alkali metal salt and alkaline earth metal salt are 1% by weight or less (more preferably 0.1% by weight or less) based on the total weight of the polymer solution.
  • the spinning solution metal-type wholly aromatic polyamide polymer solution obtained above is spun into a coagulating solution and coagulated.
  • the spinning apparatus is not particularly limited, and a conventionally known wet spinning apparatus can be used.
  • the number of spinning holes, the arrangement state, the hole shape, etc. of the spinneret need not be particularly limited as long as they can be stably wet-spun.
  • the number of holes is 1,000 to 30,000, and the spinning hole diameter is 0.05.
  • a multi-hole spinneret for ⁇ 0.2 mm sufu may be used.
  • the temperature of the spinning solution (meta-type wholly aromatic polyamide polymer solution) when spinning from the spinneret is preferably in the range of 20 to 90 ° C.
  • an amide solvent preferably an aqueous solution containing 45 to 60% by weight of NMP, which is substantially free of inorganic salts, is used at a bath temperature of 10 to 50 ° C. Use. If the concentration of the amide solvent (preferably NMP) is less than 45% by weight, the skin has a thick structure, and the washing efficiency in the washing step may be lowered, making it difficult to reduce the amount of residual solvent in the fiber. . On the other hand, when the concentration of the amide solvent (preferably NMP) exceeds 60% by weight, uniform coagulation cannot be performed up to the inside of the fiber, and therefore, the residual solvent amount of the fiber can be reduced. May become difficult.
  • the fiber immersion time in the coagulation bath is preferably in the range of 0.1 to 30 seconds.
  • an amide solvent preferably an aqueous solution having a concentration of NMP of 45 to 60% by weight
  • a plastic stretching bath in which the temperature of the bath liquid is in the range of 10 to 50 ° C., at a stretching ratio of 3 to 4 times. Stretching is performed. After stretching, the film is thoroughly washed through an aqueous solution having an NMP concentration of 20 to 40% by weight at 10 to 30 ° C., followed by a hot water bath at 50 to 70 ° C.
  • the washed fiber is subjected to a dry heat treatment at a temperature of 270 to 290 ° C. to obtain a meta-type wholly aromatic aramid fiber satisfying the above-mentioned range of crystallinity and residual solvent amount.
  • Para-aramid fiber is a fiber made of polyamide having an aromatic ring in the main chain.
  • Poly-p-phenylene terephthalamide (PPTA) or copolymer type copolyparaphenylene-3,4'oxydiphenylene terephthalamide (PPODPA) may be used.
  • PPTA Poly-p-phenylene terephthalamide
  • PPODPA copolymer type copolyparaphenylene-3,4'oxydiphenylene terephthalamide
  • commercially available products include Technora (registered trademark), Kevlar (registered trademark), and Twaron (registered trademark).
  • the shrinkage of the fabric is reduced during combustion and the fabric is less likely to be perforated.
  • the fabric of the present invention may be composed of only the aramid fibers as described above, or may contain fibers other than the aramid fibers (other fibers).
  • conductive cloth is contained in the fabric because a flame due to generation of static electricity can be suppressed by a synergistic effect with the hydrophilizing agent applied to the fabric.
  • the conductive fiber is preferably a fiber containing at least one of carbon black, conductive titanium oxide, conductive whisker, and carbon nanotube as a conductor of the conductive portion of the conductive fiber.
  • the form of the conductive fiber may be a structure in which the entire fiber is made of a conductive part, or the non-conductive part and the conductive part may have a cross-sectional shape such as a core sheath, a sandwich, or an eccentricity.
  • the resin forming the conductive part and the non-conductive part is not particularly limited as long as it has fiber-forming properties.
  • Specific examples of nylon resins include 6 nylon, 1 1 nylon, 1 2 nylon, and 6 6 nylon.
  • Polyester resins include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexane terephthalate and their copolymers and acid components (terephthalic acid) partially replaced with isophthalic acid. Can be mentioned.
  • conductive fibers include Teijin's “Metallian” (trade name), Unitika Fiber's “Meghana” (trade name), Toray's “Luana” (trade name), and Kuraray's “Kurabo”. (Product name) is exemplified.
  • the fabric may contain fibers such as polyester fiber, nylon fiber, acrylic fiber, acrylate fiber, flame retardant rayon fiber, and flame retardant vinylon fiber.
  • fibers such as polyester fiber, nylon fiber, acrylic fiber, acrylate fiber, flame retardant rayon fiber, and flame retardant vinylon fiber.
  • the fabric contains polyester fibers, the water absorption performance is further improved.
  • the polyester fiber is a fiber containing polyester as one component.
  • the polyester is a polyester having terephthalic acid as a main dicarboxylic acid component and at least one glycol, preferably at least one alkylene glycol selected from ethylene glycol, trimethylene glycol, tetramethylene glycol and the like as a main glycol component. is there.
  • the third component may be modified by copolymerization and / or blending as necessary.
  • Such polyester may be material-recycled or chemical-recycled polyester or polyethylene terephthalate using a monomer component obtained using biomass, that is, a biological material as a raw material.
  • it may be a polyester obtained by using a catalyst containing a specific phosphorus compound and a titanium compound as described in JP-A-2004-270097 and JP-A-2004-212268.
  • the polyester may contain optional additives such as a catalyst, an anti-coloring agent, a heat-resistant agent, a flame retardant, an antioxidant, and inorganic fine particles as necessary.
  • a catalyst such as a catalyst, an anti-coloring agent, a heat-resistant agent, a flame retardant, an antioxidant, and inorganic fine particles.
  • a flame retardant in the polyester polymer or on the surface of the polyester fiber because the flame retardancy of the fabric is improved.
  • the polyester fiber preferably has a single fiber fineness of 5.0 dtex or less (more preferably 0.0001 to 1.5 dtex) in order to increase the surface area of the fiber to obtain excellent sweat absorption.
  • the cross-sectional shape (transverse cross-sectional shape) of the single fiber is preferably an irregular shape (a shape other than a round shape).
  • the atypical cross-sectional shape is preferably a flat cross-section, a W-shape, a cross or a hollow (for example, a round hollow, a triangular hollow, a square hollow, etc.) or a triangular. Further, it may be a flat cross section having a constriction as described in Japanese Patent Application Laid-Open No. 2004-52191, or a cross section having fin portions protruding radially from a hollow core as described in Japanese Patent Application Laid-Open No. 2012-97380. .
  • the organic fiber has an atypical cross-sectional shape
  • voids are formed between the fibers, and excellent water absorption is obtained by capillary action. It also has a synergistic effect that flame retardancy is further improved by moisture absorbed by the water absorption action.
  • the W-type is particularly preferable because even a small amount of fibers can easily form voids between the fibers.
  • the polyester fiber may be a composite fiber in which two components are bonded side by side or in an eccentric core-sheath type.
  • Such a composite fiber usually has fine crimps in which latent crimps are expressed, and thus has not only stretchability but also excellent water absorption due to capillary action.
  • the two components constituting the composite fiber were selected from the group consisting of a combination of polytrimethylene terephthalate and polytrimethylene terephthalate, a combination of polytrimethylene terephthalate and polyethylene terephthalate, and a combination of polyethylene terephthalate and polyethylene terephthalate. Any combination is preferable.
  • the fiber form of the aramid fiber and other fibers constituting the fabric is not particularly limited, and may be a short fiber (spun yarn) or a long fiber (multifilament).
  • a spun yarn is preferable for maintaining the hydrophilic agent with good washing durability.
  • the aramid fiber and other fibers may be blended at the same time, or may be used separately and knitted or woven.
  • the aramid fiber and the polyester fiber are blended and included in the fabric as a blended yarn because not only excellent flame retardancy can be obtained but also the hydrophilizing agent can be retained with good washing durability.
  • the spun yarn has a coil shape, which can impart stretch properties to the fabric.
  • a spun yarn having such a coil shape can be obtained by the following method, for example.
  • a spun yarn containing an aramid fiber is prepared.
  • conductive yarn or other fiber raw cotton may be mixed with the aramid fiber.
  • the spun yarn fineness (count) is preferably 20 to 60 cotton count (Ecc) in terms of yarn breakage resistance and strength.
  • the number of single yarns is preferably 60 or more, and the raw cotton single yarn fineness is preferably 3.0 dtex or less (more preferably 0.001 to 3.0 dtex).
  • the twist coefficient (primary twist coefficient) of the spun yarn is preferably in the range of 3.6 to 4.2 (more preferably 3.8 to 4.0). The larger the twist coefficient, the more the fluff converges and the pilling resistance of the fabric improves.
  • twist coefficient number of twists (times / 2.54cm) / cotton count of spun yarn (Ecc) 1/2
  • the spinning method of the spun yarn may be a normal spinning method such as innovative spinning such as ring spinning, MTS, MJS, MVS, or ring spinning.
  • the twist direction may be either the Z direction or the S direction.
  • the spun yarn is subjected to a twist set (vacuum steam set) as necessary, and then two or more (preferably 2 to 4, particularly preferably 2) spun yarns are aligned and combined. Twist.
  • twisting machine used for the twisting include twisting machines such as an up twister, a covering machine, an italic twisting machine, and a double twister.
  • the twisting direction of the upper twist is the additional twisting direction.
  • the twist direction of the spun yarn is Z twist
  • the twist is performed in the Z direction in the same direction.
  • the number of twists is preferably 2000 times / m or more, more preferably 2100 to 3000 times / m, and particularly preferably 2300 to 2800 times / m. When the number of twists is less than 2000 times / m, the spun yarn may not be coiled after twisting set and untwisting.
  • a twist set (a high-pressure vacuum steam set similar to a conventional aramid twin-thread set) is applied to such a twisted yarn.
  • the number of twist-stop sets may be increased, or the twist-stop set temperature and set time may be changed.
  • the set temperature may be 115 to 125 ° C.
  • the set time may be 20 to 40 minutes
  • the number of times may be 1 to 3. The higher the set temperature and the longer the set time, the better the setability.
  • the twisted and set twisted yarn is untwisted (twisting direction opposite to the twisted twisting direction) and heat-set as necessary.
  • the untwisted twist number is preferably in the range of 70 to 90%.
  • the twist number is preferably in the range of 200 to 860 turns / m in order to obtain excellent stretch properties.
  • the structure of the fabric is not particularly limited, and examples thereof include plain weave, twill, double weave and the like. Especially, it is preferable that the fabric structure is a double woven structure having a two-layer structure because the water absorption performance is further improved.
  • the fibers constituting the yarns constituting the two layers are not particularly limited, but the yarns exposed to the skin side layer are mainly composed of 10% by weight or more of polyester fibers, and mainly the outside air side layer.
  • the exposed yarn is preferably composed of polyester fibers in the range of 0 to 10% by weight.
  • the water absorption performance is increased, and by reducing the polyester fiber content mainly in the yarn exposed on the outside air layer, The flame retardant performance of the entire fabric can be maintained.
  • the fabric of the present invention has not only flame retardancy but also durable water absorption by being provided with a hydrophilizing agent.
  • the hydrophilizing agent is preferably polyethylene glycol diacrylate, a polyethylene glycol diacrylate derivative, a polyethylene terephthalate-polyethylene glycol copolymer, a water-soluble polyurethane, or a polyethylene glycol-aminosilicone copolymer.
  • the adhesion amount of the hydrophilizing agent to the fabric is preferably 0.1 to 2.0% by weight (more preferably 0.1 to 0.7% by weight) relative to the weight of the fabric.
  • the weight of the fabric after attaching the hydrophilizing agent is the weight after drying.
  • Examples of the method for imparting a hydrophilizing agent to the fabric include a padding method and a treatment method using the same bath as the dyeing solution during dyeing.
  • the fabric is dyed.
  • various other treatments that apply water repellent, heat storage agent, ultraviolet shielding or antistatic agent, antibacterial agent, deodorant agent, insect repellent agent, mosquito repellent agent, phosphorescent agent, retroreflective agent, etc. are additionally applied. Also good.
  • the basis weight is preferably 130 to 260 g / m 2 (more preferably 140 to 220 g / m 2 ).
  • Such a fabric contains aramid fibers as described above and is provided with a hydrophilizing agent, so that it has not only flame retardancy but also durable water absorption.
  • the afterflame is 2.0 seconds or less in the flammability measurement prescribed in JIS L1091-1992 A-4 method.
  • the water absorption performance of the flame retardant fabric is 10 seconds or less (more preferably, 0.1 to 8 seconds at the initial stage) in the initial stage.
  • the water absorption performance specified by AATCC 79 is preferably 30 seconds or less (more preferably 1 to 20 seconds) after 20 washings specified by ISO 6339; 2012 (6N-F).
  • the textile product of the present invention is any one selected from the group consisting of protective clothing, fire fighting clothing, fire fighting clothing, rescue clothing, work wear, police uniform, self-defense clothing, and military clothing. It is a textile product.
  • each physical property in an Example is measured with the following method.
  • Residual solvent amount About 8.0 g of fibrils were collected, dried at 105 ° C. for 120 minutes, allowed to cool in a desiccator, and the fiber weight (M1) was weighed.
  • this fiber was subjected to reflux extraction using a Soxhlet extractor in methanol for 1.5 hours to extract an amide solvent contained in the fiber.
  • the extracted fiber was taken out, vacuum-dried at 150 ° C. for 60 minutes, allowed to cool in a desiccator, and the fiber weight (M2) was weighed.
  • the obtained fiber was crimped and cut to obtain a staple fiber (raw cotton) having a length of 51 mm.
  • (2) Crystallinity Using an X-ray diffractometer (RINT TTRIII, manufactured by Rigaku Corporation), the fibrils were aligned on a fiber bundle having a diameter of about 1 mm and mounted on a fiber sample table to measure a diffraction profile.
  • the measurement conditions were Cu—K ⁇ radiation source (50 kV, 300 mA), scanning angle range 10 to 35 °, continuous measurement 0.1 ° width measurement, 1 ° / min scanning. From the measured diffraction profile, air scattering and incoherent scattering were corrected by linear approximation to obtain a total scattering profile. Next, a crystal scattering profile was obtained by subtracting the amorphous scattering profile from the total scattering profile. The degree of crystallinity was determined by the following equation from the area intensity of the crystal scattering profile (crystal scattering intensity) and the area intensity of the total scattering profile (total scattering intensity).
  • a polyethylene terephthalate-polyethylene glycol copolymer was prepared by a padding method.
  • the hydrophilizing agent to impart containing, resulting then heat set was performed at 180 ° C., mass per unit area of 150 g / m 2, a plain weave fabric of hydrophilizing agent adhesion amount 0.2-0.5 wt% .
  • the sweat absorption performance specified by AATCC 79 is 2.0 seconds at the beginning and 25 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It was what had.
  • the water absorption performance specified by AATCC 79 is 0.9 seconds at the beginning, and 11 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It was what had. Further, in the flammability measurement specified in JIS L1091-1992 A-4 method, the afterflame was 2.0 seconds or less, and there was no problem. When working clothes were sewed and worn using such a fabric, they sweated when sweating and had excellent comfort.
  • Example 3 Example 2 was carried out in the same manner as Example 2 except that a double woven fabric was woven according to the woven structure diagram shown in FIG. 1 at a weaving density of 56 yarns / 25.4 mm and 60 wefts / 25.4 mm.
  • the water absorption performance specified by AATCC 79 is 0.6 seconds at the initial stage and 9.0 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It had water absorption. Further, in the flammability measurement specified in JIS L1091-1992 A-4 method, the afterflame was 2.0 seconds or less, and there was no problem. When the work clothes were sewn and worn using such a woven fabric, the sweat was absorbed when sweating, and the work clothes and the skin did not adhere to each other, and the clothes had excellent comfort.
  • Example 1 was carried out in the same manner as Example 1 except that the hydrophilizing agent was not added.
  • the resulting fabric has a water absorption performance specified by AATCC 79 of 58 seconds at the beginning and 48.0 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It was not. Further, in the flammability measurement stipulated in JIS L1091-1992 A-4 method, the after flame was 2.0 seconds or less, and there was no problem. When working clothes were sewn and worn using such a fabric, they were uncomfortable because they did not absorb sweat when perspiration.
  • Example 4 Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), polyester fiber (PE) whose cross-sectional shape is W-type, and conductive nylon fiber (NY) staple fibers (all fibers)
  • the length is 51 mm)
  • the weaving density is 56 warps / 25.4 mm, 48 wefts /
  • a sweat absorbing agent containing a polyethylene terephthalate-polyethylene glycol copolymer is processed by padding, and then 180 ° C. Then, heat setting was performed to obtain a plain fabric with a basis weight of 150 g / m 2 .
  • the water absorption performance defined by AATCC 79 is 0.5 seconds at the beginning and 8.0 seconds after 20 washings defined by ISO 6339; 2012 (6N-F). It had sweat absorbency. Further, in the flammability measurement specified in JIS L1091-1992 A-4 method, the afterflame was 2.0 seconds or less, and there was no problem. When working clothes were sewed and worn using such a fabric, they sweated when sweating and had excellent comfort.
  • the obtained woven fabric also had no problem because the afterflame was 2.0 seconds or less in the flammability measurement prescribed in JIS L1091-1992 A-4 method.
  • the water absorption performance specified by AATCC 79 is 1.1 seconds at the initial stage and 13 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). When the clothes were sewn and worn, they sweated when sweating and had excellent comfort.
  • Example 6 Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), polyester fiber (PE) having a round cross-sectional shape, and conductive nylon fiber (NY) staple fibers (all fibers)
  • the obtained woven fabric was satisfactory because the afterflame was 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method.
  • the water absorption performance specified by AATCC 79 is 1.2 seconds at the beginning, and 12 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). When the clothes were sewn and worn, they sweated when sweating and had excellent comfort.
  • Example 7 Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), conductive nylon fiber (NY) staple fibers (each fiber length is 51 mm), MA / PA / PE / NY A composite fiber composed of 40 spun yarn / twist yarn blended at a weight ratio of 93/5/2 as a warp yarn, and 40 spun yarn / twist yarn and polyethylene terephthalate / polytrimethylene terephthalate ( A total weave of 84 dtex / 24 filament) was used as a weft to make a weft, and the same procedure as in Example 4 was performed except that a plain weave was woven at a weaving density of warp 56 / 25.4 mm and weft 43 / 25.4 mm. .
  • the obtained woven fabric was satisfactory because the afterflame was 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method.
  • the water absorption performance specified by AATCC 79 is 1.0 seconds at the initial stage and 14 seconds after 20 washings specified by ISO 6339; 2012 (6N-F).
  • ISO 6339; 2012 6N-F.
  • polymetaphenylene isophthalamide powder produced by an interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863 and having an intrinsic viscosity (IV) of 1.9 is placed at ⁇ 10 ° C. It was suspended in 80.0 parts by weight of cooled N-methyl-2-pyrrolidone (NMP) to form a slurry. Subsequently, the suspension was heated to 60 ° C. and dissolved to obtain a transparent polymer solution.
  • NMP N-methyl-2-pyrrolidone
  • [Washing process] After stretching, the film was washed with a 20 ° C. water / NMP 70/30 bath (immersion length 1.8 m), followed by a 20 ° C. water bath (immersion length 3.6 m), and then a 60 ° C. hot water bath (immersion length 5).
  • the washed fiber was subjected to a dry heat treatment with a heat roller having a surface temperature of 280 ° C. to obtain a meta-type wholly aromatic aramid fiber.
  • the physical properties of the obtained meta-type wholly aromatic aramid fiber were a fineness of 1.7 dtex, a residual solvent amount of 0.08% by weight, and a crystallinity of 19%. The following thing was used for the other fiber raw cotton.
  • Polyester fiber Teijin's polyethylene terephthalate fiber Flame-retardant rayon fiber; Lenzing's "LenzingFR (registered trademark)” Para-type aramid fiber; “Twaron (registered trademark)” manufactured by Teijin Aramid Conductive yarn (nylon): “NO SHOCK (registered trademark)” manufactured by Solcia (nylon conductive yarn kneaded with conductive carbon fine particles)
  • MA meta-type wholly aromatic aramid fiber
  • PA para-type wholly aromatic polyamide
  • polyester fiber length: 38 mm) (PE), flame retardant rayon (Ry)
  • the water absorption performance defined by AATCC 79 was 0.9 seconds at the initial stage, and 9.0 seconds after 20 washings defined by ISO 6339; 2012 (6N-F).
  • ISO 6339; 2012 6N-F.
  • fabrics and fiber products that have not only flame retardancy but also durable water absorption properties, and their industrial value is extremely large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Polyamides (AREA)

