WO2016027416A1 - 多結晶シリコン棒の製造方法および多結晶シリコン棒 - Google Patents

多結晶シリコン棒の製造方法および多結晶シリコン棒 Download PDF

Info

Publication number
WO2016027416A1
WO2016027416A1 PCT/JP2015/003759 JP2015003759W WO2016027416A1 WO 2016027416 A1 WO2016027416 A1 WO 2016027416A1 JP 2015003759 W JP2015003759 W JP 2015003759W WO 2016027416 A1 WO2016027416 A1 WO 2016027416A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
silicon rod
plate
diffraction
sample
Prior art date
Application number
PCT/JP2015/003759
Other languages
English (en)
French (fr)
Inventor
秀一 宮尾
祢津 茂義
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP15833085.2A priority Critical patent/EP3184489A1/en
Priority to CN201580043372.5A priority patent/CN106660809A/zh
Priority to KR1020177003339A priority patent/KR20170042576A/ko
Priority to US15/327,693 priority patent/US20170210630A1/en
Publication of WO2016027416A1 publication Critical patent/WO2016027416A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size

Definitions

  • the present invention relates to a technique for producing polycrystalline silicon. More specifically, the present invention relates to a technique for producing high-quality polycrystalline silicon that makes it possible to control the crystal grain size, crystal orientation, and thermal diffusivity of polycrystalline silicon within desired ranges.
  • High-purity and high-quality silicon substrates are indispensable semiconductor materials for manufacturing today's semiconductor devices.
  • Such a silicon substrate is manufactured by a CZ method or an FZ method using polycrystalline silicon as a raw material, and semiconductor grade polycrystalline silicon is often manufactured by a Siemens method (for example, Patent Document 1 (Japanese Patent Publication No. 2004-2000)). No. 532786).
  • the Siemens method is a method in which a silane source gas such as trichlorosilane or monosilane is brought into contact with a heated silicon core wire, and polycrystalline silicon is vapor-deposited (deposited) on the surface of the silicon core wire by a CVD (Chemical Vapor Deposition) method. ).
  • the reaction temperature in the bell jar is about 900 ° C. to 1200 ° C. in order to increase the gas concentration of trichlorosilane as much as possible and increase the deposition rate of polycrystalline silicon. Controlled to range.
  • the crystal grain size, crystal orientation and thermal diffusivity of polycrystalline silicon are the most basic and important characteristic values. This is because the meltability and melting rate of polycrystalline silicon during the production of single crystal silicon depend on these characteristic values, and thus directly affect the crystal quality of single crystal silicon.
  • polycrystalline silicon is a raw material for producing single crystal silicon by the FZ method
  • a non-oriented material having a small crystal grain size tends to be preferred.
  • the above general tendency is not absolute, and even when polycrystalline silicon is used as a raw material for producing single crystal silicon by the CZ method, for example, when it is desired to shorten the melting time in a quartz crucible, A relatively small particle size may be preferred. In addition, when it is desired to reduce the supply power for melting, non-oriented ones may be preferred.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2014-031297 by the present inventors selected polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility, An electron backscatter diffraction image obtained by irradiating an electron beam onto a main surface of a plate-like sample collected from a polycrystalline silicon rod, which is an invention aimed at providing a technique that contributes to stable production of silicon.
  • the total area of the regions where crystal grains having a grain size of 0.5 ⁇ m or more are not detected is 10% or less of the entire area irradiated with the electron beam (Condition 1), and the grain size is 0.5 ⁇ m.
  • a polycrystalline silicon rod that simultaneously satisfies the condition that the number of crystal grains in the range of less than 3 ⁇ m is 45% or more of the total number of detected crystal grains (Condition 2) is selected as a raw material for producing single crystal silicon. Hand to do There has been disclosed.
