WO2016031101A1 - Radio base station apparatus, base station cell processing resource allocation method, and nontemporary computer readable medium on which program has been stored - Google Patents

Radio base station apparatus, base station cell processing resource allocation method, and nontemporary computer readable medium on which program has been stored Download PDF

Info

Publication number
WO2016031101A1
WO2016031101A1 PCT/JP2015/002330 JP2015002330W WO2016031101A1 WO 2016031101 A1 WO2016031101 A1 WO 2016031101A1 JP 2015002330 W JP2015002330 W JP 2015002330W WO 2016031101 A1 WO2016031101 A1 WO 2016031101A1
Authority
WO
WIPO (PCT)
Prior art keywords
bbu
base station
rru
baseband signal
signal processing
Prior art date
Application number
PCT/JP2015/002330
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 竹内
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016544907A priority Critical patent/JP6515931B2/en
Publication of WO2016031101A1 publication Critical patent/WO2016031101A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a radio base station apparatus, a base station cell processing resource allocation method, and a base station cell processing resource allocation program. Particularly, in order to reduce the power consumption of the radio base station apparatus, the baseband signal processing unit (BB unit) for a plurality of base stations is aggregated, and the radio base station apparatus and base station cell efficiently share processing resources
  • the present invention relates to a processing resource allocation method and a non-transitory computer-readable medium storing a base station cell processing resource allocation program.
  • the traffic for each radio base station varies with time depending on the installation location. For example, in an office area, traffic peaks during the daytime, which is a working hour, while in a residential area, traffic peaks from evening to night after returning home. However, in any area, traffic decreases at midnight.
  • processing resources for wireless communication that are matched to the peak of each area are implemented for each base station. The processing resources for wireless communication of the base station operate independently of each other and consume power wastefully.
  • the processing resources of the radio communication processing unit such as baseband signal processing for a plurality of base stations are allocated within one radio base station apparatus.
  • An architecture called C-RAN (Cloud Radio Access Network) or BB-Pooling (baseband pooling) has been proposed.
  • the concept of the C-RAN architecture is that the processing resources of the centralized wireless communication processing unit can be efficiently shared among multiple base stations, thereby reducing the cost and power consumption of the wireless base station device.
  • Technology that is, in the C-RAN architecture, the radio communication processing of a plurality of base stations is concentrated in one radio base station apparatus separately arranged as a master station, and ideally, traffic for all base station areas is collected.
  • processing resources according to the peak in an averaged form, it is possible to reduce the size and cost of the apparatus.
  • resource sharing makes it possible to dramatically reduce the number of processing resources to be operated during low traffic, and to reduce power consumption.
  • a centralized computing unit (processing resource) is shared according to fluctuations in communication traffic of each base station, and the number of baseband cards to be operated and the number of computations are calculated.
  • the overall architecture configuration technology and processing resource allocation technology that reduce the number of devices as much as possible are important issues.
  • the radio base station apparatus includes a plurality of baseband cards, and includes a resource usage measurement unit and a control unit that performs resource accommodation switching of each baseband card based on the resource usage. ing. Further, the accommodation is changed in consideration of a card that can accommodate both the existing service and the HS (High Speed) service and a card that can accommodate only the existing service but cannot accommodate the HS service.
  • HS High Speed
  • BBU Base Band Unit: baseband signal processing card, ie, signal processing card for baseband signal
  • RRH Remote Radio Head: remote radio head
  • Two types of switching methods have been proposed as switching methods to and from radio resources: a quasi-static switching method that tracks long-term traffic changes and a dynamic switching method that tracks short-term traffic changes. Yes.
  • connection between the BBU and the RRH can be connected in all combinations using a switch, which is a premise of the two switching methods. Therefore, as in the case of the prior art such as Patent Document 1, it is necessary to provide a switch proportional to “the number of BBUs ⁇ the number of RRHs”. Accordingly, when the BBU is also increased, it is necessary to replace / expand the existing switch to a switch that takes into account the new number of BBUs and RRHs, and there is a problem that the expandability is low. That is, the extensibility of the BBU or RRH itself is taken into consideration, but the extensibility of the switch, that is, the connection switching unit is not considered.
  • JP2011-101104A page 5-8
  • JP2012-257110A pages 14-16
  • Japanese Patent Laying-Open No. 2005-117579 pages 16-20
  • baseband signal processing for multiple base station cells RRU: Remote Radio Unit remote radio unit
  • BBU Base Band Unit baseband unit
  • processing resources In a wireless base station apparatus that performs sharing, a connection that switches connection between BBU and RRU in order to efficiently share processing resources so that the number of active BBUs is reduced as much as possible in order to reduce power consumption.
  • a switching unit is used.
  • connection switching unit capable of connecting all BBUs and all RRUs
  • a general switch or buffer interconnection network can be obtained.
  • the circuit scale of the connection switching unit is proportional to “the number of BBUs ⁇ the number of RRUs”.
  • connection switching unit cannot be expanded linearly for the same reason. That is, the entire connection switching unit must be exchanged / changed in a non-linear manner depending on the number of existing BBUs and RRUs, and there is a problem that scalability is low.
  • the present invention has been made in view of such circumstances, and connection switching for switching connections between a plurality of base station cells (RRU) and one or more aggregated baseband signal processing units (BBU). Even when the control unit uses a connection switching control unit that can be expanded linearly and can be expanded linearly in the same way as the RRU or BBU when the RRU or BBU is expanded, the BBU and the RRU A wireless base station apparatus, a base station cell processing resource allocation method, and a base station cell processing resource allocation method capable of obtaining an effect of reducing power consumption by processing resource sharing equivalent to the case of using a connection switching control unit realizing all connection combinations between It is an object to provide a base station cell processing resource allocation program.
  • RRU base station cells
  • BBU aggregated baseband signal processing units
  • the radio base station apparatus, the base station cell processing resource allocation method, and the base station cell processing resource allocation program according to the present invention mainly adopt the following characteristic configuration.
  • a radio base station apparatus includes a baseband processing pool that aggregates and accommodates one or more baseband signal processing modules in a radio base station apparatus that aggregates radio communication processes for a plurality of base station cells. And a processing resource allocation control unit that allocates processing resources of each base station cell to each baseband signal processing module, and a connection that switches connection between the baseband signal processing module and the base station cell.
  • a switching control unit, and the connection switching control unit includes one or a plurality of connection switching modules, and each of the connection switching modules is adjacent to one another that is predetermined for each base station cell.
  • a base station cell processing resource allocation method is a base station cell processing resource allocation method in a radio base station apparatus that aggregates radio communication processing for a plurality of base station cells, and is aggregated in a baseband processing pool.
  • the baseband signal processing module that can be connected to each of the base station cells, one or a plurality of adjacent baseband signal processing modules that are predetermined for each base station cell are adjacent to each other.
  • Each baseband signal processing module, and prior to the operation of performing processing resource allocation control for each base station cell for each baseband signal processing module Baseband signal processing module that tries to set the operation to the off state. Characterized by preset candidates Lumpur.
  • a base station cell processing resource allocation program is characterized in that the base station cell processing resource allocation method described in (2) is implemented as a program that can be executed by a computer. .
  • radio base station apparatus According to the radio base station apparatus, base station cell processing resource allocation method, and base station cell processing resource allocation program of the present invention, the following effects can be obtained.
  • the first effect is that, in a radio base station apparatus that consolidates radio communication processing for a plurality of base station cells (RRU), the circuit scale of the connection switching control unit is reduced, thereby reducing the apparatus size and power consumption. Can be realized.
  • connection switching control unit a connection switching module that limits the connection between a base station cell (RRU) and a baseband signal processing module (baseband signal processing card: BBU).
  • RRU base station cell
  • BBU baseband signal processing card
  • the second effect is that, in a radio base station apparatus that aggregates radio communication processing for a plurality of base station cells (RRU), in order to expand the apparatus in order to cope with traffic increase, the base station cell ( RRU) and baseband signal processing module (baseband signal processing card: BBU) as well as the connection switching module of the connection switching control unit can be linearly expanded as much as necessary. Is to improve.
  • RRU base station cell
  • BBU baseband signal processing card
  • connection switching control unit limits the connection between the base station cell (RRU) and the baseband signal processing module (BBU) and Since a plurality of connection switching modules each having a connection interface are arranged side by side and connected to each other, the connection switching module is also expanded, for example, in the same manner as the base station cell (RRU) and the baseband signal processing module (BBU). This is because it may be expanded linearly according to “number”.
  • the third effect is that, in a radio base station apparatus that aggregates radio communication processes for a plurality of base station cells (RRU), even when a connection switching control unit with connection restrictions is used, ideal connection switching is performed. Processing resources can be shared in the same manner as in the case of using a part, and the power consumption can be reduced to the same level.
  • RRU radio base station cells
  • a baseband signal processing module (BBU) to be turned off (to be set to turn off) is determined in advance, and the operation OFF target
  • the baseband signal processing module (BBU) that is distant from the baseband signal processing module (BBU) that is the target of operation OFF is prioritized in order from the baseband signal processing module (BBU) information.
  • the processing resource allocation control is performed for the baseband signal processing module (BBU) in the operation ON state.
  • curd curd
  • FIG. 1 An example of processing for moving a base station cell (RRU) process of a baseband signal processing card (BBU) to another baseband signal processing card (BBU) in the processing resource allocation control according to the first embodiment of the present invention is shown.
  • It is a control flowchart. It is a control flowchart which shows an example of the process which allocates the undetermined base station cell (RRU) process with respect to a baseband signal processing card
  • connection structural example of the connection switching module in the 2nd Embodiment of this invention and an example of the mechanism which determines the order of the baseband signal processing card
  • an ideal connection switching unit such as a crossbar type that realizes all connection combinations between a conventional base station cell (RRU) and a baseband signal processing card (BBU)
  • RRU conventional base station cell
  • BBU baseband signal processing card
  • the present invention provides one or a plurality of baseband signal processing modules (BBU: Base Band Unit base) in which baseband signal processing (radio communication processing) for a plurality of base station cells (RRU: Remote Radio Unit) is integrated.
  • BBU Base Band Unit base
  • RRU Remote Radio Unit
  • connection switching unit arranged to perform connection switching between RRU and BBU, when RRU or BBU is expanded, Similar to RRU and BBU, even when a connection switching unit that can be realized with a relatively simple circuit configuration that can be linearly expanded and linearly expands is used, BBU and RRU When using a conventional connection switching unit that realizes connection of all combinations so that combinations that cannot be connected between the two will not occur
  • the main feature is that the same level of power consumption can be achieved by sharing processing resources.
  • the present invention has the following mechanism. That is, in a radio base station apparatus that performs baseband signal processing (wireless communication processing) for a plurality of base station cells (RRU) in a baseband signal processing module (BBU), the connection between the RRU and the BBU A connection switching control unit that performs switching, and the connection switching control unit includes a configuration in which one or a plurality of connection switching modules that can be connected only to three or more adjacent BBUs are arranged and connected to each other The main feature is to do.
  • baseband signal processing wireless communication processing
  • BBU baseband signal processing module
  • the main feature is that candidates are determined in advance, and thereafter, processing resource allocation control is performed preferentially in order from a BBU that is distant from the determined BBU candidate.
  • the RRU processing related to the RRU at a position away from the BBU is prioritized in order.
  • the RRU related to the RRU that is close to the connection distance from the BBU is also a main feature that processing allocation control for the BBU is performed with priority in order from processing.
  • the radio base station apparatus has a configuration in which connection switching modules connectable to only three or a plurality of adjacent BBUs are arranged as a connection switching control unit, thereby extending RRU or BBU.
  • connection switching modules connectable to only three or a plurality of adjacent BBUs are arranged as a connection switching control unit, thereby extending RRU or BBU.
  • RRU and BBU it is possible to cope with only by linearly expanding the connection switching module, and it is possible to realize a radio base station apparatus that can be linearly expanded including the connection switching control unit. .
  • the BBU to be turned off is determined in advance, and from the BBU that is distant from the determined BBU Ideal connection switching with no limitation on connection by performing process allocation control in order, and by adopting a process allocation control method that considers the connection distance from the target BBU for the RRU process allocation control for the target BBU. Sharing of processing resources, that is, low power consumption can be realized, which is almost equivalent to the case of using a unit.
  • baseband signal processing radio communication processing
  • RRU Remote Radio Unit
  • BBU Base Band Unit baseband signal processing card
  • a configuration example of a radio base station apparatus including a connection switching module that can be connected to five (a plurality) of adjacent baseband signal processing modules (BBUs) as a connection switching control unit. It explains in detail about. Furthermore, in the third embodiment, a configuration example of a radio base station apparatus in which a baseband signal processing module, a base station cell, and a connection switching module are clustered in a predetermined unit will be described in detail.
  • FIG. 1 is a block configuration diagram showing an example of the overall configuration of the radio base station apparatus according to the first embodiment of the present invention.
  • radio base station apparatus radio signal processing is aggregated and radio resources that share processing resources are shared. The example of whole structure of the base station apparatus is shown.
  • a radio base station apparatus 100 shown in FIG. 1 is a baseband processing pool that aggregates and executes radio communication processes of n (n: natural number) base station cells (RRU: Remote Radio Unit remote radio units) 11 to 1n. (BBU-pool) 20 and k (k: natural number, k ⁇ n) baseband signal processing cards (BBU: Base Band Unit baseband signal processing module) in the baseband processing pool (BBU-pool) 20 ) 21 to 2k.
  • Each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 is connected between n base station cells (RRU) 11 to 1n. While sharing the processing resources, for example, wireless Layer-1 processing (baseband signal processing) such as LTE-Advanced is performed.
  • each of the k (one or plural) baseband signal processing cards (BBUs) 21 to 2k is connected to the optical fiber or wireless back via the connection switching control unit 30.
  • the base station cells (RRU) 11 to 1n are connected by holes (front holes) or the like.
  • the connection switching control unit 30 includes k connection switching modules 31 to 3k corresponding to each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k, and includes k pieces.
  • Each of the connection switching modules 31 to 3k is arranged in order, and the adjacent ones are connected to each other.
  • each of the connection switching modules 31 to 3k is connected to one or more base station cells (RRU) 11 to 1n and one or more baseband signal processing cards (BBU) 21 to 2k, respectively. And a connection between adjacent connection switching modules is possible.
  • the i-th (1 ⁇ i ⁇ k) -th connection switching module 3i is adjacent to the (i ⁇ 1) -th connection switching module 3 (i ⁇ 1). It is also possible to connect to the (i + 1) th connection switching module 3 (i + 1).
  • any base station cell (RRU) connected to the i-th connection switching module 3i for example, the j-th (1 ⁇ j ⁇ n) -th base
  • the station cell (RRU) 1j is centered on the i-th BBU 2i corresponding to the connection switching module 3i to which the RRU 1j is connected, and is located between a plurality of adjacent BBUs on both sides, that is, the (i ⁇ 1) -th BBU 2 ( It is possible to switch the connection between i ⁇ 1) and the (i + 1) th BBU2 (i + 1).
  • the radio base station apparatus 100 includes a processing resource allocation control unit 51 for processing resource allocation control for k baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20.
  • a traffic prediction unit 52 and a connection information storage unit 53 are also provided.
  • the traffic prediction unit 52 is a part that predicts traffic in the next certain period using a past traffic history, database, or the like for processing resource allocation control. Based on the traffic predicted by the traffic prediction unit 52, the processing resource allocation control unit 51 sets each of the k baseband signal processing cards (BBUs) 21 to 2k of the n base station cells (RRU) 11 to 1n. This is a part that performs processing resource allocation control for.
  • the connection information storage unit 53 stores which RRU and which BBU as connection information between the base station cells (RRU) 11 to 1n and the baseband signal processing cards (BBU) 21 to 2k to which limited connection is performed. Is stored, and the processing resource allocation control unit 51 refers to the connection information in the connection information storage unit 53 as necessary to perform processing resource allocation control. .
  • each base station cell (RRU) for the base station cells (RRU) 11 to 1n can be processed with k baseband signals.
  • each base station cell (RRU) 11 to 1n and each baseband signal processing card (BBU) The connection switching between 21 and 2k is performed by the connection switching control unit 30.
  • Each transmission / reception signal switched by the connection switching control unit 30 is connected to the base station cells (RRU) 11 to 1n that are connected to each other via an optical fiber or a wireless backhaul (fronthaul). It is transmitted / received to / from the band signal processing card (BBU) 21-2k.
  • connection switching control unit 30 is configured such that adjacent connection switching modules 31 to 3k are connected to each other so that adjacent connection switching modules can be interconnected.
  • FIG. 2 is a schematic diagram showing a configuration example of the connection switching modules 31 to 3k according to the first embodiment of the present invention.
  • the connection switching modules 31 to 3k As a configuration example of each of the connection switching modules 31 to 3k, the i-th (1 ⁇ i Taking a connection switching module 3i of ⁇ k) as an example, a configuration example is shown that enables interconnection with one connection switching module on each side.
  • one connection switching module 3 i is connected to one of BBU # i, an input / output interface for a baseband signal processing module (BBU), (at least) RRU # j 1 , RRU #J 2 , RRU # j 3 (1 ⁇ j 1 , j 2 , j 3 ⁇ k) Baseband signal processing module (BBU) base station cell (RRU) input / output for connection between three RRUs
  • BBU baseband signal processing module
  • RRU base station cell
  • the first RRU input interface 1 from the three RRU # j 1 , RRU # j 2 , and RRU # j 3 connected to the connection switching module 3 i is one system, adjacent connection on both sides switching module 3 (i-1) and 3 (i + 1) first 2RRU input interface 2 two systems from, RRU # j 1, RRU # j 2, RRU # j 3 sides of adjacent connection from the switching module 3 (i-1 )
  • 3 (i + 1) are two first RRU output interfaces 3 and a selection circuit for selecting and arbitrating each input from each of the first RRU input interface 1 and the second RRU input interface 2 (FIG. (Not shown).
  • FIG. 2 shows only the signal flow from the RRU side to the BBU side, and the description of the reverse signal flow from the BBU side to the RRU side is omitted. However, it should be noted that in reality, there is almost the same reverse signal flow from the BBU side to the RRU side.
  • connection switching modules are arranged side by side and connected to each other and interconnected with one connection switching module on each of the adjacent sides, so that any connection switching module such as connection switching module #i 3i can be connected.
  • base station cell remote RF unit
  • remote RF unit # j 1 is about the BBU example BBU # i the remote RF unit # j 1 corresponding to the connected connection switching module for instance connected switching modules #i 3i, at least, multiple adjacent It is possible to switch the connection between the three BBUs (three in the example of FIG. 2), for example, BBU # (i ⁇ 1), BBU # i, and BBU # (i + 1).
  • FIG. 3 is a connection configuration diagram showing a connection configuration example of the connection switching modules 31 to 3k in the first embodiment of the present invention, and each of the k connection switching modules 31 to 3k shown in FIG.
  • each of the BBU # 1 to BBU # 4 basically (assuming a case where traffic is large), and each of the connection switching modules # 1 to # 4 corresponding to each of the BBU # 1 to BBU # 4.
  • BBU # 1 has three RRUs RRU # 1 to RRU # 3
  • BBU # 2 has three RRUs RRU # 4 to RRU # 6
  • BBU # 3 has RRU # 7 to RRU.
  • the # 9 RRUs and BBUs # 4 perform RRUs for RRU # 10 to RRU # 12, respectively.
  • each of the RRU # 1 to RRU # 12 is an adjacent BBU that is predetermined for each RRU # 1 to RRU # 12 among the BBU # 1 to BBU # 4 of the baseband processing pool (BBU-pool) 20. It is possible to connect only to any of the above. That is, each of RRU # 1 to RRU # 12 is centered on each of BBU # 1 to BBU # 4 connected corresponding to each of connection switching module # 1 to connection switching module # 4 to which each RRU is connected. It is possible to selectively connect to any of a total of three BBUs including at least two BBUs adjacent to both sides. For example, in the case of RRU # 4 in FIG.
  • BBU # 1 and BBU # 3 adjacent to both sides are centered on the correspondingly connected BBU # 2.
  • BBU # 1 and BBU # 3 adjacent to both sides are centered on the correspondingly connected BBU # 2.
  • Any of the three BBUs (BBU # 1, BBU # 2, BBU # 3) can be selected and connected.
  • connection switching module # 2 when traffic is small, an arbitrary BBU, for example, BBU # 2, out of the four BBU # 1 to BBU # 4, is centered on the connection switching module # 2 to which the BBU # 2 is connected correspondingly. 9 connected to three connection switching modules (connection switching module # 1, connection switching module # 2, connection switching module # 3) including adjacent connection switching module # 1 and connection switching module # 3
  • connection switching module # 1 connection switching module # 2
  • connection switching module # 3 connection switching module # 3
  • the radio base station apparatus 100 performs k resource sharing based on the traffic prediction result by the traffic prediction unit 52 (traffic prediction function) in order to share processing resources in each BBU.
  • a processing resource allocation control unit 51 that allocates processing resources of n base station cells (RRU) 11 to 1n to the baseband signal processing cards (BBU) 21 to 2k is provided.
  • the traffic prediction unit 52 includes a traffic database (average value of daily traffic for each time interval) in which daily traffic data is accumulated at a certain predetermined time interval, traffic history of each day (each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval).
  • a traffic database average value of daily traffic for each time interval
  • traffic history of each day each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval.
  • processing resource allocation control unit 51 based on the traffic predicted by the traffic prediction unit 52, n base station cells (RRU) for each of the k baseband signal processing cards (BBUs) 21 to 2k. 11 to 1n processing resource allocation is controlled.
  • the purpose of the processing resource allocation control is to increase the number of BBUs that can be turned off as much as possible by operating only as few BBUs as possible by sharing processing resources in order to realize low power consumption.
  • FIG. 4 is a control flowchart for explaining an example of the entire processing procedure related to processing resource allocation control according to the first embodiment of the present invention.
  • the processing resource allocation control unit 51 first, the traffic prediction result by the traffic prediction unit 52 and each of the k baseband signals at the current point. From the operating state of the processing card (BBU) 21 to 2k, the processing resource allocation control unit 51 next sets the baseband signal processing card (BBU) that wants to turn off the operation (that is, to set the operation to the off state). The order is determined in advance (step S1). Once the order of the baseband signal processing cards (BBU) to be turned off is determined, the order of the baseband signal processing cards (BBU) that performs processing resource allocation control is also determined in advance (step S2).
  • priority is given to the baseband signal processing card (BBU) that is distant from the baseband signal processing card (BBU) that is next desired to be turned off as the order of the baseband signal processing card (BBU) that performs processing resource allocation control.
  • BBU baseband signal processing card
  • the reason for performing steps S1 and S2 is that, in the first embodiment of the present invention, in order to improve the expandability of radio base station apparatus 100, a base station cell (RRU) -baseband signal Since the connection switching control unit 30 that limits a part of the connection between the processing cards (BBU) is used, processing resources are allocated to BBUs that cannot be connected from a specific RRU. This is because it is necessary to prevent this in advance.
  • RRU base station cell
  • FIG. 5 shows the baseband signal processing cards (BBU) 21 to 2k that are to be turned off next (that is, the operation is to be set to the off state) in the processing resource allocation control in the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram for explaining an example of a mechanism for determining the order, but details of the process of step S1 in the control flowchart of FIG. 4 (the determination method of the baseband signal processing card (BBU) to be turned off next).
  • An example of the detailed mechanism of not only the mechanism but also the process of step S2 (a method of determining a baseband signal processing card (BBU) that performs processing resource allocation control) is described.
  • FIG. 5 is an explanatory diagram for explaining an example of a mechanism for determining the order, but details of the process of step S1 in the control flowchart of FIG. 4 (the determination method of the baseband signal processing card (BBU) to be turned off next).
  • the number of baseband signal processing cards (BBU) in the baseband processing pool (BBU-pool) 20 is eight, BBU # 1 to BBU # 8, and the corresponding connection switching control unit.
  • the number of 30 connection switching modules is also 8 of connection switching module # 1 to connection switching module # 8, while the number of base station cells (RRU) of base station cell radio unit (RRU) 10 is set to RRU # 1 to RRU # 1.
  • RRU # 24 is 24 is illustrated.
  • step S1 the determination method of the baseband signal processing card (BBU) to be turned off next time
  • the processing resource allocation control unit 51 performs basic processing according to the traffic amount predicted by the traffic prediction unit 52.
  • the baseband signal processing card (BBU) that wants to turn off the operation (that is, to set the operation to the off state) is set at every power-of-two interval.
  • each baseband signal processing card BBU
  • the BBU operation state for example, BBU # 4 or other of 8 BBUs
  • the BBU operating state described in “traffic” in FIG. 5B for example, BBU # 4 out of 8 BBUs
  • a process resource allocation control is performed aiming at a state where any other two BBUs are turned off at intervals of two or four of BBU # 8. That is, for example, as shown in FIG. 5A, when one BBU of BBU # 4 is in an operation OFF state, as shown in “Low” in FIG. In addition, it aims to turn off the operation of BBU IV # 8.
  • FIG. BBU operating state described in “Small traffic” e.g., out of 8 BBUs, for example, BBU # 2, BBU # 4, BBU # 6, BBU # 8, or any other 4 BBUs at intervals of 2
  • the processing resource allocation control is performed aiming at a state where the operation is turned off. That is, for example, as shown in FIG. 5B, when two BBUs BBU # 4 and # 8 are in an operation OFF state, as shown in “Low” in FIG. In addition, it aims to turn off operation of BBU # 2 and # 6 in addition.
  • the processing resource allocation control unit 51 selects a baseband signal processing card (BBU) that performs processing resource allocation control as far as possible from a BBU that is to be turned off (including BBUs that are already turned off). Processing resource allocation control is performed with priority in order.
  • BBU baseband signal processing card
  • the traffic prediction unit 52 predicts that the traffic is large, and for example, BBU # 4 is determined as the BBU to be next turned off among the 8 BBUs, as described in “traffic large” in FIG. If BBU # 4 has already been set to the operation OFF state, as shown in “High1” in FIG. 5A, the BBU that is farthest from the BBU # 4 in distance Processing resource allocation control is performed preferentially from # 8. Further, as described in “traffic” in FIG. 5B, for example, BBU # 4 and BBU # 8 among the eight BBUs are set as BBUs to be next turned off, as traffic is predicted to be medium.
  • the BBU # 4 and BBU # 8 have already been set to the operation OFF state, as shown in “High1” in FIG. 5B, the BBU # 4 and BBU #
  • the processing resource allocation control is preferentially performed in order from the BBU # 2 or # 6 that is the BBU located farthest from the distance 8, that is, between the BBU # 4 and the BBU # 8.
  • BBU # 1 and BBU # 7 have a distance from BBU # 4 as BBUs that preferentially process resource allocation control next to BBU # 8. In the case of the same degree, either BBU # 1 or BBU # 7 may be selected as the next priority order of BBU # 8.
  • step S3 As shown in the control flowchart of FIG. 4, according to the control order of the BBU processing resource allocation control determined in step S2, threshold determination regarding the processing resource usage rate as described below is performed in order from the BBU having the highest priority order. Repeat the process. First, with respect to the target BBUs selected in order, the processing resource usage rate is calculated from the traffic predicted values of all the RRUs allocated at the present time, and a threshold value determination with a threshold value A that is a predetermined upper limit value is performed (step S3). .
  • Process A is executed (step S5), and it is determined whether or not any RRU process already assigned to the target BBU can be moved to another BBU. If it is determined that the process is possible, the process of moving the RRU process to another BBU determined to be processable is executed.
  • Step S4 a threshold value determination with the threshold value B that is a predetermined lower limit value is performed. If the processing resource usage rate of the target BBU is below the threshold value B, which is the lower limit (Yes in step S4), there is still a processing capacity margin that can execute another RRU process on the target BBU. Therefore, the allocation control process B (proc.B) described in detail in FIG. 7 to be described later is executed (step S6), and the RRU process is allocated to a BBU other than the target BBU. For the RRU process for which the current allocation has not yet been determined, it is determined whether or not the target BBU can be processed, and if it is determined that the process is possible, the process of allocating the corresponding RRU process to the target BBU Execute.
  • the threshold value determination process relating to the processing resource usage rate of the BBU, the allocation control process A (proc.A), and the allocation control process B (proc.B) shown in steps S3 to S6 are performed.
  • FIG. 6 shows a process of moving the base station cell (RRU) process of the baseband signal processing card (BBU) to another baseband signal processing card (BBU) in the processing resource allocation control according to the first embodiment of the present invention.
  • FIG. 4 is a control flowchart showing an example of the RRU process assigned to the target BBU when the processing resource usage rate of the target BBU exceeds a threshold value A that is a predetermined upper limit value. Among these, an example of the processing content of the allocation control processing A (proc. A) for moving any RRU processing to another BBU is shown.
  • the priority order of RRUs that are candidates for moving the RRU process is determined (step A1).
  • the priority order of the RRUs that are candidates for moving the RRU process is, for example, from the target BBU based on the RRU-BBU connection information stored in the connection information storage unit 53 shown in FIG. Are set in order of priority from the RRU having a long connection distance.
  • the following RRU process allocation control is repeated until the processing resource usage rate of the target BBU falls below the threshold value A which is the upper limit value.
  • step A2 it is determined whether or not the RRU process can be assigned to the BBUs already operating in the vicinity of the RRU as the BBUs to which the RRU can be connected (step A2).
  • the RRU process can be assigned to the active BBU around the RRU, that is, even if the RRU process is newly assigned to the active BBU, the resource usage rate of the active BBU does not exceed the upper limit threshold A.
  • the RRU process is moved to the active BBU around the RRU (step A6).
  • step A3 When the RRU process assignment can be performed for the BBU in the operation OFF state around the RRU (Yes in Step A3), the RRU process is moved to the BBU in the operation OFF state around the RRU (that is, the BBU is moved). The operation is turned on) (step A7).
  • step A4 is a process for preventing the allocation of process resources to BBUs that cannot be connected from any RRU.
  • the threshold value determination process for comparing the processing resource usage rate of the target BBU with the threshold value A which is a predetermined upper limit value is performed again (step A5).
  • the processing resource usage rate of the target BBU still exceeds the upper limit threshold A (No in step A5), according to the priority order determined in step A1, other RRUs in the next priority order Steps A2 to A4, A6, and A7 are repeated.
  • Step A5 when the processing resource usage rate of the target BBU is equal to or less than the threshold A (Yes in Step A5), the processing resource allocation for the RRU process is determined for the target BBU (Step A8), and the target BBU is determined. Complete the processing resource allocation control.
  • FIG. 7 is a control flowchart showing an example of processing for allocating undecided base station cell (RRU) processing to a baseband signal processing card (BBU) in processing resource allocation control according to the first embodiment of the present invention.
  • RRU base station cell
  • BBU baseband signal processing card
  • the processing resource allocation control of the RRU processing related to the RRU to the BBU that cannot be connected from any RRU by the limited connection function of the connection switching control unit 30 is determined (step B1).
  • the priority order of the RRUs that are candidates for the RRU process allocation is determined based on, for example, the connection information between the RRU and the BBU stored in the connection information storage unit 53 shown in FIG. The priority is set in the order of priority from the RRU with the connection distance close.
  • the following RRU process allocation control is repeated until the processing resource usage rate of the target BBU exceeds the threshold value B, which is the lower limit value.
  • step B2 it is determined whether or not the relevant RRU process can be assigned to the target BBU to which the RRU can be connected (step B2). If the target RBU process can be assigned to the target BBU, that is, even if the target BBU is newly assigned, the resource usage rate of the target BBU does not exceed the upper threshold value A (step) (Yes in B2), the RRU process is moved to the target BBU, and the RRU process is assigned to the target BBU (step B3).
  • step B4 the resource usage rate of the target BBU has not yet reached the threshold B that is the lower limit value (No in step B4), or If the resource usage rate of the target BBU exceeds the upper limit threshold A in step B2 and the RRU process cannot be allocated to the target BBU (No in step B2), the priority determined in step B1 Accordingly, the processes of steps B2 to B4 are repeated for the other RRUs in the next priority order.
  • the RRU processing resource allocation for the target BBU is determined (step B5), and the processing resource allocation control for the target BBU is completed.
  • connection switching control unit 30 that performs connection switching control between RRU and BBU has an interconnection interface between adjacent connection switching modules.
  • One or a plurality of connection switching modules 31 to 3k are arranged so that the connection relationship from the RRU is not all baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20, By limiting to only adjacent BBUs, it is possible to prevent the circuit scale of the connection switching control unit 30 from increasing.
  • connection switching control unit requires a scale proportional to the multiplication of the respective numbers of “RRU number ⁇ BBU number”. It becomes.
  • the scale of the connection switching control unit 30 is limited to a scale proportional to “the number of connected RRUs (9 in the example shown in FIG. 2) ⁇ the number of BBUs”.
  • the connection switching control unit can be suppressed to a circuit scale almost linear with the number of BBUs. Therefore, in the first embodiment of the present invention, when the RRU or BBU is increased as the traffic increases, the connection switching module can be expanded almost linearly according to the number of BBUs. Thus, an advantage that high expandability can be secured is obtained.
  • the first embodiment of the present invention it is desired to turn off the operation (that is, the operation Base station cell processing resources that predetermine BBUs and perform processing resource allocation control in order from the BBU located far away from the BBU that is the target of operation OFF.
  • An allocation method is adopted.
  • the processing resource usage rate of the target BBU exceeds a predetermined upper limit threshold A
  • a base station cell processing resource allocation method is adopted in which transfer control of RRU processing is preferentially performed in order from a certain RRU.
  • the base station cell processing resource allocation method according to the first embodiment of the present invention employs a mechanism for allocating RRU processing resources in order from an RRU having a connection distance as close as possible to an arbitrary BBU. This is because a mechanism capable of preventing a situation in which RRU processing related to an arbitrary RRU is assigned to a BBU having no connection relationship is realized.
  • FIG. 8 is a block configuration diagram illustrating an example of the overall configuration of the radio base station apparatus according to the second embodiment of the present invention.
  • the radio base station apparatus as in the case of FIG. 1 of the first embodiment, An example of the overall configuration of a radio base station apparatus that consolidates radio signal processing and shares its processing resources is shown.
  • each connection switching module 41 differs from the configuration of the connection switching control unit 30 in the case of FIG. 1 of the first embodiment.
  • ⁇ 4k can be connected to each other in a ring shape including between the last connection switching module 4k and the first connection switching module 41, and each base station cell (RRU) is connected to five adjacent baseband signals. It is configured to be connectable to a processing card (BBU).
  • BBU processing card
  • the radio base station apparatus 101 shown in FIG. 8 includes n (n: natural number) base station cells (RRU: Remote Radio Unit remote radio units) 11 to 1n.
  • a baseband processing pool (BBU-pool) 20 that collects and executes each wireless communication processing is provided, and k (k: natural number, k ⁇ n) basebands are included in the baseband processing pool (BBU-pool) 20.
  • a signal processing card (BBU: Base Band Unit baseband signal processing module) 21 to 2k is provided.
  • Each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 is connected between n base station cells (RRU) 11 to 1n. While sharing the processing resources, for example, wireless Layer-1 processing (baseband signal processing) such as LTE-Advanced is performed.
  • each base station cell (RRU) 11 to 1n is connected by an optical fiber, a radio backhaul (fronthaul) or the like.
  • the radio system to be processed in the baseband processing pool (BBU-pool) 20 is a radio system other than LTE-Advanced, and the layer to be processed is a Layer- other than Layer-1.
  • the second processing is performed.
  • the radio base station apparatus 101 applies to k baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 as in the case of FIG. 1 of the first embodiment.
  • a processing resource allocation control unit 51, a traffic prediction unit 52, a connection information storage unit 53, and the like are also provided for processing resource allocation control.
  • connection switching control unit 40 is configured by arranging (connecting) k connection switching modules 41 to 4k in the same manner as the connection switching control unit 30 in the case of FIG. 1 of the first embodiment.
  • Each of the connection switching modules 41 to 4k can perform connection between one or more base station cells (RRU) 11 to 1n and one or more baseband signal processing cards (BBU) 21 to 2k. This configuration is possible and allows interconnection between adjacent connection switching modules.
  • RRU base station cells
  • BBU baseband signal processing cards
  • connection switching control unit 40 can also be interconnected between the last connection switching module 4k and the first connection switching module 41. It is characterized by adopting a simple ring-type connection configuration.
  • the i-th (1 ⁇ i ⁇ k) -th connection switching module 4i is the adjacent (i ⁇ 1) -th connection switching module 4 (i ⁇ 1).
  • the last connection switching module 4k and the first connection switching module 41 can also be connected to each other.
  • each of the k connection switching modules 31 to 3k can be interconnected with one connection switching module adjacent to each other.
  • the number of interconnections is expanded to allow interconnection between two connection switching modules adjacent to both sides.
  • any base station cell (RRU) connected to the i-th connection switching module 4i for example, the jth
  • the (1 ⁇ j ⁇ n) th base station cell (RRU) 1j has two BBUs adjacent to each other around the i-th BBU2i corresponding to the connection switching module 4i to which the RRU1j is connected.
  • the (i-2) th BBU2 (i-2), the (i-1) th BBU2 (i-1), the (i + 1) th BBU2 (i + 1) and the (i + 2) th BBU2 The connection can be switched between (i + 2).
  • connection switching module 4k and the first connection switching module 41 can be connected (connected) in a ring shape.
  • wireless communication processing such as Layer-1 processing (baseband signal processing) such as LTE-Advanced, is performed for n base station cells (RRU) 11 to 1n in an integrated manner. .
  • each base station cell (RRU) for the base station cells (RRU) 11 to 1n can be processed with k baseband signals.
  • each base station cell (RRU) 11 to 1n and each baseband signal processing card (BBU) The connection switching between 21 and 2k is performed by the connection switching control unit 40.
  • Each transmission / reception signal switched by the connection switching control unit 40 is connected to the base station cells (RRU) 11 to 1n that are connected to each other via an optical fiber or a wireless backhaul (fronthaul) and the baseband. Data is transmitted to and received from the signal processing card (BBU) 21-2k.
  • connection switching control unit 40 in the second embodiment as described above, two adjacent connection switching modules on both sides can be interconnected.
  • the connection switching modules 41 to 4k are connected to each other up to two adjacent points. Furthermore, the last connection switching module 4k and the first connection switching module 41 are configured to be capable of mutual connection.
  • FIG. 9 is a schematic diagram showing a configuration example of the connection switching modules 41 to 4k according to the second embodiment of the present invention.
  • the connection switching modules 41 to 4k As a configuration example of each of the connection switching modules 41 to 4k, the i-th (1 ⁇ i Taking a connection switching module 4i of ⁇ k) as an example, a configuration example is shown in which two adjacent connection switching modules on both sides can be interconnected.
  • a baseband signal processing module that connects one connection switching module 4i to one of BBU # i.
  • Input / output interface (at least) RRU #j 1 , RRU #j 2 , RRU #j 3 (1 ⁇ j 1 , j 2 , j 3 ⁇ k) 3 RRU base station cells connected (RRU) I / O interface, two interconnection switching modules 4 (i-2), 4 (i-1), 4 (i + 1), and 4 (i + 2) adjacent to each other.
  • any three RRUs for example, j 1 th RRU # j 1, the j 2 th RRU # j 2, to process three RRU of the j 3 th RRU # j 3 (1 ⁇ j 1, j 2, j 3 ⁇ k)
  • the first RRU input interface 1 from the three RRU # j 1 , RRU # j 2 , and RRU # j 3 connected to the connection switching module 4 i is one system, two on each side. 4 of the second RRU input interface 2 from the adjacent connection switching modules 4 (i-2), 4 (i-1), 4 (i + 1) and 4 (i + 2), RRU # j 1 , RRU # j 2 , RRU #j 3 sides two by adjacent connection switching module 4 from (i-2), 4 ( i-1), 4 (i + 1) and 4 (i + 2) the 1RRU output interface 3 is 4 lines towards Then, It comprises a selection circuit (not shown in FIG. 9) that selectively arbitrates each input from each of the first RRU input interface 1 and the second RRU input interface 2.
  • FIG. 9 shows only the signal flow from the RRU side to the BBU side, and does not describe the reverse signal flow from the BBU side to the RRU side. However, it should be noted that in reality, there is almost the same reverse signal flow from the BBU side to the RRU side.
  • any connection switching module such as connection switching module #i 4i can be connected.
  • base station cell (remote RF unit) for example remote RF unit # j 1 is about the BBU example BBU # i the remote RF unit # j 1 corresponding to the connected connection switching module for instance connected switching modules #i 4i, a plurality of at least adjacent between a plurality of BBUs including four BBUs (four in the example of FIG. 9), for example, BBU # (i-2), BBU # (i-1), BBU # i, BBU # (i + 1), BBU # (i + 2)
  • the connection can be switched among the five BBUs.
  • FIG. 10 shows a connection configuration example of the connection switching modules 41 to 4k according to the second embodiment of the present invention, and a baseband signal processing card for which operation is to be turned off next (that is, operation is to be set to an off state). It is explanatory drawing for demonstrating an example of the mechanism which determines the order of (BBU).
  • each of the BBU # 1 to BBU # 8 is basically (assuming that traffic is large), and the connection switching module # 1 to connection switching module # 8 corresponding to each of the BBU # 1 to BBU # 8, respectively.
  • the case where the process regarding three RRUs connected to each is performed is shown. That is, BBU # 1 has three RRUs RRU # 1 to RRU # 3, BBU # 2 has three RRUs RRU # 4 to RRU # 6,..., BBU # 7 has RRU # 19 RRU # 21 for RRU # 21 and BBU # 8 perform RRU processing for RRU # 22 to RRU # 24, respectively.
  • Each of the RRU # 1 to RRU # 24 is a BBU adjacent to each other that is predetermined for each RRU # 1 to RRU # 24 among the BBU # 1 to BBU # 8 of the baseband processing pool (BBU-pool) 20. It is possible to connect only to any of the above. That is, each of RRU # 1 to RRU # 24 is centered on each of BBU # 1 to BBU # 8 connected corresponding to each of connection switching module # 1 to connection switching module # 8 to which each RRU is connected. It is possible to selectively connect to any of a total of five BBUs including at least four BBUs adjacent to both sides. For example, in the case of RRU # 4 in FIG.
  • connection switching module # 2 it is connected to the connection switching module # 2, but two BBU # s on both sides adjacent to each other in a ring shape centering on the correspondingly connected BBU # 2. 8 and BBU # 1, BBU # 3, BBU # 4, and any of the five BBUs (BBU # 8, BBU # 1, BBU # 2, BBU # 3, BBU # 4) can be selected and connected. Is possible.
  • connection switching module # 8 connection switching module # 8
  • connection switching module # 1 connection switching module # 3
  • connection switching module # 4 connection switching module # 4
  • the radio base station apparatus 101 performs traffic resource sharing in each BBU in order to share the processing resources ( Processing resource allocation for allocating processing resources of n base station cells (RRU) 11 to 1n to k baseband signal processing cards (BBU) 21 to 2k based on a traffic prediction result by a traffic prediction function)
  • a control unit 51 is provided.
  • the traffic prediction unit 52 includes a traffic database (average value of daily traffic for each time interval) in which daily traffic data is accumulated at a certain predetermined time interval, traffic history of each day (each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval).
  • a traffic database average value of daily traffic for each time interval
  • traffic history of each day each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval.
  • processing resource allocation control unit 51 based on the traffic predicted by the traffic prediction unit 52, n base station cells (RRU) for each of the k baseband signal processing cards (BBUs) 21 to 2k. 11 to 1n processing resource allocation is controlled.
  • RRU base station cells
  • the purpose of the processing resource allocation control is to operate only as few BBUs as possible and to turn off the operation by sharing processing resources in order to realize low power consumption.
  • the purpose is to increase the number of BBUs that can be performed as much as possible.
  • the flow of the overall processing procedure of the processing resource allocation control in the second embodiment is basically the same as that in the first embodiment, and is shown in the control flowchart of FIG. 4 in the first embodiment. The procedure is the same as shown.
  • the configuration of the connection switching modules 41 to 4k is a configuration in which two adjacent connection switching modules on both sides can be interconnected.
  • the ring connection between the last connection switching module 4k and the first connection switching module 41 is also possible, it is possible to share processing resources for more RRU processes in any one BBU. Control.
  • step S1 of the processing resource allocation control flowchart shown in FIG. 4 as the first embodiment when determining the order of BBUs to be turned off, in the second embodiment, It is possible to set many operation OFF target BBUs.
  • the mechanism for determining the BBU to be turned off next time in the second embodiment is also shown.
  • the RRU connected to the five adjacent connection switching modules at the maximum can be selectively connected to any one BBU. Therefore, in the explanatory diagram of FIG. 10, in addition to the case of the BBU operating state described as “traffic high”, “medium traffic”, and “traffic small” in the case of FIG. 5 showing the operation of the first embodiment.
  • the BBU operating state case described as “traffic minimum” can also be realized.
  • the processing resource allocation control unit 51 in FIG. 8 basically wants to turn off the operation at every power-of-two interval according to the traffic amount predicted by the traffic prediction unit 52 (In other words, the baseband signal processing card (BBU) that is to be set to the off state is selected and set.
  • BBU baseband signal processing card
  • 8 8
  • one of BBU # 4 is set out of eight BBUs.
  • the BBU to be turned off is set (in the case of the example of FIG. 10, for example, BBU # 2, BBU # 3, BBU # 4, BBU # 6, BBU # 7, and BBU # among the eight BBUs) 6 and 8 are set as BBUs to be turned off.)
  • the reason why such a setting is possible in the second embodiment is that, in the first embodiment, each RRU # 1 to RRU # 24 can connect only up to three adjacent BBUs. Although it was not possible, in the second embodiment, since it is possible to connect up to five adjacent BBUs, all three adjacent BBUs can be turned off. It is.
  • each baseband signal processing card BBU
  • the BBU operation state for example, BBU # 4 or other of 8 BBUs
  • the BBU operation state described in “traffic” in FIG. 10B for example, BBU # 4 out of 8 BBUs
  • a process resource allocation control is performed aiming at a state where any other two BBUs are turned off at intervals of two or four of BBU # 8. That is, for example, as shown in FIG. 10A, when one BBU of BBU # 4 is in an operation OFF state, as shown in “Low” in FIG. In addition, it aims to turn off the operation of BBU # 8.
  • FIG. BBU operating state described in “Small traffic” e.g., out of 8 BBUs, for example, BBU # 2, BBU # 4, BBU # 6, BBU # 8, or any other 4 BBUs at intervals of 2
  • the processing resource allocation control is performed aiming at a state where the operation is turned off. That is, for example, as shown in FIG. 10 (B), when two BBUs BBU # 4 and # 8 are in an operation OFF state, as shown in “Low” in FIG. 10 (C), In addition, it aims to turn off the operation of BBU # 2 and BBU # 6 in addition.
  • the processing resource allocation control unit 51 selects a baseband signal processing card (BBU) that performs processing resource allocation control as far as possible from a BBU that is to be turned off (including BBUs that are already turned off). Processing resource allocation control is performed with priority in order.
  • processing resources are sequentially processed from the BBU located in the middle of the corresponding BBU. Perform allocation control.
  • the traffic predicting unit 52 predicts that the traffic is large, and for example, BBU # 4 is determined as the BBU to be next turned off among the 8 BBUs, as described in “traffic large” in FIG. If BBU # 4 has already been set to the operation OFF state, as shown in “High1” in FIG. 10A, the BBU that is farthest away from the BBU # 4 Processing resource allocation control is performed preferentially from # 8. Further, as described in “traffic” in FIG. 10B, for example, BBU # 4 and BBU # 8 among the eight BBUs are set as BBUs whose operation is to be turned off next.
  • the BBU # 4 and BBU # 8 have already been set to the operation OFF state, as shown in “High1” of FIG. 10B, the BBU # 4 and BBU #
  • the processing resource allocation control is preferentially performed in order from the BBU # 2 or # 6 that is the BBU located farthest from the distance 8, that is, between the BBU # 4 and the BBU # 8.
  • BBU # 1 and BBU # 7 have distances from BBU # 4 as BBUs that preferentially process resource allocation control after BBU # 8. In the case of the same degree, either BBU # 1 or BBU # 7 may be selected as the next priority order of BBU # 8.
  • FIG. 11 is a block configuration diagram illustrating an example of the overall configuration of the radio base station apparatus according to the third embodiment of the present invention.
  • the radio base station apparatus as in the case of FIG. 1 of the first embodiment, An example of the overall configuration of a radio base station apparatus that consolidates radio signal processing and shares its processing resources is shown.
  • the radio base station apparatus 102 shown in FIG. 11 of the third embodiment unlike the configuration of the connection switching control unit 30 in the case of FIG.
  • the signal processing cards (BBU) 21 to 2k and the n base station cells (RRU) 11 to 1n are clustered in a predetermined unit, and the connection switching control unit 70 is also associated with the clustering. This is shown in the configuration example when processing resources are controlled by partial clustering.
  • the radio base station apparatus 102 shown in FIG. 11 includes n (n: natural number) base station cells (RRU: Remote Radio Unit remote radio units) 11 to 1n.
  • a baseband processing pool (BBU-pool) 90 that collects and executes each wireless communication process is provided, and k (k: natural number, k ⁇ n) basebands are included in the baseband processing pool (BBU-pool) 90.
  • a signal processing card (BBU: Base Band Unit baseband signal processing module) 21 to 2k is provided.
  • Each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 90 is connected between n base station cells (RRU) 11 to 1n. While sharing the processing resources, for example, wireless Layer-1 processing (baseband signal processing) such as LTE-Advanced is performed.
  • the RF (Radio Frequency) unit side of each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k is
  • the base station cells (RRU) 11 to 1n are connected to each base station cell (RRU) 11n by an optical fiber, a radio backhaul (fronthaul), or the like via the connection switching control unit 70.
  • the radio system to be processed in the baseband processing pool (BBU-pool) 90 is a radio system other than LTE-Advanced
  • the layer to be processed is a Layer- other than Layer-1.
  • the processing is 2 or the like.
  • each baseband signal processing card (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 90 is in a predetermined unit arbitrarily determined.
  • a first signal processing card cluster (first BBU cluster) 91 and a second signal processing card cluster (second BBU cluster) 92 are provided.
  • the baseband signal processing cards (BBU) 21 to 23 are included in the first signal processing card cluster (first BBU cluster) 91, and the baseband signal processing cards (BBU) 24 to 2k are the second signal processing card cluster. (Second BBU cluster) 92.
  • the base station cells (RRU) 11 to 1n are also clustered in units determined in advance.
  • the base station cells (RRU) 11 to 15 are included in the first base station cell cluster (first RRU cluster) 10A
  • the base station cells (RRU) 16 to 1n are included in the second base station cell cluster (second RRU cluster).
  • 10B included in 10B.
  • connection switching control unit 70 is clustered corresponding to each BBU cluster such as the first signal processing card cluster (first BBU cluster) 91 and the second signal processing card cluster (second BBU cluster) 92.
  • first BBU cluster first signal processing card cluster
  • second BBU cluster second BBU cluster
  • FIG. 11 corresponding to the first signal processing card cluster (first BBU cluster) 91, a connection switching module cluster 71 including three connection switching modules # 1 41 to # 3 43 is provided.
  • the remaining connection switching modules in the connection switching control unit 70 are provided corresponding to each baseband signal processing card (BBU) as in the first and second embodiments.
  • BBU baseband signal processing card
  • FIG. Are provided with connection switching modules 44 to 4k corresponding to the baseband signal processing cards (BBU) 24 to 2k, respectively.
  • the adjacent connection switching modules are configured to be capable of ring-shaped interconnections as in the second embodiment (or are configured to allow interconnections similar to those in the first embodiment). As good).
  • the radio base station apparatus 102 as in the case of FIG. 1 of the first embodiment and FIG. 8 of the second embodiment, k basebands in the baseband processing pool (BBU-pool) 90.
  • a processing resource allocation control unit 51, a traffic prediction unit 52, a connection information storage unit 53, and the like are provided for processing resource allocation control for the signal processing cards (BBU) 21 to 2k.
  • BBU signal processing cards
  • wireless communication processing such as Layer-1 processing (baseband signal processing) such as LTE-Advanced, is performed for n base station cells (RRU) 11 to 1n in an integrated manner. .
  • each base station cell (RRU) for the base station cells (RRU) 11 to 1n can be processed with k baseband signals.
  • each base station cell (RRU) 11 to 1n and each baseband signal processing card (BBU) The connection switching between 21 and 2k is performed by the connection switching control unit 70.
  • Each transmission / reception signal switched by the connection switching control unit 70 is connected to the base station cells (RRU) 11 to 1n that are in a connected state via an optical fiber, a radio backhaul (fronthaul), or the like. Data is transmitted to and received from the processing cards (BBU) 21 to 2k.
  • the baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 90 are as follows. Clustering is performed in a predetermined unit that is arbitrarily determined in advance. Similarly, the base station cells (RRU) 11 to 1n are also clustered in units that are determined in advance.
  • connection switching control unit 70 is also associated with each signal processing card cluster (BBU cluster) such as the first signal processing card cluster (first BBU cluster) 91 and the second signal processing card cluster (second BBU cluster) 92.
  • the connection switching module cluster 71 may be configured to correspond to the first signal processing card cluster (first BBU cluster) 91, or to correspond to each single baseband signal processing card (BBU) 24 to 2k.
  • the connection switching modules 44 to 4k may be configured.
  • the connection switching module cluster 71 for each signal processing card cluster (BBU cluster) is limited to simply connecting the single connection switching modules 41 to 43 for each single baseband signal processing card (BBU).
  • all connection combinations between BBUs and RRUs for baseband signal processing cards (BBU) 21 to 23 in the first signal processing card cluster (first BBU cluster) 91 may be used. It is good also as a structure which makes it realizable.
  • each connection switching module in the connection switching module cluster 71 of the connection switching control unit 70 and each of the individual connection switching modules 44 to 4k are the same as those in the second embodiment shown in FIG.
  • at least two adjacent sides (or two) by the interconnection input / output interface (second RRU input interface 2 and first RRU output interface 3) (or The connection switching modules (one on each side) are connected to each other. Therefore, in any base station cell (RRU) among the base station cells (RRU) 11 to 1n, a baseband signal processing card (BBU) corresponding to the connection switching module to which the base station cell (RRU) is connected. It is possible to connect to a total of five (or three) or more baseband signal processing cards (BBU) including at least four (or two) or more adjacent signal processing cards.
  • the radio base station apparatus 102 performs traffic resource sharing in each BBU in order to share the processing resources.
  • a control unit 51 is provided.
  • the traffic prediction unit 52 includes a traffic database (average value of daily traffic for each time interval) in which daily traffic data is accumulated at a certain predetermined time interval, traffic history of each day (each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval).
  • a traffic database average value of daily traffic for each time interval
  • traffic history of each day each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval.
  • processing resource allocation control unit 51 based on the traffic predicted by the traffic prediction unit 52, n base station cells (RRU) for each of the k baseband signal processing cards (BBUs) 21 to 2k. 11 to 1n processing resource allocation is controlled.
  • RRU base station cells
  • the purpose of the processing resource allocation control is to operate only as few BBUs as possible and to turn off the operation by sharing processing resources in order to realize low power consumption.
  • the purpose is to increase the number of BBUs that can be performed as much as possible.
  • the overall processing procedure flow of the processing resource allocation control is basically the same as that of the first embodiment, and the control of FIG. 4 of the first embodiment is performed.
  • the procedure is the same as that shown in the flowchart.
  • the ON / OFF control of each base station cell (RRU) 11 to 1n is performed in the upper layer, and from the upper layer, The notified base station cell (RRU) ON / OFF information is stored in the base station cell ON / OFF information storage unit 54 so as to be referred to when processing resource allocation is controlled.
  • the processing resource allocation control unit 51 receives notification from the upper layer in addition to the traffic result notified from the traffic prediction unit 52 and the RRU-BBU connection information stored in the connection information storage unit 53. Then, processing resource allocation control is performed using base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54.
  • RRU base station cell
  • the traffic prediction unit 52 performs traffic prediction
  • the traffic prediction is also performed with reference to the base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54.
  • the traffic prediction result predicted by the traffic prediction unit 52 is notified to the processing resource allocation control unit 51, and is reflected in the process of step S1 of the control flowchart of FIG. 4 for performing the processing resource allocation control.
  • the processing resource allocation control unit 51 uses, for example, the operating base station cell (RRU) 11 as a reference result of the base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54.
  • the RRU processing resource allocation is performed from the baseband signal processing card (BBU) to which the RRU processing resource related to the base station cell (RRU) has been allocated.
  • the processing resource allocation control shown in the control flowchart of FIG. 4 of the first embodiment is performed.
  • the determination result of the baseband signal processing card (BBU) order of the operation OFF target based on the traffic prediction result shown in step S1 of FIG. 4 and each target baseband signal processing shown in steps S3 and S4 of FIG.
  • the calculation result of the processing resource usage rate of the card (BBU) will be affected.
  • the base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54 by the processing resource allocation control unit 51 for example, a base station that is in an operation OFF state
  • the baseband signal processing card (BBU) in which the connection distance of the base station cell (RRU) is the nearest among the baseband signal processing cards (BBU) in the operation ON state is temporarily assigning temporary processing resources for the base station cell (RRU), the control flowchart of FIG. 4 of the first embodiment. The processing resource allocation control shown performed.
  • the processing resource usage rate of the baseband signal processing card (BBU) exceeds a predetermined upper limit threshold A. Even if the base station cell (RRU) is connectable and there is no base-band signal processing card (BBU) that is in operation ON state, After allocating temporary processing resources to the baseband signal processing card (BBU) to which the base station cell (RRU) is connectable and the connection distance of the base station cell (RRU) is closest, The processing resource allocation control shown in FIG. 4 is performed.
  • the reason is that a baseband signal that is not connected to the base station cell (RRU) by temporarily allocating processing resources to the baseband signal processing card (BBU) having the shortest connection distance of the base station cell (RRU). This is because it is possible to prevent a case where processing resources need to be allocated to the processing card (BBU).
  • the first effect is to reduce the circuit scale of the connection switching control units 30, 40, and 70 in the radio base station apparatuses 100 to 102 that consolidate radio communication processes for a plurality of base station cells (RRU) 11 to 1n. Thus, it is possible to realize downsizing of the apparatus and low power consumption.
  • connection switching control units 30, 40 and 70 are connected between the base station cell (RRU) and the baseband signal processing card (BBU). Since a plurality of connection switching modules 31 to 3k and 41 to 4k with limited connections are arranged side by side, or partially clustered as in the connection switching module cluster 71 of the third embodiment. Compared with the conventional connection switching unit that realizes all ideal connection combinations between the base station cell (RRU) and the baseband signal processing card (BBU), the circuit scale can be greatly reduced. is there.
  • the circuit scale is proportional to the multiplication of the respective numbers, such as “the number of RRUs ⁇ the number of BBUs”, whereas in each embodiment of the present invention In the case of the connection switching control units 30, 40, and 70, it is possible to suppress the circuit scale to be linearly proportional only to the number of BBUs, such as “(limited RRU number) ⁇ BBU number”.
  • the “limited number of RRUs” is 9 in the case of the first embodiment, 15 in the example of the second embodiment, etc., and is a constant value arbitrarily set in advance. is there.
  • connection switching modules 31 to 3k and 41 to 4k are basically provided for each baseband signal processing card (BBU) as in the first and second embodiments. Even if it is configured corresponding to each unit of the signal processing card cluster (BBU cluster) as in the connection switching module cluster 71 of the third embodiment, the above-described effects are not affected at all. In other words, although it is based on a device architecture that can be expanded with a uniform configuration of all connection switching modules, depending on the case, each of those shown in the first, second, and third embodiments. There is no problem even if the device architecture is such that the configurations of the connection switching modules 31 to 3k, 41 to 4k and the connection switching module cluster 71 are mixed.
  • the second effect is that the radio base station apparatuses 100 to 102 that aggregate radio communication processes for a plurality of base station cells (RRU) 11 to 1n intend to expand the apparatus in order to cope with traffic increase and the like.
  • connection switching control units 30, 40, and 70 are connected between a base station cell (RRU) and a baseband signal processing card (BBU).
  • RRU base station cell
  • BBU baseband signal processing card
  • a plurality of connection switching modules 31 to 3k and 41 to 4k having an interconnection interface with an adjacent connection switching module are connected side by side
  • the connection switching modules 31 to 3k and 41 to 4k are also connected to the base station cells (RRU) 11 to 11 in the same manner as in the connection switching module cluster 71 of the embodiment.
  • Similar to 1n and baseband signal processing cards (BBU) 21 to 2k for example, it may be expanded linearly according to the “number of BBUs” to be expanded. It is.
  • FIG. 12 shows problems in the case of using an ideal connection switching unit such as a crossbar type that realizes all connection combinations between a base station cell (RRU) and a baseband signal processing card (BBU).
  • RRU base station cell
  • BBU baseband signal processing card
  • the number M of base station cells (RRU) is four (RRU # 1 to RRU # 4), and the number N of baseband signal processing cards (BBUs) is BBU # 1 to RBU # 1.
  • RRU base station cells
  • BBUs baseband signal processing cards
  • connection switching that realizes all connection combinations between the existing base station cell (RRU) and the baseband signal processing card (BBU) is performed. It is also possible to add a dedicated connection switching unit C for connecting only the added RRU # 5 to BBU # 4 while leaving the part A as it is.
  • RRU base station cell
  • BBU baseband signal processing card
  • connection switching module shown in FIG. 2 or FIG. 9 is necessary depending on the addition of base station cells (RRU) or baseband signal processing cards (BBU).
  • RRU base station cells
  • BBU baseband signal processing cards
  • connection switching control units 30, 40, and 70 having connection restrictions are used in the radio base station apparatuses 100 to 102 that aggregate radio communication processing for a plurality of base station cells (RRU) 11 to 1n. Even in this case, it is possible to realize processing resource sharing substantially equivalent to the case where an ideal connection switching unit is used, and to obtain substantially the same low power consumption effect.
  • a baseband signal processing card (BBU) to be turned off (that is, to set the operation to the off state) is determined in advance. This is because the processing resource allocation control is preferentially performed in order from the baseband signal processing card (BBU) that is distant from the baseband signal processing card (BBU) to be turned off. Furthermore, when the processing resource usage rate of the allocation target baseband signal processing card (BBU) exceeds a predetermined upper limit threshold A, a base that is distant from the allocation target baseband signal processing card (BBU).
  • the allocation transfer control is performed with priority in order from the band signal processing card (BBU), and when the processing resource usage rate falls below a predetermined lower limit threshold B, the allocation target baseband signal processing card (BBU) This is because processing resource allocation control is performed such that allocation transfer control is preferentially performed in order from the baseband signal processing card (BBU) located in the vicinity of ().
  • the base station cell processing resource allocation method is a method in which processing is allocated in order from a base station cell (RRU) having a connection distance as close as possible to an arbitrary baseband signal processing card (BBU). This is because it employs a method that can prevent an attempt to assign a process of an arbitrary base station cell (RRU) to a baseband signal processing card (BBU) having no connection relationship. is there.
  • BBU baseband signal processing card
  • FIG. 13 is a schematic diagram for explaining the processing resource sharing effect between the base station cell processing resource allocation method according to the embodiment of the present invention and the conventional base station cell processing resource allocation method.
  • the processing resource sharing effect in the case of using a connection switching unit limited to one connection on each side is shown.
  • FIG. 13A shows a case where the conventional base station cell processing resource allocation method described in Non-Patent Document 1 is applied
  • FIG. 13B shows the case of the first embodiment of the present invention.
  • the case where the base station cell processing resource allocation method is applied is shown.
  • FIG. 13 shows that the power consumption of the baseband signal processing card (BBU) is broken down.
  • BBU baseband signal processing card
  • FIG. 5B Although the RRU process corresponding to 10% of the 30% operation rate of BBU # 2 can be moved to BBU # 1, the remaining 20% operation rate of BBU # 2 and BBU # 4 Even when trying to share resources for RRU processing with a utilization rate of 30%, base station cells (RRUs) corresponding to each RRU processing are located in remote locations that are not included in one adjacent side. It is impossible to connect to the card (BBU), and it is not possible to move the processing related to the base station cell (RRU).
  • BBU baseband signal processing card
  • RRU base station cell
  • BBU baseband signal processing card
  • RRU base station cell
  • the operation ON state is BBU # 1 to BBU # 3, resulting in a power consumption of 66%.
  • a low power consumption effect equivalent to that obtained when an ideal connection switching unit is used can be obtained.
  • the present invention has been described as a hardware configuration, but the present invention is not limited to this.
  • the present invention can also realize arbitrary processing by causing a CPU (Central Processing Unit) to execute a computer program.
  • the above-described program can be stored using various types of non-transitory computer readable media and supplied to a computer.
  • Non-transitory computer readable media include various types of tangible storage media.
  • non-transitory computer-readable media examples include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Base station cell radio wireless part
  • wireless part 10A First base station cell cluster (first RRU cluster) 10B Second base station cell cluster (second RRU cluster) 11 to 1n Base station cell (RRU) 20 Baseband processing pool (BBU-pool) 21-2k Baseband signal processing card (BBU) 30 Connection switching control unit 31 to 3k Connection switching module 40 Connection switching control unit 41 to 4k Connection switching module 51 Processing resource allocation control unit 52 Traffic prediction unit (traffic prediction function) 53 Connection Information Storage Unit 54 Base Station Cell (RRU) ON / OFF Information Storage Unit 70 Connection Switching Control Unit 71 Connection Switching Module Cluster 81 Upper Layer Processing Unit 90 Baseband Processing Pool (BBU-pool) 91 First signal processing card cluster (first BBU cluster) 92 Second signal processing card cluster (second BBU cluster) 100 radio base station apparatus 101 radio base station apparatus 102 radio base station apparatuses A1 to A8 processing resource allocation control processing steps B1 to B

