WO2016031890A1 - Tomography apparatus - Google Patents

Tomography apparatus Download PDF

Info

Publication number
WO2016031890A1
WO2016031890A1 PCT/JP2015/074131 JP2015074131W WO2016031890A1 WO 2016031890 A1 WO2016031890 A1 WO 2016031890A1 JP 2015074131 W JP2015074131 W JP 2015074131W WO 2016031890 A1 WO2016031890 A1 WO 2016031890A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light amount
monitor
amount
measurement
Prior art date
Application number
PCT/JP2015/074131
Other languages
French (fr)
Japanese (ja)
Inventor
小林 直樹
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2016545599A priority Critical patent/JP6599876B2/en
Publication of WO2016031890A1 publication Critical patent/WO2016031890A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated

Definitions

  • the present invention relates to a tomographic imaging apparatus that forms a tomographic image of a target object based on interference light generated by superimposing measurement light reflected by the target object and reference light reflected by the reference object.
  • OCT Optical Coherence Tomography
  • OCT optical Coherence Tomography
  • Such a tomographic imaging apparatus can irradiate the fundus with broadband low-coherent light as measurement light, and can capture a tomographic image of the fundus with high sensitivity by causing the reflected light from the fundus to interfere with the reference light.
  • Measured light quantity used for tomographic imaging must be strictly controlled in order to capture stable and good quality tomographic images.
  • precise parts such as optical fibers are used as constituent parts, which are easily affected by the use environment such as temperature and may fluctuate.
  • the amount of measurement light is expected to change over time due to deterioration of the devices and light sources used.
  • a light amount measuring means for measuring the light amount of the laser light is disposed outside the optical path of the laser light irradiated to the object to be measured, and the light amount measurement is performed. Control is performed so that the amount of light measured by the means becomes an appropriate amount of light.
  • control of the reference light amount is also important.
  • the object to be measured is a living body such as an eye to be examined
  • excessive light quantity may be temporarily generated during the light quantity adjustment, and the living body may be damaged.
  • the present invention has been made in view of the above points, and provides a tomographic imaging apparatus capable of acquiring tomographic images with appropriate measurement light incident on a target object to obtain a high-quality tomographic image.
  • the task is to do.
  • the present invention The light from the light source is incident on the demultiplexing / combining optical system, the light emitted from the demultiplexing / multiplexing optical system is divided into measurement light and reference light, and incident on the target object and the reference object.
  • a tomography apparatus for forming a tomographic image of a target object based on interference light generated by superimposing reflected measurement light and reference light reflected by a reference object,
  • a light amount monitor for measuring the amount of light emitted from the demultiplexing / multiplexing optical system;
  • a light amount adjustment unit that adjusts the light amount from the light source so that the light amount value measured by the light amount monitor is within a light amount range determined by a predetermined light amount value or a predetermined upper limit value and lower limit value; It is characterized by providing.
  • the light amount adjustment unit adjusts the light amount while maintaining the spectral shape of the light from the light source.
  • a variable aperture stop is disposed in the optical path through which the reference light reflected by the reference object passes, and the variable aperture stop is adjusted according to the light amount of the reference light reflected by the reference object when adjusting the light amount by the light amount monitor.
  • the opening diameter is controlled.
  • a light shielding mechanism is provided in the optical path through which the reference light reflected by the reference object passes, and the reference light is shielded by the light shielding mechanism when adjusting the light amount by the light amount monitor.
  • the light amount monitor is the first light amount monitor
  • the second light amount monitor is disposed at a position off the optical path through which the measurement light passes, and the measurement light is incident on the second light amount monitor.
  • the light amount adjustment by the first light amount monitor is performed without entering the object.
  • the measurement light is controlled so as not to enter the target object.
  • a light amount monitor that measures the amount of light emitted from the demultiplexing / combining optical system is provided, and the light amount value measured by the light amount monitor is determined by a predetermined light amount value or a predetermined upper limit value and lower limit value. Since the amount of light from the light source is adjusted so as to be within the light amount range, it is possible to obtain a tomographic image with good image quality by performing tomographic imaging by making appropriate measurement light incident on the target object.
  • FIG. 1 shows an optical system of the entire tomographic imaging apparatus (OCT apparatus).
  • Reference numeral 10 denotes a broadband low-coherence light source, which is composed of, for example, a superluminescent diode (SLD), and emits light having a wavelength of 700 nm to 1100 nm and a temporal coherence length of about several ⁇ m to several tens of ⁇ m.
  • SLD superluminescent diode
  • the low coherence light generated by the low coherence light source 10 enters the light amount adjustment unit 11 through the optical fiber 11a, and the light amount is adjusted.
  • the low-coherence light whose light amount has been adjusted is incident on the optical coupler 12 via the optical fiber 12a, and is then guided to the beam splitter 14 as a splitting optical element via the optical fiber 12b and the collimator lens 13.
  • the optical coupler 12 demultiplexes / combines the light incident thereon and emits the light to constitute a demultiplexing / multiplexing optical system.
  • the light incident on the beam splitter 14 is divided into reference light and measurement light.
  • the measurement light is focused on the fundus by the focus lens 15 and then scanned in an arbitrary direction by an x-axis scanning mirror (galvano mirror) 17 and a y-axis scanning mirror (galvano mirror) 18 driven by a galvano mirror driver 16. .
  • the measurement light scanned by the x-axis and y-axis scanning mirrors 17 and 18 passes through the scan lens 19 and the objective lens 20 and is incident on the fundus 21a of the eye 21 to be examined as a target object. , Scanned in the y direction.
  • the measurement light reflected by the fundus 21a returns to the beam splitter 14 following the above path.
  • the optical system from the beam splitter 14 to the objective lens 20 constitutes a measurement optical system.
  • the measurement optical system is appropriately provided with optical components such as a mirror and a lens. Are omitted to avoid complications.
  • the reference light split by the beam splitter 14 is reflected by the mirror 30, passes through the lens 31, passes through the variable aperture stop 32 having a variable aperture diameter for adjusting the reference light quantity, and is used as a reference object.
  • the mirror 33 is reached.
  • the reference mirror is movable in the direction of the optical axis in order to adjust the optical path length, and the reference light reflected by the reference mirror 33 returns to the beam splitter 14 following the optical path in the reverse direction.
  • the optical system from the beam splitter 14 to the reference mirror 33 constitutes a reference optical system.
  • the reference optical system appropriately compensates for a mirror, a lens, or an optical path length and dispersion. An optical component or the like is provided, but is omitted to avoid complication.
  • the measurement light and the reference light that have returned to the beam splitter 14 are superimposed and become interference light, which enters the spectroscope 40 through the collimating lens 13, the optical fiber 12b, and the optical coupler 12 through the optical fiber 12c.
  • the spectroscope 40 includes a diffraction grating 40a, an imaging lens 40b, a line sensor 40c, and the like.
  • the interference light is split into a spectrum corresponding to the wavelength of the low coherence light by the diffraction grating 40a and is lined by the imaging lens 40b. An image is formed on the sensor 40c.
  • the signal from the line sensor 40c is subjected to signal processing including Fourier transformation by a tomographic image forming means realized by a CPU of the computer 41, and the like, and a depth signal indicating information in the depth direction (z direction) of the fundus 21a to be examined. Is generated. Since the depth signal (A scan image) at the sampling time is obtained by the interference light at each sampling time of the fundus scan, when one scan is completed, the z direction image (A scan image) along the scan direction is used. A two-dimensional tomographic image (B-scan image) can be formed.
  • the measurement light used for tomographic imaging is likely to fluctuate because precision components such as optical fibers are easily affected by the usage environment such as temperature, and the device being used and the low-coherence light source 10 There is a possibility that it may change over time due to deterioration of the material.
  • the amount of measurement light increases, a light hazard is generated on the subject's eye due to an excessive amount of light applied to the subject's eye, and when the amount of light decreases, the image quality of the tomographic image to be captured decreases.
  • a light amount monitor 50 is provided, and the interference optical system (collimating lens 13, beam splitter 14, and subsequent measurement optical system and reference optical system are provided from the low coherence light source 10. In the process of reaching the optical system), a part of the low coherence light is taken out and monitored by the light quantity monitor 50.
  • the light quantity monitor 50 is composed of a light detection element such as a photodiode, and is connected via an optical fiber 12d to an outgoing side port different from the outgoing side port of the optical coupler 12 to which the optical fiber 12b is connected.
  • the light quantity measured by the light quantity monitor 50 is input to the control circuit 51.
  • the control circuit 51 stores a predetermined light amount value or a light amount range determined by a predetermined upper limit value and a lower limit value, compares the light amount value from the light amount monitor 50 with a predetermined light amount value (light amount range), and a deviation signal thereof. Is output to the light quantity adjustment unit 11 as a control signal, and feedback control is performed so that there is no deviation, that is, the light quantity value measured by the light quantity monitor 50 becomes a predetermined light quantity value (light quantity range).
  • FIG. 2 shows a detailed configuration of the light amount adjustment unit 11.
  • the light amount adjustment unit 11 includes a cylindrical split sleeve 111. In the hollow portion of the sleeve 111, the ferrule 112 having the other end of the optical fiber 11a connected to the low coherence light source 10 fixed and the optical coupler 12 are incident. A ferrule 113 with the other end of the optical fiber 12a connected to the side port fixed inside is housed. The ferrules 112 and 113 are supported by support plates 114 and 115, and the optical fibers 11 a and 12 a penetrate the support plates 114 and 115 and are guided to the outside of the light amount adjustment unit 11.
  • a feed screw 117 rotated by a motor 116 is fixed to the support plate 115, and the feed screw 117 is attached so as to be screwed with the supported 114.
  • the support plate 114 and the ferrule 112 are moved in the optical axis direction with respect to the ferrule 113.
  • the optical fibers 11a and 12a are connected to the ferrules 112 and 113 so that the axis of the optical fiber 11a and the axis of the optical fiber 12a always coincide even when the ferrule 112 moves relative to the ferrule 113 by driving the motor 116. It is attached.
  • the motor 116 of the light amount adjustment unit 11 receives the control signal from the control circuit 51 in FIG. 1 and moves the support plate 114 and the ferrule 112 supported by the support plate 114 in the optical axis direction.
  • the coupling efficiency of the optical fibers 11a and 12a deteriorates, and the amount of light from the low coherence light source 10 input to the optical coupler 12 via the optical fiber 12a decreases.
  • the coupling efficiency increases and the amount of light input to the optical coupler 12 increases.
  • end face of the optical fiber 11a in the ferrule 112 and the end face of the optical fiber 12a in the ferrule 113 are slightly inclined rather than perpendicular to the optical axis direction in order to prevent interference due to light reflection at the end face. It is better to leave it.
  • the control circuit 51 increases the distance between the optical fibers 11a and 12a.
  • the support plate 114 and the ferrule 112 are moved.
  • the amount of light passing through the optical fiber 12a is reduced and adjusted so that the light amount value measured by the light amount monitor 50 becomes a predetermined light amount value or within a predetermined light amount range.
  • the control circuit 51 supports the distance between the optical fibers 11a and 12a so as to decrease.
  • the plate 114 and the ferrule 112 are moved.
  • the amount of light passing through the optical fiber 12a increases, the amount of measurement light that is split by the beam splitter 14 and incident on the eye 21 is kept at a predetermined light amount value (light amount range), and good tomographic imaging can be performed. It becomes possible.
