WO2016034151A1 - 一种合模镦锻机及工作方法 - Google Patents

一种合模镦锻机及工作方法 Download PDF

Info

Publication number
WO2016034151A1
WO2016034151A1 PCT/CN2015/089004 CN2015089004W WO2016034151A1 WO 2016034151 A1 WO2016034151 A1 WO 2016034151A1 CN 2015089004 W CN2015089004 W CN 2015089004W WO 2016034151 A1 WO2016034151 A1 WO 2016034151A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
trimming
clamping
die
upsetting
Prior art date
Application number
PCT/CN2015/089004
Other languages
English (en)
French (fr)
Inventor
杨东佐
Original Assignee
杨东佐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨东佐 filed Critical 杨东佐
Publication of WO2016034151A1 publication Critical patent/WO2016034151A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J9/00Forging presses
    • B21J9/02Special design or construction
    • B21J9/06Swaging presses; Upsetting presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • B21J13/03Die mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/04Frames; Guides

Definitions

  • the invention relates to a upsetting machine and a working method thereof, in particular to a cold upsetting machine which is fed by a feeding mechanism into a forging machine and is cut to form a blank, and a working method thereof.
  • the upsetting machine is a device for upsetting the blank in the main mold through the die by the back and forth movement of the large slider.
  • the upsetting machine is mainly composed of a body, a die assembly, a large slider driving mechanism, a main mold, a top material mechanism, a feeding mechanism and a trimming mechanism.
  • the die seat of the die assembly is fixed with the large slider, and the die seat of the main die assembly is fixed on the corresponding body.
  • the upsetting machine of this structure must be provided with a separate trimming mechanism and clip.
  • the clamp mechanism can realize the displacement of the trimming material and the blank.
  • the upsetting position needs to set the upset forging die and the topping mechanism. Therefore, there are many mechanical mechanisms, complicated structure, many failures, difficult operation, low upsetting efficiency, feeding and discharging. kind of hard.
  • the concave die is horizontally arranged, and the plurality of concave molds are fixed, and the plurality of dies are moved in only one direction for the squatting section, since the concave die or the dies do not shift, therefore, only The blank is transferred by means of a clamp movement, and the blank is only forged once in the die.
  • the concave die is basically a unitary structure, and for the formed die, the cavity is determined, and therefore, basically, only one molding can be performed without replacing the die. Upset forging, and at the same time, it is impossible to upset complex molded parts.
  • the technical problem to be solved by the present invention is to provide a clamping and forging machine and a working method.
  • the clamping of the blank during the cutting, the feeding and the upsetting is realized by the translation of the clamping unit, especially the ejection of the blank. It is not necessary to completely eject the die, and the ejection stroke is greatly reduced, so that a particularly long part can be formed and the stroke of the large slider can be greatly shortened.
  • a clamping and forging machine comprises a body, a large sliding block slidably mounted on the body, a die assembly mounted on the large sliding block, and a large sliding block driving mechanism and a main module for driving the large sliding block to slide back and forth a wire feeding mechanism mounted on the body;
  • the die assembly includes more than one die holder;
  • the main die assembly includes a main die holder fixed to the body and a trim sleeve installed in the main die holder; More than two stations, the work station includes a trimming position and more than one upsetting position; the feeding mechanism corresponds to the trimming position of the body; the trimming sleeve is disposed on the trimming position of the body;
  • One upset position corresponds to only one die holder
  • the main mold assembly further includes a mold clamping assembly, the mold clamping assembly further includes a first mold base and a second mold base that can slide back and forth relative to the main mold base; the first mold base and the second mold base are in the body
  • the horizontal clamping direction is oppositely disposed, and only one first installation space is disposed on the side of the first mold clamping seat adjacent to the second mold clamping seat, and only one side is disposed on the side of the second clamping mold seat adjacent to the first clamping mold base.
  • a second installation space in which the first installation space is oppositely disposed in a horizontal longitudinal direction of the body;
  • the mold clamping assembly further includes a first mold clamping drive mechanism that drives the first installation space of the first mold base to translate between all the stations, and a second installation space that drives the second mold base to translate between all the stations.
  • Two-mold drive mechanism Two-mold drive mechanism;
  • the first mold clamping drive mechanism includes a first servo motor that drives only the translation of the first mold base, and the second mold clamping drive mechanism includes a second servo motor that only drives the translation of the second mold base;
  • the first installation space and the second installation space are simultaneously placed in the trimming position, the first installation space and the second installation space are clamped to form a die mounting hole for the trimming material in the trimming state;
  • the first installation space and the second installation space are simultaneously placed in the same upsetting position, the first installation space and the second installation space are clamped to form a die mounting hole for upsetting for forging or clamping to form a clamping blank only a die mounting hole for clamping; All of the upsetting positions, the first installation space and the second installation space are respectively formed into a die-fitting die hole for upsetting in an upset state or a die-molding mounting hole for clamping only the blank;
  • the first installation space and the second installation space are closed to form a die mounting hole for the material in the delivery state;
  • a die mounting hole for trimming of a trimming state of a trimming position a die mounting hole for upsetting for upsetting of an upset position, or a die for holding a blank for holding an ingot at an upset position
  • the die mounting holes for the loading holes in the mounting hole and the delivery state are the same die mounting holes.
  • the first clamping drive mechanism further includes a first driving member provided with the first driving shaft and the first mounting portion, and a first driving slider rotatably mounted outside the first driving shaft;
  • the mounting portion is mounted with the output shaft of the servo motor; the axis of the first drive shaft is offset from the axis of the first mounting portion; and the first clamping hole is provided with a first sliding hole that cooperates with the first driving slider;
  • the first driving slide member is slidably mounted in the first sliding hole;
  • the second mold clamping driving mechanism further includes a second driving member provided with the second driving shaft and the second mounting portion, and is rotatably mounted on the second driving shaft a second driving slider;
  • the second mounting portion is mounted with the output shaft of the servo motor; the axis of the second driving shaft is offset from the axis of the second mounting portion; and the second clamping block is provided with the second A second sliding hole that cooperates with the driving slider;
  • the second driving sliding member is slidably installed in the second sliding hole.
  • the servo motor drives the driving member to rotate, and the driving shaft of the driving member extends into the sliding block of the clamping mold to directly drive the clamping base, omitting the connecting rod, the structure is simple and compact, the feeding mechanism is simple to install and debug, and the requirement and the worker are greatly reduced. Equipment accuracy, greatly reducing the failure rate of the drive mechanism and improving drive reliability.
  • the first clamping drive mechanism further includes a first driving member provided with the first driving shaft and the first mounting portion, and a first driving slider rotatably mounted outside the first driving shaft;
  • the mounting portion is mounted with the output shaft of the servo motor; the axis of the first drive shaft is offset from the axis of the first mounting portion; and the first clamping hole is provided with a first sliding hole that cooperates with the first driving slider;
  • the first driving slide member is slidably mounted in the first sliding hole;
  • the second mold clamping driving mechanism further includes a second driving member provided with the second driving shaft and the second mounting portion, and is rotatably mounted on the second first
  • the mold clamping drive mechanism further includes a connecting rod, a first driving member provided with the first driving shaft and the first mounting portion; the axis of the first driving shaft is offset from the axis of the first mounting portion; and one end of the connecting rod is rotatably mounted at The first drive shaft of the first driving member has the other end of the connecting rod rotatably pivoted
  • the mold clamping drive mechanism adopts a link mechanism, which can increase the stroke of the mold clamping seat to slide back and forth.
  • the first mold clamping driving mechanism further includes a first driving member and a driving toggle mechanism provided with the first driving shaft and the first mounting shaft;
  • the driving toggle structure includes a first connecting rod and a second connecting rod And a third link;
  • the first mounting shaft of the first driving member is mounted with the output shaft of the first servo motor;
  • the axis of the first driving shaft is offset from the axis of the first mounting shaft;
  • the first driving shaft is only rotatably mounted together, and the other end of the first connecting rod is pivotally connected with one end of the second connecting rod and one end of the third connecting rod; the pivotal position of the other end of the second connecting rod is The other end of the third link is pivotally connected to the first clamping base;
  • the second clamping drive mechanism further includes a second driving member and a driving toggle mechanism provided with the second driving shaft and the second mounting shaft;
  • the driving toggle structure includes a fourth link, a fifth link and a sixth link;
  • the second mounting shaft of the second driving member is mounted with the output shaft
  • the use of the toggle mechanism has the following advantages: improving the round trip speed of the mold clamping seat, reducing vibration and impact, and making the machine work smoothly and the click sound is reduced.
  • the body comprises a frame body and a frame base
  • the frame base comprises a base body; both ends of the base body protrude from the frame body; and the base body is provided with a receiving cavity, the capacity
  • the two ends of the chamber have openings; the first mold base and the second mold base are slidably mounted in the accommodating cavity; the first main mold drive mechanism and the second main mold drive mechanism are mounted on the frame base on.
  • the frame comprises a frame body and a frame base, and one or both sides of the frame base protrude from the frame Body, the first can reduce the width of the frame body, thereby greatly reducing the weight of the body; the second can increase the guiding length of the first clamping base and the second clamping base, so that the first clamping base and the second clamping base back and forth The movement is more stable; the third is convenient to install the first clamping drive mechanism and the second clamping drive mechanism.
  • the clamping upsetting machine further includes a first main mold driving mechanism position adjusting mechanism and a second Main mold drive mechanism position adjustment mechanism. Adjusting the movement of the first mold base to the front end and the last end by the first main mold driving mechanism position adjusting mechanism, and adjusting the position of the first mold base to the front end and the last end by the second main mold driving mechanism position adjusting mechanism, Eliminate machining error and assembly error, and ensure that the first trimming half-mold and the second trimming half-mold move to the cutting position to synthesize a full-circle concave die for cutting with the cutting sleeve; When the first trimming half mold and the second trimming half mold move to the final upsetting position, a full circle and a concave die for the upsetting which is coaxial with the final punching die are synthesized. In the case where the machining is very precise and the assembly error is very small, the position adjustment mechanism of the second main mode drive mechanism can be adjusted without the need of the first main mode drive mechanism position adjustment
  • a first trimming half mold is installed in the first installation space on the first mold base, and a second trim is disposed in the second installation space of the second mold base. Transmitting a mold half; a first trimming feed portion is disposed on a surface of the first trimming material feed mold half mold facing the second trim material delivery mold half, and is disposed on the second trim material delivery mold half a first trim delivery portion facing and cooperating with the first trim delivery portion; the first trim delivery portion includes a first semi-cylindrical hole, and the second trim delivery portion includes a first semi-hole Cooperating semi-cylindrical second half hole; when the first trimming half mold and the second trimming half mold are simultaneously placed in the trim position, the first half hole and the second half hole are closed to form a full round hole The concave die for the trimming; when the first trimming half mold and the second trimming half mold are simultaneously placed in the same upsetting position, the first half hole and the second half hole are closed to form a full round hole, and at the same
  • the first mold half and the second half of the first mold holder and the first trimming half mold, the second mold base and the second trim material half mold are synchronously translated in different stations.
  • the holes are uniformly closed to form a full-round hole, and at the same time, the first trimming portion and the second trimming portion are combined to form a dimple for the delivery state in the delivery state; the trimming of the trimming position is cut.
  • the concave die for the upset forging in the upset position of the forging die or the die for holding the blank for holding the blank in the upset position, and the die for the delivery in the delivery state are the same Die.
  • the accommodating hole for clamping and molding the blank on the main mold assembly is disposed only on the first trimming portion and the second trimming portion;
  • the first trimming half mold and the second trimming half mold are simultaneously placed in the same upsetting position, the first trim feeding portion and the second trim feeding portion are combined to form a concave die for upsetting.
  • the first trimming delivery portion and the second trimming delivery portion are both molded to form a concave die for upsetting.
  • the first mold clamping driving mechanism drives the first mold clamping seat and the first trimming material feeding half mold
  • the second mold clamping driving mechanism drives the second mold clamping seat and the second trimming material feeding half mold synchronous linear translation
  • the first trimming half-mold and the second trimming half-mold shift the clamped wire to a full-circle trim and clamp the blank to be cut to the trim position Adjacent forging position;
  • the large slider drives the die assembly to move toward the main die seat to upset the blank
  • the body There are two or more upsetting positions on the body, and after the upsetting of the upset position adjacent to the trimming position, the first trimming half mold and the second trimming half mold are clamped.
  • the incompletely formed blank is synchronously linearly translated to the adjacent next upset position, and the incompletely formed blank is delivered to the next adjacent upset for upsetting until the blank is upset in all upsets
  • the first trimming half-mold and the second trimming half-mold that have been clamped clamp the formed blank synchronously and linearly to the cutting position, and will be formed.
  • the wire is fed between the first trimming half mold and the second trimming half mold by the feeding mechanism and the formed blank is ejected;
  • Step (1) to step (4) are repeated cycles.
  • the advantages of the above-mentioned clamping and forging machine and the working method are that the round holes for cutting, feeding and upsetting, and even the concave cavity for molding are all integrated in the two clamping bases.
  • the two trimming materials are fed on the mold half to facilitate the formation of a full-circle translating mold clamping assembly.
  • the trimming effect is the same as that of the full round trimming, but many mechanisms are omitted, and the flexible use is improved, and the machine operation is improved. Sex, improve machine efficiency and reduce machine failure rate!
  • a pneumatic feeding mechanism is further disposed on the body; the pneumatic feeding mechanism includes a cylinder, and a cutter member fixed to the piston of the cylinder, and an axis of the piston of the cylinder is perpendicular to the axis of the shear sleeve.
  • the wire is fed between the first trimming half mold and the second trimming half mold by the feeding mechanism, the first half hole of the first trimming half mold and the second trimming material
  • the second half hole of the mold half is clamped at the trim position to form a concave die for the full round hole and clamps the wire;
  • the first mold clamping driving mechanism drives the first mold clamping seat and the first trimming material feeding half mold
  • the second mold clamping driving mechanism drives the second mold clamping seat and the second trimming material feeding mold half synchronous mode linear translation
  • the first trimming half-mold and the second trimming half-mold shift the clamped wire to a full-circle trim and clamp the blank to be cut to the trim position Adjacent forging position;
  • the large slider drives the die assembly to move toward the main die seat to upset the blank
  • the body There are two or more upsetting positions on the body, and after the upsetting of the upset position adjacent to the trimming position, the first trimming half mold and the second trimming half mold are clamped.
  • the incompletely formed blank is synchronously linearly translated to the adjacent next upset position, and the incompletely formed blank is delivered to the next adjacent upset for upsetting until the blank is upset in all upsets
  • the first trimming half-mold and the second trimming half-mold that have been clamped clamp the formed blank synchronously and linearly to the cutting position, and will be formed.
  • the punching member of the pneumatic pumping mechanism cuts the formed billet from the first trimming half mold or the second trimming feed mold half from the vertical blank axis direction. ;
  • Step (1) to step (4) are repeated cycles.
  • the advantage of the above-mentioned clamping and forging machine and working method is that the first trimming half mold and the second trimming half mold are separated by a distance, and the forming part is formed from the vertical blank axis direction by the feeding member.
  • the blank is cut from the first trimming half mold or the second trimming half mold, and the formed blank does not need to be ejected, so the reciprocating stroke of the die assembly can be greatly reduced, which is very beneficial to improve the machine efficiency. Therefore, it is possible to form a blank of a very long specification.
  • Pneumatic cutters generally use CNC pneumatic feeders.
  • the clamping forging machine is a clamping forging machine for upsetting steel balls; only one upsetting position is provided on the body; and the upsetting position of the corresponding body on the main mold base is upset forging a die mounting hole, a topping mechanism is arranged on the body corresponding to the upset die mounting hole; an upset die is installed in the upset die mounting hole, and a hemispherical concave die is formed in the upset die Cavity; the die assembly includes only one die holder facing the upset position, and only one die is mounted in the die holder, and a hemispherical die-forming cavity matched with the die cavity is provided in the die; the die cavity Forming a spherical cavity with the die forming cavity; the first trim delivery portion includes only the first semi-cylindrical half hole, and the second trim delivery portion includes only the semi-cylindrical portion mated with the first half hole Two halves; when the first trimming half mold and the second trimming half mold are simultaneously placed in the upsetting position
  • the trimming half mold of the first mold base is placed at the trim position, and the trimming half mold of the second mold base is away from the trim position, and the wire is fed to the first trim through the feeding mechanism. Between the material mold half and the second trim material delivery mold half;
  • the first mold clamping driving mechanism drives the first mold clamping seat and the first trimming material feeding half mold
  • the second mold clamping driving mechanism drives the second mold clamping seat and the second trimming material feeding mold half synchronous mode linear translation
  • the first trimming half mold and the second trimming half mold shift the clamped wire to the full circle trim and clamp the blank to be cut to the upset position
  • the large slider driving mechanism drives the die assembly toward the main
  • the first clamping drive mechanism drives the first trimming half of the first clamping base to return to the trimming position
  • the second clamping drive mechanism The second trimming half mold driving the second mold base moves away from the trimming position to avoid the set position of the die; the die continues to upset the blank, and after the upsetting is completed, the topping mechanism will have The formed steel ball blank is ejected;
  • Step (1) to step (4) are repeated cycles.
  • the advantage of the above-mentioned solution of the clamping and forging machine and the working method is that the steel ball formed by the upsetting machine of this structure is a full-round cutting material, and the surface of the formed steel ball has high sphericity, high precision, and Die upsetting, when the die is pressed against the blank, no compressed air or other auxiliary mechanism is needed.
  • the mold is opened and avoided in time to ensure the smoothness of single-die upsetting, which is very beneficial to the simplification of the machine and the reduction of the fault.
  • the steel ball is round and the quality is good. .
  • the upsetting position of the corresponding body on the main mold base is provided with an upset die mounting hole, and a topping mechanism is arranged on the body corresponding to the die mounting hole.
  • a die mounting hole is arranged in the main mold base, and an upset die is installed in the die mounting hole, and part or all of the molding cavity of the forming blank is set in the upsetting die, and the very complicated workpiece can be upset forging.
  • the wire feeding mechanism comprises a feeding slider device, a feeding driving mechanism for driving the feeding slider device to slide back and forth linearly along the feeding direction, a guiding device mounted on the outer side of the body, a cylinder, a cylinder block, and a mutual cooperation.
  • the feeding drive mechanism comprises a rotary feeding servo motor for driving only the feeding slider device and fixed to the outside of the body; and a wire circumference is provided on the lower clamping member
  • the limiting slot is limited to the wire feeding direction;
  • the feeding slider device is slidably mounted on the guiding device along the wire feeding direction;