Abstract

Connection switch modules (31) to (3k) provided in a connection switching control unit (30) for switching the connections between baseband signal processing cards (21) to (2k) aggregated and accommodated in a baseband processing pool (20) and base station cells (11) to (1n) are configured such that each of the connection switch modules is connected to one or more adjacent ones thereof and such that the connection switch modules can be limitedly connected to that one or those ones of the adjacent baseband signal processing cards (21) to (2k) which are predetermined for each of the base station cells (11) to (1n). A processing resource allocating control unit (51) takes the limited connections into consideration and establishes, in advance, those candidates of the baseband signal processing cards (21) to (2k) the operations of which are to be set to off-states prior to the processing resource allocating control of the base station cells (11) to (1n).

Description

無線基地局装置、基地局セル処理リソース割り当て方法およびプログラムを格納した非一時的なコンピュータ可読媒体Non-transitory computer-readable medium storing radio base station apparatus, base station cell processing resource allocation method, and program
 本発明は、無線基地局装置、基地局セル処理リソース割り当て方法および基地局セル処理リソース割り当てプログラムに関する。特に、無線基地局装置の低消費電力化のために、複数基地局分のベースバンド信号処理部(BB部)を集約化し、処理リソースを効率的に共有化する無線基地局装置、基地局セル処理リソース割り当て方法および基地局セル処理リソース割り当てプログラムを格納した非一時的なコンピュータ可読媒体に関する。 The present invention relates to a radio base station apparatus, a base station cell processing resource allocation method, and a base station cell processing resource allocation program. Particularly, in order to reduce the power consumption of the radio base station apparatus, the baseband signal processing unit (BB unit) for a plurality of base stations is aggregated, and the radio base station apparatus and base station cell efficiently share processing resources The present invention relates to a processing resource allocation method and a non-transitory computer-readable medium storing a base station cell processing resource allocation program.
 モバイル通信のデータトラフィックは、近年のスマートフォンやタブレット端末の急速な普及等により、爆発的に増加している。今後のトラフィック爆発に対応するために、2007年の世界無線会議(WRC-07)において、LTE(Long Term Evolution)-Advancedなど4G(4th Generation)用の周波数帯として3.5GHz帯の周波数帯域などを確保することで国際的な合意が得られており、これらの新規周波数帯が4G向けに割り当てられていくことが予想されている。また、システム全体のトラフィック容量を増大させるための施策として、従来のマクロセル基地局のエリア内にスモールセル基地局を複数設置するヘテロジニアスネットワーク構成や、スモールセル基地局の高密度設置などが検討されている。 Mobile data traffic is exploding due to the rapid spread of smartphones and tablet devices in recent years. In order to respond to future traffic explosions, the 3.5 GHz band as the 4G (4th Generation) frequency band, such as LTE (Long Term Evolution) -Advanced, at the 2007 World Radio Conference (WRC-07) As a result, international agreement has been obtained, and these new frequency bands are expected to be allocated for 4G. Also, as measures to increase the traffic capacity of the entire system, a heterogeneous network configuration in which multiple small cell base stations are installed in the area of the conventional macro cell base station, and high density installation of small cell base stations are being considered. ing.
 なお、無線基地局ごとのトラフィックは、その設置場所にも依存して、時間ごとに変動する。例えば、オフィスエリアでは、勤務時間帯である昼間にトラフィックがピークになるが、住宅エリアでは、帰宅後の夕方から夜にかけてトラフィックがピークになる。しかし、いずれのエリアにおいても、深夜はトラフィックも減少する。ここで、既存の無線通信システムの場合は、それぞれの基地局ごとにそれぞれのエリアのピークに合わせた無線通信用処理リソースが実装されており、たとえ、トラフィックが減少した状況下においても、全ての基地局の無線通信用処理リソースがそれぞれで独立に動作して、電力を無駄に消費していた。 Note that the traffic for each radio base station varies with time depending on the installation location. For example, in an office area, traffic peaks during the daytime, which is a working hour, while in a residential area, traffic peaks from evening to night after returning home. However, in any area, traffic decreases at midnight. Here, in the case of an existing wireless communication system, processing resources for wireless communication that are matched to the peak of each area are implemented for each base station. The processing resources for wireless communication of the base station operate independently of each other and consume power wastefully.
 そこで、トラフィック爆発に対応するための今後のスモールセル基地局の高密度設置時期に向けて、複数基地局分のベースバンド信号処理などの無線通信処理部の処理リソースを1つの無線基地局装置内に集約化するC-RAN(Cloud Radio Access Network)またはBB-Pooling(ベースバンドプーリング)と呼ばれるアーキテクチャが提案されている。 Therefore, in preparation for high-density installation of small cell base stations in the future to cope with traffic explosion, the processing resources of the radio communication processing unit such as baseband signal processing for a plurality of base stations are allocated within one radio base station apparatus. An architecture called C-RAN (Cloud Radio Access Network) or BB-Pooling (baseband pooling) has been proposed.
 C-RANアーキテクチャのコンセプトは、集約化した無線通信処理部の処理リソースを、複数の基地局間で効率的にリソース共有することにより、無線基地局装置の低コスト化や低消費電力化を可能にする技術である。すなわち、該C-RANアークテクチャにおいては、複数の基地局の無線通信処理を親局として別途配置した1つの無線基地局装置内に集約化して、理想的には、全ての基地局エリア分のトラフィックを平均化した形でのピーク分に合わせた処理リソースを実装することにより、装置小規模化や低コスト化が可能である。また、リソース共有により、低トラフィック時には動作させる処理リソース数を劇的に減らすことが可能となり、低消費電力化も可能になる。 The concept of the C-RAN architecture is that the processing resources of the centralized wireless communication processing unit can be efficiently shared among multiple base stations, thereby reducing the cost and power consumption of the wireless base station device. Technology. That is, in the C-RAN architecture, the radio communication processing of a plurality of base stations is concentrated in one radio base station apparatus separately arranged as a master station, and ideally, traffic for all base station areas is collected. By implementing processing resources according to the peak in an averaged form, it is possible to reduce the size and cost of the apparatus. Also, resource sharing makes it possible to dramatically reduce the number of processing resources to be operated during low traffic, and to reduce power consumption.
 ここで、該C-RANアーキテクチャを効率的に実現するためには、各基地局の通信トラフィックの変動に応じて集約化した演算器(処理リソース)を共有し、稼動するベースバンドカード数や演算器数をできるだけ減らすような全体アーキテクチャ構成技術と処理リソース割り当て技術とが重要な課題である。また、もう1つの課題として、徐々に増大するトラフィックに対して、徐々に無線基地局装置も増強することができるような拡張性の高い装置アーキテクチャを構築することも重要な課題である。 Here, in order to efficiently realize the C-RAN architecture, a centralized computing unit (processing resource) is shared according to fluctuations in communication traffic of each base station, and the number of baseband cards to be operated and the number of computations are calculated. The overall architecture configuration technology and processing resource allocation technology that reduce the number of devices as much as possible are important issues. In addition, as another problem, it is also important to construct a highly scalable apparatus architecture that can gradually increase the radio base station apparatus with respect to gradually increasing traffic.
 従来の無線基地局装置に対する全体アーキテクチャや処理リソース割り当て技術に関しては、例えば、特許文献1の特開2011-101104号公報「無線基地局装置及び無線基地局装置制御方法」、特許文献2の特開2012-257110号公報「分散アンテナシステム、分散アンテナ割り当て方法、基地局装置」、特許文献3の特開2005-117579号公報「無線送信装置、無線受信装置、移動通信システムおよび無線リソース制御方法」、非特許文献1のKDDI研究所の「BBU-RRH Switching Schemes for Centralized RAN」、非特許文献2のKDDI研究所の「Centralized RANにおけるBBU-RRH切替手法」等に開示されているように、いくつかの従来技術が提案されている。 Regarding the overall architecture and processing resource allocation technology for the conventional radio base station apparatus, for example, Japanese Unexamined Patent Application Publication No. 2011-101104 “Radio Base Station Apparatus and Radio Base Station Apparatus Control Method” of Patent Document 1, No. 2012-257110, “Distributed antenna system, distributed antenna allocation method, base station apparatus”, Japanese Patent Laid-Open No. 2005-117579, “Radio transmission apparatus, radio reception apparatus, mobile communication system, and radio resource control method” in Patent Document 3. As disclosed in “BBU-RRH Switching Schemes for Centralized RAN” of Non-Patent Document 1 and “BBU-RRH Switching Method in Centralized RAN” of KDDI Laboratory of Non-Patent Document 2, etc. The prior art has been proposed.
 例えば、前記特許文献1等に開示されている従来技術においては、無線基地局装置において、稼動状態のベースバンドカードの数を制御する技術が提案されている。つまり、無線基地局装置は、複数のベースバンドカードを有し、それぞれのリソース使用量の測定部と、リソース使用量に基づいて、それぞれのベースバンドカードのリソース収容替えを行う制御部とを備えている。また、既存サービスとHS(High Speed)サービスとの両方を収容可能なカードと、既存サービスのみ収容可能でHSサービスは収容不可であるカードと、を考慮して収容替えを行う。 For example, in the conventional technique disclosed in Patent Document 1 and the like, a technique for controlling the number of operating baseband cards in a radio base station apparatus has been proposed. That is, the radio base station apparatus includes a plurality of baseband cards, and includes a resource usage measurement unit and a control unit that performs resource accommodation switching of each baseband card based on the resource usage. ing. Further, the accommodation is changed in consideration of a card that can accommodate both the existing service and the HS (High Speed) service and a card that can accommodate only the existing service but cannot accommodate the HS service.
 しかしながら、該特許文献1等の従来技術の場合、全てのベースバンドカードと、全ての基地局セル無線部と、の接続が、全ての組み合わせ(「ベースバンドカード数×基地局無線セル数」に比例する組み合わせ数)で自由に切り替えられることが前提となっており、接続切り替え部の回路構成が大きく、複雑になってしまうという課題がある。また、無線基地局装置のベースバンドカードや基地局セル無線部を拡張しようとした場合に、いずれか1個を追加する拡張を行う場合であっても、相手側の全てに接続することができることが必要であり、既に実装されている接続切り替え部を新たなベースバンドカード数や基地局セル無線部の個数に応じた接続切り替え部に丸ごと交換することが必要になり、拡張性が低いという課題もある。 However, in the case of the conventional technique such as Patent Document 1, all the baseband cards and all the base station cell radio units are connected in all combinations (“number of baseband cards × number of base station radio cells”). It is premised that the number of combinations can be freely switched, and the circuit configuration of the connection switching unit is large and complicated. In addition, when trying to expand the baseband card or base station cell radio unit of the radio base station device, it is possible to connect to all of the other party even when extending one of them. It is necessary to replace the already installed connection switching unit with a new connection switching unit according to the number of baseband cards and the number of base station cell radio units, and the scalability is low. There is also.
 次に、前記非特許文献1等に開示されている従来技術においては、BBU(Base Band Unit:ベースバンド信号処理カードすなわちベースバンド信号の信号処理カード)とRRH(Remote Radio Head:リモート無線ヘッドすなわち無線リソース)との間の切り替え手法として、長期的なトラフィック変化に追従する準静的切り替え手法と、短期的なトラフィック変化に追従する動的切り替え手法と、の2種類の切り替え手法が提案されている。 Next, in the prior art disclosed in Non-Patent Document 1, etc., BBU (Base Band Unit: baseband signal processing card, ie, signal processing card for baseband signal) and RRH (Remote Radio Head: remote radio head, ie, Two types of switching methods have been proposed as switching methods to and from radio resources: a quasi-static switching method that tracks long-term traffic changes and a dynamic switching method that tracks short-term traffic changes. Yes.
 しかしながら、BBUとRRHとの間の接続には、スイッチを用いて、全ての組み合わせで接続することが可能であることが、前記2種類の切り替え手法の前提となっている。したがって、前記特許文献1等の従来技術の場合と同様、「BBU数×RRH数」に比例するスイッチを備える必要があり、スイッチの構成は複雑化するという課題と、また、RRHの増強やそれに伴いBBUも増強する場合に、既存のスイッチを新たなBBU数やRRH数を考慮したスイッチに丸ごと交換/拡張することが必要であり、拡張性が低いという課題がある。すなわち、BBUやRRH自体の拡張性は考慮されているものの、スイッチすなわち接続切り替え部の拡張性が考慮されていない。 However, the connection between the BBU and the RRH can be connected in all combinations using a switch, which is a premise of the two switching methods. Therefore, as in the case of the prior art such as Patent Document 1, it is necessary to provide a switch proportional to “the number of BBUs × the number of RRHs”. Accordingly, when the BBU is also increased, it is necessary to replace / expand the existing switch to a switch that takes into account the new number of BBUs and RRHs, and there is a problem that the expandability is low. That is, the extensibility of the BBU or RRH itself is taken into consideration, but the extensibility of the switch, that is, the connection switching unit is not considered.
 なお、もし、仮に、全ての組み合わせによる接続を実現しないスイッチを用いた場合には、前記非特許文献1等で提案の切り替え手法では、所望の効用を得ることができない。すなわち、全てのBBUとRRHとの間について接続することができないことにより、所望の処理リソース共有を実現することができないケースが生じるという課題が発生する。 In addition, if a switch that does not realize connection by all combinations is used, the desired utility cannot be obtained by the switching method proposed in Non-Patent Document 1 or the like. That is, there is a problem that a case where desired processing resource sharing cannot be realized occurs due to the inability to connect between all BBUs and RRHs.
 前記特許文献2や前記特許文献3等に開示されている従来技術においては、複数のベースバンドユニット(BBU)と複数の無線リソース(RRH)との接続状態や、BBU処理リソースとユーザデータとの間の接続状態を、スイッチやバッファを用いて切り替える技術が提案されている。この場合も、前記特許文献2に記載されたスイッチや、前記特許文献3に記載されたバッファ間の相互接続が、全ての組み合わせの接続を実現することができることを前提としており、拡張する場合には、スイッチ全体や、バッファ間相互接続網全体を変更する必要があるという課題がある。 In the prior art disclosed in Patent Document 2 and Patent Document 3 and the like, the connection state between a plurality of baseband units (BBU) and a plurality of radio resources (RRH), and BBU processing resources and user data There has been proposed a technique for switching the connection state between the switches using a switch or a buffer. In this case, the switch described in Patent Document 2 and the interconnection between the buffers described in Patent Document 3 are premised on that all combinations of connections can be realized. However, there is a problem that it is necessary to change the entire switch and the entire interconnection network between buffers.
特開2011-101104号公報(第5-8頁)JP2011-101104A (page 5-8) 特開2012-257110号公報(第14-16頁)JP2012-257110A (pages 14-16) 特開2005-117579号公報(第16-20頁)Japanese Patent Laying-Open No. 2005-117579 (pages 16-20)
 以下に、本発明における課題について説明する。一般に、複数の基地局セル(RRU:Remote Radio Unitリモート無線ユニット)分のベースバンド信号処理を1ないし複数のベースバンド信号処理部(BBU:Base Band Unitベースバンドユニット)を集約化して、処理リソースの共有化を行う無線基地局装置において、低消費電力化を図るべく、稼動BBU数ができるだけ少なくなるように、効率的に処理リソース共有を行うために、BBUとRRUとの接続切り替えを行う接続切り替え部が用いられる。 The problems in the present invention will be described below. Generally, baseband signal processing for multiple base station cells (RRU: Remote Radio Unit remote radio unit) is aggregated into one or more baseband signal processing units (BBU: Base Band Unit baseband unit), and processing resources In a wireless base station apparatus that performs sharing, a connection that switches connection between BBU and RRU in order to efficiently share processing resources so that the number of active BBUs is reduced as much as possible in order to reduce power consumption. A switching unit is used.
 本発明における課題は、ここで、前述した従来技術のように、全てのBBUと全てのRRUとの間を接続可能な接続切り替え部を実装すると、一般的なスイッチやバッファ間相互接続網のような接続切り替え部の場合、その回路規模が「BBU数×RRU数」等に比例するため、接続切り替え部の回路構成が膨大になってしまうことにある。 The problem in the present invention is that when a connection switching unit capable of connecting all BBUs and all RRUs is mounted as in the prior art described above, a general switch or buffer interconnection network can be obtained. In the case of a simple connection switching unit, the circuit scale of the connection switching unit is proportional to “the number of BBUs × the number of RRUs”.
 また、トラフィック増加に伴って、RRUまたはBBUをモジュール単位で増強する場合にも、同様の理由で、接続切り替え部を線形的に拡張することができない。すなわち、既存のBBU数やRRU数にも依存して非線形に接続切り替え部を丸ごと交換/変更しなければならず、拡張性が低いという課題がある。 Also, when the RRU or BBU is increased in units of modules as traffic increases, the connection switching unit cannot be expanded linearly for the same reason. That is, the entire connection switching unit must be exchanged / changed in a non-linear manner depending on the number of existing BBUs and RRUs, and there is a problem that scalability is low.
 一方で、仮に、BBUとRRUとの間の接続の組み合わせを限定するような接続切り替え部を用いた場合には、従来技術で提案されているような処理リソース割り当て手法においては、BBUとRRUとの間で接続することができない組み合わせが生じてしまうことにより、所望の処理リソースの共有を実現することができないという課題が生じる。 On the other hand, if a connection switching unit that limits the combination of connections between BBU and RRU is used, in the processing resource allocation method proposed in the prior art, BBU and RRU When a combination that cannot be connected is generated, there arises a problem that a desired processing resource cannot be shared.
(本発明の目的)
 本発明は、かかる事情に鑑みてなされたものであり、複数の基地局セル(RRU)と集約化された1ないし複数のベースバンド信号処理部(BBU)との間の接続切り替えを行う接続切り替え制御部が、RRUまたはBBUの拡張時に、RRUやBBUと同様に、線形に拡張することができ、さらに、線形に拡張可能な接続切り替え制御部を用いた場合であっても、BBUとRRUとの間の全ての接続組み合わせを実現している接続切り替え制御部を用いた場合と同等程度の、処理リソース共有による低消費電力化効果が得られる無線基地局装置、基地局セル処理リソース割り当て方法および基地局セル処理リソース割り当てプログラムを提供することに、その目的がある。
(Object of the present invention)
The present invention has been made in view of such circumstances, and connection switching for switching connections between a plurality of base station cells (RRU) and one or more aggregated baseband signal processing units (BBU). Even when the control unit uses a connection switching control unit that can be expanded linearly and can be expanded linearly in the same way as the RRU or BBU when the RRU or BBU is expanded, the BBU and the RRU A wireless base station apparatus, a base station cell processing resource allocation method, and a base station cell processing resource allocation method capable of obtaining an effect of reducing power consumption by processing resource sharing equivalent to the case of using a connection switching control unit realizing all connection combinations between It is an object to provide a base station cell processing resource allocation program.
 前述の課題を解決するため、本発明による無線基地局装置、基地局セル処理リソース割り当て方法および基地局セル処理リソース割り当てプログラムは、主に、次のような特徴的な構成を採用している。 In order to solve the above-described problems, the radio base station apparatus, the base station cell processing resource allocation method, and the base station cell processing resource allocation program according to the present invention mainly adopt the following characteristic configuration.
 (1)本発明による無線基地局装置は、複数の基地局セル分の無線通信処理を集約する無線基地局装置において、1ないし複数のベースバンド信号処理モジュールを集約して収容するベースバンド処理プールと、各前記ベースバンド信号処理モジュールに対して各前記基地局セルの処理リソース割り当てを行う処理リソース割り当て制御部と、前記ベースバンド信号処理モジュールと前記基地局セルとの間の接続切り替えを行う接続切り替え制御部と、を備え、かつ、前記接続切り替え制御部は、1ないし複数の接続切り替えモジュールを備え、各前記接続切り替えモジュールは、各前記基地局セルごとにあらかじめ定めた互いに隣接ずる1ないし複数の前記ベースバンド信号処理モジュールのいずれかに限定して接続するために、前記ベースバンド信号処理モジュールと接続するベースバンド信号処理モジュール用入出力インタフェースと、前記基地局セルと接続する基地局セル用入出力インタフェースと、を備えるとともに、隣接する1ないし複数の接続切り替えモジュールとの間を相互接続する相互接続用入出力インタフェースを備えて互いを連接して構成されていることを特徴とする。 (1) A radio base station apparatus according to the present invention includes a baseband processing pool that aggregates and accommodates one or more baseband signal processing modules in a radio base station apparatus that aggregates radio communication processes for a plurality of base station cells. And a processing resource allocation control unit that allocates processing resources of each base station cell to each baseband signal processing module, and a connection that switches connection between the baseband signal processing module and the base station cell A switching control unit, and the connection switching control unit includes one or a plurality of connection switching modules, and each of the connection switching modules is adjacent to one another that is predetermined for each base station cell. In order to connect only to one of the baseband signal processing modules of A baseband signal processing module input / output interface connected to a subband signal processing module and a base station cell input / output interface connected to the base station cell, and between one or a plurality of adjacent connection switching modules. And an interconnection input / output interface for interconnecting the two.
 (2)本発明による基地局セル処理リソース割り当て方法は、複数の基地局セル分の無線通信処理を集約する無線基地局装置における基地局セル処理リソース割り当て方法であって、ベースバンド処理プールに集約して収容されている各ベースバンド信号処理モジュールに関し、各前記基地局セルそれぞれが接続することが可能なベースバンド信号処理モジュールとして、各前記基地局セルごとにあらかじめ定めた1ないし複数の互いに隣接するベースバンド信号処理モジュールのいずれかに限定し、かつ、各前記ベースバンド信号処理モジュールに対して各前記基地局セルの処理リソース割り当て制御を行う動作に先立って、各前記ベースバンド信号処理モジュールのうち、稼動をオフ状態に設定しようとするベースバンド信号処理モジュールの候補をあらかじめ設定することを特徴とする。 (2) A base station cell processing resource allocation method according to the present invention is a base station cell processing resource allocation method in a radio base station apparatus that aggregates radio communication processing for a plurality of base station cells, and is aggregated in a baseband processing pool. As the baseband signal processing module that can be connected to each of the base station cells, one or a plurality of adjacent baseband signal processing modules that are predetermined for each base station cell are adjacent to each other. Each baseband signal processing module, and prior to the operation of performing processing resource allocation control for each base station cell for each baseband signal processing module, Baseband signal processing module that tries to set the operation to the off state. Characterized by preset candidates Lumpur.
 (3)本発明による基地局セル処理リソース割り当てプログラムは、前記(2)に記載の基地局セル処理リソース割り当て方法を、コンピュータによって実行することが可能なプログラムとして実施していることを特徴とする。 (3) A base station cell processing resource allocation program according to the present invention is characterized in that the base station cell processing resource allocation method described in (2) is implemented as a program that can be executed by a computer. .
 本発明の無線基地局装置、基地局セル処理リソース割り当て方法および基地局セル処理リソース割り当てプログラムによれば、以下のような効果を奏することができる。 According to the radio base station apparatus, base station cell processing resource allocation method, and base station cell processing resource allocation program of the present invention, the following effects can be obtained.
 第1の効果は、複数の基地局セル(RRU)分の無線通信処理を集約する無線基地局装置において、接続切り替え制御部の回路規模を低減することにより、装置小規模化や低消費電力化を実現することができることである。 The first effect is that, in a radio base station apparatus that consolidates radio communication processing for a plurality of base station cells (RRU), the circuit scale of the connection switching control unit is reduced, thereby reducing the apparatus size and power consumption. Can be realized.
 その理由は、本発明の無線基地局装置においては、接続切り替え制御部として、基地局セル(RRU)-ベースバンド信号処理モジュール(ベースバンド信号処理カード:BBU)間の接続を限定した接続切り替えモジュールを複数並べて連接して構成しているので、基地局セル(RRU)-ベースバンド信号処理モジュール(BBU)間の理想的な全ての接続組み合わせを実現する従来の接続切り替え部に比べて、その回路規模を大幅に削減することができるためである。 The reason is that, in the radio base station apparatus of the present invention, as a connection switching control unit, a connection switching module that limits the connection between a base station cell (RRU) and a baseband signal processing module (baseband signal processing card: BBU). Are connected in series, so that the circuit is compared with the conventional connection switching unit that realizes all ideal connection combinations between the base station cell (RRU) and the baseband signal processing module (BBU). This is because the scale can be greatly reduced.
 第2の効果は、複数の基地局セル(RRU)分の無線通信処理を集約する無線基地局装置において、トラフィック増大等に対応するために、装置を拡張しようとする場合に、基地局セル(RRU)や、ベースバンド信号処理モジュール(ベースバンド信号処理カード:BBU)だけでなく、接続切り替え制御部の接続切り替えモジュールも含めて、必要な分だけ線形に拡張することが可能であり、拡張性が向上することである。 The second effect is that, in a radio base station apparatus that aggregates radio communication processing for a plurality of base station cells (RRU), in order to expand the apparatus in order to cope with traffic increase, the base station cell ( RRU) and baseband signal processing module (baseband signal processing card: BBU) as well as the connection switching module of the connection switching control unit can be linearly expanded as much as necessary. Is to improve.
 その理由は、本発明の無線基地局装置においては、接続切り替え制御部として、基地局セル(RRU)-ベースバンド信号処理モジュール(BBU)間の接続を限定し、隣接する接続切り替えモジュールとの相互接続インタフェースを備えた接続切り替えモジュールを複数並べて連接して構成しているので、接続切り替えモジュールも、基地局セル(RRU)やベースバンド信号処理モジュール(BBU)と同様に、例えば、拡張する「BBU数」に応じて線形に拡張すれば良いためである。 The reason for this is that, in the radio base station apparatus of the present invention, the connection switching control unit limits the connection between the base station cell (RRU) and the baseband signal processing module (BBU) and Since a plurality of connection switching modules each having a connection interface are arranged side by side and connected to each other, the connection switching module is also expanded, for example, in the same manner as the base station cell (RRU) and the baseband signal processing module (BBU). This is because it may be expanded linearly according to “number”.
 第3の効果は、複数の基地局セル(RRU)分の無線通信処理を集約する無線基地局装置において、接続制限がある接続切り替え制御部を用いた場合であっても、理想的な接続切り替え部を用いた場合とほぼ同等の処理リソース共有を実現することができ、ほぼ同等の低消費電力化効果が得られることである。 The third effect is that, in a radio base station apparatus that aggregates radio communication processes for a plurality of base station cells (RRU), even when a connection switching control unit with connection restrictions is used, ideal connection switching is performed. Processing resources can be shared in the same manner as in the case of using a part, and the power consumption can be reduced to the same level.
 その理由は、本発明の基地局セル処理リソース割り当て方法においては、稼動OFFにしたい(稼動をオフ状態に設定しようとする)ベースバンド信号処理モジュール(BBU)をあらかじめ決定して、該稼動OFF対象のベースバンド信号処理モジュール(BBU)の情報を参酌しながら、例えば、該稼動OFF対象のベースバンド信号処理モジュール(BBU)から距離的に離れたベースバンド信号処理モジュール(BBU)から順番に優先するようにして、稼動ON状態のベースバンド信号処理モジュール(BBU)に対する処理リソース割り当て制御を行うためである。 This is because, in the base station cell processing resource allocation method of the present invention, a baseband signal processing module (BBU) to be turned off (to be set to turn off) is determined in advance, and the operation OFF target For example, the baseband signal processing module (BBU) that is distant from the baseband signal processing module (BBU) that is the target of operation OFF is prioritized in order from the baseband signal processing module (BBU) information. In this way, the processing resource allocation control is performed for the baseband signal processing module (BBU) in the operation ON state.
本発明の第1の実施の形態における無線基地局装置の全体構成例を示すブロック構成図である。It is a block block diagram which shows the example of whole structure of the wireless base station apparatus in the 1st Embodiment of this invention. 本発明の第1の実施の形態における接続切り替えモジュールの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the connection switching module in the 1st Embodiment of this invention. 本発明の第1の実施の形態における接続切り替えモジュールの接続構成例を示す接続構成図である。It is a connection block diagram which shows the connection structural example of the connection switching module in the 1st Embodiment of this invention. 本発明の第1の実施の形態における処理リソース割り当て制御に関する全体の処理手順の一例を説明するための制御フローチャートである。It is a control flowchart for demonstrating an example of the whole process sequence regarding the processing resource allocation control in the 1st Embodiment of this invention. 本発明の第1の実施の形態における処理リソース割り当て制御において次に稼動OFFにしたいベースバンド信号処理カード(BBU)の順番を決定する仕組みの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the mechanism which determines the order of the baseband signal processing card | curd (BBU) which wants to make operation OFF next in the processing resource allocation control in the 1st Embodiment of this invention. 本発明の第1の実施の形態における処理リソース割り当て制御においてベースバンド信号処理カード(BBU)の基地局セル(RRU)処理を他のベースバンド信号処理カード(BBU)に移動させる処理の一例を示す制御フローチャートである。An example of processing for moving a base station cell (RRU) process of a baseband signal processing card (BBU) to another baseband signal processing card (BBU) in the processing resource allocation control according to the first embodiment of the present invention is shown. It is a control flowchart. 本発明の第1の実施の形態における処理リソース割り当て制御においてベースバンド信号処理カード(BBU)に対して割り当て未決定の基地局セル(RRU)処理を割り当てる処理の一例を示す制御フローチャートである。It is a control flowchart which shows an example of the process which allocates the undetermined base station cell (RRU) process with respect to a baseband signal processing card | curd (BBU) in the processing resource allocation control in the 1st Embodiment of this invention. 本発明の第2の実施の形態における無線基地局装置の全体構成例を示すブロック構成図である。It is a block block diagram which shows the example of whole structure of the wireless base station apparatus in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における接続切り替えモジュールの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the connection switching module in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における接続切り替えモジュールの接続構成例と、次に稼動OFFにしたいベースバンド信号処理カード(BBU)の順番を決定する仕組みの一例とを説明するための説明図である。It is explanatory drawing for demonstrating the connection structural example of the connection switching module in the 2nd Embodiment of this invention, and an example of the mechanism which determines the order of the baseband signal processing card | curd (BBU) which wants to make operation OFF next. is there. 本発明の第3の実施の形態における無線基地局装置の全体構成例を示すブロック構成図である。It is a block block diagram which shows the example of whole structure of the wireless base station apparatus in the 3rd Embodiment of this invention. 従来の基地局セル(RRU)-ベースバンド信号処理カード(BBU)間の全ての接続組み合わせを実現する理想的な例えばクロスバ型のような接続切り替え部を用いた場合における問題点を説明するための説明図である。For explaining problems in the case of using an ideal connection switching unit such as a crossbar type that realizes all connection combinations between a conventional base station cell (RRU) and a baseband signal processing card (BBU) It is explanatory drawing. 本発明の実施の形態における基地局セル処理リソース割り当て方法と従来の基地局セル処理リソース割り当て方法との、処理リソース共有効果について説明するための模式図である。It is a schematic diagram for demonstrating the processing resource sharing effect of the base station cell processing resource allocation method in Embodiment of this invention, and the conventional base station cell processing resource allocation method.
 以下、本発明による無線基地局装置、基地局セル処理リソース割り当て方法および基地局セル処理リソース割り当てプログラムの好適な実施形態について添付図を参照して説明する。なお、以下の説明においては、本発明による無線基地局装置および基地局セル処理リソース割り当て方法について説明するが、かかる基地局セル処理リソース割り当て方法をコンピュータにより実行可能な基地局セル処理リソース割り当てプログラムとして実施するようにしても良いし、あるいは、基地局セル処理リソース割り当てプログラムをコンピュータにより読み取り可能な記録媒体に記録するようにしても良いことは言うまでもない。また、以下の各図面に付した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではないことも言うまでもない。 Hereinafter, preferred embodiments of a radio base station apparatus, a base station cell processing resource allocation method, and a base station cell processing resource allocation program according to the present invention will be described with reference to the accompanying drawings. In the following description, a radio base station apparatus and a base station cell processing resource allocation method according to the present invention will be described. As a base station cell processing resource allocation program that can be executed by a computer, the base station cell processing resource allocation method is executed. Needless to say, the base station cell processing resource allocation program may be recorded on a computer-readable recording medium. In addition, it is needless to say that the drawing reference numerals attached to the following drawings are added for convenience to the respective elements as an example for facilitating understanding, and are not intended to limit the present invention to the illustrated embodiments. Yes.
(本発明の特徴)
 本発明の実施形態の説明に先立って、本発明の特徴についてその概要をまず説明する。本発明は、複数の基地局セル(RRU:Remote Radio Unitリモート無線ユニット)分のベースバンド信号処理(無線通信処理)を集約化した1ないし複数のベースバンド信号処理モジュール(BBU:Base Band Unitベースバンド信号処理カード)にて行い、処理リソースの共有化を図る無線基地局装置において、RRUとBBUとの間の接続切り替えを行うために配置される接続切り替え部として、RRUまたはBBUの拡張時に、RRUやBBUと同様に、線形に拡張することができる比較的簡単な回路構成で実現することができ、かつ、線形に拡張可能な接続切り替え部を用いた場合であっても、BBUとRRUとの間で接続することができない組み合わせが発生しないように全ての組み合わせの接続を実現する従来の接続切り替え部を用いた場合と同等程度の、処理リソース共有による低消費電力化効果が得られることを、主要な特徴としている。
(Features of the present invention)
Prior to the description of the embodiments of the present invention, an outline of the features of the present invention will be described first. The present invention provides one or a plurality of baseband signal processing modules (BBU: Base Band Unit base) in which baseband signal processing (radio communication processing) for a plurality of base station cells (RRU: Remote Radio Unit) is integrated. In a radio base station device that performs processing switching by using a band signal processing card), as a connection switching unit arranged to perform connection switching between RRU and BBU, when RRU or BBU is expanded, Similar to RRU and BBU, even when a connection switching unit that can be realized with a relatively simple circuit configuration that can be linearly expanded and linearly expands is used, BBU and RRU When using a conventional connection switching unit that realizes connection of all combinations so that combinations that cannot be connected between the two will not occur The main feature is that the same level of power consumption can be achieved by sharing processing resources.
 より具体的には、本発明は、次のような仕組みを備えている。すなわち、複数の基地局セル(RRU)分のベースバンド信号処理(無線通信処理)を集約化したベースバンド信号処理モジュール(BBU)にて行う無線基地局装置において、RRUとBBUとの間の接続切り替えを行う接続切り替え制御部を備え、該接続切り替え制御部は、互いに隣接する3つまたは複数のBBUに限定して接続することが可能な1ないし複数の接続切り替えモジュールを並べて互いに連接した構成とすることを主要な特徴としている。 More specifically, the present invention has the following mechanism. That is, in a radio base station apparatus that performs baseband signal processing (wireless communication processing) for a plurality of base station cells (RRU) in a baseband signal processing module (BBU), the connection between the RRU and the BBU A connection switching control unit that performs switching, and the connection switching control unit includes a configuration in which one or a plurality of connection switching modules that can be connected only to three or more adjacent BBUs are arranged and connected to each other The main feature is to do.
 また、同時に、前述のごとき限定した接続状態を勘案して、BBUへのRRU処理リソース割り当てを行う動作に先立って、稼動をOFFにしたい(すなわち、稼動をオフ状態に設定しようとする)BBUの候補をあらかじめ決定し、しかる後、決定した当該BBUの候補から距離的に離れたBBUから順番に優先的に処理リソース割り当て制御を行うことも主要な特徴としている。 At the same time, considering the limited connection state as described above, it is desirable to turn off the operation (ie, to set the operation to the off state) prior to the operation of assigning the RRU processing resource to the BBU. The main feature is that candidates are determined in advance, and thereafter, processing resource allocation control is performed preferentially in order from a BBU that is distant from the determined BBU candidate.