Abstract

In order to provide a fabric and a fiber product, which have hygroscopicity and durability as well as flame retardancy, a hydrophilizing agent is added to a fabric containing aramid fibers.

Description

布帛および繊維製品Fabrics and textile products
 本発明は、難燃性だけでなく耐久性のある吸水性をも有する布帛および繊維製品に関する。 The present invention relates to a fabric and a textile product having not only flame retardancy but also durable water absorption.
 従来、アラミド繊維を含む布帛は難燃性に優れるため、消防服や作業着の用途に用いられている。また、消防隊員や作業者は温度や湿度の高い環境下で活動する機会が多く、発汗するという問題があった。しかしながら、消防隊員や作業者を火炎などから防護することが優先され、布帛の着用快適性はこれまであまり考慮されてこなかった。 Conventionally, fabrics containing aramid fibers are excellent in flame retardancy and are used for fire fighting clothes and work clothes. In addition, fire fighters and workers have many opportunities to work in high temperature and humidity environments, and there is a problem of sweating. However, priority has been given to protecting firefighters and workers from flames and the like, and the wearing comfort of the fabric has not been considered so far.
 一方、発汗時における着用快適性を高める布帛として、発生した汗を効率的に吸い上げる布帛が提案されている(例えば特許文献1参照)。 On the other hand, a fabric that efficiently absorbs generated sweat has been proposed as a fabric that enhances wearing comfort during sweating (see, for example, Patent Document 1).
 しかしながら、難燃性だけでなく耐久性のある吸水性をも有する布帛はこれまであまり提案されていない。 However, a fabric having not only flame retardancy but also durable water absorption has not been proposed so far.
特開2011-94285号公報JP 2011-94285 A
 本発明は上記の背景に鑑みなされたものであり、その目的は、難燃性だけでなく耐久性のある吸水性をも有する布帛および繊維製品を提供することにある。 The present invention has been made in view of the above background, and an object of the present invention is to provide a fabric and a textile product having not only flame retardancy but also durable water absorption.
 本発明者らは上記の課題を達成するため鋭意検討した結果、アラミド繊維を含む布帛に親水化剤を付与することにより、難燃性だけでなく耐久性のある吸水性をも有する布帛が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned problems, the present inventors have obtained a fabric having not only flame retardancy but also durable water absorption by adding a hydrophilizing agent to the fabric containing aramid fibers. As a result, the present invention has been completed.
 かくして、本発明によれば「アラミド繊維を含む布帛であって、親水化剤が付与されてなることを特徴とする布帛。」が提供される。 Thus, according to the present invention, there is provided “a fabric including an aramid fiber and characterized by being provided with a hydrophilizing agent”.
 その際、前記アラミド繊維に、メタ系アラミド繊維が30~97重量%、パラ系アラミド繊維が3~70重量%含まれることが好ましい。 In that case, it is preferable that the aramid fiber contains 30 to 97% by weight of meta-aramid fiber and 3 to 70% by weight of para-aramid fiber.
 また、前記メタ型全芳香族ポリアミド繊維の結晶化度が15~25%の範囲内であることが好ましい。また、前記メタ型全芳香族ポリアミド繊維を形成するメタ型全芳香族ポリアミドが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構成単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1~10mol%となるように共重合させたメタ型全芳香族ポリアミドであることが好ましい。 Further, it is preferable that the crystallinity of the meta-type wholly aromatic polyamide fiber is in the range of 15 to 25%. In addition, the meta type wholly aromatic polyamide forming the meta type wholly aromatic polyamide fiber is an aromatic polyamide skeleton including a repeating structural unit represented by the following formula (1): A meta-type wholly aromatic polyamide obtained by copolymerizing different aromatic diamine components or aromatic dicarboxylic acid halide components as a third component so as to be 1 to 10 mol% based on the total amount of repeating structural units of the aromatic polyamide. It is preferable.
  -(NH-Ar1-NH-CO-Ar1-CO)-  ・・・式(1)
ここで、Ar1はメタ配位又は平行軸方向以外に結合基を有する2価の芳香族基である。
— (NH—Ar 1 —NH—CO—Ar 1 —CO) — (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.
 その際、第3成分となる芳香族ジアミンが式(2)、(3)、または芳香族ジカルボン酸ハライドが、式(4)、(5)であることが好ましい。 In that case, it is preferable that the aromatic diamine as the third component is the formula (2), (3), or the aromatic dicarboxylic acid halide is the formula (4), (5).
    HN-Ar2-NH  ・・・式(2)
    HN-Ar2-Y-Ar2-NH  ・・・式(3)
    XOC-Ar3-COX  ・・・式(4)
    XOC-Ar3-Y-Ar3-COX  ・・・式(5)
ここで、Ar2はAr1とは異なる2価の芳香族基、Ar3はAr1とは異なる2価の芳香族基、Yは酸素原子、硫黄原子、アルキレン基からなる群から選ばれる少なくとも1種の原子又は官能基であり、Xはハロゲン原子を表す。
H 2 N—Ar 2 —NH 2 Formula (2)
H 2 N—Ar 2 —Y—Ar 2 —NH 2 Formula (3)
XOC-Ar3-COX Formula (4)
XOC-Ar3-Y-Ar3-COX Formula (5)
Here, Ar2 is a divalent aromatic group different from Ar1, Ar3 is a divalent aromatic group different from Ar1, Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group Or it is a functional group and X represents a halogen atom.
 また、前記メタ型芳香族ポリアミド繊維の残存溶媒量が0.1重量%以下であることが好ましい。また、布帛がさらに導電性繊維を含むことが好ましい。また、布帛がさらにポリエステル繊維を含むことが好ましい。また、前記ポリエステル繊維が難燃剤を含有するポリエステル繊維であることが好ましい。また、前記アラミド繊維および/または前記導電性繊維および/または前記ポリエステル繊維が紡績糸として布帛に含まれることが好ましい。また、前記アラミド繊維および前記ポリエステル繊維が混紡糸として布帛に含まれることが好ましい。また、布帛が2重織組織を有することが好ましい。また、前記親水化剤が、ポリエチレングリコールジアクリレートまたはポリエチレングリコールジアクリレートの誘導体またはポリエチレンテレフタレート-ポリエチレングリコール共重合体または水溶性ポリウレタンであることが好ましい。また、布帛の目付けが、130~260g/mの範囲内であることが好ましい。また、布帛に染色加工が施されていることが好ましい。また、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であることが好ましい。また、AATCC79で規定する吸水性能が10秒以下であることが好ましい。また、ISO6339;2012(6N-F)で規定される洗濯20回後において、AATCC79で規定する吸水性能が30秒以下であることが好ましい。 Moreover, it is preferable that the residual solvent amount of the said meta type | mold aromatic polyamide fiber is 0.1 weight% or less. Moreover, it is preferable that a fabric contains a conductive fiber further. Moreover, it is preferable that a fabric contains a polyester fiber further. Moreover, it is preferable that the said polyester fiber is a polyester fiber containing a flame retardant. Moreover, it is preferable that the aramid fiber and / or the conductive fiber and / or the polyester fiber are contained in the fabric as spun yarn. Moreover, it is preferable that the said aramid fiber and the said polyester fiber are contained in a fabric as a blended yarn. The fabric preferably has a double woven structure. The hydrophilizing agent is preferably polyethylene glycol diacrylate, a polyethylene glycol diacrylate derivative, a polyethylene terephthalate-polyethylene glycol copolymer, or a water-soluble polyurethane. The fabric weight is preferably within the range of 130 to 260 g / m 2 . Moreover, it is preferable that the fabric is dyed. In addition, the afterflame is preferably 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method. Moreover, it is preferable that the water absorption performance prescribed | regulated by AATCC79 is 10 seconds or less. Further, after 20 washings specified by ISO 6339; 2012 (6N-F), the water absorption performance specified by AATCC 79 is preferably 30 seconds or less.
 また、本発明によれば、前記の布帛を用いてなり、防護服、消防防火服、消防活動服、救助服、ワークウェア、警察制服、自衛隊衣服、および軍服からなる群より選択されるいずれかの繊維製品が提供される。 Further, according to the present invention, any one selected from the group consisting of protective clothing, fire-fighting clothing, fire-fighting clothing, rescue clothing, workwear, police uniforms, self-defense clothing, and military clothing, using the fabric described above. Textile products are provided.
 本発明によれば、難燃性だけでなく耐久性のある吸水性をも有する布帛および繊維製品が得られる。 According to the present invention, it is possible to obtain a fabric and a textile product having not only flame retardancy but also durable water absorption.
実施例3で用いた織組織図である。6 is a woven structure diagram used in Example 3. FIG.
 以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 まず,本発明の布帛はアラミド繊維(全芳香族ポリアミド繊維)を含む。布帛にアラミド繊維が含まれない場合、十分な難燃性が得られず好ましくない。 First, the fabric of the present invention includes an aramid fiber (fully aromatic polyamide fiber). When the aramid fiber is not included in the fabric, it is not preferable because sufficient flame retardancy cannot be obtained.
 かかるアラミド繊維としては、メタ系アラミド繊維でもよいしパラ系アラミド繊維でもよい。 Such aramid fibers may be meta-aramid fibers or para-aramid fibers.
 メタ系アラミド繊維としては、原着タイプ、染色タイプのいずれでもよい。難燃剤を含む難燃タイプでもよい。さらには、メタ系アラミド繊維の残留溶媒は、少なければ少ないほどよい。該残留溶媒が少ない方が繊維自体の自己消火性が高いので、1重量%以下(さらに好ましくは0.3重量%以下)が好ましい。 The meta-aramid fiber may be either an original type or a dyed type. A flame retardant type containing a flame retardant may also be used. Furthermore, the smaller the residual solvent of the meta-aramid fiber, the better. Since the self-extinguishing property of the fiber itself is higher when the residual solvent is smaller, it is preferably 1% by weight or less (more preferably 0.3% by weight or less).
 かかるメタ系アラミド繊維は、主骨格を構成する芳香環がアミド結合によりメタに結合されてなるものであり、ポリマーの全繰返し単位の85モル%以上がメタフェニレンイソフタルアミド単位であるものを対象とする。特にポリメタフェニレンイソフタルアミドホモポリマーが好ましい。全繰返し単位の15モル%以下(好ましくは5モル%以下)で共重合し得る第3成分としては後記のものが例示される。例えば、ジアミン成分として、パラフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、パラキシリレンジアミン、ビフェニレンジアミン、3,3’-ジクロルベンジジン、3,3’-ジメチルベンジジン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,5-ナフタレンジアミン等の芳香族ジアミンが挙げられる。また、また酸成分として、例えばテレフタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸等の芳香族ジカルボン酸が挙げられる。また、これらの芳香族ジアミン及び芳香族ジカルボン酸は、その芳香族環の水素原子の一部がハロゲン原子やメチル基等のアルキル基によって置換されていてもよい。ポリマーの全末端の20%以上が、アニリン等の一価のジアミンもしくは一価のカルボン酸成分で封鎖されている場合には、特に高温下に長時間保持しても繊維の強力低下が小さくなるので好ましい。かかるメタ系アラミド繊維には、カーボンブラックなどの顔料や機能特性を保持するために難燃剤や紫外線吸収剤やその他の機能剤が含まれていてもよい。なお、かかるメタ系アラミド繊維として市販品では、コーネックス(登録商標)、ノーメックス(登録商標)などがある。 Such meta-aramid fibers are those in which the aromatic ring constituting the main skeleton is bonded to meta by an amide bond, and 85 mol% or more of all repeating units of the polymer are metaphenylene isophthalamide units. To do. In particular, polymetaphenylene isophthalamide homopolymer is preferable. Examples of the third component that can be copolymerized at 15 mol% or less (preferably 5 mol% or less) of all repeating units include those described below. For example, as a diamine component, paraphenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, paraxylylenediamine, biphenylenediamine, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine And aromatic diamines such as 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, and 1,5-naphthalenediamine. Examples of the acid component include aromatic dicarboxylic acids such as terephthalic acid, naphthalene-2,6-dicarboxylic acid, and naphthalene-2,7-dicarboxylic acid. In these aromatic diamines and aromatic dicarboxylic acids, part of the hydrogen atoms of the aromatic ring may be substituted with an alkyl group such as a halogen atom or a methyl group. When 20% or more of all terminals of the polymer are blocked with a monovalent diamine such as aniline or a monovalent carboxylic acid component, the decrease in fiber strength is reduced even when kept at a high temperature for a long time. Therefore, it is preferable. Such meta-aramid fibers may contain a pigment such as carbon black, and a flame retardant, an ultraviolet absorber, and other functional agents in order to maintain functional characteristics. As such meta-aramid fibers, commercially available products include Conex (registered trademark) and Nomex (registered trademark).
 このようなメタ型全芳香族ポリアミドは、従来から公知の界面重合法により製造することができ、そのポリマーの重合度としては、0.5g/100mlの濃度のN-メチル-2-ピロリドン溶液で測定した固有粘度(I.V.)が1.3~1.9dl/gの範囲のものが好ましく用いられる。 Such a meta-type wholly aromatic polyamide can be produced by a conventionally known interfacial polymerization method. The polymerization degree of the polymer is N-methyl-2-pyrrolidone solution having a concentration of 0.5 g / 100 ml. Those having a measured intrinsic viscosity (IV) in the range of 1.3 to 1.9 dl / g are preferably used.
 上記メタ型全芳香族ポリアミドにはアルキルベンゼンスルホン酸オニウム塩が含有されていてもよい。アルキルベンゼンスルホン酸オニウム塩としては、ヘキシルベンゼンスルホン酸テトラブチルフォスフォニウム塩、ヘキシルベンゼンスルホン酸トリブチルベンジルフォスフォニウム塩、ドデシルベンゼンスルホン酸テトラフェニルフォスフォニウム塩、ドデシルベンゼンスルホン酸トリブチルテトラデシルフォスフォニウム塩、ドデシルベンゼンスルホン酸テトラブチルフォスフォニウム塩、ドデシルベンゼンスルホン酸トリブチルベンジルアンモニウム塩等の化合物が好ましく例示される。なかでもドデシルベンゼンスルホン酸テトラブチルフォスフォニウム塩、又はドデシルベンゼンスルホン酸トリブチルベンジルアンモニウム塩は、入手しやすく、熱的安定性も良好なうえ、N-メチル-2-ピロリドンに対する溶解度も高いため特に好ましく例示される。 The meta-type wholly aromatic polyamide may contain an alkylbenzene sulfonic acid onium salt. Examples of the onium salt of alkylbenzene sulfonate include tetrabutyl phosphonium salt of hexyl benzene sulfonate, tributyl benzyl phosphonium salt of hexyl benzene sulfonate, tetraphenyl phosphonium salt of dodecyl benzene sulfonate, tributyl tetradecyl phosphonate of dodecyl benzene sulfonate. Preferred examples include compounds such as a nium salt, tetrabutylphosphonium salt of dodecylbenzenesulfonate, and tributylbenzylammonium salt of dodecylbenzenesulfonate. Among them, dodecylbenzenesulfonic acid tetrabutylphosphonium salt or dodecylbenzenesulfonic acid tributylbenzylammonium salt is particularly easy to obtain and has good thermal stability and high solubility in N-methyl-2-pyrrolidone. Preferably exemplified.
 上記アルキルベンゼンスルホン酸オニウム塩の含有割合は、十分な染色性の改良効果を得るために、ポリ-m-フェニレンイソフタルアミドに対して2.5モル%以上、好ましくは3.0~7.0モル%の範囲にあるものが好ましい。 The content ratio of the alkylbenzenesulfonic acid onium salt is 2.5 mol% or more, preferably 3.0 to 7.0 mol, relative to poly-m-phenyleneisophthalamide in order to obtain a sufficient dyeing effect. Those in the range of% are preferred.
 また、ポリ-m-フェニレンイソフタルアミドとアルキルベンゼンスルホン酸オニウム塩を混合する方法としては、溶媒中にポリ-m-フェニレンイソフタルアミドを混合、溶解し、それにアルキルベンゼンスルホン酸オニウム塩を溶媒に溶解する方法などが用いられそのいずれを用いてもよい。このようにして得られたドープは、従来から公知の方法により繊維に形成される。 As a method of mixing poly-m-phenylene isophthalamide and alkylbenzene sulfonic acid onium salt, poly-m-phenylene isophthalamide is mixed and dissolved in a solvent, and alkylbenzene sulfonic acid onium salt is dissolved in the solvent. Any of these may be used. The dope thus obtained is formed into fibers by a conventionally known method.
 メタ型全芳香族ポリアミド繊維に用いるポリマーは、染着性や耐変褪色性を向上させる等の目的で、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構成単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1~10mol%となるように共重合させることも可能である。 The polymer used for the meta-type wholly aromatic polyamide fiber is used in the aromatic polyamide skeleton containing a repeating structural unit represented by the following formula (1) for the purpose of improving dyeability and resistance to discoloration. An aromatic diamine component or an aromatic dicarboxylic acid halide component different from the main structural unit of the structure may be copolymerized so as to be 1 to 10 mol% based on the total amount of the repeating structural units of the aromatic polyamide as the third component. Is possible.