  • the light quantity adjustment unit may be a light quantity adjustment unit 11 'composed of a variable optical attenuator (Variable Optical Attenuator) as shown in FIG.
  • the light amount adjustment unit 11 ′ reflects the low coherence light emitted from the optical fiber 11 a connected to the low coherence light source 10 by the mirror 121 through the lens 120, and the low coherence light reflected by the mirror 121 through the lens 120. Then, the light is incident on the end of the optical fiber 12 a connected to the incident side port of the optical coupler 12. Since the low-coherence light incident on the optical fiber 12a can be changed by rotating the mirror 121, the reflection angle of the mirror 121 is controlled by the control signal of the control circuit 51.
  • the control circuit 51 reduces the reflection angle of the mirror 121 and the light amount incident on the optical fiber 12a. To change.
  • the reflection angle of the mirror 121 is set so that the amount of light incident on the optical fiber 12a increases. , Change. Thereby, the light quantity of the measurement light split by the beam splitter 14 and incident on the eye 21 to be examined can be adjusted to be a predetermined light quantity value (light quantity range).
  • the low-coherence light source 10 is controlled so that a constant output can be obtained by a built-in APC (Automatic Power Control) circuit.
  • the light amount adjustment unit is not directly controlled by the control signal of the control circuit 51 but connected between the low coherence light source 10 and the optical coupler 12 via optical fibers 11a and 12a.
  • 11 (11 ′) adjusts the amount of light. Since the light amount adjustment unit 11 (11 ′) changes the light amount by changing the coupling efficiency of the optical fiber through which the light from the low coherence light source 10 passes, the spectral shape (distribution) of the light from the low coherence light source 10 ) Can be maintained and only the amount of light can be changed.
  • the reference light is formed by demultiplexing the light from the light source, a part of the return light from the reference optical system also returns to the light source side. May fluctuate.
  • the reference light amount is adjusted by the variable aperture stop 32 disposed in the optical path of the reference optical system.
  • the reference light amount is measured by evaluating the average luminance value of only the reference light or the spectrum of the reference light and the measurement light with the spectroscope 40.
  • the spectrum on the spectroscope 40 is Fourier-transformed by the computer 41 to calculate an autocorrelation signal, and the intensity is used as a measured value of the reference light amount.
  • the cross-correlation signal constituting the tomographic image is calculated by the computer 41, and the intensity is used as the measured value of the reference light amount. Or it is good also as a measured value of reference light quantity with light shot noise amount (background noise of a tomographic image).
  • the computer 41 reduces the aperture diameter of the variable aperture stop 32 if the reference light amount is large, and increases the aperture diameter if the reference light amount is small.
  • the aperture diameter of the variable aperture stop 32 is controlled so as to be within a light amount range determined by a light amount value or a predetermined upper limit value and lower limit value.
  • a light shielding mechanism 34 is provided in the reference optical system in order to cut the return light from the reference optical system. 34a is inserted into the reference light path so as to block the reference light.
  • the return light from the reference optical system is controlled to a predetermined light amount value (light amount range) or shielded, so that the light source output fluctuation due to the return light is suppressed, and the measured light amount It is possible to perform favorable tomographic imaging by appropriately adjusting the angle.
  • the light amount adjustment by the light amount monitor 50 can be performed even during tomographic imaging, an excessive amount of light temporarily exceeding an appropriate amount of light is emitted from the objective lens 20 and enters the eye 21 to be examined due to a control defect. Hazard risk may occur. Therefore, as shown in FIG. 4, the light amount monitor 50 is used as the first light amount monitor, and a light amount monitor 60 as the second light amount monitor is disposed in the vicinity of the outside of the objective lens 20, and the measurement light is transmitted through the light amount monitor 60. When it is confirmed that the light does not enter the lens 20 and therefore does not enter the eye 21, the light amount adjustment by the light amount monitor 50 is performed.
  • the light quantity monitoring mechanism by the light quantity monitor 60 is shown in FIG. 4 corresponds to the portion indicated by the alternate long and short dash line in FIG.
  • the light amount monitor 60 is disposed in the vicinity of the objective lens 20 at a position deviated from the optical path through which the measurement light passes in the measurement optical system. Similar to the light quantity monitor 50, the light quantity monitor 60 is composed of a light detection element such as a photodiode.
  • the light quantity monitor 60 is connected to a detection circuit 61.
  • the detection circuit 61 outputs a detection signal when the light quantity measured by the light quantity monitor 60 is equal to or greater than a predetermined threshold value.
  • the detection signal of the detection circuit 61 is input to the control circuit 51 in FIG. 1. When the detection signal is input to the control circuit 51, the control circuit 51 is activated, and when there is no detection signal, the control circuit is disabled. Activated.
  • the galvano mirror driver 16 drives the x-axis scanning mirror 17 and the y-axis scanning mirror 18 so that the measurement light enters the light amount monitor 60.
  • the measurement light split by the beam splitter 14 due to the low-coherence light source 10 is turned on, the light quantity measured by the light quantity monitor 60 exceeds a predetermined threshold value, and a detection signal is output from the detection circuit 61.
  • the control circuit 51 is activated.
  • the control circuit 51 outputs a control signal to the light amount adjustment unit 11 and performs feedback control so that the light amount value measured by the light amount monitor 50 becomes a predetermined light amount value (light amount range).
  • the measurement light does not enter the objective lens 20 and therefore does not enter the eye 21, the light amount of the measurement light is adjusted. Therefore, an excessive amount of light is incident on the eye to be inspected due to a control failure. Risk can be prevented from occurring.
  • the control circuit 51 is not triggered and the light amount adjustment may not be performed smoothly. Set it to about half of the light intensity. Although the amount of light measured by the light amount monitor 60 fluctuates due to the light amount adjustment by the light amount monitor 50, the control circuit 51 becomes inoperable during the light amount adjustment by setting the threshold value to a lower value. It is possible to prevent and perform smooth light quantity adjustment.
  • the light amount monitor 50 when the light amount monitor 50 performs light amount monitoring, there is a high correlation between the light amount measured by the light amount monitor 50 and the light amount of the measurement light emitted from the objective lens 20 (hereinafter referred to as the objective emission light amount). That is the premise.
  • the light amount measured by the light amount monitor 50 is measured with the light amount monitor 50.
  • a high correlation is provided between the amount of light to be emitted and the amount of light emitted from the objective.
  • the correlation between the light amounts measured by the light amount monitors 50 and 60 depends on the optical characteristics of the optical system before reaching the light amount monitor 60, and may change over time.
  • Long-term factors such as changes in the propagation characteristics due to contamination and modification of the optical system can be considered as factors causing changes in the characteristics of the optical system in the middle.
  • the adhesion of dirt to the fiber end face has a great influence.
  • the propagation of optical fiber components due to a medium-term factor such as a change in the propagation characteristic of the optical fiber of the optical coupler 12 due to a change in the environmental temperature, or a stress change to the optical fiber caused by an external force applied to the tomographic imaging apparatus.
  • Short-term factors such as changes in characteristics will change the characteristics of the optical system.
  • the ratio (B / A) of the light amount value B measured by the light amount monitor 50 to the light amount value A measured by the light amount monitor 60 is calculated.
  • the correlation coefficient is obtained and registered, and after starting the tomographic imaging apparatus, the fluctuation is always checked at a constant time interval or before the start of measurement, and the fluctuation of the ratio is monitored to adjust the light amount.
  • the ratio of the current correlation coefficient to the registered correlation coefficient is calculated, and the ratio is set as a control parameter (proportional component) of the control circuit 51. ) Is output to the motor 116 of the light amount adjustment unit 11 to adjust the light amount.
  • a fluctuation of 10% or more occurs, it is determined that the optical system needs to be cleaned halfway, a message is output to the user to request maintenance, and the objective emission newly measured with the optical power meter
  • the correlation coefficient between the light quantity, the light quantity monitor 50, and the light quantity monitor 60 is calculated, and the correlation coefficient after fluctuation is registered instead of the already registered correlation coefficient to calibrate the correlation coefficient.
  • the calibrated correlation coefficient is used as an initial correlation coefficient when examining subsequent fluctuations of the correlation coefficient.
  • the objective outgoing light quantity can be adjusted to the target light quantity.
  • the light amount monitoring is performed by the light amount monitor 50 connected to the emission side of the optical coupler 12
  • the light amount monitoring can be performed in real time even during the measurement in which the measurement light is incident on the target object.
  • the light amount monitor 50 when the light amount is adjusted by the light amount monitor 50, the appropriate measurement light is incident on the fundus of the eye to be examined, so that it is possible to start tomographic imaging. Further, since the fluctuation of the measurement light is expected during the tomographic image capturing, the light amount adjustment by the light amount monitor 50 can be continued.
  • the measurement light is incident on the objective lens 20 and is not incident on the light amount monitor 60. Therefore, a detection signal from the detection circuit 61 is input to the control circuit 51. As a result, the control circuit 51 becomes inoperative and the light amount adjustment by the light amount monitor 50 becomes impossible. Therefore, in such a case, the connection between the detection circuit 61 and the control circuit 51 is cut off.
  • the low light coherence light source 10, the control circuit 51, and the like fail to prevent the measurement light from becoming an abnormal light amount, and tomography is in a dangerous state by monitoring with the light amount monitor 60. Can do.
  • FIG. 5 This embodiment is shown in FIG. 5, and the same parts and devices as those in FIG. 4 are given the same numbers, and detailed description thereof is omitted.
  • the light amount monitor 60 is connected to the abnormality detection circuit 70, and the abnormality detection circuit 70 is dangerous for the eye to be examined, for example, the light amount measured by the light amount monitor 60 may damage the eye to be examined.
  • the amount of light exceeds the threshold, an abnormality detection signal is generated.
  • the abnormality detection signal is input to the galvanometer mirror driver 16, the computer 41, and the display device 80.
  • This abnormality detection is performed once, for example, before the start of tomographic imaging.
  • the eye to be examined is retracted so that the measurement light does not enter the eye to be examined 21, and the low coherence light source 10 is turned on.
  • the galvano mirror driver 16 drives the x-axis scanning mirror 17 and the y-axis scanning mirror 18 so that the measurement light enters the light amount monitor 60.
  • the abnormality detection circuit 70 outputs an abnormality detection signal to the galvanometer mirror driver 16.
  • the galvanometer mirror driver 16 controls the x-axis scanning mirror 17 and the y-axis scanning mirror 18 so that the measurement light does not move to a position other than the light amount monitor 60, or the x-axis scanning mirror 17 and the y-axis.
  • the scanning mirror 18 is driven to deflect the measurement light so that the measurement light is incident on the light-absorbing scatterer 71 disposed at a position symmetrical to the objective lens 20 with respect to the optical axis of the measurement optical system.
  • the abnormality detection signal is also input to the computer 41, whereby the photographing process is stopped.
  • an abnormality detection signal is input to the display device 80, and the display device 80 displays that the measurement light has an abnormal value.
  • the fact is displayed on the display device 80. Therefore, the light amount is adjusted by the light amount monitor 50, the fundus of the eye to be examined is scanned with the measurement light, and a tomographic image of the fundus is taken.
  • the target object has been described as the eye to be examined.
  • the present invention is not limited to this and may be another target object.
  • the target object since the appropriate measurement light is incident on the target object, if excessive measurement light is incident on the target object, the target object is damaged or is in a dangerous state. Suitable for tomography.