  • the lower clamping member and the cylinder block are fixed to the feeding slider device
  • the top surface, the lower clamping member is directly under the cylinder block, the cylinder is fixed on the top surface of the cylinder block, the piston rod of the cylinder is fixed to the upper clamping member through the cylinder block, and the upper clamping member and the lower clamping member are positive Correct.
  • the feeding slider device is driven by the self-contained rotary type ordinary feeding servo motor, which greatly reduces the transmission link. It not only has reliable transmission, but also has high transmission precision.
  • the pneumatic structure is used to drive the upper clamping member, so that the wire feeding is very reliable, especially the wire.
  • the length of the wire does not need to be controlled by other mechanisms.
  • the length of the wire is directly controlled by the feeding servo motor. The precision is high, so that the wire feeding length is accurate. Therefore, the forming quality of the blank is good; especially the feeding servo motor can automatically adjust the length of the feeding.
  • the present invention is low in cost relative to a linear servo motor.
  • the feeding drive mechanism comprises a servo motor and a driving member provided with a driving shaft; the driving member is mounted on the output shaft of the servo motor; the axis of the driving shaft is offset from the axis of the output shaft of the servo motor; and the feeding slider
  • the device is provided with a sliding hole that cooperates with the driving shaft and is vertically oriented; the driving shaft extends into the sliding hole.
  • the servo motor drives the driving member to rotate, and the driving shaft of the driving member extends into the slider of the feeding slider device to directly drive the feeding slider device, omitting the connecting rod, the structure is simple and compact, the installation and debugging of the wire feeding mechanism is simple, and the pair is greatly reduced.
  • the technical requirements of the workers and the improvement of the accuracy of the feed greatly reduce the failure rate of the drive mechanism and improve the drive reliability.
  • the two trimming half molds of the mold clamping assembly are formed in the trimming position to form a trimming die for the trimming state in the trimming position, and the upsetting forging die is formed in the upsetting position in the upsetting position or only
  • the mold clamping forms a clamping die for holding the blank, and the mold is formed in the process of synchronously shifting in different working positions, and even the concave mold cavity for molding is integrated in the installation.
  • Two trimming feeds on the two mold bases facilitate the formation of a full-circle translating mold clamping assembly.
  • the trimming is achieved by the first trimming half mold and the second trimming half mold clamping and synchronous translation; the blank is delivered at different stations by passing the first trim and the second trim
  • the half-mold is combined with the synchronous translation to realize the upsetting; the upsetting of the blank is performed by forming the upset state in each of the upsetting position, the first trimming half mold and the second trimming half mold.
  • Forging die for forging, the forging frame can be upset forging in the upsetting position; therefore, the invention can realize the trimming and blanking without the need of a separate trimming mechanism and clamping mechanism. Displacement, while also achieving upset.
  • Such a structure for the same equipment of other full-circle trimming materials, omitting the blank from the trimming position to the upsetting position, and the incompletely formed blank is transferred between the upsetting positions through the pushing material into the clamping mechanism
  • the feeding mechanism that is then delivered by the clamping mechanism greatly saves the structure of the upsetting machine, reduces machine failure, and improves machine reliability. Since the first trimming half mold and the second trimming half mold are arranged in the mold base to form a full circle mold clamping assembly, the trimming effect is the same as the full round trimming effect, but many mechanisms are omitted. And more flexible use, improve machine operability, improve machine efficiency, reduce machine failure rate!
  • the distance between the first trimming half mold and the second trimming half mold can be changed as needed, not only can the complex molded part be upset, but also the first trim can be fed through the first trim.
  • the formed blank is dropped from the top to the bottom of the mold by a distance from the second trimming half mold.
  • the formed blank does not require an ejection stroke or a small ejection stroke. Therefore, the resetting stroke of the die assembly can be greatly shortened, and it is particularly suitable for upsetting a particularly long blank, and it is difficult to push the blank into the main mold due to the length of the particularly long blank, and it is difficult to eject it; and when the single die is upset, the solution is solved.
  • the existing full-circle trimming upsetting machine needs to arrange the cutting mechanism at the cutting position, and the clamp feeding mechanism between the cutting position and the upsetting position, which causes the technical problem of insufficient space. Greatly improve the upsetting efficiency of the upsetting machine. It is also possible to push the finished blank product from the feeding line of the trimming position to move away from the mold half in the direction of the large slider, avoiding the position of the die, omitting the thimble system and avoiding the length of the blank finished product being resisted by the die assembly when the length of the blank is too long The problem of insufficient space, and the reciprocating stroke of the die assembly can be greatly The reduction is very beneficial to improve machine efficiency.
  • FIG. 1 is a perspective view showing a upsetting machine according to a first embodiment of the present invention.
  • Fig. 2 is a perspective view showing the other direction of the upsetting machine according to the first embodiment of the present invention.
  • Fig. 3 is a perspective view showing the wire feeding mechanism in the other direction of the upsetting machine according to the first embodiment of the present invention.
  • Fig. 4 is a perspective view showing the mold clamping assembly and the wire feeding mechanism of the first embodiment of the present invention.
  • Fig. 5 is a perspective exploded view of the mold clamping assembly of the first embodiment of the present invention.
  • Fig. 6 is a perspective view showing the right-handed body of the upsetting machine according to the first embodiment of the present invention.
  • Fig. 7 is a perspective view showing the large slider and the large slider driving mechanism according to the first embodiment of the present invention.
  • Fig. 8 is a perspective exploded perspective view showing the large slider and the large slider driving mechanism according to the first embodiment of the present invention.
  • Fig. 9 is a cross-sectional, schematic cross-sectional view showing the overcutting sleeve and the upset forging die of the upsetting machine of the first embodiment of the present invention.
  • Fig. 10 is a perspective view showing the upsetting machine of the second embodiment of the present invention.
  • Figure 11 is a perspective exploded view of the mold clamping assembly of Embodiment 2 of the present invention.
  • Figure 12 is a perspective view of a mold clamping assembly according to a second embodiment of the present invention.
  • Figure 13 is a right side elevational view showing a portion of the structure of the upsetting machine of the second embodiment of the present invention.
  • Figure 14 is a cross-sectional view taken along line A-A of Figure 13;
  • Fig. 15 is a perspective view showing the upsetting machine of the third embodiment of the present invention.
  • Figure 16 is a perspective view of a mold clamping assembly according to a third embodiment of the present invention.
  • Figure 17 is a perspective exploded view of the mold clamping assembly of Embodiment 3 of the present invention.
  • Figure 18 is a right side elevational view showing a portion of the structure of the upsetting machine of the third embodiment of the present invention.
  • Figure 19 is a cross-sectional view taken along line B-B of Figure 18;
  • Figure 20 is a perspective view showing a partial die assembly and a partial main mold assembly of Embodiment 4 of the present invention.
  • Figure 21 is a cross-sectional view taken along the axis of the two dies of Figure 20.
  • Fig. 22 is an enlarged schematic view showing a portion I of Fig. 21;
  • Figure 23 is a perspective view of a clamping upsetting machine.
  • Figure 24 is an exploded view of the body and other parts of the clamping forging machine.
  • Figure 25 is an exploded view of the clamping upsetting machine.
  • Figure 26 is a perspective view of the upright forging machine with the cover removed.
  • Figure 27 is a perspective view of the body.
  • Figure 28 is a perspective view of a die assembly.
  • Figure 29 is a schematic view showing the structure of the first structure of the large slider driving mechanism.
  • Figure 30 is an exploded view of the first structure of the large slider drive mechanism.
  • Figure 31 is a schematic view showing the second structure of the large slider drive mechanism.
  • Figure 32 is a schematic view showing a third structure of the large slider drive mechanism.
  • Figure 33 is an exploded view of the third structure of the large slider drive mechanism.
  • Figure 34 is a perspective view showing another structure of the clamping upsetting machine.
  • Figure 35 is a cross-sectional view showing another structure of the clamping upsetting machine.
  • Figure 36 is a schematic view showing the structure of the body and the feeding mechanism.
  • a clamping forging machine for upsetting steel balls includes a body 1 and a large slider 2 slidably mounted on the body 1 and mounted on the large slider.
  • the die assembly 3 on the second and the large slider drive mechanism for driving the large slider 2 to slide back and forth, the main mold assembly 3, and a wire feeding mechanism mounted on the body 1.
  • the body 1 includes a frame body 4 and a frame base 5 .
  • the frame base 5 includes a base body 6 , an end plate 7 , and an end plate 8 .
  • the base body 6 has a receiving cavity 9 . Both ends of the accommodating cavity 9 have an opening 10 and an opening 11, and the end plate 7 is fixed to the base body 6 at the opening 10, and the end plate 8 is fixed to the base body 6 at the opening 11. Both ends of the base body 6 protrude from the frame body 4.
  • the feeding mechanism corresponds to the trimming position 12 of the frame body 4.
  • the wire feeding mechanism further comprises a feeding slider device, a feeding driving mechanism for driving the feeding slider device to linearly slide back and forth along the feeding direction, and a guiding device installed between the outside of the body 1 and the feeding slider device.
  • the cylinders 14 are fitted to each other for holding the upper clamp member 15 and the lower clamp member 16 of the wire.
  • the feed drive mechanism includes a rotary feed servo motor 17 and a drive plate 19 to which the drive shaft 18 is fixed.
  • a motor fixing portion 20 and a guide fixing portion 21 that faces the motor fixing portion 20 are protruded from the outside of the body 1.
  • the guide fixing portion 21 includes a horizontal portion 22 and a connecting portion 23 that connects the horizontal portion 22 and the body 1.
  • the feed servo motor 17 is fixed to the motor fixing portion 20.
  • the guiding device comprises a linear guide 24 and a guide slide 25 that cooperates with the linear guide 24.
  • the feed slider device includes a feedblock 26 of a one-piece construction and a cylinder block 27 of a door frame shape.
  • the linear guide 24 is fixed to the bottom surface of the horizontal portion 22 of the guide fixing portion 21, and the guide rail 25 is mounted on the linear guide 24 and supported by the linear guide 24.
  • the feed holder 26 includes a lower mounting portion 28 that is parallel to each other, an upper mounting portion 29, and a vertical portion 30 that connects the lower mounting portion 28 and the upper mounting portion 29.
  • the lower mounting portion 28 of the feed holder 26 is fixed to the bottom surface of the guide rail 25; the cylinder block 27 is fixed to the top surface of the upper mounting portion 29 of the feed holder 26, and the upper mounting portion 29 of the feed holder 26 and the cylinder block 27 are formed along the wire.
  • a box opening on both sides of the material direction forms a cavity 31, and the lower clamp member 16 is fixed to the top surface of the upper mounting portion 29 of the feed holder 26, that is, the bottom surface of the accommodating chamber 31, and the cylinder 14 is fixed to the top surface of the cylinder block 27.
  • the top surface of the accommodating chamber 31, the piston rod 32 of the cylinder 14 passes through the cylinder block 27, that is, the top wall of the accommodating chamber 31 is fixed to the upper holding member 15, and the upper holding member 15 is opposed to the lower holding member 16.
  • the linear guide 24 and the guide rail 25 can be made of standard parts, and the guide is reliable and accurate, which greatly improves the feeding accuracy.
  • the linear guide 24 is fixed to the outside of the body 1 downward, and is less likely to occupy dust.
  • the feed servo motor 17 is fixed to the motor fixing portion 20.
  • the drive plate 19 is coaxially fixed to the output shaft 33 of the feed servo motor 17.
  • the drive shaft 18 is mounted on the end face of the drive disc 19 facing away from the feed servo motor 17.
  • the axis of the drive shaft 18 is offset from the axis of the output shaft 33 of the feed servo motor 17.
  • a sliding hole 34 is disposed on the vertical portion 30 of the feeding base 26 in cooperation with the driving shaft 18, and a driving sliding member 35 is further mounted on the driving shaft 18.
  • the driving sliding member 35 is slidably mounted in the sliding hole 34. .
  • the feeding servo motor 17 drives the driving disk 19 to rotate, and the driving shaft 18 of the driving disk 19 extends into the sliding hole 34 of the feeding seat 26 to directly drive the feeding slider device, omitting the connecting rod, and the structure is simple and compact, and the wire feeding mechanism is installed and debugged. Simple, greatly reducing worker requirements and improving equipment accuracy, greatly reducing the failure rate of the drive mechanism and improving drive reliability. With the structure of the drive disk 19 and the drive shaft 18, both the drive disk 19 and the drive shaft 18 are easy to process, and thus the manufacturing cost is low.
  • the guide rail 25 of the feed slider device is slidably mounted on the linear guide 24 in the wire feed direction.
  • the lower holding member 16 and the cylinder block 27 are fixed to the top surface of the feed holder 26, the upper holding member 15 is placed directly below the cylinder block 27, the cylinder 14 is fixed to the top surface of the cylinder block 27, and the piston rod 32 of the cylinder 14 is worn.
  • the cylinder block 27 is fixed to the upper clamp member 15.
  • the feeding slider device is driven by a rotary type ordinary feeding servo motor 17, which not only has reliable transmission and high transmission precision, but also drives the upper clamping member 15 with a pneumatic structure, so that the wire feeding is very reliable, especially the conveying length of the wire does not require other mechanisms.
  • the length of the wire is directly controlled by the feeding servo motor 17, and the precision is high, so that the conveying length of the wire is accurate, and therefore, the forming quality of the workpiece is good; in particular, the feeding servo motor 17 can automatically adjust the length of the feeding, that is, The length of the blank; also, when the length of the required blank is changed, there is no need to manually adjust the machine, and the numerical control automatic adjustment can be completed by parameter setting, which not only has low requirements for the operator, but also greatly improves the efficiency.
  • the present invention is low in cost relative to a linear servo motor.
  • the main mold assembly 3 includes a main mold base 36 fixed to the frame body 4, a trim cover 37, an upset die 38, and a clamping mold. Component 39.
  • a trim cover mounting hole 40 is provided in the main die holder 36 corresponding to the trimming position 12 of the body 1, and an upset die mounting hole 41 is provided in the upset position 13 of the corresponding frame body 4.
  • the trim cover 37 is mounted in the trim cover mounting hole 40.
  • the upset die 38 is mounted in the upset die mounting hole 41.
  • a hemispherical concave molding cavity 42 is provided in the upset die 38.
  • a corresponding topping mechanism is further provided on the frame body 4 corresponding to the upset die mounting hole 41.
  • the top material mechanism includes a ejector pin 43, a top bar 44, a top bar driving member 45, and a top bar driving member driving device that drives the top bar driving member 45 to move back and forth along the axial direction of the top bar 44.
  • the top rod driving member driving device includes a servo motor 46, a mounting base 47, and a driving member 49 to which the driving shaft 48 is fixed.
  • the driving member 49 includes a driving disk 50 which is disposed on an end surface of the driving disk 50 facing away from the servo motor 46, and a mounting shaft 51 is provided on an end surface of the driving disk 50 facing the servo motor 46.
  • the axis of the drive shaft 48 is offset from the axis of the mounting shaft 51.
  • the mount 47 is fixed to the right side surface of the body 1.
  • the mounting shaft 51 is fixed to the output shaft 52 of the servo motor 46 through the mount 47.
  • a drive hole 53 that cooperates with the drive shaft 48 is provided on the top bar drive member 45.
  • a drive slide 54 is also mounted on the drive shaft 48.
  • the drive slide member 54 is slidably mounted in the drive member hole 53.
  • the mold clamping assembly 39 further includes a first mold clamping seat 55 and a second mold clamping seat 56 which are symmetrical with respect to the main mold base 36.
  • a guiding groove 112 matching the first clamping seat 55 is disposed on a bottom surface of the accommodating cavity 9
  • the first mold holder 55 is slidably mounted in a linearly slidable manner in the guide groove 112 of the accommodating chamber 9.
  • a guide groove 113 is formed on the bottom surface of the accommodating cavity 9 to cooperate with the second splicing base 56.
  • the second splicing block 56 is slidably mounted in the guide groove 113 of the accommodating cavity 9 in a straight line.
  • the first mold clamping seat 55 and the second mold clamping seat 56 are oppositely disposed in the horizontal longitudinal direction of the accommodating cavity 9, and only one first installation space is provided on the side of the first dies holder 55 adjacent to the second dies holder 56. 57.
  • On the side of the second mold holder 56 adjacent to the first mold base 55 only one second installation space 58 which is opposite to the first installation space 57 in the horizontal longitudinal direction of the frame body 4 and which is symmetrical is provided.
  • the mold clamping assembly 39 further includes a first mold clamping drive mechanism that drives the first mounting space 57 of the first mold base 55 to translate between the trim level 12 and the upset position 13 and a second mold drive the second mold base 56.
  • the mounting space 58 is a second mold clamping drive mechanism that translates between the trim level 12 and the upset position 13, a first mold clamping drive mechanism position adjustment mechanism, and a second mold clamping drive mechanism position adjustment mechanism.
  • a first trimming half mold 59 is mounted in the first mounting space 57 on the first mold base 55, and a second trim half is disposed in the second mounting space 58 of the second mold base 56.
  • a mold 60; a first trim delivery portion 61 is disposed on a surface of the first trim delivery half mold 59 facing the second trim delivery mold half 60, and is disposed on the second trim delivery mold half 60
  • the first trim delivery portion 61 includes only a semi-cylindrical first half-hole, and the second trim delivery portion 62 includes only a semi-cylindrical second half-hole that mates with the first half-hole.
  • the second trim feed half mold 60 is completely symmetrical with the structure of the first trim feed half mold 59.
  • the die assembly 3 includes only one die holder 63 fixed to the large slider 2, and only one die 64 is mounted in the die holder 63, and a die cavity is provided in the die 64. 42 mating hemispherical die forming cavity 65.
  • the first mold clamping drive mechanism includes a first servo motor 66 that only drives the translation of the first mold clamping seat 55 , and the first mounting seat 67 is provided with the first A first drive member 69 of the drive shaft and a drive toggle mechanism.
  • the first driving member 69 includes a first driving plate 70, and the first driving shaft 68 is mounted on an end surface of the first driving plate 70 facing away from the first servo motor 66; and is disposed on an end surface of the first driving plate 70 facing the first servo motor 66.
  • the axis of the first drive shaft 68 is offset from the axis of the mounting shaft 71.
  • the drive toggle structure includes a first link 72, a second link 73, and a third link 74.
  • the first clamping drive mechanism position adjusting mechanism includes a servo motor 75 fixed to the outside of the front side end plate 7, a screw 76 fixed coaxially with the servo motor 75, and an adjusting block 77; and the adjusting block 77 is provided with the screw 76.
  • a threaded hole is provided on the left front end cover 7 with a sliding hole 78 that cooperates with the adjusting block 77.
  • the adjustment block 77 is mounted in the slide hole 78, and the threaded hole of the adjustment block 77 is screwed onto the screw 76.
  • the first mounting seat 67 is fixed to the right side of the front side base body 6, the first servo motor 66 is fixed to the top of the first mounting seat 67, and the mounting shaft 71 of the first driving member 69 passes through the first mounting seat from the bottom to the top. 67 is mounted on the output shaft of the first servo motor 66.
  • One end of the first link 72 is rotatably mounted only with the first drive shaft 68, and the other end of the first link 72 and one end of the second link 73 are provided.
  • One end of the third link 74 is pivotally connected together; the other end of the second link 73 is pivotally connected to the adjusting block 77; and the other end of the third link 74 is pivotally connected to the first clamping block 55.
  • the second mold clamping drive mechanism includes a second servo motor 79 that only drives the translation of the second mold base 56, a second mount 80, a second drive member 82 provided with the second drive shaft 81, and a drive toggle mechanism.
  • the second driving member 82 includes a second driving plate 83 mounted on an end surface of the second driving disk 83 facing away from the second servo motor 79; and the second driving plate 83 is disposed on an end surface of the second driving motor 79
  • the axis of the second drive shaft 81 is offset from the axis of the mounting shaft 84.
  • the drive toggle structure includes a fourth link 85, a fifth link 86, and a sixth link 87.
  • the second clamping drive mechanism position adjusting mechanism includes a servo motor 88 fixed to the outside of the rear end plate 8, a screw 89 coaxially fixed to the servo motor 88, and an adjusting block 90; and the adjusting block 90 is provided with the screw 89.
  • the threaded hole 92 is provided with a sliding hole 91 that cooperates with the adjusting block 90 on the rear end cover.
  • the adjustment block 90 is mounted in the slide hole 91, and the threaded hole 92 of the adjustment block 90 is screwed to the screw 89.