 そして、優先的に処理割り当てを行ったBBUの処理リソース使用率があらかじめ定めた上限値を超えた場合には、当該BBUからの接続距離が離れた位置にあるRRUに関するRRU処理から順番に優先的に他のBBUに移動させる制御を行い、一方、当該BBUの処理リソース使用率があらかじめ定めた下限値を下回った場合には、逆に、当該BBUからの接続距離が近い位置にあるRRUに関するRRU処理から順番に優先的に当該BBUに対する処理割り当て制御を行うことも主要な特徴としている。 When the processing resource usage rate of the BBU that has been preferentially assigned processing exceeds a predetermined upper limit value, the RRU processing related to the RRU at a position away from the BBU is prioritized in order. On the other hand, if the processing resource usage rate of the BBU falls below a predetermined lower limit value, on the contrary, the RRU related to the RRU that is close to the connection distance from the BBU. It is also a main feature that processing allocation control for the BBU is performed with priority in order from processing.
 而して、本発明により、次のような効果が得られる。本発明における無線基地局装置は、接続切り替え制御部として、互いに隣接する3つまたは複数のBBUに限定して接続可能な接続切り替えモジュールを並べる構成にしたことにより、RRUまたはBBUを拡張する場合に、RRUやBBUと同様に、接続切り替えモジュールを線形に拡張するだけで対応することができ、接続切り替え制御部を含めて、線形に拡張することが可能な無線基地局装置を実現することができる。 Thus, according to the present invention, the following effects can be obtained. The radio base station apparatus according to the present invention has a configuration in which connection switching modules connectable to only three or a plurality of adjacent BBUs are arranged as a connection switching control unit, thereby extending RRU or BBU. As with the RRU and BBU, it is possible to cope with only by linearly expanding the connection switching module, and it is possible to realize a radio base station apparatus that can be linearly expanded including the connection switching control unit. .
 そして、BBUとRRUとの間の接続の組み合わせを限定しながらも、かかる制約条件を考慮して、稼動をOFFにしたいBBUをあらかじめ決定して、決定した当該BBUから距離的に離れたBBUから順番に優先的に処理割り当て制御を行い、かつ、対象BBUに対するRRU処理割り当て制御も、対象BBUからの接続距離を考慮した処理割り当て制御方法とすることにより、接続に限定のない理想的な接続切り替え部を用いた場合とほぼ同等な処理リソース共有化すなわち低消費電力化を実現することができる。 Then, while limiting the combination of connections between the BBU and the RRU, considering the constraint conditions, the BBU to be turned off is determined in advance, and from the BBU that is distant from the determined BBU Ideal connection switching with no limitation on connection by performing process allocation control in order, and by adopting a process allocation control method that considers the connection distance from the target BBU for the RRU process allocation control for the target BBU. Sharing of processing resources, that is, low power consumption can be realized, which is almost equivalent to the case of using a unit.
(本発明の実施の形態)
 次に、図1ないし図11の各図面を参照しながら、本発明の実施の形態について詳細に説明する。まず、第1の実施の形態においては、本発明における無線基地局装置の一例として、複数の基地局セル(RRU:Remote Radio Unitリモート無線ユニット)分のベースバンド信号処理(無線通信処理)を1ないし複数のベースバンド信号処理モジュール(BBU:Base Band Unitベースバンド信号処理カード)に集約化して、処理リソースの共有化を行う無線基地局装置において、RRUとBBUとの間の接続切り替えを行うために無線基地局装置内に配置される接続切り替え制御部の基本構成と特徴、および、基地局セル処理リソース割り当て方法の動作と特徴とについて詳説する。また、第2の実施の形態においては、接続切り替え制御部として、隣接する5つ(複数)のベースバンド信号処理モジュール(BBU)に接続可能な接続切り替えモジュールを備えた無線基地局装置の構成例について詳説する。さらに、第3の実施の形態においては、ベースバンド信号処理モジュールと基地局セルと接続切り替えモジュールとを、あらかじめ定めた一定の単位でクラスタ化した無線基地局装置の構成例について詳説する。
(Embodiment of the present invention)
Next, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 11. First, in the first embodiment, as an example of a radio base station apparatus according to the present invention, baseband signal processing (radio communication processing) for a plurality of base station cells (RRU: Remote Radio Unit) is 1 Or, in a radio base station apparatus that aggregates into a plurality of baseband signal processing modules (BBU: Base Band Unit baseband signal processing card) and shares processing resources, to switch connection between RRU and BBU Next, the basic configuration and characteristics of the connection switching control unit arranged in the radio base station apparatus and the operation and characteristics of the base station cell processing resource allocation method will be described in detail. In the second embodiment, a configuration example of a radio base station apparatus including a connection switching module that can be connected to five (a plurality) of adjacent baseband signal processing modules (BBUs) as a connection switching control unit. It explains in detail about. Furthermore, in the third embodiment, a configuration example of a radio base station apparatus in which a baseband signal processing module, a base station cell, and a connection switching module are clustered in a predetermined unit will be described in detail.
(第1の実施の形態の構成例)
 図1は、本発明の第1の実施の形態における無線基地局装置の全体構成例を示すブロック構成図であり、無線基地局装置として、無線信号処理を集約化してその処理リソースを共有する無線基地局装置の全体構成例を示している。
(Configuration example of the first embodiment)
FIG. 1 is a block configuration diagram showing an example of the overall configuration of the radio base station apparatus according to the first embodiment of the present invention. As the radio base station apparatus, radio signal processing is aggregated and radio resources that share processing resources are shared. The example of whole structure of the base station apparatus is shown.
 図1に示す無線基地局装置100は、n(n:自然数)個の基地局セル(RRU:Remote Radio Unitリモート無線ユニット)11~1nの各無線通信処理を集約して実施するベースバンド処理プール(BBU-pool)20を備え、ベースバンド処理プール(BBU-pool)20内にはk(k:自然数、k≦n)個のベースバンド信号処理カード(BBU:Base Band Unitベースバンド信号処理モジュール)21~2kを備える。ベースバンド処理プール(BBU-pool)20内のk個(1個ないし複数個)のベースバンド信号処理カード(BBU)21~2kそれぞれは、n個の基地局セル(RRU)11~1n間における処理リソースの共有を行いながら、例えばLTE-Advancedなどの無線方式のLayer-1処理(ベースバンド信号処理)等を行う。 A radio base station apparatus 100 shown in FIG. 1 is a baseband processing pool that aggregates and executes radio communication processes of n (n: natural number) base station cells (RRU: Remote Radio Unit remote radio units) 11 to 1n. (BBU-pool) 20 and k (k: natural number, k ≦ n) baseband signal processing cards (BBU: Base Band Unit baseband signal processing module) in the baseband processing pool (BBU-pool) 20 ) 21 to 2k. Each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 is connected between n base station cells (RRU) 11 to 1n. While sharing the processing resources, for example, wireless Layer-1 processing (baseband signal processing) such as LTE-Advanced is performed.
 また、k個(1個ないし複数個)のベースバンド信号処理カード(BBU)21~2kそれぞれのRF(Radio Frequency:無線)部側は、接続切り替え制御部30を介して、光ファイバや無線バックホール(フロントホール)などにより、各基地局セル(RRU)11~1nと接続される。ここで、ベースバンド処理プール(BBU-pool)20において処理する無線方式は、LTE-Advanced以外の無線方式であっても何ら問題はないし、また、処理するレイヤについてもLayer-1以外のLayer-2等の処理であっても特に問題はない。 In addition, the RF (Radio Frequency) unit side of each of the k (one or plural) baseband signal processing cards (BBUs) 21 to 2k is connected to the optical fiber or wireless back via the connection switching control unit 30. The base station cells (RRU) 11 to 1n are connected by holes (front holes) or the like. Here, there is no problem even if the radio system to be processed in the baseband processing pool (BBU-pool) 20 is a radio system other than LTE-Advanced, and the layer to be processed is a Layer- other than Layer-1. There is no particular problem even if the second processing is performed.
 そして、接続切り替え制御部30は、k個(1個ないし複数個)のベースバンド信号処理カード(BBU)21~2kそれぞれに対応して、k個の接続切り替えモジュール31~3kを備え、k個の接続切り替えモジュール31~3kそれぞれを順番に並べて隣同士を互いに連接して構成することを特徴としている。ここで、各接続切り替えモジュール31~3kは、それぞれ、1つまたは複数の基地局セル(RRU)11~1nと1つまたは複数のベースバンド信号処理カード(BBU)21~2kとの間の接続を行うことが可能であり、かつ、隣接する接続切り替えモジュールとの間の相互接続が可能な構成としている。例えば、k個の接続切り替えモジュール31~3kのうち、第i(1≦i≦k)番目の接続切り替えモジュール3iは、隣接する第(i-1)番目の接続切り替えモジュール3(i-1)および第(i+1)番目の接続切り替えモジュール3(i+1)と相互に接続することが可能である。 The connection switching control unit 30 includes k connection switching modules 31 to 3k corresponding to each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k, and includes k pieces. Each of the connection switching modules 31 to 3k is arranged in order, and the adjacent ones are connected to each other. Here, each of the connection switching modules 31 to 3k is connected to one or more base station cells (RRU) 11 to 1n and one or more baseband signal processing cards (BBU) 21 to 2k, respectively. And a connection between adjacent connection switching modules is possible. For example, of the k connection switching modules 31 to 3k, the i-th (1 ≦ i ≦ k) -th connection switching module 3i is adjacent to the (i−1) -th connection switching module 3 (i−1). It is also possible to connect to the (i + 1) th connection switching module 3 (i + 1).
 したがって、n個の基地局セル(RRU)11~1nのうち、第i番目の接続切り替えモジュール3iに接続された任意の基地局セル(RRU)例えば第j(1≦j≦n)番目の基地局セル(RRU)1jは、当該RRU1jが接続された接続切り替えモジュール3iに対応する第i番目のBBU2iを中心にして、両側に隣接する複数のBBU間すなわち第(i-1)番目のBBU2(i-1)および第(i+1)番目のBBU2(i+1)間において、接続を切り替えることが可能である。 Therefore, of the n base station cells (RRU) 11 to 1n, any base station cell (RRU) connected to the i-th connection switching module 3i, for example, the j-th (1 ≦ j ≦ n) -th base The station cell (RRU) 1j is centered on the i-th BBU 2i corresponding to the connection switching module 3i to which the RRU 1j is connected, and is located between a plurality of adjacent BBUs on both sides, that is, the (i−1) -th BBU 2 ( It is possible to switch the connection between i−1) and the (i + 1) th BBU2 (i + 1).
 また、無線基地局装置100は、ベースバンド処理プール(BBU-pool)20内のk個のベースバンド信号処理カード(BBU)21~2kに対する処理リソース割り当て制御用に、処理リソース割り当て制御部51、トラフィック予測部52、接続情報格納部53等も備えている。 Also, the radio base station apparatus 100 includes a processing resource allocation control unit 51 for processing resource allocation control for k baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20. A traffic prediction unit 52 and a connection information storage unit 53 are also provided.
 トラフィック予測部52は、処理リソース割り当て制御のために、過去のトラフィック履歴やデータベース等を用いて、次の一定期間におけるトラフィックを予測する部位である。処理リソース割り当て制御部51は、トラフィック予測部52において予測されたトラフィックに基づいて、n個の各基地局セル(RRU)11~1nのk個の各ベースバンド信号処理カード(BBU)21~2kに対する処理リソース割り当て制御を行う部位である。また、接続情報格納部53には、限定した接続が行われる基地局セル(RRU)11~1nとベースバンド信号処理カード(BBU)21~2kとの間の接続情報として、どのRRUがどのBBUに接続することが可能であるかという接続情報が格納されており、処理リソース割り当て制御部51は、必要に応じて、接続情報格納部53の接続情報も参照して、処理リソース割り当て制御を行う。 The traffic prediction unit 52 is a part that predicts traffic in the next certain period using a past traffic history, database, or the like for processing resource allocation control. Based on the traffic predicted by the traffic prediction unit 52, the processing resource allocation control unit 51 sets each of the k baseband signal processing cards (BBUs) 21 to 2k of the n base station cells (RRU) 11 to 1n. This is a part that performs processing resource allocation control for. The connection information storage unit 53 stores which RRU and which BBU as connection information between the base station cells (RRU) 11 to 1n and the baseband signal processing cards (BBU) 21 to 2k to which limited connection is performed. Is stored, and the processing resource allocation control unit 51 refers to the connection information in the connection information storage unit 53 as necessary to perform processing resource allocation control. .
(第1の実施の形態の動作の説明)
 次に、本発明の第1の実施の形態として図1に示した無線帰途局装置100の動作の一例について、図2ないし図7を用いて詳細に説明する。なお、図1に示した無線基地局装置100のベースバンド処理プール(BBU-pool)20内のk個の各ベースバンド信号処理カード(BBU)21~2kにおいては、前述したように、n個の基地局セル(RRU)11~1n分の、例えばLTE-AdvancedなどのLayer-1処理(ベースバンド信号処理)等の無線通信処理を集約して行っている。
(Description of the operation of the first embodiment)
Next, an example of the operation of the radio return station apparatus 100 shown in FIG. 1 as the first embodiment of the present invention will be described in detail with reference to FIGS. In each of the k baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 of the radio base station apparatus 100 shown in FIG. Wireless communication processing such as Layer-1 processing (baseband signal processing) such as LTE-Advanced, for example, is performed collectively for the base station cells (RRU) 11 to 1n.
 k個のベースバンド信号処理カード(BBU)21~2kによる処理リソースの共有により、基地局セル(RRU)11~1n分のそれぞれの基地局セル(RRU)の処理を、k個のベースバンド信号処理カード(BBU)21~2kのうち、どのベースバンド信号処理カード(BBU)で実施するかを可変とするために、各基地局セル(RRU)11~1nと各ベースバンド信号処理カード(BBU)21~2kとの間の接続切り替えは、接続切り替え制御部30にて実施される。接続切り替え制御部30にて切り替えられた各送受信信号は、光ファイバや無線バックホール(フロントホール)などを介して、互いが接続された状態になった基地局セル(RRU)11~1nとベースバンド信号処理カード(BBU)21~2kとの間で送受信される。 By sharing processing resources among the k baseband signal processing cards (BBU) 21 to 2k, each base station cell (RRU) for the base station cells (RRU) 11 to 1n can be processed with k baseband signals. Among the processing cards (BBUs) 21 to 2k, in order to change which baseband signal processing card (BBU) is used, each base station cell (RRU) 11 to 1n and each baseband signal processing card (BBU) The connection switching between 21 and 2k is performed by the connection switching control unit 30. Each transmission / reception signal switched by the connection switching control unit 30 is connected to the base station cells (RRU) 11 to 1n that are connected to each other via an optical fiber or a wireless backhaul (fronthaul). It is transmitted / received to / from the band signal processing card (BBU) 21-2k.
 ここで、接続切り替え制御部30は、隣接する接続切り替えモジュール同士を相互接続することが可能な状態になるように、隣り合う各接続切り替えモジュール31~3kを互いに連接した構成としている。図2は、本発明の第1の実施の形態における接続切り替えモジュール31~3kの構成例を示す模式図であり、各接続切り替えモジュール31~3kの一構成例として、第i番目(1≦i≦k)の接続切り替えモジュール3iを例にとって、隣接する両側1個ずつの接続切り替えモジュールと相互接続を可能にする構成例を示している。 Here, the connection switching control unit 30 is configured such that adjacent connection switching modules 31 to 3k are connected to each other so that adjacent connection switching modules can be interconnected. FIG. 2 is a schematic diagram showing a configuration example of the connection switching modules 31 to 3k according to the first embodiment of the present invention. As a configuration example of each of the connection switching modules 31 to 3k, the i-th (1 ≦ i Taking a connection switching module 3i of ≦ k) as an example, a configuration example is shown that enables interconnection with one connection switching module on each side.
 図2に示す例においては、1つの接続切り替えモジュール3iにはBBU#iの1個との間を接続するベースバンド信号処理モジュール(BBU)用入出力インタフェース、(少なくとも)RRU#j、RRU#j、RRU#j(1≦j、j、j≦k)の3個のRRUとの間を接続するベースバンド信号処理モジュール(BBU)基地局セル(RRU)用入出力インタフェース、両側に隣接する接続切り替えモジュール3(i-1)および接続切り替えモジュール3(i+1)それぞれとの間を相互接続する相互接続用入出力インタフェース、を備えている場合の一例を示している。例えば、該接続切り替えモジュール3iに接続された第i番目のBBU#iの1個のみによって、トラフィックが如何に大きい場合であっても、(少なくとも)任意の3個のRRU、例えば、第j番目のRRU#j、第j番目のRRU#j、第j番目のRRU#j(1≦j、j、j≦k)の3個のRRUに関する無線通信処理を行うことができる場合を想定した構成例を示している。 In the example shown in FIG. 2, one connection switching module 3 i is connected to one of BBU # i, an input / output interface for a baseband signal processing module (BBU), (at least) RRU # j 1 , RRU #J 2 , RRU # j 3 (1 ≦ j 1 , j 2 , j 3 ≦ k) Baseband signal processing module (BBU) base station cell (RRU) input / output for connection between three RRUs An example in which an interface and an input / output interface for interconnection for interconnecting the connection switching module 3 (i-1) and the connection switching module 3 (i + 1) adjacent to each other are provided is shown. For example, no matter how large the traffic is due to only one of the i-th BBU # i connected to the connection switching module 3i, (at least) any three RRUs, for example j 1 th RRU # j 1, the j 2 th RRU # j 2, the wireless communication processes on three RRU of the j 3 th RRU # j 3 (1 ≦ j 1, j 2, j 3 ≦ k) A configuration example assuming a case where it can be performed is shown.
 図2に示す構成例の場合、当該接続切り替えモジュール3iに接続された3個のRRU#j、RRU#j、RRU#jからの第1RRU入力インタフェース1が1系統、両側の隣接接続切り替えモジュール3(i-1)および3(i+1)からの第2RRU入力インタフェース2が2系統、RRU#j、RRU#j、RRU#jから両側の隣接接続切り替えモジュール3(i-1)および3(i+1)に向けた第1RRU出力インタフェース3が2系統、そして、第1RRU入力インタフェース1と第2RRU入力インタフェース2とのそれぞれからの各入力を選択調停する選択回路(図2には図示していない)等から構成される。 In the case of the configuration example shown in FIG. 2, the first RRU input interface 1 from the three RRU # j 1 , RRU # j 2 , and RRU # j 3 connected to the connection switching module 3 i is one system, adjacent connection on both sides switching module 3 (i-1) and 3 (i + 1) first 2RRU input interface 2 two systems from, RRU # j 1, RRU # j 2, RRU # j 3 sides of adjacent connection from the switching module 3 (i-1 ) And 3 (i + 1) are two first RRU output interfaces 3 and a selection circuit for selecting and arbitrating each input from each of the first RRU input interface 1 and the second RRU input interface 2 (FIG. (Not shown).
 各ベースバンド信号処理カード(BBU)21~2kの最大処理能力にも依存するが、図2に示す実施例においては、1個のBBU例えばBBU#iに最大9個の基地局セル(RRU)を接続して、処理することが可能である。なお、図2には、RRU側からBBU側への信号の流れのみを図示しており、BBU側からRRU側への逆方向の信号の流れについては記載を割愛している。しかし、実際には、BBU側からRRU側への逆方向の信号の流れもほぼ同様に存在することに留意されたい。 In the embodiment shown in FIG. 2, a maximum of nine base station cells (RRU) per BBU, for example, BBU # i, depending on the maximum processing capability of each baseband signal processing card (BBU) 21-2k. Can be connected and processed. FIG. 2 shows only the signal flow from the RRU side to the BBU side, and the description of the reverse signal flow from the BBU side to the RRU side is omitted. However, it should be noted that in reality, there is almost the same reverse signal flow from the BBU side to the RRU side.
 かくのごとく、複数の接続切り替えモジュールを並べて互いに連接して、隣接する両側1個ずつの接続切り替えモジュールと相互接続することにより、各接続切り替えモジュール例えば接続切り替えモジュール#i 3iに接続された任意の基地局セル(RRU)例えばRRU#jは、当該RRU#jが接続された接続切り替えモジュール例えば接続切り替えモジュール#i 3iに対応するBBU例えばBBU#iを中心にして、少なくとも、隣接する複数の(図2の例では3個の)BBU間例えばBBU#(i-1)、BBU#i、BBU#(i+1)の3個のBBU間において接続を切り替えることが可能である。 In this way, a plurality of connection switching modules are arranged side by side and connected to each other and interconnected with one connection switching module on each of the adjacent sides, so that any connection switching module such as connection switching module #i 3i can be connected. base station cell (remote RF unit) for example remote RF unit # j 1 is about the BBU example BBU # i the remote RF unit # j 1 corresponding to the connected connection switching module for instance connected switching modules #i 3i, at least, multiple adjacent It is possible to switch the connection between the three BBUs (three in the example of FIG. 2), for example, BBU # (i−1), BBU # i, and BBU # (i + 1).
 図3は、本発明の第1の実施の形態における接続切り替えモジュール31~3kの接続構成例を示す接続構成図であり、図1に示すk個の各接続切り替えモジュール31~3kそれぞれに図2に例示した接続切り替えモジュールを用いた場合の、RRU-BBU間の接続構成例を示している。図3の実施例においては、接続切り替えモジュール31~3kおよびベースバンド信号処理カード(BBU)21~2kの個数kが4個(k=4)、基地局セル(RRU)11~1nの個数nが12個(n=12)の場合を示している。 FIG. 3 is a connection configuration diagram showing a connection configuration example of the connection switching modules 31 to 3k in the first embodiment of the present invention, and each of the k connection switching modules 31 to 3k shown in FIG. An example of a connection configuration between RRU and BBU in the case of using the connection switching module illustrated in FIG. In the embodiment of FIG. 3, the number k of connection switching modules 31 to 3k and baseband signal processing cards (BBU) 21 to 2k is four (k = 4), and the number n of base station cells (RRU) 11 to 1n is n. Shows the case of twelve (n = 12).
 また、各BBU#1~BBU#4は、基本的に(トラフィックが大きい場合を想定して)、各BBU#1~BBU#4それぞれに対応する各接続切り替えモジュール#1~接続切り替えモジュール#4それぞれに接続された3個分のRRUに関する処理を行う場合を示している。つまり、BBU#1は、RRU#1~RRU#3の3個分のRRU、BBU#2は、RRU#4~RRU#6の3個分のRRU、BBU#3は、RRU#7~RRU#9の3個分のRRU、BBU#4は、RRU#10~RRU#12の3個分のRRUの処理をそれぞれ行う。 Also, each of the BBU # 1 to BBU # 4 basically (assuming a case where traffic is large), and each of the connection switching modules # 1 to # 4 corresponding to each of the BBU # 1 to BBU # 4. The case where the process regarding three RRUs connected to each is performed is shown. That is, BBU # 1 has three RRUs RRU # 1 to RRU # 3, BBU # 2 has three RRUs RRU # 4 to RRU # 6, and BBU # 3 has RRU # 7 to RRU. The # 9 RRUs and BBUs # 4 perform RRUs for RRU # 10 to RRU # 12, respectively.
 そして、各RRU#1~RRU#12は、ベースバンド処理プール(BBU-pool)20のBBU#1~BBU#4のうち、各RRU#1~RRU#12ごとにあらかじめ定めた互いに隣接するBBUのいずれかに限定して接続することが可能である。すなわち、各RRU#1~RRU#12は、それぞれのRRUが接続された接続切り替えモジュール#1~接続切り替えモジュール#4それぞれに対応して接続されたBBU#1~BBU#4それぞれを中心にして、少なくとも両側に隣接する2つのBBUも含めた合計3つのBBUのいずれかに選択接続することが可能である。例えば、図3のRRU#4の場合は、接続切り替えモジュール#2に接続されているが、対応して接続されたBBU#2を中心にして、両側に隣接するBBU#1、BBU#3を含め、3つのBBU(BBU#1、BBU#2,BBU#3)のいずれでも選択して接続することが可能である。 Then, each of the RRU # 1 to RRU # 12 is an adjacent BBU that is predetermined for each RRU # 1 to RRU # 12 among the BBU # 1 to BBU # 4 of the baseband processing pool (BBU-pool) 20. It is possible to connect only to any of the above. That is, each of RRU # 1 to RRU # 12 is centered on each of BBU # 1 to BBU # 4 connected corresponding to each of connection switching module # 1 to connection switching module # 4 to which each RRU is connected. It is possible to selectively connect to any of a total of three BBUs including at least two BBUs adjacent to both sides. For example, in the case of RRU # 4 in FIG. 3, it is connected to the connection switching module # 2, but the BBU # 1 and BBU # 3 adjacent to both sides are centered on the correspondingly connected BBU # 2. Any of the three BBUs (BBU # 1, BBU # 2, BBU # 3) can be selected and connected.
 そして、例えば、トラフィックが小さい場合には、4つのBBU#1~BBU#4のうち、任意のBBU例えばBBU#2は、当該BBU#2が対応して接続される接続切り替えモジュール#2を中心にして、隣接する接続切り替えモジュール#1、接続切り替えモジュール#3を含め、3つの接続切り替えモジュール(接続切り替えモジュール#1、接続切り替えモジュール#2、接続切り替えモジュール#3)に接続された最大9個のRRUを接続して処理することが可能な構成とされている。 For example, when traffic is small, an arbitrary BBU, for example, BBU # 2, out of the four BBU # 1 to BBU # 4, is centered on the connection switching module # 2 to which the BBU # 2 is connected correspondingly. 9 connected to three connection switching modules (connection switching module # 1, connection switching module # 2, connection switching module # 3) including adjacent connection switching module # 1 and connection switching module # 3 The RRU can be connected and processed.
 つまり、例えば、BBU#2の場合には、当該BBU#2に接続されたRRU#4~RRU#6の3個分、および、両隣の接続切り替えモジュール#1と接続切り替えモジュール#3とのそれぞれに接続されたRRU#1~RRU#3の3個分とRRU#7~RRU#9の3個分を合計した最大9個のRRU#1~#9を接続して処理することが可能である。 That is, for example, in the case of BBU # 2, three of RRU # 4 to RRU # 6 connected to the BBU # 2, and each of the connection switching module # 1 and the connection switching module # 3 adjacent to each other It is possible to connect and process a maximum of nine RRU # 1 to RRU # 3, which is a total of three RRU # 1 to RRU # 3 and three RRU # 7 to RRU # 9. is there.
 次に、図1に示したように、無線基地局装置100は、各BBUにおける処理リソース共有を実施するために、トラフィック予測部52(トラフィック予測機能)によるトラフィック予測結果に基づいて、k個の各ベースバンド信号処理カード(BBU)21~2kへのn個の基地局セル(RRU)11~1nの処理リソース割り当てを行う処理リソース割り当て制御部51を備えている。 Next, as illustrated in FIG. 1, the radio base station apparatus 100 performs k resource sharing based on the traffic prediction result by the traffic prediction unit 52 (traffic prediction function) in order to share processing resources in each BBU. A processing resource allocation control unit 51 that allocates processing resources of n base station cells (RRU) 11 to 1n to the baseband signal processing cards (BBU) 21 to 2k is provided.
 トラフィック予測部52は、あらかじめ定めた或る一定の時間間隔ごとに、日々のトラフィックデータが蓄積されたトラフィックデータベース(各時間間隔ごとの日々のトラフィックの平均値)や、当日のトラフィック履歴(各時間間隔ごとの当日のトラフィックの実績値)などを用いて、n個の基地局セル(RRU)11~1nごとに、次の前記一定の時間間隔分のトラフィック予測を行う。 The traffic prediction unit 52 includes a traffic database (average value of daily traffic for each time interval) in which daily traffic data is accumulated at a certain predetermined time interval, traffic history of each day (each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval).
 また、処理リソース割り当て制御部51は、トラフィック予測部52において予測されたトラフィックに基づいて、k個の各ベースバンド信号処理カード(BBU)21~2kそれぞれに対するn個の各基地局セル(RRU)11~1nの処理リソース割り当ての制御を行う。該処理リソース割り当て制御の目的は、低消費電力化を実現するために、処理リソース共有により、できるだけ少ない個数のBBUだけを稼動させ、稼動OFFにすることができるBBU数をできるだけ増やすことにある。 Further, the processing resource allocation control unit 51, based on the traffic predicted by the traffic prediction unit 52, n base station cells (RRU) for each of the k baseband signal processing cards (BBUs) 21 to 2k. 11 to 1n processing resource allocation is controlled. The purpose of the processing resource allocation control is to increase the number of BBUs that can be turned off as much as possible by operating only as few BBUs as possible by sharing processing resources in order to realize low power consumption.
 次に、低消費電力化を実現するために処理リソース割り当て制御部51において実施される基地局セル処理リソース割り当ての制御方法の一例について、図4、図6、図7の各制御フローチャートおよび図5の説明図を用いて説明する。図4は、本発明の第1の実施の形態における処理リソース割り当て制御に関する全体の処理手順の一例を説明するための制御フローチャートである。 Next, an example of a control method for base station cell processing resource allocation performed in the processing resource allocation control unit 51 to realize low power consumption will be described with reference to the control flowcharts of FIGS. 4, 6, and 7 and FIG. This will be described with reference to FIG. FIG. 4 is a control flowchart for explaining an example of the entire processing procedure related to processing resource allocation control according to the first embodiment of the present invention.
 本発明の第1の実施の形態における処理リソース割り当て制御においては、図4の制御フローチャートに示すように、最初に、トラフィック予測部52によるトラフィック予測結果と、現在点におけるk個の各ベースバンド信号処理カード(BBU)21~2kの稼動状態とから、処理リソース割り当て制御部51は、次に稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)ベースバンド信号処理カード(BBU)の順番をあらかじめ決定する(ステップS1)。稼動OFFにしたいベースバンド信号処理カード(BBU)の順番を決定したら、次に、処理リソース割り当て制御を行うベースバンド信号処理カード(BBU)の順番もあらかじめ決定する(ステップS2)。例えば、処理リソース割り当て制御を行うベースバンド信号処理カード(BBU)の順番として、次に稼動をOFFにしたいベースバンド信号処理カード(BBU)から離れたベースバンド信号処理カード(BBU)を優先するように設定する。 In the processing resource allocation control according to the first embodiment of the present invention, as shown in the control flowchart of FIG. 4, first, the traffic prediction result by the traffic prediction unit 52 and each of the k baseband signals at the current point. From the operating state of the processing card (BBU) 21 to 2k, the processing resource allocation control unit 51 next sets the baseband signal processing card (BBU) that wants to turn off the operation (that is, to set the operation to the off state). The order is determined in advance (step S1). Once the order of the baseband signal processing cards (BBU) to be turned off is determined, the order of the baseband signal processing cards (BBU) that performs processing resource allocation control is also determined in advance (step S2). For example, priority is given to the baseband signal processing card (BBU) that is distant from the baseband signal processing card (BBU) that is next desired to be turned off as the order of the baseband signal processing card (BBU) that performs processing resource allocation control. Set to.
 ここで、ステップS1およびS2の処理を行う理由は、本発明の第1の実施の形態においては、無線基地局装置100の拡張性を向上させるために、基地局セル(RRU)-ベースバンド信号処理カード(BBU)間の一部の接続を限定するような接続切り替え制御部30を用いているので、或る特定のRRUから接続することができないBBUへの処理リソース割り当てが行われてしまうことをあらかじめ防止する必要があるためである。 Here, the reason for performing steps S1 and S2 is that, in the first embodiment of the present invention, in order to improve the expandability of radio base station apparatus 100, a base station cell (RRU) -baseband signal Since the connection switching control unit 30 that limits a part of the connection between the processing cards (BBU) is used, processing resources are allocated to BBUs that cannot be connected from a specific RRU. This is because it is necessary to prevent this in advance.
 図5は、本発明の第1の実施の形態における処理リソース割り当て制御において次に稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)ベースバンド信号処理カード(BBU)21~2kの順番を決定する仕組みの一例を説明するための説明図であるが、図4の制御フローチャートのステップS1の処理(次に稼動OFFにしたいベースバンド信号処理カード(BBU)の決定方法)の詳細な仕組みのみならず、さらには、ステップS2の処理(処理リソース割り当て制御を行うベースバンド信号処理カード(BBU)の決定方法)の詳細な仕組みについてもその一例を説明している。なお、図5の説明図においては、ベースバンド処理プール(BBU-pool)20のベースバンド信号処理カード(BBU)の個数を、BBU#1~BBU#8の8個、対応する接続切り替え制御部30の接続切り替えモジュールの個数も接続切り替えモジュール#1~接続切り替えモジュール#8の8個とし、一方、基地局セル無線部(RRU)10の基地局セル(RRU)の個数を、RRU#1~RRU#24の24個としている場合を例示している。 FIG. 5 shows the baseband signal processing cards (BBU) 21 to 2k that are to be turned off next (that is, the operation is to be set to the off state) in the processing resource allocation control in the first embodiment of the present invention. FIG. 5 is an explanatory diagram for explaining an example of a mechanism for determining the order, but details of the process of step S1 in the control flowchart of FIG. 4 (the determination method of the baseband signal processing card (BBU) to be turned off next). An example of the detailed mechanism of not only the mechanism but also the process of step S2 (a method of determining a baseband signal processing card (BBU) that performs processing resource allocation control) is described. In the explanatory diagram of FIG. 5, the number of baseband signal processing cards (BBU) in the baseband processing pool (BBU-pool) 20 is eight, BBU # 1 to BBU # 8, and the corresponding connection switching control unit. The number of 30 connection switching modules is also 8 of connection switching module # 1 to connection switching module # 8, while the number of base station cells (RRU) of base station cell radio unit (RRU) 10 is set to RRU # 1 to RRU # 1. The case where the number of RRU # 24 is 24 is illustrated.
 ステップS1の処理(次に稼動OFFにしたいベースバンド信号処理カード(BBU)の決定方法)においては、処理リソース割り当て制御部51は、トラフィック予測部52によって予測されたトラフィック量に応じて、基本的には、2のべき乗の間隔ごとに、稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)ベースバンド信号処理カード(BBU)を設定する。 In the process of step S1 (the determination method of the baseband signal processing card (BBU) to be turned off next time), the processing resource allocation control unit 51 performs basic processing according to the traffic amount predicted by the traffic prediction unit 52. The baseband signal processing card (BBU) that wants to turn off the operation (that is, to set the operation to the off state) is set at every power-of-two interval.
 すなわち、例えば、図5(A)に示すように、トラフィックが大きい場合には、8個(=2個)間隔で、稼動OFFにしたいBBUを設定する(図5の例の場合には、8個のBBUのうち例えばBBU#4の1個のBBUを設定する)。また、図5(B)に示すように、トラフィックが中程度の場合には、4個(=2個)間隔で、稼動OFFにしたいBBUを設定する(図5の例の場合には、8個のBBUのうち例えばBBU#4とBBU#8との2個のBBUを設定する)。また、図5(C)に示すように、トラフィックが小さい場合には、2個(=2個)間隔で、稼動OFFにしたいBBUを設定する(図5の例の場合には、8個のBBUのうち例えばBBU#2とBBU#4とBBU#6とBBU#8との4個のBBUを設定する)。 That is, for example, as shown in FIG. 5A, when the traffic is large, BBUs to be turned off are set at intervals of 8 (= 2 3 ) (in the case of the example of FIG. 5, For example, one BBU of BBU # 4 is set out of the eight BBUs). Further, as shown in FIG. 5 (B), in the case of moderate traffic, with four (= 2 2) interval, sets the BBU to be in the operation OFF (in the example of FIG. 5, Among the eight BBUs, for example, two BBUs of BBU # 4 and BBU # 8 are set). Further, as shown in FIG. 5C, when traffic is small, BBUs to be turned off are set at intervals of 2 (= 2 1 ) (in the example of FIG. 5, 8). For example, four BBUs of BBU # 2, BBU # 4, BBU # 6, and BBU # 8 are set.
 さらに、トラフィック予測時点における各ベースバンド信号処理カード(BBU)の稼動状態として、図5(A)の「トラフィック大」に記載のBBU稼動状態(8個のBBUのうち例えばBBU#4または他のいずれか1つのBBUが稼動OFFの状態)を実現できている場合には、次に、図5(B)の「トラフィック中」に記載のBBU稼動状態(8個のBBUのうち例えばBBU#4、BBU#8の2つまたは4個間隔で他のいずれか2つのBBUを稼動OFFにする状態)を目指して処理リソース割り当て制御を行う。すなわち、例えば、図5(A)に示すように、BBU#4の1つのBBUが稼動OFFの状態にあった場合には、図5(B)の「Low」に示すように、その次に追加してBBU #8も稼動OFFにすることを目指す。 Further, as the operation state of each baseband signal processing card (BBU) at the time of traffic prediction, the BBU operation state (for example, BBU # 4 or other of 8 BBUs) described in “Traffic large” in FIG. If any one of the BBUs is in an operation OFF state, then the BBU operating state described in “traffic” in FIG. 5B (for example, BBU # 4 out of 8 BBUs) , A process resource allocation control is performed aiming at a state where any other two BBUs are turned off at intervals of two or four of BBU # 8. That is, for example, as shown in FIG. 5A, when one BBU of BBU # 4 is in an operation OFF state, as shown in “Low” in FIG. In addition, it aims to turn off the operation of BBU IV # 8.
 また、トラフィック予測時点におけるベースバンド信号処理カード(BBU)の稼動状態として、図5(B)の「トラフィック中」のBBU稼動状態を既に実現できている場合には、次に、図5(C)の「トラフィック小」に記載のBBU稼動状態(8個のBBUのうち例えばBBU#2、BBU#4、BBU#6、BBU#8の4つまたは2個間隔で他のいずれか4つのBBUを稼動OFFにする状態)を目指して処理リソース割り当て制御を行う。すなわち、例えば、図5(B)に示すように、BBU#4、#8の2つのBBUが稼動OFFの状態にあった場合には、図5(C)の「Low」に示すように、その次に追加してBBU#2、#6も稼動OFFにすることを目指す。 If the BBU operating state “in traffic” of FIG. 5B has already been realized as the operating state of the baseband signal processing card (BBU) at the time of traffic prediction, next, FIG. BBU operating state described in “Small traffic” (e.g., out of 8 BBUs, for example, BBU # 2, BBU # 4, BBU # 6, BBU # 8, or any other 4 BBUs at intervals of 2) The processing resource allocation control is performed aiming at a state where the operation is turned off. That is, for example, as shown in FIG. 5B, when two BBUs BBU # 4 and # 8 are in an operation OFF state, as shown in “Low” in FIG. In addition, it aims to turn off operation of BBU # 2 and # 6 in addition.
 次に、ステップS2の処理(処理リソース割り当て制御を行うベースバンド信号処理カード(BBU)の決定方法)の仕組みについて、図5を参照しながら説明する。処理リソース割り当て制御部51は、処理リソース割り当て制御を行うベースバンド信号処理カード(BBU)の選択順として、稼動OFFにしたいBBU(既に稼動OFFの状態にあるBBUも含む)からできるだけ遠く離れたBBUから順番に優先的に処理リソース割り当て制御を行う。ここで、稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)BBUおよび既に稼動OFF状態のBBUが複数存在する場合には、該当するBBUの中間に位置するBBUから順番に処理リソース割り当て制御を行う。 Next, the mechanism of the process of step S2 (a method for determining a baseband signal processing card (BBU) that performs processing resource allocation control) will be described with reference to FIG. The processing resource allocation control unit 51 selects a baseband signal processing card (BBU) that performs processing resource allocation control as far as possible from a BBU that is to be turned off (including BBUs that are already turned off). Processing resource allocation control is performed with priority in order. Here, when there are a plurality of BBUs that are desired to be turned off (that is, the operation is to be set to the off state) and BBUs that are already in the operation OFF state, processing resources are sequentially processed from the BBU located in the middle of the corresponding BBU. Perform allocation control.
 例えば、トラフィック予測部52においてトラフィックが大きいと予測され、図5(A)の「トラフィック大」に記載のように、8個のBBUのうち例えばBBU#4を次に稼動OFFにしたいBBUとして決定した場合、または、BBU#4を稼動OFFの状態に既に設定していた場合には、図5(A)の「High1」に示すように、当該BBU#4から距離的に最も離れているBBU#8から順番に優先的に処理リソース割り当て制御を行う。また、トラフィックが中程度と予測され、図5(B)の「トラフィック中」に記載のように、8個のBBUのうち例えばBBU#4とBBU#8とを次に稼動OFFにしたいBBUとして決定した場合、または、BBU#4とBBU#8とを稼動OFFの状態に既に設定していた場合には、図5(B)の「High1」に示すように、当該BBU#4およびBBU#8から距離的に最も離れたBBUすなわち当該BBU#4およびBBU#8の中間に位置するBBUとなるBBU#2や#6から順番に優先的に処理リソース割り当て制御を行う。 For example, the traffic prediction unit 52 predicts that the traffic is large, and for example, BBU # 4 is determined as the BBU to be next turned off among the 8 BBUs, as described in “traffic large” in FIG. If BBU # 4 has already been set to the operation OFF state, as shown in “High1” in FIG. 5A, the BBU that is farthest from the BBU # 4 in distance Processing resource allocation control is performed preferentially from # 8. Further, as described in “traffic” in FIG. 5B, for example, BBU # 4 and BBU # 8 among the eight BBUs are set as BBUs to be next turned off, as traffic is predicted to be medium. If determined, or if BBU # 4 and BBU # 8 have already been set to the operation OFF state, as shown in “High1” in FIG. 5B, the BBU # 4 and BBU # The processing resource allocation control is preferentially performed in order from the BBU # 2 or # 6 that is the BBU located farthest from the distance 8, that is, between the BBU # 4 and the BBU # 8.