  -(NH-Ar1-NH-CO-Ar1-CO)- ・・・式(1)
ここで、Ar1はメタ配位又は平行軸方向以外に結合基を有する2価の芳香族基である。
— (NH—Ar 1 —NH—CO—Ar 1 —CO) — (1)
Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.
 また、第3成分として共重合させることも可能である。式(2)、(3)に示した芳香族ジアミンの具体例としては、例えば、p-フェニレンジアミン、クロロフェニレンジアミン、メチルフェニレンジアミン、アセチルフェニレンジアミン、アミノアニシジン、ベンジジン、ビス(アミノフェニル)エーテル、ビス(アミノフェニル)スルホン、ジアミノベンズアニリド、ジアミノアゾベンゼン等が挙げられる。式(4)、(5)に示すような芳香族ジカルボン酸ジクロライドの具体例としては、例えば、テレフタル酸クロライド、1,4-ナフタレンジカルボン酸クロライド、2,6-ナフタレンジカルボン酸クロライド、4,4’-ビフェニルジカルボン酸クロライド、5-クロルイソフタル酸クロライド、5-メトキシイソフタル酸クロライド、ビス(クロロカルボニルフェニル)エーテルなどが挙げられる。 It is also possible to copolymerize as the third component. Specific examples of the aromatic diamines represented by the formulas (2) and (3) include, for example, p-phenylenediamine, chlorophenylenediamine, methylphenylenediamine, acetylphenylenediamine, aminoanisidine, benzidine, and bis (aminophenyl). Examples include ether, bis (aminophenyl) sulfone, diaminobenzanilide, diaminoazobenzene and the like. Specific examples of the aromatic dicarboxylic acid dichloride represented by the formulas (4) and (5) include, for example, terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4 Examples include '-biphenyldicarboxylic acid chloride, 5-chloroisophthalic acid chloride, 5-methoxyisophthalic acid chloride, bis (chlorocarbonylphenyl) ether, and the like.
  HN-Ar2-NH ・・・式(2)
  HN-Ar2-Y-Ar2-NH ・・・式(3)
  XOC-Ar3-COX ・・・式(4)
  XOC-Ar3-Y-Ar3-COX ・・・式(5)
 ここで、Ar2はAr1とは異なる2価の芳香族基、Ar3はAr1とは異なる2価の芳香族基、Yは酸素原子、硫黄原子、アルキレン基からなる群から選ばれる少なくとも1種の原子又は官能基であり、Xはハロゲン原子を表す。
H 2 N—Ar 2 —NH 2 Formula (2)
H 2 N—Ar 2 —Y—Ar 2 —NH 2 Formula (3)
XOC-Ar3-COX Formula (4)
XOC-Ar3-Y-Ar3-COX Formula (5)
Here, Ar2 is a divalent aromatic group different from Ar1, Ar3 is a divalent aromatic group different from Ar1, Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group Or it is a functional group and X represents a halogen atom.
 また、メタ型全芳香族ポリアミド繊維の結晶化度は、染料の吸尽性がよく、より少ない染料でまたは染色条件が弱くても狙いの色に調整し易いという点で、5~35%であることが好ましい。さらには、染料の表面偏在が起こり難く耐変褪色性も高い点および実用上必要な寸法安定性も確保できる点で15~25%であることがより好ましい。 The crystallinity of the meta-type wholly aromatic polyamide fiber is 5 to 35% in terms of good exhaustibility of the dye and easy adjustment to the target color even with less dye or weak dyeing conditions. Preferably there is. Further, it is more preferably 15 to 25% in that the surface uneven distribution of the dye hardly occurs, the discoloration resistance is high, and the dimensional stability necessary for practical use can be secured.
 また、メタ型全芳香族ポリアミド繊維の残存溶媒量は、メタ型全芳香族ポリアミド繊維の優れた難燃性能を損なわない点および染料の表面偏在が起こり難く耐変褪色性も高い点で、0.1重量%以下であることが好ましい。 Further, the residual solvent amount of the meta-type wholly aromatic polyamide fiber is 0 in that it does not impair the excellent flame retardant performance of the meta-type wholly aromatic polyamide fiber, and the surface unevenness of the dye hardly occurs, and the discoloration resistance is high. .1% by weight or less is preferable.
 前記メタ型全芳香族ポリアミド繊維は以下の方法により製造することができ、特に後述する方法により、結晶化度や残存溶媒量を上記範囲とすることができる。 The meta-type wholly aromatic polyamide fiber can be produced by the following method, and in particular, the crystallinity and the residual solvent amount can be within the above ranges by the method described later.
 メタ型全芳香族ポリアミドポリマーの重合方法としては、特に限定する必要はなく、例えば特公昭35-14399号公報、米国特許第3360595号公報、特公昭47-10863号公報などに記載された溶液重合法、界面重合法を用いてもよい。 The polymerization method of the meta-type wholly aromatic polyamide polymer is not particularly limited. For example, the solution weight described in Japanese Patent Publication No. 35-14399, US Pat. No. 3,360,595, Japanese Patent Publication No. 47-10863, etc. A combination method or an interfacial polymerization method may be used.
 紡糸溶液としては、とくに限定する必要はないが、上記溶液重合や界面重合などで得られた、芳香族コポリアミドポリマーを含むアミド系溶媒溶液を用いても良いし、上記重合溶液から該ポリマーを単離し、これをアミド系溶媒に溶解したものを用いてもよい。 The spinning solution is not particularly limited, but an amide solvent solution containing an aromatic copolyamide polymer obtained by the above solution polymerization or interfacial polymerization may be used, or the polymer may be removed from the polymerization solution. You may use what was isolated and melt | dissolved in the amide-type solvent.
 ここで、用いられるアミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシドなどを例示することができるが、とくにN,N-ジメチルアセトアミドが好ましい。 Examples of the amide solvent used here include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), and dimethyl sulfoxide. N-dimethylacetamide is preferred.
 上記の通り得られた共重合芳香族ポリアミドポリマー溶液は、さらにアルカリ金属塩またはアルカリ土類金属塩を含むことにより安定化され、より高濃度、低温での使用が可能となり好ましい。好ましくはアルカリ金属塩及びアルカリ土類金属塩がポリマー溶液の全重量に対して1重量%以下(より好ましくは0.1重量%以下)である。 The copolymerized aromatic polyamide polymer solution obtained as described above is preferably stabilized by containing an alkali metal salt or an alkaline earth metal salt, and can be used at a higher concentration and lower temperature. Preferably, the alkali metal salt and alkaline earth metal salt are 1% by weight or less (more preferably 0.1% by weight or less) based on the total weight of the polymer solution.
 紡糸・凝固工程においては、上記で得られた紡糸液(メタ型全芳香族ポリアミド重合体溶液)を凝固液中に紡出して凝固させる。 In the spinning / coagulation step, the spinning solution (meta-type wholly aromatic polyamide polymer solution) obtained above is spun into a coagulating solution and coagulated.
 紡糸装置としては特に限定されるものではなく、従来公知の湿式紡糸装置を使用することができる。また、安定して湿式紡糸できるものであれば、紡糸口金の紡糸孔数、配列状態、孔形状等は特に制限する必要はなく、例えば、孔数が1000~30000個、紡糸孔径が0.05~0.2mmのスフ用の多ホール紡糸口金等を用いてもよい。 The spinning apparatus is not particularly limited, and a conventionally known wet spinning apparatus can be used. In addition, the number of spinning holes, the arrangement state, the hole shape, etc. of the spinneret need not be particularly limited as long as they can be stably wet-spun. For example, the number of holes is 1,000 to 30,000, and the spinning hole diameter is 0.05. A multi-hole spinneret for ˜0.2 mm sufu may be used.
 また、紡糸口金から紡出する際の紡糸液(メタ型全芳香族ポリアミド重合体溶液)の温度は、20~90℃の範囲が好ましい。 The temperature of the spinning solution (meta-type wholly aromatic polyamide polymer solution) when spinning from the spinneret is preferably in the range of 20 to 90 ° C.
 繊維を得るために用いる凝固浴としては、実質的に無機塩を含まない、アミド系溶媒、好ましくはNMPの濃度が45~60重量%の水溶液を、浴液の温度10~50℃の範囲で用いる。アミド系溶媒(好ましくはNMP)の濃度が45重量%未満ではスキンが厚い構造となってしまい、洗浄工程における洗浄効率が低下し、繊維の残存溶媒量を低減させることが困難となるおそれがある。一方、アミド系溶媒(好ましくはNMP)の濃度が60重量%を超える場合には、繊維内部に至るまで均一な凝固を行うことができず、このためやはり、繊維の残存溶媒量を低減させることが困難となるおそれがある。なお、凝固浴中への繊維の浸漬時間は、0.1~30秒の範囲が好ましい。 As a coagulation bath used to obtain fibers, an amide solvent, preferably an aqueous solution containing 45 to 60% by weight of NMP, which is substantially free of inorganic salts, is used at a bath temperature of 10 to 50 ° C. Use. If the concentration of the amide solvent (preferably NMP) is less than 45% by weight, the skin has a thick structure, and the washing efficiency in the washing step may be lowered, making it difficult to reduce the amount of residual solvent in the fiber. . On the other hand, when the concentration of the amide solvent (preferably NMP) exceeds 60% by weight, uniform coagulation cannot be performed up to the inside of the fiber, and therefore, the residual solvent amount of the fiber can be reduced. May become difficult. The fiber immersion time in the coagulation bath is preferably in the range of 0.1 to 30 seconds.
 引続き、アミド系溶媒、好ましくはNMPの濃度が45~60重量%の水溶液であり、浴液の温度を10~50℃の範囲とした可塑延伸浴中にて、3~4倍の延伸倍率で延伸を行う。延伸後、10~30℃のNMPの濃度が20~40重量%の水溶液、続いて50~70℃の温水浴を通して十分に洗浄を行う。 Subsequently, an amide solvent, preferably an aqueous solution having a concentration of NMP of 45 to 60% by weight, in a plastic stretching bath in which the temperature of the bath liquid is in the range of 10 to 50 ° C., at a stretching ratio of 3 to 4 times. Stretching is performed. After stretching, the film is thoroughly washed through an aqueous solution having an NMP concentration of 20 to 40% by weight at 10 to 30 ° C., followed by a hot water bath at 50 to 70 ° C.
 洗浄後の繊維は、温度270~290℃にて乾熱処理を施し、上記の結晶化度および残存溶媒量の範囲を満たすメタ型全芳香族アラミド繊維を得ることができる。 The washed fiber is subjected to a dry heat treatment at a temperature of 270 to 290 ° C. to obtain a meta-type wholly aromatic aramid fiber satisfying the above-mentioned range of crystallinity and residual solvent amount.
 また、パラ系アラミド繊維は主鎖中に芳香族環を有するポリアミドからなる繊維である。ポリ-p-フェニレンテレフタルアミド(PPTA)でも共重合タイプのコポリパラフェニレン-3,4’オキシジフェニレンテレフタルアミド(PPODPA)であってもよい。なお、かかるパラ系アラミド繊維として市販品では、テクノーラ(登録商標)、ケブラー(登録商標)およびトワロン(登録商標)などがある。 Para-aramid fiber is a fiber made of polyamide having an aromatic ring in the main chain. Poly-p-phenylene terephthalamide (PPTA) or copolymer type copolyparaphenylene-3,4'oxydiphenylene terephthalamide (PPODPA) may be used. As such para-aramid fibers, commercially available products include Technora (registered trademark), Kevlar (registered trademark), and Twaron (registered trademark).
 特に、前記アラミド繊維に、メタ系アラミド繊維が30~97重量%、パラ系アラミド繊維が3~70重量%含まれていると、燃焼時に布帛の収縮が小さくなり布帛に穴があきにくくなり好ましい。 In particular, when the aramid fiber contains 30 to 97% by weight of meta-aramid fiber and 3 to 70% by weight of para-aramid fiber, the shrinkage of the fabric is reduced during combustion and the fabric is less likely to be perforated. .
 本発明の布帛は前記のようなアラミド繊維のみで構成されていてもよいし、アラミド繊維以外の繊維(他の繊維)を含んでいてもよい。 The fabric of the present invention may be composed of only the aramid fibers as described above, or may contain fibers other than the aramid fibers (other fibers).
 例えば、布帛に導電性繊維が含まれていると、布帛に付与された親水化剤との相乗効果により静電気の発生による火炎を抑制することができ好ましい。 For example, it is preferable that conductive cloth is contained in the fabric because a flame due to generation of static electricity can be suppressed by a synergistic effect with the hydrophilizing agent applied to the fabric.
 かかる導電性繊維としては、導電性繊維の導電部の導電体として、カーボンブラック、導電性酸化チタン、導電性ウィスカー、およびカーボンナノチューブの少なくとも一つを含む繊維が好ましい。 The conductive fiber is preferably a fiber containing at least one of carbon black, conductive titanium oxide, conductive whisker, and carbon nanotube as a conductor of the conductive portion of the conductive fiber.
 導電性繊維の形態は、繊維全体が導電部からなる構造でもよいし、非導電部と導電部が芯鞘、サンドイッチ、偏芯などの断面形状を有していてもよい。導電部、非導電部を形成する樹脂は、繊維形成性を有していれば、特段限定されるものではない。具体的には、ナイロン樹脂では、6 ナイロン、1 1 ナイロン、1 2 ナイロン、6 6 ナイロンと言ったものが挙げられる。また、ポリエステル樹脂では、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリシクロヘキサンテレフタレートおよびこれらの共重合体や酸成分(テレフタル酸)の一部をイソフタル酸で置き換えたものなどが挙げられる。 The form of the conductive fiber may be a structure in which the entire fiber is made of a conductive part, or the non-conductive part and the conductive part may have a cross-sectional shape such as a core sheath, a sandwich, or an eccentricity. The resin forming the conductive part and the non-conductive part is not particularly limited as long as it has fiber-forming properties. Specific examples of nylon resins include 6 nylon, 1 1 nylon, 1 2 nylon, and 6 6 nylon. Polyester resins include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycyclohexane terephthalate and their copolymers and acid components (terephthalic acid) partially replaced with isophthalic acid. Can be mentioned.
 市販されている導電性繊維としては、帝人社製「メタリアン」(商品名)、ユニチカファイバー社製「メガーナ」(商品名)、東レ社製「ルアナ」(商品名)、クラレ社製「クラカーボ」(商品名)などが例示される。 Commercially available conductive fibers include Teijin's “Metallian” (trade name), Unitika Fiber's “Meghana” (trade name), Toray's “Luana” (trade name), and Kuraray's “Kurabo”. (Product name) is exemplified.
 また、布帛にポリエステル繊維、ナイロン繊維、アクリル繊維、アクリレート系繊維、難燃レーヨン繊維、難燃ビニロン繊維などの繊維が含まれていてもよい。特に、布帛にポリエステル繊維が含まれていると、吸水性能がさらに向上し好ましい。 In addition, the fabric may contain fibers such as polyester fiber, nylon fiber, acrylic fiber, acrylate fiber, flame retardant rayon fiber, and flame retardant vinylon fiber. In particular, when the fabric contains polyester fibers, the water absorption performance is further improved.
 前記ポリエステル繊維は、ポリエステルを一成分として含む繊維である。ポリエステルは、テレフタル酸を主たるジカルボン酸成分とし、少なくとも1種のグリコール、好ましくは、エチレングリコール、トリメチレングリコール、テトラメチレングリコールなどから選ばれた少なくとも1種のアルキレングリコールを主たるグリコール成分とするポリエステルである。上記ポリエステルには、必要に応じて第3成分が共重合および/またはブレンドによって変性されていてもよい。かかるポリエステルとしては、マテリアルリサイクルまたはケミカルリサイクルされたポリエステルや、バイオマスすなわち生物由来の物質を原材料として得られたモノマー成分を使用してなるポリエチレンテレフタレートであってもよい。さらには、特開2004-270097号公報や特開2004-211268号公報に記載されているような、特定のリン化合物およびチタン化合物を含む触媒を用いて得られたポリエステルでもよい。 The polyester fiber is a fiber containing polyester as one component. The polyester is a polyester having terephthalic acid as a main dicarboxylic acid component and at least one glycol, preferably at least one alkylene glycol selected from ethylene glycol, trimethylene glycol, tetramethylene glycol and the like as a main glycol component. is there. In the polyester, the third component may be modified by copolymerization and / or blending as necessary. Such polyester may be material-recycled or chemical-recycled polyester or polyethylene terephthalate using a monomer component obtained using biomass, that is, a biological material as a raw material. Furthermore, it may be a polyester obtained by using a catalyst containing a specific phosphorus compound and a titanium compound as described in JP-A-2004-270097 and JP-A-2004-212268.
 なお、かかるポリエステルには、必要に応じて任意の添加剤、例えば触媒、着色防止剤、耐熱剤、難燃剤、酸化防止剤、無機微粒子などが含まれていてもさしつかえない。特にポリエステルポリマー中またはポリエステル繊維表面に難燃剤が付与されていると布帛の難燃性が向上し好ましい。 The polyester may contain optional additives such as a catalyst, an anti-coloring agent, a heat-resistant agent, a flame retardant, an antioxidant, and inorganic fine particles as necessary. In particular, it is preferable to add a flame retardant in the polyester polymer or on the surface of the polyester fiber because the flame retardancy of the fabric is improved.