Abstract

 Light from a low-coherence light source 10 is divided into measurement light and reference light, and the measurement light enters an eye 21 to be examined. A tomographic image of the fundus 21a is formed on the basis of interfering light produced by the overlapping of measurement light reflected by the fundus and reference light reflected by a reference mirror 33. Light from the low-coherence light source enters an optical coupler 12, and a light quantity monitor 50 is connected, via an optical fiber 12d, to the light-exit-side port of the optical coupler 12. The light quantity value measured by the light quantity monitor and a prescribed light quantity value (light quantity range) are compared by a control circuit 51, and the light quantity value measured by the light quantity monitor is adjusted to the prescribed light quantity value (light quantity range) by a light quantity adjustment unit 11.

Description

断層像撮影装置Tomography system
 本発明は、対象物体で反射された測定光と参照物体で反射された参照光を重畳させて生成される干渉光に基づき対象物体の断層画像を形成する断層像撮影装置に関する。 The present invention relates to a tomographic imaging apparatus that forms a tomographic image of a target object based on interference light generated by superimposing measurement light reflected by the target object and reference light reflected by the reference object.
 眼科診断機の一つで、眼底の断層像を撮影するOCT(Optical Coherence Tomography)という光干渉を利用した断層像撮影装置がある。このような断層像撮影装置は広帯域な低コヒーレント光を、測定光として眼底に照射し、眼底からの反射光を参照光と干渉させて眼底の断層像を高感度に撮影することができる。 There is a tomographic imaging apparatus using optical interference called OCT (Optical Coherence Tomography), which is one of the ophthalmologic diagnosis machines and takes a tomographic image of the fundus. Such a tomographic imaging apparatus can irradiate the fundus with broadband low-coherent light as measurement light, and can capture a tomographic image of the fundus with high sensitivity by causing the reflected light from the fundus to interfere with the reference light.
 断層像撮影に使用する測定光量は、安定して良質な断層画像を撮影するために、厳密に制御されていなければならない。しかし、断層像撮影装置には、光ファイバなどの精密な部品が構成部品として使用されており、温度などの使用環境の影響を受けやすく、変動してしまう可能性がある。また、使用しているデバイスや光源の劣化により、経時的にも測定光量は変化することが予想される。 Measured light quantity used for tomographic imaging must be strictly controlled in order to capture stable and good quality tomographic images. However, in the tomographic imaging apparatus, precise parts such as optical fibers are used as constituent parts, which are easily affected by the use environment such as temperature and may fluctuate. In addition, the amount of measurement light is expected to change over time due to deterioration of the devices and light sources used.
 測定光量が増加すると、被測定物への照射光量の過多による光ハザードが起こり、一方、測定光量が低下すると、撮影される断層画像の画質が低下してしまう、という問題がある。 When the measurement light quantity increases, there is a problem that a light hazard due to excessive irradiation light quantity on the object to be measured occurs. On the other hand, when the measurement light quantity decreases, there is a problem that the image quality of the tomographic image to be taken deteriorates.
 そこで、適正な測定光を得るために、下記特許文献1では、被測定物に照射されるレーザー光の光路の外に、該レーザー光の光量を測定する光量測定手段を配置し、その光量測定手段で測定された光量が適正な光量になるような制御を行っている。 Therefore, in order to obtain appropriate measurement light, in Patent Document 1 below, a light amount measuring means for measuring the light amount of the laser light is disposed outside the optical path of the laser light irradiated to the object to be measured, and the light amount measurement is performed. Control is performed so that the amount of light measured by the means becomes an appropriate amount of light.
特開2010-243280号公報JP 2010-243280 A
 しかしながら、上記特許文献1に記載された構成では、光量測定手段が測定光の光路外に配置されるので、光量測定手段は被測定物に入射する測定光だけでなく、他の光も測定してしまう可能性があり、品質の良い断層像撮影を行うことができない、という問題があった。 However, in the configuration described in Patent Document 1, since the light quantity measuring unit is arranged outside the optical path of the measurement light, the light quantity measuring unit measures not only the measurement light incident on the object to be measured but also other light. There is a problem that it is impossible to perform high-quality tomographic imaging.
 また、撮影される断層画像の画質は、被測定物へ照射される光量だけでなく、参照光学系からの戻り光量の強弱にも影響を受けるため、参照光量の制御も重要となる。 Also, since the image quality of the tomographic image to be photographed is affected not only by the amount of light irradiated to the object to be measured but also by the intensity of the return light from the reference optical system, control of the reference light amount is also important.
 また、光源の出力を制御して光量を調節しようとすると、発光スペクトルの形状が変化してしまい、深さ分解能に影響がでて画質のよい断層画像が得られないという問題がある。 Also, when the light amount is adjusted by controlling the output of the light source, there is a problem that the shape of the emission spectrum changes, the depth resolution is affected, and a tomographic image with good image quality cannot be obtained.
 更に、被測定物が被検眼のように生体の場合には、光量調整中に、一時的に過多な光量が発生して生体を損傷させてしまう恐れがある。 Furthermore, when the object to be measured is a living body such as an eye to be examined, excessive light quantity may be temporarily generated during the light quantity adjustment, and the living body may be damaged.
 本発明は、このような点に鑑みてなされたもので、対象物体に適正な測定光を入射して断層像撮影を行い画質の良い断層画像を取得することが可能な断層像撮影装置を提供することを課題とする。 The present invention has been made in view of the above points, and provides a tomographic imaging apparatus capable of acquiring tomographic images with appropriate measurement light incident on a target object to obtain a high-quality tomographic image. The task is to do.
 本発明は、
 光源からの光を分波/合波光学系に入射し、分波/合波光学系から出射される光を測定光と参照光に分割して対象物体と参照物体に入射させ、対象物体で反射された測定光と参照物体で反射された参照光を重畳させて生成される干渉光に基づき対象物体の断層画像を形成する断層像撮影装置であって、
 前記分波/合波光学系から出射される光量を測定する光量モニタと、
 前記光量モニタで測定された光量値が、所定の光量値あるいは所定の上限値と下限値で定まる光量範囲内となるように、前記光源からの光量を調整する光量調整ユニットと、
 を備えることを特徴とする。
The present invention
The light from the light source is incident on the demultiplexing / combining optical system, the light emitted from the demultiplexing / multiplexing optical system is divided into measurement light and reference light, and incident on the target object and the reference object. A tomography apparatus for forming a tomographic image of a target object based on interference light generated by superimposing reflected measurement light and reference light reflected by a reference object,
A light amount monitor for measuring the amount of light emitted from the demultiplexing / multiplexing optical system;
A light amount adjustment unit that adjusts the light amount from the light source so that the light amount value measured by the light amount monitor is within a light amount range determined by a predetermined light amount value or a predetermined upper limit value and lower limit value;
It is characterized by providing.
 本発明では、光量調整ユニットは、光源からの光のスペクトル形状を維持した状態で光量を調整する。 In the present invention, the light amount adjustment unit adjusts the light amount while maintaining the spectral shape of the light from the light source.
 また、本発明では、参照物体で反射された参照光が通過する光路に可変開口絞りが配置され、光量モニタによる光量調整時、参照物体で反射された参照光の光量に応じて該可変開口絞りの開口径が制御される。 In the present invention, a variable aperture stop is disposed in the optical path through which the reference light reflected by the reference object passes, and the variable aperture stop is adjusted according to the light amount of the reference light reflected by the reference object when adjusting the light amount by the light amount monitor. The opening diameter is controlled.
 また、本発明では、参照物体で反射された参照光が通過する光路に遮光機構が設けられ、光量モニタによる光量調整時、該遮光機構により参照光が遮光される。 In the present invention, a light shielding mechanism is provided in the optical path through which the reference light reflected by the reference object passes, and the reference light is shielded by the light shielding mechanism when adjusting the light amount by the light amount monitor.
 また、本発明では、上記光量モニタを第1光量モニタとして、測定光が通過する光路から外れた位置に第2光量モニタが配置され、測定光を該第2光量モニタに入射させ測定光が対象物体に入射しない状態で第1光量モニタによる光量調整が行われる。 In the present invention, the light amount monitor is the first light amount monitor, the second light amount monitor is disposed at a position off the optical path through which the measurement light passes, and the measurement light is incident on the second light amount monitor. The light amount adjustment by the first light amount monitor is performed without entering the object.
 また、本発明では、第2光量モニタで測定された光量が異常値を示すときは、測定光が対象物体に入射しないように制御される。 In the present invention, when the light quantity measured by the second light quantity monitor shows an abnormal value, the measurement light is controlled so as not to enter the target object.
 本発明では、分波/合波光学系から出射される光量を測定する光量モニタが設けられ、該光量モニタで測定された光量値が、所定の光量値あるいは所定の上限値と下限値で定まる光量範囲内となるように、光源からの光量が調整されるので、対象物体に適正な測定光を入射して断層像撮影を行い画質の良い断層画像を取得することが可能となる。 In the present invention, a light amount monitor that measures the amount of light emitted from the demultiplexing / combining optical system is provided, and the light amount value measured by the light amount monitor is determined by a predetermined light amount value or a predetermined upper limit value and lower limit value. Since the amount of light from the light source is adjusted so as to be within the light amount range, it is possible to obtain a tomographic image with good image quality by performing tomographic imaging by making appropriate measurement light incident on the target object.
断層像撮影装置の全体の構成を示す光学図である。It is an optical diagram which shows the whole structure of a tomographic imaging apparatus. 光量調整ユニットの一実施例の詳細な構成を示した構成図である。It is the block diagram which showed the detailed structure of one Example of the light quantity adjustment unit. 光量調整ユニットの他の実施例の詳細な構成を示した構成図である。It is the block diagram which showed the detailed structure of the other Example of the light quantity adjustment unit. 対物レンズ近辺に別の光量モニタを設けて光量制御を行う実施例を示した光学図である。It is the optical figure which showed the Example which provides another light quantity monitor in the vicinity of an objective lens, and performs light quantity control. 対物レンズ近辺に別の光量モニタを設けて異常検出を行う実施例を示した光学図である。It is the optical figure which showed the Example which provides another light quantity monitor in the vicinity of an objective lens, and performs abnormality detection.
 以下、図面に示す実施例に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
 図1には、断層像撮影装置(OCT装置)全体の光学系が図示されている。符号10で示すものは広帯域な低コヒーレンス光源で、例えばスーパールミネッセントダイオード(SLD)からなり、波長が700nm~1100nmで数μm~数十μm程度の時間的コヒーレンス長の光を発光する。 FIG. 1 shows an optical system of the entire tomographic imaging apparatus (OCT apparatus). Reference numeral 10 denotes a broadband low-coherence light source, which is composed of, for example, a superluminescent diode (SLD), and emits light having a wavelength of 700 nm to 1100 nm and a temporal coherence length of about several μm to several tens of μm.
 低コヒーレンス光源10で発生した低コヒーレンス光は、光ファイバ11aを介して光量調整ユニット11に入射して光量が調整される。光量が調節された低コヒーレンス光は、光ファイバ12aを介して光カプラ12に入射し、続いて光ファイバ12b、コリメートレンズ13を介して分割光学素子としてのビームスプリッタ14に導かれる。光カプラ12は、そこに入射する光を分波/合波して出射するもので分波/合波光学系を構成する。 The low coherence light generated by the low coherence light source 10 enters the light amount adjustment unit 11 through the optical fiber 11a, and the light amount is adjusted. The low-coherence light whose light amount has been adjusted is incident on the optical coupler 12 via the optical fiber 12a, and is then guided to the beam splitter 14 as a splitting optical element via the optical fiber 12b and the collimator lens 13. The optical coupler 12 demultiplexes / combines the light incident thereon and emits the light to constitute a demultiplexing / multiplexing optical system.