 なお、図5(B)の「トラフィック中」に記載のように、稼動OFFにしたいBBUおよび既に稼動OFF状態のBBUが複数存在する場合に、複数の当該BBUから距離的に同じ程度離れたBBUが複数存在している場合には、同じ程度離れた複数のBBUのうち、いずれのBBUから順番に優先的に処理リソース割り当て制御を行うようにしても良い。また、図5(A)の「トラフィック大」の場合において、BBU#8の次に優先的に処理リソース割り当て制御を行うBBUとして、BBU#1とBBU#7とがBBU#4からの距離が同じ程度であった場合には、BBU#8の次の優先順としてBBU#1、BBU#7のいずれを選択しても構わない。 Note that, as described in “traffic” in FIG. 5B, when there are a plurality of BBUs to be turned off and BBUs that are already turned off, the BBUs that are separated by the same distance from the plurality of BBUs. When there are a plurality of BBUs, the processing resource allocation control may be preferentially performed in order from any BBU among a plurality of BBUs separated by the same degree. In the case of “large traffic” in FIG. 5A, BBU # 1 and BBU # 7 have a distance from BBU # 4 as BBUs that preferentially process resource allocation control next to BBU # 8. In the case of the same degree, either BBU # 1 or BBU # 7 may be selected as the next priority order of BBU # 8.
 次に、図4の制御フローチャートの説明に戻って、ステップS3以降の各ステップについて説明する。図4の制御フローチャートに示すように、ステップS2において決定したBBUの処理リソース割り当て制御の制御順にしたがって、優先順の高いBBUから順番に、以下に説明するような処理リソース使用率に関する閾値判定を行う処理を繰り返す。まず、順番に選択した対象BBUに関して、現時点において割り当てられている全RRUのトラフィック予測値から処理リソース使用率を算出し、あらかじめ定めた上限値である閾値Aとの閾値判定を行う(ステップS3)。対象BBUの処理リソース使用率が、上限値である閾値Aを超えていた場合には(ステップS3のYes)、処理リソース不足となる懸念があるため、詳細を後述の図6において説明する割り当て制御処理A(proc.A)を実行して(ステップS5)、対象BBUに既に割り当てられているいずれかのRRU処理を他のBBUに移動させることが可能か否かを判定して、他のBBUにおいて処理可能と判定した場合には、処理可能と判定した他のBBUに当該RRU処理を移動させる処理を実行する。 Next, returning to the description of the control flowchart of FIG. 4, each step after step S3 will be described. As shown in the control flowchart of FIG. 4, according to the control order of the BBU processing resource allocation control determined in step S2, threshold determination regarding the processing resource usage rate as described below is performed in order from the BBU having the highest priority order. Repeat the process. First, with respect to the target BBUs selected in order, the processing resource usage rate is calculated from the traffic predicted values of all the RRUs allocated at the present time, and a threshold value determination with a threshold value A that is a predetermined upper limit value is performed (step S3). . If the processing resource usage rate of the target BBU exceeds the threshold value A, which is the upper limit (Yes in step S3), there is a concern that processing resources will be insufficient, and therefore allocation control will be described in detail in FIG. Process A (proc.A) is executed (step S5), and it is determined whether or not any RRU process already assigned to the target BBU can be moved to another BBU. If it is determined that the process is possible, the process of moving the RRU process to another BBU determined to be processable is executed.
 また、対象BBUの処理リソース使用率が、上限値である閾値Aを超えていない場合には(ステップS3のNo)、次に、あらかじめ定めた下限値である閾値Bとの閾値判定を行う(ステップS4)。対象BBUの処理リソース使用率が、下限値である閾値Bを下回っていた場合には(ステップS4のYes)、対象BBUで他のRRU処理を実行することが可能な処理能力マージンがまだ残っていることを意味するため、詳細を後述の図7において説明する割り当て制御処理B(proc.B)を実行して(ステップS6)、対象BBU以外のBBUに割り当てられているRRU処理であって、まだ、今回の割り当てが決まっていないRRU処理について、当該対象BBUにおいて処理することが可能か否かを判定して、処理可能と判定した場合には、該当するRRU処理を当該対象BBUに割り当てる処理を実行する。 If the processing resource usage rate of the target BBU does not exceed the threshold value A that is the upper limit value (No in step S3), next, a threshold value determination with the threshold value B that is a predetermined lower limit value is performed ( Step S4). If the processing resource usage rate of the target BBU is below the threshold value B, which is the lower limit (Yes in step S4), there is still a processing capacity margin that can execute another RRU process on the target BBU. Therefore, the allocation control process B (proc.B) described in detail in FIG. 7 to be described later is executed (step S6), and the RRU process is allocated to a BBU other than the target BBU. For the RRU process for which the current allocation has not yet been determined, it is determined whether or not the target BBU can be processed, and if it is determined that the process is possible, the process of allocating the corresponding RRU process to the target BBU Execute.
 そして、図4の制御フローチャートにおいて、ステップS3~ステップS6に示すBBUの処理リソース使用率に関する閾値判定処理、割り当て制御処理A(proc.A)や割り当て制御処理B(proc.B)の処理を、ステップS2において決定したBBU順に全てのBBUについて順番に繰り返して実施し、全てのBBUについて処理リソース割り当てが決定したところで、1回分の処理リソース割り当て制御が完了となる。 In the control flowchart of FIG. 4, the threshold value determination process relating to the processing resource usage rate of the BBU, the allocation control process A (proc.A), and the allocation control process B (proc.B) shown in steps S3 to S6 are performed. When all BBUs are repeatedly performed in order in the BBU order determined in step S2, and processing resource allocation is determined for all BBUs, one processing resource allocation control is completed.
 次に、前述した割り当て制御処理A(proc.A)の処理の詳細を、図6の制御フローチャートを用いて説明する。図6は、本発明の第1の実施の形態における処理リソース割り当て制御においてベースバンド信号処理カード(BBU)の基地局セル(RRU)処理を他のベースバンド信号処理カード(BBU)に移動させる処理の一例を示す制御フローチャートであり、図4に示したように、対象BBUの処理リソース使用率があらかじめ定めた上限値である閾値Aを超えていた場合に、対象BBUに割り当てられているRRU処理のうち、いずれかのRRU処理を他のBBUに移動させる割り当て制御処理A(proc.A)の処理内容の一例を示している。 Next, details of the above-described allocation control process A (proc. A) will be described using the control flowchart of FIG. FIG. 6 shows a process of moving the base station cell (RRU) process of the baseband signal processing card (BBU) to another baseband signal processing card (BBU) in the processing resource allocation control according to the first embodiment of the present invention. FIG. 4 is a control flowchart showing an example of the RRU process assigned to the target BBU when the processing resource usage rate of the target BBU exceeds a threshold value A that is a predetermined upper limit value. Among these, an example of the processing content of the allocation control processing A (proc. A) for moving any RRU processing to another BBU is shown.
 図6に示す制御フローチャートにおいて、まず、接続切り替え制御部30の限定接続機能により、任意のRRUから接続することができないBBUへの当該RRUに関するRRU処理リソース割り当て制御を防止するために、対象BBUに割り当てられているRRUのうち、RRU処理を移動させる候補とするRRUの優先順を決定する(ステップA1)。ここで、RRU処理を移動させる候補とするRRUの優先順は、図1に示した接続情報格納部53に格納されているRRU-BBU間の接続情報などを基にして、例えば、対象BBUからの接続距離が遠くにあるRRUから順番の優先順に設定する。そして、ステップA1において決定した優先順にしたがって、対象BBUの処理リソース使用率が、上限値である閾値Aを下回る状態になるまで、以下のRRU処理割り当て制御を繰り返す。 In the control flowchart shown in FIG. 6, first, in order to prevent the RRU processing resource allocation control related to the RRU to the BBU that cannot be connected from any RRU by the limited connection function of the connection switching control unit 30, the target BBU Among the assigned RRUs, the priority order of RRUs that are candidates for moving the RRU process is determined (step A1). Here, the priority order of the RRUs that are candidates for moving the RRU process is, for example, from the target BBU based on the RRU-BBU connection information stored in the connection information storage unit 53 shown in FIG. Are set in order of priority from the RRU having a long connection distance. Then, according to the priority order determined in step A1, the following RRU process allocation control is repeated until the processing resource usage rate of the target BBU falls below the threshold value A which is the upper limit value.
 まず、優先順にしたがって選択されたRRUに関して、当該RRUを接続可能なBBUとして、当該RRU周辺において既に稼動しているBBUに対して当該RRU処理割り当てが可能か否かを判定する(ステップA2)。当該RRU周辺の稼動BBUに対して当該RRU処理割り当てが可能な場合、すなわち、該稼動BBUに当該RRU処理を新たに割り当てても、該稼動BBUのリソース使用率が上限である閾値Aを超えない場合は(ステップA2のYes)、当該RRU周辺の該稼動BBUに当該RRU処理を移動させる(ステップA6)。 First, regarding the RRUs selected according to the priority order, it is determined whether or not the RRU process can be assigned to the BBUs already operating in the vicinity of the RRU as the BBUs to which the RRU can be connected (step A2). When the RRU process can be assigned to the active BBU around the RRU, that is, even if the RRU process is newly assigned to the active BBU, the resource usage rate of the active BBU does not exceed the upper limit threshold A. In such a case (Yes in step A2), the RRU process is moved to the active BBU around the RRU (step A6).
 一方、当該RRU周辺の稼動BBUに対して当該RRU処理割り当てが不可能な場合には(ステップA2のNo)、次に、当該RRUを接続可能なBBUとして、当該RRU周辺においてその時点で稼動OFFとなっているBBUに対して当該RRU処理割り当てが可能か否かを判定する(ステップA3)。当該RRU周辺の稼動OFF状態のBBUに対して当該RRU処理割り当てが可能な場合は(ステップA3のYes)、当該RRU周辺の稼動OFF状態のBBUに当該RRU処理を移動させる(つまり、当該BBUを稼動ONにする)(ステップA7)。 On the other hand, when it is impossible to allocate the RRU process to the active BBU around the RRU (No in Step A2), the RRU is connected as a connectable BBU, and the operation is turned off at that time around the RRU. It is determined whether or not the relevant RRU process can be assigned to the BBU that is now (step A3). When the RRU process assignment can be performed for the BBU in the operation OFF state around the RRU (Yes in Step A3), the RRU process is moved to the BBU in the operation OFF state around the RRU (that is, the BBU is moved). The operation is turned on) (step A7).
 一方、当該RRU周辺の稼動OFF状態のBBU、稼動BBUのいずれにも当該処理割り当てが不可能な場合には(ステップA3のNo)、まだ処理割り当てが決まっていない接続可能なBBUのうち、当該RRUの最も近傍に位置するBBUに、たとえ、処理リソース使用率が上限値である閾値Aを超えていたとしても、当該RRU処理を移動させる(ステップA4)。ここで、ステップA4の処理は、任意のRRUから接続することができないBBUへの処理リソース割り当てを防止するための処理である。 On the other hand, when the process allocation is impossible for both the BBU in the operation OFF state and the active BBU around the RRU (No in step A3), among the connectable BBUs for which the process allocation has not yet been determined, Even if the processing resource usage rate exceeds the upper limit threshold A, the RRU process is moved to the BBU located closest to the RRU (step A4). Here, the process of step A4 is a process for preventing the allocation of process resources to BBUs that cannot be connected from any RRU.
 ステップA4、A6、A7の移動処理を実施した後は、移動候補であった当該RRU処理を、当該RRU処理割り当てが可能ないずれかのBBUに移動させた結果として、対象BBUの処理リソース使用状況が変化することになるため、当該対象BBUの処理リソース使用率をあらかじめ定めた上限値である閾値Aと比較する閾値判定処理を再度行う(ステップA5)。当該対象BBUの処理リソース使用率が上限値である閾値Aをまだ超えている場合には(ステップA5のNo)、ステップA1において決定した優先順にしたがって、次の優先順である他のRRUについて、ステップA2~A4、A6、A7の処理を繰り返す。 After performing the movement process of Steps A4, A6, and A7, the processing resource usage status of the target BBU as a result of moving the RRU process that was a movement candidate to any BBU that can be assigned the RRU process Therefore, the threshold value determination process for comparing the processing resource usage rate of the target BBU with the threshold value A which is a predetermined upper limit value is performed again (step A5). When the processing resource usage rate of the target BBU still exceeds the upper limit threshold A (No in step A5), according to the priority order determined in step A1, other RRUs in the next priority order Steps A2 to A4, A6, and A7 are repeated.
 一方、当該対象BBUの処理リソース使用率が閾値A以下であった場合には(ステップA5のYes)、当該対象BBUについてRRU処理の処理リソース割り当てを決定して(ステップA8)、当該対象BBUについての処理リソース割り当て制御を完了する。 On the other hand, when the processing resource usage rate of the target BBU is equal to or less than the threshold A (Yes in Step A5), the processing resource allocation for the RRU process is determined for the target BBU (Step A8), and the target BBU is determined. Complete the processing resource allocation control.
 次に、前述した割り当て制御処理B(proc.B)の処理の詳細を、図7の制御フローチャートを用いて説明する。図7は、本発明の第1の実施の形態における処理リソース割り当て制御においてベースバンド信号処理カード(BBU)に対して割り当て未決定の基地局セル(RRU)処理を割り当てる処理の一例を示す制御フローチャートであり、図4に示したように、対象BBUの処理リソース使用率があらかじめ定めた下限値である閾値Bを下回っていた場合に、対象BBUを含め、BBUに対する処理割り当てがまだ未決定のいずれかのRRU処理を対象BBUに割り当てることが可能か否かを判定し、割り当てが可能な場合には、該RRU処理を対象BBUに割り当てる割り当て制御処理B(proc.B)の処理内容の一例を示している。 Next, details of the above-described allocation control process B (proc. B) will be described using the control flowchart of FIG. FIG. 7 is a control flowchart showing an example of processing for allocating undecided base station cell (RRU) processing to a baseband signal processing card (BBU) in processing resource allocation control according to the first embodiment of the present invention. As shown in FIG. 4, when the processing resource usage rate of the target BBU is below the threshold value B that is a predetermined lower limit value, the process allocation for the BBU including the target BBU is still undecided. It is determined whether or not the RRU process can be allocated to the target BBU. If the allocation is possible, an example of the processing content of the allocation control process B (proc. B) that allocates the RRU process to the target BBU Show.
 図7に示す制御フローチャートにおいて、まず、図6の場合と同様、接続切り替え制御部30の限定接続機能により、任意のRRUから接続することができないBBUへの当該RRUに関するRRU処理の処理リソース割り当て制御を防止するために、対象BBUも含め、BBUに対する処理割り当てがまだ未決定のRRU処理のうち、RRU処理を割り当てる候補とするRRUの優先順を決定する(ステップB1)。ここで、RRU処理を割り当てる候補とするRRUの優先順は、図1に示した接続情報格納部53に格納されているRRU-BBU間の接続情報などを基にして、例えば、対象BBUからの接続距離が近くにあるRRUから順番の優先順に設定する。そして、ステップB1において決定した優先順にしたがって、対象BBUの処理リソース使用率が、下限値である閾値Bを上回る状態になるまで、以下のRRU処理割り当て制御を繰り返す。 In the control flowchart shown in FIG. 7, first, similarly to the case of FIG. 6, the processing resource allocation control of the RRU processing related to the RRU to the BBU that cannot be connected from any RRU by the limited connection function of the connection switching control unit 30. In order to prevent this, among the RRU processes for which the process allocation for the BBU has not yet been determined including the target BBU, the priority order of the RRUs that are candidates for the RRU process allocation is determined (step B1). Here, the priority order of RRUs that are candidates for allocation of RRU processing is determined based on, for example, the connection information between the RRU and the BBU stored in the connection information storage unit 53 shown in FIG. The priority is set in the order of priority from the RRU with the connection distance close. Then, according to the priority order determined in step B1, the following RRU process allocation control is repeated until the processing resource usage rate of the target BBU exceeds the threshold value B, which is the lower limit value.
 まず、優先順に従って選択されたRRUに関して、当該RRUを接続可能な対象BBUに対して当該RRU処理割り当てが可能か否かを判定する(ステップB2)。対象BBUに対して当該RRU処理割り当てが可能な場合、すなわち、該対象BBUに当該RRU処理を新たに割り当てても、該対象BBUのリソース使用率が上限である閾値Aを超えない場合は(ステップB2のYes)、該対象BBUに当該RRU処理を移動させて、該対象BBUに当該RRU処理を割り当てる(ステップB3)。 First, with respect to the RRU selected according to the priority order, it is determined whether or not the relevant RRU process can be assigned to the target BBU to which the RRU can be connected (step B2). If the target RBU process can be assigned to the target BBU, that is, even if the target BBU is newly assigned, the resource usage rate of the target BBU does not exceed the upper threshold value A (step) (Yes in B2), the RRU process is moved to the target BBU, and the RRU process is assigned to the target BBU (step B3).
 ここで、該対象BBUに当該RRU処理を移動させて割り当てても、該対象BBUのリソース使用率が下限値である閾値B以上にまだ達しなかった場合には(ステップB4のNo)、あるいは、ステップB2において該対象BBUのリソース使用率が上限である閾値Aを超えて、該対象BBUに対して当該RRU処理割り当てが不可能な場合には(ステップB2のNo)、ステップB1において決定した優先順にしたがって、次の優先順である他のRRUについて、ステップB2~B4の処理を繰り返す。 Here, even if the RRU process is moved and assigned to the target BBU, if the resource usage rate of the target BBU has not yet reached the threshold B that is the lower limit value (No in step B4), or If the resource usage rate of the target BBU exceeds the upper limit threshold A in step B2 and the RRU process cannot be allocated to the target BBU (No in step B2), the priority determined in step B1 Accordingly, the processes of steps B2 to B4 are repeated for the other RRUs in the next priority order.
 一方、該対象BBUに当該RRU処理を移動させると、該対象BBUのリソース使用率が下限値である閾値B以上になった場合(ステップB4のNo)、あるいは、全候補RRUについて処理リソース割り当て制御が終了した場合は、該対象BBUについてのRRU処理リソース割り当てを決定して(ステップB5)、該対象BBUについて処理リソース割り当て制御を完了する。 On the other hand, when the RRU process is moved to the target BBU, when the resource usage rate of the target BBU becomes equal to or higher than the threshold B that is the lower limit (No in Step B4), or processing resource allocation control is performed for all candidate RRUs Is completed, the RRU processing resource allocation for the target BBU is determined (step B5), and the processing resource allocation control for the target BBU is completed.
 以上に詳細に説明したように、本発明の第1の実施の形態においては、RRU-BBU間の接続切り替え制御を行う接続切り替え制御部30として、隣接する接続切り替えモジュール間の相互接続インタフェースを有する接続切り替えモジュール31~3kを1ないし複数並べる構成にして、RRUからの接続関係を、ベースバンド処理プール(BBU-pool)20内の全てのベースバンド信号処理カード(BBU)21~2kではなく、隣接するBBUのみに限定したことにより、接続切り替え制御部30の回路規模の膨大化を防止することが可能である。 As described in detail above, in the first embodiment of the present invention, the connection switching control unit 30 that performs connection switching control between RRU and BBU has an interconnection interface between adjacent connection switching modules. One or a plurality of connection switching modules 31 to 3k are arranged so that the connection relationship from the RRU is not all baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20, By limiting to only adjacent BBUs, it is possible to prevent the circuit scale of the connection switching control unit 30 from increasing.
 すなわち、RRU-BBU間の全ての接続組み合わせを実現する理想的な接続切り替え制御部の場合には、接続切り替え制御部として「RRU数×BBU数」というそれぞれの個数の乗算に比例する規模が必要となる。一方、本発明の第1の実施の形態においては、接続切り替え制御部30の規模を「接続RRU数(図2に示した例においては9個)×BBU数」に比例する規模に制限することができ、接続切り替え制御部をBBU数にほぼ線形な回路規模に抑えることができる。したがって、本発明の第1の実施の形態においては、トラフィックの増大化に伴って、RRUやBBUを増強しようとした場合に、接続切り替えモジュールもBBU数に応じてほぼ線形に拡張することが可能であり、高い拡張性を確保することができるという利点が得られる。 In other words, in the case of an ideal connection switching control unit that realizes all connection combinations between RRU and BBU, the connection switching control unit requires a scale proportional to the multiplication of the respective numbers of “RRU number × BBU number”. It becomes. On the other hand, in the first embodiment of the present invention, the scale of the connection switching control unit 30 is limited to a scale proportional to “the number of connected RRUs (9 in the example shown in FIG. 2) × the number of BBUs”. Thus, the connection switching control unit can be suppressed to a circuit scale almost linear with the number of BBUs. Therefore, in the first embodiment of the present invention, when the RRU or BBU is increased as the traffic increases, the connection switching module can be expanded almost linearly according to the number of BBUs. Thus, an advantage that high expandability can be secured is obtained.
 また、拡張性向上のために、前述のように、RRU-BBU間の接続関係を限定した構成であっても、本発明の第1の実施の形態においては、稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)BBUをあらかじめ決定しておき、かかる稼動OFF対象のBBUから距離的に離れた位置にあるBBUから順番に優先的に処理リソース割り当て制御を行う基地局セル処理リソース割り当て方法を採用している。さらに、本発明の第1の実施の形態においては、対象BBUの処理リソース使用率があらかじめ定めた上限値の閾値Aを超える場合には、対象BBUから接続距離が離れた位置にあるRRUから順番に優先的にRRU処理の他のBBUへの転出制御を行い、また、対象BBUの処理リソース使用率があらかじめ定めた下限値の閾値Bを下回る場合には、対象BBUに接続距離が近い位置にあるRRUから順番に優先的にRRU処理の転入制御を行うような基地局セル処理リソース割り当て方法を採用している。 Further, in order to improve expandability, even in the configuration in which the connection relationship between RRU and BBU is limited as described above, in the first embodiment of the present invention, it is desired to turn off the operation (that is, the operation Base station cell processing resources that predetermine BBUs and perform processing resource allocation control in order from the BBU located far away from the BBU that is the target of operation OFF. An allocation method is adopted. Further, in the first embodiment of the present invention, when the processing resource usage rate of the target BBU exceeds a predetermined upper limit threshold A, the RRUs in order from the RRU at a position away from the target BBU. If the processing resource usage rate of the target BBU falls below a predetermined lower limit threshold B, the connection distance is close to the target BBU. A base station cell processing resource allocation method is adopted in which transfer control of RRU processing is preferentially performed in order from a certain RRU.
 而して、RRU-BBU間の接続関係を限定した構成であっても、RRU-BBU間を全ての接続組み合わせで接続することが可能な理想的な接続切り替え制御部を用いた場合とほぼ同等の処理リソース共有(並びに低消費電力化)を実現することが可能であるという利点が得られる。その理由は、本発明の第1の実施の形態における基地局セル処理リソース割り当て方法として、任意のBBUに対してできるだけ接続距離が近いRRUから順番にRRU処理リソースを割り当てる仕組みを採用しているためであり、任意のRRUに関するRRU処理を接続関係がないBBUに対して割り当てるような状況が生じることを未然に防止することが可能な仕組みを実現しているためである。 Thus, even if the connection relationship between RRU and BBU is limited, it is almost equivalent to the case of using an ideal connection switching control unit that can connect RRU and BBU with all connection combinations. It is possible to realize the processing resource sharing (as well as the reduction in power consumption). This is because the base station cell processing resource allocation method according to the first embodiment of the present invention employs a mechanism for allocating RRU processing resources in order from an RRU having a connection distance as close as possible to an arbitrary BBU. This is because a mechanism capable of preventing a situation in which RRU processing related to an arbitrary RRU is assigned to a BBU having no connection relationship is realized.
(第2の実施の形態の構成例)
 次に、本発明の第2の実施の形態における無線基地局装置の構成例について、図8を参照しながら説明する。図8は、本発明の第2の実施の形態における無線基地局装置の全体構成例を示すブロック構成図であり、無線基地局装置として、第1の実施の形態の図1の場合と同様、無線信号処理を集約化してその処理リソースを共有する無線基地局装置の全体構成例を示している。ただし、本第2の実施の形態の図8に示す無線基地局装置101においては、第1の実施の形態の図1の場合の接続切り替え制御部30の構成とは異なり、各接続切り替えモジュール41~4kを最後の接続切り替えモジュール4kと先頭の接続切り替えモジュール41との間も含めリング状に相互に接続可能な構成にし、さらに、各基地局セル(RRU)を、隣接する5つのベースバンド信号処理カード(BBU)に対して接続可能な構成にしている。
(Configuration example of the second embodiment)
Next, a configuration example of the radio base station apparatus according to the second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a block configuration diagram illustrating an example of the overall configuration of the radio base station apparatus according to the second embodiment of the present invention. As the radio base station apparatus, as in the case of FIG. 1 of the first embodiment, An example of the overall configuration of a radio base station apparatus that consolidates radio signal processing and shares its processing resources is shown. However, in the radio base station apparatus 101 shown in FIG. 8 of the second embodiment, each connection switching module 41 differs from the configuration of the connection switching control unit 30 in the case of FIG. 1 of the first embodiment. ˜4k can be connected to each other in a ring shape including between the last connection switching module 4k and the first connection switching module 41, and each base station cell (RRU) is connected to five adjacent baseband signals. It is configured to be connectable to a processing card (BBU).
 図8に示す無線基地局装置101は、第1の実施の形態の図1の場合と同様、n(n:自然数)個の基地局セル(RRU:Remote Radio Unitリモート無線ユニット)11~1nの各無線通信処理を集約して実施するベースバンド処理プール(BBU-pool)20を備え、ベースバンド処理プール(BBU-pool)20内にはk(k:自然数、k≦n)個のベースバンド信号処理カード(BBU:Base Band Unitベースバンド信号処理モジュール)21~2kを備える。ベースバンド処理プール(BBU-pool)20内のk個(1個ないし複数個)のベースバンド信号処理カード(BBU)21~2kそれぞれは、n個の基地局セル(RRU)11~1n間における処理リソースの共有を行いながら、例えばLTE-Advancedなどの無線方式のLayer-1処理(ベースバンド信号処理)等を行う。 As in the case of FIG. 1 of the first embodiment, the radio base station apparatus 101 shown in FIG. 8 includes n (n: natural number) base station cells (RRU: Remote Radio Unit remote radio units) 11 to 1n. A baseband processing pool (BBU-pool) 20 that collects and executes each wireless communication processing is provided, and k (k: natural number, k ≦ n) basebands are included in the baseband processing pool (BBU-pool) 20. A signal processing card (BBU: Base Band Unit baseband signal processing module) 21 to 2k is provided. Each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 is connected between n base station cells (RRU) 11 to 1n. While sharing the processing resources, for example, wireless Layer-1 processing (baseband signal processing) such as LTE-Advanced is performed.
 また、第1の実施の形態の図1の場合と同様、k個(1個ないし複数個)のベースバンド信号処理カード(BBU)21~2kそれぞれのRF(Radio Frequency:無線)部側は、接続切り替え制御部40を介して、光ファイバや無線バックホール(フロントホール)などにより、各基地局セル(RRU)11~1nと接続される。ここで、ベースバンド処理プール(BBU-pool)20において処理する無線方式は、LTE-Advanced以外の無線方式であっても何ら問題はないし、また、処理するレイヤについてもLayer-1以外のLayer-2等の処理であっても特に問題はない。 As in the case of FIG. 1 of the first embodiment, the RF (Radio Frequency) unit side of each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k is Via the connection switching control unit 40, each base station cell (RRU) 11 to 1n is connected by an optical fiber, a radio backhaul (fronthaul) or the like. Here, there is no problem even if the radio system to be processed in the baseband processing pool (BBU-pool) 20 is a radio system other than LTE-Advanced, and the layer to be processed is a Layer- other than Layer-1. There is no particular problem even if the second processing is performed.
 また、無線基地局装置101は、第1の実施の形態の図1の場合と同様、ベースバンド処理プール(BBU-pool)20内のk個のベースバンド信号処理カード(BBU)21~2kに対する処理リソース割り当て制御用に、処理リソース割り当て制御部51、トラフィック予測部52、接続情報格納部53等も備えている。 Also, the radio base station apparatus 101 applies to k baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 as in the case of FIG. 1 of the first embodiment. A processing resource allocation control unit 51, a traffic prediction unit 52, a connection information storage unit 53, and the like are also provided for processing resource allocation control.
 なお、接続切り替え制御部40は、第1の実施の形態の図1の場合の接続切り替え制御部30と同様に、k個の接続切り替えモジュール41~4kを並べて(連接して)構成し、各接続切り替えモジュール41~4kは、それぞれ、1つまたは複数の基地局セル(RRU)11~1nと1つまたは複数のベースバンド信号処理カード(BBU)21~2kとの間の接続を行うことが可能あり、かつ、隣接する接続切り替えモジュールとの間の相互接続が可能な構成としている。 The connection switching control unit 40 is configured by arranging (connecting) k connection switching modules 41 to 4k in the same manner as the connection switching control unit 30 in the case of FIG. 1 of the first embodiment. Each of the connection switching modules 41 to 4k can perform connection between one or more base station cells (RRU) 11 to 1n and one or more baseband signal processing cards (BBU) 21 to 2k. This configuration is possible and allows interconnection between adjacent connection switching modules.
 しかし、接続切り替え制御部40は、第1の実施の形態の図1の場合の接続切り替え制御部30とは異なり、最後の接続切り替えモジュール4kと先頭の接続切り替えモジュール41との間でも相互接続可能なリング型の接続構成を採用している点に特徴がある。例えば、k個の接続切り替えモジュール41~4kのうち、第i(1≦i≦k)番目の接続切り替えモジュール4iは、隣接する第(i-1)番目の接続切り替えモジュール4(i-1)および第(i+1)番目の接続切り替えモジュール4(i+1)と相互に接続することが可能であるが、i=1の先頭の接続切り替えモジュール41の場合や、i=kの最後の接続切り替えモジュール4kの場合には、リング状に隣り合う接続切り替えモジュールとして、それぞれ、最後の接続切り替えモジュール4kや先頭の接続切り替えモジュール41との間も相互に接続することが可能である。 However, unlike the connection switching control unit 30 in the case of FIG. 1 of the first embodiment, the connection switching control unit 40 can also be interconnected between the last connection switching module 4k and the first connection switching module 41. It is characterized by adopting a simple ring-type connection configuration. For example, of the k connection switching modules 41 to 4k, the i-th (1 ≦ i ≦ k) -th connection switching module 4i is the adjacent (i−1) -th connection switching module 4 (i−1). And the (i + 1) th connection switching module 4 (i + 1) can be connected to each other, but in the case of the first connection switching module 41 with i = 1 or the last connection switching module 4k with i = k. In this case, as the connection switching modules adjacent in a ring shape, the last connection switching module 4k and the first connection switching module 41 can also be connected to each other.
 また、第1の実施の形態においては、k個の各接続切り替えモジュール31~3kは、それぞれ、両側に隣接する1個ずつの接続切り替えモジュールとの間で相互接続することが可能であったが、本第2の実施の形態においては、相互接続個数を拡張して、両側に隣接する2個ずつの接続切り替えモジュールとの間で相互接続することが可能な構成としている。 In the first embodiment, each of the k connection switching modules 31 to 3k can be interconnected with one connection switching module adjacent to each other. In the second embodiment, the number of interconnections is expanded to allow interconnection between two connection switching modules adjacent to both sides.
 したがって、本第2の実施の形態においては、n個の基地局セル(RRU)11~1nのうち、第i番目の接続切り替えモジュール4iに接続された任意の基地局セル(RRU)例えば第j(1≦j≦n)番目の基地局セル(RRU)1jは、当該RRU1jが接続された接続切り替えモジュール4iに対応する第i番目のBBU2iを中心にして、両側に隣接する2個ずつのBBU間すなわち第(i-2)番目のBBU2(i-2)、第(i-1)番目のBBU2(i-1)、第(i+1)番目のBBU2(i+1)および第(i+2)番目のBBU2(i+2)間において、接続を切り替えることが可能である。 Therefore, in the second embodiment, of the n base station cells (RRU) 11 to 1n, any base station cell (RRU) connected to the i-th connection switching module 4i, for example, the jth The (1 ≦ j ≦ n) th base station cell (RRU) 1j has two BBUs adjacent to each other around the i-th BBU2i corresponding to the connection switching module 4i to which the RRU1j is connected. The (i-2) th BBU2 (i-2), the (i-1) th BBU2 (i-1), the (i + 1) th BBU2 (i + 1) and the (i + 2) th BBU2 The connection can be switched between (i + 2).
 なお、第1の実施の形態にて示したような、両側に1個ずつの接続切り替えモジュールとの間で相互結合可能な構成の場合であっても、本第2の実施の形態の場合と同様に、最後の接続切り替えモジュール4kと先頭の接続切り替えモジュール41との間をリング状に接続(連接)することが可能であることに留意されたい。 Note that, even in the case of the configuration that can be mutually coupled with one connection switching module on each side as shown in the first embodiment, Similarly, it should be noted that the last connection switching module 4k and the first connection switching module 41 can be connected (connected) in a ring shape.
(第2の実施の形態の動作の説明)
 次に、本発明の第2の実施の形態として図8に示した無線帰途局装置101の動作の一例について、図9および図10を用いて詳細に説明する。なお、図8に示した無線基地局装置101のベースバンド処理プール(BBU-pool)20内のk個の各ベースバンド信号処理カード(BBU)21~2kにおいては、前述したように、第1の実施の形態と同様、n個の基地局セル(RRU)11~1n分の、例えばLTE-AdvancedなどのLayer-1処理(ベースバンド信号処理)等の無線通信処理を集約して行っている。
(Description of operation of second embodiment)
Next, an example of the operation of the wireless return station apparatus 101 shown in FIG. 8 as the second embodiment of the present invention will be described in detail with reference to FIG. 9 and FIG. As described above, in each of the k baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 20 of the radio base station apparatus 101 shown in FIG. As in the above embodiment, wireless communication processing, such as Layer-1 processing (baseband signal processing) such as LTE-Advanced, is performed for n base station cells (RRU) 11 to 1n in an integrated manner. .
 k個のベースバンド信号処理カード(BBU)21~2kによる処理リソースの共有により、基地局セル(RRU)11~1n分のそれぞれの基地局セル(RRU)の処理を、k個のベースバンド信号処理カード(BBU)21~2kのうち、どのベースバンド信号処理カード(BBU)で実施するかを可変とするために、各基地局セル(RRU)11~1nと各ベースバンド信号処理カード(BBU)21~2kとの間の接続切り替えは、接続切り替え制御部40にて実施される。接続切り替え制御部40にて切り替えられた各送受信信号は、光ファイバや無線バックホール(フロントホール)などを介して、互いに接続された状態になった基地局セル(RRU)11~1nとベースバンド信号処理カード(BBU)21~2kとの間で送受信される。 By sharing processing resources among the k baseband signal processing cards (BBU) 21 to 2k, each base station cell (RRU) for the base station cells (RRU) 11 to 1n can be processed with k baseband signals. Among the processing cards (BBUs) 21 to 2k, in order to change which baseband signal processing card (BBU) is used, each base station cell (RRU) 11 to 1n and each baseband signal processing card (BBU) The connection switching between 21 and 2k is performed by the connection switching control unit 40. Each transmission / reception signal switched by the connection switching control unit 40 is connected to the base station cells (RRU) 11 to 1n that are connected to each other via an optical fiber or a wireless backhaul (fronthaul) and the baseband. Data is transmitted to and received from the signal processing card (BBU) 21-2k.
 ここで、本第2の実施の形態における接続切り替え制御部40の特徴として、前述のように、隣接する両側2個ずつの接続切り替えモジュール同士を相互接続することが可能な状態になるように、隣り合う2個先まで各接続切り替えモジュール41~4kを互いに連接した構成としている。さらに、最後の接続切り替えモジュール4kと先頭の接続切り替えモジュール41とを相互接続可能とするリング型の構成としている。図9は、本発明の第2の実施の形態における接続切り替えモジュール41~4kの構成例を示す模式図であり、各接続切り替えモジュール41~4kの一構成例として、第i番目(1≦i≦k)の接続切り替えモジュール4iを例にとって、隣接する両側2個ずつの接続切り替えモジュールと相互接続を可能にする構成例を示している。 Here, as a feature of the connection switching control unit 40 in the second embodiment, as described above, two adjacent connection switching modules on both sides can be interconnected. The connection switching modules 41 to 4k are connected to each other up to two adjacent points. Furthermore, the last connection switching module 4k and the first connection switching module 41 are configured to be capable of mutual connection. FIG. 9 is a schematic diagram showing a configuration example of the connection switching modules 41 to 4k according to the second embodiment of the present invention. As a configuration example of each of the connection switching modules 41 to 4k, the i-th (1 ≦ i Taking a connection switching module 4i of ≦ k) as an example, a configuration example is shown in which two adjacent connection switching modules on both sides can be interconnected.
 図9に示す例においては、第1の実施の形態の図2の場合と同様、1つの接続切り替えモジュール4iにはBBU#iの1個との間を接続するベースバンド信号処理モジュール(BBU)用入出力インタフェース、(少なくとも)RRU#j、RRU#j、RRU#j(1≦j、j、j≦k)の3個のRRUとの間を接続する基地局セル(RRU)用入出力インタフェース、両側に隣接する2個ずつの接続切り替えモジュール4(i-2)、4(i-1)、4(i+1)、4(i+2)それぞれと相互接続を行う相互接続用入出力インタフェース、を備えている場合の例を示している。すなわち、該接続切り替えモジュール4iに接続された第i番目のBBU#iの1個のみによって、トラフィックが如何に大きい場合であっても、(少なくとも)任意の3個のRRU、例えば、第j番目のRRU#j、第j番目のRRU#j、第j番目のRRU#j(1≦j、j、j≦k)の3個のRRUを処理することができる場合を想定した構成例を示している。 In the example shown in FIG. 9, as in the case of FIG. 2 of the first embodiment, a baseband signal processing module (BBU) that connects one connection switching module 4i to one of BBU # i. Input / output interface, (at least) RRU #j 1 , RRU #j 2 , RRU #j 3 (1 ≦ j 1 , j 2 , j 3 ≦ k) 3 RRU base station cells connected (RRU) I / O interface, two interconnection switching modules 4 (i-2), 4 (i-1), 4 (i + 1), and 4 (i + 2) adjacent to each other. This shows an example in the case of having an input / output interface. That is, no matter how large the traffic is due to only one of the i-th BBU # i connected to the connection switching module 4i, (at least) any three RRUs, for example, j 1 th RRU # j 1, the j 2 th RRU # j 2, to process three RRU of the j 3 th RRU # j 3 (1 ≦ j 1, j 2, j 3 ≦ k) A configuration example assuming a possible case is shown.