 前記ポリエステル繊維において、繊維の表面積を大きくして優れた吸汗性などを得る上で、単繊維繊度5.0dtex以下(より好ましくは0.0001~1.5dtex)であることが好ましい。 The polyester fiber preferably has a single fiber fineness of 5.0 dtex or less (more preferably 0.0001 to 1.5 dtex) in order to increase the surface area of the fiber to obtain excellent sweat absorption.
 前記ポリエステル繊維において、単繊維の断面形状(横断面形状)が異型(丸型以外の形状)であることが好ましい。かかる異型の断面形状としては、扁平断面またはW型または十字または中空(例えば、丸中空、三角中空、四角中空など)または三角であることが好ましい。さらには特開2004-52191号公報に記載されたようなくびれ部を有する扁平断面、特開2012-97380号公報に記載されたような中空コア部から放射状に突出するフィン部を有する断面でもよい。有機繊維が異型断面形状を有することにより、繊維間に空隙ができ、毛細管現象により優れた吸水性が得られる。また、吸水作用により吸収した水分により難燃性がさらに向上するという相乗効果も有する。前記の断面形状のなかでもW型が、少量の繊維でも繊維間に空隙ができやすく特に好ましい。 In the polyester fiber, the cross-sectional shape (transverse cross-sectional shape) of the single fiber is preferably an irregular shape (a shape other than a round shape). The atypical cross-sectional shape is preferably a flat cross-section, a W-shape, a cross or a hollow (for example, a round hollow, a triangular hollow, a square hollow, etc.) or a triangular. Further, it may be a flat cross section having a constriction as described in Japanese Patent Application Laid-Open No. 2004-52191, or a cross section having fin portions protruding radially from a hollow core as described in Japanese Patent Application Laid-Open No. 2012-97380. . When the organic fiber has an atypical cross-sectional shape, voids are formed between the fibers, and excellent water absorption is obtained by capillary action. It also has a synergistic effect that flame retardancy is further improved by moisture absorbed by the water absorption action. Among the above-mentioned cross-sectional shapes, the W-type is particularly preferable because even a small amount of fibers can easily form voids between the fibers.
 前記ポリエステル繊維としては、2成分がサイドバイサイドまたは偏心芯鞘型に貼り合わされた複合繊維でもよい。かかる複合繊維は通常、潜在捲縮が発現した微細な捲縮を有しているので、ストレッチ性を有するだけでなく毛細管現象により優れた吸水性も有する。
その際、複合繊維を構成する2成分が、ポリトリメチレンテレフタレートとポリトリメチレンテレフタレートとの組合せ、ポリトリメチレンテレフタレートとポリエチレンテレフタレートとの組合せ、ポリエチレンテレフタレートとポリエチレンテレフタレートとの組合せの群から選ばれたいずれかの組合せであることが好ましい。
The polyester fiber may be a composite fiber in which two components are bonded side by side or in an eccentric core-sheath type. Such a composite fiber usually has fine crimps in which latent crimps are expressed, and thus has not only stretchability but also excellent water absorption due to capillary action.
At that time, the two components constituting the composite fiber were selected from the group consisting of a combination of polytrimethylene terephthalate and polytrimethylene terephthalate, a combination of polytrimethylene terephthalate and polyethylene terephthalate, and a combination of polyethylene terephthalate and polyethylene terephthalate. Any combination is preferable.
 本発明の布帛において、布帛を構成するアラミド繊維や他の繊維の繊維形態は特に限定されず、短繊維(紡績糸)でもよいし長繊維(マルチフィラメント)でもよい。特に、親水化剤を洗濯耐久性よく保持する上で紡績糸が好ましい。 In the fabric of the present invention, the fiber form of the aramid fiber and other fibers constituting the fabric is not particularly limited, and may be a short fiber (spun yarn) or a long fiber (multifilament). In particular, a spun yarn is preferable for maintaining the hydrophilic agent with good washing durability.
 その際、アラミド繊維や他の繊維は、同時に混紡してもよいし、別々に用いて交編、交織してもよい。なかでも、アラミド繊維および前記ポリエステル繊維が混紡され、混紡糸として布帛に含まれると、優れた難燃性が得られるだけでなく親水化剤を洗濯耐久性よく保持でき好ましい。 At that time, the aramid fiber and other fibers may be blended at the same time, or may be used separately and knitted or woven. Among them, it is preferable that the aramid fiber and the polyester fiber are blended and included in the fabric as a blended yarn because not only excellent flame retardancy can be obtained but also the hydrophilizing agent can be retained with good washing durability.
 また、前記紡績糸がコイル状を呈すると布帛にストレッチ性を付与することができ好ましい。かかるコイル状を呈する紡績糸は例えば以下の方法により得られる。 Further, it is preferable that the spun yarn has a coil shape, which can impart stretch properties to the fabric. A spun yarn having such a coil shape can be obtained by the following method, for example.
 すなわち、まず、アラミド繊維を含む紡績糸を用意する。その際、アラミド繊維に導電糸や他繊維原綿を混合してもよい。紡績糸繊度(番手)は、耐糸切れ性や強度などの点で綿番手(Ecc)20~60番手が好ましい。単糸数としては60本以上が好ましく、原綿単糸繊度としては3.0dtex以下(より好ましくは0.001~3.0dtex)が好ましい。紡績糸の撚係数(下撚係数)としては3.6~4.2(より好ましくは3.8~4.0)の範囲が好ましい。該撚係数が大きい程、毛羽が収束し布帛の耐ピリング性が良くなる反面、紡績糸が剛直になり、伸度が低下して布帛の引裂き強力が低減したり、布帛が硬化するおそれがある。なお、撚係数は下記式により表される。
撚係数=撚数(回/2.54cm)/紡績糸の綿番手(Ecc)1/2
 紡績糸の紡績方法はリング紡績、MTS、MJS、MVSなどの革新紡績やリング紡績など通常の紡績方法でよい。撚り方向はZ方向またはS方向のいずれでもよい。
That is, first, a spun yarn containing an aramid fiber is prepared. At that time, conductive yarn or other fiber raw cotton may be mixed with the aramid fiber. The spun yarn fineness (count) is preferably 20 to 60 cotton count (Ecc) in terms of yarn breakage resistance and strength. The number of single yarns is preferably 60 or more, and the raw cotton single yarn fineness is preferably 3.0 dtex or less (more preferably 0.001 to 3.0 dtex). The twist coefficient (primary twist coefficient) of the spun yarn is preferably in the range of 3.6 to 4.2 (more preferably 3.8 to 4.0). The larger the twist coefficient, the more the fluff converges and the pilling resistance of the fabric improves. On the other hand, the spun yarn becomes stiff, the elongation decreases, the tear strength of the fabric decreases, and the fabric may be cured. . In addition, a twist coefficient is represented by a following formula.
Twist factor = number of twists (times / 2.54cm) / cotton count of spun yarn (Ecc) 1/2
The spinning method of the spun yarn may be a normal spinning method such as innovative spinning such as ring spinning, MTS, MJS, MVS, or ring spinning. The twist direction may be either the Z direction or the S direction.
 次いで、かかる紡績糸に必要に応じて撚り止めセット(真空スチームセット)を行った後、紡績糸を2本以上(好ましくは2~4本、特に好ましくは2本)引き揃えて合糸し合撚する。合撚に用いる撚糸機としては、アップツイスター、カバリング機、イタリ式撚糸機、ダブルツイスターなどの撚糸機が例示される。 Next, the spun yarn is subjected to a twist set (vacuum steam set) as necessary, and then two or more (preferably 2 to 4, particularly preferably 2) spun yarns are aligned and combined. Twist. Examples of the twisting machine used for the twisting include twisting machines such as an up twister, a covering machine, an italic twisting machine, and a double twister.
 その際、合撚(上撚)の撚り方向は追撚方向である。例えば、紡績糸の撚り方向がZ撚りの場合、同じ方向のZ方向に撚りを行う。また、撚数は、好ましくは2000回/m以上、より好ましくは2100~3000回/m、特に好ましくは2300~2800回/mである。該撚数が2000回/m未満の場合、撚り止めセット、解撚した後、紡績糸の形態がコイル状にならないおそれがある。 At that time, the twisting direction of the upper twist is the additional twisting direction. For example, when the twist direction of the spun yarn is Z twist, the twist is performed in the Z direction in the same direction. The number of twists is preferably 2000 times / m or more, more preferably 2100 to 3000 times / m, and particularly preferably 2300 to 2800 times / m. When the number of twists is less than 2000 times / m, the spun yarn may not be coiled after twisting set and untwisting.
 次いで、かかる合撚糸に撚り止めセット(従来のアラミド双糸撚り止めセット同様の高圧真空スチームセット)を施す。強固な撚り止めセットの付与が必要の場合、撚り止めセットの回数を増やしたり、撚り止めセット温度やセット時間を変えてもよい。例えば、セット温度は115~125℃、セット時間は20~40分、回数は1~3回でよいが、セット温度が高いほど、また、セット時間が長いほどセット性がよく好ましい。撚り止めセットの回数を増やしたり、処理時間を長くしたり、温度を上げることにより、よりセット性を高めることが可能であるが、生産管理(作業管理の安全性、品質管理など)や生産加工費用を考慮すると処理時間を長くすることが好ましい。また、真空度が高いほど品質が良化し好ましい。 Next, a twist set (a high-pressure vacuum steam set similar to a conventional aramid twin-thread set) is applied to such a twisted yarn. When it is necessary to provide a strong twist-stop set, the number of twist-stop sets may be increased, or the twist-stop set temperature and set time may be changed. For example, the set temperature may be 115 to 125 ° C., the set time may be 20 to 40 minutes, and the number of times may be 1 to 3. The higher the set temperature and the longer the set time, the better the setability. It is possible to increase the setability by increasing the number of twist set, increasing the processing time or raising the temperature, but production management (safety of work management, quality control, etc.) and production processing Considering the cost, it is preferable to increase the processing time. Moreover, the higher the degree of vacuum, the better the quality and the better.
 次いで、撚り止めセットされた合撚糸を解撚(合撚の撚り方向とは逆方向の撚り方向)し、必要に応じて熱セットする。その際、解撚の撚数は、前記合撚の撚数は70~90%の範囲が好ましい。この範囲の撚数で解撚を行うことにより、ストレッチ性を有した、コイル状に加工された紡績糸が得られる。かかるコイル状に加工された紡績糸において、優れたストレッチ性を得る上で撚数が200~860回/mの範囲内であることが好ましい。 Next, the twisted and set twisted yarn is untwisted (twisting direction opposite to the twisted twisting direction) and heat-set as necessary. At that time, the untwisted twist number is preferably in the range of 70 to 90%. By performing untwisting with the number of twists in this range, a spun yarn having stretch properties and processed into a coil shape can be obtained. In the spun yarn processed into the coil shape, the twist number is preferably in the range of 200 to 860 turns / m in order to obtain excellent stretch properties.
 布帛の組織としては、特に限定されるものではなく、平織、綾織、二重織などが例示される。なかでも、布帛の構造が2層の構造を有する二重織組織であると、より吸水性能が高くなり好ましい。その際、2層を構成する糸を構成する繊維は特に限定されるものではないが、主に肌側の層に露出した糸は10重量%以上のポリエステル繊維から構成され、主に外気側層に露出した糸は0~10重量%の範囲のポリエステル繊維から構成されるほうが好ましい。主に肌側に露出する糸に吸水性能に優れるポリエステル繊維をより多く配することで吸水性能が高くなり、主に外気側層に露出する糸にはポリエステル繊維の含有率を少なくすることで、布帛全体の難燃性能を維持できる。 The structure of the fabric is not particularly limited, and examples thereof include plain weave, twill, double weave and the like. Especially, it is preferable that the fabric structure is a double woven structure having a two-layer structure because the water absorption performance is further improved. At that time, the fibers constituting the yarns constituting the two layers are not particularly limited, but the yarns exposed to the skin side layer are mainly composed of 10% by weight or more of polyester fibers, and mainly the outside air side layer. The exposed yarn is preferably composed of polyester fibers in the range of 0 to 10% by weight. By disposing more polyester fibers with excellent water absorption performance on the yarn exposed mainly on the skin side, the water absorption performance is increased, and by reducing the polyester fiber content mainly in the yarn exposed on the outside air layer, The flame retardant performance of the entire fabric can be maintained.
 本発明の布帛において、親水化剤が付与されることにより難燃性だけでなく耐久性のある吸水性をも有する。 The fabric of the present invention has not only flame retardancy but also durable water absorption by being provided with a hydrophilizing agent.
 ここで、前記親水化剤としては、ポリエチレングリコールジアクリレートまたはポリエチレングリコールジアクリレートの誘導体またはポリエチレンテレフタレート-ポリエチレングリコール共重合体または水溶性ポリウレタンまたはポリエチレングリコール-アミノシリコーン共重合体が好ましい。 Here, the hydrophilizing agent is preferably polyethylene glycol diacrylate, a polyethylene glycol diacrylate derivative, a polyethylene terephthalate-polyethylene glycol copolymer, a water-soluble polyurethane, or a polyethylene glycol-aminosilicone copolymer.
 布帛に対する親水化剤の付着量は布帛重量対比0.1~2.0重量%(より好ましくは0.1~0.7重量%)であることが好ましい。なお、親水化剤の付着量は次式で算出することができる。
親水化剤の付着量(%)=((親水化剤を付着させた後の布帛重量)-(親水化剤を付着させる前の布帛重量))/(親水化剤を付着させる前の布帛重量)×100
ただし、親水化剤を付着させた後の布帛重量は乾燥後の重量である。
The adhesion amount of the hydrophilizing agent to the fabric is preferably 0.1 to 2.0% by weight (more preferably 0.1 to 0.7% by weight) relative to the weight of the fabric. In addition, the adhesion amount of a hydrophilizing agent can be calculated by the following formula.
Adhering amount of hydrophilizing agent (%) = ((weight of fabric after attaching hydrophilizing agent) − (weight of fabric before attaching hydrophilizing agent)) / (weight of fabric before attaching hydrophilizing agent) ) × 100
However, the weight of the fabric after attaching the hydrophilizing agent is the weight after drying.
 布帛に親水化剤を付与する方法としては、パディング処理する方法、染色加工時に染色液と同浴で処理する方法などが例示される。 Examples of the method for imparting a hydrophilizing agent to the fabric include a padding method and a treatment method using the same bath as the dyeing solution during dyeing.
 かかる布帛に染色加工が施されていることが好ましい。さらには、撥水剤、蓄熱剤、紫外線遮蔽あるいは制電剤、抗菌剤、消臭剤、防虫剤、防蚊剤、蓄光剤、再帰反射剤等を付与する他の各種加工を付加適用してもよい。 It is preferable that the fabric is dyed. In addition, various other treatments that apply water repellent, heat storage agent, ultraviolet shielding or antistatic agent, antibacterial agent, deodorant agent, insect repellent agent, mosquito repellent agent, phosphorescent agent, retroreflective agent, etc. are additionally applied. Also good.
 かくして得られた布帛において、目付けは、130~260g/m(より好ましくは、140~220g/m)であること好ましい。 In the fabric thus obtained, the basis weight is preferably 130 to 260 g / m 2 (more preferably 140 to 220 g / m 2 ).
 かかる布帛は前記のようにアラミド繊維を含み、かつ親水化剤を付与されているので、難燃性だけでなく耐久性のある吸水性をも有する。 Such a fabric contains aramid fibers as described above and is provided with a hydrophilizing agent, so that it has not only flame retardancy but also durable water absorption.
 ここで、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であることが好ましい。また、難燃布帛の吸水性能が、AATCC79で規定する吸水性能が、初期で10秒以下(より好ましくは初期で0.1~8秒)であることが好ましい。また、AATCC79で規定する吸水性能がISO6339;2012(6N-F)で規定される洗濯20回後で30秒以下(より好ましくは1~20秒)であることが好ましい。 Here, it is preferable that the afterflame is 2.0 seconds or less in the flammability measurement prescribed in JIS L1091-1992 A-4 method. Further, it is preferable that the water absorption performance of the flame retardant fabric is 10 seconds or less (more preferably, 0.1 to 8 seconds at the initial stage) in the initial stage. The water absorption performance specified by AATCC 79 is preferably 30 seconds or less (more preferably 1 to 20 seconds) after 20 washings specified by ISO 6339; 2012 (6N-F).
 本発明の繊維製品は、前記の布帛を用いてなり、防護服、消防防火服、消防活動服、救助服、ワークウェア、警察制服、自衛隊衣服、および軍服からなる群より選択されるいずれかの繊維製品である。 The textile product of the present invention is any one selected from the group consisting of protective clothing, fire fighting clothing, fire fighting clothing, rescue clothing, work wear, police uniform, self-defense clothing, and military clothing. It is a textile product.
 かかる繊維製品は前記の布帛を用いているので難燃性だけでなく耐久性のある吸水性をも有する。 Since such a fabric uses the above-mentioned fabric, it has not only flame retardancy but also durable water absorption.