  • the second mounting seat 80 is fixed to the right side of the base body 6 on the rear side, the second servo motor 79 is fixed to the top of the second mounting seat 80, and the mounting shaft 84 of the second driving member 82 passes through the second mounting from the bottom to the top.
  • the seat 80 is mounted on the output shaft of the second servo motor 79, and one end of the fourth link 85 is rotatably mounted only with the second drive shaft 81, and the other end of the fourth link 85 and the fifth link 86 are One end of the sixth link 87 is pivotally connected together; the other end of the fifth link 86 is pivotally connected to the adjusting block 90; and the other end of the sixth link 87 is pivotally connected to the second clamping block 56.
  • the large slider driving mechanism includes a crankshaft 93 supported on the body 1 at both ends, a sleeve 94, a sleeve 95, a first small slider 96 and a second small slider 97. , servo motor 98.
  • the crankshaft 93 includes a first central shaft 99, a second central shaft 100 coaxial with the first central shaft 99, a disc 101, a disc 102 disposed between the first central shaft 99 and the second central shaft 100, and a setting
  • the second central shaft 100, the disk 101, the disk 102, and the eccentric shaft 103 are integrally forged.
  • the strength of the crankshaft 93 of the present invention is high, prolonging the service life of the crankshaft 93, and ensuring the positional accuracy of the crankshaft 93.
  • a bushing mounting hole 104 is provided on one side of the body 1, and a bushing mounting hole 105 is provided on the other side of the body 1.
  • One end of the crankshaft 93 is mounted in the sleeve mounting hole 104, and the other end is mounted in the sleeve mounting hole 105.
  • the sleeve 94 is mounted from the outside of the body 1 outside the first central shaft 99 of the crankshaft 93 and in the sleeve mounting hole 104.
  • the sleeve 95 is mounted outside the second central shaft 100 of the crankshaft 93 from the outside of the other side of the body 1 and the shaft.
  • the sleeve is mounted inside the hole 105.
  • the servo motor 98 is fixed to the outer side of the body 1 and the output shaft of the servo motor 98 is mounted to the first central shaft 99 passing through one end of the crankshaft 93 of the sleeve 94.
  • the large slider 2 includes a slider large insert 106 and a slider small insert 107.
  • the slider large insert 106 is provided with a groove extending through both sides of the slider large insert 106 and opening downward, and a die mounting assembly 3 is disposed on a side of the slider large insert 106 facing the main mold assembly 3.
  • the die assembly accommodates the slot.
  • a recess is provided on the side walls on both sides of the recess, and a guide insert is fixed in the recess.
  • the grooves of the large slider 2 and the guide inserts on both sides form a chute.
  • the opposite faces of the two guide inserts form a first guide plane and a second guide plane.
  • a positioning groove is provided on a face of the slider large insert 106 facing the slider small insert 107.
  • a groove is formed in the slider small insert 107 to cooperate with the sliding groove of the slider large insert 106, and a positioning rib is provided on the face of the slider small insert 107 facing the slider large insert 106.
  • a semi-cylindrical curved groove 108 is provided on the first small slider 96 to cooperate with the eccentric shaft 103 of the crankshaft 93.
  • the first small slider 96 is provided with a positioning groove 109 on the surface of the second small slider 97.
  • a semi-cylindrical curved groove 110 mated with the eccentric shaft 103 of the crankshaft 93 is disposed on the second small slider 97, and a positioning rib is disposed on the surface of the second small slider 97 opposite to the first small slider 96. 111.
  • the groove 108 of the first small slider 96 and the groove 110 of the second small slider 97 are hugged on the eccentric shaft 103 of the crankshaft 93, and the positioning rib 111 of the second small slider 97 extends into the first small slider.
  • the positioning groove 109 of 96 the first small slider 96 and the second small slider 97 are fixed together; the eccentric shaft 103 of the crankshaft 93 and the first small slider 96 and the second small slider 97 are rotatably mounted only on together.
  • the positioning rib on the slider small insert 107 extends into the positioning groove of the large slider 2, and the slider small insert 107 is fixed on the slider large insert 106, and the sliding groove and sliding on the slider large insert 106 The recess in the small insert 107 forms a closed slide hole.
  • the first small slider 96 and the second small slider 97 fixed together are only slidably mounted in the sliding hole of the slider large insert 106, and the first small slider 96 slides back and forth on the first guiding plane.
  • the second small slider 97 slides back and forth on the first guiding plane.
  • first trimming half mold 59 and the second trimming half mold 60 are simultaneously placed at the trim level 12, the first half hole and the second half hole are closed to form a full circular hole trim for the trim.
  • first trimming half mold 59 and the second trimming half mold 60 are simultaneously placed in the same upsetting position 13, the first half hole and the second half hole are closed to form a full clamping for holding only the blank. A die with a round hole.
  • the first mold clamping seat 55 and the first trimming half mold 59, the second mold clamping seat 56 and the second trimming material half mold 60 are synchronously translated in different stations, the first half hole and the second half
  • the half holes are uniformly molded to form a concave mold of the full circular hole for the delivery in the delivery state.
  • a die for trimming in the trimming state of the trimming position 12 a die for upsetting in the upset state of the upset position 13, or a die for holding the blank for holding the blank 13
  • the dimples for the delivery in the delivery state are the same die.
  • the working method of the upset forging machine for the upset steel ball comprises the following steps:
  • the trimming half mold of the first mold base 55 is placed at the trim level 12, and the trimming half mold of the second mold base 56 is away from the trim level 12, and the wire is fed to the first through the feeding mechanism.
  • the first mold clamping drive mechanism drives the first mold clamping seat 55 and the first trimming delivery mold half 59
  • the second mold clamping drive mechanism drives the second mold clamping seat 56 and the second trimming delivery mold half 60 Synchronous linear translation, during the translation process, the first trimming half mold 59 and the second trimming half mold 60 shift the clamped wire to the full circle and clamp the blank to be cut. To the upsetting position 13;
  • the driving die assembly 3 is moved toward the main die holder 36.
  • the first clamping drive mechanism drives the first trimming half mold 59 of the first clamping block 55 to return.
  • the second clamping drive mechanism drives the second trimming half mold 60 of the second mold clamping seat 56 to move away from the trimming position 12 to avoid the set position of the die 64; the die 64 continues Upsetting the blank, after the upsetting is completed, the topping mechanism ejects the formed steel ball blank;
  • Step (1) to step (4) are repeated cycles.
  • a trimming position 152 As shown in FIGS. 10 to 14, unlike the first embodiment, three positions, a trimming position 152, an upsetting position 153, and an upsetting position 154 are provided on the frame body 151.
  • the main mold assembly 3 includes a main mold base 155, a trim cover 156, and a mold clamping assembly that are fixed to the frame body 151.
  • a trim cover mounting hole 157 is provided in the main die holder 155 corresponding to the trimming position 152 of the body 1.
  • the trim cover 156 is mounted in the trim cover mounting hole 157. There is no upset die mounting hole on the main die holder 155, and no topping mechanism is required on the main die assembly 170 side. .
  • the first installation space is a first groove 158 disposed on the first mold base 162 opening toward the second mold base 163 and penetrating the first mold base 162.
  • the second installation space is disposed on the second mold base.
  • the upper opening 163 faces the first mold base 162, and the second groove 159 is completely symmetrical with the first groove 158.
  • the shape of the outer circumference of the first trimming mold half 160 is identical to the shape of the first groove 158.
  • the second trimming clamping half mold 161 is completely symmetrical with the first trimming clamping half mold 160.
  • the first trim delivery portion is a semi-cylindrical first half hole 164 penetrating the first mold base 162, and the second trim delivery portion is engaged with the first half hole 164 and penetrates the first mold base 162.
  • the semi-cylindrical second half hole 165 is
  • the die assembly 176 includes two die holders 166 fixed in the large slider 177 adjacent to the trimming position 152, and a die holder 167 remote from the trimming position 152.
  • a die 168 is mounted in the die holder 166 in the die holder.
  • a die 169 is mounted in the 167.
  • the die 168 corresponds to the upset position 153 and the die 169 corresponds to the upset position 154.
  • the first mold clamping drive mechanism includes a first servo motor 171 that only drives the translation of the first mold base 162, a first mount 172, a first drive member 174 to which the first drive shaft 173 and the first mounting shaft are fixed, and a first Link 175.
  • the first driving member 174 includes a first driving plate 183, and the first driving shaft 173 is mounted on an end surface of the first driving disk 183 facing away from the first servo motor 171; the first mounting shaft is disposed on the first driving plate 183 toward the first servo motor On the end face of 171.
  • the axis of the first drive shaft 173 is offset from the axis of the first mounting shaft.
  • a guide strip 180 is disposed on two side walls of the receiving cavity 179 of the base body 178, and a guiding groove 181 is formed on the first mounting seat 172 to cooperate with the guiding strip 180.
  • the first mount 172 is mounted on the base body 178 by the guide groove 181 being mounted on the guide strip 180.
  • the first servo motor 171 is fixed on the top of the first mounting seat 172, and the first mounting shaft of the first driving member 174 is mounted on the output shaft 182 of the first servo motor 171 from the bottom to the top through the first mounting seat 172, first One end of the link 175 is rotatably mounted only to the first drive shaft 173, and the other end of the first link 175 is rotatably pivotally coupled to the first mold base 162.
  • the first clamping drive mechanism position adjusting mechanism includes a servo motor 185 fixed to the outside of the front side end plate 184, a screw 186 fixed coaxially with the servo motor 185, and a threaded hole provided with the screw 186 on the first mounting seat 172. 187, the threaded hole 187 of the first mount 172 is threaded onto the screw 186.
  • the second mold clamping drive mechanism and the second mold clamping drive mechanism position adjustment mechanism have the same structure as the first mold clamping drive mechanism and the first mold clamping drive mechanism position adjustment mechanism, and have the same installation relationship, and are substantially the same as the first mold clamping drive mechanism.
  • the position adjustment mechanism of a mold clamping drive mechanism is symmetrical.
  • the working method of the clamping upsetting machine includes the following steps:
  • the first half hole 164 of the first trimming clamping half mold 160 and the second half hole 165 of the second trimming holding mold half 161 are clamped at the trimming position 152 to form a full round hole for the trimming. a die and will be held by the wire feeding mechanism to the wire between the first trimming half mold 160 and the second trim holding mold half 161;
  • the first mold clamping drive mechanism drives the first mold clamping seat 162 and the first trimming clamping mold half 160
  • the second mold clamping driving mechanism drives the second mold clamping seat 163 and the second trimming clamping mold half 161 Synchronous linear translation; during translation, the first trimming clamping half mold 160 and the second trimming clamping half mold 161 displace the clamped wire to fully round the trim and clamp the blank to be cut for delivery To the upset position 153 adjacent to the trim level 152;
  • the clamped first trimming half mold 160 and the second trim holding mold half 161 are not fully formed.
  • the blank is synchronously linearly translated to the upset position 154, and the incompletely formed blank is delivered to the upset position 154 for upsetting; after the upset is completed, the clamped first trim is held by the mold half 160 and the second clip
  • the mold half 161 holds the formed blank synchronously and linearly translates to the trimming position 152, and the formed blank is delivered to the trimming position 152, and the wire is fed to the first trimming clamping mold half 160 via the feeding mechanism.
  • the second trimming material clamps between the mold halves 161 and ejects the formed blank;
  • Step (1) to step (4) are repeated cycles.
  • the body 202 is further provided with pneumatic strokes.
  • the pneumatic pumping mechanism includes a cylinder support 203, a cylinder 204, and a material 205.
  • the cylinder holder 203 is fixed to the top of the body 202 of the trimming position 201
  • the cylinder 204 is fixed to the top of the cylinder holder 203
  • the piston rod 206 fixed to the piston of the cylinder 204 is fixed to the cutter member 205 through the cylinder holder 203.
  • the axis of the piston rod 206 of the cylinder 204 is perpendicular to the axis of the trim sleeve 207.
  • the first mold clamping drive mechanism includes a first servo motor 209 that drives only the first mold base 208 to translate, a mount 210, a first drive member 212, and a first drive slider 214.
  • the first driving member 212 includes a first driving disk 213, a first driving shaft 211 mounted on an end surface of the first driving disk 213 facing away from the first servo motor 209, and an end surface of the first driving disk 213 facing the first servo motor 209.
  • the first mounting shaft on the top.
  • the axis of the first drive shaft 211 is offset from the axis of the first mounting shaft.
  • a first sliding hole 215 is disposed on the first clamping base 208 in a vertical direction, and the first driving sliding member 214 is slidably mounted in the first sliding hole 215.
  • a guide strip 218 is disposed on two side walls of the receiving cavity 217 of the base body 216, and a guiding groove 219 is formed on the first mounting seat 210 to cooperate with the guiding strip 218.
  • the mounting seat 210 is mounted on the base body 216 by the guide groove 219 being mounted on the guide bar 218.
  • the first servo motor 209 is fixed on the top of the mounting base 210.
  • the first mounting shaft of the first driving member 212 is mounted on the output shaft of the first servo motor 209 from the bottom up through the mounting seat 210.
  • the first driving slider 214 can be Rotatingly mounted outside the first drive shaft 211, the first drive slide 214 is slidably mounted in the first slide hole 215.
  • the second mold clamping drive mechanism and the second mold clamping drive mechanism position adjustment mechanism have the same structure as the first mold clamping drive mechanism and the first mold clamping drive mechanism position adjustment mechanism, and have the same installation relationship, and are substantially the same as the first mold clamping drive mechanism.
  • the position adjustment mechanism of a mold clamping drive mechanism is symmetrical.
  • the working method of the clamping upsetting machine includes the following steps:
  • the wire is fed between the first trimming half mold 220 and the second trimming half mold 221 via the feeding mechanism, and the first half hole and the second cut of the first trimming half mold 220
  • the second half hole of the material feeding half mold 221 is clamped at the trim position 201 to form a concave die for the full round hole and clamp the wire;
  • the first mold clamping drive mechanism drives the first mold clamping seat 208 and the first trimming delivery mold half 220
  • the second mold clamping drive mechanism drives the second mold clamping seat 222 and the second trimming delivery mold half 221 Synchronous linear translation, during the translation process, the first trimming half mold 220 and the second trimming half mold 221 are to perform displacement of the clamped wire and to clamp the blank to be cut.
  • the clamped first trimming half mold 220 and the second trimming half mold 221 are not fully formed.
  • the blanks are linearly translated linearly into adjacent upsets 226, and the incompletely formed blanks are delivered to adjacent upsets 226 for upset until the blanks are upset at all upsets;
  • the clamped first trimming half mold 220 and the second trimming half mold 221 hold the formed blank synchronously and linearly to the trim position 201, and deliver the formed blank to the blank
  • the punching member 205 of the pneumatic pumping mechanism cuts the formed blank from the first trimming half mold 220 or the second trimming half mold 221 from the direction of the vertical blank axis. ;
  • Step (1) to step (4) are repeated cycles.
  • the first trimming portion of the first trimming half mold 231 is composed of a first semi-hole 232 including a semi-cylindrical shape, and is used to form a blank.
  • the aperture of the first concave mold cavity 233 is larger than the aperture of the first half hole 232.
  • the second trimming half mold 234 is completely symmetrical with the structure of the first trim half mold 231. .
  • the clamping forging machine includes a body 501, a die assembly 502 mounted on the body 501, a large slider driving mechanism 503 for driving the die assembly 502, and a feeding mechanism 504 provided on the body 501. And clamping module 505.
  • the body 501 includes a frame 506, a base 507 and a cover 508.
  • the frame 506 includes a frame body 509 and a frame base 510.
  • the frame base 510 includes a base body 511 and an end plate. 512, the base body 511 has a receiving cavity 513. The two ends of the receiving cavity 513 have an opening 514, and the end plate 512 is fixed on the base body 511 located at the opening.
  • both ends of the frame base 510 and the base 507 protrude from the frame body 509.
  • the frame base 510 The seat body 507 may also have no frame body 509 protruding from both ends.
  • the seat body 507 has a sliding groove, and the seat body 507 is disposed in the accommodating cavity 513; the cover plate 508 is mounted on the seat body 507. With this structure, as long as the end plate 512 is removed, the seat body 507 can be withdrawn together with the mold clamping assembly 505, thereby facilitating the overall mounting and dismounting of the mold clamping assembly 505.
  • the die assembly 502 includes a punch holder 515, a large slider 516, and a punch pad 517; the punch holder 515 is mounted on the frame body 509; and the large slider 516 is slidably mounted on the punch holder 515.
  • Upper punch pad 517 is secured to large slider 516; punch pad 517 is used to mount punch 518.
  • the first structure of the large slider driving mechanism 503 includes a crankshaft 519, a connecting rod 520, and a flywheel driving device; the crankshaft 519 is mounted on the frame body 509; one end of the connecting rod 520 is pivotally connected The crankshaft 519 is pivotally connected to the large slider 516.
  • the flywheel driving device includes a flywheel 521, a first transmission shaft 522, a first gear 523 and a second gear 524.
  • the first transmission shaft 522 is mounted on the frame body 509.
  • the flywheel 521 is mounted on the first drive shaft 522, the first gear 523 is mounted on the first drive shaft 522, the second gear 524 is mounted on the crankshaft 519, and the first gear 523 is meshed with the second gear 524.
  • a third gear 525 is also mounted on the crankshaft 519.
  • the flywheel 521 drives the first transmission shaft 522 to rotate, the first transmission shaft 522 drives the second gear 524 to rotate through the first gear 523, the second gear 524 drives the crankshaft 519 to rotate, and the crankshaft 519 drives the linkage 520 to move.
  • the connecting rod 520 drives the large slider 516 to slide on the punch seat 515, and the large slider 516 drives the punch 518 through the punch pad 517 to realize the upsetting action. Since the flywheel 521 can store a large amount of energy, a large upsetting force is generated.
  • the large slider driving mechanism 503 can be designed as follows except for the above structure, that is, the second structure of the large slider driving mechanism 503 includes the flywheel 521 and the crankshaft. 519 and toggle transmission mechanism; the toggle transmission mechanism includes a first link 526, a second link 527 and a third link 528; the crankshaft 519 is mounted on the frame body 509; the flywheel 521 is mounted on the crankshaft 519; One end of the connecting rod 526 is pivotally connected to the crankshaft 519, and the other end of the first connecting rod 526 is pivotally connected to the pivoting shaft pivotally connected to the second connecting rod 527 and the third connecting rod 528; Connected to the frame body 509; one end of the third link 528 is pivotally connected to the large slider 516.
  • the flywheel 521 drives the crankshaft 519 to rotate
  • the crankshaft 519 drives the first link 526 to move
  • the first link 526 drives the second link 527 and the third link 528 to move
  • the third link 528 drives the large The slider 516 slides.
  • the third structure of the large slider driving mechanism 503 includes a punch driving servo motor 529, a punch driving cam 530, and a toggle transmission mechanism.
  • the toggle transmission mechanism includes a first link 526, a second link 527, and a third link 528; the punch drive servo motor 529 is mounted on the frame body 509; the punch drive cam 530 is mounted on the punch drive servo motor 529.
  • One end of the first link 526 is pivotally connected to the punch driving cam 530, and the other end of the first link 526 is pivotally connected to the pivoting shaft of the second link 527 and the third link 528.
  • One end of the second link 527 is pivotally connected to the frame body 509; one end of the third link 528 is pivotally connected to the large slider 516.
  • the punch driving servo motor 529 drives the punch driving cam 530 to rotate, the punch driving cam 530 drives the first link 526 to move, and the first link 526 drives the second link 527 and the first The three links 528 move, and the large slider 516 is driven to slide by the third link 528.
  • the servo motor 529 is driven by the punch to drive the large slider, and in an upset stroke, the movement speed of the large slider can be flexibly controlled to achieve the purpose of controlling the forward and reverse speed of the punch;
  • the speed of the entire upsetting stroke of the large slider can also be controlled; therefore, the control of the moving speed of the large slider is flexible and fast.
  • a mold clamping assembly 505 is provided in the chute.
  • the mold clamping assembly 505 includes a first mold base 531 and a second mold base 532.
  • the first mold base 531 and the second mold base 532 are both slidably disposed in the chute, and the first mold base 531 and the The second mold base 532 is oppositely disposed in the horizontal longitudinal direction of the body 501, and a first installation space 533 is disposed on a side of the first mold base 531 adjacent to the second mold base 532, and the second mold base 532 is adjacent to the first mold base 532.
  • a second mounting space 534 is disposed on a side of the mold clamping seat 531, a first trimming clamping mold half 535 is mounted in the first mounting space, and a second trimming clamping half mold 536 is mounted in the second mounting space;
  • the first trimming clamping mold half 535 and the first clamping mold base 531 may be an integral structure
  • the second trimming clamping half mold 536 and the second clamping mold base 532 may be an integrated structure
  • a first mold clamping drive mechanism that translates the mold base 531 and a second mold clamping drive mechanism that drives the second mold base 532 to translate