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-217653 by the present inventors selected polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility, The invention aims to provide a technique that contributes to stable production of silicon, and uses polycrystalline silicon as a plate-like sample, and the plate-like shape is located at a position where Bragg reflection from the mirror index surface ⁇ hkl> is detected.
  • the sample is arranged, and the X-ray irradiation region defined by the slit is rotated in-plane at a rotation angle ⁇ around the center of the disk-shaped sample so that the main surface of the disk-shaped sample is ⁇ -scanned,
  • a chart showing the dependence of the Bragg reflection intensity from the mirror index surface ⁇ hkl> on the rotation angle ( ⁇ ) of the plate-like sample is obtained, and the degree of crystal orientation of polycrystalline silicon is determined by the number of peaks appearing on the chart.
  • Patent Document 4 Japanese Patent Laid-Open No. 2014-034506 by the present inventors selected polycrystalline silicon suitable as a raw material for producing single crystal silicon with high quantitativeness and reproducibility, It is an invention aimed at providing a technique that contributes to stable production of silicon, and is a plate-like shape whose main surface is a cross section perpendicular to the radial direction of a polycrystalline silicon rod grown by precipitation by a chemical growth method.
  • thermo diffusivity ⁇ (T) of this plate-like sample is measured, and compared with the thermal diffusivity ⁇ R (T) of the standard sample, the ratio of thermal diffusivity ( ⁇ (T) / ⁇ R ( Based on T)), a method of selecting a polycrystalline silicon rod suitable as a raw material for producing single crystal silicon is disclosed.
  • Patent Documents 2 to 4 described above cannot associate the crystal grain size, crystal orientation, and thermal diffusivity with the manufacturing conditions (precipitation conditions) of polycrystalline silicon.
  • the characteristics of polycrystalline silicon could not be fed back to the deposition conditions.
  • the present invention has been made in view of such problems, and the object of the present invention is to provide polycrystalline silicon for realizing crystal grain size, crystal orientation, and thermal diffusivity suitable for use.
  • the object is to provide a technique that enables characteristic control.
  • a method for producing a polycrystalline silicon rod according to the present invention is a method for producing a polycrystalline silicon rod by the Siemens method, and the inside of the reactor is brought to a pressure range of 0.45 to 0.9 MPa. In a controlled state, polycrystalline silicon is precipitated, and the average value of the crystal grain size when evaluated by the EBSD method (electron backscattering diffraction measurement method) at an arbitrary portion of the polycrystalline silicon rod is 6 ⁇ m or less. A crystalline silicon rod is obtained.
  • the pressure range is controlled to 0.6 to 0.9 MPa.
  • the reaction temperature during the polycrystalline silicon precipitation reaction is set in the range of 1100 ° C. to 1150 ° C., for example.
  • the polycrystalline silicon rod according to the present invention is a polycrystalline silicon rod grown by the above method, and a plate-like sample collected from an arbitrary part of the polycrystalline silicon rod is subjected to an EBSD method (electron backscatter diffraction measurement method).
  • the crystal grain size is in the range of 0.5 to 30 ⁇ m and the average grain size is 6 ⁇ m or less.
  • the polycrystalline silicon rod according to the present invention is a polycrystalline silicon rod grown by the above method, and each of n plate-like samples collected from any part of the polycrystalline silicon rod is represented by a Miller index.
  • the Bragg reflection from the surface (111) is disposed at a position where it is detected, and the average value of the diffraction intensities obtained by measuring the X-ray diffraction detection amount while rotating the plate-like sample in the measurement surface,
  • the population standard deviation of the population of n plate-like samples is ⁇ and the population average is ⁇
  • the polycrystalline silicon rod according to the present invention is a polycrystalline silicon rod grown by the above method, and each of n plate-like samples collected from any part of the polycrystalline silicon rod is represented by a Miller index.