 次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各物性は下記の方法により測定したものである。
(1)残存溶媒量
 原繊維を約8.0g採取し、105℃で120分間乾燥させた後にデシケーター内で放冷し、繊維重量(M1)を秤量した。続いて、この繊維について、メタノール中で1.5時間、ソックスレー抽出器を用いて還流抽出を行い、繊維中に含まれるアミド系溶媒の抽を行った。抽出を終えた繊維を取り出して、150℃で60分間真空乾燥させた後にデシケーター内で放冷し、繊維重量(M2)を秤量した。繊維中に残存する溶媒量(アミド系溶媒重量)は、得られるM1およびM2を用いて、下記式により算出した。
残存溶媒量(%)=[(M1-M2)/M1]×100
 得られた原繊維を用いて、捲縮加工、カットを行い、長さ51mmのステープルファイバー(原綿)を得た。
(2)結晶化度
 X線回折測定装置(リガク社製  RINT  TTRIII)を用い、原繊維を約1mm径の繊維束に引きそろえて繊維試料台に装着して回折プロファイルを測定した。測定条件は、Cu-Kα線源(50kV、300mA)、走査角度範囲10~35°、連続測定0.1°幅計測、1°/分走査でおこなった。実測した回折プロファイルから空気散乱、非干渉性散乱を直線近似で補正して全散乱プロファイルを得た。次に、全散乱プロファイルから非晶質散乱プロファイルを差し引いて結晶散乱プロファイルを得た。結晶化度は、結晶散乱プロファイルの面積強度(結晶散乱強度)と全散乱プロファイルの面積強度(全散乱強度)から、次式により求めた。
結晶化度(%)=[結晶散乱強度/全散乱強度]×100
  [実施例1]
 コーネックス(登録商標)からなるメタ型全芳香族ポリアミド繊維(MA)、トワロン(登録商標)からなるパラ型全芳香族ポリアミド繊維(PA)、ソルシア社製「NO  SHOCK(登録商標)」からなる導電性ナイロン繊維(NY)の各ステープルファイバー(いずれも繊維長は51mm)を、MA/PA/NY=93/5/2の重量比率で混紡した紡績糸40番手/双糸とし、織密度 経56本/25.4mm、緯48本/25.4mmで平織物を製織し、常法の加工条件で毛焼、精錬を実施した後、パディング処理方法にてポリエチレンテレフタレート-ポリエチレングリコール共重合体を含む親水化剤を付与し、その後、180℃で熱セットを実施し、目付け150g/m、親水化剤付着量0.2~0.5重量%の平織物を得た。 
 得られた織物において、AATCC79で規定する吸汗性能が、初期で2.0秒、ISO6339;2012(6N-F)で規定される洗濯20回後で25秒であり、かかる織物は優れた吸水性を有するものであった。また、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。かかる織物を用いて作業着を縫製し着用したところ、発汗時に汗を吸い優れた快適性を有するものであった。