  • the first trimming mold half mold 535 and the second trim material clamping mold half 536 move When the position corresponding to the trimming sleeve 574 is reached, a trimming position is formed between the first trimming clamping mold half 535 and the second trimming clamping half mold 536; when the first trimming material is cut
  • the mold half 535 and the second trim holding mold half 536 are moved to a position corresponding to the die assembly 502, an upset position
  • the first mold clamping drive mechanism includes a first drive block drive device, a first drive link 537, and a first drive block 538.
  • the first drive block drive includes a second drive shaft 539 and a fourth gear (not shown).
  • the second transmission shaft 539 is mounted on the body 501, and the fourth gear is mounted on the second transmission shaft 539.
  • One end of the first drive link 537 is pivotally connected to the partial
  • the other end of the first driving link 537 is pivotally connected to the first driving block 538.
  • the first driving block 538 is slidably disposed on the first driving block sliding slot of the first clamping block 531.
  • a first driving slot 540 is disposed on the first driving block 538, and a first driving rod 541 extending into or passing through the first driving slot 540 is disposed on the first clamping block 531;
  • the mechanism includes a second drive block drive, a second drive link 542, and a second drive block 543; the second drive block drive includes a fifth gear 544 mounted on the second drive shaft 539.
  • One end of the second driving link 542 is pivotally connected to an end surface that is offset from the center of rotation of the fifth gear 544, and the other end of the second driving link 542 is pivotally connected to the second driving block 543.
  • the second driving block 543 is slidably disposed at the second driving block 542.
  • the second driving block sliding groove 545 of the second die holder 532 is provided with a second driving groove 546 on the second driving block 543; and the second clamping block 532 is provided with a second driving groove 546.
  • the second drive rod 547 is provided with a second driving groove 546 on the second
  • the first driving block sliding groove 548 has an opening on a side surface away from the first trimming clamping half mold mounting position in the front-rear direction of the first mold clamping seat 531 with respect to the first driving block 538.
  • the first driving block 538 passes through the opening slot, and the first driving block 538 slides back and forth in the opening slot; the first driving rod 541 passes through the first clamping block 531 from top to bottom and is disposed in the opening slot.
  • the second driving block sliding groove 545 is an opening groove having an opening on a side surface of the second mold clamping seat 532 sliding relative to the second driving block 543 in the front-rear direction away from the second trimming clamping mold mounting position, and second The driving block 543 passes through the open slot, and the second driving block 543 slides back and forth in the opening slot; the second driving lever 547 passes through the second clamping base 532 and the second driving block 543 disposed in the opening slot from top to bottom.
  • a first guiding block 549 is provided on the front side and the rear side of the protruding end of the seat body 507, and the first guiding block 549 has a first sliding portion for the first driving block 538.
  • Guide groove 550 is provided in order to improve the smoothness of the movement of the second driving block 543.
  • a second guiding block 551 is provided on the front side and the rear side of the other protruding end portion of the seat body 507, and the second guiding block 551 has a second sliding block 543 for sliding.
  • the first and second mold clamping assembly driving mechanisms of the first structure described above are used in combination with the first large slider driving mechanism.
  • the second structure of the first mold clamping drive mechanism is a first worm gear drive device disposed between the body 501 and the first mold base 531, and a second mold clamping drive mechanism.
  • the structure is such that a second worm gear drive device is disposed between the body 501 and the second mold base 532.
  • the first worm gear driving device includes a fixing base 553 mounted on the body 501, a first servo motor 554 mounted on the fixing base 553, a first worm 555 fixed on the fixing base 553, and a first 603 mounted on the fixing base 553.
  • One end of the first mold base 531 is pivotally connected to the first mold base 531, and the first mold base 531 is driven to move.
  • the second worm gear drive device includes a fixing base 553 mounted on the body 501 and mounted on the fixed seat. a second servo motor 558 on the 553, a second worm 559 fixed on the fixed seat 553, a second worm gear 560 disposed on the fixed seat 553, and a second swing rod 561; the second servo motor 558 drives the second worm 559 to rotate
  • the second worm 559 drives the second worm gear 560 to rotate
  • the second worm gear 560 drives the second swing rod 561 to swing.
  • One end of the second swing rod 561 is pivotally connected to the second mold clamping seat 532, and is driven by the second swing rod 561.
  • the two-mold base 532 is translated in translation.
  • the reaction force of the first mold base and the second mold base is received by the worm gear structure.
  • the beneficial effects are as follows: Firstly, in the clamping forging machine, since the transmission ratio of the worm gear structure is large, the rapid movement of the clamping base can be realized; secondly, the meshing between the worm wheel and the worm is line contact, It has a large bearing capacity, and at the same time, the worm gear has the self-locking ability.
  • the reaction force is transmitted to the worm gear structure, and since the worm gear has the above characteristics, the reaction force is mainly absorbed by the worm gear structure. It will not be transmitted to the servo motor, thus effectively protecting the servo motor; in addition, the worm gear drive is equivalent to the screw drive, which is a multi-tooth mesh drive, so the transmission is smooth and the noise is small, thus reducing the clamping forging machine Working noise.
  • the first and second mold clamping assembly drive mechanisms of the second configuration can be used with the first, second or third structure of the punch drive mechanism.
  • the wire is guided by the guide wheel 562 and then enters the trimming die 581 via the trim cover 580.
  • the self-die assembly 502 can also be used to feed the mold clamping assembly 505.
  • a clip sleeve is disposed on the body 501 between the die assembly 502 and the mold clamping assembly 505.
  • the working method of the above-mentioned clamping upsetting machine is:
  • the first mold clamping drive mechanism and the second mold clamping drive mechanism drive the first mold clamping seat 531 and the second mold clamping seat 532 to open, the first trimming clamping mold half 535 and the second trimming material clamping half
  • the die 536 is also open.
  • the wire feed mechanism 504 is fed from the mold clamping assembly 505 toward the die assembly 502 or from the die assembly 502 toward the mold clamping assembly 505 to the first trimming clamping mold half 535 and the second trimming material. Between the mold halves 536.
  • the first mold clamping drive mechanism and the second mold clamping drive mechanism respectively drive the first mold clamping seat 531 and the second mold clamping seat 532 to move in the seat body 507, the first trimming clamping half mold 535 and the second The trimming clamping mold half 536 clamps the wire.
  • the first mold clamping drive mechanism and the second mold clamping drive mechanism drive the mold clamping assembly 505 to translate integrally.
  • the first trimming clamping mold half 535 and the second trimming clip The mold half 536 is used to displace the clamped wire to the full circle.
  • the large slider driving mechanism 503 drives the die assembly 502 to move, and the punch 518 of the die assembly 502 is used to sandwich the first trimming half mold 535 and the second trim holding mold half 536.
  • the blank is upset.
  • the first trimming clamping half mold 535 and the second trimming clamping half mold 536 are opened under the action of the first clamping driving mechanism and the second clamping driving mechanism, and are located at the first The molded part between the trimming clamping half mold 535 and the second trimming holding mold half 536 is dropped, and the final upset shaped part is separated from the upset position.
  • the above-mentioned mold clamping and forging machine and the working method thereof are realized by the clamping and clamping of the first trimming clamping half mold 535 and the second trimming clamping half mold 536, and the displacement of the blank passes through the clamping unit 505.
  • the translation is achieved, at the same time, the first trimming clamping half mold 535 and the second trimming clamping half mold 536 are in the mold clamping state, and the first trimming material can be directly clamped to the mold half 535 by the die assembly 502.
  • the blank between the second trimming and holding mold halves 536 is upset. Therefore, the present invention can realize the displacement of the trim and the blank without providing a separate trimming mechanism and the clamping mechanism, and can also achieve upsetting.
  • the structure of the upsetting machine is simplified, and on the other hand, the upsetting efficiency of the upsetting machine is greatly improved.
  • the existing upsetting machine and its working method need to disassemble, install and debug multiple molds in turn. When disassembling, installing and debugging the mold, it is necessary to stop the upsetting machine for a long working time, which is not conducive to ⁇ The working efficiency of the forging machine.
  • the clamping forging machine of the present invention and the working method thereof since the trimming die is formed by the first trimming clamping half mold 535 and the second trimming holding mold half 536, the female mold can be clamped by the first trimming material.
  • the mold 535 and the second trimming clamping mold half 536 are formed, and the cutting mold and the concave mold are disposed in the mold clamping seat to form an integrated mold clamping assembly 505, and the production worker can perform the mold clamping assembly 505 outside the upsetting machine.
  • Various product upsetting preparation work When it is necessary to replace the trimming die and the die, the die clamping assembly 505 can be removed from the body 501 as a whole, and then the additional clamping component 505 prepared in advance can be directly replaced. Adjustment. With such a structure and method of the present invention, the downtime replacement and adjustment of the upsetting machine takes only a small amount of time, and the working efficiency of the upsetting machine is improved.
  • first trimming clamping half mold 535 and the second trimming clamping half mold 536 constitute a trimming die and a concave die, and conveniently adjusting the first trimming clamping half die 535 and the second trimming clamping half die The distance between 536, therefore, can be upset complex parts.
  • the clamping forging machine includes a body 601, a die assembly 602 mounted on the body 601, a large slider driving mechanism 603 for driving the die assembly 602, a feeding mechanism 604 provided on the body 601, and Feed mechanism 605.
  • the body 601 includes a frame 606, a base 607 and a cover 608.
  • the frame 606 includes a frame body 609 and a frame base 610.
  • the frame base 610 includes a base body 611 and an end plate. 612, the base body 611 has a receiving cavity 613. The two ends of the receiving cavity 613 have an opening 614, and the end plate 612 is fixed on the base body 611 located at the opening.
  • the frame base 610 and the two ends of the base 607 protrude from the frame body 609.
  • the frame base 610 and the base 607 may also have no protruding ends at both ends.
  • the base 607 has a sliding slot, and the base 607 is disposed in the receiving cavity 613; the cover 608 is mounted on the base 607. With this configuration, as long as the end plate 612 is removed, the seat body 607 can be taken out together with the feeding mechanism 605, thereby facilitating the overall mounting and dismounting of the feeding mechanism 605.
  • the die assembly 602 includes a punch holder 615, a large slider 616, and a punch pad 617; the punch holder 615 is mounted on the frame body 609; the large slider 616 is slidably mounted on the punch holder 615. Upper punch pad 617 is secured to large slider 616; punch pad 617 is used to mount punch 618.
  • the first structure of the large slider driving mechanism 603 includes a crankshaft 619, a link 620, and a flywheel driving device; the crankshaft 619 is mounted on the frame body 609; one end of the connecting rod 620 is pivotally connected to The crankshaft 619 is pivotally connected to the large slider 616.
  • the flywheel driving device includes a flywheel 621, a first transmission shaft 622, a first gear 623 and a second gear 624.
  • the first transmission shaft 622 is mounted on the frame body 609.
  • the flywheel 621 is mounted on the first transmission shaft 622, the first gear 623 is mounted on the first transmission shaft 622, the second gear 624 is mounted on the crankshaft 619, the first gear 623 and the second gear The 624 is engaged.
  • a third gear 625 is also mounted on the crankshaft 619.
  • the flywheel 621 drives the first drive shaft 622 to rotate, the first drive shaft 622 drives the second gear 624 to rotate through the first gear 623, the second gear 624 drives the crankshaft 619 to rotate, and the crankshaft 619 drives the link 620 to move.
  • the link 620 drives the large slider 616 to slide on the punch seat 615, and the large slider 616 drives the punch 618 through the punch pad 617 to realize the upsetting action. Since the flywheel 621 can store a large amount of energy, a large upsetting force is generated.
  • the large slider driving mechanism 603 can be designed as follows except for the above structure, that is, the second structure of the large slider driving mechanism 603 includes the flywheel 621 and the crankshaft. 619 and a toggle transmission mechanism; the toggle transmission mechanism includes a first link 626, a second link 627 and a third link 628; the crankshaft 619 is mounted on the frame body 609; the flywheel 621 is mounted on the crankshaft 619; One end of the connecting rod 626 is pivotally connected to the crankshaft 619, and the other end of the first connecting rod 626 is pivotally connected to the pivoting shaft of the second connecting rod 627 and the third connecting rod 628; Connected to the frame body 609; one end of the third link 628 is pivotally connected to the large slider 616.
  • the flywheel 621 drives the crankshaft 619 to rotate
  • the crankshaft 619 drives the first link 626 to move
  • the first link 626 drives the second link 627 and the third link 628 to move
  • the third link 628 drives the large The slider 616 slides.
  • the third structure of the large slider drive mechanism 603 includes a punch drive servo motor 629, a punch drive cam 630, and a toggle drive mechanism.
  • the toggle transmission mechanism includes a first link 626, a second link 627, and a third link 628; the punch drive servo motor 629 is mounted on the frame body 609; the punch drive cam 630 is mounted on the punch drive servo motor 629.
  • the first link 626 is pivotally connected to the punch driving cam 630, and the other end of the first link 626 is pivotally connected to the pivoting shaft of the second link 627 and the third link 628.
  • One end of the second link 627 is pivotally connected to the frame body 609; one end of the third link 628 is pivotally connected to the large slider 616.
  • the punch driving servo motor 629 drives the punch driving cam 630 to rotate, the punch driving cam 630 drives the first link 626 to move, and the first link 626 drives the second link 627 and the first The three links 628 move, and the large slider 616 slides through the third link 628.
  • the servo motor 629 is driven by a punch to drive the large slider, and in an upset stroke, the movement speed of the large slider can be flexibly controlled to achieve the purpose of controlling the forward and reverse speed of the punch;
  • the speed of the entire upsetting stroke of the large slider can also be controlled; therefore, the control of the moving speed of the large slider is flexible and fast.
  • a feed mechanism 605 is provided in the chute.
  • the feeding mechanism 605 includes a first clamping seat 631 and a second clamping seat 632.
  • the first clamping seat 631 and the second clamping seat 632 are both slidably disposed in the sliding slot, and the first clamping seat 631 and the second coupling
  • the mold base 632 is oppositely disposed in the horizontal longitudinal direction of the body, and a first installation space 633 is disposed on a side of the first mold base 631 adjacent to the second mold base 632, and the second mold base 632 is adjacent to the first mold base.
  • a second mounting space 634 is disposed on a side of the 631, a first trimming clamping die 635 is mounted in the first mounting space, and a second trimming clamping die 636 is mounted in the second mounting space;
  • a trimming clamping mold half and the first clamping mold base may be an integral structure, and the second trimming clamping half mold and the second clamping mold base may be an integral structure; and the first driving the first clamping mold base is further provided.
  • a mold clamping drive mechanism and a second mold clamping drive mechanism for driving the second mold clamping seat when the first trimming clamping half mold 635 and the second trim holding half mold 636 are moved to a position corresponding to the trimming sleeve a trimming position is formed between the first trimming clamping half mold 635 and the second trimming clamping half mold 636; when the first trimming material holds the mold half 635 and the second Material holding the mold halves 636 and moved to the position corresponding to the die assembly, clamping first crop and second mold halves 635 corresponding to the crop sandwiched between the mold halves swaging position 636.
  • the first mold clamping drive mechanism includes a first drive block drive device, a first drive link 637, and a first drive block 638.
  • the first drive block drive includes a second drive shaft 639 and a fourth gear (not shown).
  • the second transmission shaft 639 is mounted on the body 601, and the fourth gear is mounted on the second transmission shaft 639.
  • first driving link 637 is pivotally connected to an end surface that is offset from the center of rotation of the fourth gear, and the other end of the first driving link 637 is pivotally connected to the first driving block 638;
  • first driving block 638 is slidably disposed at the first In the first driving block sliding groove 640 of the mold clamping seat 631, a first driving groove 641 is disposed on the first driving block 638, and a first extending or passing through the first driving groove is provided on the first clamping block 631.
  • the second mold clamping driving mechanism includes a second driving block driving device, a second driving link 643 and a second driving block 644; and the second driving block driving device includes a fifth mounting on the second transmission shaft 639 Gear 645.
  • One end of the second driving link 643 is pivotally connected to an end surface that is offset from the center of rotation of the fifth gear 645, and the other end of the second driving link 643 is pivotally connected to the second driving block 644.
  • the second driving block 644 is slidably disposed at the second driving block 643.
  • a second driving block 647 is disposed in the second driving block sliding slot 646 of the second die holder 632; the second clamping block 632 is provided with a second driving slot 632 extending into or through the second driving slot.
  • the second drive rod 648 is provided in the second driving block sliding slot 646 of the second die holder 632; the second clamping block 632 is provided with a second driving slot 632 extending into or through the second driving slot.
  • the first driving block sliding groove 640 has a side surface on a side away from the mounting position of the first trimming clamping mold half 535 in the front-rear direction of the first mold clamping seat 631 with respect to the first driving block 638.
  • An open opening slot, the first driving block 638 passes through the opening slot, and the first driving block 638 slides back and forth in the opening slot; the first driving rod 642 passes through the first clamping seat 631 from top to bottom and is disposed in the opening slot The first drive block 638.
  • the second driving block sliding groove 646 is at the second clamping block 632
  • An opening groove having an opening on a side surface of the front-rear direction of the second trimming clamping half mold 536 that slides relative to the second driving block 644, the second driving block 644 passes through the opening slot, and the second driving block 644 is The open slot is slid back and forth; the second drive lever 648 passes through the second die holder 632 and the second drive block 644 disposed in the open slot from top to bottom.
  • a first guiding block 649 is provided on the front side and the rear side of the protruding end of the seat body 607, and the first guiding block 649 has a first sliding position for the first driving block 638.
  • Guide groove 650 is provided in order to improve the smoothness of the movement of the second driving block 644.
  • a second guiding block 651 is provided on the front side and the rear side of the other protruding end portion of the seat body 607, and the second guiding block 651 has a second sliding block for the second driving block 644.
  • the first and second mold clamping assembly driving mechanisms of the first structure described above are used in combination with the first large slider driving mechanism.
  • the second structure of the first mold clamping drive mechanism is a first worm gear drive device disposed between the body and the first mold base 631, and a second structure of the second mold clamping drive mechanism.
  • a second worm gear drive device is disposed between the body and the second mold base 632.
  • the first worm gear driving device includes a fixing base 653 mounted on the body 601, a first servo motor 654 mounted on the fixing base 653, a first worm 655 fixed on the fixing base 653, and a first 601 arranged on the fixing base 653.
  • One end is pivotally connected to the first clamping base, and the first clamping rod 631 is driven to move by the first clamping rod 657.
  • the second worm driving device comprises a fixing base 653 mounted on the body and mounted on the fixing base 653. a second servo motor 658, a second worm 659 fixed to the fixed base 653, a second worm gear 660 disposed on the fixed base 653, and a second swing rod 661; the second servo motor 658 drives the second worm 659 to rotate, The second worm 659 drives the second worm gear 660 to rotate, and the second worm gear 660 drives the second swing rod 661 to swing.
  • One end of the second swing rod 661 is pivotally connected to the second mold clamping seat, and the second clamping rod 661 drives the second clamping mold.
  • Block 632 translates motion.
  • the first and second mold clamping assembly drive mechanisms of the second configuration can be used with the first, second or third structure of the punch drive mechanism.
  • a main mold base 662 is mounted on the rear side of the mold clamping unit 601.
  • the main mold base 662 is provided with a thimble hole, and a thimble 663 is disposed in the ejector hole.
  • the wire 100 is guided by the guide wheel 664 and then enters the trimming die 683 via the trimming sleeve 682.
  • the self-die assembly 602 can also be used to feed the feeding mechanism 605.
  • a clip sleeve is disposed between the die assembly and the mold clamping assembly on the body.
  • the top material mechanism 40 includes a top material servo motor 684 mounted on the body 601, an ejector unit driven by the top material servo motor 684, and a top bar 685 driven by the ejector unit.

