WO2016031121A1 - Battery cooling structure, battery module, and battery module case - Google Patents

Battery cooling structure, battery module, and battery module case Download PDF

Info

Publication number
WO2016031121A1
WO2016031121A1 PCT/JP2015/003509 JP2015003509W WO2016031121A1 WO 2016031121 A1 WO2016031121 A1 WO 2016031121A1 JP 2015003509 W JP2015003509 W JP 2015003509W WO 2016031121 A1 WO2016031121 A1 WO 2016031121A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
cooling medium
cooling
cell
Prior art date
Application number
PCT/JP2015/003509
Other languages
French (fr)
Japanese (ja)
Inventor
井口 豊樹
弘明 斉藤
加藤 浩二
清田 茂之
弘志 岩田
博之 小山
那由他 山地
諭 森山
幸典 根本
Original Assignee
日産自動車株式会社
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 日立オートモティブシステムズ株式会社 filed Critical 日産自動車株式会社
Priority to JP2016544916A priority Critical patent/JP6208887B2/en
Publication of WO2016031121A1 publication Critical patent/WO2016031121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/651Means for temperature control structurally associated with the cells characterised by parameters specified by a numeric value or mathematical formula, e.g. ratios, sizes or concentrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery cooling structure for cooling a battery.
  • a battery for supplying electricity as energy to the electric motor is mounted.
  • a secondary battery such as a lithium ion battery that can be repeatedly charged and discharged is used.
  • the secondary battery is configured by a battery module in which battery cells are stacked, and the battery module is mounted on a vehicle in a state where the battery module is housed in a battery case.
  • a battery pack including the battery case, the battery module housed in the battery case, and other internal components is referred to as a battery pack.
  • a cooling device such as a fan or a duct for taking in cooling air is attached to the battery pack.
  • a battery pack may be disposed in a center console box disposed between a driver's seat and a passenger seat due to ambient temperature and layout requirements.
  • a technology for improving the cooling performance by cooling the entire secondary battery more uniformly by making the passage cross-sectional area of the cooling air passage larger on the inlet side and smaller on the outlet side see Patent Document 1.
  • An object of the present invention is to provide a battery cooling structure for efficiently cooling battery cells in a battery module.
  • a plurality of columnar battery cells accommodated in the battery module are formed with a cooling medium passage through which the cooling medium passes. They were arranged parallel to each other with a gap.
  • the first side surface of the battery module has an inlet for opening the upstream side of the cooling medium passage and introducing the cooling medium into the battery module, in a gap between the battery cells arranged closest to the first side surface. It is provided along.
  • On the second side surface of the battery module there is an outlet on the downstream side of the cooling medium passage, and an outlet for discharging the cooling medium out of the battery module is arranged in the width direction of the battery cell arranged closest to the second side surface. It is provided along the center.
  • the inlet is an inlet and the outlet is an outlet.
  • the first side surface and the second side surface of the battery module are not limited to a part of the battery module, and may be a member that covers or surrounds the battery module.
  • the cooling medium efficiently enters between the battery cells from the inlet of the battery module, and the cooling medium passes through the cooling medium passage formed by the battery cells accommodated in the battery module.
  • the cooling medium passes, the battery cell that becomes the passage is cooled, and finally the cooling medium becomes a flow that is discharged from the outlet along the shape of the battery cell arranged closest to the outlet.
  • the battery cells in the module can be efficiently cooled.
  • FIG. 1 It is a figure which shows the structural example of a battery module.
  • A is a figure which shows the main body of a battery module.
  • B is a view of the intake side of the battery module.
  • C is a figure of the exhaust side of a battery module. It is a schematic diagram for demonstrating the internal structure of a battery module. It is a figure which shows the example of a 1st cover board. It is a schematic diagram of the battery module when viewed from the intake side.
  • A) is an internal schematic diagram.
  • B is a schematic diagram of an external appearance. It is a figure which shows the 1st example of a 2nd cover board. It is the 1st schematic diagram of a battery module at the time of seeing from the exhaust side.
  • (A) is an internal schematic diagram.
  • (B) is a schematic diagram of an external appearance. It is a figure which shows the 2nd example of a 2nd cover board. It is a 2nd schematic diagram of the battery module at the time of seeing from the exhaust side.
  • (A) is an internal schematic diagram.
  • (B) is a schematic diagram of an external appearance. It is a figure which shows the example which piled up 2 types of 2nd cover plates. It is a figure which shows the structural example of a battery pack. It is a schematic diagram of the battery pack when viewed from the exhaust side. It is explanatory drawing of the flow of the cooling air of the whole battery pack.
  • (A) is a peripheral view of the battery pack when viewed from the exhaust side.
  • (B) is a figure which shows the flow of the cooling air inside a battery pack. It is a figure which shows the example which forms a pseudo slit with a punch hole in a cover board.
  • (A) is a figure of the state which opened all the holes.
  • (B) is a figure of the state which is made into a slit with a part of holes being opened, and other holes are closed. It is a schematic diagram for demonstrating the internal structure of the battery module which provided the dummy cell.
  • first to fifth embodiments of the present invention will be described with reference to the drawings.
  • the same or similar parts are denoted by the same or similar reference numerals.
  • the drawings are schematic and different from the actual ones. Therefore, specific components should be determined in consideration of the following description.
  • the following first to fifth embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the shape of component parts, The structure and arrangement are not specified as follows.
  • the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
  • the battery cooling structure according to the first embodiment is realized in a battery module 1 as shown in FIGS.
  • the battery module 1 accommodates a plurality of columnar battery cells 2 inside a casing 1 a that is a rectangular parallelepiped as a whole.
  • the first side surface on the intake side, the second side surface on the exhaust side, and both electrodes (end portions) of the battery cell 2 A total of four surfaces, an upper surface and a lower surface, located on the) side are open.
  • the housing 1a is provided with an intake-side opening 1b on a first side, and an exhaust-side opening 1c on a second side opposite to the first side.
  • the side surface of the battery cell 2 is exposed at the opening 1b on the intake side and the opening 1c on the exhaust side.
  • the positive electrode 2a and the negative electrode 2b of the battery cell 2 are exposed on the upper surface and the lower surface of the housing 1a so that power can be taken out even in the state of being accommodated in the housing 1a. Since both the electrodes of the battery cell 2 are exposed, when the contents of the battery cell 2 flow out from either of the two electrodes of the battery cell 2, the flowed out contents are not inside the housing 1a but outside. Released. However, when it is not necessary to consider the outflow of the contents of the battery cell 2, only the lead wires connected to the positive electrode 2a and the negative electrode 2b are exposed instead of the positive electrode 2a and the negative electrode 2b of the battery cell 2. You may do it.
  • the battery cell 2 is a single battery.
  • the battery cell 2 is a cylindrical cell (columnar shape), and is housed in a staggered arrangement in order to be housed compactly in the housing 1 a of the battery module 1.
  • the battery cell 2 is not limited to a cylindrical cell.
  • a prismatic shape may be used.
  • it is not limited to the staggered arrangement.
  • it may be accommodated in a grid pattern.
  • each of the plurality of battery cells 2 accommodated in the casing 1a of the battery module 1 is not completely in close contact, and is arranged at an appropriate interval, so that cooling air passes between the battery cells. Possible passages (cooling air passages) are formed.
  • cooling air gas
  • cooling water liquid
  • the cooling medium may be a fluid.
  • the first cover plate 3 is located on the first side surface (intake side) of the battery module 1.
  • the first cover plate 3 is a part of the casing 1 a of the battery module 1.
  • the first cover plate 3 covers the opening 1b on the intake side of the casing 1a of the battery module 1 as an independent member.
  • the first cover plate 3 is a panel such as a metal plate or an acrylic plate.
  • the first cover plate 3 is provided with an intake port 4 for taking cooling air into the battery module 1. That is, the intake port 4 is an inlet for a cooling medium (fluid).
  • the first cover plate 3 is provided with four intake ports 4.
  • the intake 4 is a slit.
  • the inlet 4 as a slit, the pressure loss can be reduced while increasing the flow velocity of the cooling air. Moreover, the entrance of the protrusion (occupant's finger etc.) to the air inlet 4 can be suppressed by using the air inlet 4 as a slit.
  • the air inlet 4 is provided along the gap between the battery cells arranged closest to the first cover plate 3.
  • the air inlet 4 is positioned so as to overlap with the gap between the parallel cylindrical cells. It is open.
  • the number of battery cells 2 arranged closest to the first cover plate 3 is five, and the intake ports 4 are formed in four gaps between adjacent cells in the parallel five battery cells 2. It is provided along.
  • the number of battery cells 2 arranged closest to the first cover plate 3 is not limited to five and is arbitrary.
  • the air inlet 4 is provided only at a position along the gap between the battery cells arranged closest to the first cover plate 3.
  • a part of the air inlet 4 may be provided at a place other than the position along the gap between the battery cells.
  • the flow of the cooling air passing through the air inlet 4 provided at the position along the gap between the battery cells is made mainstream.
  • the second cover plate 5 is located on the second side surface (exhaust side) of the battery module 1.
  • the second cover plate 5 is a part of the casing 1 a of the battery module 1.
  • the second cover plate 5 covers the exhaust-side opening 1c of the casing 1a of the battery module 1 as an independent member.
  • the second cover plate 5 is a panel such as a metal plate or an acrylic plate.
  • the second cover plate 5 faces the first cover plate 3 with the battery module 1 interposed therebetween.
  • the second cover plate 5 may not be opposed to the first cover plate 3.
  • the second cover plate 5 is provided with an exhaust port 6 for discharging cooling air to the outside of the battery module 1. That is, the exhaust port 6 is an outlet for the cooling medium (fluid).
  • the second cover plate 5 is provided with three exhaust ports 6.
  • the exhaust port 6 is a slit. By making the exhaust port 6 into a slit, the flow passage area of the cooling air can be increased while guiding the direction in which the cooling air flows. Further, by making the exhaust port 6 into a slit, it is possible to prevent the protrusion (such as a passenger's finger) from entering the exhaust port 6.
  • the exhaust port 6 is provided along the center in the width direction of the battery cell arranged closest to the second cover plate 5.
  • the exhaust port 6 opens at a position that overlaps the apex of the curved surface of the cylindrical cell. Yes. Since the exhaust port 6 is opened at a position overlapping the apex of the curved surface of the cylindrical cell, the cooling air can be clung to the cylindrical cell when the cooling air is discharged.
  • the number of battery cells 2 arranged closest to the second cover plate 5 is five, and the exhaust port 6 is a central side excluding two of the two battery cells 2 in parallel.
  • the three battery cells 2 are provided along the center in the width direction. This is because the three battery cells 2 on the center side tend to be hotter than others, and the necessity for cooling is particularly high.
  • the number of battery cells 2 arranged closest to the second cover plate 5 is not limited to five and is arbitrary.
  • the number of the exhaust ports 6 arranged is smaller than the number of the intake ports 4 arranged. In other words, the total opening area of all the exhaust ports 6 is smaller than the total opening area of all the intake ports 4.
  • the exhaust port 6 is provided only at a position along the center in the width direction of the battery cell arranged closest to the second cover plate 5.
  • a part of the exhaust port 6 may be provided at a location other than the position along the center in the width direction of the battery cell.
  • the flow of the cooling air passing through the exhaust port 6 provided at the position along the center in the width direction of the battery cell is set to be the mainstream.
  • an exhaust fan installed on the exhaust side of the casing 1 a of the battery module 1 is connected to the air inside the casing 1 a from the exhaust port 6 provided in the second cover plate 5.
  • the cooling air is sucked into the housing 1a from the air inlet 4 provided in the first cover plate 3 on the air intake side of the housing 1a of the battery module 1.
  • the cooling air is air in the vehicle cooled by an air conditioner or the like.
  • the cooling air is sucked from the intake port 4, passes through the inside of the housing 1 a, and is sucked from the exhaust port 6. Thereafter, for example, the air may circulate in the vehicle and be sucked from the air intake 4 again.
  • a cooling structure that improves the cooling efficiency by adjusting the flow path and the flow velocity without increasing the flow rate of the cooling air is configured as described above. It was realized. The flow of cooling air inside the housing 1a in this cooling structure will be described in detail below.
  • the battery cells 2 in the casing 1a are arranged.
  • a relatively low temperature cooling air before cooling can be received. Therefore, the five battery cells 2 arranged closest to the first cover plate 3 can obtain a sufficient cooling effect even if the contact time of the cooling air is short. Therefore, the intake ports 4 are provided along the four gaps between adjacent cells in the five battery cells 2 arranged closest to the first cover plate 3.
  • the cooling air sucked into the housing 1 a from the air inlet 4 comes into contact with the side surfaces of the five battery cells 2 arranged closest to the first cover plate 3 and is lightly cooled in a short time. Then, it is sucked into the back of the housing 1a as it is. The sucked cooling air clings to the side surface of the battery cell 2 installed in the back of the housing 1a and cools it.
  • the five battery cells 2 arranged closest to the second cover plate 5 are close to the exhaust side (downstream of the cooling air) of the casing 1a of the battery module 1, so The cooling air which received the temperature rise after cooling the battery cell 2 is received.
  • the two battery cells 2 at both ends have side surfaces adjacent to the inner wall of the casing 1a of the battery module 1, As high as the three battery cells 2 on the center side surrounded by the battery cells 2, the temperature is unlikely to increase. That is, among the battery cells 2 in the housing 1a, the three battery cells 2 on the central side arranged closest to the second cover plate 5 tend to be hottest.
  • the exhaust port 6 is provided along the center in the width direction of the three battery cells 2 on the center side. As a result, before the cooling air flows out from the exhaust port 6, it clings to the side surfaces of the three battery cells 2 on the central side and takes a relatively longer time than the four battery cells 2 nearest to the intake port 4. And sufficiently cooled, the air is sucked out by a fan outside the housing 1a.
  • the flow velocity of the cooling air around the battery cell 2 that is likely to be the highest temperature on the exhaust side (downstream side of the cooling air) of the casing 1a of the battery module 1 is increased, and the battery cell 2 Only prevents it from becoming extremely hot.
  • the battery cell 2 that is likely to become the highest temperature can be prevented from exceeding the threshold value, and the threshold value of the laterality diagnosis of the temperature of the battery cell 2 can be optimized, so that the detectability of the battery cell abnormality can be improved. .
  • casing 1a can be reduced.
  • a plurality of columnar battery cells are housed in a battery module, and are spaced from each other so as to form a cooling medium passage through which the cooling medium passes. They are arranged in parallel.
  • the first side surface of the battery module has an inlet for opening the upstream side of the cooling medium passage and introducing the cooling medium into the battery module, in a gap between the battery cells arranged closest to the first side surface. It is provided along.
  • the second side surface of the battery module there is an outlet on the downstream side of the cooling medium passage, and an outlet for discharging the cooling medium out of the battery module is arranged in the width direction of the battery cell arranged closest to the second side surface. It is provided along the center.
  • the cooling medium is cooling air
  • the inlet is an inlet
  • the outlet is an outlet.
  • the first side surface and the second side surface of the battery module are not limited to a part of the battery module, and may be a member that covers or surrounds the battery module. As a result, the cooling medium efficiently enters between the battery cells from the inlet of the battery module, and the cooling medium passes through the cooling medium passage formed by the battery cells accommodated in the battery module.
  • the cooling medium When the battery cell that becomes the passage is cooled, the cooling medium is finally discharged from the outlet along the shape of the battery cell that is arranged closest to the outlet. It can cool well. Further, by providing the inlet and the outlet only at the positions as described above, the flow rate of the cooling medium around the downstream battery cell can be increased, and the cooling efficiency for the downstream battery cell can be increased. . Furthermore, the temperature of the downstream battery cell that tends to become the highest temperature among the battery cells in the battery module can be lowered, and the threshold value of the battery cell temperature laterality diagnosis can be optimized. be able to. Further, it is possible to reduce the frequency at which the battery cell on the downstream side becomes hot and the input / output restriction of the battery occurs.
  • each of the first side surface and the second side surface faces the outer peripheral surface of the battery cell (the side surface of the cylindrical cell). That is, each of the first side surface and the second side surface is a surface that faces the outer peripheral surface of the battery cell among the side surfaces of the battery module. In this way, the first side surface and the second side surface provided with the inflow port and the outflow port are opposed to the outer peripheral surface of the battery cell, so that the outer peripheral surface of the battery cell is cooled instead of the end portion of the battery cell. The medium can be brought into contact and cooled.
  • Each of the inflow port and the outflow port is a slit parallel to the longitudinal direction of the battery cell.
  • the inflow port and the outflow port are slits parallel to the longitudinal direction of the battery cell.
  • the pressure loss can be reduced while increasing the flow rate of the cooling medium.
  • the outlet at the slit the flow path area of the cooling medium can be increased while guiding the direction in which the cooling medium flows.
  • the total opening area of the outlet is smaller than the total opening area of the inlet.
  • the inflow port is provided along four gaps between adjacent cells in five battery cells arranged in parallel near the second side surface.
  • the outflow port is provided along the center in the width direction of the three battery cells 2 on the center side excluding the two battery cells at both ends of the five battery cells arranged in parallel near the second side surface. .
  • Each of the inflow port and the outflow port is directly provided in the casing of the battery module.
  • the inlet and outlet can be provided simultaneously with the creation of the casing members.
  • Each of the inflow port and the outflow port is provided on a cover plate that covers the opening of the casing of the battery module.
  • the battery cell is a cylindrical cell and is accommodated in a staggered arrangement in the battery module. By doing in this way, a battery cell can be accommodated in a battery module compactly.
  • an optimal cooling medium passage can be formed.
  • both ends (terminal side) of the cylindrical cell tend to be high temperature. Therefore, in order to efficiently cool both ends of the cylindrical cell while improving the flow velocity of the cooling air, two small intake ports are divided and arranged on one end side and the other end side of one battery cell 2.
  • the number is not limited to two, and may be three or more. That is, a plurality of intake ports are divided and arranged for one battery cell 2.
  • two small exhaust ports are provided at a position corresponding to one of the exhaust ports 6 shown in FIG.
  • the two small exhaust ports are referred to as a first small exhaust port 6a and a second small exhaust port 6b, respectively.
  • six small exhaust ports are provided instead of the three exhaust ports 6 shown in FIG.
  • the exhaust port 6 has two small intake ports along the center in the width direction of the battery cell 2 arranged closest to the second side wall portion.
  • the battery cell 2 is divided and arranged on one end side and the other end side. Both the first small exhaust port 6 a and the second small exhaust port 6 b are provided along the center in the width direction of the same battery cell 2.
  • the first small exhaust port 6 a is provided on one end side of the battery cell 2 along the center in the width direction of the battery cell 2.
  • the second small exhaust port 6 b is provided on the other end side of the battery cell 2 along the center in the width direction of the battery cell 2.
  • the first cover plate 3 can be the same as the second cover plate 5 shown in FIG.
  • the outlet is divided and arranged in the longitudinal direction of the battery cell.
  • the outflow port is divided and arranged on one end side and the other end side of the battery cell along the center in the width direction of the battery cell arranged closest to the second side surface.
  • a plurality of second cover plates 5 can be used in an overlapping manner.
  • the second cover plate 5 shown in FIG. 5 according to the first embodiment and the second cover plate 5 shown in FIG. 7 according to the second embodiment are overlapped. Can also be used.
  • the position of the exhaust port 6 shown in FIG. 5 and the first small exhaust port 6a and the second small exhaust port 6b shown in FIG. Match the position of. Thereby, it is possible to improve the durability against the input (collision, impact, pressurization, etc.) to the second cover plate 5 and suppress the deformation amount.
  • the second cover plate 5 shown in FIG. 5 is on the outside and the second cover plate 5 shown in FIG. 7 is on the inside, but actually, the second cover plate shown in FIG. 5 can be the inside, and the second cover plate 5 shown in FIG. 7 can be the outside.
  • the first cover plate 3 can be the same as the second cover plate 5 shown in FIG.
  • a plurality of first cover plates 3 can be used in an overlapping manner.
  • the second cover plate 5 may be a single plate-like member that collectively covers the openings of the plurality of battery modules 1.
  • the second cover plate 5 may be a side plate (side plate) of the battery pack 10 in which the plurality of battery modules 1 are accommodated. It can be said that the side plate of the battery pack 10 is a side plate of the battery case.
  • the second cover plate 5 is formed by sheet metal processing (laser processing, punching, bending, pressing, welding, etc.).
  • the battery pack 10 shown in FIG. 10 accommodates three battery modules 1 as shown in FIG. 11, and the exhaust port 6, the first small exhaust port 6 a and the first small exhaust port 6 corresponding to each battery module 1.
  • Two small exhaust ports 6b are provided.
  • each of the three battery modules 1 may be partitioned by a partition plate or the like.
  • the second cover plate 5 shown in FIG. 5 according to the first embodiment and the second cover plate shown in FIG. 7 according to the second embodiment are used in an overlapping manner. However, actually, only one of the second cover plate 5 shown in FIG. 5 according to the first embodiment and the second cover plate 5 shown in FIG. 7 according to the second embodiment may be used. .
  • the first cover plate 3 can be the same as the second cover plate 5 shown in FIGS. 10 and 11.
  • an exhaust port 6, a first small exhaust port 6 a, and a second small exhaust are provided on the surface of the second cover plate 5 of the battery pack 10.
  • a thin exhaust duct 8 is attached so as to cover the opening 6b.
  • the exhaust duct 8 may be a plate-like member having a passage formed on the surface by sheet metal processing.
  • the exhaust duct 8 is provided so that the cooling air flows toward the lower floor side.
  • the exhaust duct 8 is connected to an exhaust fan 9 provided on the floor surface.
  • the exhaust fan 9 sucks and discharges the cooling air, so that the cooling air is sucked into the intake port 4 from the lower floor side and passes through the inside of the battery module 1. Then, the air flows from the exhaust port 6 toward the lower floor side and is sucked out by the exhaust fan 9 on the floor surface.
  • the cooling air is air in the vehicle cooled by an air conditioner or the like. The cooling air is sucked from the intake port 4, passes through the inside of the battery module 1, and is sucked from the exhaust port 6. Thereafter, for example, the air may circulate in the vehicle and be sucked from the air intake 4 again.
  • the “cooling air flow” described in the first embodiment may be realized in this way.
  • each of the inflow port and the outflow port is provided on the side plate of the battery pack that houses the battery module.
  • the side plate of the battery pack replaces the cover plate, and the opening of the battery module is covered by the side plate of the battery pack.
  • the work of attaching the plate is not necessary. Further, since it is not necessary to prepare a cover plate for each battery module, the labor and cost of managing the cover plate are reduced.
  • the outflow port is divided and arranged in the longitudinal direction of the battery cell in the side plate of the battery pack that houses the battery module.
  • the side plate of the battery pack includes two side plates, a side plate provided with three outlets and a side plate provided with six small outlets, with respect to one outlet. The two small outlets are overlapped so as to overlap each other, thereby forming a single side plate. As a result, a flow of a cooling medium for cooling both ends (terminal side) of the cylindrical cell can be generated.
  • the thickness of the side plate of the battery pack is increased, the durability against the input to the side plate of the battery pack is improved, and the deformation amount is suppressed. It becomes possible.
  • an outlet and a small outlet can be arbitrarily switched by attaching and detaching each side plate. That is, it becomes easy to change a normal outflow port to a small outflow port, and conversely to change a small outflow port into a normal outflow port.
  • a through hole (hereinafter referred to as a punch hole) is formed on the entire surface of a panel such as a metal plate or an acrylic plate by a punching process using a punching punch or a laser.
  • the unnecessary punch holes are closed while leaving the necessary punch holes. Or, only the necessary punch holes are made from the beginning.
  • the punch hole is a dot hole. With such punch holes, it is possible to form the air inlet 4 of the first cover plate 3 and the air outlet 6 of the second cover plate 5.
  • one pseudo slit may be formed by connecting punch holes after opening in one direction. Further, when a pseudo slit is formed by a punch hole, it is easy to provide the first small exhaust port 6a and the second small exhaust port 6b shown in FIG.
  • each of the inlet and the outlet of the cooling medium is formed by a plurality of holes arranged in the longitudinal direction of the battery cell.
  • slit-shaped inlets and outlets can be easily provided on the first side surface and the second side surface of the battery module.
  • shape of an inflow port and an outflow port can be easily changed by changing the hole to open or close.
  • the fifth embodiment of the present invention will be described below.
  • the place where the battery cell 2 is not disposed is, for example, a place where there is no space and the battery cell 2 cannot be disposed.
  • the dummy cell 7 is disposed in a dead space inside the casing of the battery module 1 and forms a cooling air passage together with the battery cell 2.
  • the dummy cell 7 is arranged in the dead space inside the casing of the battery module 1, and the cooling air passage is formed by the battery cell 2 and the dummy cell 7, so that the cooling air passage is formed only by the battery cell 2. The location where the cooling air stays can be reduced more than when.
  • a semi-cylindrical member is provided as the dummy cell 7 on the inner wall of the casing 1a of the battery module 1.
  • the size of the semi-cylindrical member corresponds to the size of a cylindrical cell used as the battery cell 2 divided into two along the center in the width direction to form a semi-cylindrical member.
  • the material of the dummy cell 7 is not particularly limited, but it is more preferable if it does not deteriorate the cooling performance of the cooling air. That is, what is necessary is just a thing which does not inhibit cooling of the battery cell 2 by cooling air.
  • the dummy cell 7 may be a part of the casing 1a of the battery module 1 or may be an independent member.
  • the cooling performance of the battery cells 2 around the places where the battery cells 2 are not arranged is different from that of the other battery cells 2.
  • the cooling air passage can be formed so as not to be.
  • dummy cells 7 instead of the battery cells 2.
  • the battery module 1 accommodates the battery cell 1. It is also possible to replace a part of the battery cell 2 with the dummy cell 7.
  • a dummy cell having a shape imitating at least a part of the shape of the battery cell housed in the battery module housing is provided inside the battery module housing. It is arranged at the place where the cell is not arranged.
  • the dummy cells together with the battery cells form a cooling medium passage through which the cooling medium passes inside the housing of the battery module.
  • the dead space in the battery module is closed with dummy cells to adjust the flow of the cooling medium, and the battery cells around the dead space are also cooled by bringing them into contact with the cooling medium to the same extent as other battery cells. Will be able to.