  • the Bragg reflection from the surface (220) is disposed at a position where it is detected, and the average value of diffraction intensities obtained by measuring the detected amount of X-ray diffraction while rotating the plate-like sample in the measurement surface is obtained,
  • the polycrystalline silicon rod according to the present invention is a polycrystalline silicon rod grown by the above method, and each of n plate-like samples collected from an arbitrary part of the polycrystalline silicon rod has a Miller index.
  • the area of the diffraction peak appearing in the diffraction chart obtained by measuring the detected amount of X-ray diffraction while rotating the plate-like sample in the measurement plane, arranged at a position where Bragg reflection from the surface (220) is detected
  • the ratio of the total diffraction intensity to the area is determined for each of the n plate-like samples, and the average of the n area ratios is 5% or more.
  • the polycrystalline silicon rod according to the present invention is a polycrystalline silicon rod grown by the above method, and the thermal diffusivity of a plate-like sample taken from any part of the polycrystalline silicon rod is 73 mm 2 / Less than a second.
  • FIG. 1 is a schematic cross-sectional view for explaining a configuration example of a reactor for producing a polycrystalline silicon rod.
  • the reaction furnace 100 is an apparatus for obtaining a polycrystalline silicon rod 13 by vapor-phase-growing polycrystalline silicon on the surface of the silicon core wire 12 by the Siemens method, and a bell jar 1 having an inspection window 2 for confirming the internal state.
  • the bottom plate 5 are hermetically sealed, and a plurality of silicon core wires 12 assembled in a torii form are arranged in the sealed space to deposit polycrystalline silicon on the surface of the silicon core wire (or silicon rod 13).
  • the bottom plate 5 has a core wire holder 11 and a metal electrode 10 for energizing and generating heat from both ends of the silicon core wire 12, and a gas supply nozzle 9 for supplying process gas such as nitrogen gas, hydrogen gas, trichlorosilane gas into the bell jar 1.
  • emitting the gas after reaction to the exterior of the bell jar 1 is installed.
  • three nozzles 9 are illustrated, but one or more nozzles 9 may be provided.
  • the bottom plate 5 has a disk shape, and the metal electrode 10, the nozzle 9, and the reaction exhaust gas port 8 provided on the bottom plate 5 are often installed concentrically.
  • the source gas a mixed gas of trichlorosilane and hydrogen is often used, and the reaction temperature is also relatively high at about 1000 ° C. to 1200 ° C. Therefore, a refrigerant inlet 3 and a refrigerant outlet 4 are provided at the lower part and the upper part of the bell jar 1, respectively, and a refrigerant inlet 6 and a refrigerant outlet 7 are provided at both ends of the bottom plate 5, respectively. Coolant is supplied and cooled. Note that water is generally used as such a refrigerant. Further, the inner surface temperature of the bell jar 1 during the precipitation reaction is generally maintained at 150 ° C. to 400 ° C.
  • a carbon core wire holder 11 for fixing the silicon core wire 12 is installed on the top of the metal electrode 10.
  • the silicon core wire 12 is energized and self-heated to flow the source gas in a state where the surface temperature is controlled to be in the range of about 1000 to 1200 ° C., thereby depositing polycrystalline silicon on the surface of the silicon core wire 12 and Obtain a crystalline silicon rod.
  • the reaction temperature for conducting the polycrystalline silicon precipitation reaction is set in the range of, for example, 1100 ° C. to 1150 ° C., and the inside of the reactor is set to 0.45 to 0 Polycrystalline silicon is deposited in a state controlled to a pressure range of .9 MPa.
  • the pressure in the furnace when depositing polycrystalline silicon by the Siemens method is closely related to the grain size of the obtained polycrystalline. For this reason, the present inventors believe that, when deposited under a relatively high pressure, the free crystal growth of silicon is inhibited, and as a result, the diameter of each crystal grain becomes small.
  • a polycrystalline silicon rod having an average crystal grain size of 6 ⁇ m or less when evaluated by an EBSD method (electron backscattering diffraction measurement method) at an arbitrary site is obtained. obtain.