 図9に示す構成例の場合、当該接続切り替えモジュール4iに接続された3個のRRU#j、RRU#j、RRU#jからの第1RRU入力インタフェース1が1系統、両側2個ずつの隣接接続切り替えモジュール4(i-2)、4(i-1)、4(i+1)および4(i+2)からの第2RRU入力インタフェース2が4系統、RRU#j、RRU#j、RRU#jから両側2個ずつの隣接接続切り替えモジュール4(i-2)、4(i-1)、4(i+1)および4(i+2)に向けた第1RRU出力インタフェース3が4系統、そして、第1RRU入力インタフェース1と第2RRU入力インタフェース2とのそれぞれからの各入力を選択調停する選択回路(図9には図示していない)等から構成される。 In the case of the configuration example shown in FIG. 9, the first RRU input interface 1 from the three RRU # j 1 , RRU # j 2 , and RRU # j 3 connected to the connection switching module 4 i is one system, two on each side. 4 of the second RRU input interface 2 from the adjacent connection switching modules 4 (i-2), 4 (i-1), 4 (i + 1) and 4 (i + 2), RRU # j 1 , RRU # j 2 , RRU #j 3 sides two by adjacent connection switching module 4 from (i-2), 4 ( i-1), 4 (i + 1) and 4 (i + 2) the 1RRU output interface 3 is 4 lines towards Then, It comprises a selection circuit (not shown in FIG. 9) that selectively arbitrates each input from each of the first RRU input interface 1 and the second RRU input interface 2.
 各ベースバンド信号処理カード(BBU)21~2kの最大処理能力にも依存するが、図9に示す実施例においては、1個のBBU例えばBBU#iに最大15個の基地局セル(RRU)を接続して、処理することが可能である。なお、図9には、RRU側からBBU側への信号の流れのみを図示しており、BBU側からRRU側への逆方向の信号の流れについては記載を割愛している。しかし、実際には、BBU側からRRU側への逆方向の信号の流れもほぼ同様に存在することに留意されたい。 Although depending on the maximum processing capability of each baseband signal processing card (BBU) 21 to 2k, in the embodiment shown in FIG. 9, a maximum of 15 base station cells (RRU) per BBU, for example, BBU # i. Can be connected and processed. Note that FIG. 9 shows only the signal flow from the RRU side to the BBU side, and does not describe the reverse signal flow from the BBU side to the RRU side. However, it should be noted that in reality, there is almost the same reverse signal flow from the BBU side to the RRU side.
 かくのごとく、複数の接続切り替えモジュールを並べて互いに連接して、隣接する両側2個ずつの接続切り替えモジュールと相互接続することにより、各接続切り替えモジュール例えば接続切り替えモジュール#i 4iに接続された任意の基地局セル(RRU)例えばRRU#jは、当該RRU#jが接続された接続切り替えモジュール例えば接続切り替えモジュール#i 4iに対応するBBU例えばBBU#iを中心にして、少なくとも隣接する複数の(図9の例では4個の)BBU間も含めた複数のBBU間例えばBBU#(i-2)、BBU#(i-1)、BBU#i、BBU#(i+1)、BBU#(i+2)の5個のBBU間において接続を切り替えることが可能である。 In this way, by connecting a plurality of connection switching modules side by side and interconnecting with two adjacent connection switching modules on both sides, any connection switching module such as connection switching module #i 4i can be connected. base station cell (remote RF unit) for example remote RF unit # j 1 is about the BBU example BBU # i the remote RF unit # j 1 corresponding to the connected connection switching module for instance connected switching modules #i 4i, a plurality of at least adjacent Between a plurality of BBUs including four BBUs (four in the example of FIG. 9), for example, BBU # (i-2), BBU # (i-1), BBU # i, BBU # (i + 1), BBU # (i + 2) The connection can be switched among the five BBUs.
 図10は、本発明の第2の実施の形態における接続切り替えモジュール41~4kの接続構成例と、次に稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)ベースバンド信号処理カード(BBU)の順番を決定する仕組みの一例とを説明するための説明図である。図10の実施例においては、接続切り替え制御部40の接続切り替えモジュール41~4kの個数kが、接続切り替えモジュール#1~接続切り替えモジュール#8の8個(k=8)、および、対応して接続するベースバンド処理プール(BBU-pool)20のベースバンド信号処理カード(BBU)21~2kの個数kも、BBU#1~BBU#8の8個(k=8)とし、一方、基地局セル(RRU)11~1nの個数nを、RRU#1~RRU#24の24個(n=24)とし、かつ、8個の各接続切り替えモジュール41~48それぞれには図9に例示した接続切り替えモジュールを用いている場合を示している。 FIG. 10 shows a connection configuration example of the connection switching modules 41 to 4k according to the second embodiment of the present invention, and a baseband signal processing card for which operation is to be turned off next (that is, operation is to be set to an off state). It is explanatory drawing for demonstrating an example of the mechanism which determines the order of (BBU). In the embodiment of FIG. 10, the number k of connection switching modules 41 to 4k of the connection switching control unit 40 is eight (k = 8) of connection switching module # 1 to connection switching module # 8, and correspondingly. The number k of baseband signal processing cards (BBU) 21 to 2k of the baseband processing pool (BBU-pool) 20 to be connected is also 8 (k = 8) of BBU # 1 to BBU # 8, while the base station The number n of the cells (RRU) 11 to 1n is 24 (n = 24) of RRU # 1 to RRU # 24, and each of the eight connection switching modules 41 to 48 has the connection illustrated in FIG. The case where the switching module is used is shown.
 また、各BBU#1~BBU#8は、基本的に(トラフィックが大きい場合を想定して)、各BBU#1~BBU#8それぞれに対応する各接続切り替えモジュール#1~接続切り替えモジュール#8それぞれに接続された3個分のRRUに関する処理を行う場合を示している。つまり、BBU#1は、RRU#1~RRU#3の3個分のRRU、BBU#2は、RRU#4~RRU#6の3個分のRRU、…、BBU#7は、RRU#19~RRU#21の3個分のRRU、BBU#8は、RRU#22~RRU#24の3個分のRRUの処理をそれぞれ行う。 Also, each of the BBU # 1 to BBU # 8 is basically (assuming that traffic is large), and the connection switching module # 1 to connection switching module # 8 corresponding to each of the BBU # 1 to BBU # 8, respectively. The case where the process regarding three RRUs connected to each is performed is shown. That is, BBU # 1 has three RRUs RRU # 1 to RRU # 3, BBU # 2 has three RRUs RRU # 4 to RRU # 6,..., BBU # 7 has RRU # 19 RRU # 21 for RRU # 21 and BBU # 8 perform RRU processing for RRU # 22 to RRU # 24, respectively.
 そして、各RRU#1~RRU#24は、ベースバンド処理プール(BBU-pool)20のBBU#1~BBU#8のうち、各RRU#1~RRU#24ごとにあらかじめ定めた互いに隣接ずるBBUのいずれかに限定して接続することが可能である。すなわち、各RRU#1~RRU#24は、それぞれのRRUが接続された接続切り替えモジュール#1~接続切り替えモジュール#8それぞれに対応して接続されたBBU#1~BBU#8それぞれを中心にして、少なくとも両側に隣接する4つのBBUも含めた合計5つのBBUのいずれかに選択接続することが可能である。例えば、図10のRRU#4の場合は、接続切り替えモジュール#2に接続されているが、対応して接続されたBBU#2を中心にして、リング状に隣接する両側2つずつのBBU#8、BBU#1、BBU#3、BBU#4を含め、5つのBBU(BBU#8、BBU#1、BBU#2,BBU#3、BBU#4)のいずれでも選択して接続することが可能である。 Each of the RRU # 1 to RRU # 24 is a BBU adjacent to each other that is predetermined for each RRU # 1 to RRU # 24 among the BBU # 1 to BBU # 8 of the baseband processing pool (BBU-pool) 20. It is possible to connect only to any of the above. That is, each of RRU # 1 to RRU # 24 is centered on each of BBU # 1 to BBU # 8 connected corresponding to each of connection switching module # 1 to connection switching module # 8 to which each RRU is connected. It is possible to selectively connect to any of a total of five BBUs including at least four BBUs adjacent to both sides. For example, in the case of RRU # 4 in FIG. 10, it is connected to the connection switching module # 2, but two BBU # s on both sides adjacent to each other in a ring shape centering on the correspondingly connected BBU # 2. 8 and BBU # 1, BBU # 3, BBU # 4, and any of the five BBUs (BBU # 8, BBU # 1, BBU # 2, BBU # 3, BBU # 4) can be selected and connected. Is possible.
 そして、例えば、トラフィックが小さい場合には、8つのBBU#1~BBU#8のうち、任意のBBU例えばBBU#2は、当該BBU#2が対応して接続される接続切り替えモジュール#2を中心にして、リング状に隣接する接続切り替えモジュール#8、接続切り替えモジュール#1、接続切り替えモジュール#3、接続切り替えモジュール#4を含め、5つの接続切り替えモジュール(接続切り替えモジュール#8、接続切り替えモジュール#1、接続切り替えモジュール#2、接続切り替えモジュール#3、接続切り替えモジュール#4)に接続された最大15個のRRUを接続して処理することが可能な構成とされている。 For example, when the traffic is small, an arbitrary BBU, for example, BBU # 2 out of the eight BBU # 1 to BBU # 8 is centered on the connection switching module # 2 to which the BBU # 2 is connected correspondingly. And five connection switching modules (connection switching module # 8, connection switching module #) including connection switching module # 8, connection switching module # 1, connection switching module # 3, and connection switching module # 4 that are adjacent in a ring shape. 1, a connection switching module # 2, a connection switching module # 3, a connection switching module # 4), and a maximum of 15 RRUs connected thereto can be connected and processed.
 つまり、例えば、BBU#2の場合には、当該BBU#2に接続されたRRU#4~RRU#6の3個分、および、両隣の接続切り替えモジュール#1と接続切り替えモジュール#3とのそれぞれに接続されたRRU#1~RRU#3の3個分とRRU#7~RRU#9の3個分、さらに、リング状に2つ先の隣になる接続切り替えモジュール#8と接続切り替えモジュール#4とのそれぞれに接続されたRRU#22~RRU#24の3個分とRRU#10~RRU#12の3個分を合計した最大15個のRRU#1~#12、RRU#22~#24を接続して処理することが可能である。 That is, for example, in the case of BBU # 2, three of RRU # 4 to RRU # 6 connected to the BBU # 2, and each of the connection switching module # 1 and the connection switching module # 3 adjacent to each other Three RRU # 1 to RRU # 3 and three RRU # 7 to RRU # 9 connected to, and a connection switching module # 8 and a connection switching module # adjacent to the next two in a ring shape 4 and RRU # 22 to RRU # 24 connected to each of the four and three RRU # 10 to RRU # 12 are added up to a total of 15 RRU # 1 to # 12, RRU # 22 to # 24 can be connected for processing.
 次に、図8に示したように、無線基地局装置101は、第1の実施の形態の無線基地局装置100と同様、各BBUにおける処理リソース共有を実施するために、トラフィック予測部52(トラフィック予測機能)によるトラフィック予測結果に基づいて、k個の各ベースバンド信号処理カード(BBU)21~2kへのn個の基地局セル(RRU)11~1nの処理リソース割り当てを行う処理リソース割り当て制御部51を備えている。 Next, as illustrated in FIG. 8, the radio base station apparatus 101, like the radio base station apparatus 100 of the first embodiment, performs traffic resource sharing in each BBU in order to share the processing resources ( Processing resource allocation for allocating processing resources of n base station cells (RRU) 11 to 1n to k baseband signal processing cards (BBU) 21 to 2k based on a traffic prediction result by a traffic prediction function) A control unit 51 is provided.
 トラフィック予測部52は、あらかじめ定めた或る一定の時間間隔ごとに、日々のトラフィックデータが蓄積されたトラフィックデータベース(各時間間隔ごとの日々のトラフィックの平均値)や、当日のトラフィック履歴(各時間間隔ごとの当日のトラフィックの実績値)などを用いて、n個の基地局セル(RRU)11~1nごとに、次の前記一定の時間間隔分のトラフィック予測を行う。 The traffic prediction unit 52 includes a traffic database (average value of daily traffic for each time interval) in which daily traffic data is accumulated at a certain predetermined time interval, traffic history of each day (each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval).
 また、処理リソース割り当て制御部51は、トラフィック予測部52において予測されたトラフィックに基づいて、k個の各ベースバンド信号処理カード(BBU)21~2kそれぞれに対するn個の各基地局セル(RRU)11~1nの処理リソース割り当ての制御を行う。該処理リソース割り当て制御の目的は、第1の実施の形態においても説明したように、低消費電力化を実現するために、処理リソース共有により、できるだけ少ない個数のBBUだけを稼動させ、稼動OFFにすることができるBBU数をできるだけ増やすことにある。 Further, the processing resource allocation control unit 51, based on the traffic predicted by the traffic prediction unit 52, n base station cells (RRU) for each of the k baseband signal processing cards (BBUs) 21 to 2k. 11 to 1n processing resource allocation is controlled. As described in the first embodiment, the purpose of the processing resource allocation control is to operate only as few BBUs as possible and to turn off the operation by sharing processing resources in order to realize low power consumption. The purpose is to increase the number of BBUs that can be performed as much as possible.
 次に、本第2の実施の形態において、低消費電力化を実現するために処理リソース割り当て制御部51において実施される処理リソース割り当ての制御の一例について、図10の説明図を用いてさらに説明する。なお、本第2の実施の形態における処理リソース割り当て制御の全体処理手順の流れは、第1の実施の形態と基本的には同じであり、第1の実施の形態の図4の制御フローチャートに示した手順と同じである。ただし、本第2の実施の形態における特有の制御動作として、前述したように、接続切り替えモジュール41~4kの構成が、両側2個ずつの隣接する接続切り替えモジュールに相互接続が可能な構成であり、また、最後の接続切り替えモジュール4kと先頭の接続切り替えモジュール41との間のリング接続も可能としているため、任意の1つのBBUにおいてより多くのRRU処理の処理リソース共有が可能である点を考慮した制御となっている。 Next, an example of processing resource allocation control performed by the processing resource allocation control unit 51 in order to achieve low power consumption in the second embodiment will be further described with reference to the explanatory diagram of FIG. To do. Note that the flow of the overall processing procedure of the processing resource allocation control in the second embodiment is basically the same as that in the first embodiment, and is shown in the control flowchart of FIG. 4 in the first embodiment. The procedure is the same as shown. However, as a specific control operation in the second embodiment, as described above, the configuration of the connection switching modules 41 to 4k is a configuration in which two adjacent connection switching modules on both sides can be interconnected. In addition, since the ring connection between the last connection switching module 4k and the first connection switching module 41 is also possible, it is possible to share processing resources for more RRU processes in any one BBU. Control.
 したがって、例えば、第1の実施の形態として図4に示した処理リソース割り当て制御フローチャートのステップS1において、稼動OFFにしたいBBUの順番を決定する際に、本第2の実施の形態においては、より多くの稼動OFF対象BBUを設定することが可能である。 Therefore, for example, in step S1 of the processing resource allocation control flowchart shown in FIG. 4 as the first embodiment, when determining the order of BBUs to be turned off, in the second embodiment, It is possible to set many operation OFF target BBUs.
 図10の説明図には、前述したように、本第2の実施の形態における、次に稼動OFFにしたいBBUを決定する仕組みについても示している。本第2の実施の形態においては、最大で隣接する5つの接続切り替えモジュールに接続されたRRUをいずれか1つのBBUに選択接続することが可能な構成になっている。そのため、図10の説明図においては、第1の実施の形態の動作を示した図5の場合の「トラフィック大」、「トラフィック中」、「トラフィック小」として記載したBBU稼動状態のケースの他に、さらに追加して、「トラフィック極小」として記載したBBU稼動状態のケースも実現することができる。 In the explanatory diagram of FIG. 10, as described above, the mechanism for determining the BBU to be turned off next time in the second embodiment is also shown. In the second embodiment, the RRU connected to the five adjacent connection switching modules at the maximum can be selectively connected to any one BBU. Therefore, in the explanatory diagram of FIG. 10, in addition to the case of the BBU operating state described as “traffic high”, “medium traffic”, and “traffic small” in the case of FIG. 5 showing the operation of the first embodiment. In addition, the BBU operating state case described as “traffic minimum” can also be realized.
 なお、本第2の実施の形態においても、図4のステップS1の処理(次に稼動OFFにしたいBBUの決定方法)において、稼動OFFにしたいBBUを決定する方法については、第1の実施の形態の場合と同様に、図8の処理リソース割り当て制御部51は、トラフィック予測部52によって予測されたトラフィック量に応じて、基本的には、2のべき乗の間隔ごとに、稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)ベースバンド信号処理カード(BBU)を選択して設定する。 Also in the second embodiment, in the process of step S1 in FIG. 4 (the method for determining the BBU to be turned off next), the method for determining the BBU to be turned off is described in the first embodiment. As in the case of the embodiment, the processing resource allocation control unit 51 in FIG. 8 basically wants to turn off the operation at every power-of-two interval according to the traffic amount predicted by the traffic prediction unit 52 ( In other words, the baseband signal processing card (BBU) that is to be set to the off state is selected and set.
 すなわち、例えば、図10(A)に示すように、トラフィックが大きい場合には、8個(=2個)間隔で、稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)BBUを設定する(図10の例の場合には、8個のBBUのうち例えばBBU#4の1個を設定する)。また、図10(B)に示すように、トラフィックが中程度の場合には、4個(=2個)間隔で、稼動OFFにしたいBBUを設定する(図10の例の場合には、8個のBBUのうち例えばBBU#4とBBU#8との2個を設定する)。また、図10(C)に示すように、トラフィックが小さい場合には、2個(=2個)間隔で、稼動OFFにしたいBBUを設定する(図10の例の場合には、8個のBBUのうち例えばBBU#2とBBU#4とBBU#6とBBU#8との4個を設定する)。 That is, for example, as shown in FIG. 10 (A), when the traffic is large, the BBU is to be turned off at an interval of 8 (= 2 3 ) (that is, the operation is set to the off state). (In the case of the example of FIG. 10, for example, one of BBU # 4 is set out of eight BBUs). Further, as shown in FIG. 10 (B), in the case of moderate traffic, with four (= 2 2) interval, sets the BBU to be in the operation OFF (in the example of FIG. 10, Among the eight BBUs, for example, two of BBU # 4 and BBU # 8 are set). Also, as shown in FIG. 10C, when traffic is small, BBUs to be turned off are set at intervals of 2 (= 2 1 ) (in the example of FIG. 10, 8). For example, four BBU # 2, BBU # 4, BBU # 6, and BBU # 8 are set among the BBUs).
 さらに、本第2の実施の形態に特有のケースとして、図10(D)に示すように、トラフィックが極小の場合には、稼動ONになるBBUが4個(=2個)間隔になるように、稼動OFFにしたいBBUを設定する(図10の例の場合には、8個のBBUのうち例えばBBU#2とBBU#3とBBU#4とBBU#6とBBU#7とBBU#8との6個を稼動OFFにしたいBBUとして設定する)。本第2の実施の形態においてかくのごとき設定が可能になった理由は、第1の実施の形態においては、各RRU#1~RRU#24は、隣接する3つのBBUまでしか接続することができなかったが、本第2の実施の形態においては、隣接する5つのBBUまで接続することが可能な構成となったため、隣接する3つのBBUを全て稼動OFFにすることができるようになったためである。 Further, as the second case specific to the embodiment of, as shown in FIG. 10 (D), when the traffic of the minima, BBU becomes operational ON is four (= 2 2) Interval Thus, the BBU to be turned off is set (in the case of the example of FIG. 10, for example, BBU # 2, BBU # 3, BBU # 4, BBU # 6, BBU # 7, and BBU # among the eight BBUs) 6 and 8 are set as BBUs to be turned off.) The reason why such a setting is possible in the second embodiment is that, in the first embodiment, each RRU # 1 to RRU # 24 can connect only up to three adjacent BBUs. Although it was not possible, in the second embodiment, since it is possible to connect up to five adjacent BBUs, all three adjacent BBUs can be turned off. It is.
 さらに、トラフィック予測時点における各ベースバンド信号処理カード(BBU)の稼動状態として、図10(A)の「トラフィック大」に記載のBBU稼動状態(8個のBBUのうち例えばBBU#4または他のいずれか1つのBBUが稼動OFFの状態)を実現できている場合には、次に、図10(B)の「トラフィック中」に記載のBBU稼動状態(8個のBBUのうち例えばBBU#4、BBU#8の2つまたは4個間隔で他のいずれか2つのBBUを稼動OFFにする状態)を目指して処理リソース割り当て制御を行う。すなわち、例えば、図10(A)に示すように、BBU#4の1つのBBUが稼動OFFの状態にあった場合には、図10(B)の「Low」に示すように、その次に追加してBBU#8も稼動OFFにすることを目指す。 Further, as the operation state of each baseband signal processing card (BBU) at the time of traffic prediction, the BBU operation state (for example, BBU # 4 or other of 8 BBUs) described in “traffic large” in FIG. If any one of the BBUs is in an operation OFF state, then the BBU operation state described in “traffic” in FIG. 10B (for example, BBU # 4 out of 8 BBUs) , A process resource allocation control is performed aiming at a state where any other two BBUs are turned off at intervals of two or four of BBU # 8. That is, for example, as shown in FIG. 10A, when one BBU of BBU # 4 is in an operation OFF state, as shown in “Low” in FIG. In addition, it aims to turn off the operation of BBU # 8.
 また、トラフィック予測時点におけるベースバンド信号処理カード(BBU)の稼動状態として、図10(B)の「トラフィック中」のBBU稼動状態を既に実現できている場合には、次に、図10(C)の「トラフィック小」に記載のBBU稼動状態(8個のBBUのうち例えばBBU#2、BBU#4、BBU#6、BBU#8の4つまたは2個間隔で他のいずれか4つのBBUを稼動OFFにする状態)を目指して処理リソース割り当て制御を行う。すなわち、例えば、図10(B)に示すように、BBU#4、#8の2つのBBUが稼動OFFの状態にあった場合には、図10(C)の「Low」に示すように、その次に追加してBBU#2、BBU#6も稼動OFFにすることを目指す。 If the BBU operating state of “in traffic” of FIG. 10B has already been realized as the operating state of the baseband signal processing card (BBU) at the time of traffic prediction, next, FIG. BBU operating state described in “Small traffic” (e.g., out of 8 BBUs, for example, BBU # 2, BBU # 4, BBU # 6, BBU # 8, or any other 4 BBUs at intervals of 2) The processing resource allocation control is performed aiming at a state where the operation is turned off. That is, for example, as shown in FIG. 10 (B), when two BBUs BBU # 4 and # 8 are in an operation OFF state, as shown in “Low” in FIG. 10 (C), In addition, it aims to turn off the operation of BBU # 2 and BBU # 6 in addition.
 また、トラフィック予測時点におけるベースバンド信号処理カード(BBU)の稼動状態として、図10(C)の「トラフィック小」のBBU稼動状態を既に実現できている場合には、次に、図10(D)の「トラフィック極小」に記載のBBU稼動状態(8個のBBUのうち稼動ONのBBUが4個間隔になるように他のいずれか6つのBBUを稼動OFFにする状態)を目指して処理リソース割り当て制御を行う。すなわち、例えば、図10(C)に示すように、BBU#2、BBU#4、BBU#6、BBU#8の4つのBBUが稼動OFFの状態にあった場合には、図10(D)の「Low」に示すように、その次に追加してBBU#3、BBU#7も稼動OFFにすることを目指す。 If the BBU operating state of “low traffic” in FIG. 10C has already been realized as the operating state of the baseband signal processing card (BBU) at the time of traffic prediction, next, FIG. ) Processing resources aiming at the BBU operating state described in “Traffic minimum” (state in which any other 6 BBUs are turned off so that four BBUs are turned on among the 8 BBUs) Perform allocation control. That is, for example, as shown in FIG. 10C, when four BBUs of BBU # 2, BBU # 4, BBU # 6, and BBU # 8 are in an operation OFF state, as shown in FIG. As shown in “Low”, the BBU # 3 and BBU # 7 are added to the next, and the operation is turned off.
 なお、本第2の実施の形態における図4のステップS2の処理(処理リソース割り当て制御を行うベースバンド信号処理カード(BBU)の決定方法)の仕組みについては、第1の実施の形態の場合と同様である。処理リソース割り当て制御部51は、処理リソース割り当て制御を行うベースバンド信号処理カード(BBU)の選択順として、稼動OFFにしたいBBU(既に稼動OFFの状態にあるBBUも含む)からできるだけ遠く離れたBBUから順番に優先的に処理リソース割り当て制御を行う。ここで、稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)BBUおよび既に稼動OFF状態のBBUが複数存在する場合には、該当するBBUの中間に位置するBBUから順番に処理リソース割り当て制御を行う。 Note that the mechanism of the process of step S2 in FIG. 4 in the second embodiment (a method for determining a baseband signal processing card (BBU) that performs processing resource allocation control) is the same as in the case of the first embodiment. It is the same. The processing resource allocation control unit 51 selects a baseband signal processing card (BBU) that performs processing resource allocation control as far as possible from a BBU that is to be turned off (including BBUs that are already turned off). Processing resource allocation control is performed with priority in order. Here, when there are a plurality of BBUs that are desired to be turned off (that is, the operation is to be set to the off state) and BBUs that are already in the operation OFF state, processing resources are sequentially processed from the BBU located in the middle of the corresponding BBU. Perform allocation control.
 例えば、トラフィック予測部52においてトラフィックが大きいと予測され、図10(A)の「トラフィック大」に記載のように、8個のBBUのうち例えばBBU#4を次に稼動OFFにしたいBBUとして決定した場合、または、BBU#4を稼動OFFの状態に既に設定していた場合には、図10(A)の「High1」に示すように、当該BBU#4から距離的に最も離れているBBU#8から順番に優先的に処理リソース割り当て制御を行う。また、トラフィックが中程度と予測され、図10(B)の「トラフィック中」に記載のように、8個のBBUのうち例えばBBU#4とBBU#8とを次に稼動OFFにしたいBBUとして決定した場合、または、BBU#4とBBU#8とを稼動OFFの状態に既に設定していた場合には、図10(B)の「High1」に示すように、当該BBU#4およびBBU#8から距離的に最も離れたBBUすなわち当該BBU#4およびBBU#8の中間に位置するBBUとなるBBU#2や#6から順番に優先的に処理リソース割り当て制御を行う。 For example, the traffic predicting unit 52 predicts that the traffic is large, and for example, BBU # 4 is determined as the BBU to be next turned off among the 8 BBUs, as described in “traffic large” in FIG. If BBU # 4 has already been set to the operation OFF state, as shown in “High1” in FIG. 10A, the BBU that is farthest away from the BBU # 4 Processing resource allocation control is performed preferentially from # 8. Further, as described in “traffic” in FIG. 10B, for example, BBU # 4 and BBU # 8 among the eight BBUs are set as BBUs whose operation is to be turned off next. If determined, or if BBU # 4 and BBU # 8 have already been set to the operation OFF state, as shown in “High1” of FIG. 10B, the BBU # 4 and BBU # The processing resource allocation control is preferentially performed in order from the BBU # 2 or # 6 that is the BBU located farthest from the distance 8, that is, between the BBU # 4 and the BBU # 8.
 なお、図10(B)の「トラフィック中」に記載のように、稼動OFFにしたいBBUおよび既に稼動OFF状態のBBUが複数存在する場合に、複数の当該BBUから距離的に同じ程度離れたBBUが複数存在している場合には、同じ程度離れた複数のBBUのうち、いずれのBBUから順番に優先的に処理リソース割り当て制御を行うようにしても良い。また、図10(A)の「トラフィック大」の場合において、BBU#8の次に優先的に処理リソース割り当て制御を行うBBUとして、BBU#1とBBU#7とがBBU#4からの距離が同じ程度であった場合には、BBU#8の次の優先順としてBBU#1、BBU#7のいずれを選択しても構わない。 Note that, as described in “traffic” in FIG. 10B, when there are a plurality of BBUs to be turned off and BBUs that are already turned off, the BBUs that are separated by the same distance from the plurality of BBUs. When there are a plurality of BBUs, the processing resource allocation control may be preferentially performed in order from any BBU among a plurality of BBUs separated by the same degree. In the case of “large traffic” in FIG. 10A, BBU # 1 and BBU # 7 have distances from BBU # 4 as BBUs that preferentially process resource allocation control after BBU # 8. In the case of the same degree, either BBU # 1 or BBU # 7 may be selected as the next priority order of BBU # 8.
(第3の実施の形態の構成例)
 次に、本発明の第3の実施の形態における無線基地局装置の構成例について、図11を参照しながら説明する。図11は、本発明の第3の実施の形態における無線基地局装置の全体構成例を示すブロック構成図であり、無線基地局装置として、第1の実施の形態の図1の場合と同様、無線信号処理を集約化してその処理リソースを共有する無線基地局装置の全体構成例を示している。ただし、本第3の実施の形態の図11に示す無線基地局装置102においては、第1の実施の形態の図1の場合の接続切り替え制御部30の構成とは異なり、k個のベースバンド信号処理カード(BBU)21~2kとn個の基地局セル(RRU)11~1nとを任意に定めた一定の単位でクラスタ化して、該クラスタ化に応じて、接続切り替え制御部70も一部クラスタ化して、処理リソース制御を行う場合の構成例に示している。
(Configuration example of the third embodiment)
Next, a configuration example of a radio base station apparatus according to the third embodiment of the present invention will be described with reference to FIG. FIG. 11 is a block configuration diagram illustrating an example of the overall configuration of the radio base station apparatus according to the third embodiment of the present invention. As the radio base station apparatus, as in the case of FIG. 1 of the first embodiment, An example of the overall configuration of a radio base station apparatus that consolidates radio signal processing and shares its processing resources is shown. However, in the radio base station apparatus 102 shown in FIG. 11 of the third embodiment, unlike the configuration of the connection switching control unit 30 in the case of FIG. 1 of the first embodiment, k basebands The signal processing cards (BBU) 21 to 2k and the n base station cells (RRU) 11 to 1n are clustered in a predetermined unit, and the connection switching control unit 70 is also associated with the clustering. This is shown in the configuration example when processing resources are controlled by partial clustering.
 図11に示す無線基地局装置102は、第1の実施の形態の図1の場合と同様、n(n:自然数)個の基地局セル(RRU:Remote Radio Unitリモート無線ユニット)11~1nの各無線通信処理を集約して実施するベースバンド処理プール(BBU-pool)90を備え、ベースバンド処理プール(BBU-pool)90内にはk(k:自然数、k≦n)個のベースバンド信号処理カード(BBU:Base Band Unitベースバンド信号処理モジュール)21~2kを備える。ベースバンド処理プール(BBU-pool)90内のk個(1個ないし複数個)のベースバンド信号処理カード(BBU)21~2kそれぞれは、n個の基地局セル(RRU)11~1n間における処理リソースの共有を行いながら、例えばLTE-Advancedなどの無線方式のLayer-1処理(ベースバンド信号処理)等を行う。 As in the case of FIG. 1 of the first embodiment, the radio base station apparatus 102 shown in FIG. 11 includes n (n: natural number) base station cells (RRU: Remote Radio Unit remote radio units) 11 to 1n. A baseband processing pool (BBU-pool) 90 that collects and executes each wireless communication process is provided, and k (k: natural number, k ≦ n) basebands are included in the baseband processing pool (BBU-pool) 90. A signal processing card (BBU: Base Band Unit baseband signal processing module) 21 to 2k is provided. Each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 90 is connected between n base station cells (RRU) 11 to 1n. While sharing the processing resources, for example, wireless Layer-1 processing (baseband signal processing) such as LTE-Advanced is performed.
 また、第1の実施の形態の図1の場合と同様、k個(1個ないし複数個)のベースバンド信号処理カード(BBU)21~2kそれぞれのRF(Radio Frequency:無線)部側は、接続切り替え制御部70を介して、光ファイバや無線バックホール(フロントホール)などにより、各基地局セル(RRU)11~1nと接続される。ここで、ベースバンド処理プール(BBU-pool)90において処理する無線方式は、LTE-Advanced以外の無線方式であっても何ら問題はないし、また、処理するレイヤについてもLayer-1以外のLayer-2等の処理であっても特に問題はない。 As in the case of FIG. 1 of the first embodiment, the RF (Radio Frequency) unit side of each of the k (one or plural) baseband signal processing cards (BBU) 21 to 2k is The base station cells (RRU) 11 to 1n are connected to each base station cell (RRU) 11n by an optical fiber, a radio backhaul (fronthaul), or the like via the connection switching control unit 70. Here, there is no problem even if the radio system to be processed in the baseband processing pool (BBU-pool) 90 is a radio system other than LTE-Advanced, and the layer to be processed is a Layer- other than Layer-1. There is no particular problem even if the processing is 2 or the like.
 ただし、本第3の実施の形態に特有の構成として、ベースバンド処理プール(BBU-pool)90内の各ベースバンド信号処理カード(BBU)21~2kは、あらかじめ任意に定めた一定の単位でクラスタ化されていて、例えば、第1信号処理カードクラスタ(第1BBUクラスタ)91、第2信号処理カードクラスタ(第2BBUクラスタ)92等を備えている。そして、例えば、ベースバンド信号処理カード(BBU)21~23は第1信号処理カードクラスタ(第1BBUクラスタ)91に含まれ、ベースバンド信号処理カード(BBU)24~2kは第2信号処理カードクラスタ(第2BBUクラスタ)92に含まれる。 However, as a configuration unique to the third embodiment, each baseband signal processing card (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 90 is in a predetermined unit arbitrarily determined. For example, a first signal processing card cluster (first BBU cluster) 91 and a second signal processing card cluster (second BBU cluster) 92 are provided. For example, the baseband signal processing cards (BBU) 21 to 23 are included in the first signal processing card cluster (first BBU cluster) 91, and the baseband signal processing cards (BBU) 24 to 2k are the second signal processing card cluster. (Second BBU cluster) 92.
 同様に、基地局セル(RRU)11~1nもあらかじめ任意に定めた単位でクラスタ化された形となっており、例えば、第1基地局セルクラスタ(第1RRUクラスタ)10A、第2基地局セルクラスタ(第2RRUクラスタ)10B等を備えている。そして、例えば、基地局セル(RRU)11~15は第1基地局セルクラスタ(第1RRUクラスタ)10Aに含まれ、基地局セル(RRU)16~1nは第2基地局セルクラスタ(第2RRUクラスタ)10Bに含まれる。 Similarly, the base station cells (RRU) 11 to 1n are also clustered in units determined in advance. For example, the first base station cell cluster (first RRU cluster) 10A, the second base station cell A cluster (second RRU cluster) 10B and the like. For example, the base station cells (RRU) 11 to 15 are included in the first base station cell cluster (first RRU cluster) 10A, and the base station cells (RRU) 16 to 1n are included in the second base station cell cluster (second RRU cluster). ) Included in 10B.
 また、接続切り替え制御部70のうち、一部は、第1信号処理カードクラスタ(第1BBUクラスタ)91、第2信号処理カードクラスタ(第2BBUクラスタ)92等のBBUクラスタごとに対応してクラスタ化されている。例えば、図11においては、第1信号処理カードクラスタ(第1BBUクラスタ)91に対応して、接続切り替えモジュール#1 41~#3 43の3個を内蔵する接続切り替えモジュールクラスタ71を備えている。なお、接続切り替え制御部70内の残りの接続切り替えモジュールについては、第1および第2の実施の形態と同様、ベースバンド信号処理カード(BBU)ごとに対応して備えられ、例えば、図11においては、ベースバンド信号処理カード(BBU)24~2kそれぞれに対応して接続切り替えモジュール44~4kが備えられている。そして、隣接する接続切り替えモジュール間は、第2の実施の形態と同様、リング状の相互接続が可能な構成となっている(あるいは、第1の実施の形態と同様の相互接続が可能な構成としても良い)。 Further, a part of the connection switching control unit 70 is clustered corresponding to each BBU cluster such as the first signal processing card cluster (first BBU cluster) 91 and the second signal processing card cluster (second BBU cluster) 92. Has been. For example, in FIG. 11, corresponding to the first signal processing card cluster (first BBU cluster) 91, a connection switching module cluster 71 including three connection switching modules # 1 41 to # 3 43 is provided. The remaining connection switching modules in the connection switching control unit 70 are provided corresponding to each baseband signal processing card (BBU) as in the first and second embodiments. For example, in FIG. Are provided with connection switching modules 44 to 4k corresponding to the baseband signal processing cards (BBU) 24 to 2k, respectively. The adjacent connection switching modules are configured to be capable of ring-shaped interconnections as in the second embodiment (or are configured to allow interconnections similar to those in the first embodiment). As good).
 また、無線基地局装置102は、第1の実施の形態の図1および第2の実施の形態の図8の場合と同様、ベースバンド処理プール(BBU-pool)90内のk個のベースバンド信号処理カード(BBU)21~2kに対する処理リソース割り当て制御用に、処理リソース割り当て制御部51、トラフィック予測部52、接続情報格納部53等も備えている。さらに、本第3の実施の形態に特有の構成として、上位レイヤにて各基地局セル(RRU)11~1nのON/OFF制御を可能にするために、各基地局セル(RRU)11~1nのON/OFF情報を格納する基地局セルON/OFF情報格納部54も新たに追加して備えている。 Also, the radio base station apparatus 102, as in the case of FIG. 1 of the first embodiment and FIG. 8 of the second embodiment, k basebands in the baseband processing pool (BBU-pool) 90. A processing resource allocation control unit 51, a traffic prediction unit 52, a connection information storage unit 53, and the like are provided for processing resource allocation control for the signal processing cards (BBU) 21 to 2k. Further, as a configuration unique to the third embodiment, in order to enable ON / OFF control of each base station cell (RRU) 11 to 1n in an upper layer, each base station cell (RRU) 11 to A base station cell ON / OFF information storage unit 54 for storing 1n ON / OFF information is also newly provided.
(第3の実施の形態の動作の説明)
 次に、本発明の第3の実施の形態として図11に示した無線基地局装置102の動作の一例について詳細に説明する。なお、図11に示した無線基地局装置102のベースバンド処理プール(BBU-pool)90内のk個の各ベースバンド信号処理カード(BBU)21~2kにおいては、前述したように、第1の実施の形態と同様、n個の基地局セル(RRU)11~1n分の、例えばLTE-AdvancedなどのLayer-1処理(ベースバンド信号処理)等の無線通信処理を集約して行っている。
(Description of the operation of the third embodiment)
Next, an example of the operation of radio base station apparatus 102 shown in FIG. 11 as the third embodiment of the present invention will be described in detail. As described above, each of the k baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 90 of the radio base station apparatus 102 shown in FIG. As in the above embodiment, wireless communication processing, such as Layer-1 processing (baseband signal processing) such as LTE-Advanced, is performed for n base station cells (RRU) 11 to 1n in an integrated manner. .
 k個のベースバンド信号処理カード(BBU)21~2kによる処理リソースの共有により、基地局セル(RRU)11~1n分のそれぞれの基地局セル(RRU)の処理を、k個のベースバンド信号処理カード(BBU)21~2kのうち、どのベースバンド信号処理カード(BBU)で実施するかを可変とするために、各基地局セル(RRU)11~1nと各ベースバンド信号処理カード(BBU)21~2kとの間の接続切り替えは、接続切り替え制御部70にて実施される。接続切り替え制御部70にて切り替えられた各送受信信号は、光ファイバや無線バックホール(フロントホール)などを介して、接続された状態になった基地局セル(RRU)11~1nとベースバンド信号処理カード(BBU)21~2kとの間で送受信される。 By sharing processing resources among the k baseband signal processing cards (BBU) 21 to 2k, each base station cell (RRU) for the base station cells (RRU) 11 to 1n can be processed with k baseband signals. Among the processing cards (BBUs) 21 to 2k, in order to change which baseband signal processing card (BBU) is used, each base station cell (RRU) 11 to 1n and each baseband signal processing card (BBU) The connection switching between 21 and 2k is performed by the connection switching control unit 70. Each transmission / reception signal switched by the connection switching control unit 70 is connected to the base station cells (RRU) 11 to 1n that are in a connected state via an optical fiber, a radio backhaul (fronthaul), or the like. Data is transmitted to and received from the processing cards (BBU) 21 to 2k.
 ここで、本第3の実施の形態における無線基地局装置102の特徴として、前述のように、ベースバンド処理プール(BBU-pool)90内の各ベースバンド信号処理カード(BBU)21~2kはあらかじめ任意に定めた一定の単位でクラスタ化されており、同様に、基地局セル(RRU)11~1nについてもあらかじめ任意に定めた単位でクラスタ化されている。 Here, as a feature of the radio base station apparatus 102 in the third embodiment, as described above, the baseband signal processing cards (BBU) 21 to 2k in the baseband processing pool (BBU-pool) 90 are as follows. Clustering is performed in a predetermined unit that is arbitrarily determined in advance. Similarly, the base station cells (RRU) 11 to 1n are also clustered in units that are determined in advance.