Abstract

A battery cooling structure for efficiently cooling battery cells in a battery module is provided. Multiple columnar battery cells are housed in the battery module and are arranged in parallel to each other with gaps formed therebetween so as to form a cooling medium passage through which a cooling medium passes inside of the battery module. On the first lateral surface of the battery module, inlets for introducing the cooling medium into battery module open upstream of the cooling medium passage and are provided along gaps between the battery cells arranged nearest to the first lateral surface. On the second lateral surface of the battery module, outlets for discharging the cooling medium to outside of the battery module open downstream of the cooling medium passage and are provided along the centers in the width direction of the battery cells arranged nearest to the second lateral surface.

Description

電池冷却構造、電池モジュール、及び電池モジュールの筐体Battery cooling structure, battery module, and battery module housing
 本発明は、電池を冷却するための電池冷却構造に関する。 The present invention relates to a battery cooling structure for cooling a battery.
 駆動源として電動機を用いる電気自動車や、駆動源として電動機と内燃機関とを組み合わせた自動車(いわゆるハイブリッド車)等においては、電動機にエネルギーである電気を供給するための電池が搭載される。この電池としては、繰り返し充放電が可能なリチウムイオン電池等の二次電池が用いられる。二次電池は、電池セルを積層した電池モジュールにより構成されており、この電池モジュールが電池ケースの内部に収容された状態で自動車に搭載される。この電池ケースと、電池ケースの内部に収容された電池モジュール及びその他の内部構成部品とを含めたものを電池パックと称している。この電池パックには、内部に収容される電池モジュールの温度を管理するため、内部に冷却風を取り入れるためのファンやダクト等の冷却機器が取り付けられている。 In an electric vehicle that uses an electric motor as a drive source, an automobile that combines an electric motor and an internal combustion engine as a drive source (a so-called hybrid vehicle), a battery for supplying electricity as energy to the electric motor is mounted. As this battery, a secondary battery such as a lithium ion battery that can be repeatedly charged and discharged is used. The secondary battery is configured by a battery module in which battery cells are stacked, and the battery module is mounted on a vehicle in a state where the battery module is housed in a battery case. A battery pack including the battery case, the battery module housed in the battery case, and other internal components is referred to as a battery pack. In order to manage the temperature of the battery module accommodated in the battery pack, a cooling device such as a fan or a duct for taking in cooling air is attached to the battery pack.
 近年では、乗用車の場合における二次電池の搭載場所として、周辺温度やレイアウト上の要求から、運転席と助手席との間に配置されるセンターコンソールボックス内に電池パックを配置することがある。
 現在、運転席と助手席との間に配置されるセンターコンソールボックス内に配置された電池パックに対し、冷却風を電池ケースの内壁と電池モジュールとの間の冷却風通路に流す冷却構造において、冷却風通路の通路断面積が入口側で大きく出口側で小さくなるようにすることで、二次電池全体をより均一に冷却して冷却性能を高める技術がある(特許文献1参照)。
In recent years, as a place where a secondary battery is mounted in a passenger car, a battery pack may be disposed in a center console box disposed between a driver's seat and a passenger seat due to ambient temperature and layout requirements.
Currently, for the battery pack arranged in the center console box arranged between the driver's seat and the passenger seat, in the cooling structure for flowing cooling air to the cooling air passage between the inner wall of the battery case and the battery module, There is a technology for improving the cooling performance by cooling the entire secondary battery more uniformly by making the passage cross-sectional area of the cooling air passage larger on the inlet side and smaller on the outlet side (see Patent Document 1).
特開2013-251158号公報JP 2013-251158 A
 上記したような運転席と助手席との間に配置されるセンターコンソールボックス内に配置された電池パックにおいて、更に冷却性能を高めるためには、電池ケース内の電池モジュールに対する冷却性能を高めるだけに留まらず、電池モジュール内の電池セルに対する冷却性能も高める必要があると考えられる。 In the battery pack disposed in the center console box disposed between the driver seat and the passenger seat as described above, in order to further enhance the cooling performance, only the cooling performance for the battery module in the battery case is increased. It is considered that it is necessary to improve the cooling performance for the battery cells in the battery module.
 本発明の目的は、電池モジュール内の電池セルを効率良く冷却するための電池冷却構造を提供することである。 An object of the present invention is to provide a battery cooling structure for efficiently cooling battery cells in a battery module.
 上記の課題を解決するため、本発明の一態様に係る電池冷却構造では、電池モジュールに収容した複数の柱状の電池セルを、電池モジュール内に冷却媒体が通過する冷却媒体通路を形成するように隙間を空けて互いに平行に配列した。電池モジュールの第1の側面には、冷却媒体通路の上流側に開口し、冷却媒体を電池モジュール内に取り入れるための流入口が、第1の側面の最寄りに配列される電池セル間の隙間に沿って設けられている。電池モジュールの第2の側面には、冷却媒体通路の下流側に開口し、冷却媒体を電池モジュール外に排出するための流出口が、第2の側面の最寄りに配列される電池セルの幅方向の中央に沿って設けられている。例えば、冷却媒体が冷却風である場合、流入口は吸気口であり、流出口は排気口である。また、電池モジュールの第1の側面及び第2の側面は、電池モジュールの一部に限らず、電池モジュールを覆う部材又は囲む部材でも良い。 In order to solve the above problem, in the battery cooling structure according to one aspect of the present invention, a plurality of columnar battery cells accommodated in the battery module are formed with a cooling medium passage through which the cooling medium passes. They were arranged parallel to each other with a gap. The first side surface of the battery module has an inlet for opening the upstream side of the cooling medium passage and introducing the cooling medium into the battery module, in a gap between the battery cells arranged closest to the first side surface. It is provided along. On the second side surface of the battery module, there is an outlet on the downstream side of the cooling medium passage, and an outlet for discharging the cooling medium out of the battery module is arranged in the width direction of the battery cell arranged closest to the second side surface. It is provided along the center. For example, when the cooling medium is cooling air, the inlet is an inlet and the outlet is an outlet. Further, the first side surface and the second side surface of the battery module are not limited to a part of the battery module, and may be a member that covers or surrounds the battery module.
 本発明の一態様によれば、電池モジュールの流入口から電池セル間に効率良く冷却媒体が侵入し、冷却媒体が電池モジュール内に収容された電池セルによって形成された冷却媒体通路を通過することで、冷却媒体が通過する際に通路となる電池セルを冷却し、最後に冷却媒体が流出口の最寄りに配列される電池セルの形状に沿って流出口から排出される流れとなるため、電池モジュール内の電池セルを効率良く冷却することができる。 According to one aspect of the present invention, the cooling medium efficiently enters between the battery cells from the inlet of the battery module, and the cooling medium passes through the cooling medium passage formed by the battery cells accommodated in the battery module. Thus, when the cooling medium passes, the battery cell that becomes the passage is cooled, and finally the cooling medium becomes a flow that is discharged from the outlet along the shape of the battery cell arranged closest to the outlet. The battery cells in the module can be efficiently cooled.
電池モジュールの構成例を示す図である。(a)は電池モジュールの本体を示す図である。(b)は電池モジュールの吸気側の図である。(c)は電池モジュールの排気側の図である。It is a figure which shows the structural example of a battery module. (A) is a figure which shows the main body of a battery module. (B) is a view of the intake side of the battery module. (C) is a figure of the exhaust side of a battery module. 電池モジュールの内部構造を説明するための模式図である。It is a schematic diagram for demonstrating the internal structure of a battery module. 第1のカバー板の例を示す図である。It is a figure which shows the example of a 1st cover board. 吸気側から見た場合の電池モジュールの模式図である。(a)は内部の模式図である。(b)は外観の模式図である。It is a schematic diagram of the battery module when viewed from the intake side. (A) is an internal schematic diagram. (B) is a schematic diagram of an external appearance. 第2のカバー板の第1の例を示す図である。It is a figure which shows the 1st example of a 2nd cover board. 排気側から見た場合の電池モジュールの第1の模式図である。(a)は内部の模式図である。(b)は外観の模式図である。It is the 1st schematic diagram of a battery module at the time of seeing from the exhaust side. (A) is an internal schematic diagram. (B) is a schematic diagram of an external appearance. 第2のカバー板の第2の例を示す図である。It is a figure which shows the 2nd example of a 2nd cover board. 排気側から見た場合の電池モジュールの第2の模式図である。(a)は内部の模式図である。(b)は外観の模式図である。It is a 2nd schematic diagram of the battery module at the time of seeing from the exhaust side. (A) is an internal schematic diagram. (B) is a schematic diagram of an external appearance. 2種類の第2のカバー板を重ね合わせた例を示す図である。It is a figure which shows the example which piled up 2 types of 2nd cover plates. 電池パックの構成例を示す図である。It is a figure which shows the structural example of a battery pack. 排気側から見た場合の電池パックの模式図である。It is a schematic diagram of the battery pack when viewed from the exhaust side. 電池パック全体の冷却風の流れの説明図である。(a)は排気側から見た場合の電池パックの周辺図である。(b)は電池パック内部の冷却風の流れを示す図である。It is explanatory drawing of the flow of the cooling air of the whole battery pack. (A) is a peripheral view of the battery pack when viewed from the exhaust side. (B) is a figure which shows the flow of the cooling air inside a battery pack. カバー板にパンチ穴で擬似的なスリットを形成する例を示す図である。(a)は全ての穴を開けた状態の図である。(b)は一部の穴を開けたままスリットとし、他の穴を塞いでいる状態の図である。It is a figure which shows the example which forms a pseudo slit with a punch hole in a cover board. (A) is a figure of the state which opened all the holes. (B) is a figure of the state which is made into a slit with a part of holes being opened, and other holes are closed. ダミーセルを設けた電池モジュールの内部構造を説明するための模式図である。It is a schematic diagram for demonstrating the internal structure of the battery module which provided the dummy cell.
 次に、図面を参照して、本発明の第1~第5実施形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、現実のものとは異なることに留意すべきである。したがって、具体的な構成部品については以下の説明を参酌して判断すべきものである。
 また、以下に示す第1~第5実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 以下の詳細な説明では、本発明の実施形態の完全な理解を提供するように多くの特定の細部について記載される。しかしながら、かかる特定の細部がなくても1つ以上の実施態様が実施できることは明らかであろう。他にも、図面を簡潔にするために、周知の構造及び装置が略図で示されている。
Next, first to fifth embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and different from the actual ones. Therefore, specific components should be determined in consideration of the following description.
Further, the following first to fifth embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the shape of component parts, The structure and arrangement are not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. However, it will be apparent that one or more embodiments may be practiced without such specific details. In other instances, well-known structures and devices are schematically shown in order to simplify the drawing.
 <第1実施形態>
 以下に、本発明の第1実施形態について添付図面を参照して説明する。
 (構成)
 第1実施形態に係る電池冷却構造は、図1(a)及び図2に示すような電池モジュール1において実現される。図1(a)及び図2に示すように、電池モジュール1は、全体として直方体である筐体1aの内部に複数の柱状の電池セル2を収容する。図1(a)に示す角度から見た場合、筐体1aの6つの表面のうち、吸気側の第1の側面と、排気側の第2の側面と、電池セル2の両電極(端部)側に位置する上面及び下面との計4面が、それぞれ開口している。具体的には、筐体1aは、第1の側面に吸気側の開口部1bが設けられ、第1の側面と対向する第2の側面に排気側の開口部1cが設けられている。吸気側の開口部1b及び排気側の開口部1cにおいて、電池セル2の側面が露出している。また、電池セル2の正極2a及び負極2bは、筐体1aに収容された状態でも電力を取り出せるように、筐体1aの上面及び下面において露出している。電池セル2の両電極が露出していることにより、電池セル2の両電極のいずれかから電池セル2の内容物が流出した際に、流出した内容物が筐体1aの内部ではなく外部に放出される。但し、電池セル2の内容物の流出を考慮しなくても良い場合には、電池セル2の正極2a及び負極2bの代わりに、正極2a及び負極2bのそれぞれに接続されたリード線のみが露出していても良い。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the accompanying drawings.
(Constitution)