  • the average value of the crystal grain size when evaluated by the EBSD method is 2 ⁇ m or less at an arbitrary site.
  • a polycrystalline silicon rod can be obtained.
  • Table 1 shows that the reaction temperature during the precipitation reaction of polycrystalline silicon is set to approximately 1100 ° C., and the inside of the reaction furnace is controlled to normal pressure (about 0.1 MPa), 0.45 MPa, and 0.6 MPa.
  • normal pressure about 0.1 MPa
  • 0.45 MPa 0.45 MPa
  • 0.6 MPa the crystal grain sizes evaluated using samples collected from polycrystalline silicon obtained by depositing polycrystalline silicon using trichlorosilane gas as a source gas
  • the particle size is determined according to the method described in Patent Document 2 (Japanese Patent Laid-Open No. 2014-031297), and the “particle size” is the value of each of the crystal grains detected by the analysis of the electron backscatter diffraction image.
  • the area is determined for each and is defined by the diameter of a circle having the area.
  • the average particle size at 0.45 MPa is 6 ⁇ m
  • the average particle size at 0.6 MPa is It is 2 ⁇ m.
  • the pressure inside the furnace can be controlled by controlling the flow rate at the reaction exhaust gas outlet. Increasing the furnace pressure reduces the gas flow rate in the furnace, but there is no significant change in the deposition rate. This is considered to be because the concentration of hydrochloric acid as a by-product decreases as the furnace pressure increases, and the etching action by hydrochloric acid weakens.
  • Table 2 summarizes the crystal orientation evaluated using samples collected from polycrystalline silicon obtained under the above three conditions.
  • the CV value of the Miller index plane (111), which was deposited under normal pressure is as high as 17 to 42%, and the orientation of the (111) plane is high.
  • the CV value of the Miller index plane (111), which was deposited under the pressures of 0.45 MPa and 0.6 MPa was relatively low, 12 to 14%, and the orientation of the (111) plane was low. I understand.
  • the (220) peak area ratio in the table is arranged at a position where Bragg reflection from the mirror index surface (220) is detected for each of n plate-like samples taken from any part of the polycrystalline silicon rod.
  • the ratio of the area of the diffraction peak appearing in the diffraction chart obtained by measuring the X-ray diffraction detection amount while rotating the plate sample in the measurement plane to the area of the total diffraction intensity is the n plate samples. It is obtained every time and the average of the n area ratios is obtained.
  • the Miller index plane (220) peak area ratio of those deposited under normal pressure is 0%, whereas the Miller index plane (220) peak area ratio of those deposited under pressures of 0.45 MPa and 0.6 MPa is 5%. That's it.
  • needle crystal in the table gives a peak appearing on the baseline in the above-mentioned X-ray diffraction measurement chart, and this is a locally oriented needle crystal. It corresponds to the cross section exposed on the surface.
  • the crystal grain size is relatively large for those deposited under normal pressure and the orientation of the Miller index plane (111) is high, while the crystal grain size is precipitated for those deposited under high pressure.
  • the orientation is relatively small and the orientation of the Miller index surface (111) is not recognized, there is a tendency that needle-like crystals having the Miller index surface (220) as a precipitation surface exist locally.
  • the crystal grain size is 0.
  • a polycrystalline silicon rod having a range of 5 to 30 ⁇ m and an average particle size of 6 ⁇ m or less can be obtained.
  • such a polycrystalline silicon rod is arranged at a position where Bragg reflection from the mirror index surface (220) is detected for each of n plate-like samples collected from an arbitrary part,
  • the ratio of the area of the diffraction peak appearing in the diffraction chart obtained by measuring the detected amount of X-ray diffraction while rotating in the measurement plane to the area of the total diffraction intensity for each of the n plate-like samples, It is a polycrystalline silicon rod having an average of n area ratios of 5% or more.
  • such a polycrystalline silicon rod is a polycrystalline silicon rod in which the thermal diffusivity of a plate-like sample taken from an arbitrary site is 73 mm 2 / sec or less.