 したがって、接続切り替え制御部70についても、第1信号処理カードクラスタ(第1BBUクラスタ)91、第2信号処理カードクラスタ(第2BBUクラスタ)92等の信号処理カードクラスタ(BBUクラスタ)ごとに対応させて、例えば、第1信号処理カードクラスタ(第1BBUクラスタ)91に対応させて、接続切り替えモジュールクラスタ71を構成しても良いし、単体のベースバンド信号処理カード(BBU)24~2kごとに対応させて、接続切り替えモジュール44~4kを構成するようにしても良い。そして、信号処理カードクラスタ(BBUクラスタ)ごとの接続切り替えモジュールクラスタ71については、単純に、単体のベースバンド信号処理カード(BBU)ごとの単体の接続切り替えモジュール41~43を連接しただけの限定された接続が可能な構成としても良いし、あるいは、例えば第1信号処理カードクラスタ(第1BBUクラスタ)91内のベースバンド信号処理カード(BBU)21~23に関するBBU-RRU間について全ての接続組み合わせを実現可能とするような構成としても良い。 Accordingly, the connection switching control unit 70 is also associated with each signal processing card cluster (BBU cluster) such as the first signal processing card cluster (first BBU cluster) 91 and the second signal processing card cluster (second BBU cluster) 92. For example, the connection switching module cluster 71 may be configured to correspond to the first signal processing card cluster (first BBU cluster) 91, or to correspond to each single baseband signal processing card (BBU) 24 to 2k. Thus, the connection switching modules 44 to 4k may be configured. The connection switching module cluster 71 for each signal processing card cluster (BBU cluster) is limited to simply connecting the single connection switching modules 41 to 43 for each single baseband signal processing card (BBU). For example, all connection combinations between BBUs and RRUs for baseband signal processing cards (BBU) 21 to 23 in the first signal processing card cluster (first BBU cluster) 91 may be used. It is good also as a structure which makes it realizable.
 なお、本第3の実施の形態においても、接続切り替え制御部70の接続切り替えモジュールクラスタ71内の各接続切り替えモジュールおよび単体の各接続切り替えモジュール44~4kは、第2の実施形態の図9(あるいは、第1の実施の形態の図2)に示した構成と同様、少なくとも、相互接続用入出力インタフェース(第2RRU入力インタフェース2、第1RRU出力インタフェース3)により、隣接する両側2個ずつ(あるいは両側1個ずつ)の接続切り替えモジュールと互いに連接した構成からなっている。したがって、基地局セル(RRU)11~1nのうち、いずれの基地局セル(RRU)においても、当該基地局セル(RRU)が接続された接続切り替えモジュールに対応するベースバンド信号処理カード(BBU)を中心にして、少なくとも隣接する4つ(あるいは2つ)以上の信号処理カードも含めた合計5つ(あるいは3つ)以上のベースバンド信号処理カード(BBU)に接続することを可能としている。 Also in the third embodiment, each connection switching module in the connection switching module cluster 71 of the connection switching control unit 70 and each of the individual connection switching modules 44 to 4k are the same as those in the second embodiment shown in FIG. Alternatively, similar to the configuration shown in FIG. 2 of the first embodiment, at least two adjacent sides (or two) by the interconnection input / output interface (second RRU input interface 2 and first RRU output interface 3) (or The connection switching modules (one on each side) are connected to each other. Therefore, in any base station cell (RRU) among the base station cells (RRU) 11 to 1n, a baseband signal processing card (BBU) corresponding to the connection switching module to which the base station cell (RRU) is connected. It is possible to connect to a total of five (or three) or more baseband signal processing cards (BBU) including at least four (or two) or more adjacent signal processing cards.
 次に、図11に示したように、無線基地局装置102は、第1の実施の形態の無線基地局装置100と同様、各BBUにおける処理リソース共有を実施するために、トラフィック予測部52(トラフィック予測機能)によるトラフィック予測結果に基づいて、k個の各ベースバンド信号処理カード(BBU)21~2kへのn個の基地局セル(RRU)11~1nの処理リソース割り当てを行う処理リソース割り当て制御部51を備えている。 Next, as illustrated in FIG. 11, the radio base station apparatus 102, like the radio base station apparatus 100 according to the first embodiment, performs traffic resource sharing in each BBU in order to share the processing resources. Processing resource allocation for allocating processing resources of n base station cells (RRU) 11 to 1n to k baseband signal processing cards (BBU) 21 to 2k based on a traffic prediction result by a traffic prediction function) A control unit 51 is provided.
 トラフィック予測部52は、あらかじめ定めた或る一定の時間間隔ごとに、日々のトラフィックデータが蓄積されたトラフィックデータベース(各時間間隔ごとの日々のトラフィックの平均値)や、当日のトラフィック履歴(各時間間隔ごとの当日のトラフィックの実績値)などを用いて、n個の基地局セル(RRU)11~1nごとに、次の前記一定の時間間隔分のトラフィック予測を行う。 The traffic prediction unit 52 includes a traffic database (average value of daily traffic for each time interval) in which daily traffic data is accumulated at a certain predetermined time interval, traffic history of each day (each time The traffic prediction for the next certain time interval is performed for each of the n base station cells (RRU) 11 to 1n using the actual traffic value of the current day for each interval).
 また、処理リソース割り当て制御部51は、トラフィック予測部52において予測されたトラフィックに基づいて、k個の各ベースバンド信号処理カード(BBU)21~2kそれぞれに対するn個の各基地局セル(RRU)11~1nの処理リソース割り当ての制御を行う。該処理リソース割り当て制御の目的は、第1の実施の形態においても説明したように、低消費電力化を実現するために、処理リソース共有により、できるだけ少ない個数のBBUだけを稼動させ、稼動OFFにすることができるBBU数をできるだけ増やすことにある。 Further, the processing resource allocation control unit 51, based on the traffic predicted by the traffic prediction unit 52, n base station cells (RRU) for each of the k baseband signal processing cards (BBUs) 21 to 2k. 11 to 1n processing resource allocation is controlled. As described in the first embodiment, the purpose of the processing resource allocation control is to operate only as few BBUs as possible and to turn off the operation by sharing processing resources in order to realize low power consumption. The purpose is to increase the number of BBUs that can be performed as much as possible.
 次に、本第3の実施の形態において、低消費電力化を実現するために処理リソース割り当て制御部51において実施される処理リソース割り当ての制御の一例についてさらに説明する。なお、本第3の実施の形態においても、処理リソース割り当て制御の全体処理手順の流れは、第1の実施の形態と基本的には同じであり、第1の実施の形態の図4の制御フローチャートに示した手順と同じである。ただし、本第3の実施の形態における特有の制御動作として、前述したように、上位レイヤにおいて各基地局セル(RRU)11~1nのON/OFF制御が行われることを想定し、上位レイヤから通知されてくる基地局セル(RRU)ON/OFF情報を基地局セルON/OFF情報格納部54に格納して、処理リソース割り当ての制御を行う際に、参照するようにしている。 Next, an example of processing resource allocation control performed by the processing resource allocation control unit 51 in order to realize low power consumption in the third embodiment will be further described. Also in the third embodiment, the overall processing procedure flow of the processing resource allocation control is basically the same as that of the first embodiment, and the control of FIG. 4 of the first embodiment is performed. The procedure is the same as that shown in the flowchart. However, as a specific control operation in the third embodiment, as described above, it is assumed that the ON / OFF control of each base station cell (RRU) 11 to 1n is performed in the upper layer, and from the upper layer, The notified base station cell (RRU) ON / OFF information is stored in the base station cell ON / OFF information storage unit 54 so as to be referred to when processing resource allocation is controlled.
 つまり、処理リソース割り当て制御部51は、トラフィック予測部52から通知されるトラフィック結果や接続情報格納部53に格納されているRRU-BBU間接続情報の他に、さらに、上位レイヤから通知されてきて、基地局セルON/OFF情報格納部54に格納されている基地局セル(RRU)ON/OFF情報も用いて、処理リソース割り当て制御を行う。 That is, the processing resource allocation control unit 51 receives notification from the upper layer in addition to the traffic result notified from the traffic prediction unit 52 and the RRU-BBU connection information stored in the connection information storage unit 53. Then, processing resource allocation control is performed using base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54.
 なお、トラフィック予測部52においてトラフィック予測を行う際についても、基地局セルON/OFF情報格納部54に格納されている基地局セル(RRU)ON/OFF情報も参照して、トラフィック予測が行われる。トラフィック予測部52において予測されたトラフィック予測結果は、処理リソース割り当て制御部51に通知されて、処理リソース割り当て制御を行う図4の制御フローチャートのステップS1の処理に反映される。 Note that when the traffic prediction unit 52 performs traffic prediction, the traffic prediction is also performed with reference to the base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54. . The traffic prediction result predicted by the traffic prediction unit 52 is notified to the processing resource allocation control unit 51, and is reflected in the process of step S1 of the control flowchart of FIG. 4 for performing the processing resource allocation control.
 処理リソース割り当て制御部51は、基地局セルON/OFF情報格納部54に格納されている基地局セル(RRU)ON/OFF情報の参照結果として、例えば、稼動中の基地局セル(RRU)11~1nのいずれかがOFFになっていることを検知した場合には、当該基地局セル(RRU)に関するRRU処理リソースが割り当てられていたベースバンド信号処理カード(BBU)から当該RRU処理リソース割り当てを事前に削除した上で、第1の実施の形態の図4の制御フローチャートに示した処理リソース割り当て制御を行う。結果的には、図4のステップS1に示したトラフィック予測結果による稼動OFF対象のベースバンド信号処理カード(BBU)順の決定結果および図4のステップS3、S4に示した各対象ベースバンド信号処理カード(BBU)の処理リソース使用率の算出結果に影響を及ぼすことになる。 The processing resource allocation control unit 51 uses, for example, the operating base station cell (RRU) 11 as a reference result of the base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54. When it is detected that any one of ˜1n is OFF, the RRU processing resource allocation is performed from the baseband signal processing card (BBU) to which the RRU processing resource related to the base station cell (RRU) has been allocated. After deleting in advance, the processing resource allocation control shown in the control flowchart of FIG. 4 of the first embodiment is performed. As a result, the determination result of the baseband signal processing card (BBU) order of the operation OFF target based on the traffic prediction result shown in step S1 of FIG. 4 and each target baseband signal processing shown in steps S3 and S4 of FIG. The calculation result of the processing resource usage rate of the card (BBU) will be affected.
 一方、処理リソース割り当て制御部51が、基地局セルON/OFF情報格納部54に格納されている基地局セル(RRU)ON/OFF情報の参照結果として、例えば、稼動OFF状態にあった基地局セル(RRU)11~1nのいずれかが稼動ON状態になっていることを検知した場合には、当該基地局セル(RRU)が接続可能であって、かつ、稼動ON状態のベースバンド信号処理カード(BBU)が存在する場合には、稼動ON状態のベースバンド信号処理カード(BBU)のうち、当該基地局セル(RRU)の接続距離が最も近傍の位置にあるベースバンド信号処理カード(BBU)に対して、一旦、当該基地局セル(RRU)に関する仮の処理リソース割り当てを行った上で、第1の実施の形態の図4の制御フローチャートに示した処理リソース割り当て制御を行う。 On the other hand, as a reference result of the base station cell (RRU) ON / OFF information stored in the base station cell ON / OFF information storage unit 54 by the processing resource allocation control unit 51, for example, a base station that is in an operation OFF state When it is detected that one of the cells (RRU) 11 to 1n is in the operation ON state, the base station signal processing in which the base station cell (RRU) is connectable and is in the operation ON state When the card (BBU) is present, the baseband signal processing card (BBU) in which the connection distance of the base station cell (RRU) is the nearest among the baseband signal processing cards (BBU) in the operation ON state. ) Once, after temporarily assigning temporary processing resources for the base station cell (RRU), the control flowchart of FIG. 4 of the first embodiment. The processing resource allocation control shown performed.
 なお、当該基地局セル(RRU)に関する仮の処理リソースを割り当てたことによって、当該ベースバンド信号処理カード(BBU)の処理リソース使用率があらかじめ定めた上限値の閾値Aを超えるような状況になる場合であっても、あるいは、当該基地局セル(RRU)が接続可能であって、かつ、稼動ON状態のベースバンド信号処理カード(BBU)が存在していなかった場合であっても、同様に、当該基地局セル(RRU)が接続可能であって、かつ、当該基地局セル(RRU)の接続距離が最も近いベースバンド信号処理カード(BBU)に仮の処理リソース割り当てを行った上で、図4に示した処理リソース割り当て制御を行う。その理由は、当該基地局セル(RRU)の接続距離が最も近いベースバンド信号処理カード(BBU)に一旦処理リソース割り当てを行うことによって、当該基地局セル(RRU)から接続関係がないベースバンド信号処理カード(BBU)に処理リソース割り当てが必要となるようなケースを未然に防止することができるためである。 Note that, by assigning a temporary processing resource related to the base station cell (RRU), the processing resource usage rate of the baseband signal processing card (BBU) exceeds a predetermined upper limit threshold A. Even if the base station cell (RRU) is connectable and there is no base-band signal processing card (BBU) that is in operation ON state, After allocating temporary processing resources to the baseband signal processing card (BBU) to which the base station cell (RRU) is connectable and the connection distance of the base station cell (RRU) is closest, The processing resource allocation control shown in FIG. 4 is performed. The reason is that a baseband signal that is not connected to the base station cell (RRU) by temporarily allocating processing resources to the baseband signal processing card (BBU) having the shortest connection distance of the base station cell (RRU). This is because it is possible to prevent a case where processing resources need to be allocated to the processing card (BBU).
(第1、第2、第3の実施の形態の効果の説明)
 以上に詳細に説明したように、本発明の各実施の形態においては、以下のような効果を期待することができる。
(Description of effects of the first, second, and third embodiments)
As described in detail above, the following effects can be expected in each embodiment of the present invention.
 第1の効果は、複数の基地局セル(RRU)11~1n分の無線通信処理を集約する無線基地局装置100~102において、接続切り替え制御部30、40、70の回路規模を低減することにより、装置小規模化や低消費電力化を実現することができることである。 The first effect is to reduce the circuit scale of the connection switching control units 30, 40, and 70 in the radio base station apparatuses 100 to 102 that consolidate radio communication processes for a plurality of base station cells (RRU) 11 to 1n. Thus, it is possible to realize downsizing of the apparatus and low power consumption.
 その理由は、本発明の各実施の形態における無線基地局装置100~102においては、接続切り替え制御部30、40、70として、基地局セル(RRU)-ベースバンド信号処理カード(BBU)間の接続を限定した接続切り替えモジュール31~3k、41~4kを複数並べて連接したり、あるいは、第3の実施の形態の接続切り替えモジュールクラスタ71のように一部クラスタ化したりして構成しているので、基地局セル(RRU)-ベースバンド信号処理カード(BBU)間の理想的な全ての接続組み合わせを実現する従来の接続切り替え部に比べて、その回路規模を大幅に削減することができるためである。 The reason is that, in the radio base station apparatuses 100 to 102 according to the respective embodiments of the present invention, the connection switching control units 30, 40 and 70 are connected between the base station cell (RRU) and the baseband signal processing card (BBU). Since a plurality of connection switching modules 31 to 3k and 41 to 4k with limited connections are arranged side by side, or partially clustered as in the connection switching module cluster 71 of the third embodiment. Compared with the conventional connection switching unit that realizes all ideal connection combinations between the base station cell (RRU) and the baseband signal processing card (BBU), the circuit scale can be greatly reduced. is there.
 つまり、理想的な全ての接続組み合わせを実現する場合は、「RRU数×BBU数」など、それぞれの個数の乗算に比例するような回路規模となるのに対し、本発明の各実施の形態における接続切り替え制御部30、40、70の場合は、「(限定したRRU数)×BBU数」など、BBUの個数のみに線形に比例するような回路規模に抑えることができる。ここで、「限定したRRU数」とは、第1の実施の形態の場合は9個、第2の実施の形態の例の場合は15個などであり、あらかじめ任意に設定した一定の値である。 That is, when realizing all ideal connection combinations, the circuit scale is proportional to the multiplication of the respective numbers, such as “the number of RRUs × the number of BBUs”, whereas in each embodiment of the present invention In the case of the connection switching control units 30, 40, and 70, it is possible to suppress the circuit scale to be linearly proportional only to the number of BBUs, such as “(limited RRU number) × BBU number”. Here, the “limited number of RRUs” is 9 in the case of the first embodiment, 15 in the example of the second embodiment, etc., and is a constant value arbitrarily set in advance. is there.
 そして、かくのごとき回路規模削減による装置小規模化および低消費電力化の効果に関しては、今後トラフィックが増大し、より多くの基地局セル(RRU)やベースバンド信号処理カード(BBU)を集約化しようとする場合に、理想的な全ての接続組み合わせを実現しようとして指数的に回路規模が増加してしまう従来の接続切り替え制御部に比し、特に顕著になることは言うまでもない。 As for the effects of reducing the device scale and reducing the power consumption by reducing the circuit scale like this, traffic will increase in the future and more base station cells (RRU) and baseband signal processing cards (BBU) will be consolidated. Needless to say, this is particularly remarkable as compared with a conventional connection switching control unit that exponentially increases the circuit scale in an attempt to realize all ideal connection combinations.
 なお、各接続切り替えモジュール31~3k、41~4kは、基本的には、第1、第2の実施の形態のように、ベースバンド信号処理カード(BBU)ごとに備えることを基本とするが、第3の実施の形態の接続切り替えモジュールクラスタ71のように、信号処理カードクラスタ(BBUクラスタ)の単位ごとに対応して構成するようにしても、前述の効果には何ら影響を与えない。すなわち、全ての接続切り替えモジュールを均一の構成にして拡張することが可能な装置アーキテクチャとすることを基本とするものの、場合によっては、第1、第2、第3の実施の形態に示したそれぞれの接続切り替えモジュール31~3k、41~4kや接続切り替えモジュールクラスタ71の構成が混在するような装置アーキテクチャであっても何ら問題はない。 The connection switching modules 31 to 3k and 41 to 4k are basically provided for each baseband signal processing card (BBU) as in the first and second embodiments. Even if it is configured corresponding to each unit of the signal processing card cluster (BBU cluster) as in the connection switching module cluster 71 of the third embodiment, the above-described effects are not affected at all. In other words, although it is based on a device architecture that can be expanded with a uniform configuration of all connection switching modules, depending on the case, each of those shown in the first, second, and third embodiments. There is no problem even if the device architecture is such that the configurations of the connection switching modules 31 to 3k, 41 to 4k and the connection switching module cluster 71 are mixed.
 第2の効果は、複数の基地局セル(RRU)11~1n分の無線通信処理を集約する無線基地局装置100~102において、トラフィック増大等に対応するために、装置を拡張しようとする場合に、基地局セル無線部10の基地局セル(RRU)11~1nや、ベースバンド処理プール(BBU-pool)20、90のベースバンド信号処理カード(BBU)21~2kだけでなく、接続切り替え制御部30、40、70の接続切り替えモジュール31~3k、41~4kも含めて、必要な分だけ線形に拡張可能であり、拡張性が向上することである。 The second effect is that the radio base station apparatuses 100 to 102 that aggregate radio communication processes for a plurality of base station cells (RRU) 11 to 1n intend to expand the apparatus in order to cope with traffic increase and the like. In addition, the base station cell (RRU) 11 to 1n of the base station cell radio unit 10 and the baseband signal processing card (BBU) 21 to 2k of the baseband processing pool (BBU-pool) 20 and 90, as well as connection switching Including the connection switching modules 31 to 3k and 41 to 4k of the control units 30, 40, and 70, it can be linearly expanded as much as necessary, and the expandability is improved.
 その理由は、本発明の実施の形態における無線基地局装置100~102においては、接続切り替え制御部30、40、70として、基地局セル(RRU)-ベースバンド信号処理カード(BBU)間の接続を限定し、第1、第2の実施の形態のように、隣接する接続切り替えモジュールとの相互接続インタフェースを備えた接続切り替えモジュール31~3k、41~4kを、複数並べて連接したり、第3の実施の形態の接続切り替えモジュールクラスタ71のように、内部で階層的に連接したりして構成しているので、接続切り替えモジュール31~3k、41~4kも、基地局セル(RRU)11~1nやベースバンド信号処理カード(BBU)21~2kと同様に、例えば、拡張する「BBU数」に応じて線形に拡張すれば良いためである。 The reason is that, in the radio base station apparatuses 100 to 102 according to the embodiment of the present invention, the connection switching control units 30, 40, and 70 are connected between a base station cell (RRU) and a baseband signal processing card (BBU). As in the first and second embodiments, a plurality of connection switching modules 31 to 3k and 41 to 4k having an interconnection interface with an adjacent connection switching module are connected side by side, The connection switching modules 31 to 3k and 41 to 4k are also connected to the base station cells (RRU) 11 to 11 in the same manner as in the connection switching module cluster 71 of the embodiment. Similar to 1n and baseband signal processing cards (BBU) 21 to 2k, for example, it may be expanded linearly according to the “number of BBUs” to be expanded. It is.
 次に、本第2の効果に関し、従来技術における問題点を図12の説明図を用いて説明する。図12は、従来の基地局セル(RRU)-ベースバンド信号処理カード(BBU)間の全ての接続組み合わせを実現する理想的な例えばクロスバ型のような接続切り替え部を用いた場合における問題点を説明するための説明図である。ここで、理想的な構成の接続切り替え部の場合は、「RRU数×BBU数」の全ての接続が必要となるため、RRU1個あるいはBBU1個を拡張する場合であっても、既存のRRU数やBBU数に依存した拡張が必要となる。 Next, regarding the second effect, problems in the prior art will be described with reference to the explanatory diagram of FIG. FIG. 12 shows problems in the case of using an ideal connection switching unit such as a crossbar type that realizes all connection combinations between a base station cell (RRU) and a baseband signal processing card (BBU). It is explanatory drawing for demonstrating. Here, in the case of a connection switching unit having an ideal configuration, all connections of “the number of RRUs × the number of BBUs” are required. Therefore, even if one RRU or one BBU is expanded, the number of existing RRUs And expansion depending on the number of BBUs is required.
 例えば、図12(A)に示すように、基地局セル(RRU)の個数Mが、RRU#1~RRU#4の4個、ベースバンド信号処理カード(BBU)の個数NがBBU#1~BBU#3の3個の間の全ての接続組み合わせを実現する理想的なクロスバ(相互結合網)型の接続切り替え部Aを用いていた場合に、RRU#5およびBBU#4を1個ずつ増設しようとした場合には、図12(B)に示すように、「M(=5)×N(=4)」の全ての接続組み合わせを実現するためには、接続切り替え部Aを接続切り替え部Bに変更することになり、接続切り替え部全体を変更する必要が生じて、拡張性が低くなるという問題がある。 For example, as shown in FIG. 12A, the number M of base station cells (RRU) is four (RRU # 1 to RRU # 4), and the number N of baseband signal processing cards (BBUs) is BBU # 1 to RBU # 1. When using the ideal crossbar (interconnection network) type connection switching unit A that realizes all connection combinations between three BBU # 3, add one RRU # 5 and one BBU # 4 If an attempt is made, as shown in FIG. 12B, in order to realize all connection combinations of “M (= 5) × N (= 4)”, the connection switching unit A is changed to the connection switching unit. Therefore, there is a problem that expandability is lowered because the entire connection switching unit needs to be changed.
 あるいは、図12(C)に示すように、全ての接続組み合わせの実現は諦めて、既存の基地局セル(RRU)-ベースバンド信号処理カード(BBU)間の全ての接続組み合わせを実現する接続切り替え部Aはそのままにして、増設したRRU#5-BBU#4間のみを接続するための専用の接続切り替え部Cを別途追加することも、場合によっては、適用可能である。しかし、図12(C)の場合、増設するBBU#4と既存のBBU#1~#3との間は、処理リソースの共有ができなくなるという問題が生じる。 Alternatively, as shown in FIG. 12C, all connection combinations are abandoned, and connection switching that realizes all connection combinations between the existing base station cell (RRU) and the baseband signal processing card (BBU) is performed. It is also possible to add a dedicated connection switching unit C for connecting only the added RRU # 5 to BBU # 4 while leaving the part A as it is. However, in the case of FIG. 12C, there is a problem that processing resources cannot be shared between the BBU # 4 to be added and the existing BBUs # 1 to # 3.
 これに対して、本発明の各実施の形態においては、図2や図9に示した接続切り替えモジュールを、基地局セル(RRU)やベースバンド信号処理カード(BBU)の増設に応じて、必要とする個数分だけ、接続切り替えモジュールを接続切り替え制御部30、40、70に追加するだけで、既存の設備との処理リソース共有も可能な形で増設することが可能であるという利点がある。 On the other hand, in each embodiment of the present invention, the connection switching module shown in FIG. 2 or FIG. 9 is necessary depending on the addition of base station cells (RRU) or baseband signal processing cards (BBU). There is an advantage that the number of connection switching modules can be increased in such a way that processing resources can be shared with existing facilities only by adding connection switching modules to the connection switching control units 30, 40, and 70.
 第3の効果は、複数の基地局セル(RRU)11~1n分の無線通信処理を集約する無線基地局装置100~102において、接続制限がある接続切り替え制御部30、40、70を用いた場合であっても、理想的な接続切り替え部を用いた場合とほぼ同等の処理リソース共有を実現することができ、ほぼ同等の低消費電力化効果が得られることである。 The third effect is that the connection switching control units 30, 40, and 70 having connection restrictions are used in the radio base station apparatuses 100 to 102 that aggregate radio communication processing for a plurality of base station cells (RRU) 11 to 1n. Even in this case, it is possible to realize processing resource sharing substantially equivalent to the case where an ideal connection switching unit is used, and to obtain substantially the same low power consumption effect.
 その理由は、本発明の各実施の形態における基地局セル処理リソース割り当て方法においては、稼動OFFにしたい(すなわち、稼動をオフ状態に設定しようとする)ベースバンド信号処理カード(BBU)をあらかじめ決定して、該稼動OFF対象のベースバンド信号処理カード(BBU)から距離的に離れたベースバンド信号処理カード(BBU)から順番に優先的に処理リソース割り当て制御を行うことにしたためである。さらに、割り当て対象ベースバンド信号処理カード(BBU)の処理リソース使用率があらかじめ定めた上限値の閾値Aを超える場合には、当該割り当て対象ベースバンド信号処理カード(BBU)から距離的に離れたベースバンド信号処理カード(BBU)から順番に優先的に割り当て転出制御を行い、また、処理リソース使用率があらかじめ定めた下限値の閾値Bを下回る場合には、当該割り当て対象ベースバンド信号処理カード(BBU)の近傍に位置するベースバンド信号処理カード(BBU)から順番に優先的に割り当て転入制御を行うような処理リソース割り当て制御としたためである。 This is because, in the base station cell processing resource allocation method in each embodiment of the present invention, a baseband signal processing card (BBU) to be turned off (that is, to set the operation to the off state) is determined in advance. This is because the processing resource allocation control is preferentially performed in order from the baseband signal processing card (BBU) that is distant from the baseband signal processing card (BBU) to be turned off. Furthermore, when the processing resource usage rate of the allocation target baseband signal processing card (BBU) exceeds a predetermined upper limit threshold A, a base that is distant from the allocation target baseband signal processing card (BBU). The allocation transfer control is performed with priority in order from the band signal processing card (BBU), and when the processing resource usage rate falls below a predetermined lower limit threshold B, the allocation target baseband signal processing card (BBU) This is because processing resource allocation control is performed such that allocation transfer control is preferentially performed in order from the baseband signal processing card (BBU) located in the vicinity of ().
 而して、基地局セル(RRU)-ベースバンド信号処理カード(BBU)間を全ての接続組み合わせで接続可能とする理想的な接続切り替え制御部を用いた場合と、ほぼ同等の処理リソース共有と低消費電力化とを実現することができる。 Thus, almost the same processing resource sharing is possible as when using an ideal connection switching control unit that enables connection between a base station cell (RRU) and a baseband signal processing card (BBU) in all connection combinations. Low power consumption can be realized.
 具体的には、基地局セル処理リソース割り当て方法として、任意のベースバンド信号処理カード(BBU)に対してできるだけ接続距離が近い基地局セル(RRU)から順番に処理を割り当てる方法になっているためであり、任意の基地局セル(RRU)の処理を接続関係がないベースバンド信号処理カード(BBU)に割り当てようとすることを未然に防止することができるような方法を採用しているためである。 Specifically, the base station cell processing resource allocation method is a method in which processing is allocated in order from a base station cell (RRU) having a connection distance as close as possible to an arbitrary baseband signal processing card (BBU). This is because it employs a method that can prevent an attempt to assign a process of an arbitrary base station cell (RRU) to a baseband signal processing card (BBU) having no connection relationship. is there.
 また、もう一つの理由として、稼動OFFにしたいベースバンド信号処理カード(BBU)をあらかじめ意識しながら、当該ベースバンド信号処理カード(BBU)から距離的に離れたベースバンド信号処理カード(BBU)から順番にRRU処理リソースの割り当てを行うことにより、稼動ON状態の設定が予定されている残りのベースバンド信号処理カード(BBU)にできるだけ多くのRRU処理を割り当てることができ、稼動OFFにしたいベースバンド信号処理カード(BBU)を実際に稼動OFF状態に設定することが可能な確率を高くすることができるためである。 Another reason is that a baseband signal processing card (BBU) that is distant from the baseband signal processing card (BBU) while being conscious of the baseband signal processing card (BBU) to be turned off in advance. By allocating RRU processing resources in order, it is possible to allocate as many RRU processes as possible to the remaining baseband signal processing cards (BBUs) that are scheduled to be in the operation ON state. This is because the probability that the signal processing card (BBU) can actually be set to the operation OFF state can be increased.
 図13には、本発明の実施の形態における基地局セル処理リソース割り当て方法と従来の基地局セル処理リソース割り当て方法との、処理リソース共有効果について説明するための模式図を示しており、隣接する両側1個ずつに接続限定された接続切り替え部を用いた場合の処理リソース共有効果について示している。図13(A)には、前記非特許文献1に記載の従来の基地局セル処理リソース割り当て方法を適用した場合を示し、図13(B)には、本発明の第1の実施の形態における基地局セル処理リソース割り当て方法を適用した場合を示している。また、図13に示す例においては、ベースバンド信号処理カード(BBU)の消費電力の内訳の仮定として、図示しているように、稼動ONの場合には常時必要な消費電力(負荷非依存部分)が30%であり、稼動率(処理リソース使用率)に比例する消費電力(負荷依存部分)が70%であるものと仮定する。また、BBU#1~BBU#4それぞれにおけるRRU処理のトラフィックが、90%、100%、100%、30%の状態から90%、30%、100%、30%の状態に変化したものと仮定する。 FIG. 13 is a schematic diagram for explaining the processing resource sharing effect between the base station cell processing resource allocation method according to the embodiment of the present invention and the conventional base station cell processing resource allocation method. The processing resource sharing effect in the case of using a connection switching unit limited to one connection on each side is shown. FIG. 13A shows a case where the conventional base station cell processing resource allocation method described in Non-Patent Document 1 is applied, and FIG. 13B shows the case of the first embodiment of the present invention. The case where the base station cell processing resource allocation method is applied is shown. In addition, in the example shown in FIG. 13, as shown in the figure, it is assumed that the power consumption of the baseband signal processing card (BBU) is broken down. ) Is 30%, and the power consumption (load dependent portion) proportional to the operation rate (processing resource usage rate) is 70%. Also, it is assumed that the traffic of RRU processing in each of BBU # 1 to BBU # 4 has changed from 90%, 100%, 100%, 30% to 90%, 30%, 100%, 30% To do.
 前記非特許文献1に記載されたような従来の処理割り当て手法の場合、ベースバンド信号処理カード(BBU)処理順や基地局セル(RRU)処理順を特に意識していないため、図13(A)に示すように、BBU#2の稼動率30%のうち10%に該当するRRU処理はBBU#1に移動させることができるものの、BBU#2の残りの稼動率20%およびBBU#4の稼動率30%のRRU処理をリソース共有しようとしても、それぞれのRRU処理に該当する基地局セル(RRU)は、隣接する両側1個ずつには含まれていない離れた位置にあるベースバンド信号処理カード(BBU)に接続することができなく、当該基地局セル(RRU)に関する処理を移動させることができない。 In the case of the conventional processing allocation method as described in Non-Patent Document 1, since the baseband signal processing card (BBU) processing order and the base station cell (RRU) processing order are not particularly conscious, FIG. As shown in FIG. 5B, although the RRU process corresponding to 10% of the 30% operation rate of BBU # 2 can be moved to BBU # 1, the remaining 20% operation rate of BBU # 2 and BBU # 4 Even when trying to share resources for RRU processing with a utilization rate of 30%, base station cells (RRUs) corresponding to each RRU processing are located in remote locations that are not included in one adjacent side. It is impossible to connect to the card (BBU), and it is not possible to move the processing related to the base station cell (RRU).
 したがって、処理リソース共有を十分に行うことができず、4個のベースバンド信号処理カード(BBU)が全て稼動状態になってしまう。この結果、図13(A)に示すように、全ベースバンド信号処理カード(BBU)が稼動ON状態になる結果として、消費電力は74%となる。 Therefore, processing resource sharing cannot be sufficiently performed, and all four baseband signal processing cards (BBUs) are in an operating state. As a result, as shown in FIG. 13A, the power consumption is 74% as a result of all baseband signal processing cards (BBU) being in the ON state.
 一方、本発明の実施の形態における処理リソース割り当て手法においては、ベースバンド信号処理カード(BBU)処理順や基地局セル(RRU)処理順を意識しているため、図13(B)に示すように、BBU#3の稼動率100%のうち33%に該当するRRU処理をBBU#2に移動させ、さらに、BBU#4のBBU#2の稼動率30%に該当する全ての処理をBBU#3に移動させて、BBU#4を稼動OFFの状態に設定することができる。 On the other hand, in the processing resource allocation method in the embodiment of the present invention, since the baseband signal processing card (BBU) processing order and the base station cell (RRU) processing order are conscious, as shown in FIG. In addition, the RRU process corresponding to 33% of the 100% operation rate of BBU # 3 is moved to BBU # 2, and all the processing corresponding to the 30% operation rate of BBU # 2 of BBU # 4 is further transferred to BBU # 2. 3 and BBU # 4 can be set to an operation OFF state.
 したがって、図13(B)に示すように、全ベースバンド信号処理カード(BBU)のうち、稼動ON状態はBBU#1~BBU#3の3個になる結果として、消費電力は66%となり、理想的な接続切り替え部を用いた場合と同等の低消費電力効果が得られる。 Therefore, as shown in FIG. 13B, among all the baseband signal processing cards (BBU), the operation ON state is BBU # 1 to BBU # 3, resulting in a power consumption of 66%. A low power consumption effect equivalent to that obtained when an ideal connection switching unit is used can be obtained.
 以上、本発明の好適な実施形態の構成を説明した。しかし、かかる実施形態は、本発明の単なる例示に過ぎず、何ら本発明を限定するものではないことに留意されたい。本発明の要旨を逸脱することなく、特定用途に応じて種々の変形変更が可能であることが、当業者には容易に理解できよう。 The configuration of the preferred embodiment of the present invention has been described above. However, it should be noted that such embodiments are merely examples of the present invention and do not limit the present invention in any way. Those skilled in the art will readily understand that various modifications and changes can be made according to a specific application without departing from the gist of the present invention.
 上述の実施の形態では、本発明をハードウェアの構成として説明したが、本発明は、これに限定されるものではない。本発明は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In the above-described embodiment, the present invention has been described as a hardware configuration, but the present invention is not limited to this. The present invention can also realize arbitrary processing by causing a CPU (Central Processing Unit) to execute a computer program. Further, the above-described program can be stored using various types of non-transitory computer readable media and supplied to a computer. Non-transitory computer readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROM (Read Only Memory) CD-R, CD -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). In addition, the program may be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 この出願は、2014年8月28日に出願された日本出願特願2014-174067を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-174067 filed on August 28, 2014, the entire disclosure of which is incorporated herein.
1       第1RRU入力インタフェース
2       第2RRU入力インタフェース
3       第1RRU出力インタフェース
10      基地局セル無線部(RRU)
10A     第1基地局セルクラスタ(第1RRUクラスタ)
10B     第2基地局セルクラスタ(第2RRUクラスタ)
11~1n   基地局セル(RRU)
20      ベースバンド処理プール(BBU-pool)
21~2k   ベースバンド信号処理カード(BBU)
30      接続切り替え制御部
31~3k   接続切り替えモジュール
40      接続切り替え制御部
41~4k   接続切り替えモジュール
51      処理リソース割り当て制御部
52      トラフィック予測部(トラフィック予測機能)
53      接続情報格納部
54      基地局セル(RRU)ON/OFF情報格納部
70      接続切り替え制御部
71      接続切り替えモジュールクラスタ
81      上位レイヤ処理部
90      ベースバンド処理プール(BBU-pool)
91      第1信号処理カードクラスタ(第1BBUクラスタ)
92      第2信号処理カードクラスタ(第2BBUクラスタ)
100     無線基地局装置
101     無線基地局装置
102     無線基地局装置
A1~A8   処理リソース割り当て制御の処理ステップ
B1~B5   処理リソース割り当て制御の処理ステップ
S1~S6   処理リソース割り当て制御の処理ステップ
DESCRIPTION OF SYMBOLS 1 1st RRU input interface 2 2nd RRU input interface 3 1st RRU output interface 10 Base station cell radio | wireless part (RRU)
10A First base station cell cluster (first RRU cluster)
10B Second base station cell cluster (second RRU cluster)
11 to 1n Base station cell (RRU)
20 Baseband processing pool (BBU-pool)
21-2k Baseband signal processing card (BBU)
30 Connection switching control unit 31 to 3k Connection switching module 40 Connection switching control unit 41 to 4k Connection switching module 51 Processing resource allocation control unit 52 Traffic prediction unit (traffic prediction function)
53 Connection Information Storage Unit 54 Base Station Cell (RRU) ON / OFF Information Storage Unit 70 Connection Switching Control Unit 71 Connection Switching Module Cluster 81 Upper Layer Processing Unit 90 Baseband Processing Pool (BBU-pool)
91 First signal processing card cluster (first BBU cluster)
92 Second signal processing card cluster (second BBU cluster)
100 radio base station apparatus 101 radio base station apparatus 102 radio base station apparatuses A1 to A8 processing resource allocation control processing steps B1 to B5 processing resource allocation control processing steps S1 to S6 processing resource allocation control processing steps