The battery cooling structure according to the first embodiment is realized in a battery module 1 as shown in FIGS. As shown in FIGS. 1A and 2, the battery module 1 accommodates a plurality of columnar battery cells 2 inside a casing 1 a that is a rectangular parallelepiped as a whole. When viewed from the angle shown in FIG. 1A, among the six surfaces of the housing 1a, the first side surface on the intake side, the second side surface on the exhaust side, and both electrodes (end portions) of the battery cell 2 A total of four surfaces, an upper surface and a lower surface, located on the) side are open. Specifically, the housing 1a is provided with an intake-side opening 1b on a first side, and an exhaust-side opening 1c on a second side opposite to the first side. The side surface of the battery cell 2 is exposed at the opening 1b on the intake side and the opening 1c on the exhaust side. Further, the positive electrode 2a and the negative electrode 2b of the battery cell 2 are exposed on the upper surface and the lower surface of the housing 1a so that power can be taken out even in the state of being accommodated in the housing 1a. Since both the electrodes of the battery cell 2 are exposed, when the contents of the battery cell 2 flow out from either of the two electrodes of the battery cell 2, the flowed out contents are not inside the housing 1a but outside. Released. However, when it is not necessary to consider the outflow of the contents of the battery cell 2, only the lead wires connected to the positive electrode 2a and the negative electrode 2b are exposed instead of the positive electrode 2a and the negative electrode 2b of the battery cell 2. You may do it.
 電池セル2は、単品の電池である。図2に示す例では、電池セル2は円筒形セル(円柱形状)であり、電池モジュール1の筐体1aにコンパクトに収容するため千鳥配列で収容されている。但し、実際には、電池セル2は、円筒形セルに限定されるものではない。例えば、角柱形状でも良い。また、千鳥配列に限定されるものではない。例えば、碁盤目配列で収容されていても良い。また、電池モジュール1の筐体1aに収容された複数の電池セル2の各々は完全に密着しているわけではなく、適当な間隔で配列されているため、電池セル間には冷却風が通過可能な通路(冷却風通路)が形成されている。ここでは、空冷式が一般的であるため、冷却媒体として冷却風(気体)を想定している。但し、水冷式のシステムに組み込まれている場合には、冷却媒体として冷却水(液体)を使用しても良い。すなわち、冷却媒体は流体であれば良い。 The battery cell 2 is a single battery. In the example shown in FIG. 2, the battery cell 2 is a cylindrical cell (columnar shape), and is housed in a staggered arrangement in order to be housed compactly in the housing 1 a of the battery module 1. However, actually, the battery cell 2 is not limited to a cylindrical cell. For example, a prismatic shape may be used. Moreover, it is not limited to the staggered arrangement. For example, it may be accommodated in a grid pattern. In addition, each of the plurality of battery cells 2 accommodated in the casing 1a of the battery module 1 is not completely in close contact, and is arranged at an appropriate interval, so that cooling air passes between the battery cells. Possible passages (cooling air passages) are formed. Here, since air cooling is common, cooling air (gas) is assumed as a cooling medium. However, when incorporated in a water-cooled system, cooling water (liquid) may be used as a cooling medium. That is, the cooling medium may be a fluid.
 第1のカバー板3は、電池モジュール1の第1の側面(吸気側)に位置する。例えば、第1のカバー板3は、電池モジュール1の筐体1aの一部である。若しくは、第1のカバー板3は、独立した部材として、電池モジュール1の筐体1aの吸気側の開口部1bを覆う。この場合、第1のカバー板3は、金属板やアクリル板等のパネルである。第1実施形態では、図1(b)及び図3に示すように、第1のカバー板3には、冷却風を電池モジュール1の内部に取り入れるための吸気口4が設けられている。すなわち、吸気口4は冷却媒体(流体)の流入口である。ここでは、一例として、第1のカバー板3には、4つの吸気口4が設けられている。 The first cover plate 3 is located on the first side surface (intake side) of the battery module 1. For example, the first cover plate 3 is a part of the casing 1 a of the battery module 1. Alternatively, the first cover plate 3 covers the opening 1b on the intake side of the casing 1a of the battery module 1 as an independent member. In this case, the first cover plate 3 is a panel such as a metal plate or an acrylic plate. In the first embodiment, as shown in FIGS. 1B and 3, the first cover plate 3 is provided with an intake port 4 for taking cooling air into the battery module 1. That is, the intake port 4 is an inlet for a cooling medium (fluid). Here, as an example, the first cover plate 3 is provided with four intake ports 4.
 吸気口4はスリットである。吸気口4をスリットとすることで、冷却風の流速を上げつつ圧力損失を低下させることができる。また、吸気口4をスリットとすることで、吸気口4への突起物(乗員の指等)の進入を抑止することができる。 The intake 4 is a slit. By using the inlet 4 as a slit, the pressure loss can be reduced while increasing the flow velocity of the cooling air. Moreover, the entrance of the protrusion (occupant's finger etc.) to the air inlet 4 can be suppressed by using the air inlet 4 as a slit.
 図4(a)及び(b)に示すように、吸気口4は、第1のカバー板3の最寄りに配列される電池セル間の隙間に沿って設けられている。例えば、吸気口4は、電池モジュール1の筐体1aの吸気側の開口部1bを覆う第1のカバー板3を正面から見た場合、並列な円筒形セル同士の間の隙間と重なる位置に開口している。 As shown in FIGS. 4A and 4B, the air inlet 4 is provided along the gap between the battery cells arranged closest to the first cover plate 3. For example, when the first cover plate 3 that covers the opening 1b on the intake side of the housing 1a of the battery module 1 is viewed from the front, the air inlet 4 is positioned so as to overlap with the gap between the parallel cylindrical cells. It is open.
 ここでは、一例として、第1のカバー板3の最寄りに配列される電池セル2は5本であり、吸気口4は、並列な5本の電池セル2において隣接セル間にある4つの隙間に沿って設けられている。実際には、第1のカバー板3の最寄りに配列される電池セル2の配置数は5本に限らず任意である。 Here, as an example, the number of battery cells 2 arranged closest to the first cover plate 3 is five, and the intake ports 4 are formed in four gaps between adjacent cells in the parallel five battery cells 2. It is provided along. Actually, the number of battery cells 2 arranged closest to the first cover plate 3 is not limited to five and is arbitrary.
 このように、吸気口4は、第1のカバー板3の最寄りに配列される電池セル間の隙間に沿った位置にのみ設けられていると好ましい。なお、実際には、第1のカバー板3において、電池セル間の隙間に沿った位置以外の箇所に、吸気口4の一部が設けられていても良い。但し、この場合においても、電池セル間の隙間に沿った位置に設けられた吸気口4を通過する冷却風の流れが主流となるようにする。 Thus, it is preferable that the air inlet 4 is provided only at a position along the gap between the battery cells arranged closest to the first cover plate 3. In practice, in the first cover plate 3, a part of the air inlet 4 may be provided at a place other than the position along the gap between the battery cells. However, even in this case, the flow of the cooling air passing through the air inlet 4 provided at the position along the gap between the battery cells is made mainstream.
 第2のカバー板5は、電池モジュール1の第2の側面(排気側)に位置する。例えば、第2のカバー板5は、電池モジュール1の筐体1aの一部である。若しくは、第2のカバー板5は、独立した部材として、電池モジュール1の筐体1aの排気側の開口部1cを覆う。この場合、第2のカバー板5は、金属板やアクリル板等のパネルである。ここでは、第2のカバー板5は、電池モジュール1を挟んで上記の第1のカバー板3と対向する。但し、実際には、第2のカバー板5は、第1のカバー板3と対向していなくても良い。第1実施形態では、図1(c)及び図5に示すように、第2のカバー板5には、冷却風を電池モジュール1の外部に排出するための排気口6が設けられている。すなわち、排気口6は冷却媒体(流体)の流出口である。ここでは、一例として、第2のカバー板5には、3つの排気口6が設けられている。 The second cover plate 5 is located on the second side surface (exhaust side) of the battery module 1. For example, the second cover plate 5 is a part of the casing 1 a of the battery module 1. Alternatively, the second cover plate 5 covers the exhaust-side opening 1c of the casing 1a of the battery module 1 as an independent member. In this case, the second cover plate 5 is a panel such as a metal plate or an acrylic plate. Here, the second cover plate 5 faces the first cover plate 3 with the battery module 1 interposed therebetween. However, actually, the second cover plate 5 may not be opposed to the first cover plate 3. In the first embodiment, as shown in FIGS. 1C and 5, the second cover plate 5 is provided with an exhaust port 6 for discharging cooling air to the outside of the battery module 1. That is, the exhaust port 6 is an outlet for the cooling medium (fluid). Here, as an example, the second cover plate 5 is provided with three exhaust ports 6.
 排気口6はスリットである。排気口6をスリットにすることで、冷却風の流れる方向を誘導しつつ冷却風の流路面積を大きくすることができる。また、排気口6をスリットにすることで、排気口6への突起物(乗員の指等)の進入を抑止することができる。 The exhaust port 6 is a slit. By making the exhaust port 6 into a slit, the flow passage area of the cooling air can be increased while guiding the direction in which the cooling air flows. Further, by making the exhaust port 6 into a slit, it is possible to prevent the protrusion (such as a passenger's finger) from entering the exhaust port 6.
 図6(a)及び(b)に示すように、排気口6は、第2のカバー板5の最寄りに配列される電池セルの幅方向の中央に沿って設けられている。例えば、排気口6は、電池モジュール1の筐体1aの排気側の開口部1cを覆う第2のカバー板5を正面から見た場合、円筒形セルの曲面の頂点と重なる位置に開口している。排気口6が円筒形セルの曲面の頂点と重なる位置に開口していることで、冷却風が排出される際に、冷却風を当該円筒形セルにまとわりつかせることができる。 6 (a) and 6 (b), the exhaust port 6 is provided along the center in the width direction of the battery cell arranged closest to the second cover plate 5. For example, when the second cover plate 5 that covers the opening 1c on the exhaust side of the casing 1a of the battery module 1 is viewed from the front, the exhaust port 6 opens at a position that overlaps the apex of the curved surface of the cylindrical cell. Yes. Since the exhaust port 6 is opened at a position overlapping the apex of the curved surface of the cylindrical cell, the cooling air can be clung to the cylindrical cell when the cooling air is discharged.
 ここでは、一例として、第2のカバー板5の最寄りに配列される電池セル2は5本であり、排気口6は、並列な5本の電池セル2のうち両端の2本を除く中央側の3本の電池セル2の幅方向の中央に沿って設けられている。中央側の3本の電池セル2は、他と比べて高温になり易く、特に冷却する必要性が高いからである。実際には、第2のカバー板5の最寄りに配列される電池セル2の配置数は5本に限らず任意である。但し、吸気口4と排気口6とが同一形状、同一サイズである場合、排気口6の配置数は、吸気口4の配置数よりも少ない。換言すれば、全ての排気口6の開口面積の総計は、全ての吸気口4の開口面積の総計よりも小さい。 Here, as an example, the number of battery cells 2 arranged closest to the second cover plate 5 is five, and the exhaust port 6 is a central side excluding two of the two battery cells 2 in parallel. The three battery cells 2 are provided along the center in the width direction. This is because the three battery cells 2 on the center side tend to be hotter than others, and the necessity for cooling is particularly high. Actually, the number of battery cells 2 arranged closest to the second cover plate 5 is not limited to five and is arbitrary. However, when the intake port 4 and the exhaust port 6 have the same shape and the same size, the number of the exhaust ports 6 arranged is smaller than the number of the intake ports 4 arranged. In other words, the total opening area of all the exhaust ports 6 is smaller than the total opening area of all the intake ports 4.
 このように、排気口6は、第2のカバー板5の最寄りに配列される電池セルの幅方向の中央に沿った位置にのみ設けられていると好ましい。なお、実際には、第2のカバー板5において、電池セルの幅方向の中央に沿った位置以外の箇所に、排気口6の一部が設けられていても良い。但し、この場合においても、電池セルの幅方向の中央に沿った位置に設けられた排気口6を通過する冷却風の流れが主流となるようにする。 Thus, it is preferable that the exhaust port 6 is provided only at a position along the center in the width direction of the battery cell arranged closest to the second cover plate 5. In practice, in the second cover plate 5, a part of the exhaust port 6 may be provided at a location other than the position along the center in the width direction of the battery cell. However, also in this case, the flow of the cooling air passing through the exhaust port 6 provided at the position along the center in the width direction of the battery cell is set to be the mainstream.
 (冷却風の流れ)
 図示しないが、第1実施形態では、電池モジュール1の筐体1aの排気側に設置された排気用ファンが、第2のカバー板5に設けられた排気口6から筐体1aの内部の空気を吸い出すことで、電池モジュール1の筐体1aの吸気側において第1のカバー板3に設けられた吸気口4から筐体1aの内部に冷却風が吸い込まれる。例えば、冷却風は、エアコン等により冷却された車内の空気である。この冷却風は、吸気口4から吸い込まれ、筐体1aの内部を通過して、排気口6から吸い出される。その後、例えば車内を循環し、再度、吸気口4から吸い込まれることもある。
(Cooling air flow)
Although not shown, in the first embodiment, an exhaust fan installed on the exhaust side of the casing 1 a of the battery module 1 is connected to the air inside the casing 1 a from the exhaust port 6 provided in the second cover plate 5. As a result, the cooling air is sucked into the housing 1a from the air inlet 4 provided in the first cover plate 3 on the air intake side of the housing 1a of the battery module 1. For example, the cooling air is air in the vehicle cooled by an air conditioner or the like. The cooling air is sucked from the intake port 4, passes through the inside of the housing 1 a, and is sucked from the exhaust port 6. Thereafter, for example, the air may circulate in the vehicle and be sucked from the air intake 4 again.