Abstract

一种合模镦锻机,包括机体(1)、冲模组件(3)、冲模组件驱动机构、送料机构及剪料套(37);在机体上设有合模组件(39),合模组件(39)包括第一合模座(55)及第二合模座(56),在第一合模座(55)靠近第二合模座(56)的侧面设有第一安装空间(57),在第二合模座(56)靠近第一合模座(55)的侧面设有第二安装空间(58);还设有驱动第一合模座(55)平移的第一合模驱动机构和驱动第二合模座(56)平移的第二合模驱动机构;其工作方法是:利用合模组件的平移实现位移全圆剪料和工位件的递料,然后进行镦锻,省去了独立的剪料机构和夹料递坯机构,实现了合模剪料、合模镦锻及夹钳的作用。

Description

一种合模镦锻机及工作方法 技术领域
本发明涉及一种镦锻机及其工作方法,特别是涉及一种由送料机构将线材送入镦锻机内被剪切后形成坯料的冷镦镦锻机及其工作方法。
背景技术
镦锻机是利用大滑块的来回运动通过冲模对主模内的坯料进行镦锻的设备。
镦锻机主要由机体、冲模组件、大滑块驱动机构、主模、顶料机构、送料机构和剪料机构组成。
传统的镦锻机,冲模组件的冲模座与大滑块固定,主模组件的凹模座被固定在对应的机体上,这种结构的镦锻机,必须设置单独的剪料机构和夹钳机构才能实现剪料和坯料的位移,镦锻位需设置镦锻凹模和顶料机构,因此机械机构多,结构复杂,故障多,操作难,镦锻效率低、进料和出料都比较麻烦。
目前使用得比较多的是通过冲模组件的冲模升降运动来实现镦锻工位间换位的一模两冲镦锻机以及多模多冲镦锻机。这两种镦锻机,目前大多是利用线材作为原材料进行镦锻,因此,在镦锻前必须要根据成型件的尺寸要求将线材剪断成坯料,为了实现这一工序,镦锻机都需要单独设置剪料装置和夹料输送装置,造成整个镦锻机的结构复杂,剪料、镦锻、顶出之间的配合要求高,不易实现高速镦锻,调试特别麻烦。
针对多模多冲的镦锻机,其凹模是水平布置,多个凹模固定不动,多个冲模只有一个方向移动进行镦段,由于凹模或冲模不会发生平移,因此,只能利用夹钳移动来传递坯料,坯料在凹模里只被镦锻一次。
另外,对于现有的镦锻机来说,凹模基本为整体结构,对于成型的凹模,型腔都是确定的,因此,在不更换凹模的前提下,基本只能对一种成型件进行镦锻,同时,也无法镦锻复杂的成型件。
发明内容
本发明要解决的技术问题是提供一种合模镦锻机及工作方法,剪料、递料、镦锻时坯料的夹持都通过合模组件的平移来实现,特别是坯料的顶出不需要完全顶出凹模,大大减少顶出行程,从而能成型特别长的制件和大大缩短大滑块的行程。
一种合模镦锻机,包括机体、可来回滑动地安装在机体上的大滑块、安装在大滑块上的冲模组件及驱动大滑块来回滑动的大滑块驱动机构、主模组件、安装在机体上的线材送料机构;冲模组件包括一个以上的冲模座;主模组件包括固定在机体上的主模座及安装在主模座内的剪料套;在机体上设有两个以上的工位,工位包括剪料位和一个以上的镦锻位;送料机构对应机体的剪料位;剪料套设置在机体的剪料位上;
一个镦锻位对应仅一个冲模座;
主模组件还包括合模组件,合模组件还包括可相对主模座来回滑动的第一合模座及第二合模座;第一合模座和第二合模座在机体的水平纵向方向上相对设置,在第一合模座靠近第二合模座的侧面仅设有一个第一安装空间,在第二合模座靠近第一合模座的侧面仅设有一个与第一安装空间在机体的水平纵向方向上相对设置的第二安装空间;
合模组件还包括驱动第一合模座的第一安装空间在全部工位间平移的第一合模驱动机构和驱动第二合模座的第二安装空间在全部工位间平移的第二合模驱动机构;
第一合模驱动机构包括仅驱动第一合模座平移的第一伺服电机,第二合模驱动机构包括仅驱动第二合模座平移的第二伺服电机;
第一安装空间和第二安装空间同时置于剪料位时,第一安装空间和第二安装空间合模形成剪料状态的剪料用的凹模安装孔;
第一安装空间和第二安装空间同时置于同一镦锻位时,第一安装空间和第二安装空间合模形成镦锻状态的镦锻用的凹模安装孔或合模形成仅夹持坯料用的夹持用的凹模安装孔;在 全部镦锻位,第一安装空间和第二安装空间均合模形成镦锻状态的镦锻用的凹模安装孔或合模形成仅夹持坯料用的夹持用的凹模安装孔;
第一合模座与第二合模座在不同工位同步平移的过程中,第一安装空间和第二安装空间合模形成递料状态的递料用的凹模安装孔;
剪料位的剪料状态的剪料用的凹模安装孔、镦锻位的镦锻状态的镦锻用的凹模安装孔或镦锻位的仅夹持坯料用的夹持用的凹模安装孔、递料状态的递料用的凹模安装孔为同一个凹模安装孔。
作为方案一的改进,第一合模驱动机构还包括设有第一驱动轴和第一安装部的第一驱动件、可转动地安装在第一驱动轴外的第一驱动滑件;第一安装部与伺服电机的输出轴安装在一起;第一驱动轴的轴心偏离第一安装部的轴心;在第一合模座上设有与第一驱动滑件配合的第一滑孔;第一驱动滑件课来回滑动地安装第一滑孔内;第二合模驱动机构还包括设有第二驱动轴和第二安装部的第二驱动件、可转动地安装在第二驱动轴外的第二驱动滑件;第二安装部与伺服电机的输出轴安装在一起;第二驱动轴的轴心偏离第二安装部的轴心;在第二合模座上设有与第二驱动滑件配合的第二滑孔;第二驱动滑件课来回滑动地安装第二滑孔内。
伺服电机驱动驱动件旋转,驱动件的驱动轴伸入合模座的滑块内直接驱动合模座,省略了连杆,结构简单紧凑,送料机构的安装和调试简单,大大降低工人要求和提高设备精确性,大大减少了驱动机构的故障率,提高了驱动可靠性。
作为方案一的改进,第一合模驱动机构还包括设有第一驱动轴和第一安装部的第一驱动件、可转动地安装在第一驱动轴外的第一驱动滑件;第一安装部与伺服电机的输出轴安装在一起;第一驱动轴的轴心偏离第一安装部的轴心;在第一合模座上设有与第一驱动滑件配合的第一滑孔;第一驱动滑件课来回滑动地安装第一滑孔内;第二合模驱动机构还包括设有第二驱动轴和第二安装部的第二驱动件、可转动地安装在第二第一合模驱动机构还包括连杆、设有第一驱动轴和第一安装部的第一驱动件;第一驱动轴的轴心偏离第一安装部的轴心;连杆一端可转动地安装在第一驱动件的第一驱动轴上,连杆的另一端与第一合模座仅可转动地枢接在一起;第二合模驱动机构还包括连杆、设有第二驱动轴和第二安装部的第二驱动件;第二驱动轴的轴心偏离第二安装部的轴心;连杆一端可转动地安装在第二驱动件的第二驱动轴上,连杆的另一端与第二合模座仅可转动地枢接在一起。
通过电机驱动驱动件旋转,驱动件的驱动轴驱动连杆运动,连杆驱动合模座在设置机体上的导向装置来回滑动。该合模驱动机构采用连杆机构,可以增大合模座来回滑动的行程。
作为方案一的改进,第一合模驱动机构还包括设有第一驱动轴和第一安装轴的第一驱动件及驱动肘杆机构;驱动肘杆结构包括第一连杆、第二连杆和第三连杆;第一驱动件的第一安装轴与第一伺服电机的输出轴安装在一起;第一驱动轴的轴心偏离第一安装轴的轴心;第一连杆的一端与第一驱动轴仅可转动地安装在一起,第一连杆的另一端与第二连杆的一端、第三连杆的一端枢接在一起;第二连杆的另一端的枢接位置与机体固定;第三连杆的另一端枢接在第一合模座上;第二合模驱动机构还包括设有第二驱动轴和第二安装轴的第二驱动件及驱动肘杆机构;驱动肘杆结构包括第四连杆、第五连杆和第六连杆;第二驱动件的第二安装轴与第二伺服电机的输出轴安装在一起;第二驱动轴的轴心偏离第二安装轴的轴心;第四连杆的一端与第二驱动轴仅可转动地安装在一起,第四连杆的另一端与第五连杆的一端、第六连杆的一端枢接在一起;第五连杆的另一端的枢接位置与机体固定;第六连杆的另一端枢接在第二合模座上。
采用肘杆机构,具有如下优点:提高合模座来回程速度,减小振动和冲击,使机器工作平稳、嗓声降低。
作为方案一至四的共同改进,机体包括机架体和机架座,机架座包括机座本体;机座本体的两端凸出机架体;在机座本体设有有容置腔,容置腔的两端部具有开口;第一合模座和第二合模座可来回直线滑动地安装在容置腔内;第一主模驱动机构、第二主模驱动机构安装在机架座上。
由于第一合模座和第二合模座均需要在机座本体的容置腔内来回滑动,机架包括机架体和机架座,机架座的一侧或两侧凸出机架体,第一可以减少机架体的宽度,从而大大减少机体的重量;第二可以增加第一合模座和第二合模座导向长度,使第一合模座和第二合模座来回运动更平稳;第三便于安装第一合模驱动机构和第二合模驱动机构。
作为方案一至四的共同改进,合模镦锻机还包括第一主模驱动机构位置调整机构和第二 主模驱动机构位置调整机构。通过第一主模驱动机构位置调整机构调整第一合模座运动到最前端和最后端的位置,通过第二主模驱动机构位置调整机构调整第一合模座运动到最前端和最后端的位置,消除加工误差和装配误差,确保第一剪料递料半模与第二剪料递料半模运动到剪料位时合成全圆的与剪料套共轴的剪料用的凹模;确保第一剪料递料半模与第二剪料递料半模运动到最后镦锻位时合成全圆的与末冲冲模共轴的镦锻用的凹模。在加工非常精确和装配误差非常小的情况下,可以不需要第一主模驱动机构位置调整机构调和第二主模驱动机构位置调整机构调。
作为方案一至四的共同改进,在第一合模座上的第一安装空间内安装有第一剪料递料半模,在第二合模座的第二安装空间内设有第二剪料递料半模;在第一剪料递料半模正对第二剪料递料半模的面上设有第一剪料递料部,在第二剪料递料半模上设有与第一剪料递料部正对并配合的第二剪料递料部;第一剪料递料部包括半圆柱形的第一半孔,第二剪料递料部包括与第一半孔配合的半圆柱形的第二半孔;第一剪料递料半模和第二剪料递料半模同时置于剪料位时,第一半孔和第二半孔合模形成一个全圆孔的剪料用的凹模;第一剪料递料半模和第二剪料递料半模同时置于同一镦锻位时,第一半孔与第二半孔合模形成全圆孔、同时第一剪料递料部与第二剪料递料部合模形成镦锻用的凹模或合模形成仅夹持坯料用的夹持用的凹模;在全部镦锻位,第一半孔与第二半孔均合模形成全圆孔、同时第一剪料递料部与第二剪料递料部均合模形成镦锻用的凹模或合模形成仅夹持坯料用的夹持用的凹模;第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模在不同工位同步平移的过程中,第一半孔与第二半孔均合模形成全圆孔、同时第一剪料递料部与第二剪料递料部均合模形成递料状态的递料用的凹模;剪料位的剪料状态的剪料用的凹模、镦锻位的镦锻状态的镦锻用的凹模或镦锻位的仅夹持坯料用的夹持用的凹模、递料状态的递料用的凹模为同一个凹模。
作为方案七的改进,主模组件上用来夹持及成型坯料的容置孔仅设置在第一剪料递料部和第二剪料递料部上;
第一剪料递料半模和第二剪料递料半模同时置于同一镦锻位时,第一剪料递料部与第二剪料递料部合模形成镦锻用的凹模;在全部镦锻位,第一剪料递料部与第二剪料递料部均合模形成镦锻用的凹模。
上述技术方案的合模镦锻机的工作方法包括以下步骤:
(1)第一剪料递料半模的第一半孔、第二剪料递料半模的第二半孔在剪料位合模形成一个全圆孔的剪料用的凹模并将由线材送料机构已送入到第一剪料递料半模和第二剪料递料半模之间线材夹持住;
(2)第一合模驱动机构驱动第一合模座及第一剪料递料半模、第二合模驱动机构驱动第二合模座及第二剪料递料半模同步直线平移;在平移过程中,第一剪料递料半模和第二剪料递料半模对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到与剪料位相邻的镦锻位;
(3)在与剪料位相邻的镦锻位,第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模停止平移;大滑块驱动机构驱动冲模组件朝向主模座方向运动对坯料进行镦锻;
(4)在机体上仅设有一个镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间并将已成型的坯料顶出;
在机体上设有两个以上的镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持未完全成型的坯料同步直线平移到相邻的下一个镦锻位、未完全成型的坯料被递送到下一个相邻的镦锻位进行镦锻直至坯料在全部的镦锻位被镦锻;在全部的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间并将已成型的坯料顶出;
步骤(1)至步骤(4)反复循环。
上述方案的合模镦锻机及工作方法的优点是,剪料、递料和镦锻用的全圆孔、甚至是成型用的凹模型腔全部都集成于安装在两个合模座上的两个剪料递料半模上,便于形成全圆的平移式合模组件,这样的剪料效果与全圆剪料效果一样,但省略了许多机构,而且更灵活使用,提高了机器操作性,提高了机器工作效率,减少了机器故障率!
作为方案七的改进,在机体上还设有气动打料机构;气动打料机构包括气缸,与气缸的活塞固定的打料件,气缸的活塞的轴线垂直剪料套的轴线。
上述技术方案的合模镦锻机的工作方法包括以下步骤:
(1)线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间,第一剪料递料半模的第一半孔和第二剪料递料半模的第二半孔在剪料位合模形成一个全圆孔的剪料用的凹模并夹持住线材;
(2)第一合模驱动机构驱动第一合模座及第一剪料递料半模、第二合模驱动机构驱动第二合模座及第二剪料递料半模同步直线平移,在平移过程中,第一剪料递料半模和第二剪料递料半模对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到与剪料位相邻的镦锻位;
(3)在与剪料位相邻的镦锻位,第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模停止平移;大滑块驱动机构驱动冲模组件朝向主模座方向运动对坯料进行镦锻;
(4)在机体上仅设有一个镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,气动打料机构的打料件从垂直坯料轴线的方向将已成型的坯料从第一剪料递料半模或第二剪料递料半模内打下来;
在机体上设有两个以上的镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持未完全成型的坯料同步直线平移到相邻的下一个镦锻位、未完全成型的坯料被递送到下一个相邻的镦锻位进行镦锻直至坯料在全部的镦锻位被镦锻;在全部的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,气动打料机构的打料件从垂直坯料轴线的方向将已成型的坯料从第一剪料递料半模或第二剪料递料半模内打下来;
步骤(1)至步骤(4)反复循环。
上述方案的合模镦锻机及工作方法的优点是,第一剪料递料半模和第二剪料递料半模分开一段距离后,通过打料件从垂直坯料轴线的方向将已成型的坯料从第一剪料递料半模或第二剪料递料半模内打下来,已成型的坯料不需要顶出行程,因此冲模组件的往复行程可以大大减少,非常有利于提高机器效率,因此可以成型很长规格的坯料。气动打料机一般采用数控气动打料机。
作为方案七的改进,合模镦锻机为镦锻钢球用的合模镦锻机;在机体上仅设有一个镦锻位;在主模座上对应机体的镦锻位设有镦锻凹模安装孔,在机体上对应镦锻凹模安装孔设有顶料机构;在镦锻凹模安装孔内安装有镦锻凹模,在镦锻凹模内设有半球形的凹模成型腔;冲模组件包括仅一个与镦锻位正对的冲模座,在冲模座内仅安装有一个冲模,在冲模内设有与凹模成型腔配合的半球形的冲模成型腔;凹模成型腔与冲模成型腔合模形成一个球形腔;第一剪料递料部仅包括半圆柱形的第一半孔,第二剪料递料部仅包括与第一半孔配合的半圆柱形的第二半孔;第一剪料递料半模和第二剪料递料半模同时置于镦锻位时,第一剪料递料部与第二剪料递料部合模形成仅夹持坯料用的夹持用的凹模。
上述技术方案的合模镦锻机的工作方法包括以下步骤:
(1)第一合模座的剪料递料半模置于剪料位,第二合模座的剪料递料半模远离剪料位,线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间;
(2)第一剪料递料半模的第一半孔和第二剪料递料半模的第二半孔在剪料位合模形成一个全圆孔的剪料用的凹模并夹持住线材;
(3)第一合模驱动机构驱动第一合模座及第一剪料递料半模、第二合模驱动机构驱动第二合模座及第二剪料递料半模同步直线平移,在平移过程中,第一剪料递料半模和第二剪料递料半模对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到镦锻位;
(4)在镦锻位,第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模停止平移;大滑块驱动机构驱动冲模组件朝向主模座方向运动,冲模顶住坯料确保坯料不会偏移时,第一合模驱动机构驱动第一合模座的第一剪料递料半模退回到剪料位,第二合模驱动机构驱动第二合模座的第二剪料递料半模朝向远离剪料位的方向运动到避开冲模的设定位置;冲模继续对坯料进行镦锻,镦锻完成后,顶料机构将已成型的钢球毛坯顶出;
步骤(1)至步骤(4)反复循环。
上述方案的合模镦锻机及工作方法的优点是,这种结构的镦锻机成型的钢球,由于是全圆剪料,成型的钢球表面球面度高,精度高,又由于是合模镦锻,冲模顶住坯料时不需要压缩空气或其他辅助机构,合模适时张开避空,保证单模镦锻的顺畅,非常有利于机器简单化和减少故障,钢球圆,质量好。
作为方案一至方案四的共同改进,在主模座上对应机体的镦锻位设有镦锻凹模安装孔,在机体上对应凹模安装孔设有顶料机构。在主模座设有凹模安装孔,凹模安装孔内安装有镦锻凹模,将成型坯料的成型腔部分或全部设置在镦锻凹模内,可镦锻成型非常复杂的制件。
作为方案一至方案四的共同改进,线材送料机构包括送料滑块装置、驱动送料滑块装置沿进料方向来回直线滑动的送料驱动机构,安装在机体外侧的导向装置、气缸、气缸座、相互配合用来夹持线材的上夹持件和下夹持件;送料驱动机构包括仅用来驱动送料滑块装置、与机体外侧固定的旋转型送料伺服电机;在下夹持件上设有对线材周向限位的限位槽,限位槽沿线材进料方向设置;送料滑块装置可沿线材进料方向来回滑动地安装在导向装置上;下夹持件和气缸座固定在送料滑块装置的顶面,下夹持件置于气缸座的正下方,气缸固定在气缸座的顶面,气缸的活塞杆穿过气缸座与上夹持件固定,上夹持件与下夹持件正对。
送料滑块装置采用自带的旋转型普通送料伺服电机驱动,大大减少传动环节,不仅传动可靠,传动精度高,同时采用气动结构驱动上夹持件,使线材的输送非常可靠,特别是线材的输送长度不需要其它机构控制,线材的长度由送料伺服电机直接来控制,精度高,使得线材的输送长度精确,因此,坯料的成型质量好;特别是用送料伺服电机,可以自动调节送料的长度,也就是坯料的长度;还有,当所需坯料的长度改变时,不需人工重新调机,通过参数设定就可完成数控自动调机,不但对操作工人的要求低,同时还大大提高效率。本发明相对于直线伺服电机,成本低。
作为上述方案的改进,送料驱动机构包括伺服电机、设有驱动轴的驱动件;驱动件安装在伺服电机的输出轴上;驱动轴的轴心偏离伺服电机输出轴的轴心;在送料滑块装置上设有与驱动轴配合、竖直方向的滑孔;驱动轴伸入滑孔内。
伺服电机驱动驱动件旋转,驱动件的驱动轴伸入送料滑块装置的滑块内直接驱动送料滑块装置,省略了连杆,结构简单紧凑,线材送料机构的安装和调试简单,大大降低对工人的技术要求和提高进料的精确性,大大减少了驱动机构的故障率,提高了驱动可靠性。
本发明的合模镦锻机及其工作方法的有益效果是:
合模组件的两个剪料递料半模在剪料位合模形成剪料状态的剪料用的凹模,在镦锻位合模形成镦锻状态的镦锻用的凹模或仅合模形成夹持坯料的夹持用凹模,在不同工位同步平移的过程中合模形成递料状态的递料用的凹模,甚至是成型用的凹模型腔全部都集成于安装在两个合模座上的两个剪料递料半模上,便于形成全圆的平移式的合模组件。
剪料通过第一剪料递料半模和第二剪料递料半模合模后同步平移来实现;坯料在不同工位的递送通过通过第一剪料递料半模和第二剪料递料半模合模后同步平移来实现;坯料的镦锻,通过在每一个镦锻位,第一剪料递料半模和第二剪料递料半模合模形成镦锻状态的镦锻用的凹模,利用冲模组件在镦锻位可对镦锻用的凹模坯料进行镦锻;因此,本发明不需要设置单独的剪料机构和夹钳机构就能实现剪料和坯料的位移,同时还能实现镦锻。这样的结构,对于其他全圆剪料的同类设备来说,省略了坯料从剪料位到镦锻位、及未完全成型的坯料在镦锻位间的递料需通过推料进夹钳机构、再由夹钳机构递料的递料机构,大大节省了镦锻机的结构,减少了机器故障,提高了机器可靠性。由于第一剪料递料半模和第二剪料递料半模设置在合模座内构成全圆合模组件,这样的剪料效果与全圆剪料效果一样,但省略了许多机构,而且更灵活使用,提高了机器操作性,提高了机器工作效率,减少了机器故障率!
另外,由于第一剪料递料半模和第二剪料递料半模之间的距离可以根据需要变化,不但可以镦锻复杂的成型件,而且还可以通过第一剪料递料半模和第二剪料递料半模分开一段距离将已成型的坯料从上往下从模缝中掉下来,已成型的坯料不需要顶出行程或顶出行程很小。因此可以大大缩短冲模组件复位行程,特别适合于镦锻特别长的坯料,不会因为特别长的坯料的长度问题坯料进入主模难,顶出也难的难题;以及单冲模镦锻时,解决了现有的全圆剪料的镦锻机需在剪料位安排剪料机构、及在剪料位和镦锻位间需设置夹钳递料机构而导致空间不够的技术难题,另一方面大大提高镦锻机的镦锻效率。也可以由剪料位的进料线材推动已成型的坯料成品往大滑块方向移动而脱离半模,避开冲模的位置,可以省略顶针系统和避开坯料成品长度过长时被冲模组件抵挡空间不够的问题,而且冲模组件的往复行程可以大大 减少,非常有利于提高机器效率。
附图说明
图1是本发明实施例1的镦锻机的立体示意图。
图2是本发明实施例1的镦锻机另一方向的立体示意图。
图3是本发明实施例1的镦锻机另一方向线材送料机构的立体示意图。
图4是本发明实施例1的合模组件、线材送料机构的立体示意图。
图5是本发明实施例1的合模组件的立体分解示意图。
图6是本发明实施例1的镦锻机右俯机体的立体示意图。
图7是本发明实施例1的大滑块及大滑块驱动机构的立体示意图。
图8是本发明实施例1的大滑块及大滑块驱动机构的立体分解示意图。
图9是本发明实施例1的镦锻机过剪料套与镦锻凹模的轴线剖切的剖视示意图。
图10本发明实施例2的镦锻机的立体示意图。
图11是本发明实施例2的合模组件的立体分解示意图。
图12是本发明实施例2的合模组件的立体示意图。
图13是本发明实施例2的镦锻机的部分结构的右俯示意图。
图14是图13的A-A剖视示意图。
图15本发明实施例3的镦锻机的立体示意图。
图16是本发明实施例3的合模组件的立体示意图。
图17是本发明实施例3的合模组件的立体分解示意图。
图18是本发明实施例3的镦锻机的部分结构的右俯示意图。
图19是图18的B-B剖视示意图。
图20是本发明实施例4的部分冲模组件和部分主模组件的立体示意图。
图21沿图20的两个冲模的轴线剖切的剖视示意图。
图22是图21的I部放大示意图。
图23为合模镦锻机的立体图。
图24为合模镦锻机机体与其他部分的分解图。