Next, although the Example and comparative example of this invention are explained in full detail, this invention is not limited by these. In addition, each physical property in an Example is measured with the following method.
(1) Residual solvent amount About 8.0 g of fibrils were collected, dried at 105 ° C. for 120 minutes, allowed to cool in a desiccator, and the fiber weight (M1) was weighed. Subsequently, this fiber was subjected to reflux extraction using a Soxhlet extractor in methanol for 1.5 hours to extract an amide solvent contained in the fiber. The extracted fiber was taken out, vacuum-dried at 150 ° C. for 60 minutes, allowed to cool in a desiccator, and the fiber weight (M2) was weighed. The amount of solvent remaining in the fiber (amide solvent weight) was calculated by the following formula using M1 and M2 obtained.
Residual solvent amount (%) = [(M1-M2) / M1] × 100
The obtained fiber was crimped and cut to obtain a staple fiber (raw cotton) having a length of 51 mm.
(2) Crystallinity Using an X-ray diffractometer (RINT TTRIII, manufactured by Rigaku Corporation), the fibrils were aligned on a fiber bundle having a diameter of about 1 mm and mounted on a fiber sample table to measure a diffraction profile. The measurement conditions were Cu—Kα radiation source (50 kV, 300 mA), scanning angle range 10 to 35 °, continuous measurement 0.1 ° width measurement, 1 ° / min scanning. From the measured diffraction profile, air scattering and incoherent scattering were corrected by linear approximation to obtain a total scattering profile. Next, a crystal scattering profile was obtained by subtracting the amorphous scattering profile from the total scattering profile. The degree of crystallinity was determined by the following equation from the area intensity of the crystal scattering profile (crystal scattering intensity) and the area intensity of the total scattering profile (total scattering intensity).
Crystallinity (%) = [crystal scattering intensity / total scattering intensity] × 100
[Example 1]
Meta-type wholly aromatic polyamide fiber (MA) made of Conex (registered trademark), para-type wholly aromatic polyamide fiber (PA) made of Twaron (registered trademark), "NO SHOCK (registered trademark)" manufactured by Solcia Each staple fiber of conductive nylon fiber (NY) (each fiber length is 51 mm) is made into a spun yarn of 40 yarns / twist yarn blended at a weight ratio of MA / PA / NY = 93/5/2. After weaving a plain woven fabric at 56 / 25.4mm and weft 48 / 25.4mm, carrying out hair burning and refining under the usual processing conditions, a polyethylene terephthalate-polyethylene glycol copolymer was prepared by a padding method. the hydrophilizing agent to impart containing, resulting then heat set was performed at 180 ° C., mass per unit area of 150 g / m 2, a plain weave fabric of hydrophilizing agent adhesion amount 0.2-0.5 wt% .
In the obtained woven fabric, the sweat absorption performance specified by AATCC 79 is 2.0 seconds at the beginning and 25 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It was what had. Further, in the flammability measurement stipulated in JIS L1091-1992 A-4 method, the after flame was 2.0 seconds or less, and there was no problem. When working clothes were sewed and worn using such a fabric, they sweated when sweating and had excellent comfort.
  [実施例2]
 メタ型全芳香族ポリアミド繊維(MA)、パラ型全芳香族ポリアミド繊維(PA)、導電性ナイロン繊維(NY)、難燃性ポリエステル繊維(PE)の各ステープルファイバー(いずれも繊維長は51mm)を、MA/PA/NY/PE=73/5/2/20の重量比率で混紡した紡績糸40番手/双糸としたこと以外は、実施例1と同様に行った。
[Example 2]
Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), conductive nylon fiber (NY), and flame-retardant polyester fiber (PE) staple fibers (each fiber length is 51 mm) Was made in the same manner as in Example 1 except that the spun yarn was 40 yarn / twist yarn blended at a weight ratio of MA / PA / NY / PE = 73/5/2/20.
 得られた織物において、AATCC79で規定する吸水性能が、初期で0.9秒、ISO6339;2012(6N-F)で規定される洗濯20回後で11秒であり、かかる織物は優れた吸水性を有するものであった。また、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。かかる織物を用いて作業着を縫製し着用したところ、発汗時に汗を吸い優れた快適性を有するものであった。 In the obtained woven fabric, the water absorption performance specified by AATCC 79 is 0.9 seconds at the beginning, and 11 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It was what had. Further, in the flammability measurement specified in JIS L1091-1992 A-4 method, the afterflame was 2.0 seconds or less, and there was no problem. When working clothes were sewed and worn using such a fabric, they sweated when sweating and had excellent comfort.
  [実施例3]
 実施例2において、織密度 経56本/25.4mm、緯60本/25.4mmで図1に示す織組織図に従い2重織物を製織したこと以外は実施例2と同様に行った。
[Example 3]
Example 2 was carried out in the same manner as Example 2 except that a double woven fabric was woven according to the woven structure diagram shown in FIG. 1 at a weaving density of 56 yarns / 25.4 mm and 60 wefts / 25.4 mm.
 得られた織物において、AATCC79で規定する吸水性能が、初期で0.6秒、ISO6339;2012(6N-F)で規定される洗濯20回後で9.0秒であり、かかる織物は優れた吸水性を有するものであった。また、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。かかる織物を用いて作業着を縫製し着用したところ発汗時に汗を吸い、また、作業着と肌とが貼り付かず、優れた快適性を有するものであった。 In the obtained woven fabric, the water absorption performance specified by AATCC 79 is 0.6 seconds at the initial stage and 9.0 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It had water absorption. Further, in the flammability measurement specified in JIS L1091-1992 A-4 method, the afterflame was 2.0 seconds or less, and there was no problem. When the work clothes were sewn and worn using such a woven fabric, the sweat was absorbed when sweating, and the work clothes and the skin did not adhere to each other, and the clothes had excellent comfort.
  [比較例1]
 実施例1において親水化剤を付与しないこと以外は実施例1と同様に行った。得られた織物は、AATCC79で規定する吸水性能が、初期で58秒、ISO6339;2012(6N-F)で規定される洗濯20回後で48.0秒であり、かかる織物は吸水性を有さないものであった。また、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。かかる織物を用いて作業着を縫製し着用したところ、発汗時に汗を吸わず不快なものであった。
[Comparative Example 1]
Example 1 was carried out in the same manner as Example 1 except that the hydrophilizing agent was not added. The resulting fabric has a water absorption performance specified by AATCC 79 of 58 seconds at the beginning and 48.0 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). It was not. Further, in the flammability measurement stipulated in JIS L1091-1992 A-4 method, the after flame was 2.0 seconds or less, and there was no problem. When working clothes were sewn and worn using such a fabric, they were uncomfortable because they did not absorb sweat when perspiration.
  [実施例4]
 メタ型全芳香族ポリアミド繊維(MA)、パラ型全芳香族ポリアミド繊維(PA)、断面形状がW型であるポリエステル繊維(PE)、導電性ナイロン繊維(NY)の各ステープルファイバー(いずれも繊維長は51mm)を、MA/PA/PE/NY=78/5/15/2の重量比率で混紡した紡績糸40番手/双糸とし、織密度 経56本/25.4mm、緯48本/25.4mmで平織物を製織し、常法の加工条件で毛焼、精錬を実施した後、パディング処理にてポリエチレンテレフタレート-ポリエチレングリコール共重合体を含む吸汗加工剤を加工し、その後、180℃で熱セットを実施し、目付け150g/mの平織物を得た。
[Example 4]
Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), polyester fiber (PE) whose cross-sectional shape is W-type, and conductive nylon fiber (NY) staple fibers (all fibers) The length is 51 mm), and the spun yarn is 40 count / twist yarn blended at a weight ratio of MA / PA / PE / NY = 78/5/15/2, and the weaving density is 56 warps / 25.4 mm, 48 wefts / After weaving a plain woven fabric at 25.4 mm and carrying out hair firing and refining under ordinary processing conditions, a sweat absorbing agent containing a polyethylene terephthalate-polyethylene glycol copolymer is processed by padding, and then 180 ° C. Then, heat setting was performed to obtain a plain fabric with a basis weight of 150 g / m 2 .
 得られた織物において、AATCC79で規定する吸水性能が、初期で0.5秒、ISO6339;2012(6N-F)で規定される洗濯20回後で8.0秒であり、かかる織物は優れた吸汗性を有するものであった。また、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。かかる織物を用いて作業着を縫製し着用したところ発汗時に汗を吸い優れた快適性を有するものであった。 In the obtained woven fabric, the water absorption performance defined by AATCC 79 is 0.5 seconds at the beginning and 8.0 seconds after 20 washings defined by ISO 6339; 2012 (6N-F). It had sweat absorbency. Further, in the flammability measurement specified in JIS L1091-1992 A-4 method, the afterflame was 2.0 seconds or less, and there was no problem. When working clothes were sewed and worn using such a fabric, they sweated when sweating and had excellent comfort.
  [実施例5]
 メタ型全芳香族ポリアミド繊維(MA)、パラ型全芳香族ポリアミド繊維(PA)、断面形状がW型である難燃ポリエステル繊維(NPE)、導電性ナイロン繊維(NY)の各ステープルファイバー(いずれも繊維長は51mm)を、MA/PA/NPE/NY=78/5/15/2の重量比率で混紡した紡績糸40番手/双糸としたこと以外は、実施例4と同様に行った。
[Example 5]
Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), flame-retardant polyester fiber (NPE) whose cross-sectional shape is W-type, and conductive nylon fiber (NY) staple fiber (any The fiber length was 51 mm), and the same procedure as in Example 4 was conducted except that the spun yarn was 40 yarn / twist yarn blended at a weight ratio of MA / PA / NPE / NY = 78/5/15/2. .
 得られた織物は、また、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。また、AATCC79で規定する吸水性能が、初期で1.1秒、ISO6339;2012(6N-F)で規定される洗濯20回後で13秒であり、優れた吸水性を有するものであり、作業着を縫製し着用したところ発汗時に汗を吸い優れた快適性を有するものであった。 The obtained woven fabric also had no problem because the afterflame was 2.0 seconds or less in the flammability measurement prescribed in JIS L1091-1992 A-4 method. In addition, the water absorption performance specified by AATCC 79 is 1.1 seconds at the initial stage and 13 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). When the clothes were sewn and worn, they sweated when sweating and had excellent comfort.
  [実施例6]
 メタ型全芳香族ポリアミド繊維(MA)、パラ型全芳香族ポリアミド繊維(PA)、断面形状が丸型であるポリエステル繊維(PE)、導電性ナイロン繊維(NY)の各ステープルファイバー(いずれも繊維長は51mm)を、MA/PA/PE/NY=78/5/15/2の重量比率で混紡した紡績糸40番手/双糸としたこと以外は、実施例4と同様に行った。
[Example 6]
Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), polyester fiber (PE) having a round cross-sectional shape, and conductive nylon fiber (NY) staple fibers (all fibers) The length was 51 mm), and the same procedure as in Example 4 was performed except that the spun yarn was 40 yarn / twist yarn blended at a weight ratio of MA / PA / PE / NY = 78/5/15/2.
 得られた織物は、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。また、AATCC79で規定する吸水性能が、初期で1.2秒、ISO6339;2012(6N-F)で規定される洗濯20回後で12秒であり、優れた吸水性を有するものであり、作業着を縫製し着用したところ発汗時に汗を吸い優れた快適性を有するものであった。 The obtained woven fabric was satisfactory because the afterflame was 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method. In addition, the water absorption performance specified by AATCC 79 is 1.2 seconds at the beginning, and 12 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). When the clothes were sewn and worn, they sweated when sweating and had excellent comfort.
  [実施例7]
 メタ型全芳香族ポリアミド繊維(MA)、パラ型全芳香族ポリアミド繊維(PA)、導電性ナイロン繊維(NY)の各ステープルファイバー(いずれも繊維長は51mm)を、MA/PA/PE/NY=93/5/2の重量比率で混紡した紡績糸40番手/双糸とした糸を経糸とし、一方、当該紡績糸40番手/双糸と、ポリエチレンテレフタレート/ポリトリメチレンテレフタレートからなる複合繊維(総繊度84dtex/24フィラメント)とを合撚糸し緯糸とし、織密度 経56本/25.4mm、緯43本/25.4mmで平織物を製織したこと以外は、実施例4と同様に行った。
[Example 7]
Meta-type wholly aromatic polyamide fiber (MA), para-type wholly aromatic polyamide fiber (PA), conductive nylon fiber (NY) staple fibers (each fiber length is 51 mm), MA / PA / PE / NY A composite fiber composed of 40 spun yarn / twist yarn blended at a weight ratio of 93/5/2 as a warp yarn, and 40 spun yarn / twist yarn and polyethylene terephthalate / polytrimethylene terephthalate ( A total weave of 84 dtex / 24 filament) was used as a weft to make a weft, and the same procedure as in Example 4 was performed except that a plain weave was woven at a weaving density of warp 56 / 25.4 mm and weft 43 / 25.4 mm. .
 得られた織物は、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。また、AATCC79で規定する吸水性能が、初期で1.0秒、ISO6339;2012(6N-F)で規定される洗濯20回後で14秒であり、優れた吸水性を有するものであり、作業着を縫製し着用したところ発汗時に汗を吸い優れた快適性を有するものであった。また、さらに横方向にストレッチ性を有し動きやすいものであった。 The obtained woven fabric was satisfactory because the afterflame was 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method. In addition, the water absorption performance specified by AATCC 79 is 1.0 seconds at the initial stage and 14 seconds after 20 washings specified by ISO 6339; 2012 (6N-F). When the clothes were sewn and worn, they sweated when sweating and had excellent comfort. Further, it was stretchable in the lateral direction and easily moved.
  [実施例8]
 メタ型全芳香族アラミド繊維を次の方法で作製した。
[Example 8]
Meta-type wholly aromatic aramid fibers were produced by the following method.
 特公昭47-10863号公報記載の方法に準じた界面重合法により製造した、固有粘度(I.V.)が1.9のポリメタフェニレンイソフタルアミド粉末20.0重量部を、-10℃に冷却したN-メチル-2-ピロリドン(NMP)80.0重量部中に懸濁させ、スラリー状にした。引き続き、懸濁液を60℃まで昇温して溶解させ、透明なポリマー溶液を得た。該ポリマー溶液に、ポリマー対比3.0重量%の2-[2H-ベンゾトリアゾール-2-イル]-4-6-ビス(1-メチル-1-フェニルエチル)フェノール粉末(水への溶解度:0.01mg/L)を混合溶解させ、減圧脱法して紡糸液(紡糸ドープ)とした。
[紡糸・凝固工程]
 上記紡糸ドープを、孔径0.07mm、孔数500の紡糸口金から、浴温度30℃の凝固浴中に吐出して紡糸した。凝固液の組成は、水/NMP=45/55(重量部)であり、凝固浴中に糸速7m/分で吐出して紡糸した。
[可塑延伸浴延伸工程]
 引き続き、温度40℃の水/NMP=45/55の組成の可塑延伸浴中にて、3.7倍の延伸倍率で延伸を行った。
[洗浄工程]
 延伸後、20℃の水/NMP=70/30の浴(浸漬長1.8m)、続いて20℃の水浴(浸漬長3.6m)で洗浄し、さらに60℃の温水浴(浸漬長5.4m)に通して十分に洗浄を行った。
[乾熱処理工程]
 洗浄後の繊維について、表面温度280℃の熱ローラーにて乾熱処理を施し、メタ型全
芳香族アラミド繊維を得た。
[原繊維の物性]
 得られたメタ型全芳香族アラミド繊維の物性は、繊度1.7dtex、残存溶媒量0.08重量%、結晶化度は19%であった。その他の繊維原綿は下記の物を用いた。
ポリエステル繊維;帝人社製ポリエチレンテレフタレート繊維
難燃レーヨン繊維;レンチング社製「LenzingFR(登録商標)」
パラ型アラミド繊維;テイジンアラミド社製「トワロン(登録商標)」
導電糸(ナイロン):ソルシア社製「NO  SHOCK(登録商標)」(導電性カーボン微粒子を練り込みナイロン導電糸) 
 次いで、メタ型全芳香族アラミド繊維(MA)(長さ51mm)、パラ型全芳香族ポリアミド(PA)(長さ50mm)、ポリエステル繊維(長さ38mm)(PE)、難燃レーヨン(Ry)(長さ51mm)の各ステープルファイバーを、MA/PA/PE/RY=55/5/15/25の重量比率で混紡した紡績糸40番手/双糸とし、織密度 経67本/25.4mm、緯56本/25.4mmで製織し、目付け170g/mのツイル織物を得た。これを用いて常法により染色、仕上げ加工をした後、以下の吸汗加工を施した。
[布帛の吸汗加工]
 吸汗加工剤ポリエチレングリコール-アミノシリコーン共重合体(50g/L)に試験布を浸漬、圧搾、乾燥後に温度180℃、2分間の乾熱セットを施した。
 得られた織物において、JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下であり問題ないものであった。また、AATCC79で規定する吸水性能が、初期で0.9秒、ISO6339;2012(6N-F)で規定される洗濯20回後で9.0秒であった。かかる織物を用いて作業着を縫製し着用したところ発汗時に汗を吸い、また、作業着と肌とが貼り付かず、優れた快適性を有するものであった。
20.0 parts by weight of polymetaphenylene isophthalamide powder produced by an interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863 and having an intrinsic viscosity (IV) of 1.9 is placed at −10 ° C. It was suspended in 80.0 parts by weight of cooled N-methyl-2-pyrrolidone (NMP) to form a slurry. Subsequently, the suspension was heated to 60 ° C. and dissolved to obtain a transparent polymer solution. To the polymer solution, 3.0% by weight of 2- [2H-benzotriazol-2-yl] -4-6-bis (1-methyl-1-phenylethyl) phenol powder (solubility in water: 0) .01 mg / L) was mixed and dissolved, and depressurized under reduced pressure to obtain a spinning solution (spinning dope).
[Spinning and coagulation process]
The spinning dope was spun from a spinning nozzle having a hole diameter of 0.07 mm and a hole number of 500 into a coagulation bath having a bath temperature of 30 ° C. The composition of the coagulation liquid was water / NMP = 45/55 (parts by weight), and was spun by discharging into the coagulation bath at a yarn speed of 7 m / min.
[Plastic stretching bath stretching process]
Subsequently, the film was stretched at a stretching ratio of 3.7 times in a plastic stretching bath having a composition of water / NMP = 45/55 at a temperature of 40 ° C.
[Washing process]
After stretching, the film was washed with a 20 ° C. water / NMP = 70/30 bath (immersion length 1.8 m), followed by a 20 ° C. water bath (immersion length 3.6 m), and then a 60 ° C. hot water bath (immersion length 5). 4m) and thoroughly washed.
[Dry heat treatment process]
The washed fiber was subjected to a dry heat treatment with a heat roller having a surface temperature of 280 ° C. to obtain a meta-type wholly aromatic aramid fiber.
[Physical properties of fibrils]
The physical properties of the obtained meta-type wholly aromatic aramid fiber were a fineness of 1.7 dtex, a residual solvent amount of 0.08% by weight, and a crystallinity of 19%. The following thing was used for the other fiber raw cotton.
Polyester fiber; Teijin's polyethylene terephthalate fiber Flame-retardant rayon fiber; Lenzing's "LenzingFR (registered trademark)"
Para-type aramid fiber; “Twaron (registered trademark)” manufactured by Teijin Aramid
Conductive yarn (nylon): “NO SHOCK (registered trademark)” manufactured by Solcia (nylon conductive yarn kneaded with conductive carbon fine particles)
Next, meta-type wholly aromatic aramid fiber (MA) (length: 51 mm), para-type wholly aromatic polyamide (PA) (length: 50 mm), polyester fiber (length: 38 mm) (PE), flame retardant rayon (Ry) Each staple fiber (length: 51 mm) is a 40 / twisted spun yarn obtained by blending at a weight ratio of MA / PA / PE / RY = 55/5/15/25 and has a weaving density of 67 yarns / 25.4 mm. Weaving was performed at 56 weft / 25.4 mm, and a twill woven fabric having a basis weight of 170 g / m 2 was obtained. After using this for dyeing and finishing by a conventional method, the following perspiration treatment was applied.
[Cloth sweat absorption]
The test cloth was immersed in a sweat processing agent polyethylene glycol-aminosilicone copolymer (50 g / L), pressed, dried, and then subjected to a dry heat setting at 180 ° C. for 2 minutes.
In the obtained woven fabric, afterflame was 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method, and there was no problem. Further, the water absorption performance defined by AATCC 79 was 0.9 seconds at the initial stage, and 9.0 seconds after 20 washings defined by ISO 6339; 2012 (6N-F). When the work clothes were sewn and worn using such a woven fabric, the sweat was absorbed when sweating, and the work clothes and the skin did not adhere to each other, and the clothes had excellent comfort.
 本発明によれば、難燃性だけでなく耐久性のある吸水性をも有する布帛および繊維製品が提供され、その工業的価値は極めて大である。 According to the present invention, there are provided fabrics and fiber products that have not only flame retardancy but also durable water absorption properties, and their industrial value is extremely large.