 単純に、筐体1aの内部を通過する冷却風の流量を増加させることができれば、電池セル2の冷却効率を向上させることは可能であると考えられるが、そのためには、ファンの性能向上及びそれに伴う大型化、騒音の対策、消費電力の増大、ダクトの容積の増大等が必要となるため、限界がある。そこで、第1実施形態に係る電池冷却構造では、上記のように構成することで、冷却風の流量を増加させることなく、流路及び流速を調整することにより冷却効率を向上させた冷却構造を実現した。この冷却構造における筐体1aの内部での冷却風の流れについて、以下に詳述する。 If the flow rate of the cooling air passing through the inside of the housing 1a can be simply increased, it is thought that the cooling efficiency of the battery cell 2 can be improved. As a result, it is necessary to increase the size, to deal with noise, increase power consumption, increase the volume of the duct, and the like, and thus have limitations. Therefore, in the battery cooling structure according to the first embodiment, a cooling structure that improves the cooling efficiency by adjusting the flow path and the flow velocity without increasing the flow rate of the cooling air is configured as described above. It was realized. The flow of cooling air inside the housing 1a in this cooling structure will be described in detail below.
 第1のカバー板3の最寄りに配列される5本の電池セル2は、電池モジュール1の筐体1aの吸気側(冷却風の上流側)に近いため、筐体1a内の電池セル2を冷却する前の比較的低温の冷却風を受けることができる。したがって、第1のカバー板3の最寄りに配列される5本の電池セル2は、冷却風の接触時間が短くても十分な冷却効果が得られる。そのため、第1のカバー板3の最寄りに配列される5本の電池セル2において隣接セル間にある4つの隙間に沿って、吸気口4を設ける。これにより、吸気口4から筐体1aの内部に吸い込まれた冷却風は、第1のカバー板3の最寄りに配列される5本の電池セル2の側面に接触して短時間で軽く冷却した後、そのまま筐体1aの奥に吸い込まれる。また、吸い込まれた冷却風は、筐体1aの奥に設置された電池セル2の側面にまとわりついて冷却する。 Since the five battery cells 2 arranged closest to the first cover plate 3 are close to the intake side (upstream side of the cooling air) of the casing 1a of the battery module 1, the battery cells 2 in the casing 1a are arranged. A relatively low temperature cooling air before cooling can be received. Therefore, the five battery cells 2 arranged closest to the first cover plate 3 can obtain a sufficient cooling effect even if the contact time of the cooling air is short. Therefore, the intake ports 4 are provided along the four gaps between adjacent cells in the five battery cells 2 arranged closest to the first cover plate 3. As a result, the cooling air sucked into the housing 1 a from the air inlet 4 comes into contact with the side surfaces of the five battery cells 2 arranged closest to the first cover plate 3 and is lightly cooled in a short time. Then, it is sucked into the back of the housing 1a as it is. The sucked cooling air clings to the side surface of the battery cell 2 installed in the back of the housing 1a and cools it.
 一方、第2のカバー板5の最寄りに配列される5本の電池セル2は、電池モジュール1の筐体1aの排気側(冷却風の下流側)に近いため、筐体1a内の他の電池セル2を冷却した後の温度上昇した冷却風を受けることになる。また、第2のカバー板5の最寄りに配列される5本の電池セル2のうち、両端の2本の電池セル2は、電池モジュール1の筐体1aの内壁に隣接する側面があるため、電池セル2に囲まれている中央側の3本の電池セル2ほどには高温になり難い。すなわち、筐体1a内の電池セル2のうち、第2のカバー板5の最寄りに配列される上記の中央側の3本の電池セル2が最も高温になり易い傾向にある。そのため、上記の中央側の3本の電池セル2の幅方向の中央に沿って、排気口6を設ける。これにより、排気口6から冷却風が流出していく前に、上記の中央側の3本の電池セル2の側面にまとわりつき、吸気口4の最寄りの4本の電池セル2よりも比較的時間をかけて十分に冷却した後、筐体1aの外部のファンにより吸い出される。 On the other hand, the five battery cells 2 arranged closest to the second cover plate 5 are close to the exhaust side (downstream of the cooling air) of the casing 1a of the battery module 1, so The cooling air which received the temperature rise after cooling the battery cell 2 is received. In addition, among the five battery cells 2 arranged closest to the second cover plate 5, the two battery cells 2 at both ends have side surfaces adjacent to the inner wall of the casing 1a of the battery module 1, As high as the three battery cells 2 on the center side surrounded by the battery cells 2, the temperature is unlikely to increase. That is, among the battery cells 2 in the housing 1a, the three battery cells 2 on the central side arranged closest to the second cover plate 5 tend to be hottest. Therefore, the exhaust port 6 is provided along the center in the width direction of the three battery cells 2 on the center side. As a result, before the cooling air flows out from the exhaust port 6, it clings to the side surfaces of the three battery cells 2 on the central side and takes a relatively longer time than the four battery cells 2 nearest to the intake port 4. And sufficiently cooled, the air is sucked out by a fan outside the housing 1a.
 このようにすることで、電池モジュール1の筐体1aの排気側(冷却風の下流側)の最も高温となる可能性がある電池セル2の周辺の冷却風の流速を上げ、その電池セル2だけ極端に高温となることを防止する。
 また、最も高温となる可能性がある電池セル2が閾値を超過するのを防止し、電池セル2の温度のラショナリティ診断の閾値を最適化できるため、電池セル異常の検知性を高めることができる。
 また、筐体1a内の電池セル2の発熱による最高温度を低下させることができる。
By doing in this way, the flow velocity of the cooling air around the battery cell 2 that is likely to be the highest temperature on the exhaust side (downstream side of the cooling air) of the casing 1a of the battery module 1 is increased, and the battery cell 2 Only prevents it from becoming extremely hot.
In addition, the battery cell 2 that is likely to become the highest temperature can be prevented from exceeding the threshold value, and the threshold value of the laterality diagnosis of the temperature of the battery cell 2 can be optimized, so that the detectability of the battery cell abnormality can be improved. .
Moreover, the maximum temperature by heat_generation | fever of the battery cell 2 in the housing | casing 1a can be reduced.
 (第1実施形態の効果)
 第1実施形態によれば、以下のような効果を奏する。
 (1)第1実施形態に係る電池冷却構造では、複数の柱状の電池セルが、電池モジュールに収容され、電池モジュール内に冷却媒体が通過する冷却媒体通路を形成するように隙間を空けて互いに平行に配列されている。電池モジュールの第1の側面には、冷却媒体通路の上流側に開口し、冷却媒体を電池モジュール内に取り入れるための流入口が、第1の側面の最寄りに配列される電池セル間の隙間に沿って設けられている。電池モジュールの第2の側面には、冷却媒体通路の下流側に開口し、冷却媒体を電池モジュール外に排出するための流出口が、第2の側面の最寄りに配列される電池セルの幅方向の中央に沿って設けられている。例えば、冷却媒体が冷却風である場合、流入口は吸気口であり、流出口は排気口である。また、電池モジュールの第1の側面及び第2の側面は、電池モジュールの一部に限らず、電池モジュールを覆う部材又は囲む部材でも良い。
 その結果、電池モジュールの流入口から電池セル間に効率良く冷却媒体が侵入し、冷却媒体が電池モジュール内に収容された電池セルによって形成された冷却媒体通路を通過することで冷却媒体が通過する際に通路となる電池セルを冷却し、最後に冷却媒体が流出口の最寄りに配列される電池セルの形状に沿って流出口から排出される流れとなるため、電池モジュール内の電池セルを効率良く冷却することができる。
 また、上記のような位置にのみ流入口と流出口を設けることで、下流側の電池セルの周辺の冷却媒体の流速を上げることができ、下流側の電池セルに対する冷却効率を高めることができる。
 更に、電池モジュール内の電池セルのうち最も高温となる傾向にある下流側の電池セルの温度を低下させ、電池セル温度のラショナリティ診断の閾値を最適化できるため、電池セル異常の検知性を高めることができる。
 また、下流側の電池セルが高温になって電池の入出力制限が発生する頻度を低下させることができる。
(Effect of 1st Embodiment)
According to 1st Embodiment, there exist the following effects.
(1) In the battery cooling structure according to the first embodiment, a plurality of columnar battery cells are housed in a battery module, and are spaced from each other so as to form a cooling medium passage through which the cooling medium passes. They are arranged in parallel. The first side surface of the battery module has an inlet for opening the upstream side of the cooling medium passage and introducing the cooling medium into the battery module, in a gap between the battery cells arranged closest to the first side surface. It is provided along. On the second side surface of the battery module, there is an outlet on the downstream side of the cooling medium passage, and an outlet for discharging the cooling medium out of the battery module is arranged in the width direction of the battery cell arranged closest to the second side surface. It is provided along the center. For example, when the cooling medium is cooling air, the inlet is an inlet and the outlet is an outlet. Further, the first side surface and the second side surface of the battery module are not limited to a part of the battery module, and may be a member that covers or surrounds the battery module.
As a result, the cooling medium efficiently enters between the battery cells from the inlet of the battery module, and the cooling medium passes through the cooling medium passage formed by the battery cells accommodated in the battery module. When the battery cell that becomes the passage is cooled, the cooling medium is finally discharged from the outlet along the shape of the battery cell that is arranged closest to the outlet. It can cool well.
Further, by providing the inlet and the outlet only at the positions as described above, the flow rate of the cooling medium around the downstream battery cell can be increased, and the cooling efficiency for the downstream battery cell can be increased. .
Furthermore, the temperature of the downstream battery cell that tends to become the highest temperature among the battery cells in the battery module can be lowered, and the threshold value of the battery cell temperature laterality diagnosis can be optimized. be able to.
Further, it is possible to reduce the frequency at which the battery cell on the downstream side becomes hot and the input / output restriction of the battery occurs.
 (2)第1の側面及び第2の側面の各々は、電池セルの外周面(円筒形セルの側面)に対向する。
 すなわち、第1の側面及び第2の側面の各々は、電池モジュールの側面のうち、電池セルの外周面に対向する面である。
 このように、流入口及び流出口が設けられた第1の側面及び第2の側面を、電池セルの外周面に対向させることで、電池セルの端部ではなく、電池セルの外周面に冷却媒体を接触させて冷却することができる。
(2) Each of the first side surface and the second side surface faces the outer peripheral surface of the battery cell (the side surface of the cylindrical cell).
That is, each of the first side surface and the second side surface is a surface that faces the outer peripheral surface of the battery cell among the side surfaces of the battery module.
In this way, the first side surface and the second side surface provided with the inflow port and the outflow port are opposed to the outer peripheral surface of the battery cell, so that the outer peripheral surface of the battery cell is cooled instead of the end portion of the battery cell. The medium can be brought into contact and cooled.
 (3)流入口及び流出口の各々は、電池セルの長手方向と平行なスリットである。
 このように、流入口及び流出口を電池セルの長手方向と平行なスリットにすることで、流入口及び流出口への突起物(乗員の指等)の進入を抑止することができる。また、流入口をスリットとすることで、冷却媒体の流速を上げつつ圧力損失を低下させることができる。更に、流出口をスリットにすることで、冷却媒体の流れる方向を誘導しつつ冷却媒体の流路面積を大きくすることができる。
(3) Each of the inflow port and the outflow port is a slit parallel to the longitudinal direction of the battery cell.
Thus, by making the inflow port and the outflow port into slits parallel to the longitudinal direction of the battery cell, it is possible to suppress the intrusion of protrusions (occupants' fingers, etc.) into the inflow port and the outflow port. In addition, by using the slit as the inlet, the pressure loss can be reduced while increasing the flow rate of the cooling medium. Further, by forming the outlet at the slit, the flow path area of the cooling medium can be increased while guiding the direction in which the cooling medium flows.
 (4)流出口の開口面積の総計は、流入口の開口面積の総計よりも小さい。
 例えば、流入口は、第2の側面の最寄りに並列に配置された5本の電池セルにおける隣接セル間にある4つの隙間に沿って設けられている。流出口は、第2の側面の最寄りに並列に配置された5本の電池セルのうち両端の2本を除く中央側の3本の電池セル2の幅方向の中央に沿って設けられている。
 このように流入口と流出口を設けることで、均等に設ける場合よりも、冷却媒体通路の下流側の電池セルの周辺の冷却媒体の流速を上げることができる。
(4) The total opening area of the outlet is smaller than the total opening area of the inlet.
For example, the inflow port is provided along four gaps between adjacent cells in five battery cells arranged in parallel near the second side surface. The outflow port is provided along the center in the width direction of the three battery cells 2 on the center side excluding the two battery cells at both ends of the five battery cells arranged in parallel near the second side surface. .
By providing the inflow port and the outflow port in this manner, it is possible to increase the flow rate of the cooling medium around the battery cell on the downstream side of the cooling medium passage as compared with the case where the inflow port and the outflow port are provided uniformly.
 (5)流入口及び流出口の各々は、電池モジュールの筐体に直接設けられている。
 このように、電池モジュールの筐体に流入口と流出口を直接設けるようにすることで、筐体の部材の作成と同時に、流入口と流出口を設けることができる。