 ビームスプリッタ14に入射した光は参照光と測定光に分割される。測定光はフォーカスレンズ15により眼底に合焦されたあと、ガルバノミラードライバ16で駆動されるx軸走査ミラー(ガルバノミラー)17、y軸走査ミラー(ガルバノミラー)18で任意の方向に走査される。x軸、y軸走査ミラー17、18で走査された測定光は、スキャンレンズ19、対物レンズ20を通過して対象物体としての被検眼21の眼底21aに入射し、眼底21aが測定光でx、y方向に走査される。 The light incident on the beam splitter 14 is divided into reference light and measurement light. The measurement light is focused on the fundus by the focus lens 15 and then scanned in an arbitrary direction by an x-axis scanning mirror (galvano mirror) 17 and a y-axis scanning mirror (galvano mirror) 18 driven by a galvano mirror driver 16. . The measurement light scanned by the x-axis and y- axis scanning mirrors 17 and 18 passes through the scan lens 19 and the objective lens 20 and is incident on the fundus 21a of the eye 21 to be examined as a target object. , Scanned in the y direction.
 眼底21aで反射された測定光は上記の経路を逆にたどってビームスプリッタ14に戻ってくる。ここで、ビームスプリッタ14から対物レンズ20までの光学系は測定光学系を構成しており、この測定光学系には、図示した光学部品以外にも適宜ミラー、レンズなどの光学部品が設けられているが、煩雑さを避けるために省略されている。 The measurement light reflected by the fundus 21a returns to the beam splitter 14 following the above path. Here, the optical system from the beam splitter 14 to the objective lens 20 constitutes a measurement optical system. In addition to the illustrated optical components, the measurement optical system is appropriately provided with optical components such as a mirror and a lens. Are omitted to avoid complications.
 一方、ビームスプリッタ14で分割された参照光はミラー30で反射され、レンズ31を通過した後、参照光量を調整するための開口径が可変な可変開口絞り32を通過し、参照物体としての参照ミラー33に到達する。参照ミラーは光路長を調整するために光軸方向に移動可能となっており、参照ミラー33で反射された参照光は上記の光路を逆にたどってビームスプリッタ14に戻ってくる。ここで、ビームスプリッタ14から参照ミラー33までの光学系は参照光学系を構成しており、この参照光学系には、図示した光学部品以外にも適宜ミラー、レンズ、あるいは光路長や分散を補償するための光学部品などが設けられているが、煩雑さを避けるために省略されている。 On the other hand, the reference light split by the beam splitter 14 is reflected by the mirror 30, passes through the lens 31, passes through the variable aperture stop 32 having a variable aperture diameter for adjusting the reference light quantity, and is used as a reference object. The mirror 33 is reached. The reference mirror is movable in the direction of the optical axis in order to adjust the optical path length, and the reference light reflected by the reference mirror 33 returns to the beam splitter 14 following the optical path in the reverse direction. Here, the optical system from the beam splitter 14 to the reference mirror 33 constitutes a reference optical system. In addition to the optical components shown in the figure, the reference optical system appropriately compensates for a mirror, a lens, or an optical path length and dispersion. An optical component or the like is provided, but is omitted to avoid complication.
 ビームスプリッタ14に戻ってきた測定光と参照光は重畳されて干渉光となり、コリメートレンズ13、光ファイバ12b、光カプラ12を通り光ファイバ12cを介して分光器40に入射する。分光器40は回折格子40a、結像レンズ40b、ラインセンサ40cなどを有しており、干渉光は、回折格子40aで低コヒーレンス光の波長に応じたスペクトルに分光されて結像レンズ40bによりラインセンサ40cに結像される。 The measurement light and the reference light that have returned to the beam splitter 14 are superimposed and become interference light, which enters the spectroscope 40 through the collimating lens 13, the optical fiber 12b, and the optical coupler 12 through the optical fiber 12c. The spectroscope 40 includes a diffraction grating 40a, an imaging lens 40b, a line sensor 40c, and the like. The interference light is split into a spectrum corresponding to the wavelength of the low coherence light by the diffraction grating 40a and is lined by the imaging lens 40b. An image is formed on the sensor 40c.
 ラインセンサ40cからの信号は、コンピュータ41のCPUなどで実現される断層画像形成手段でフーリエ変換を含む信号処理が行われ、被検眼眼底21aの深度方向(z方向)の情報を示す深さ信号が生成される。眼底走査の各サンプリング時点での干渉光によりそのサンプリング時点での深さ信号(Aスキャン画像)が得られるので、1走査が終了すると、その走査方向に沿ったz方向画像(Aスキャン画像)からなる2次元の断層画像(Bスキャン画像)を形成することができる。 The signal from the line sensor 40c is subjected to signal processing including Fourier transformation by a tomographic image forming means realized by a CPU of the computer 41, and the like, and a depth signal indicating information in the depth direction (z direction) of the fundus 21a to be examined. Is generated. Since the depth signal (A scan image) at the sampling time is obtained by the interference light at each sampling time of the fundus scan, when one scan is completed, the z direction image (A scan image) along the scan direction is used. A two-dimensional tomographic image (B-scan image) can be formed.
 断層像撮影に使用する測定光は、光ファイバなどの精密な部品が温度などの使用環境の影響を受けやすく、変動してしまう可能性があり、また、使用しているデバイスや低コヒーレンス光源10の劣化により、経時的にも変化する恐れがある。この測定光の光量が増加すると、被検眼への照射光量の過多による被検眼への光ハザードが生じ、また同光量が低下すると、撮影される断層画像の画質が低下してしまう。 The measurement light used for tomographic imaging is likely to fluctuate because precision components such as optical fibers are easily affected by the usage environment such as temperature, and the device being used and the low-coherence light source 10 There is a possibility that it may change over time due to deterioration of the material. When the amount of measurement light increases, a light hazard is generated on the subject's eye due to an excessive amount of light applied to the subject's eye, and when the amount of light decreases, the image quality of the tomographic image to be captured decreases.
 本実施例では、このような問題を解決するために、光量モニタ50を設け、低コヒーレンス光源10から干渉光学系(コリメートレンズ13、ビームスプリッタ14とそれより後の測定光学系と参照光学系を含む光学系)に至る過程で、低コヒーレンス光の一部を外部に取出して光量モニタ50で監視するようにしている。 In the present embodiment, in order to solve such a problem, a light amount monitor 50 is provided, and the interference optical system (collimating lens 13, beam splitter 14, and subsequent measurement optical system and reference optical system are provided from the low coherence light source 10. In the process of reaching the optical system), a part of the low coherence light is taken out and monitored by the light quantity monitor 50.
 光量モニタ50は、フォトダイオードなどの光検出素子より構成され、光ファイバ12bが接続された光カプラ12の出射側ポートと異なる出射側ポートに光ファイバ12dを介して接続される。光量モニタ50で測定された光量は制御回路51に入力される。制御回路51は所定の光量値あるいは所定の上限値と下限値で定まる光量範囲を記憶しており、光量モニタ50からの光量値と所定の光量値(光量範囲)とを比較してその偏差信号を制御信号として光量調整ユニット11に出力し、偏差がなくなるように、つまり光量モニタ50で測定される光量値が所定の光量値(光量範囲)となるように、フィードバック制御を行う。 The light quantity monitor 50 is composed of a light detection element such as a photodiode, and is connected via an optical fiber 12d to an outgoing side port different from the outgoing side port of the optical coupler 12 to which the optical fiber 12b is connected. The light quantity measured by the light quantity monitor 50 is input to the control circuit 51. The control circuit 51 stores a predetermined light amount value or a light amount range determined by a predetermined upper limit value and a lower limit value, compares the light amount value from the light amount monitor 50 with a predetermined light amount value (light amount range), and a deviation signal thereof. Is output to the light quantity adjustment unit 11 as a control signal, and feedback control is performed so that there is no deviation, that is, the light quantity value measured by the light quantity monitor 50 becomes a predetermined light quantity value (light quantity range).
 図2には、光量調整ユニット11の詳細な構成が図示されている。光量調整ユニット11は円筒状の割スリーブ111を備え、このスリーブ111の中空部には、低コヒーレンス光源10に接続された光ファイバ11aの他端を内部に固着したフェルール112並びに光カプラ12の入射側ポートに接続された光ファイバ12aの他端を内部に固着したフェルール113が収納される。フェルール112、113は支持板114、115に支持されており、光ファイバ11a、12aは支持板114、115を貫通して光量調整ユニット11の外部に導かれている。支持板115には、モータ116により回転される送りねじ117が固定されており、この送りねじ117は支持した114とは螺合するように取り付けられる。送りねじ117がモータ116により回転されると、支持板114並びにフェルール112はフェルール113に対して光軸方向に移動される。光ファイバ11aと12aは、モータ116の駆動により、フェルール112がフェルール113に対して移動しても光ファイバ11aの軸心と光ファイバ12aの軸心が常に一致するように、フェルール112、113に取り付けられる。 FIG. 2 shows a detailed configuration of the light amount adjustment unit 11. The light amount adjustment unit 11 includes a cylindrical split sleeve 111. In the hollow portion of the sleeve 111, the ferrule 112 having the other end of the optical fiber 11a connected to the low coherence light source 10 fixed and the optical coupler 12 are incident. A ferrule 113 with the other end of the optical fiber 12a connected to the side port fixed inside is housed. The ferrules 112 and 113 are supported by support plates 114 and 115, and the optical fibers 11 a and 12 a penetrate the support plates 114 and 115 and are guided to the outside of the light amount adjustment unit 11. A feed screw 117 rotated by a motor 116 is fixed to the support plate 115, and the feed screw 117 is attached so as to be screwed with the supported 114. When the feed screw 117 is rotated by the motor 116, the support plate 114 and the ferrule 112 are moved in the optical axis direction with respect to the ferrule 113. The optical fibers 11a and 12a are connected to the ferrules 112 and 113 so that the axis of the optical fiber 11a and the axis of the optical fiber 12a always coincide even when the ferrule 112 moves relative to the ferrule 113 by driving the motor 116. It is attached.
 光量調整ユニット11のモータ116は、図1の制御回路51からの制御信号を受けて支持板114並びにこれに支持されたフェルール112を光軸方向に移動させる。フェルール112と113間の距離が大きくなると、光ファイバ11aと12aの結合効率が悪くなり、光ファイバ12aを介して光カプラ12に入力される低コヒーレンス光源10からの光量は減少する。これに対して、フェルール112と113間の距離が小さくなると、結合効率が増大し、光カプラ12に入力される光量は増加する。 The motor 116 of the light amount adjustment unit 11 receives the control signal from the control circuit 51 in FIG. 1 and moves the support plate 114 and the ferrule 112 supported by the support plate 114 in the optical axis direction. As the distance between the ferrules 112 and 113 increases, the coupling efficiency of the optical fibers 11a and 12a deteriorates, and the amount of light from the low coherence light source 10 input to the optical coupler 12 via the optical fiber 12a decreases. On the other hand, when the distance between the ferrules 112 and 113 decreases, the coupling efficiency increases and the amount of light input to the optical coupler 12 increases.
 なお、フェルール112における光ファイバ11aの端面、およびフェルール113における光ファイバ12aの端面は、端面での光反射による干渉を防ぐため、光軸方向に対して垂直な形状ではなく、わずかに斜めにしておくほうが好ましい。 Note that the end face of the optical fiber 11a in the ferrule 112 and the end face of the optical fiber 12a in the ferrule 113 are slightly inclined rather than perpendicular to the optical axis direction in order to prevent interference due to light reflection at the end face. It is better to leave it.
 このような構成で、光量モニタ50で測定された光量値が所定の光量値より大きい場合、あるいは所定の光量範囲を上回る場合には、制御回路51は光ファイバ11a、12a間の距離が増大するように、支持板114とフェルール112を移動させる。これにより、光ファイバ12aを通過する光量は減少し、光量モニタ50で測定される光量値が所定の光量値となるように、あるいは所定の光量範囲内になるように、調整される。 With such a configuration, when the light amount value measured by the light amount monitor 50 is larger than the predetermined light amount value or exceeds the predetermined light amount range, the control circuit 51 increases the distance between the optical fibers 11a and 12a. Thus, the support plate 114 and the ferrule 112 are moved. As a result, the amount of light passing through the optical fiber 12a is reduced and adjusted so that the light amount value measured by the light amount monitor 50 becomes a predetermined light amount value or within a predetermined light amount range.
 一方、光量モニタ50で測定された光量値が所定の光量値より小さい場合、あるいは所定の光量範囲を下回る場合には、制御回路51は光ファイバ11a、12a間の距離が減少するように、支持板114とフェルール112を移動させる。これにより、光ファイバ12aを通過する光量は増大し、ビームスプリッタ14で分割されて被検眼21に入射する測定光の光量が所定の光量値(光量範囲)に保たれ、良好な断層像撮影が可能になる。 On the other hand, when the light amount value measured by the light amount monitor 50 is smaller than the predetermined light amount value or below the predetermined light amount range, the control circuit 51 supports the distance between the optical fibers 11a and 12a so as to decrease. The plate 114 and the ferrule 112 are moved. As a result, the amount of light passing through the optical fiber 12a increases, the amount of measurement light that is split by the beam splitter 14 and incident on the eye 21 is kept at a predetermined light amount value (light amount range), and good tomographic imaging can be performed. It becomes possible.