图25为合模镦锻机的爆炸图。
图26为去掉盖板后合模镦锻机的立体图。
图27为机体的立体图。
图28为冲模组件的立体图。
图29为大滑块驱动机构第一种结构的结构示意图。
图30为大滑块驱动机构第一种结构的分解图。
图31为大滑块驱动机构第二种结构的示意图。
图32为大滑块驱动机构第三种结构的示意图。
图33为大滑块驱动机构第三种结构的分解图。
图34为合模镦锻机另一结构的立体图。
图35为合模镦锻机另一结构的剖视图。
图36为机体与送料机构的结构示意图。
具体实施方式
下面结合附图和具体实施方式对本发明进行进一步详细说明。
实施例1
如图1、图2、图9所示,一种镦锻钢球用的合模镦锻机,包括机体1、可来回滑动地安装在机体1上的大滑块2、安装在大滑块2上的冲模组件3及驱动大滑块2来回滑动的大滑块驱动机构、主模组件3、安装在机体1上的线材送料机构。
如图1、图2所示,机体1包括机架体4和机架座5,机架座5包括机座本体6及端板7、端板8,机座本体6具有容置腔9,容置腔9的两端部具有开口10、开口11,端板7固定在位于开口10处的机座本体6上,端板8固定在位于开口11处的机座本体6上。机座本体6的两端凸出机架体4。
在机架体4上仅设有两个工位,即剪料位12和镦锻位13;送料机构对应机架体4的剪料位12。
如图2、图3所示,线材送料机构还包括送料滑块装置、驱动送料滑块装置沿进料方向来回直线滑动的送料驱动机构,安装在机体1外侧和送料滑块装置间的导向装置、气缸14、相互配合用来夹持线材的上夹持件15和下夹持件16。送料驱动机构包括旋转型的送料伺服电机17、固定有驱动轴18的驱动盘19。
在机体1外侧凸设有电机固定部20和与电机固定部20正对的导向装置固定部21。导向装置固定部21包括水平部22和连接水平部22和机体1的连接部23。送料伺服电机17固定在电机固定部20上。
导向装置包括直线导轨24和与直线导轨24配合的导轨滑座25。送料滑块装置包括一体式结构的送料座26和门框形的气缸座27。直线导轨24固定在导向装置固定部21的水平部22的底面,导轨滑座25安装在直线导轨24上并被直线导轨24支撑。送料座26包括相互平行的下安装部28、上安装部29,和连接下安装部28和上安装部29的垂直部30。送料座26的下安装部28固定在导轨滑座25的底面;气缸座27固定在送料座26的上安装部29的顶面,送料座26的上安装部29与气缸座27形成沿线材进料方向的两侧开口的方框形容置腔31,下夹持件16固定在送料座26的上安装部29的顶面即容置腔31的底面,气缸14固定在气缸座27的顶面即容置腔31的顶面,气缸14的活塞杆32穿过气缸座27即容置腔31的顶壁与上夹持件15固定,上夹持件15与下夹持件16正对。直线导轨24和导轨滑座25可以采用标准件,导向可靠精确,大大提高送料精度。直线导轨24朝下固定在机体1外侧,不易占灰尘。
如图2、图3所示,送料伺服电机17固定在电机固定部20上。驱动盘19与送料伺服电机17的输出轴33同轴固定。驱动轴18安装在驱动盘19背离送料伺服电机17的端面上。驱动轴18的轴心偏离送料伺服电机17输出轴33的轴心。在送料座26的垂直部30上设有与驱动轴18配合、竖直方向的滑孔34在驱动轴18上还安装有驱动滑件35,驱动滑件35可来回滑动地安装滑孔34内。送料伺服电机17驱动驱动盘19旋转,驱动盘19的驱动轴18伸入送料座26的滑孔34内直接驱动送料滑块装置,省略了连杆,结构简单紧凑,线材送料机构的安装和调试简单,大大降低工人要求和提高设备精确性,大大减少了驱动机构的故障率,提高了驱动可靠性。采用驱动盘19和驱动轴18的结构,驱动盘19和驱动轴18均容易加工,因此制造成本低。
送料滑块装置的导轨滑座25可沿线材进料方向来回滑动地安装在直线导轨24上。下夹持件16和气缸座27固定在送料座26的顶面,上夹持件15置于气缸座27的正下方,气缸14固定在气缸座27的顶面,气缸14的活塞杆32穿过气缸座27与上夹持件15固定。
送料滑块装置采用旋转型普通送料伺服电机17驱动,不仅传动可靠,传动精度高,同时采用气动结构驱动上夹持件15,使线材的输送非常可靠,特别是线材的输送长度不需要其它机构控制,线材的长度由送料伺服电机17直接来控制,精度高,使得线材的输送长度精确,因此,制件的成型质量好;特别是用送料伺服电机17,可以自动调节送料的长度,也就是坯料的长度;还有,当所需坯料的长度改变时,不需人工重新调机,通过参数设定就可完成数控自动调机,不但对操作工人的要求低,同时还大大提高效率。本发明相对于直线伺服电机,成本低。
如图1、图4、图5、图6、图9所示,主模组件3包括固定在机架体4上的主模座36、剪料套37、镦锻凹模38、合模组件39。在主模座36上对应机体1的剪料位12设有剪料套安装孔40,对应机架体4的镦锻位13设有镦锻凹模安装孔41。剪料套37安装在剪料套安装孔40内。镦锻凹模38安装在镦锻凹模安装孔41内。在镦锻凹模38内设有半球形的凹模成型腔42。在机架体4上对应镦锻凹模安装孔41设有还设有顶料机构。
如图4、图5、图9所示,顶料机构包括顶针43、顶棒44、顶棒驱动件45、驱动顶棒驱动件45沿顶棒44轴线方向来回运动的顶棒驱动件驱动装置。顶棒驱动件驱动装置包括伺服电机46,安装座47、固定有驱动轴48的驱动件49。驱动件49包括驱动盘50,驱动轴48设置在驱动盘50背离伺服电机46的端面上,在驱动盘50朝向伺服电机46的端面上设有安装轴51。驱动轴48的轴心偏离安装轴51的轴心。安装座47固定在机体1的右侧面上。安装轴51穿过安装座47与伺服电机46的输出轴52固定。在顶棒驱动件45上设有与驱动轴48配合的驱动孔53;在驱动轴48还安装有驱动滑件54,驱动滑件54可来回滑动地安装在驱动件孔53内。
如图4至图6、图9所示,合模组件39还包括可相对主模座36来回滑动的结构对称的第一合模座55及第二合模座56。在容置腔9的底面设有与第一合模座55配合的导向槽112, 第一合模座55可来回直线滑动地安装在容置腔9的导向槽112内。在容置腔9的底面设有与第二合模座56配合的导向槽113,第二合模座56可来回直线滑动地安装在容置腔9的导向槽113内。第一合模座55和第二合模座56在容置腔9的水平纵向方向上相对设置,在第一合模座55靠近第二合模座56的侧面仅设有一个第一安装空间57,在第二合模座56靠近第一合模座55的侧面仅设有一个与第一安装空间57在机架体4的水平纵向方向上相对设置且对称的第二安装空间58。合模组件39还包括驱动第一合模座55的第一安装空间57在剪料位12和镦锻位13间平移的第一合模驱动机构和驱动第二合模座56的第二安装空间58在在剪料位12和镦锻位13间平移的第二合模驱动机构,第一合模驱动机构位置调整机构,第二合模驱动机构位置调整机构。
在第一合模座55上的第一安装空间57内安装有第一剪料递料半模59,在第二合模座56的第二安装空间58内设有第二剪料递料半模60;在第一剪料递料半模59正对第二剪料递料半模60的面上设有第一剪料递料部61,在第二剪料递料半模60上设有与第一剪料递料部61正对并配合的第二剪料递料部62。第一剪料递料部61仅包括半圆柱形的第一半孔,第二剪料递料部62仅包括与第一半孔配合的半圆柱形的第二半孔。第二剪料递料半模60与第一剪料递料半模59的结构完全对称。
如图2、图9所示,冲模组件3包括仅一个固定在大滑块2上的冲模座63,在冲模座63内仅安装有一个冲模64,在冲模64内设有与凹模成型腔42配合的半球形的冲模成型腔65。
如图1、图2、图4、图5、图9所示,第一合模驱动机构包括仅驱动第一合模座55平移的第一伺服电机66,第一安装座67、设有第一驱动轴的第一驱动件69及驱动肘杆机构。第一驱动件69包括第一驱动盘70,第一驱动轴68安装在第一驱动盘70背离第一伺服电机66的端面上;在第一驱动盘70朝向第一伺服电机66的端面上设有安装轴71。第一驱动轴68的轴心偏离安装轴71的轴心。
驱动肘杆结构包括第一连杆72、第二连杆73和第三连杆74。第一合模驱动机构位置调整机构包括固定在前侧端板7外侧的伺服电机75,与伺服电机75同轴固定的螺杆76,调整块77;在调整块77上设有与螺杆76配合的螺纹孔,在左前侧的端盖7上设有与调整块77配合的滑孔78。调整块77安装在滑孔78内,调整块77的螺纹孔螺纹连接在螺杆76上。
第一安装座67固定在前侧机座本体6的右侧,第一伺服电机66固定在第一安装座67的顶部,第一驱动件69的安装轴71从下向上穿过第一安装座67安装在第一伺服电机66的输出轴上,第一连杆72的一端与第一驱动轴68仅可转动地安装在一起,第一连杆72的另一端与第二连杆73的一端、第三连杆74的一端枢接在一起;第二连杆73的另一端枢接在调整块77上;第三连杆74的另一端枢接在第一合模座55上。
第二合模驱动机构包括仅驱动第二合模座56平移的第二伺服电机79,第二安装座80、设有第二驱动轴81的第二驱动件82及驱动肘杆机构。第二驱动件82包括第二驱动盘83,第二驱动轴81安装在第二驱动盘83背离第二伺服电机79的端面上;在第二驱动盘83朝向第二伺服电机79的端面上设有安装轴84。第二驱动轴81的轴心偏离安装轴84的轴心。
驱动肘杆结构包括第四连杆85、第五连杆86和第六连杆87。第二合模驱动机构位置调整机构包括固定在后侧端板8外侧的伺服电机88,与伺服电机88同轴固定的螺杆89,调整块90;在调整块90上设有与螺杆89配合的螺纹孔92,在后侧的端盖上设有与调整块90配合的滑孔91。调整块90安装在滑孔91内,调整块90的螺纹孔92螺纹连接在螺杆89上。
第二安装座80固定在后侧的机座本体6的右侧,第二伺服电机79固定在第二安装座80的顶部,第二驱动件82的安装轴84从下向上穿过第二安装座80安装在第二伺服电机79的输出轴上,第四连杆85的一端与第二驱动轴81仅可转动地安装在一起,第四连杆85的另一端与第五连杆86的一端、第六连杆87的一端枢接在一起;第五连杆86的另一端枢接在调整块90上;第六连杆87的另一端枢接在第二合模座56上。
如图1、图6至图8所示,大滑块驱动机构包括两端支撑在机体1上的曲轴93、轴套94、轴套95、第一小滑块96和第二小滑块97、伺服电机98。
曲轴93包括第一中心轴99,与第一中心轴99同轴的第二中心轴100,设置在第一中心轴99和第二中心轴100之间的圆盘101、圆盘102,以及设置在两个圆盘101、圆盘102之间的偏心轴103;圆盘101、圆盘102的轴心偏离第一中心轴99的轴心和偏心轴103的轴心,第一中心轴99、第二中心轴100、圆盘101、圆盘102和偏心轴103一体锻造而成。本实用新型曲轴93的强度高,延长了曲轴93的使用寿命,而且保证了曲轴93的位置精度。
在机体1的一侧设有轴套安装孔104,在机体1的另一侧设有轴套安装孔105。曲轴93的一端安装在轴套安装孔104内,另一端安装在轴套安装孔105内。轴套94从机体1外侧安装在曲轴93的第一中心轴99外和轴套安装孔104内,轴套95从机体1另一侧的外侧安装在曲轴93的第二中心轴100外和轴套安装孔105内。伺服电机98固定在机体1外侧伺服电机98的输出轴与穿过轴套94的曲轴93一端的第一中心轴99安装在一起。
大滑块2包括滑块大镶件106和滑块小镶件107。在滑块大镶件106上设有贯通滑块大镶件106两侧、开口朝下的凹槽,在滑块大镶件106朝向主模组件3的一侧设有安装冲模组件3的冲模组件容置槽。在凹槽两侧的侧壁上设有凹陷部,在凹陷部内均固定有导向镶件。大滑块2的凹槽、两侧的导向镶件形成滑槽。两导向镶件相对的面形成第一导向平面和第二导向平面。在滑块大镶件106朝向滑块小镶件107的面上设有定位槽。在滑块小镶件107上设有与滑块大镶件106的滑槽配合的凹槽,在滑块小镶件107朝向滑块大镶件106的面上设有定位凸条。
在第一小滑块96上设有与曲轴93的偏心轴103配合的半圆柱形曲面的凹槽108,在第一小滑块96相对第二小滑块97的面上设有定位槽109。在第二小滑块97上设有与曲轴93的偏心轴103配合的半圆柱形曲面的凹槽110,在第二小滑块97相对第一小滑块96的面上设有定位凸条111。第一小滑块96的凹槽108和第二小滑块97的凹槽110合抱在曲轴93的偏心轴103上,第二小滑块97的定位凸条111伸入到第一小滑块96的定位槽109内,第一小滑块96和第二小滑块97固定在一起;曲轴93的偏心轴103与第一小滑块96和第二小滑块97仅可转动地安装在一起。
滑块小镶件107上的定位凸条伸入大滑块2的定位槽内,滑块小镶件107固定在滑块大镶件106上,滑块大镶件106上的滑槽与滑块小镶件107上的凹槽形成闭合的滑孔。
固定在一起的第一小滑块96和第二小滑块97仅可来回滑动地安装在滑块大镶件106的滑孔内,第一小滑块96在第一导向平面上来回滑动,第二小滑块97在第一导向平面上来回滑动。
第一剪料递料半模59和第二剪料递料半模60同时置于剪料位12时,第一半孔和第二半孔合模形成一个全圆孔的剪料用的凹模。第一剪料递料半模59和第二剪料递料半模60同时置于同一镦锻位13时,第一半孔与第二半孔合模形成仅夹持坯料用的夹持用的全圆孔的凹模。
第一合模座55及第一剪料递料半模59、第二合模座56及第二剪料递料半模60在不同工位同步平移的过程中,第一半孔与第二半孔均合模形成递料状态的递料用的全圆孔的凹模。
剪料位12的剪料状态的剪料用的凹模、镦锻位13的镦锻状态的镦锻用的凹模或镦锻位13的仅夹持坯料用的夹持用的凹模、递料状态的递料用的凹模为同一个凹模。
镦锻钢球的合模镦锻机的工作方法包括以下步骤:
(1)第一合模座55的剪料递料半模置于剪料位12,第二合模座56的剪料递料半模远离剪料位12,线材经送料机构送入到第一剪料递料半模59和第二剪料递料半模60之间;
(2)第一剪料递料半模59的第一半孔和第二剪料递料半模60的第二半孔在剪料位12合模形成一个全圆孔的剪料用的凹模并夹持住线材;
(3)第一合模驱动机构驱动第一合模座55及第一剪料递料半模59、第二合模驱动机构驱动第二合模座56及第二剪料递料半模60同步直线平移,在平移过程中,第一剪料递料半模59和第二剪料递料半模60对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到镦锻位13;
(4)在镦锻位13,第一合模座55及第一剪料递料半模59、第二合模座56及第二剪料递料半模60停止平移;大滑块驱动机构驱动冲模组件3朝向主模座36方向运动,冲模64顶住坯料确保坯料不会偏移时,第一合模驱动机构驱动第一合模座55的第一剪料递料半模59退回到剪料位12,第二合模驱动机构驱动第二合模座56的第二剪料递料半模60朝向远离剪料位12的方向运动到避开冲模64的设定位置;冲模64继续对坯料进行镦锻,镦锻完成后,顶料机构将已成型的钢球毛坯顶出;
步骤(1)至步骤(4)反复循环。
实施例2
如图10至图14所示,与实施例1不同的是,在机架体151上设有三个工位,剪料位152,镦锻位153、镦锻位154。
如图1、图4、图5、图9所示,主模组件3包括固定在机架体151上的主模座155、剪料套156、合模组件。在主模座155上对应机体1的剪料位152设有剪料套安装孔157。剪料套156安装在剪料套安装孔157内。在主模座155上无镦锻凹模安装孔,在主模组件170一侧也不需要顶料机构。。
第一安装空间为设置在第一合模座162上开口朝向第二合模座163、上下贯通第一合模座162的第一凹槽158,第二安装空间为设置在第二合模座163上开口朝向第一合模座162、与第一凹槽158完全对称的第二凹槽159。第一剪料夹持半模160外周的形状与第一凹槽158的形状完全相同。第二剪料夹持半模161与第一剪料夹持半模160完全对称。第一剪料递料部为贯通第一合模座162的半圆柱形的第一半孔164,第二剪料递料部为与第一半孔164配合、贯通第一合模座162的的半圆柱形的第二半孔165。
冲模组件176包括两个固定在大滑块177内的与剪料位152相邻的冲模座166、远离剪料位152的冲模座167,在冲模座166内安装有一个冲模168,在冲模座167内安装有一个冲模169。冲模168对应镦锻位153,冲模169对应镦锻位154。
第一合模驱动机构包括仅驱动第一合模座162平移的第一伺服电机171,第一安装座172、固定有第一驱动轴173和第一安装轴的第一驱动件174、第一连杆175。第一驱动件174包括第一驱动盘183,第一驱动轴173安装在第一驱动盘183背离第一伺服电机171的端面上;第一安装轴设置在第一驱动盘183朝向第一伺服电机171的端面上。第一驱动轴173的轴心偏离第一安装轴的轴心。
在机座本体178的容置腔179的两个侧壁上设有导向条180,在第一安装座172上设有与导向条180配合的导向槽181。通过导向槽181安装在导向条180上将第一安装座172安装在机座本体178上。
第一伺服电机171固定在第一安装座172的顶部,第一驱动件174的第一安装轴从下向上穿过第一安装座172安装在第一伺服电机171的输出轴182上,第一连杆175的一端与第一驱动轴173仅可转动地安装在一起,第一连杆175的另一端与第一合模座162仅可转动地枢接在一起。
第一合模驱动机构位置调整机构包括固定在前侧端板184外侧的伺服电机185,与伺服电机185同轴固定的螺杆186;在第一安装座172上设有与螺杆186配合的螺纹孔187,第一安装座172的螺纹孔187螺纹连接在螺杆186上。
第二合模驱动机构、第二合模驱动机构位置调整机构与第一合模驱动机构、第一合模驱动机构位置调整机构结构相同,安装关系相同,大致与第一合模驱动机构、第一合模驱动机构位置调整机构结构对称。
合模镦锻机的工作方法包括以下步骤:
(1)第一剪料夹持半模160的第一半孔164、第二剪料夹持半模161的第二半孔165在剪料位152合模形成一个全圆孔的剪料用的凹模并将由线材送料机构已送入到第一剪料夹持半模160和第二剪料夹持半模161之间线材夹持住;
(2)第一合模驱动机构驱动第一合模座162及第一剪料夹持半模160、第二合模驱动机构驱动第二合模座163及第二剪料夹持半模161同步直线平移;在平移过程中,第一剪料夹持半模160和第二剪料夹持半模161对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到与剪料位152相邻的镦锻位153;
(3)在与剪料位152相邻的镦锻位153,第一合模座162及第一剪料夹持半模160、第二合模座163及第二剪料夹持半模161停止平移;大滑块驱动机构驱动冲模组件176朝向主模座155方向运动对坯料进行镦锻;
(4)在与剪料位152相邻的镦锻位153镦锻完成后,已合模的第一剪料夹持半模160和第二剪料夹持半模161夹持未完全成型的坯料同步直线平移到镦锻位154、未完全成型的坯料被递送到镦锻位154进行镦锻;镦锻完成后,已合模的第一剪料夹持半模160和第二剪料夹持半模161夹持已成型的坯料同步直线平移到剪料位152、将已成型的坯料递送到剪料位152后分开,线材经送料机构送入到第一剪料夹持半模160和第二剪料夹持半模161之间并将已成型的坯料顶出;
步骤(1)至步骤(4)反复循环。
实施例3
如图15至图19所示,与实施例2不同的是,在剪料位201,机体202上还设有气动打 料机构。气动打料机构包括气缸支座203、气缸204,打料件205。气缸支座203固定在剪料位201的机体202的顶部,气缸204固定在气缸支座203的顶部,与气缸204的活塞固定的活塞杆206穿过气缸支座203与打料件205固定。气缸204的活塞杆206的轴线垂直剪料套207的轴线。
第一合模驱动机构包括仅驱动第一合模座208平移的第一伺服电机209,安装座210、第一驱动件212、第一驱动滑件214。第一驱动件212包括第一驱动盘213、安装在第一驱动盘213背离第一伺服电机209的端面上的第一驱动轴211;设置在第一驱动盘213朝向第一伺服电机209的端面上的第一安装轴。第一驱动轴211的轴心偏离第一安装轴的轴心。在第一合模座208上设有与第一驱动滑件214配合、竖直方向的第一滑孔215;第一驱动滑件214课来回滑动地安装第一滑孔215内。
在机座本体216的容置腔217的两个侧壁上设有导向条218,在第一安装座210上设有与导向条218配合的导向槽219。通过导向槽219安装在导向条218上将安装座210安装在机座本体216上。
第一伺服电机209固定在安装座210的顶部,第一驱动件212的第一安装轴从下向上穿过安装座210安装在第一伺服电机209的输出轴上,第一驱动滑件214可转动地安装在第一驱动轴211外,第一驱动滑件214可来回滑动地安装第一滑孔215内。
第二合模驱动机构、第二合模驱动机构位置调整机构与第一合模驱动机构、第一合模驱动机构位置调整机构结构相同,安装关系相同,大致与第一合模驱动机构、第一合模驱动机构位置调整机构结构对称。
合模镦锻机的工作方法包括以下步骤:
(1)线材经送料机构送入到第一剪料递料半模220和第二剪料递料半模221之间,第一剪料递料半模220的第一半孔和第二剪料递料半模221的第二半孔在剪料位201合模形成一个全圆孔的剪料用的凹模并夹持住线材;
(2)第一合模驱动机构驱动第一合模座208及第一剪料递料半模220、第二合模驱动机构驱动第二合模座222及第二剪料递料半模221同步直线平移,在平移过程中,第一剪料递料半模220和第二剪料递料半模221对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到与剪料位201相邻的镦锻位223;
(3)在与剪料位201相邻的镦锻位223,第一合模座208及第一剪料递料半模220、第二合模座222及第二剪料递料半模221停止平移;大滑块驱动机构驱动冲模组件224朝向主模组件225方向运动对坯料进行镦锻;
(4)在与剪料位201相邻的镦锻位223镦锻完成后,已合模的第一剪料递料半模220和第二剪料递料半模221夹持未完全成型的坯料同步直线平移到相邻的镦锻位226、未完全成型的坯料被递送到相邻的镦锻位226进行镦锻直至坯料在全部的镦锻位被镦锻;在全部的镦锻位均镦锻完成后,已合模的第一剪料递料半模220和第二剪料递料半模221夹持已成型的坯料同步直线平移到剪料位201、将已成型的坯料递送到剪料位201后分开,气动打料机构的打料件205从垂直坯料轴线的方向将已成型的坯料从第一剪料递料半模220或第二剪料递料半模221内打下来;
步骤(1)至步骤(4)反复循环。
实施例4
与实施例2不同的,如图20至图22所示,第一剪料递料半模231的第一剪料递料部由包括半圆柱形的第一半孔232,和用来成型坯料头部的半圆柱形的第一凹模型腔孔233。第一凹模型腔孔233的孔径大于第一半孔232的孔径。
第二剪料递料半模234与第一剪料半模231的结构完全对称。。
实施例5