(5) Each of the inflow port and the outflow port is directly provided in the casing of the battery module.
Thus, by providing the inlet and outlet directly in the casing of the battery module, the inlet and outlet can be provided simultaneously with the creation of the casing members.
 (6)流入口及び流出口の各々は、電池モジュールの筐体の開口部を覆うカバー板に設けられている。
 このように、流入口と流出口をカバー板に設けることで、カバー板の交換により、流入口及び流出口の配置を自由に調整・変更することが可能になる。また、流入口や流出口、又はカバー板が損傷した場合にも、カバー板を交換するだけで対応できるため、修復が容易になる。
(6) Each of the inflow port and the outflow port is provided on a cover plate that covers the opening of the casing of the battery module.
Thus, by providing the inlet and outlet in the cover plate, the arrangement of the inlet and outlet can be freely adjusted and changed by replacing the cover plate. In addition, even when the inflow port, the outflow port, or the cover plate is damaged, it can be dealt with by simply replacing the cover plate, so that the repair is facilitated.
 (7)電池セルは、円筒形セルであり、電池モジュールに千鳥配列で収容されている。
 このようにすることで、電池モジュールに電池セルをコンパクトに収容することができる。また、第1実施形態に係る電池冷却構造において、最適な冷却媒体通路を形成することができる。
(7) The battery cell is a cylindrical cell and is accommodated in a staggered arrangement in the battery module.
By doing in this way, a battery cell can be accommodated in a battery module compactly. In the battery cooling structure according to the first embodiment, an optimal cooling medium passage can be formed.
 <第2実施形態>
 以下に、本発明の第2実施形態について説明する。
 電池セル2が円筒形セルの場合、円筒形セルの両端(端子側)が高温になる傾向にある。そこで、冷却風の流速を向上させつつ円筒形セルの両端を効率良く冷却できるようにするために、1つの電池セル2の一端側と他端側とに2つの小型吸気口を分割配置する。但し、実際には、2つに限らず、3つ以上でも良い。すなわち、1つの電池セル2に対して複数の吸気口を分割配置する。
Second Embodiment
The second embodiment of the present invention will be described below.
When the battery cell 2 is a cylindrical cell, both ends (terminal side) of the cylindrical cell tend to be high temperature. Therefore, in order to efficiently cool both ends of the cylindrical cell while improving the flow velocity of the cooling air, two small intake ports are divided and arranged on one end side and the other end side of one battery cell 2. However, actually, the number is not limited to two, and may be three or more. That is, a plurality of intake ports are divided and arranged for one battery cell 2.
 第2実施形態では、図7に示すように、図5に示した排気口6の1つに対応する位置に、2つの小型排気口が設けられている。ここでは、2つの小型排気口をそれぞれ、第1の小型排気口6a、第2の小型排気口6bとする。このように、第2実施形態では、第2のカバー板5において、図5に示した3つの排気口6の代わりに、6つの小型排気口が設けられている。 In the second embodiment, as shown in FIG. 7, two small exhaust ports are provided at a position corresponding to one of the exhaust ports 6 shown in FIG. Here, the two small exhaust ports are referred to as a first small exhaust port 6a and a second small exhaust port 6b, respectively. Thus, in the second embodiment, in the second cover plate 5, six small exhaust ports are provided instead of the three exhaust ports 6 shown in FIG.
 例えば、図8(a)及び(b)に示すように、排気口6は、第2の側壁部の最寄りに配列される電池セル2の幅方向の中央に沿って、2つの小型吸気口が該電池セル2の一端側と他端側とに分割配置されている。第1の小型排気口6a及び第2の小型排気口6bはいずれも、同一の電池セル2の幅方向の中央に沿って設けられている。 For example, as shown in FIGS. 8A and 8B, the exhaust port 6 has two small intake ports along the center in the width direction of the battery cell 2 arranged closest to the second side wall portion. The battery cell 2 is divided and arranged on one end side and the other end side. Both the first small exhaust port 6 a and the second small exhaust port 6 b are provided along the center in the width direction of the same battery cell 2.
 第1の小型排気口6aは、当該電池セル2の幅方向の中央に沿って、当該電池セル2の一方の端部側に設けられている。第2の小型排気口6bは、当該電池セル2の幅方向の中央に沿って、当該電池セル2の他方の端部側に設けられている。なお、図示しないが、第1のカバー板3についても、図7に示した第2のカバー板5と同様にすることが可能である。 The first small exhaust port 6 a is provided on one end side of the battery cell 2 along the center in the width direction of the battery cell 2. The second small exhaust port 6 b is provided on the other end side of the battery cell 2 along the center in the width direction of the battery cell 2. Although not shown, the first cover plate 3 can be the same as the second cover plate 5 shown in FIG.
 (第2実施形態の効果)
 第2実施形態によれば、第1実施形態に係る電池冷却構造と同様の作用効果を奏し、更に以下のような効果を奏する。
 (1)第2実施形態に係る電池冷却構造では、流出口は、電池セルの長手方向に分割配置されている。例えば、流出口は、第2の側面の最寄りに配列される電池セルの幅方向の中央に沿って、該電池セルの一端側と他端側とに分割配置されている。
 その結果、円筒形セルの両端(端子側)を冷却するための冷却媒体の流れを生み出すことができる。
(Effect of 2nd Embodiment)
According to 2nd Embodiment, there exists an effect similar to the battery cooling structure which concerns on 1st Embodiment, and there exist the following effects further.
(1) In the battery cooling structure according to the second embodiment, the outlet is divided and arranged in the longitudinal direction of the battery cell. For example, the outflow port is divided and arranged on one end side and the other end side of the battery cell along the center in the width direction of the battery cell arranged closest to the second side surface.
As a result, a flow of a cooling medium for cooling both ends (terminal side) of the cylindrical cell can be generated.
 <第3実施形態>
 以下に、本発明の第3実施形態について説明する。
 排気口6の位置が一致していれば、複数の第2のカバー板5を重ね合わせて使用することが可能である。例えば、図9に示すように、第1実施形態に係る図5に示した第2のカバー板5と、第2実施形態に係る図7に示した第2のカバー板5とを、重ね合わせて使用することも可能である。
<Third Embodiment>
The third embodiment of the present invention will be described below.
If the positions of the exhaust ports 6 coincide with each other, a plurality of second cover plates 5 can be used in an overlapping manner. For example, as shown in FIG. 9, the second cover plate 5 shown in FIG. 5 according to the first embodiment and the second cover plate 5 shown in FIG. 7 according to the second embodiment are overlapped. Can also be used.
 第3実施形態では、冷却風の排出を妨げることがないように、図5に示した排気口6の位置と、図7に示した第1の小型排気口6a及び第2の小型排気口6bの位置とを合わせる。これにより、第2のカバー板5への入力(衝突、打撃、加圧等)に対する耐久力を向上して変形量を抑えることが可能になる。 In the third embodiment, the position of the exhaust port 6 shown in FIG. 5 and the first small exhaust port 6a and the second small exhaust port 6b shown in FIG. Match the position of. Thereby, it is possible to improve the durability against the input (collision, impact, pressurization, etc.) to the second cover plate 5 and suppress the deformation amount.
 図9では、図5に示した第2のカバー板5を外側とし、図7に示した第2のカバー板5を内側としているが、実際には、図5に示した第2のカバー板5を内側とし、図7に示した第2のカバー板5を外側とすることも可能である。なお、図示しないが、第1のカバー板3についても、図9に示した第2のカバー板5と同様にすることが可能である。例えば、吸気口4の位置が一致していれば、複数の第1のカバー板3を重ね合わせて使用することも可能である。 In FIG. 9, the second cover plate 5 shown in FIG. 5 is on the outside and the second cover plate 5 shown in FIG. 7 is on the inside, but actually, the second cover plate shown in FIG. 5 can be the inside, and the second cover plate 5 shown in FIG. 7 can be the outside. Although not shown, the first cover plate 3 can be the same as the second cover plate 5 shown in FIG. For example, if the positions of the intake ports 4 coincide with each other, a plurality of first cover plates 3 can be used in an overlapping manner.
 なお、第2のカバー板5は、複数の電池モジュール1の開口部を一括して覆う1枚の板状部材であっても良い。例えば、図10及び図11に示すように、第2のカバー板5は、複数の電池モジュール1が収容された電池パック10の側面板(サイドプレート)であっても良い。電池パック10の側面板は、電池ケースの側面板であるともいえる。この場合、第2のカバー板5は、板金加工(レーザー加工、パンチ加工、曲げ加工、プレス加工、溶接等)により形成される。 Note that the second cover plate 5 may be a single plate-like member that collectively covers the openings of the plurality of battery modules 1. For example, as shown in FIGS. 10 and 11, the second cover plate 5 may be a side plate (side plate) of the battery pack 10 in which the plurality of battery modules 1 are accommodated. It can be said that the side plate of the battery pack 10 is a side plate of the battery case. In this case, the second cover plate 5 is formed by sheet metal processing (laser processing, punching, bending, pressing, welding, etc.).
 ここでは、図10に示す電池パック10は、図11に示すように3つの電池モジュール1を収容しており、それぞれの電池モジュール1に対応した排気口6、第1の小型排気口6a及び第2の小型排気口6bが設けられている。なお、電池パック10の内部において、3つの電池モジュール1の各々は、仕切り板等で仕切られていても良い。 Here, the battery pack 10 shown in FIG. 10 accommodates three battery modules 1 as shown in FIG. 11, and the exhaust port 6, the first small exhaust port 6 a and the first small exhaust port 6 corresponding to each battery module 1. Two small exhaust ports 6b are provided. In the battery pack 10, each of the three battery modules 1 may be partitioned by a partition plate or the like.
 図10及び図11に示す例では、図9に示すように、第1実施形態に係る図5に示した第2のカバー板5と、第2実施形態に係る図7に示した第2のカバー板5とを、重ね合わせて使用している。但し、実際には、第1実施形態に係る図5に示した第2のカバー板5と、第2実施形態に係る図7に示した第2のカバー板5とのいずれか一方のみでも良い。なお、図示しないが、第1のカバー板3についても、図10及び図11に示した第2のカバー板5と同様にすることが可能である。 In the example shown in FIGS. 10 and 11, as shown in FIG. 9, the second cover plate 5 shown in FIG. 5 according to the first embodiment and the second cover plate shown in FIG. 7 according to the second embodiment. The cover plate 5 is used in an overlapping manner. However, actually, only one of the second cover plate 5 shown in FIG. 5 according to the first embodiment and the second cover plate 5 shown in FIG. 7 according to the second embodiment may be used. . Although not shown, the first cover plate 3 can be the same as the second cover plate 5 shown in FIGS. 10 and 11.
 図12(a)に示すように、電池パック10の排気側において、電池パック10の第2のカバー板5の表面には、排気口6、第1の小型排気口6a及び第2の小型排気口6bを覆うように、薄型の排気ダクト8が取り付けられている。排気ダクト8は、板金加工により表面に通路を形成した板状部材でも良い。排気ダクト8は下方の床面側に向かって冷却風が流れるように設けられている。排気ダクト8は、床面に設けられた排気用ファン9に接続されている。 As shown in FIG. 12A, on the exhaust side of the battery pack 10, an exhaust port 6, a first small exhaust port 6 a, and a second small exhaust are provided on the surface of the second cover plate 5 of the battery pack 10. A thin exhaust duct 8 is attached so as to cover the opening 6b. The exhaust duct 8 may be a plate-like member having a passage formed on the surface by sheet metal processing. The exhaust duct 8 is provided so that the cooling air flows toward the lower floor side. The exhaust duct 8 is connected to an exhaust fan 9 provided on the floor surface.
 図12(b)に示すように、排気用ファン9が冷却風を吸引して排出することで、冷却風が下方の床面側から吸気口4に吸い込まれ、電池モジュール1の内部を通過して、排気口6から下方の床面側に向かい、床面上の排気用ファン9に吸い出される。例えば、冷却風は、エアコン等により冷却された車内の空気である。この冷却風は、吸気口4から吸い込まれ、電池モジュール1の内部を通過して、排気口6から吸い出される。その後、例えば車内を循環し、再度、吸気口4から吸い込まれることもある。第1実施形態において説明した「冷却風の流れ」は、このようにして実現しても良い。 As shown in FIG. 12 (b), the exhaust fan 9 sucks and discharges the cooling air, so that the cooling air is sucked into the intake port 4 from the lower floor side and passes through the inside of the battery module 1. Then, the air flows from the exhaust port 6 toward the lower floor side and is sucked out by the exhaust fan 9 on the floor surface. For example, the cooling air is air in the vehicle cooled by an air conditioner or the like. The cooling air is sucked from the intake port 4, passes through the inside of the battery module 1, and is sucked from the exhaust port 6. Thereafter, for example, the air may circulate in the vehicle and be sucked from the air intake 4 again. The “cooling air flow” described in the first embodiment may be realized in this way.
 (第3実施形態の効果)
 第3実施形態によれば、第1及び第2実施形態に係る電池冷却構造と同様の作用効果を奏し、更に以下のような効果を奏する。
 (1)第3実施形態に係る電池冷却構造では、流入口及び流出口の各々は、電池モジュールを収容する電池パックの側面板に設けられている。
 その結果、電池モジュールを電池パックに収容するだけで、電池パックの側面板がカバー板の代わりとなり、電池モジュールの開口部が電池パックの側面板により覆われることになるため、電池モジュール毎にカバー板を取り付ける作業が不要となる。また、電池モジュール毎にカバー板を個別に用意する必要が無くなるため、カバー板の管理の手間やコストが軽減される。
(Effect of the third embodiment)
According to 3rd Embodiment, there exists an effect similar to the battery cooling structure which concerns on 1st and 2nd embodiment, and also there exist the following effects.
(1) In the battery cooling structure according to the third embodiment, each of the inflow port and the outflow port is provided on the side plate of the battery pack that houses the battery module.