Claims (21)

  1.  アラミド繊維を含む布帛であって、親水化剤が付与されてなることを特徴とする布帛。 A fabric containing an aramid fiber, which is provided with a hydrophilizing agent.
  2.  前記アラミド繊維に、メタ系アラミド繊維が30~97重量%、パラ系アラミド繊維が3~70重量%含まれる、請求項1に記載の布帛。 The fabric according to claim 1, wherein the aramid fibers contain 30 to 97% by weight of meta-aramid fibers and 3 to 70% by weight of para-aramid fibers.
  3.  前記メタ型全芳香族ポリアミド繊維の結晶化度が15~25%の範囲内である、請求項2に記載の布帛。 The fabric according to claim 2, wherein the crystallinity of the meta-type wholly aromatic polyamide fiber is in the range of 15 to 25%.
  4.  前記メタ型全芳香族ポリアミド繊維を形成するメタ型全芳香族ポリアミドが、下記の式(1)で示される反復構造単位を含む芳香族ポリアミド骨格中に、反復構造の主たる構成単位とは異なる芳香族ジアミン成分、または芳香族ジカルボン酸ハライド成分を、第3成分として芳香族ポリアミドの反復構造単位の全量に対し1~10mol%となるように共重合させたメタ型全芳香族ポリアミドである、請求項2に記載の布帛。
      -(NH-Ar1-NH-CO-Ar1-CO)-  ・・・式(1)
    ここで、Ar1はメタ配位又は平行軸方向以外に結合基を有する2価の芳香族基である。
    The meta-type wholly aromatic polyamide forming the meta-type wholly aromatic polyamide fiber has an aromatic different from the main constituent unit of the repeating structure in the aromatic polyamide skeleton containing the repeating structural unit represented by the following formula (1). A meta-type wholly aromatic polyamide obtained by copolymerizing an aromatic diamine component or an aromatic dicarboxylic acid halide component as a third component so as to be 1 to 10 mol% based on the total amount of repeating structural units of the aromatic polyamide. Item 3. The fabric according to Item 2.
    — (NH—Ar 1 —NH—CO—Ar 1 —CO) — (1)
    Here, Ar1 is a divalent aromatic group having a bonding group other than in the meta-coordinate or parallel axis direction.
  5.  第3成分となる芳香族ジアミンが式(2)、(3)、または芳香族ジカルボン酸ハライドが、式(4)、(5)である請求項4に記載の布帛。
        HN-Ar2-NH  ・・・式(2)
        HN-Ar2-Y-Ar2-NH  ・・・式(3)
        XOC-Ar3-COX  ・・・式(4)
        XOC-Ar3-Y-Ar3-COX  ・・・式(5)
    ここで、Ar2はAr1とは異なる2価の芳香族基、Ar3はAr1とは異なる2価の芳香族基、Yは酸素原子、硫黄原子、アルキレン基からなる群から選ばれる少なくとも1種の原子又は官能基であり、Xはハロゲン原子を表す。
    The fabric according to claim 4, wherein the aromatic diamine as the third component is represented by the formula (2) or (3), or the aromatic dicarboxylic acid halide is represented by the formula (4) or (5).
    H 2 N—Ar 2 —NH 2 Formula (2)
    H 2 N—Ar 2 —Y—Ar 2 —NH 2 Formula (3)
    XOC-Ar3-COX Formula (4)
    XOC-Ar3-Y-Ar3-COX Formula (5)
    Here, Ar2 is a divalent aromatic group different from Ar1, Ar3 is a divalent aromatic group different from Ar1, Y is at least one atom selected from the group consisting of an oxygen atom, a sulfur atom, and an alkylene group Or it is a functional group and X represents a halogen atom.
  6.  前記メタ型芳香族ポリアミド繊維の残存溶媒量が0.1重量%以下である、請求項2に記載の布帛。 The fabric according to claim 2, wherein the amount of residual solvent of the meta-type aromatic polyamide fiber is 0.1% by weight or less.
  7.  布帛がさらに導電性繊維を含む、請求項1に記載の布帛。 The fabric according to claim 1, wherein the fabric further contains conductive fibers.
  8.  布帛がさらにポリエステル繊維を含む、請求項1に記載の布帛。 The fabric according to claim 1, wherein the fabric further comprises a polyester fiber.
  9.  前記ポリエステル繊維が難燃剤を含有するポリエステル繊維である、請求項8に記載の布帛。 The fabric according to claim 8, wherein the polyester fiber is a polyester fiber containing a flame retardant.
  10.  前記ポリエステル繊維が異型断面形状を有する、請求項8に記載の布帛。 The fabric according to claim 8, wherein the polyester fiber has an atypical cross-sectional shape.
  11.  前記ポリエステル繊維において、単繊維の断面形状が扁平またはW型または十字または中空または三角である、請求項8に記載の布帛。 In the polyester fiber, the cross-sectional shape of the single fiber is flat or W-shaped, cross, hollow or triangular.
  12.  前記アラミド繊維および/または前記導電性繊維および/または前記ポリエステル繊維が紡績糸として布帛に含まれる、請求項8に記載の布帛。 The fabric according to claim 8, wherein the aramid fiber and / or the conductive fiber and / or the polyester fiber is contained in a fabric as a spun yarn.
  13.  前記アラミド繊維および前記ポリエステル繊維が混紡糸として布帛に含まれる、請求項8に記載の布帛。 The fabric according to claim 8, wherein the aramid fiber and the polyester fiber are contained in the fabric as a blended yarn.
  14.  布帛が2重織組織を有する、請求項1に記載の布帛。 The fabric according to claim 1, wherein the fabric has a double woven structure.
  15.  前記親水化剤が、ポリエチレングリコールジアクリレートまたはポリエチレングリコールジアクリレートの誘導体またはポリエチレンテレフタレート-ポリエチレングリコール共重合体または水溶性ポリウレタンまたはポリエチレングリコール-アミノシリコーン共重合体である、請求項1に記載の布帛。 The fabric according to claim 1, wherein the hydrophilizing agent is polyethylene glycol diacrylate or a derivative of polyethylene glycol diacrylate, a polyethylene terephthalate-polyethylene glycol copolymer, a water-soluble polyurethane, or a polyethylene glycol-aminosilicone copolymer.
  16.  布帛の目付けが、130~260g/mの範囲内である、請求項1に記載の布帛。 The fabric according to claim 1, wherein the fabric weight is within a range of 130 to 260 g / m 2 .
  17.  布帛に染色加工が施されている、請求項1に記載の布帛。 The fabric according to claim 1, wherein the fabric is dyed.
  18.  JIS L1091-1992 A-4法に規定される燃焼性測定において残炎が2.0秒以下である、請求項1に記載の布帛。 The fabric according to claim 1, wherein the afterflame is 2.0 seconds or less in the flammability measurement specified in JIS L1091-1992 A-4 method.
  19.  AATCC79で規定する吸水性能が10秒以下である、請求項1に記載の布帛。 The fabric according to claim 1, wherein the water absorption performance defined by AATCC 79 is 10 seconds or less.
  20.  ISO6339;2012(6N-F)で規定される洗濯20回後において、AATCC79で規定する吸水性能が30秒以下である、請求項1に記載の布帛。 The fabric according to claim 1, wherein the water absorption performance defined by AATCC 79 is 30 seconds or less after 20 washings defined by ISO 6339; 2012 (6N-F).
  21.  請求項1に記載された布帛を用いてなり、防護服、消防防火服、消防活動服、救助服、ワークウェア、警察制服、自衛隊衣服、および軍服からなる群より選択されるいずれかの繊維製品。
     