 光量調整ユニットは、図3に図示したように、光可変アッテネータ(Variable Optical Attenuator)からなる光量調整ユニット11’とすることもできる。光量調整ユニット11’は、低コヒーレンス光源10に接続された光ファイバ11aから出射する低コヒーレンス光をレンズ120を介してミラー121で反射させ、ミラー121で反射された低コヒーレンス光をレンズ120を介して光カプラ12の入射側ポートに接続された光ファイバ12aの端部に入射させる。ミラー121を回転させることにより、光ファイバ12aに入射する低コヒーレンス光を変化させることができるので、制御回路51の制御信号でミラー121の反射角度を制御する。 The light quantity adjustment unit may be a light quantity adjustment unit 11 'composed of a variable optical attenuator (Variable Optical Attenuator) as shown in FIG. The light amount adjustment unit 11 ′ reflects the low coherence light emitted from the optical fiber 11 a connected to the low coherence light source 10 by the mirror 121 through the lens 120, and the low coherence light reflected by the mirror 121 through the lens 120. Then, the light is incident on the end of the optical fiber 12 a connected to the incident side port of the optical coupler 12. Since the low-coherence light incident on the optical fiber 12a can be changed by rotating the mirror 121, the reflection angle of the mirror 121 is controlled by the control signal of the control circuit 51.
 光量モニタ50で測定された光量値が所定の光量値より大きい場合、あるいは所定の光量範囲を上回る場合には、制御回路51はミラー121の反射角度を、光ファイバ12aに入射する光量が減少するように、変化させる。一方、光量モニタ50で測定された光量値が所定の光量値より小さい場合、あるいは所定の光量範囲を下回る場合には、ミラー121の反射角度を、光ファイバ12aに入射する光量が増大するように、変化させる。これにより、ビームスプリッタ14で分割されて被検眼21に入射する測定光の光量を所定の光量値(光量範囲)になるように調整することができる。 When the light amount value measured by the light amount monitor 50 is larger than the predetermined light amount value or exceeds the predetermined light amount range, the control circuit 51 reduces the reflection angle of the mirror 121 and the light amount incident on the optical fiber 12a. To change. On the other hand, when the light amount value measured by the light amount monitor 50 is smaller than the predetermined light amount value or below the predetermined light amount range, the reflection angle of the mirror 121 is set so that the amount of light incident on the optical fiber 12a increases. , Change. Thereby, the light quantity of the measurement light split by the beam splitter 14 and incident on the eye 21 to be examined can be adjusted to be a predetermined light quantity value (light quantity range).
 通常、低コヒーレンス光源10には、内蔵のAPC(Automatic Power Control)回路により一定の出力が得られるような制御が行われている。本実施例では、制御回路51の制御信号により低コヒーレンス光源10の出力を直接制御するのではなく、低コヒーレンス光源10と光カプラ12間に光ファイバ11a、12aを介して接続された光量調整ユニット11(11’)により光量を調整している。光量調整ユニット11(11’)は、低コヒーレンス光源10からの光が通過する光ファイバの結合効率を変化させることにより光量を変化させているので、低コヒーレンス光源10からの光のスペクトル形状(分布)を維持したまま光量のみを変化させることができる。従って、光量を調整しても、測定光学系並びに参照光学系に入射する光のスペクトル形状は変化せず、断層像の深さ方向の分解能に影響がなく、良好な画質の断層画像を形成することができる、という効果が得られる。 Usually, the low-coherence light source 10 is controlled so that a constant output can be obtained by a built-in APC (Automatic Power Control) circuit. In this embodiment, the light amount adjustment unit is not directly controlled by the control signal of the control circuit 51 but connected between the low coherence light source 10 and the optical coupler 12 via optical fibers 11a and 12a. 11 (11 ′) adjusts the amount of light. Since the light amount adjustment unit 11 (11 ′) changes the light amount by changing the coupling efficiency of the optical fiber through which the light from the low coherence light source 10 passes, the spectral shape (distribution) of the light from the low coherence light source 10 ) Can be maintained and only the amount of light can be changed. Therefore, even if the amount of light is adjusted, the spectral shape of the light incident on the measurement optical system and the reference optical system does not change, and the tomographic image in the depth direction is not affected, and a tomographic image with good image quality is formed The effect that it can be obtained.
 OCT装置の場合、光源からの光を分波して参照光を形成するので、参照光学系からの戻り光が一部光源側にも戻ってくるため、戻り参照光が外乱となって光源出力が変動してしまう恐れがある。 In the case of the OCT apparatus, since the reference light is formed by demultiplexing the light from the light source, a part of the return light from the reference optical system also returns to the light source side. May fluctuate.
 そこで、参照光学系の光路に配置した可変開口絞り32で参照光量を調整するようにする。参照光量の測定は、分光器40により参照光のみまたは参照光と測定光のスペクトルの平均輝度値を評価することによって行う。あるいは、分光器40上のスペクトルをコンピュータ41でフーリエ変換して自己相関信号を算出し、その強度をもって参照光量の測定値とする。あるいは、コンピュータ41で断層像を構成する相互相関信号を算出しその強度をもって参照光量の測定値とする。または、光ショットノイズ量(断層画像のバックグラウンドノイズ)をもって参照光量の測定値としてもよい。 Therefore, the reference light amount is adjusted by the variable aperture stop 32 disposed in the optical path of the reference optical system. The reference light amount is measured by evaluating the average luminance value of only the reference light or the spectrum of the reference light and the measurement light with the spectroscope 40. Alternatively, the spectrum on the spectroscope 40 is Fourier-transformed by the computer 41 to calculate an autocorrelation signal, and the intensity is used as a measured value of the reference light amount. Alternatively, the cross-correlation signal constituting the tomographic image is calculated by the computer 41, and the intensity is used as the measured value of the reference light amount. Or it is good also as a measured value of reference light quantity with light shot noise amount (background noise of a tomographic image).
 コンピュータ41は、このようにして測定された参照光量に応じて、参照光量が大きければ可変開口絞り32の開口径を小さくし、参照光量が小さければ開口径を大きくして、参照光量が所定の光量値あるいは所定の上限値と下限値で定まる光量範囲内になるように、可変開口絞り32の開口径を制御する。 In accordance with the reference light amount thus measured, the computer 41 reduces the aperture diameter of the variable aperture stop 32 if the reference light amount is large, and increases the aperture diameter if the reference light amount is small. The aperture diameter of the variable aperture stop 32 is controlled so as to be within a light amount range determined by a light amount value or a predetermined upper limit value and lower limit value.
 また、参照光量が適切な値に制御できているか不明な状況においては、参照光学系からの戻り光をカットするために、参照光学系内に遮光機構34を設け、この遮光機構34により遮光板34aを参照光路に挿入し、参照光を遮光するようにする。 Further, in a situation where it is unknown whether the reference light amount can be controlled to an appropriate value, a light shielding mechanism 34 is provided in the reference optical system in order to cut the return light from the reference optical system. 34a is inserted into the reference light path so as to block the reference light.
 このように光量モニタ50による光量調整時、参照光学系からの戻り光が所定の光量値(光量範囲)に制御されたり、あるいは遮光されるので、戻り光による光源出力変動が抑制され、測定光量を適正に調整して良好な断層像撮影を行うことが可能となる。 As described above, when the light amount is adjusted by the light amount monitor 50, the return light from the reference optical system is controlled to a predetermined light amount value (light amount range) or shielded, so that the light source output fluctuation due to the return light is suppressed, and the measured light amount It is possible to perform favorable tomographic imaging by appropriately adjusting the angle.
 また、光量モニタ50による光量調整は断層像撮影中にも行うことができるが、制御の不具合で一時的に適正な光量を超える過多な光量が対物レンズ20から出射し、被検眼21に入射してハザードリスクが発生する可能性がある。そこで、光量モニタ50を第1光量モニタとして、図4に示したように、対物レンズ20の外部近辺に第2光量モニタとしての光量モニタ60を配置して、この光量モニタ60で測定光が対物レンズ20に入射せず、従って被検眼21に入射しないことが確証されたときに光量モニタ50による光量調整を行うようにする。 Although the light amount adjustment by the light amount monitor 50 can be performed even during tomographic imaging, an excessive amount of light temporarily exceeding an appropriate amount of light is emitted from the objective lens 20 and enters the eye 21 to be examined due to a control defect. Hazard risk may occur. Therefore, as shown in FIG. 4, the light amount monitor 50 is used as the first light amount monitor, and a light amount monitor 60 as the second light amount monitor is disposed in the vicinity of the outside of the objective lens 20, and the measurement light is transmitted through the light amount monitor 60. When it is confirmed that the light does not enter the lens 20 and therefore does not enter the eye 21, the light amount adjustment by the light amount monitor 50 is performed.
 この光量モニタ60による光量の監視機構が図4に図示されている。図4で一点鎖線で示した部分は、図1の一点鎖線で示した部分に対応している。 The light quantity monitoring mechanism by the light quantity monitor 60 is shown in FIG. 4 corresponds to the portion indicated by the alternate long and short dash line in FIG.
 図4に示したように、光量モニタ60は、測定光学系において測定光が通過する光路から外れた位置で対物レンズ20の近辺に配置される。光量モニタ60は、光量モニタ50と同様にフォトダイオードなどの光検出素子で構成される。 As shown in FIG. 4, the light amount monitor 60 is disposed in the vicinity of the objective lens 20 at a position deviated from the optical path through which the measurement light passes in the measurement optical system. Similar to the light quantity monitor 50, the light quantity monitor 60 is composed of a light detection element such as a photodiode.
 光量モニタ60は検知回路61に接続され、検知回路61は、光量モニタ60で測定した光量が所定のしきい値以上の光量であった場合に、検知信号を出力する。検知回路61の検知信号は、図1の制御回路51に入力され、検知信号が制御回路51に入力された場合には、制御回路51が作動され、検知信号がない場合には制御回路は不作動にされる。 The light quantity monitor 60 is connected to a detection circuit 61. The detection circuit 61 outputs a detection signal when the light quantity measured by the light quantity monitor 60 is equal to or greater than a predetermined threshold value. The detection signal of the detection circuit 61 is input to the control circuit 51 in FIG. 1. When the detection signal is input to the control circuit 51, the control circuit 51 is activated, and when there is no detection signal, the control circuit is disabled. Activated.
 このような構成で、光量モニタ50による光量調整を行うときには、測定光が光量モニタ60に入射するように、ガルバノミラードライバ16でx軸走査ミラー17、y軸走査ミラー18を駆動する。低コヒーレンス光源10の点灯によりビームスプリッタ14で分割された測定光が光量モニタ60に入射すると、光量モニタ60で測定した光量が所定のしきい値以上になり、検知回路61から検知信号が出力され制御回路51が作動する。制御回路51は、制御信号を光量調整ユニット11に出力し、光量モニタ50で測定された光量値が所定の光量値(光量範囲)となるように、フィードバック制御を行う。 With such a configuration, when the light amount is adjusted by the light amount monitor 50, the galvano mirror driver 16 drives the x-axis scanning mirror 17 and the y-axis scanning mirror 18 so that the measurement light enters the light amount monitor 60. When the measurement light split by the beam splitter 14 due to the low-coherence light source 10 is turned on, the light quantity measured by the light quantity monitor 60 exceeds a predetermined threshold value, and a detection signal is output from the detection circuit 61. The control circuit 51 is activated. The control circuit 51 outputs a control signal to the light amount adjustment unit 11 and performs feedback control so that the light amount value measured by the light amount monitor 50 becomes a predetermined light amount value (light amount range).
 このように、測定光が対物レンズ20に入射せず、従って被検眼21に入射しないときに、測定光の光量調整が行われるので、制御の不具合で過多な光量が被検眼に入射してハザードリスクが発生するのを防止できる。 In this way, when the measurement light does not enter the objective lens 20 and therefore does not enter the eye 21, the light amount of the measurement light is adjusted. Therefore, an excessive amount of light is incident on the eye to be inspected due to a control failure. Risk can be prevented from occurring.
 なお、検知回路61に設定される光量の所定のしきい値は、高い値に設定すると、制御回路51にトリガーがかからず、光量調整が円滑に行われない可能性があるので、例えば測定光量の半分ぐらいの値に設定しておく。光量モニタ50による光量調整により光量モニタ60で測定される光量は変動するが、上記しきい値を低めの値に設定することにより、光量調整中に制御回路51が不作動になってしまうのを防止し、円滑な光量調整を行うことが可能となる。 Note that if the predetermined threshold value of the light amount set in the detection circuit 61 is set to a high value, the control circuit 51 is not triggered and the light amount adjustment may not be performed smoothly. Set it to about half of the light intensity. Although the amount of light measured by the light amount monitor 60 fluctuates due to the light amount adjustment by the light amount monitor 50, the control circuit 51 becomes inoperable during the light amount adjustment by setting the threshold value to a lower value. It is possible to prevent and perform smooth light quantity adjustment.
 上述したように、光量モニタ50で光量監視を行う場合には、光量モニタ50で測定される光量と対物レンズ20から出射する測定光の光量(以下、対物出射光量という)間に高い相関があることが前提になる。ここで、光量モニタ60で測定される光量と対物出射光量間には高い相関があることから、光量モニタ50、60で測定される光量間に高い相関を持たせて、光量モニタ50で測定される光量と対物出射光量間に高い相関性を持たせる。 As described above, when the light amount monitor 50 performs light amount monitoring, there is a high correlation between the light amount measured by the light amount monitor 50 and the light amount of the measurement light emitted from the objective lens 20 (hereinafter referred to as the objective emission light amount). That is the premise. Here, since there is a high correlation between the amount of light measured by the light amount monitor 60 and the amount of light emitted from the objective, the light amount measured by the light amount monitor 50 is measured with the light amount monitor 50. A high correlation is provided between the amount of light to be emitted and the amount of light emitted from the objective.