As a result, just by storing the battery module in the battery pack, the side plate of the battery pack replaces the cover plate, and the opening of the battery module is covered by the side plate of the battery pack. The work of attaching the plate is not necessary. Further, since it is not necessary to prepare a cover plate for each battery module, the labor and cost of managing the cover plate are reduced.
 (2)第3実施形態に係る電池冷却構造では、電池モジュールを収容する電池パックの側面板において、流出口が、電池セルの長手方向に分割配置されている。例えば、電池パックの側面板は、3つの流出口が設けられている側面板と、6つの小型流出口が設けられている側面板との2枚の側面板を、1つの流出口に対して2つの小型流出口が重なるように重ね合わせることで、1枚の側面板として形成されている。
 その結果、円筒形セルの両端(端子側)を冷却するための冷却媒体の流れを生み出すことができる。また、複数の側面板を重ね合わせて1枚の側面板とすることで、電池パックの側面板の厚みを増して、電池パックの側面板への入力に対する耐久力を向上して変形量を抑えることが可能になる。また、それぞれの側面板の着脱により、流出口と小型流出口とを任意に切り替えることができる。すなわち、通常の流出口を小型流出口に変更することや、反対に小型流出口を通常の流出口に変更することが容易になる。
(2) In the battery cooling structure according to the third embodiment, the outflow port is divided and arranged in the longitudinal direction of the battery cell in the side plate of the battery pack that houses the battery module. For example, the side plate of the battery pack includes two side plates, a side plate provided with three outlets and a side plate provided with six small outlets, with respect to one outlet. The two small outlets are overlapped so as to overlap each other, thereby forming a single side plate.
As a result, a flow of a cooling medium for cooling both ends (terminal side) of the cylindrical cell can be generated. Further, by stacking a plurality of side plates to form one side plate, the thickness of the side plate of the battery pack is increased, the durability against the input to the side plate of the battery pack is improved, and the deformation amount is suppressed. It becomes possible. Moreover, an outlet and a small outlet can be arbitrarily switched by attaching and detaching each side plate. That is, it becomes easy to change a normal outflow port to a small outflow port, and conversely to change a small outflow port into a normal outflow port.
 <第4実施形態>
 以下に、本発明の第4実施形態について説明する。
 図13(a)に示すように、金属板やアクリル板等のパネルの全面に対し、穴あけパンチ又はレーザー等を用いた穴あけ加工による貫通穴(以下、パンチ穴)を開けた上で、図13(b)に示すように、必要なパンチ穴を残して不要なパンチ穴を塞ぐ。若しくは、最初から必要なパンチ穴のみ開ける。例えば、パンチ穴はドット穴である。このようなパンチ穴により、第1のカバー板3の吸気口4や、第2のカバー板5の排気口6を形成することが可能である。このとき、一方向に並んだ開放後のパンチ穴同士を連結して1つの擬似的なスリットを形成しても良い。また、パンチ穴で擬似的なスリットを形成する場合、図7に示した第1の小型排気口6a及び第2の小型排気口6bを設けることも容易である。
<Fourth embodiment>
The fourth embodiment of the present invention will be described below.
As shown in FIG. 13 (a), a through hole (hereinafter referred to as a punch hole) is formed on the entire surface of a panel such as a metal plate or an acrylic plate by a punching process using a punching punch or a laser. As shown in (b), the unnecessary punch holes are closed while leaving the necessary punch holes. Or, only the necessary punch holes are made from the beginning. For example, the punch hole is a dot hole. With such punch holes, it is possible to form the air inlet 4 of the first cover plate 3 and the air outlet 6 of the second cover plate 5. At this time, one pseudo slit may be formed by connecting punch holes after opening in one direction. Further, when a pseudo slit is formed by a punch hole, it is easy to provide the first small exhaust port 6a and the second small exhaust port 6b shown in FIG.
 (第4実施形態の効果)
 第4実施形態によれば、第1実施形態に係る電池冷却構造と同様の作用効果を奏し、更に以下のような効果を奏する。
 (1)第4実施形態に係る電池冷却構造では、冷却媒体の流入口及び流出口の各々は、電池セルの長手方向に並んだ複数の穴により形成されている。
 例えば、このような複数の穴により擬似的なスリットを形成することで、電池モジュールの第1の側面及び第2の側面にスリット形状の流入口及び流出口を容易に設けることができる。また、開放又は閉塞する穴を変更することで、流入口及び流出口の形状を容易に変更できる。
(Effect of 4th Embodiment)
According to 4th Embodiment, there exists an effect similar to the battery cooling structure which concerns on 1st Embodiment, and also there exist the following effects.
(1) In the battery cooling structure according to the fourth embodiment, each of the inlet and the outlet of the cooling medium is formed by a plurality of holes arranged in the longitudinal direction of the battery cell.
For example, by forming pseudo slits with such a plurality of holes, slit-shaped inlets and outlets can be easily provided on the first side surface and the second side surface of the battery module. Moreover, the shape of an inflow port and an outflow port can be easily changed by changing the hole to open or close.
 <第5実施形態>
 以下に、本発明の第5実施形態について説明する。
 例えば、図2に示すように電池セル2を千鳥配列にした場合、電池モジュール1に収容された電池セル2のレイアウトの都合上、電池セル2が配置されない箇所が発生してデッドスペースとなる場合がある。電池セル2が配置されない箇所とは、例えば空間に余裕がなく電池セル2が配置不能な箇所等である。
<Fifth Embodiment>
The fifth embodiment of the present invention will be described below.
For example, when the battery cells 2 are arranged in a staggered arrangement as shown in FIG. 2, due to the layout of the battery cells 2 accommodated in the battery module 1, a place where the battery cells 2 are not arranged occurs and a dead space is generated. There is. The place where the battery cell 2 is not disposed is, for example, a place where there is no space and the battery cell 2 cannot be disposed.
 この場合、冷却風通路において、電池セル2が配置されない箇所に冷却風が滞留する可能性がある。また、電池セル2が配置されない箇所は他の箇所よりも流路面積が大きくなるため、電池セル2が配置されない箇所の周囲にある電池セル2に対する冷却風の圧力や接触面積が低下し、これらの電池セル2が冷却風によって十分に冷却されない可能性がある。その対策として、図14に示すように、電池モジュール1に収容された電池セル2のレイアウトにおいて電池セル2が配置されない箇所に、電池セル2の代替物として、電池セル2の形状の一部又は全部を模した形状のダミーセル7を配置する。すなわち、ダミーセル7は、電池モジュール1の筐体の内部のデッドスペースに配置され、電池セル2と共に冷却風通路を形成する。このように、電池モジュール1の筐体の内部のデッドスペースにダミーセル7を配置し、電池セル2とダミーセル7とにより冷却風通路を形成することで、電池セル2のみで冷却風通路を形成するときよりも、冷却風が滞留する箇所を削減することができる。 In this case, there is a possibility that the cooling air stays in a place where the battery cell 2 is not arranged in the cooling air passage. Moreover, since the flow path area is larger than the other locations where the battery cells 2 are not disposed, the cooling air pressure and the contact area with respect to the battery cells 2 around the locations where the battery cells 2 are not disposed are reduced. Battery cell 2 may not be sufficiently cooled by the cooling air. As a countermeasure, as shown in FIG. 14, as a substitute for the battery cell 2, a part of the shape of the battery cell 2 or a place where the battery cell 2 is not arranged in the layout of the battery cell 2 accommodated in the battery module 1. A dummy cell 7 having a shape imitating the whole is arranged. That is, the dummy cell 7 is disposed in a dead space inside the casing of the battery module 1 and forms a cooling air passage together with the battery cell 2. As described above, the dummy cell 7 is arranged in the dead space inside the casing of the battery module 1, and the cooling air passage is formed by the battery cell 2 and the dummy cell 7, so that the cooling air passage is formed only by the battery cell 2. The location where the cooling air stays can be reduced more than when.
 ここでは、電池モジュール1の筐体1aの内壁に、ダミーセル7として、半円筒形の部材を設けている。この半円筒形の部材のサイズは、電池セル2として用いられる円筒形セルを幅方向の中央に沿って2つに分割して半円筒形にしたもののサイズに相当する。なお、ダミーセル7の素材については特に問わないが、冷却風の冷却性能を低下させないものであれば、より好ましい。すなわち、冷却風による電池セル2の冷却を阻害しないものであれば良い。また、ダミーセル7は、電池モジュール1の筐体1aの一部でも良いし、独立した部材でも良い。 Here, a semi-cylindrical member is provided as the dummy cell 7 on the inner wall of the casing 1a of the battery module 1. The size of the semi-cylindrical member corresponds to the size of a cylindrical cell used as the battery cell 2 divided into two along the center in the width direction to form a semi-cylindrical member. The material of the dummy cell 7 is not particularly limited, but it is more preferable if it does not deteriorate the cooling performance of the cooling air. That is, what is necessary is just a thing which does not inhibit cooling of the battery cell 2 by cooling air. Further, the dummy cell 7 may be a part of the casing 1a of the battery module 1 or may be an independent member.
 このように、電池セル2が配置されない箇所にダミーセル7を配置することにより、電池セル2が配置されない箇所の周囲にある電池セル2に対しても冷却性能において他の電池セル2と差がつかないように、冷却風通路を形成することができる。 As described above, by disposing the dummy cells 7 at the places where the battery cells 2 are not arranged, the cooling performance of the battery cells 2 around the places where the battery cells 2 are not arranged is different from that of the other battery cells 2. The cooling air passage can be formed so as not to be.
 (変形例)
 実際には、電池セル2の代わりにダミーセル7を配置することも可能である。例えば、電池モジュール1に収容される電池セル2の本数を削減する目的や、高温になる傾向にある領域で電池セル2同士が隣接しないようにする目的のために、電池モジュール1に収容される電池セル2の一部をダミーセル7に置き換えることも可能である。
(Modification)
Actually, it is also possible to arrange dummy cells 7 instead of the battery cells 2. For example, for the purpose of reducing the number of battery cells 2 accommodated in the battery module 1 or for the purpose of preventing the battery cells 2 from being adjacent to each other in a region that tends to become high temperature, the battery module 1 accommodates the battery cell 1. It is also possible to replace a part of the battery cell 2 with the dummy cell 7.
 (第5実施形態の効果)
 第5実施形態によれば、第1実施形態に係る電池冷却構造と同様の作用効果を奏し、更に以下のような効果を奏する。
 (1)第5実施形態に係る電池冷却構造では、電池モジュールの筐体の内部に収容される電池セルの形状の少なくとも一部を模した形状のダミーセルが、電池モジュールの筐体の内部において電池セルが配置されない箇所に配置されている。ダミーセルは、電池セルと共に、電池モジュールの筐体の内部において冷却媒体が通過する冷却媒体通路を形成する。
 その結果、電池モジュール内のデッドスペースをダミーセルで塞いで冷却媒体の流れを調整し、デッドスペースの周囲にある電池セルに対しても、他の電池セルと同程度に冷却媒体と接触させて冷却することができるようになる。
(Effect of 5th Embodiment)
According to 5th Embodiment, there exists an effect similar to the battery cooling structure which concerns on 1st Embodiment, and there exist the following effects further.
(1) In the battery cooling structure according to the fifth embodiment, a dummy cell having a shape imitating at least a part of the shape of the battery cell housed in the battery module housing is provided inside the battery module housing. It is arranged at the place where the cell is not arranged. The dummy cells together with the battery cells form a cooling medium passage through which the cooling medium passes inside the housing of the battery module.
As a result, the dead space in the battery module is closed with dummy cells to adjust the flow of the cooling medium, and the battery cells around the dead space are also cooled by bringing them into contact with the cooling medium to the same extent as other battery cells. Will be able to.
 以上、特定の実施形態を参照して本発明を説明したが、これらの説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態の種々の変形例とともに本発明の別の実施形態も明らかである。したがって、特許請求の範囲は、本発明の範囲及び要旨に含まれるこれらの変形例又は実施形態も網羅すると解すべきである。 Although the present invention has been described above with reference to specific embodiments, it is not intended that the present invention be limited by these descriptions. From the description of the invention, other embodiments of the invention will be apparent to persons skilled in the art, along with various variations of the disclosed embodiments. Therefore, it is to be understood that the claims encompass these modifications and embodiments that fall within the scope and spirit of the present invention.
  1 電池モジュール
  1a 筐体
  1b 吸気側の開口部
  1c 排気側の開口部
  2 電池セル
  2a 正極
  2b 負極
  3 第1のカバー板
  4 吸気口(流入口)
  5 第2のカバー板
  6 排気口(流出口)
  6a 第1の小型排気口
  6b 第2の小型排気口
  7 ダミーセル
  8 排気ダクト
  9 排気用ファン
 10 電池パック
DESCRIPTION OF SYMBOLS 1 Battery module 1a Case 1b Inlet side opening 1c Exhaust side opening 2 Battery cell 2a Positive electrode 2b Negative electrode 3 First cover plate 4 Inlet (inlet)
5 Second cover plate 6 Exhaust port (outlet)
6a 1st small exhaust port 6b 2nd small exhaust port 7 Dummy cell 8 Exhaust duct 9 Exhaust fan 10 Battery pack