在本实施例中,以一摸一冲合模镦锻机来说明合模镦锻机的具体结构和工作方法。
如图24和图25所示,合模镦锻机包括机体501、安装在机体501上的冲模组件502、驱动冲模组件502运动的大滑块驱动机构503、设在机体501上的送料机构504和合模组件505。
如图24和图25所示,机体501包括机架506、座体507和盖板508;机架506包括机架体509和机架座510,机架座510包括机座本体511及端板512,机座本体511具有容置腔513,容置腔513的两端部具有开口514,端板512固定在位于开口处的机座本体511上。在本实施例中,机架座510和座体507的两端凸出机架体509,当然,如图27所示,机架座510 和座体507也可以是两端均未凸出机架体509。座体507具有滑槽,座体507设在容置腔513内;盖板508安装在座体507上。该结构,只要拆卸掉端板512,则能将座体507连同合模组件505一起抽出,因此,便于整体安装和拆卸合模组件505。
如图28所示,冲模组件502包括冲头座515、大滑块516及冲头垫板517;冲头座515安装在机架体509上;大滑块516滑动的安装在冲头座515上,冲头垫板517固定在大滑块516上;冲头垫板517用于安装冲头518。
如图29和图30所示,大滑块驱动机构503的第一种结构包括曲轴519、连杆520及飞轮驱动装置;曲轴519安装在机架体509上;连杆520的一端枢接在曲轴519上,另一端枢接在大滑块516上;飞轮驱动装置包括飞轮521、第一传动轴522、第一齿轮523及第二齿轮524,第一传动轴522安装在机架体509上,飞轮521安装在第一传动轴522上,第一齿轮523安装在第一传动轴522上,第二齿轮524安装在曲轴519上,第一齿轮523与第二齿轮524相啮合。在曲轴519上还安装有第三齿轮525。
当飞轮521旋转时,飞轮521带动第一传动轴522旋转,第一传动轴522通过第一齿轮523带动第二齿轮524旋转,第二齿轮524带动曲轴519旋转,曲轴519带动连杆520运动,连杆520驱动大滑块516在冲头座515上滑动,大滑块516通过冲头垫板517带动冲头518运动,以实现镦锻动作。由于飞轮521能存储很大的能量,因此,产生较大的镦锻力。
如图31所示,为了实现冲头518的运动,大滑块驱动机构503除了为上述结构外,还可以设计成如下结构,即大滑块驱动机构503的第二种结构包括飞轮521、曲轴519及肘杆传动机构;肘杆传动机构包括第一连杆526、第二连杆527及第三连杆528;曲轴519安装在机架体509上;飞轮521安装在曲轴519上;第一连杆526的一端枢接在曲轴519上,第一连杆526的另一端枢接在第二连杆527与第三连杆528枢接的枢接轴上;第二连杆527的一端枢接在机架体509上;第三连杆528的一端枢接在大滑块516上。
当飞轮521旋转时,飞轮521带动曲轴519旋转,曲轴519带动第一连杆526运动,第一连杆526带动第二连杆527和第三连杆528运动,通过第三连杆528带动大滑块516滑动。
如图32和图33所示,大滑块驱动机构503的第三种结构包括冲头驱动伺服电机529、冲头驱动凸轮530及肘杆传动机构。肘杆传动机构包括第一连杆526、第二连杆527及第三连杆528;冲头驱动伺服电机529安装在机架体509上;冲头驱动凸轮530安装在冲头驱动伺服电机529的输出轴上;第一连杆526的一端枢接在冲头驱动凸轮530上,第一连杆526的另一端枢接在第二连杆527与第三连杆528枢接的枢接轴上;第二连杆527的一端枢接在机架体509上;第三连杆528的一端枢接在大滑块516上。
当冲头驱动伺服电机529工作时,冲头驱动伺服电机529带动冲头驱动凸轮530旋转,冲头驱动凸轮530带动第一连杆526运动,第一连杆526带动第二连杆527和第三连杆528运动,通过第三连杆528带动大滑块516滑动。在镦锻过程中,采用冲头驱动伺服电机529驱动大滑块,在一个镦锻行程中,可以灵活的控制大滑块各时段的运动速度,以达到控制冲头前进和后退速度的目的;另外,根据不同坯料的镦锻要求,也可以控制大滑块整个镦锻行程的速度;因此,对大滑块运动速度的控制灵活、快捷。
如图26所示,在滑槽内设有合模组件505。合模组件505包括第一合模座531及第二合模座532,第一合模座531和第二合模座532均滑动的设在滑槽内,第一合模座531和第二合模座532在机体501的水平纵向方向上相对设置,在第一合模座531靠近第二合模座532的侧面设有第一安装空间533,在第二合模座532靠近第一合模座531的侧面设有第二安装空间534,在第一安装空间内安装有第一剪料夹持半模535,在第二安装空间内安装有第二剪料夹持半模536;当然,第一剪料夹持半模535与第一合模座531可以为一体结构,第二剪料夹持半模536与第二合模座532可以为一体结构;还设有驱动第一合模座531平移的第一合模驱动机构和驱动第二合模座532平移的第二合模驱动机构;当第一剪料夹持半模535和第二剪料夹持半模536运动到与剪料套574对应的位置时,第一剪料夹持半模535和第二剪料夹持半模536之间形成剪料位;当第一剪料夹持半模535和第二剪料夹持半模536运动到与冲模组件502对应的位置时,第一剪料夹持半模535和第二剪料夹持半模536之间形成镦锻位。
如图25所示,第一合模驱动机构包括第一驱动块驱动装置、第一驱动连杆537及第一驱动块538。第一驱动块驱动装置包括第二传动轴539、第四齿轮(未示出)。第二传动轴539安装在机体501上,第四齿轮安装在第二传动轴539上。第一驱动连杆537的一端枢接在偏 离第四齿轮旋转中心的端面上,第一驱动连杆537的另一端枢接在第一驱动块538上;第一驱动块538滑动设置在第一合模座531的第一驱动块滑动槽548内,在第一驱动块538上设有第一驱动槽540,在第一合模座531上设有伸入或穿过第一驱动槽540的第一驱动杆541;第二合模驱动机构包括第二驱动块驱动装置、第二驱动连杆542及第二驱动块543;第二驱动块驱动装置包括安装在第二传动轴539上的第五齿轮544。第二驱动连杆542的一端枢接在偏离第五齿轮544旋转中心的端面上,第二驱动连杆542的另一端枢接在第二驱动块543上;第二驱动块543滑动设置在第二合模座532的第二驱动块滑动槽545内,在第二驱动块543上设有第二驱动槽546;在第二合模座532上设有伸入或穿过第二驱动槽546的第二驱动杆547。
如图25所示,第一驱动块滑动槽548是在第一合模座531相对于第一驱动块538滑动的前后方向的远离第一剪料夹持半模安装位置的一侧侧面具有开口的开口槽,第一驱动块538穿过开口槽,第一驱动块538在开口槽内前后滑动;第一驱动杆541从上至下穿过第一合模座531和设置在开口槽内的第一驱动块538。第二驱动块滑动槽545是在第二合模座532相对于第二驱动块543滑动的前后方向的远离第二剪料夹持半模安装位置的一侧侧面具有开口的开口槽,第二驱动块543穿过开口槽,第二驱动块543在开口槽内前后滑动;第二驱动杆547从上至下穿过第二合模座532和设置在开口槽内的第二驱动块543。采用此种结构,只需要将第一、第二驱动杆分别从第一、第二合模座上抽出后,合模组件505和第一、第二驱动块之间很容易分离,这样便于安装和拆卸合模组件505和第一、第二驱动块,可以快速、便利地进行合模组件505的更换工作。
为了提高第一驱动块538运动的平稳性,在座体507一伸出端部的前侧和后侧分别设有第一导向块549,第一导向块549具有供第一驱动块538滑动的第一导向槽550。为了提高第二驱动块543运动的平稳性,在座体507另一伸出端部的前侧和后侧分别设有第二导向块551,第二导向块551具有供第二驱动块543滑动的第二导向槽552。
上述第一种结构的第一、第二合模组件驱动机构与第一种大滑块驱动机构配合使用。
如图34至图35所示,第一合模驱动机构第二种结构为设在机体501与第一合模座531之间的第一蜗轮蜗杆驱动装置,第二合模驱动机构第二种结构为设在机体501与第二合模座532之间设有第二蜗轮蜗杆驱动装置。
第一蜗轮蜗杆驱动装置包括安装在机体501上的固定座553、安装在固定座553上的第一伺服电机554、固定在固定座553上的第一蜗杆555、设在固定座553上的第一蜗轮556、第一摆杆557;第一伺服电机554驱动第一蜗杆555旋转,第一蜗杆555驱动第一蜗轮556旋转,第一蜗轮556驱动第一摆杆557摆动,第一摆杆557的一端枢接在第一合模座531上,通过第一摆杆557带动第一合模座531平移运动;第二蜗轮蜗杆驱动装置包括安装在机体501上的固定座553、安装在固定座553上的第二伺服电机558、固定在固定座553上的第二蜗杆559、设在固定座553上的第二蜗轮560、第二摆杆561;第二伺服电机558驱动第二蜗杆559旋转,第二蜗杆559驱动第二蜗轮560旋转,第二蜗轮560驱动第二摆杆561摆动,第二摆杆561的一端枢接在第二合模座532上,通过第二摆杆561带动第二合模座532平移运动。
该结构,第一合模座和第二合模座的反作用力由蜗轮蜗杆结构承受。其产生的有益效果是:首先,在合模镦锻机中,由于蜗轮蜗杆结构的传动比大,因此,能实现合模座的快速运动;其次,蜗轮与蜗杆之间的啮合为线接触,其具有较大的承载能力,同时,蜗轮蜗杆还具有自锁的能力,针对合模镦锻机这一特殊的设备,当合模组件在剪料和位移过程中或冲模组件在镦锻坯料时,第一合模座和第二合模座会承受较大的反作用力,该反作用力会传递到蜗轮蜗杆结构上,而由于蜗轮蜗杆具有上述特性,因此,反作用力主要由蜗轮蜗杆结构承受而不会传递到伺服电机上,从而有效的保护了伺服电机;再有,蜗轮蜗杆传动相当于螺旋传动,为多齿啮合传动,故传动平稳、噪音很小,从而降低了合模镦锻机的工作噪音。
第二种结构的第一、第二合模组件驱动机构可与第一种、第二或第三种结构的冲头驱动机构配合使用。
如图25所示,要实现上述送料,需要在机架体509内位于导向轮562与送料驱动机构563之间设有剪料套580。
线材经导向轮562导向后经剪料套580进入到剪料模581内。
当然,也可以采用自冲模组件502向合模组件505方向送料。采用该种方式时,在机体501上位于冲模组件502与合模组件505之间设有剪料套。
上述合模镦锻机的工作方法是:
(1)第一合模驱动机构和第二合模驱动机构驱动第一合模座531和第二合模座532张开,第一剪料夹持半模535和第二剪料夹持半模536也张开。
(2)线材经送料机构504由合模组件505向冲模组件502方向或者由冲模组件502向合模组件505方向送入到第一剪料夹持半模535和第二剪料夹持半模536之间。
(3)第一合模驱动机构和第二合模驱动机构分别驱动第一合模座531和第二合模座532在座体507内平移运动,第一剪料夹持半模535和第二剪料夹持半模536合模夹持住线材。
(4)第一合模驱动机构和第二合模驱动机构驱动合模组件505整体平移,合模组件505在平移过程中,第一剪料夹持半模535和第二剪料夹持半模536对夹持的线材进行位移全圆剪料。
(5)剪料完成后,大滑块驱动机构503驱动冲模组件502运动,利用冲模组件502的冲头518对第一剪料夹持半模535和第二剪料夹持半模536之间的坯料进行镦锻。
(6)镦锻完成后,第一剪料夹持半模535和第二剪料夹持半模536在第一合模驱动机构和第二合模驱动机构的作用下张开,位于第一剪料夹持半模535和第二剪料夹持半模536之间的成型件掉下,实现最终镦锻的成型件离开镦锻位。
上述合模镦锻机及其工作方法,剪料通过第一剪料夹持半模535和第二剪料夹持半模536的合模后平移来实现,坯料的位移通过合模组件505的平移来实现,同时,第一剪料夹持半模535和第二剪料夹持半模536处在合模状态下,利用冲模组件502可直接对第一剪料夹持半模535和第二剪料夹持半模536之间的坯料进行镦锻,因此,本发明不需要设置单独的剪料机构和夹钳机构就能实现剪料和坯料的位移,同时还能实现镦锻,简化了镦锻机的结构,另一方面大大提高镦锻机的镦锻效率。另外,现有镦锻机及其工作方法,需要依次单独对多个模具进行拆卸、安装和调试,在拆卸、安装和调试模具时,需要让镦锻机停止很长的工作时间,不利于镦锻机的工作效率。本发明的合模镦锻机及其工作方法中,由于剪料模由第一剪料夹持半模535和第二剪料夹持半模536形成,凹模可由第一剪料夹持半模535和第二剪料夹持半模536形成,剪料模、凹模设置在合模座内构成一体化合模组件505,生产工人可以在镦锻机外的合模组件505中进行各项产品镦锻准备工作。当需要更换剪料模、凹模时,只要将合模组件505整体从机体501上取出,然后直接更换事先准备好的另外的合模组件505即可实现合模镦锻机模具更换和调整。采用本发明这样的结构和方法,镦锻机的停机更换和调整只需花费很少的时间,提高了镦锻机的工作效率。由于第一剪料夹持半模535和第二剪料夹持半模536组成了剪料模及凹模,且方便调整第一剪料夹持半模535和第二剪料夹持半模536之间的距离,因此,可以镦锻复杂的成型件。
在本实施例中,也可以设置成一模二冲的合模镦锻机结构。
实施例6。
在本实施例中,以一摸一冲合模镦锻机来说明合模镦锻机的具体结构和工作方法。
图24和图25所示,合模镦锻机包括机体601、安装在机体601上的冲模组件602、驱动冲模组件602运动的大滑块驱动机构603、设在机体601上的送料机构604和送料机构605。
如图24和图25所示,机体601包括机架606、座体607和盖板608;机架606包括机架体609和机架座610,机架座610包括机座本体611及端板612,机座本体611具有容置腔613,容置腔613的两端部具有开口614,端板612固定在位于开口处的机座本体611上。在本实施例中,机架座610和座体607的两端凸出机架体609,当然,如图27所示,机架座610和座体607也可以是两端均未凸出机架体609。座体607具有滑槽,座体607设在容置腔613内;盖板608安装在座体607上。该结构,只要拆卸掉端板612,则能将座体607连同送料机构605一起抽出,因此,便于整体安装和拆卸送料机构605。
如图28所示,冲模组件602包括冲头座615、大滑块616及冲头垫板617;冲头座615安装在机架体609上;大滑块616滑动的安装在冲头座615上,冲头垫板617固定在大滑块616上;冲头垫板617用于安装冲头618。
如图29和图30所示,大滑块驱动机构603的第一种结构包括曲轴619、连杆620及飞轮驱动装置;曲轴619安装在机架体609上;连杆620的一端枢接在曲轴619上,另一端枢接在大滑块616上;飞轮驱动装置包括飞轮621、第一传动轴622、第一齿轮623及第二齿轮624,第一传动轴622安装在机架体609上,飞轮621安装在第一传动轴622上,第一齿轮623安装在第一传动轴622上,第二齿轮624安装在曲轴619上,第一齿轮623与第二齿轮 624相啮合。在曲轴619上还安装有第三齿轮625。
当飞轮621旋转时,飞轮621带动第一传动轴622旋转,第一传动轴622通过第一齿轮623带动第二齿轮624旋转,第二齿轮624带动曲轴619旋转,曲轴619带动连杆620运动,连杆620驱动大滑块616在冲头座615上滑动,大滑块616通过冲头垫板617带动冲头618运动,以实现镦锻动作。由于飞轮621能存储很大的能量,因此,产生较大的镦锻力。
如图31所示,为了实现冲头618的运动,大滑块驱动机构603除了为上述结构外,还可以设计成如下结构,即大滑块驱动机构603的第二种结构包括飞轮621、曲轴619及肘杆传动机构;肘杆传动机构包括第一连杆626、第二连杆627及第三连杆628;曲轴619安装在机架体609上;飞轮621安装在曲轴619上;第一连杆626的一端枢接在曲轴619上,第一连杆626的另一端枢接在第二连杆627与第三连杆628枢接的枢接轴上;第二连杆627的一端枢接在机架体609上;第三连杆628的一端枢接在大滑块616上。
当飞轮621旋转时,飞轮621带动曲轴619旋转,曲轴619带动第一连杆626运动,第一连杆626带动第二连杆627和第三连杆628运动,通过第三连杆628带动大滑块616滑动。
如图32和图33所示,大滑块驱动机构603的第三种结构包括冲头驱动伺服电机629、冲头驱动凸轮630及肘杆传动机构。肘杆传动机构包括第一连杆626、第二连杆627及第三连杆628;冲头驱动伺服电机629安装在机架体609上;冲头驱动凸轮630安装在冲头驱动伺服电机629的输出轴上;第一连杆626的一端枢接在冲头驱动凸轮630上,第一连杆626的另一端枢接在第二连杆627与第三连杆628枢接的枢接轴上;第二连杆627的一端枢接在机架体609上;第三连杆628的一端枢接在大滑块616上。
当冲头驱动伺服电机629工作时,冲头驱动伺服电机629带动冲头驱动凸轮630旋转,冲头驱动凸轮630带动第一连杆626运动,第一连杆626带动第二连杆627和第三连杆628运动,通过第三连杆628带动大滑块616滑动。在镦锻过程中,采用冲头驱动伺服电机629驱动大滑块,在一个镦锻行程中,可以灵活的控制大滑块各时段的运动速度,以达到控制冲头前进和后退速度的目的;另外,根据不同坯料的镦锻要求,也可以控制大滑块整个镦锻行程的速度;因此,对大滑块运动速度的控制灵活、快捷。
如图26所示,在滑槽内设有送料机构605。送料机构605包括第一合模座631及第二合模座632,第一合模座631和第二合模座632均滑动的设在滑槽内,第一合模座631和第二合模座632在机体的水平纵向方向上相对设置,在第一合模座631靠近第二合模座632的侧面设有第一安装空间633,在第二合模座632靠近第一合模座631的侧面设有第二安装空间634,在第一安装空间内安装有第一剪料夹持半模635,在第二安装空间内安装有第二剪料夹持半模636;当然,第一剪料夹持半模与第一合模座可以为一体结构,第二剪料夹持半模与第二合模座可以为一体结构;还设有驱动第一合模座平移的第一合模驱动机构和驱动第二合模座平移的第二合模驱动机构;当第一剪料夹持半模635和第二剪料夹持半模636运动到与剪料套对应的位置时,第一剪料夹持半模635和第二剪料夹持半模636之间形成剪料位;当第一剪料夹持半模635和第二剪料夹持半模636运动到与冲模组件对应的位置时,第一剪料夹持半模635和第二剪料夹持半模636之间对应于镦锻位。
如图25所示,第一合模驱动机构包括第一驱动块驱动装置、第一驱动连杆637及第一驱动块638。第一驱动块驱动装置包括第二传动轴639、第四齿轮(未示出)。第二传动轴639安装在机体601上,第四齿轮安装在第二传动轴639上。第一驱动连杆637的一端枢接在偏离第四齿轮旋转中心的端面上,第一驱动连杆637的另一端枢接在第一驱动块638上;第一驱动块638滑动设置在第一合模座631的第一驱动块滑动槽640内,在第一驱动块638上设有第一驱动槽641,在第一合模座631上设有伸入或穿过第一驱动槽的第一驱动杆642;第二合模驱动机构包括第二驱动块驱动装置、第二驱动连杆643及第二驱动块644;第二驱动块驱动装置包括安装在第二传动轴639上的第五齿轮645。第二驱动连杆643的一端枢接在偏离第五齿轮645旋转中心的端面上,第二驱动连杆643的另一端枢接在第二驱动块644上;第二驱动块644滑动设置在第二合模座632的第二驱动块滑动槽646内,在第二驱动块644上设有第二驱动槽647;在第二合模座632上设有伸入或穿过第二驱动槽的第二驱动杆648。
如图25所示,第一驱动块滑动槽640是在第一合模座631相对于第一驱动块638滑动的前后方向的远离第一剪料夹持半模535安装位置的一侧侧面具有开口的开口槽,第一驱动块638穿过开口槽,第一驱动块638在开口槽内前后滑动;第一驱动杆642从上至下穿过第一合模座631和设置在开口槽内的第一驱动块638。第二驱动块滑动槽646是在第二合模座632 相对于第二驱动块644滑动的前后方向的远离第二剪料夹持半模536安装位置的一侧侧面具有开口的开口槽,第二驱动块644穿过开口槽,第二驱动块644在开口槽内前后滑动;第二驱动杆648从上至下穿过第二合模座632和设置在开口槽内的第二驱动块644。采用此种结构,只需要将第一、第二驱动杆分别从第一、第二合模座上抽出后,合模组件和第一、第二驱动块之间很容易分离,这样便于安装和拆卸合模组件和第一、第二驱动块,可以快速、便利地进行合模组件的更换工作。
为了提高第一驱动块638运动的平稳性,在座体607一伸出端部的前侧和后侧分别设有第一导向块649,第一导向块649具有供第一驱动块638滑动的第一导向槽650。为了提高第二驱动块644运动的平稳性,在座体607另一伸出端部的前侧和后侧分别设有第二导向块651,第二导向块651具有供第二驱动块644滑动的第二导向槽652。
上述第一种结构的第一、第二合模组件驱动机构与第一种大滑块驱动机构配合使用。
如图34至图35所示,第一合模驱动机构第二种结构为设在机体与第一合模座631之间的第一蜗轮蜗杆驱动装置,第二合模驱动机构第二种结构为设在机体与第二合模座632之间设有第二蜗轮蜗杆驱动装置。
第一蜗轮蜗杆驱动装置包括安装在机体601上的固定座653、安装在固定座653上的第一伺服电机654、固定在固定座653上的第一蜗杆655、设在固定座653上的第一蜗轮656、第一摆杆657;第一伺服电机654驱动第一蜗杆655旋转,第一蜗杆655驱动第一蜗轮656旋转,第一蜗轮656驱动第一摆杆657摆动,第一摆杆657的一端枢接在第一合模座上,通过第一摆杆657带动第一合模座631平移运动;第二蜗轮蜗杆驱动装置包括安装在机体上的固定座653、安装在固定座653上的第二伺服电机658、固定在固定座653上的第二蜗杆659、设在固定座653上的第二蜗轮660、第二摆杆661;第二伺服电机658驱动第二蜗杆659旋转,第二蜗杆659驱动第二蜗轮660旋转,第二蜗轮660驱动第二摆杆661摆动,第二摆杆661的一端枢接在第二合模座上,通过第二摆杆661带动第二合模座632平移运动。
第二种结构的第一、第二合模组件驱动机构可与第一种、第二或第三种结构的冲头驱动机构配合使用。
在实施例5的基础上,在机体601上位于合模组件的后方安装有主模座662,主模座662内设有顶针孔,在顶针孔内设有顶针663。
如图25所示,要实现上述送料,需要在机架体609内位于导向轮664与送料驱动机构665之间设有剪料套682,该剪料套682安装在主模座662。
线材100经导向轮664导向后经剪料套682进入到剪料模683内。
当然,也可以采用自冲模组件602向送料机构605方向送料。采用该种方式时,在机体上位于冲模组件与合模组件之间设有剪料套。
如图24、图25、图34所示,在机体上设有顶料机构。顶料机构40包括安装在机体601上的顶料伺服电机684、通过顶料伺服电机684驱动的顶出装置及通过顶出装置驱动的顶棒685。