Claims (10)

  1.  複数の基地局セル分の無線通信処理を集約する無線基地局装置において、1ないし複数のベースバンド信号処理モジュールを集約して収容するベースバンド処理プールと、各前記ベースバンド信号処理モジュールに対して各前記基地局セルの処理リソース割り当てを行う処理リソース割り当て制御部と、前記ベースバンド信号処理モジュールと前記基地局セルとの間の接続切り替えを行う接続切り替え制御部と、を備え、かつ、前記接続切り替え制御部は、1ないし複数の接続切り替えモジュールを備え、各前記接続切り替えモジュールは、各前記基地局セルごとにあらかじめ定めた互いに隣接ずる1ないし複数の前記ベースバンド信号処理モジュールのいずれかに限定して接続するために、前記ベースバンド信号処理モジュールと接続するベースバンド信号処理モジュール用入出力インタフェースと、前記基地局セルと接続する基地局セル用入出力インタフェースと、を備えるとともに、隣接する1ないし複数の接続切り替えモジュールとの間を相互接続する相互接続用入出力インタフェースを備えて互いを連接して構成されていることを特徴とする無線基地局装置。 In a radio base station apparatus that aggregates radio communication processing for a plurality of base station cells, a baseband processing pool that aggregates and accommodates one or more baseband signal processing modules, and each of the baseband signal processing modules A processing resource allocation control unit that performs processing resource allocation for each of the base station cells, and a connection switching control unit that performs connection switching between the baseband signal processing module and the base station cell, and the connection The switching control unit includes one or a plurality of connection switching modules, and each of the connection switching modules is limited to any one of the one or more baseband signal processing modules adjacent to each other predetermined for each base station cell. To connect to the baseband signal processing module. A baseband signal processing module input / output interface and a base station cell input / output interface connected to the base station cell and interconnecting one or more adjacent connection switching modules A radio base station apparatus comprising an input / output interface and connected to each other.
  2.  前記処理リソース割り当て制御部は、各前記ベースバンド信号処理モジュールに対して各前記基地局セルの処理リソース割り当て制御を行う動作に先立って、各前記ベースバンド信号処理モジュールのうち、稼動をオフ状態に設定しようとするベースバンド信号処理モジュールの候補をあらかじめ設定することを特徴とする請求項1に記載の無線基地局装置。 The processing resource allocation control unit turns off the operation of each of the baseband signal processing modules prior to the operation of performing the processing resource allocation control of each base station cell for each of the baseband signal processing modules. The radio base station apparatus according to claim 1, wherein a candidate of a baseband signal processing module to be set is set in advance.
  3.  前記処理リソース割り当て制御部は、各前記ベースバンド信号処理モジュールに対して各前記基地局セルの処理リソース割り当てを行う際に、稼動をオフ状態に設定しようとする前記ベースバンド信号処理モジュールの候補から距離的に離れた位置にあるベースバンド信号処理モジュールから順番に優先して処理リソース割り当て制御を行うことを特徴とする請求項2に記載の無線基地局装置。 When the processing resource allocation control unit allocates the processing resource of each base station cell to each of the baseband signal processing modules, the processing resource allocation control unit starts from the candidate of the baseband signal processing module to set the operation to the off state. 3. The radio base station apparatus according to claim 2, wherein processing resource allocation control is performed with priority given in order from a baseband signal processing module located at a distant position.
  4.  前記処理リソース割り当て制御部は、稼動状態の前記ベースバンド信号処理モジュールの処理リソース使用率があらかじめ定めた上限値を超える場合に、当該ベースバンド信号処理モジュールからの接続距離が離れた位置にある基地局セルに関する処理から順番に優先して当該ベースバンド信号処理モジュールから他のベースバンド信号処理モジュールへ移動させる処理リソース切り替え制御を行うことを特徴とする請求項1ないし3のいずれかに記載の無線基地局装置。 When the processing resource usage rate of the baseband signal processing module in the operating state exceeds a predetermined upper limit value, the processing resource allocation control unit is located at a base at a position where the connection distance from the baseband signal processing module is far away. 4. The radio according to claim 1, wherein processing resource switching control for moving from the baseband signal processing module to another baseband signal processing module with priority in order from processing related to a station cell is performed. Base station device.
  5.  前記処理リソース割り当て制御部は、稼動状態の前記ベースバンド信号処理モジュールの処理リソース使用率があらかじめ定めた下限値を下回る場合に、当該ベースバンド信号処理モジュールからの接続距離が近い位置にある基地局セルに関する処理から順番に優先して当該ベースバンド信号処理モジュールへ割り当てる処理リソース切り替え制御を行うことを特徴とする請求項1ないし4のいずれかに記載の無線基地局装置。 When the processing resource usage rate of the baseband signal processing module in the operating state is lower than a predetermined lower limit value, the processing resource allocation control unit is located at a position where the connection distance from the baseband signal processing module is short 5. The radio base station apparatus according to claim 1, wherein processing resource switching control to be assigned to the baseband signal processing module is performed with priority in order from processing related to a cell.
  6.  各前記接続切り替えモジュールに備える前記相互接続用入出力インタフェースとして、各前記接続切り替えモジュールそれぞれと隣接する両側1個ずつの接続切り替えモジュールと相互接続する1系統ずつの入出力インタフェースか、あるいは、各前記接続切り替えモジュールそれぞれと隣接する両側2個ずつの接続切り替えモジュールと相互接続する2系統ずつの入出力インタフェースか、のいずれかを備えることを特徴とする請求項1ないし5のいずれかに記載の無線基地局装置。 As the input / output interface for interconnection provided in each connection switching module, one input / output interface interconnected with each one of the connection switching modules adjacent to each of the connection switching modules, or 6. The wireless communication device according to claim 1, further comprising any one of two input / output interfaces interconnecting each of the connection switching modules and two adjacent connection switching modules. Base station device.
  7.  各前記接続切り替えモジュールは、前記相互接続用入出力インタフェースにより、リング状に連接して構成されていることを特徴とする請求項1ないし6のいずれかに記載の無線基地局装置。 The radio base station apparatus according to any one of claims 1 to 6, wherein each of the connection switching modules is configured to be connected in a ring shape by the interconnection input / output interface.
  8.  前記処理リソース割り当て制御部は、各前記ベースバンド信号処理モジュールに対して各前記基地局セルの処理リソース割り当てを行う動作に先立って、上位レイヤから通知される前記基地局セルのオン/オフ制御情報を参照して、稼動がオフ状態からオン状態に変化した基地局セルが検知された場合は、当該基地局セルからの接続距離が近い位置にあり、かつ、稼動がオン状態にあるベースバンド信号処理モジュールから順番に優先して、当該基地局セルに関する仮の処理リソース割り当て制御を行うことを特徴とする請求項1ないし7のいずれかに記載の無線基地局装置。 The processing resource allocation control unit is configured to provide on / off control information of the base station cell notified from an upper layer prior to an operation of allocating processing resources of the base station cell to the baseband signal processing modules. When a base station cell whose operation has changed from an off state to an on state is detected, a baseband signal that is close to the connection distance from the base station cell and is in an on state. The radio base station apparatus according to any one of claims 1 to 7, wherein temporary processing resource allocation control related to the base station cell is performed with priority in order from the processing module.
  9.  複数の基地局セル分の無線通信処理を集約する無線基地局装置において、ベースバンド処理プールに集約して収容されている各ベースバンド信号処理モジュールに関し、各前記基地局セルそれぞれが接続することが可能なベースバンド信号処理モジュールとして、各前記基地局セルごとにあらかじめ定めた1ないし複数の互いに隣接するベースバンド信号処理モジュールのいずれかに限定し、かつ、各前記ベースバンド信号処理モジュールに対して各前記基地局セルの処理リソース割り当て制御を行う動作に先立って、各前記ベースバンド信号処理モジュールのうち、稼動をオフ状態に設定しようとするベースバンド信号処理モジュールの候補をあらかじめ設定することを特徴とする基地局セル処理リソース割り当て方法。 In a radio base station apparatus that aggregates radio communication processing for a plurality of base station cells, each base station cell may be connected to each baseband signal processing module that is aggregated and accommodated in a baseband processing pool. Possible baseband signal processing modules are limited to any one or more adjacent baseband signal processing modules predetermined for each base station cell, and for each baseband signal processing module Prior to the operation of performing processing resource allocation control of each base station cell, a baseband signal processing module candidate to be set to be turned off among the baseband signal processing modules is set in advance. A base station cell processing resource allocation method.
  10.  請求項9に記載の基地局セル処理リソース割り当て方法を、コンピュータによって実行することが可能なプログラムとして実施していることを特徴とする基地局セル処理リソース割り当てプログラムを格納した非一時的なコンピュータ可読媒体。 A non-transitory computer-readable storage medium storing a base station cell processing resource allocation program, wherein the base station cell processing resource allocation method according to claim 9 is implemented as a program that can be executed by a computer. Medium.
PCT/JP2015/002330 2014-08-28 2015-05-07 Radio base station apparatus, base station cell processing resource allocation method, and nontemporary computer readable medium on which program has been stored WO2016031101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544907A JP6515931B2 (en) 2014-08-28 2015-05-07 Radio base station apparatus, base station cell processing resource allocation method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174067 2014-08-28
JP2014-174067 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031101A1 true WO2016031101A1 (en) 2016-03-03