Claims (13)

  1.  電池モジュールに収容され、前記電池モジュール内に冷却媒体が通過する冷却媒体通路を形成するように隙間を空けて互いに平行に配列されている複数の柱状の電池セルと、
     前記電池モジュールの第1の側面に設けられ、前記冷却媒体通路の上流側に開口し、前記冷却媒体を前記電池モジュール内に取り入れるための流入口と、
     前記電池モジュールの第2の側面に設けられ、前記冷却媒体通路の下流側に開口し、前記冷却媒体を前記電池モジュール外に排出するための流出口と、を備え、
     前記流入口は、前記第1の側面の最寄りに配列される電池セル間の隙間に沿って設けられ、
     前記流出口は、前記第2の側面の最寄りに配列される電池セルの幅方向の中央に沿って設けられていることを特徴とする電池冷却構造。
    A plurality of columnar battery cells housed in the battery module and arranged in parallel with each other so as to form a cooling medium passage through which the cooling medium passes in the battery module;
    An inlet provided on a first side of the battery module, opening upstream of the cooling medium passage, and for introducing the cooling medium into the battery module;
    Provided on the second side surface of the battery module, opening downstream of the cooling medium passage, and an outlet for discharging the cooling medium out of the battery module,
    The inlet is provided along a gap between battery cells arranged closest to the first side surface;
    The battery cooling structure according to claim 1, wherein the outlet is provided along a center in a width direction of the battery cell arranged closest to the second side surface.
  2.  前記第1の側面及び前記第2の側面の各々は、前記電池セルの外周面に対向する請求項1に記載の電池冷却構造。 The battery cooling structure according to claim 1, wherein each of the first side surface and the second side surface is opposed to an outer peripheral surface of the battery cell.
  3.  前記流入口及び前記流出口の各々は、前記電池セルの長手方向と平行なスリットである請求項2に記載の電池冷却構造。 The battery cooling structure according to claim 2, wherein each of the inlet and the outlet is a slit parallel to a longitudinal direction of the battery cell.
  4.  前記流出口の開口面積の総計は、前記流入口の開口面積の総計よりも小さい請求項2又は3に記載の電池冷却構造。 4. The battery cooling structure according to claim 2, wherein a total opening area of the outlet is smaller than a total opening area of the inlet.
  5.  前記流出口は、前記電池セルの長手方向に分割配置されている請求項2乃至4のいずれか一項に記載の電池冷却構造。 The battery cooling structure according to any one of claims 2 to 4, wherein the outlet is divided and arranged in a longitudinal direction of the battery cell.
  6.  前記流入口及び前記流出口の各々は、前記電池モジュールの筐体に直接設けられている請求項1乃至5のいずれか一項に記載の電池冷却構造。 The battery cooling structure according to any one of claims 1 to 5, wherein each of the inflow port and the outflow port is directly provided in a housing of the battery module.
  7.  前記流入口及び前記流出口の各々は、前記電池モジュールの筐体の開口部を覆うカバー板に設けられている請求項1乃至6のいずれか一項に記載の電池冷却構造。 The battery cooling structure according to any one of claims 1 to 6, wherein each of the inflow port and the outflow port is provided on a cover plate that covers an opening of a housing of the battery module.
  8.  前記流入口及び前記流出口の各々は、前記電池モジュールを収容する電池パックの側面板に設けられている請求項1乃至7のいずれか一項に記載の電池冷却構造。 The battery cooling structure according to any one of claims 1 to 7, wherein each of the inflow port and the outflow port is provided on a side plate of a battery pack that houses the battery module.
  9.  前記流入口及び前記流出口の各々は、前記電池セルの長手方向に並んだ複数の穴により形成されている請求項1乃至8のいずれか一項に記載の電池冷却構造。 The battery cooling structure according to any one of claims 1 to 8, wherein each of the inflow port and the outflow port is formed by a plurality of holes arranged in a longitudinal direction of the battery cell.
  10.  前記電池セルの形状の少なくとも一部を模した形状であり、前記電池モジュール内で前記電池セルが配置されない箇所に配置され、前記電池セルと共に前記冷却媒体通路を形成するダミーセルを備える請求項1乃至9のいずれか一項に記載の電池冷却構造。 2. A dummy cell that has a shape imitating at least a part of the shape of the battery cell, is disposed in a location where the battery cell is not disposed in the battery module, and forms the cooling medium passage together with the battery cell. The battery cooling structure according to claim 9.
  11.  筐体と、
     前記筐体に収容され、前記筐体内に冷却媒体が通過する冷却媒体通路を形成するように隙間を空けて互いに平行に配列されている複数の柱状の電池セルと、を備え、
     前記筐体は、
     前記冷却媒体を前記冷却媒体通路に取り入れるための流入口が開口している第1の側面と、
     前記冷却媒体を前記冷却媒体通路から排出するための流出口が開口している第2の側面と、を有し、
     前記流入口は、前記第1の側面の最寄りに配列される電池セル間の隙間に沿って設けられ、
     前記流出口は、前記第2の側面の最寄りに配列される電池セルの幅方向の中央に沿って設けられていることを特徴とする電池モジュール。
    A housing,
    A plurality of columnar battery cells that are housed in the housing and arranged in parallel with a gap therebetween so as to form a cooling medium passage through which the cooling medium passes.
    The housing is
    A first side opening an inlet for taking the cooling medium into the cooling medium passage;
    A second side surface having an outlet opening for discharging the cooling medium from the cooling medium passage,
    The inlet is provided along a gap between battery cells arranged closest to the first side surface;
    The battery module is characterized in that the outlet is provided along the center in the width direction of the battery cells arranged closest to the second side surface.
  12.  内部に収容される電池セルの形状の少なくとも一部を模した形状のダミーセルが、前記内部において前記電池セルが配置されない箇所に配置されていることを特徴とする電池モジュールの筐体。 A battery module housing, wherein dummy cells having a shape imitating at least a part of the shape of the battery cells accommodated therein are disposed at locations where the battery cells are not disposed in the interior.
  13.  前記ダミーセルは、前記電池セルと共に、前記内部において冷却媒体が通過する冷却媒体通路を形成する請求項12に記載の電池モジュールの筐体。 The battery module casing according to claim 12, wherein the dummy cell and the battery cell form a cooling medium passage through which a cooling medium passes.
PCT/JP2015/003509 2014-08-29 2015-07-10 Battery cooling structure, battery module, and battery module case WO2016031121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544916A JP6208887B2 (en) 2014-08-29 2015-07-10 Battery cooling structure and battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014175174 2014-08-29
JP2014-175174 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031121A1 true WO2016031121A1 (en) 2016-03-03