 しかしながら、光量モニタ50、60で測定される光量間の相関は、光量モニタ60に至るまでの途中光学系の光学特性に依存しているため、経時的に変化する恐れがある。途中光学系の特性変化の要因として、光学系の汚れや変性による伝搬特性の変化など長期的な要因が考えられ、特にファイバ端面への汚れの付着は多大な影響を与えてしまう。また、環境温度の変化による光カプラ12の光ファイバの伝搬特性の変化などの中期的な要因、あるいは断層像撮影装置への外力印加によって発生する光ファイバへの応力変化に伴う光ファイバ部品の伝搬特性の変化などの短期的な要因が途中光学系の特性を変化させてしまう。 However, the correlation between the light amounts measured by the light amount monitors 50 and 60 depends on the optical characteristics of the optical system before reaching the light amount monitor 60, and may change over time. Long-term factors such as changes in the propagation characteristics due to contamination and modification of the optical system can be considered as factors causing changes in the characteristics of the optical system in the middle. Particularly, the adhesion of dirt to the fiber end face has a great influence. Further, the propagation of optical fiber components due to a medium-term factor such as a change in the propagation characteristic of the optical fiber of the optical coupler 12 due to a change in the environmental temperature, or a stress change to the optical fiber caused by an external force applied to the tomographic imaging apparatus. Short-term factors such as changes in characteristics will change the characteristics of the optical system.
 したがって、光量モニタ50、60で測定される光量間の相関変動を調べるために、光量モニタ60で測定される光量値Aに対する光量モニタ50で測定される光量値Bの比(B/A)を相関係数として求めて登録し、断層像撮影装置の起動後、常に一定の時間間隔で、もしくは測定開始前に毎回その変動を調べ当該比の変動を監視して光量調整を行う。 Therefore, in order to investigate the correlation variation between the light amounts measured by the light amount monitors 50 and 60, the ratio (B / A) of the light amount value B measured by the light amount monitor 50 to the light amount value A measured by the light amount monitor 60 is calculated. The correlation coefficient is obtained and registered, and after starting the tomographic imaging apparatus, the fluctuation is always checked at a constant time interval or before the start of measurement, and the fluctuation of the ratio is monitored to adjust the light amount.
 登録されている相関係数に対する変動が10%以内である場合には、登録されている相関係数に対する現在の相関係数の比を算出し、その比を制御回路51の制御パラメータ(比例成分)に乗じて得られる操作量を光量調整ユニット11のモータ116に出力して光量調整を行う。 When the fluctuation with respect to the registered correlation coefficient is within 10%, the ratio of the current correlation coefficient to the registered correlation coefficient is calculated, and the ratio is set as a control parameter (proportional component) of the control circuit 51. ) Is output to the motor 116 of the light amount adjustment unit 11 to adjust the light amount.
 一方、10%以上の変動が発生した場合には、途中光学系の清掃を行う必要があると判断し、ユーザにメッセージを出力してメンテナンスを要求し、新たに光パワーメータで測定した対物出射光量、光量モニタ50、光量モニタ60間の相関係数を算出し、既登録の相関係数に代え、変動後の相関係数を登録して相関係数の校正を行う。この校正された相関係数は、以降の相関係数の変動を調べるときの初期相関係数として用いられる。 On the other hand, if a fluctuation of 10% or more occurs, it is determined that the optical system needs to be cleaned halfway, a message is output to the user to request maintenance, and the objective emission newly measured with the optical power meter The correlation coefficient between the light quantity, the light quantity monitor 50, and the light quantity monitor 60 is calculated, and the correlation coefficient after fluctuation is registered instead of the already registered correlation coefficient to calibrate the correlation coefficient. The calibrated correlation coefficient is used as an initial correlation coefficient when examining subsequent fluctuations of the correlation coefficient.
 また、前回補正時の相関係数より10%以上の変動が発生するような短期的な変動をした場合は、途中光学系の異常と判断し、ユーザに光量再調整を促すメッセージを出力する。 Also, if there is a short-term fluctuation that causes a fluctuation of 10% or more from the correlation coefficient at the previous correction, it is determined that the optical system is in the middle, and a message prompting the user to readjust the light amount is output.
 このように、光量モニタ50で測定される光量と対物出射光量間に高い相関性を持たせることができるので、対物出射光量を目標とする光量に調整することが可能となる。 As described above, since the light quantity measured by the light quantity monitor 50 and the objective outgoing light quantity can be highly correlated, the objective outgoing light quantity can be adjusted to the target light quantity.
 また、本発明では、光カプラ12の出射側に接続された光量モニタ50で光量監視が行われるので、測定光が対象物体に入射する測定中でもリアルタイムで光量監視を行うことが可能になる。 Further, in the present invention, since the light amount monitoring is performed by the light amount monitor 50 connected to the emission side of the optical coupler 12, the light amount monitoring can be performed in real time even during the measurement in which the measurement light is incident on the target object.
 このように、光量モニタ50による光量調整が行われると、適正な測定光が被検眼眼底に入射されるので、断層像の撮影を開始できる。また、断層像の撮影中も測定光の変動が予想されるので、光量モニタ50による光量調整を継続させることもできる。なお、断層像の撮影中光量モニタ50による光量調整を行う場合、測定光は対物レンズ20に入射し、光量モニタ60に入射しなくなるので、検知回路61からの検知信号が制御回路51に入力しなくなり、制御回路51が不作動になって、光量モニタ50による光量調整ができなくなる。従って、そのような場合には、検知回路61と制御回路51間の接続を遮断するようにしておく。 As described above, when the light amount is adjusted by the light amount monitor 50, the appropriate measurement light is incident on the fundus of the eye to be examined, so that it is possible to start tomographic imaging. Further, since the fluctuation of the measurement light is expected during the tomographic image capturing, the light amount adjustment by the light amount monitor 50 can be continued. When the light amount is adjusted by the light amount monitor 50 during tomographic image capturing, the measurement light is incident on the objective lens 20 and is not incident on the light amount monitor 60. Therefore, a detection signal from the detection circuit 61 is input to the control circuit 51. As a result, the control circuit 51 becomes inoperative and the light amount adjustment by the light amount monitor 50 becomes impossible. Therefore, in such a case, the connection between the detection circuit 61 and the control circuit 51 is cut off.
 なお、本発明では、低コヒーレンス光源10、制御回路51などが故障して測定光が異常光量となり、断層像撮影が危険な状態になるのを光量モニタ60を用いて監視することにより防止することができる。 According to the present invention, the low light coherence light source 10, the control circuit 51, and the like fail to prevent the measurement light from becoming an abnormal light amount, and tomography is in a dangerous state by monitoring with the light amount monitor 60. Can do.
 この実施例が図5に示されており、図4と同一の部品、装置には同一の番号が付されており、その詳細な説明は省略する。 This embodiment is shown in FIG. 5, and the same parts and devices as those in FIG. 4 are given the same numbers, and detailed description thereof is omitted.
 図5において、光量モニタ60は異常検知回路70と接続され、異常検知回路70は、光量モニタ60で測定された光量が、例えば、被検眼を損傷させてしまうような被検眼に危険となるしきい値を超える光量となったときに、異常検知信号を発生する。異常検知信号は、ガルバノミラードライバ16、コンピュータ41並びに表示器80に入力される。 In FIG. 5, the light amount monitor 60 is connected to the abnormality detection circuit 70, and the abnormality detection circuit 70 is dangerous for the eye to be examined, for example, the light amount measured by the light amount monitor 60 may damage the eye to be examined. When the amount of light exceeds the threshold, an abnormality detection signal is generated. The abnormality detection signal is input to the galvanometer mirror driver 16, the computer 41, and the display device 80.
 この異常検知は、例えば断層像撮影開始前に1回行われる。被検眼21に測定光が入射しない状態に被検眼を退避させ、低コヒーレンス光源10を点灯する。その後、ガルバノミラードライバ16でx軸走査ミラー17、y軸走査ミラー18を駆動して測定光が光量モニタ60に入射するようにする。光量モニタ60により測定された光量が被検眼に危険となるしきい値を超えるときには、異常検知回路70は異常検知信号をガルバノミラードライバ16に出力する。このとき、ガルバノミラードライバ16は、測定光が光量モニタ60以外の位置に移動しないように、x軸走査ミラー17、y軸走査ミラー18を制御するか、あるいは、x軸走査ミラー17、y軸走査ミラー18を駆動して、測定光が測定光学系の光軸に対して対物レンズ20と対称の位置に配置された光吸収散乱体71に入射するように、測定光を偏向させる。これにより、例えば低コヒーレンス光源10あるいは制御回路41などの故障で異常な光量になった測定光が対物レンズ20を通過するのを防止することができる。また、異常検知信号はコンピュータ41にも入力され、これにより撮影処理が停止される。また、異常検知信号が表示器80に入力され、測定光が異常な値になったことが表示器80に表示される。 This abnormality detection is performed once, for example, before the start of tomographic imaging. The eye to be examined is retracted so that the measurement light does not enter the eye to be examined 21, and the low coherence light source 10 is turned on. Thereafter, the galvano mirror driver 16 drives the x-axis scanning mirror 17 and the y-axis scanning mirror 18 so that the measurement light enters the light amount monitor 60. When the amount of light measured by the light amount monitor 60 exceeds a threshold value that is dangerous for the eye to be examined, the abnormality detection circuit 70 outputs an abnormality detection signal to the galvanometer mirror driver 16. At this time, the galvanometer mirror driver 16 controls the x-axis scanning mirror 17 and the y-axis scanning mirror 18 so that the measurement light does not move to a position other than the light amount monitor 60, or the x-axis scanning mirror 17 and the y-axis. The scanning mirror 18 is driven to deflect the measurement light so that the measurement light is incident on the light-absorbing scatterer 71 disposed at a position symmetrical to the objective lens 20 with respect to the optical axis of the measurement optical system. Thereby, for example, it is possible to prevent the measurement light having an abnormal light amount due to a failure of the low-coherence light source 10 or the control circuit 41 from passing through the objective lens 20. Further, the abnormality detection signal is also input to the computer 41, whereby the photographing process is stopped. Further, an abnormality detection signal is input to the display device 80, and the display device 80 displays that the measurement light has an abnormal value.
 異常が検知されない場合には、表示器80にその旨が表示されるので、光量モニタ50による光量調整を行って被検眼眼底を測定光で走査し、眼底の断層像撮影を行う。 If no abnormality is detected, the fact is displayed on the display device 80. Therefore, the light amount is adjusted by the light amount monitor 50, the fundus of the eye to be examined is scanned with the measurement light, and a tomographic image of the fundus is taken.
 このような異常検知を、断層像撮影開始前、あるいは定期的に被検眼を退避させて行うことにより、低コヒーレンス光源10あるいは制御回路41などの故障を検出できるので、安全な断層像撮影を行うことができる。 By performing such an abnormality detection before the start of tomographic imaging or periodically withdrawing the eye to be examined, it is possible to detect a failure of the low-coherence light source 10 or the control circuit 41, so that safe tomographic imaging is performed. be able to.
 上述した実施例では、対象物体が被検眼として説明されたが、本発明はこれに限定されることなく、他の対象物体であってもよい。本発明では、適正な測定光が対象物体に入射されるので、過多な測定光が対象物体に入射されると、当該対象物体が損傷したり、危険な状態となる生体のような対象物体の断層像撮影に適している。 In the above-described embodiments, the target object has been described as the eye to be examined. However, the present invention is not limited to this and may be another target object. In the present invention, since the appropriate measurement light is incident on the target object, if excessive measurement light is incident on the target object, the target object is damaged or is in a dangerous state. Suitable for tomography.
 10 低コヒーレンス光源
 11、11’ 光量調整ユニット
 12 光カプラ
 14 ビームスプリッタ
 15 フォーカスレンズ
 16 ガルバノミラードライバ
 17 x軸走査ミラー
 18 y軸走査ミラー
 19 スキャンレンズ
 20 対物レンズ
 21 被検眼
 32 可変開口絞り
 33 参照ミラー
 34 遮光機構
 40 分光器
 41 コンピュータ
 50 光量モニタ
 51 制御回路
 60 光量モニタ
 61 検知回路
 70 異常検知回路
 71 光吸収散乱体
 80 表示器
DESCRIPTION OF SYMBOLS 10 Low coherence light source 11, 11 'Light quantity adjustment unit 12 Optical coupler 14 Beam splitter 15 Focus lens 16 Galvanometer mirror driver 17 X axis scanning mirror 18 Y axis scanning mirror 19 Scan lens 20 Objective lens 21 Eye to be examined 32 Variable aperture stop 33 Reference mirror 34 light shielding mechanism 40 spectroscope 41 computer 50 light quantity monitor 51 control circuit 60 light quantity monitor 61 detection circuit 70 abnormality detection circuit 71 light absorption scatterer 80 display