    A textile product comprising the fabric according to claim 1 and selected from the group consisting of protective clothing, fire-fighting clothing, fire-fighting clothing, rescue clothing, workwear, police uniforms, SDF clothing, and military clothing. .
PCT/JP2015/074013 2014-09-03 2015-08-26 Fabric and fiber product WO2016035638A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2960129A CA2960129C (en) 2014-09-03 2015-08-26 Fabric and fiber product
CN201580046898.9A CN106661783B (en) 2014-09-03 2015-08-26 Cloth and silk and fibre
AU2015313044A AU2015313044A1 (en) 2014-09-03 2015-08-26 Fabric and fiber product
US15/508,154 US20170292210A1 (en) 2014-09-03 2015-08-26 Fabric and fiber product
RU2017110597A RU2671648C2 (en) 2014-09-03 2015-08-26 Fabric and fibre product
KR1020177005025A KR20170047241A (en) 2014-09-03 2015-08-26 Fabric and fiber product
EP15837488.4A EP3192908B1 (en) 2014-09-03 2015-08-26 Fabric and textile product
ES15837488T ES2703347T3 (en) 2014-09-03 2015-08-26 Fabric and textile product
JP2016546582A JP6388659B2 (en) 2014-09-03 2015-08-26 Fabrics and textile products
BR112017003977-0A BR112017003977B1 (en) 2014-09-03 2015-08-26 FABRIC AND TEXTILE PRODUCT

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-179211 2014-09-03
JP2014179211 2014-09-03
JP2014-186421 2014-09-12
JP2014186421 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016035638A1 true WO2016035638A1 (en) 2016-03-10

Family

ID=55439703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074013 WO2016035638A1 (en) 2014-09-03 2015-08-26 Fabric and fiber product

Country Status (12)

Country Link
US (1) US20170292210A1 (en)
EP (1) EP3192908B1 (en)
JP (1) JP6388659B2 (en)
KR (1) KR20170047241A (en)
CN (1) CN106661783B (en)
AU (1) AU2015313044A1 (en)
BR (1) BR112017003977B1 (en)
CA (1) CA2960129C (en)
ES (1) ES2703347T3 (en)
RU (1) RU2671648C2 (en)
TW (1) TWI675137B (en)
WO (1) WO2016035638A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084548A (en) * 2014-10-23 2016-05-19 帝人株式会社 Fabric, fiber product and method of treating fabric
JP2017201063A (en) * 2016-05-02 2017-11-09 帝人株式会社 Flame-retardant fabric and fiber product
JP2017203234A (en) * 2016-05-12 2017-11-16 帝人フロンティア株式会社 Spun yarn, fabric, and textile product
JP2018021275A (en) * 2016-08-03 2018-02-08 帝人株式会社 Laminated cloth and fiber product
JP2018119221A (en) * 2017-01-23 2018-08-02 帝人株式会社 Fabric and textile product
JPWO2020262671A1 (en) * 2019-06-28 2020-12-30
US11078608B2 (en) 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293121B2 (en) * 2017-02-27 2022-04-05 Arvind Limited Wearable light weight protective apparel
EP3647025B1 (en) 2017-09-28 2023-06-28 Kolon Industries, Inc. Aramid fabric having excellent adhesion to polyurethane matrix resin and excellent tensile strength, method for producing same, aramid fabric prepreg comprising same, and aramid fabric/thermoplastic polyurethane matrix resin composite comprising same
CN111936684A (en) * 2018-04-03 2020-11-13 帝人株式会社 Fabric and textile product
US11359309B2 (en) 2018-12-21 2022-06-14 Target Brands, Inc. Ring spun yarn and method
WO2020168437A1 (en) 2019-02-22 2020-08-27 Jess Black Inc. Fire-resistant double-faced fabric of knitted construction
US20200298194A1 (en) * 2019-03-21 2020-09-24 Massachusetts Institute Of Technology Aramid amphiphile self-assembled nanostructures
KR102568170B1 (en) * 2021-11-23 2023-08-17 한국섬유개발연구원 medical Radiation Shielding Fabric
CN114481629B (en) * 2022-02-08 2023-12-26 杭州可丽宝新材料有限公司 High-temperature-resistant non-woven fabric and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115970A (en) * 2002-09-27 2004-04-15 Teikoku Sen I Co Ltd Garment using modified aramid fiber fabric
JP2006057205A (en) * 2004-08-19 2006-03-02 Asahi Kasei Fibers Corp Fabric and sportswear
JP2011026727A (en) * 2009-07-23 2011-02-10 Asahi Kasei Fibers Corp Sticky feeling-reduced fabric
WO2014104411A1 (en) * 2012-12-28 2014-07-03 帝人株式会社 Heat-resistant fabric
JP2014129616A (en) * 2012-12-28 2014-07-10 Teijin Ltd Heat-resistant fabric having high pilling property

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198494A (en) * 1974-09-30 1980-04-15 E. I. Du Pont De Nemours And Company Intimate fiber blend of poly(m-phenylene isophthalamide) and poly(p-phenylene terephthalamide)
JP2703390B2 (en) * 1990-06-11 1998-01-26 帝人株式会社 Aromatic polyamide fiber cloth
WO2006035968A1 (en) * 2004-09-28 2006-04-06 Teijin Fibers Limited Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP2004225956A (en) * 2003-01-21 2004-08-12 Teijin Fibers Ltd Cloth for camouflage material and camouflage material
EP1631707B1 (en) * 2003-05-08 2011-09-21 Teijin Aramid B.V. Non-fibrous polymer solution of para-aramid with high relative viscosity
US20050032449A1 (en) * 2003-08-06 2005-02-10 Lovasic Susan L. Lightweight protective apparel
JP4567738B2 (en) * 2005-08-09 2010-10-20 帝人テクノプロダクツ株式会社 Two-layer fabric and heat-resistant protective clothing using the same
TWI415982B (en) * 2006-06-28 2013-11-21 Teijin Frontier Co Ltd Knitted fabrics and sports clothing
JP2009041142A (en) * 2007-08-09 2009-02-26 Teijin Fibers Ltd Camouflage garment
CN101570940A (en) * 2009-05-18 2009-11-04 江南大学 Method for modification, dyeing and multifunctional composite finishing of aramid fiber
JP4804590B1 (en) * 2010-04-14 2011-11-02 帝人テクノプロダクツ株式会社 Meta-type wholly aromatic polyamide fiber
JP5881284B2 (en) * 2010-10-18 2016-03-09 帝人フロンティア株式会社 Fabrics and textile products
EP2630880B1 (en) * 2010-10-20 2017-05-31 Teijin Limited Layered heat-resistant protective garment
AU2013293487B2 (en) * 2012-07-27 2017-09-07 Drifire, Llc Fiber blends for wash durable thermal and comfort properties
CN103012765B (en) * 2012-12-08 2015-03-25 北京服装学院 Preparation method for moisture-absorbing and flame-retardant polyester fiber
CA2869396C (en) * 2012-12-17 2021-01-26 Teijin Frontier Co., Ltd. Cloth and textile product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115970A (en) * 2002-09-27 2004-04-15 Teikoku Sen I Co Ltd Garment using modified aramid fiber fabric
JP2006057205A (en) * 2004-08-19 2006-03-02 Asahi Kasei Fibers Corp Fabric and sportswear
JP2011026727A (en) * 2009-07-23 2011-02-10 Asahi Kasei Fibers Corp Sticky feeling-reduced fabric
WO2014104411A1 (en) * 2012-12-28 2014-07-03 帝人株式会社 Heat-resistant fabric
JP2014129616A (en) * 2012-12-28 2014-07-10 Teijin Ltd Heat-resistant fabric having high pilling property

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084548A (en) * 2014-10-23 2016-05-19 帝人株式会社 Fabric, fiber product and method of treating fabric
JP2017201063A (en) * 2016-05-02 2017-11-09 帝人株式会社 Flame-retardant fabric and fiber product
JP2017203234A (en) * 2016-05-12 2017-11-16 帝人フロンティア株式会社 Spun yarn, fabric, and textile product
JP2018021275A (en) * 2016-08-03 2018-02-08 帝人株式会社 Laminated cloth and fiber product
US11078608B2 (en) 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product
JP2018119221A (en) * 2017-01-23 2018-08-02 帝人株式会社 Fabric and textile product
JPWO2020262671A1 (en) * 2019-06-28 2020-12-30
WO2020262671A1 (en) * 2019-06-28 2020-12-30 帝人株式会社 Dyed fabric, fiber product in which same is used, and method for dyeing fabric
JP7250129B2 (en) 2019-06-28 2023-03-31 帝人株式会社 Dyed fabric, fiber product using the same, and method for dyeing fabric

Also Published As

Publication number Publication date
RU2017110597A (en) 2018-10-03
BR112017003977B1 (en) 2022-02-08
TWI675137B (en) 2019-10-21
JPWO2016035638A1 (en) 2017-04-27
BR112017003977A2 (en) 2017-12-12
EP3192908A1 (en) 2017-07-19
EP3192908B1 (en) 2018-09-26
RU2671648C2 (en) 2018-11-06
CA2960129A1 (en) 2016-03-10
EP3192908A4 (en) 2017-08-16
CA2960129C (en) 2022-07-26
CN106661783A (en) 2017-05-10
AU2015313044A1 (en) 2017-04-20
US20170292210A1 (en) 2017-10-12
KR20170047241A (en) 2017-05-04
TW201629286A (en) 2016-08-16
CN106661783B (en) 2019-02-12
ES2703347T3 (en) 2019-03-08
JP6388659B2 (en) 2018-09-12
RU2017110597A3 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6388659B2 (en) Fabrics and textile products
JP5744178B2 (en) Crystallized meta-aramid blends for improved fire and arc protection with improved comfort
US11078608B2 (en) Fabric, method for manufacturing same, and fiber product
US11118287B2 (en) Fabric and protective product
JP6839999B2 (en) Textiles and textiles
JP6975531B2 (en) Fabrics and textiles
JP6464044B2 (en) Laminated fabric and textile products
JP2018021275A (en) Laminated cloth and fiber product
JP2020026596A (en) Fabric and protection product
JP2020002475A (en) Fabric and textile product
WO2021100387A1 (en) Fabric and protective product
JP6595224B2 (en) Fabrics and textile products
JP2020026595A (en) Fabric and protection product
JP7051378B2 (en) Fabrics and thermal protection clothing
JP7409853B2 (en) Fabrics and protective products
JP7444653B2 (en) Heat-resistant fabrics and textile products
JP2020026598A (en) Fabric and protection product
JP2020193422A (en) Two-layered fabric and heat protective clothing made of the same
JP2016084548A (en) Fabric, fiber product and method of treating fabric
JP2022045049A (en) Fabric and protective equipment
JP2023056160A (en) Fabric and fiber product
JP2021181646A (en) Fabric and textile product
JP2021188196A (en) Fabric and fiber product
JP2019189957A (en) Knit fabric for clothing and clothing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546582

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177005025

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015837488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837488

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15508154

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2960129

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017003977

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017110597

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015313044

Country of ref document: AU

Date of ref document: 20150826

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017003977

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170224