Family

ID=55399044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003509 WO2016031121A1 (en) 2014-08-29 2015-07-10 Battery cooling structure, battery module, and battery module case

Country Status (2)

Country Link
JP (1) JP6208887B2 (en)
WO (1) WO2016031121A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108891290A (en) * 2018-07-17 2018-11-27 王志强 A kind of new energy car battery charging method
CN109690812A (en) * 2016-09-13 2019-04-26 株式会社东芝 Accumulator plant and vehicle
CN111954953A (en) * 2018-03-29 2020-11-17 株式会社东芝 Assembled battery
US20220311082A1 (en) * 2021-03-23 2022-09-29 Makita Corporation Battery pack

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329518A (en) * 1998-05-21 1999-11-30 Toshiba Battery Co Ltd Battery system
JP2010225412A (en) * 2009-03-24 2010-10-07 Honda Motor Co Ltd Battery pack device
JP2013118153A (en) * 2011-12-05 2013-06-13 Toyota Industries Corp Battery module
JP2013134816A (en) * 2011-12-26 2013-07-08 Tigers Polymer Corp Battery cooling structure
JP2013134827A (en) * 2011-12-26 2013-07-08 Tigers Polymer Corp Battery cooling structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329518A (en) * 1998-05-21 1999-11-30 Toshiba Battery Co Ltd Battery system
JP2010225412A (en) * 2009-03-24 2010-10-07 Honda Motor Co Ltd Battery pack device
JP2013118153A (en) * 2011-12-05 2013-06-13 Toyota Industries Corp Battery module
JP2013134816A (en) * 2011-12-26 2013-07-08 Tigers Polymer Corp Battery cooling structure
JP2013134827A (en) * 2011-12-26 2013-07-08 Tigers Polymer Corp Battery cooling structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109690812A (en) * 2016-09-13 2019-04-26 株式会社东芝 Accumulator plant and vehicle
CN109690812B (en) * 2016-09-13 2022-04-08 株式会社东芝 Battery device and vehicle
CN111954953A (en) * 2018-03-29 2020-11-17 株式会社东芝 Assembled battery
CN108891290A (en) * 2018-07-17 2018-11-27 王志强 A kind of new energy car battery charging method
CN108891290B (en) * 2018-07-17 2021-09-14 杭州翔毅科技有限公司 New energy automobile battery charging method
US20220311082A1 (en) * 2021-03-23 2022-09-29 Makita Corporation Battery pack

Also Published As

Publication number Publication date
JP6208887B2 (en) 2017-10-11
JPWO2016031121A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6208887B2 (en) Battery cooling structure and battery module
EP2412054B1 (en) Temperature adjustment structure of electricity storage apparatus
CN106460625B (en) Heat exchanger and exhaust heat recovery device provided with same
JP6021817B2 (en) Excavator
EP3096390A1 (en) Battery pack for vehicle
US20120312610A1 (en) Battery cooling structure for electric vehicle
US9685683B2 (en) Power storage apparatus
JP2007172983A (en) Battery pack
JP6497585B2 (en) Power supply
JP2008140751A (en) Supporting device for cooling down battery module
KR20160092902A (en) Battery pack of electric vehicle
JP2006294336A (en) Battery pack
JP2013256234A (en) Fuel cell apparatus for vehicle
JP2012182144A (en) Battery pack
JP2007227030A (en) Battery pack
WO2013015360A1 (en) Battery temperature regulation mechanism
JP6299681B2 (en) Battery cooling structure for electric vehicles
JP5742664B2 (en) Battery pack and vehicle
EP2949897A1 (en) Thermoelectric generator
CN105280979A (en) Battery system and temperature controlling unit thereof
JP5288042B2 (en) Power storage device
JP2008311016A (en) Battery pack
JP5461341B2 (en) Battery cooling structure
JP5119727B2 (en) Laminate battery pack cooling device
KR101750069B1 (en) Battery pack with optimized inlet and outlet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837060

Country of ref document: EP

Kind code of ref document: A1