Claims (14)

  1.  光源からの光を分波/合波光学系に入射し、分波/合波光学系から出射される光を測定光と参照光に分割して対象物体と参照物体に入射させ、対象物体で反射された測定光と参照物体で反射された参照光を重畳させて生成される干渉光に基づき対象物体の断層画像を形成する断層像撮影装置であって、
     前記分波/合波光学系から出射される光量を測定する光量モニタと、
     前記光量モニタで測定された光量値が、所定の光量値あるいは所定の上限値と下限値で定まる光量範囲内となるように、前記光源からの光量を調整する光量調整ユニットと、
     を備えることを特徴とする断層像撮影装置。
    The light from the light source is incident on the demultiplexing / combining optical system, the light emitted from the demultiplexing / multiplexing optical system is divided into measurement light and reference light, and incident on the target object and the reference object. A tomography apparatus for forming a tomographic image of a target object based on interference light generated by superimposing reflected measurement light and reference light reflected by a reference object,
    A light amount monitor for measuring the amount of light emitted from the demultiplexing / multiplexing optical system;
    A light amount adjustment unit that adjusts the light amount from the light source so that the light amount value measured by the light amount monitor is within a light amount range determined by a predetermined light amount value or a predetermined upper limit value and lower limit value;
    A tomographic imaging apparatus comprising:
  2.  前記分波/合波光学系が光ファイバを結合する光カプラであることを特徴とする請求項1に記載の断層像撮影装置。 The tomography apparatus according to claim 1, wherein the demultiplexing / combining optical system is an optical coupler that couples optical fibers.
  3.  前記光量モニタは、測定光と参照光に分割される光が出射する光カプラの出射側ポートと異なる出射側ポートに光ファイバを介して接続されることを特徴とする請求項2に記載の断層像撮影装置。 The tomograph according to claim 2, wherein the light quantity monitor is connected to an outgoing side port different from an outgoing side port of an optical coupler through which light divided into measurement light and reference light is emitted via an optical fiber. Image taking device.
  4.  前記光量調整ユニットは、光源と光カプラとの間でそれぞれ光ファイバを介して光源と光カプラに接続されることを特徴とする請求項2又は3に記載の断層像撮影装置。 The tomography apparatus according to claim 2 or 3, wherein the light amount adjustment unit is connected to the light source and the optical coupler via an optical fiber between the light source and the optical coupler, respectively.
  5.  前記光量調整ユニットは、光源からの光のスペクトル形状を維持した状態で光量を調整する光量調整ユニットであるとことを特徴とする請求項1から4のいずれか1項に記載の断層像撮影装置。 5. The tomographic imaging apparatus according to claim 1, wherein the light amount adjustment unit is a light amount adjustment unit that adjusts a light amount while maintaining a spectral shape of light from a light source. .
  6.  前記光量調整ユニットは、光カプラに接続された光ファイバと光源に接続された光ファイバ間の距離を変化させることにより光量を調整することを特徴とする請求項5に記載の断層像撮影装置。 6. The tomographic imaging apparatus according to claim 5, wherein the light amount adjusting unit adjusts the light amount by changing a distance between the optical fiber connected to the optical coupler and the optical fiber connected to the light source.
  7.  前記光量調整ユニットは、光源に接続された光ファイバから出射する低コヒーレンス光を角度を変えて光カプラに接続された光ファイバに入射させることにより光量を調整することを特徴とする請求項5に記載の断層像撮影装置。 The light quantity adjusting unit adjusts the light quantity by causing low-coherence light emitted from an optical fiber connected to a light source to enter an optical fiber connected to an optical coupler at a different angle. The tomographic imaging apparatus described.
  8.  前記参照物体で反射された参照光を、光源に入射しないように遮光する遮光機構が設けられることを特徴とする請求項1から7のいずれか1項に記載の断層像撮影装置。 8. The tomographic imaging apparatus according to claim 1, further comprising a light shielding mechanism that shields the reference light reflected by the reference object so as not to enter a light source.
  9.  前記参照物体で反射された参照光が通過する光路に可変開口絞りを配置し、参照物体で反射された参照光に応じて該可変開口絞りの開口径を制御することを特徴とする請求項1から7のいずれか1項に記載の断層像撮影装置。 The variable aperture stop is disposed in an optical path through which the reference light reflected by the reference object passes, and the aperture diameter of the variable aperture stop is controlled according to the reference light reflected by the reference object. 8. A tomographic imaging apparatus according to any one of items 1 to 7.
  10.  前記光量モニタを第1光量モニタとして、測定光が通過する光路から外れた位置に第2光量モニタを配置し、前記測定光を該第2光量モニタに入射させ測定光が対象物体に入射しない状態で第1光量モニタによる光量調整を行うことを特徴とする請求項1から9のいずれか1項に記載の断層像撮影装置。 A state in which the second light amount monitor is disposed at a position off the optical path through which the measurement light passes, and the measurement light is incident on the second light amount monitor, and the measurement light does not enter the target object. The tomographic imaging apparatus according to claim 1, wherein the light amount is adjusted by a first light amount monitor.
  11.  前記第2光量モニタは対物レンズ近傍に配置されることを特徴とする請求項10に記載の断層像撮影装置。 11. The tomographic imaging apparatus according to claim 10, wherein the second light quantity monitor is disposed in the vicinity of the objective lens.
  12.  前記対象物体の断層像撮影を開始する前にあるいは定期的に、前記測定光を第2光量モニタに入射させて第2光量モニタによる光量測定を行い、第2光量モニタで測定された光量が異常値を示すときは、前記測定光が対象物体に入射しない位置に測定光を偏向させることを特徴とする請求項10又は11に記載の断層像撮影装置。 Before starting tomographic imaging of the target object or periodically, the measurement light is incident on the second light quantity monitor to measure the light quantity by the second light quantity monitor, and the light quantity measured by the second light quantity monitor is abnormal. The tomography apparatus according to claim 10 or 11, wherein when the value is indicated, the measurement light is deflected to a position where the measurement light does not enter the target object.
  13.  第1と第2光量モニタでそれぞれ測定される光量値の比を求め、当該比の変動を監視して光量調整を行うことを特徴とする請求項10から12のいずれか1項に記載の断層像撮影装置。 13. The tomographic imaging apparatus according to claim 10, wherein a ratio of light quantity values respectively measured by the first and second light quantity monitors is obtained, and a light quantity adjustment is performed by monitoring a change in the ratio. Image taking device.
  14.  前記対象物体が被検眼であることを特徴とする請求項1から13のいずれか1項に記載の断層像撮影装置。 The tomographic imaging apparatus according to any one of claims 1 to 13, wherein the target object is an eye to be examined.
PCT/JP2015/074131 2014-08-28 2015-08-27 Tomography apparatus WO2016031890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545599A JP6599876B2 (en) 2014-08-28 2015-08-27 Tomography system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-173710 2014-08-28
JP2014173710 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031890A1 true WO2016031890A1 (en) 2016-03-03