Family

ID=55399027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002330 WO2016031101A1 (en) 2014-08-28 2015-05-07 Radio base station apparatus, base station cell processing resource allocation method, and nontemporary computer readable medium on which program has been stored

Country Status (2)

Country Link
JP (1) JP6515931B2 (en)
WO (1) WO2016031101A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524920A (en) * 2015-06-30 2018-08-30 華為技術有限公司Huawei Technologies Co.,Ltd. Wireless network function setting method, wireless network node, and core network device
JP2018207364A (en) * 2017-06-07 2018-12-27 日本電信電話株式会社 Allocation device, allocation method, and program
WO2019225056A1 (en) * 2018-05-23 2019-11-28 株式会社Nttドコモ Base station
WO2020022203A1 (en) * 2018-07-23 2020-01-30 日本電信電話株式会社 Control device and control method
WO2020044934A1 (en) * 2018-08-29 2020-03-05 日本電気株式会社 Communication device, method, program, and recording medium
JP2020036060A (en) * 2018-08-27 2020-03-05 国立研究開発法人情報通信研究機構 Radio communication system and base station
JP2020511099A (en) * 2017-02-23 2020-04-09 ジョン メツァリングア アソシエイツ エルエルシーJohn Mezzalingua Associates, Llc System and method for adaptively tracking and allocating capacity in a widely distributed wireless network
CN114449626A (en) * 2020-11-02 2022-05-06 中国联合网络通信集团有限公司 Energy-saving control method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529926A (en) * 2005-01-12 2007-10-25 ▲ホア▼▲ウェイ▼技術有限公司 Separation type base station system, network organization method, and baseband unit
WO2009078083A1 (en) * 2007-12-14 2009-06-25 Fujitsu Limited Wireless base station device, base band processor, and base band processing method
JP2011101104A (en) * 2009-11-04 2011-05-19 Fujitsu Ltd Radio base station apparatus and method of controlling the same
JP2012134708A (en) * 2010-12-21 2012-07-12 Fujitsu Ltd Radio communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529926A (en) * 2005-01-12 2007-10-25 ▲ホア▼▲ウェイ▼技術有限公司 Separation type base station system, network organization method, and baseband unit
WO2009078083A1 (en) * 2007-12-14 2009-06-25 Fujitsu Limited Wireless base station device, base band processor, and base band processing method
JP2011101104A (en) * 2009-11-04 2011-05-19 Fujitsu Ltd Radio base station apparatus and method of controlling the same
JP2012134708A (en) * 2010-12-21 2012-07-12 Fujitsu Ltd Radio communication system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524920A (en) * 2015-06-30 2018-08-30 華為技術有限公司Huawei Technologies Co.,Ltd. Wireless network function setting method, wireless network node, and core network device
JP2020511099A (en) * 2017-02-23 2020-04-09 ジョン メツァリングア アソシエイツ エルエルシーJohn Mezzalingua Associates, Llc System and method for adaptively tracking and allocating capacity in a widely distributed wireless network
US11558782B2 (en) 2017-02-23 2023-01-17 John Mezzalingua Associates, LLC System and method for adaptively tracking and allocating capacity in a broadly-dispersed wireless network
JP7123079B2 (en) 2017-02-23 2022-08-22 ジョン メツァリングア アソシエイツ エルエルシー Systems and methods for adaptively tracking and allocating capacity in widely distributed wireless networks
JP2018207364A (en) * 2017-06-07 2018-12-27 日本電信電話株式会社 Allocation device, allocation method, and program
WO2019225056A1 (en) * 2018-05-23 2019-11-28 株式会社Nttドコモ Base station
US11490289B2 (en) 2018-07-23 2022-11-01 Nippon Telegraph And Telephone Corporation Control apparatus and control method
JP7065431B2 (en) 2018-07-23 2022-05-12 日本電信電話株式会社 Control device and control method
JP2020017802A (en) * 2018-07-23 2020-01-30 日本電信電話株式会社 Control device and control method
WO2020022203A1 (en) * 2018-07-23 2020-01-30 日本電信電話株式会社 Control device and control method
JP2020036060A (en) * 2018-08-27 2020-03-05 国立研究開発法人情報通信研究機構 Radio communication system and base station
JP7150315B2 (en) 2018-08-27 2022-10-11 国立研究開発法人情報通信研究機構 Wireless communication system and base station
WO2020044934A1 (en) * 2018-08-29 2020-03-05 日本電気株式会社 Communication device, method, program, and recording medium
JP7302603B2 (en) 2018-08-29 2023-07-04 日本電気株式会社 Communication device, method and program
CN114449626A (en) * 2020-11-02 2022-05-06 中国联合网络通信集团有限公司 Energy-saving control method and device
CN114449626B (en) * 2020-11-02 2023-05-16 中国联合网络通信集团有限公司 Energy-saving control method and device

Also Published As

Publication number Publication date
JP6515931B2 (en) 2019-05-22
JPWO2016031101A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
WO2016031101A1 (en) Radio base station apparatus, base station cell processing resource allocation method, and nontemporary computer readable medium on which program has been stored
Han et al. 5G converged cell-less communications in smart cities
US20160315743A1 (en) Method For Managing Coordinated Multipoint Communication
CN108901075B (en) GS algorithm-based resource allocation method
US10271339B2 (en) Radio base station apparatus and resource allocation method
CN104105102A (en) Method and system for frequency spectrum sharing in wireless network cloud
CN110800358A (en) Transmission configuration method and related product
RU2008106439A (en) METHOD AND DEVICE FOR ADVANCED DATA TRANSFER SPEED CONTROL INDICES IN A WIRELESS COMMUNICATION SYSTEM
KR101777186B1 (en) Method for Managing Access Points in Wifi Network
WO2019129169A1 (en) Electronic apparatus and method used in wireless communications, and computer readable storage medium
CN105451255A (en) Processing method and processing device of district interference management strategy
CN114706596A (en) Container deployment method, resource scheduling method, device, medium and electronic equipment
Temesgene et al. Softwarization and optimization for sustainable future mobile networks: A survey
KR20230035024A (en) Apparatus and method for dynamic resource allocation in cloud radio access networks
JP6459633B2 (en) Information processing system and control method thereof
KR20120097280A (en) Communication system and method
US20210212022A1 (en) Control apparatus, resource allocation method and program
KR20180065612A (en) Server and method for controlling a wireless communication network performed by using the server
CN103281784A (en) Method, device and base station for distributing resources on basis of RRU shared cell
CN105430663A (en) Cellular Range Expansion Of Base Station
KR102056894B1 (en) Dynamic resource orchestration for fog-enabled industrial internet of things networks
WO2019047535A1 (en) Method and apparatus for determining frequency hopping of channel, and computer storage medium
CN106792951A (en) Method and equipment for selecting the target BS of switching
CN114430555A (en) Network capacity expansion method, electronic equipment and storage medium
KR20130015380A (en) Communication system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835598

Country of ref document: EP

Kind code of ref document: A1