Claims (16)

  1. 一种合模镦锻机,包括机体、可来回滑动地安装在机体上的大滑块、安装在大滑块上的冲模组件及驱动大滑块来回滑动的大滑块驱动机构、主模组件、安装在机体上的线材送料机构;冲模组件包括一个以上的冲模座;主模组件包括固定在机体上的主模座及安装在主模座内的剪料套;在机体上设有两个以上的工位,所述的工位包括剪料位和一个以上的镦锻位;送料机构对应机体的剪料位;剪料套设置在机体的剪料位上;
    其特征在于:一个镦锻位对应仅一个所述的冲模座;
    所述的主模组件还包括合模组件,所述的合模组件还包括可相对主模座来回滑动的第一合模座及第二合模座;第一合模座和第二合模座在机体的水平纵向方向上相对设置,在第一合模座靠近第二合模座的侧面仅设有一个第一安装空间,在第二合模座靠近第一合模座的侧面仅设有一个与第一安装空间在机体的水平纵向方向上相对设置的第二安装空间;
    所述的合模组件还包括驱动第一合模座的第一安装空间在全部工位间平移的第一合模驱动机构和驱动第二合模座的第二安装空间在全部工位间平移的第二合模驱动机构;
    第一合模驱动机构包括仅驱动第一合模座平移的第一伺服电机,第二合模驱动机构包括仅驱动第二合模座平移的第二伺服电机;
    第一安装空间和第二安装空间同时置于剪料位时,第一安装空间和第二安装空间合模形成剪料状态的剪料用的凹模安装孔;
    第一安装空间和第二安装空间同时置于同一镦锻位时,第一安装空间和第二安装空间合模形成镦锻状态的镦锻用的凹模安装孔或合模形成仅夹持坯料用的夹持用的凹模安装孔;在全部镦锻位,第一安装空间和第二安装空间均合模形成镦锻状态的镦锻用的凹模安装孔或合模形成仅夹持坯料用的夹持用的凹模安装孔;
    第一合模座与第二合模座在不同工位同步平移的过程中,第一安装空间和第二安装空间合模形成递料状态的递料用的凹模安装孔;
    剪料位的剪料状态的剪料用的凹模安装孔、镦锻位的镦锻状态的镦锻用的凹模安装孔或镦锻位的仅夹持坯料用的夹持用的凹模安装孔、递料状态的递料用的凹模安装孔为同一个凹模安装孔。
  2. 根据权利要求1所述的一种合模镦锻机,其特征在于:所述的第一合模驱动机构还包括设有第一驱动轴和第一安装部的第一驱动件、可转动地安装在第一驱动轴外的第一驱动滑件;第一安装部与伺服电机的输出轴安装在一起;第一驱动轴的轴心偏离第一安装部的轴心;在第一合模座上设有与第一驱动滑件配合的第一滑孔;第一驱动滑件课来回滑动地安装第一滑孔内;
    所述的第二合模驱动机构还包括设有第二驱动轴和第二安装部的第二驱动件、可转动地安装在第二驱动轴外的第二驱动滑件;第二安装部与伺服电机的输出轴安装在一起;第二驱动轴的轴心偏离第二安装部的轴心;在第二合模座上设有与第二驱动滑件配合的第二滑孔;第二驱动滑件课来回滑动地安装第二滑孔内。
  3. 根据权利要求1所述的一种合模镦锻机,其特征在于:第一合模驱动机构还包括连杆、设有第一驱动轴和第一安装部的第一驱动件;第一驱动轴的轴心偏离第一安装部的轴心;连杆一端可转动地安装在第一驱动件的第一驱动轴上,连杆的另一端与第一合模座仅可转动地枢接在一起;
    第二合模驱动机构还包括连杆、设有第二驱动轴和第二安装部的第二驱动件;第二驱动轴的轴心偏离第二安装部的轴心;连杆一端可转动地安装在第二驱动件的第二驱动轴上,连杆的另一端与第二合模座仅可转动地枢接在一起。
  4. 根据权利要求1所述的一种合模镦锻机,其特征在于:第一合模驱动机构还包括设有第一驱动轴和第一安装轴的第一驱动件及驱动肘杆机构;驱动肘杆结构包括第一连杆、第二连杆和第三连杆;第一驱动件的第一安装轴与第一伺服电机的输出轴安装在一起;第一驱动轴的轴心偏离第一安装轴的轴心;第一连杆的一端与第一驱动轴仅可转动地安装在一起,第一连杆的另一端与第二连杆的一端、第三连杆的一端枢接在一起;第二连杆的另一端的枢接位置与机体固定;第三连杆的另一端枢接在第一合模座上;
    第二合模驱动机构还包括设有第二驱动轴和第二安装轴的第二驱动件及驱动肘杆机构;驱动肘杆结构包括第四连杆、第五连杆和第六连杆;第二驱动件的第二安装轴与第二伺服电机的输出轴安装在一起;第二驱动轴的轴心偏离第二安装轴的轴心;第四连杆的一端与第二驱动轴仅可转动地安装在一起,第四连杆的另一端与第五连杆的一端、第六连杆的一端枢接在一起;第五连杆的另一端的枢接位置与机体固定;第六连杆的另一端枢接在第二合模座上。
  5. 根据权利要求1至4任意一项权利要求所述的一种镦锻机,其特征在于:所述的机体包括机架体和机架座,所述的机架座包括机座本体;机座本体的两端凸出机架体;在机座本体设有有容置腔,容置腔的两端部具有开口;第一合模座和第二合模座可来回直线滑动地安装在容置腔内;第一主模驱动机构、第二主模驱动机构安装在机架座上。
  6. 根据权利要求1至4任意一项权利要求所述的一种镦锻机,其特征在于:所述的合模镦锻机还包括第一主模驱动机构位置调整机构和第二主模驱动机构位置调整机构。
  7. 根据权利要求1至4任意一项权利要求所述的一种合模镦锻机,其特征在于:在第一合模座上的第一安装空间内安装有第一剪料递料半模,在第二合模座的第二安装空间内设有第二剪料递料半模;在第一剪料递料半模正对第二剪料递料半模的面上设有第一剪料递料部,在第二剪料递料半模上设有与第一剪料递料部正对并配合的第二剪料递料部;第一剪料递料部包括半圆柱形的第一半孔,第二剪料递料部包括与第一半孔配合的半圆柱形的第二半孔;
    第一剪料递料半模和第二剪料递料半模同时置于剪料位时,第一半孔和第二半孔合模形成一个全圆孔的剪料用的凹模;
    第一剪料递料半模和第二剪料递料半模同时置于同一镦锻位时,第一半孔与第二半孔合模形成全圆孔、同时第一剪料递料部与第二剪料递料部合模形成镦锻用的凹模或合模形成仅夹持坯料用的夹持用的凹模;在全部镦锻位,第一半孔与第二半孔均合模形成全圆孔、同时第一剪料递料部与第二剪料递料部均合模形成镦锻用的凹模或合模形成仅夹持坯料用的夹持用的凹模;
    第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模在不同工位同步平移的过程中,第一半孔与第二半孔均合模形成全圆孔、同时第一剪料递料部与第二剪料递料部均合模形成递料状态的递料用的凹模;
    剪料位的剪料状态的剪料用的凹模、镦锻位的镦锻状态的镦锻用的凹模或镦锻位的仅夹持坯料用的夹持用的凹模、递料状态的递料用的凹模为同一个凹模。
  8. 根据权利要求7所述的一种合模镦锻机,其特征在于:所述的主模组件上用来夹持及成型坯料的容置孔仅设置在第一剪料递料部和第二剪料递料部上;
    第一剪料递料半模和第二剪料递料半模同时置于同一镦锻位时,第一剪料递料部与第二剪料递料部合模形成镦锻用的凹模;在全部镦锻位,第一剪料递料部与第二剪料递料部均合模形成镦锻用的凹模。
  9. 根据权利要求7所述的一种合模镦锻机,其特征在于:在机体上还设有气动打料机构;气动打料机构包括气缸,与气缸的活塞固定的打料件,气缸的活塞的轴线垂直剪料套的轴线。
  10. 根据权利要求7所述的一种合模镦锻机,其特征在于:所述的合模镦锻机为镦锻钢球用 的合模镦锻机;在机体上仅设有一个镦锻位;在主模座上对应机体的镦锻位设有镦锻凹模安装孔,在机体上对应镦锻凹模安装孔设有顶料机构;在镦锻凹模安装孔内安装有镦锻凹模,在镦锻凹模内设有半球形的凹模成型腔;所述的冲模组件包括仅一个与镦锻位正对的冲模座,在冲模座内仅安装有一个冲模,在冲模内设有与凹模成型腔配合的半球形的冲模成型腔;凹模成型腔与冲模成型腔合模形成一个球形腔;
    第一剪料递料部仅包括半圆柱形的第一半孔,第二剪料递料部仅包括与第一半孔配合的半圆柱形的第二半孔;
    第一剪料递料半模和第二剪料递料半模同时置于镦锻位时,第一剪料递料部与第二剪料递料部合模形成仅夹持坯料用的夹持用的凹模。
  11. 根据权利要求1至4任意一项权利要求所述的一种合模镦锻机,其特征在于:在主模座上对应机体的镦锻位设有镦锻凹模安装孔,在机体上对应凹模安装孔设有顶料机构。
  12. 根据权利要求1至4任意一项权利要求所述的一种镦锻机,其特征在于:所述的线材送料机构包括送料滑块装置、驱动送料滑块装置沿进料方向来回直线滑动的送料驱动机构,安装在机体外侧的导向装置、气缸、气缸座、相互配合用来夹持线材的上夹持件和下夹持件;所述的送料驱动机构包括仅用来驱动送料滑块装置、与机体外侧固定的旋转型送料伺服电机;在下夹持件上设有对线材周向限位的限位槽,限位槽沿线材进料方向设置;送料滑块装置可沿线材进料方向来回滑动地安装在导向装置上;下夹持件和气缸座固定在送料滑块装置的顶面,下夹持件置于气缸座的正下方,气缸固定在气缸座的顶面,气缸的活塞杆穿过气缸座与上夹持件固定,上夹持件与下夹持件正对。
  13. 根据权利要求12所述的一种镦锻机,其特征在于:所述的送料驱动机构包括伺服电机、设有驱动轴的驱动件;驱动件安装在伺服电机的输出轴上;驱动轴的轴心偏离伺服电机输出轴的轴心;在送料滑块装置上设有与驱动轴配合、竖直方向的滑孔;驱动轴伸入滑孔内。
  14. 一种如权利要求8所述的合模镦锻机的工作方法,其特征在于:工作方法包括以下步骤:
    (1)第一剪料递料半模的第一半孔、第二剪料递料半模的第二半孔在剪料位合模形成一个全圆孔的剪料用的凹模并将由线材送料机构已送入到第一剪料递料半模和第二剪料递料半模之间线材夹持住;
    (2)第一合模驱动机构驱动第一合模座及第一剪料递料半模、第二合模驱动机构驱动第二合模座及第二剪料递料半模同步直线平移;在平移过程中,第一剪料递料半模和第二剪料递料半模对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到与剪料位相邻的镦锻位;
    (3)在与剪料位相邻的镦锻位,第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模停止平移;大滑块驱动机构驱动冲模组件朝向主模座方向运动对坯料进行镦锻;
    (4)在机体上仅设有一个镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间并将已成型的坯料顶出;
    在机体上设有两个以上的镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持未完全成型的坯料同步直线平移到相邻的下一个镦锻位、未完全成型的坯料被递送到下一个相邻的镦锻位进行镦锻直至坯料在全部的镦锻位被镦锻;在全部的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间并将已成型的坯料顶出;
    步骤(1)至步骤(4)反复循环。
  15. 一种如权利要求9所述的合模镦锻机的工作方法,其特征在于:工作方法包括以下步骤:
    (1)线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间,第一剪料递料半模的第一半孔和第二剪料递料半模的第二半孔在剪料位合模形成一个全圆孔的剪料用的凹模并夹持住线材;
    (2)第一合模驱动机构驱动第一合模座及第一剪料递料半模、第二合模驱动机构驱动第二合模座及第二剪料递料半模同步直线平移,在平移过程中,第一剪料递料半模和第二剪料递料半模对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到与剪料位相邻的镦锻位;
    (3)在与剪料位相邻的镦锻位,第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模停止平移;大滑块驱动机构驱动冲模组件朝向主模座方向运动对坯料进行镦锻;
    (4)在机体上仅设有一个镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,气动打料机构的打料件从垂直坯料轴线的方向将已成型的坯料从第一剪料递料半模或第二剪料递料半模内打下来;
    在机体上设有两个以上的镦锻位,在与剪料位相邻的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持未完全成型的坯料同步直线平移到相邻的下一个镦锻位、未完全成型的坯料被递送到下一个相邻的镦锻位进行镦锻直至坯料在全部的镦锻位被镦锻;在全部的镦锻位镦锻完成后,已合模的第一剪料递料半模和第二剪料递料半模夹持已成型的坯料同步直线平移到剪料位、将已成型的坯料递送到剪料位后分开,气动打料机构的打料件从垂直坯料轴线的方向将已成型的坯料从第一剪料递料半模或第二剪料递料半模内打下来;步骤(1)至步骤(4)反复循环。
  16. 一种如权利要求10所述的合模镦锻机的工作方法,其特征在于:工作方法包括以下步骤:
    (1)第一合模座的剪料递料半模置于剪料位,第二合模座的剪料递料半模远离剪料位,线材经送料机构送入到第一剪料递料半模和第二剪料递料半模之间;
    (2)第一剪料递料半模的第一半孔和第二剪料递料半模的第二半孔在剪料位合模形成一个全圆孔的剪料用的凹模并夹持住线材;
    (3)第一合模驱动机构驱动第一合模座及第一剪料递料半模、第二合模驱动机构驱动第二合模座及第二剪料递料半模同步直线平移,在平移过程中,第一剪料递料半模和第二剪料递料半模对被夹持的线材进行位移全圆剪料并夹持将被剪切的坯料递送到镦锻位;
    (4)在镦锻位,第一合模座及第一剪料递料半模、第二合模座及第二剪料递料半模停止平移;大滑块驱动机构驱动冲模组件朝向主模座方向运动,冲模顶住坯料确保坯料不会偏移时,第一合模驱动机构驱动第一合模座的第一剪料递料半模退回到剪料位,第二合模驱动机构驱动第二合模座的第二剪料递料半模朝向远离剪料位的方向运动到避开冲模的设定位置;冲模继续对坯料进行镦锻,镦锻完成后,顶料机构将已成型的钢球毛坯顶出;
    步骤(1)至步骤(4)反复循环。
PCT/CN2015/089004 2014-09-03 2015-09-06 一种合模镦锻机及工作方法 WO2016034151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410444833.7 2014-09-03
CN201410444833.7A CN106031941B (zh) 2014-09-03 2014-09-03 一种合模镦锻机及工作方法

Publications (1)

Publication Number Publication Date
WO2016034151A1 true WO2016034151A1 (zh) 2016-03-10

Family

ID=55439154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089004 WO2016034151A1 (zh) 2014-09-03 2015-09-06 一种合模镦锻机及工作方法

Country Status (2)

Country Link
CN (1) CN106031941B (zh)
WO (1) WO2016034151A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107756742A (zh) * 2017-11-15 2018-03-06 广东瑞捷光电股份有限公司 闪光灯镜片生产装置
CN108827749A (zh) * 2018-09-14 2018-11-16 长沙开元仪器有限公司 一种包样机构
CN108856617A (zh) * 2018-07-27 2018-11-23 泉州市三业智能科技有限公司 结构改良的冲锻设备
CN110369672A (zh) * 2019-08-29 2019-10-25 山东汇锋传动股份有限公司 摆辗机用整体模具送料装置及汽车半轴坯件的制作方法
CN113857409A (zh) * 2021-10-21 2021-12-31 苏州拓迅机电有限公司 一种基于工业模具生产的冷镦装置及其使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421944B (zh) * 2018-03-19 2023-12-29 温州市翔潮汽车零部件有限公司 半空心冷镦机
CN108580791A (zh) * 2018-05-30 2018-09-28 李勤华 一种扬声器t铁冷镦上料装置
CN109604493A (zh) * 2018-12-25 2019-04-12 温州市鸿图汽车零部件有限公司 一种冷镦成型机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574609A (en) * 1984-03-21 1986-03-11 Microdot Inc. Nut forming apparatus
WO2005077566A1 (en) * 2004-02-16 2005-08-25 Betaswage Pty Ltd Improvements in swage presses
CN201552277U (zh) * 2009-11-25 2010-08-18 杨东佐 一种镦锻机
CN101817054A (zh) * 2010-03-12 2010-09-01 杨东佐 一种凹模回转镦锻机及工作方法
CN101817052A (zh) * 2010-03-12 2010-09-01 杨东佐 一种多工位凹模回转镦锻机及工作方法
CN103394621A (zh) * 2013-08-09 2013-11-20 杨东佐 一种单向旋转顶针可调节的镦锻机及工作方法
CN103394620A (zh) * 2013-08-09 2013-11-20 杨东佐 一种单向旋转镦锻机及工作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027680A1 (de) * 1999-06-07 2000-12-14 Volker Wengenroth Verfahren und Vorrichtung zum Herstellen von Umformteilen aus Drahtrohlingen
CN2379233Y (zh) * 1999-06-30 2000-05-24 杨东佐 多工位冷镦成型机
CN2472841Y (zh) * 2001-03-20 2002-01-23 正曜企业股份有限公司 锻造部件成型机切模的改进构造
CN200970618Y (zh) * 2006-11-17 2007-11-07 杨东佐 一种金属成型设备
US9156077B2 (en) * 2012-03-29 2015-10-13 L&P Property Management Company Method of making border wire
CN203304455U (zh) * 2013-06-20 2013-11-27 大连职业技术学院 引线冲压模具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574609A (en) * 1984-03-21 1986-03-11 Microdot Inc. Nut forming apparatus
WO2005077566A1 (en) * 2004-02-16 2005-08-25 Betaswage Pty Ltd Improvements in swage presses
CN201552277U (zh) * 2009-11-25 2010-08-18 杨东佐 一种镦锻机
CN101817054A (zh) * 2010-03-12 2010-09-01 杨东佐 一种凹模回转镦锻机及工作方法
CN101817052A (zh) * 2010-03-12 2010-09-01 杨东佐 一种多工位凹模回转镦锻机及工作方法
CN103394621A (zh) * 2013-08-09 2013-11-20 杨东佐 一种单向旋转顶针可调节的镦锻机及工作方法
CN103394620A (zh) * 2013-08-09 2013-11-20 杨东佐 一种单向旋转镦锻机及工作方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107756742A (zh) * 2017-11-15 2018-03-06 广东瑞捷光电股份有限公司 闪光灯镜片生产装置
CN108856617A (zh) * 2018-07-27 2018-11-23 泉州市三业智能科技有限公司 结构改良的冲锻设备
CN108856617B (zh) * 2018-07-27 2023-07-14 泉州市三业智能科技有限公司 结构改良的冲锻设备
CN108827749A (zh) * 2018-09-14 2018-11-16 长沙开元仪器有限公司 一种包样机构
CN110369672A (zh) * 2019-08-29 2019-10-25 山东汇锋传动股份有限公司 摆辗机用整体模具送料装置及汽车半轴坯件的制作方法
CN113857409A (zh) * 2021-10-21 2021-12-31 苏州拓迅机电有限公司 一种基于工业模具生产的冷镦装置及其使用方法

Also Published As

Publication number Publication date
CN106031941B (zh) 2018-04-24
CN106031941A (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
WO2016034151A1 (zh) 一种合模镦锻机及工作方法
WO2017036425A1 (zh) 一种镦锻机
WO2016034148A1 (zh) 一种镦锻机及工作方法
CN105642807A (zh) 一种合模镦锻机及工作方法
CN107433317A (zh) 多级锻压机的运送设备
CN106513811A (zh) 棒料剪断设备
CN109940088B (zh) 一种伺服送料纵向移模多工位触点制造设备
CN105382134B (zh) 一种数控顶出线材镦锻机及工作方法
US4631950A (en) Progressive former with removable tooling
CN101934321A (zh) 一种新型一体化自动送料与排件模具
WO2011109973A1 (zh) 一种多工位凹模回转镦锻机及工作方法
CN207372219U (zh) 精密冷镦成形机
JP5361051B2 (ja) 離れた固定ばねによって閉じられるセグメント化ツールを備えたスライダ
CN210333910U (zh) 一种汽车滑动叉无飞边成型装置
CN209491287U (zh) 一种自动温镦机
CN105458123B (zh) 一种镦锻机及工作方法
JP3658203B2 (ja) 圧造成形機
CN201455115U (zh) 组合模具
CN208592303U (zh) 一种五金加工用多孔冲压模具
CN113118304A (zh) 模具
CN105382133B (zh) 一种具有蜗轮蜗杆驱动装置的设备及工作方法
CN108817207B (zh) 一种自动上料的汽车零部件冲压机
CN111167940A (zh) 径向热冲压成球机的钢圆棒步进式喂送机构
CN215090308U (zh) 一种钣金件加工用整形冲压装置
CN217192272U (zh) 一种高速冷镦机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837698

Country of ref document: EP

Kind code of ref document: A1