Family

ID=55399775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074131 WO2016031890A1 (en) 2014-08-28 2015-08-27 Tomography apparatus

Country Status (2)

Country Link
JP (1) JP6599876B2 (en)
WO (1) WO2016031890A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113367655B (en) * 2021-06-09 2022-06-10 赣南医学院第一附属医院 Multi-functional ophthalmic anterior segment imaging device based on slit lamp platform

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341300A (en) * 2003-05-16 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> Variable optical attenuator and optical variable attenuator array
JP2008233384A (en) * 2007-03-19 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Variable optical attenuator
JP2008304314A (en) * 2007-06-07 2008-12-18 Yamatake Corp Optical coherence tomography system
JP2009133630A (en) * 2007-11-28 2009-06-18 Fujifilm Corp Optical connector and optical tomographic imaging apparatus using the same
JP2009523564A (en) * 2006-01-19 2009-06-25 オプトビュー,インコーポレーテッド Fourier domain optical coherence tomography
JP2010038910A (en) * 2008-07-07 2010-02-18 Canon Inc Imaging apparatus and method using optical coherence tomography
JP2010243280A (en) * 2009-04-03 2010-10-28 Topcon Corp Optical image measuring apparatus
JP2011039117A (en) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd Bidirectional optical communication module
WO2011077634A1 (en) * 2009-12-25 2011-06-30 株式会社トプコン Optical image measurement device
US20110292399A1 (en) * 2010-05-26 2011-12-01 Gaa Associates Discrete Spectrum Broadband Optical Source
JP2013208394A (en) * 2012-03-30 2013-10-10 Canon Inc Optical coherence tomographic imaging apparatus and method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112499A1 (en) * 2008-02-28 2009-10-28 Optopol Technology S.A. Method and apparatus for optical coherence tornography
JP5574670B2 (en) * 2009-10-30 2014-08-20 キヤノン株式会社 Compensating optical device, imaging device, and compensating optical method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341300A (en) * 2003-05-16 2004-12-02 Nippon Telegr & Teleph Corp <Ntt> Variable optical attenuator and optical variable attenuator array
JP2009523564A (en) * 2006-01-19 2009-06-25 オプトビュー,インコーポレーテッド Fourier domain optical coherence tomography
JP2008233384A (en) * 2007-03-19 2008-10-02 Nippon Telegr & Teleph Corp <Ntt> Variable optical attenuator
JP2008304314A (en) * 2007-06-07 2008-12-18 Yamatake Corp Optical coherence tomography system
JP2009133630A (en) * 2007-11-28 2009-06-18 Fujifilm Corp Optical connector and optical tomographic imaging apparatus using the same
JP2010038910A (en) * 2008-07-07 2010-02-18 Canon Inc Imaging apparatus and method using optical coherence tomography
JP2010243280A (en) * 2009-04-03 2010-10-28 Topcon Corp Optical image measuring apparatus
JP2011039117A (en) * 2009-08-06 2011-02-24 Sumitomo Electric Ind Ltd Bidirectional optical communication module
WO2011077634A1 (en) * 2009-12-25 2011-06-30 株式会社トプコン Optical image measurement device
US20110292399A1 (en) * 2010-05-26 2011-12-01 Gaa Associates Discrete Spectrum Broadband Optical Source
JP2013208394A (en) * 2012-03-30 2013-10-10 Canon Inc Optical coherence tomographic imaging apparatus and method thereof

Also Published As

Publication number Publication date
JPWO2016031890A1 (en) 2017-06-15
JP6599876B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
KR101384005B1 (en) Imaging apparatus and imaging method using optical coherence tomography, and computer readable storing medium
US10076243B2 (en) Ophthalmic imaging device
US8358421B2 (en) Optical tomographic imaging apparatus that changes reference beam path lengths
US9429414B2 (en) Image pickup apparatus and image pickup method using optical coherence tomography
US8651662B2 (en) Optical tomographic imaging apparatus and imaging method for optical tomographic image
US9820645B2 (en) Ophthalmologic apparatus
US10602925B2 (en) Coherence-gated wavefront-sensorless adaptive-optics multi-photon microscopy, and associated systems and methods
KR101570668B1 (en) Optical coherence tomographic apparatus
US8678588B2 (en) Optical coherence tomographic imaging apparatus
KR101088479B1 (en) Laser apparatus of monitoring processing status by using Optical Coherence Tomography
JP5650482B2 (en) Ophthalmic imaging equipment
JP2007151622A (en) Ophthalmic apparatus
US20110222070A1 (en) Optical Tomographic Image Forming Method
JP6458467B2 (en) Ophthalmic imaging equipment
JP5242473B2 (en) Ophthalmic photographing apparatus and calibration method for ophthalmic photographing apparatus
JP2016075585A (en) Imaging device, noise reduction method of tomographic image, and program
JP2013230234A (en) Fundus photographing apparatus and attachment for fundus photographing apparatus
JP5990224B2 (en) Imaging apparatus and imaging method
JP2017047061A (en) Optical coherent tomographic apparatus and control method
JP6599876B2 (en) Tomography system
US8770757B2 (en) Fast wave front measurement
JP2021037038A (en) Optical coherence tomographic device
JP5397919B2 (en) Ophthalmic equipment
JP2016123801A (en) Ophthalmologic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836542

Country of ref document: EP

Kind code of ref document: A1