  • the polycrystalline silicon rod according to the present invention may be used as it is as a raw material for producing single crystal silicon by the FZ method, or may be crushed into a silicon lump for producing single crystal silicon by the CZ method. It may be used as a raw material.
  • the precipitation reaction temperature and the gas concentration of trichlorosilane were kept constant, and only the furnace pressure (normal pressure, 0.45 MPa, 0. 6 MPa, 0.9 MPa) was changed to grow a polycrystalline silicon rod.
  • the precipitation reaction temperature was controlled in the range of 1100 to 1150 ° C. by monitoring the surface temperature of the polycrystalline silicon rod with a radiation thermometer. Moreover, the mixed gas of trichlorosilane and hydrogen gas was supplied in the furnace, and the trichlorosilane concentration in this mixed gas was 30 mol%.
  • the gas flow rate was 0.05 mol / cm 2 ⁇ h under normal pressure conditions, and the flow rate determined when each reactor internal pressure was set at the reaction exhaust gas outlet. Note that “cm 2 ” in the unit of the gas flow rate is a surface area of the silicon polycrystalline rod in the reaction furnace.
  • a polycrystalline silicon rod is grown to a diameter of 140 to 160 mm, and after completion of the reaction, the polycrystalline silicon rod is taken out, and in the radial direction at 10 mm intervals in the growth direction (radial direction) of the polycrystalline silicon rod.
  • the reason why the upper limit of the furnace pressure is set to 0.9 MPa is from the viewpoint of the pressure resistance of the bell jar and the excessive decrease in the deposition rate.
  • the plate sample was collected according to the method disclosed in Patent Document 3, for example.
  • the plate-like sample is a disc having a diameter of about 19 mm and a thickness of about 2 mm. Specifically, it was collected as follows.
  • FIG. 2A and FIG. 2B are diagrams for conceptually explaining how to collect the plate-like sample 20 from the polycrystalline silicon rod 13.
  • reference numeral 12 denotes a silicon core wire for depositing polycrystalline silicon on the surface to form a silicon rod.
  • CTR a part close to the silicon core wire 1
  • EDG a part close to the side surface of the polycrystalline silicon rod 10
  • the plate-like sample 20 is collected from the middle part of the plate).
  • the diameter of the polycrystalline silicon rod 13 illustrated in FIG. 2A is approximately 150 mm. From the side surface side of the polycrystalline silicon rod 13, the rod 14 having a diameter of approximately 19 mm and a length of approximately 75 mm is connected to the longitudinal direction of the silicon core wire 1. And cut out vertically.
  • a portion (CTR) of the rod 14 near the silicon core wire 12 a portion near the side surface of the polycrystalline silicon rod 13 (EDG), and a portion between the CTR and EGD (R / 2).
  • CTR CTR
  • EDG polycrystalline silicon rod 13
  • R / 2 a disk-shaped sample (20 CTR , 20 EDG , 20 R / 2 ) having a thickness of approximately 2 mm with a cross section perpendicular to the radial direction of the polycrystalline silicon rod 13 as the main surface is collected.
  • the part, length, and number of rods 14 to be sampled may be appropriately determined according to the diameter of the silicon rod 13 and the diameter of the rod 14 to be hollowed out, and from which part of the rod 14 from which the plate-like sample 20 has been hollowed out.
  • the position of the silicon rod 13 as a whole can be reasonably estimated. For example, when acquiring two plate-like samples, two positions, a position on the center side and a position on the outside of the point that is half the radius from the center with respect to the radius of the circumference of the silicon rod.
  • the acquisition positions of two samples to be compared are located on the center side of a point that is one third of the radius from the center and outside the point that is two thirds of the radius from the center. If the position is used, a more accurate comparison can be made.
  • the plate-shaped sample to compare should just be 2 or more, and there is no upper limit in particular.
  • the diameter of the plate-like sample 20 is set to approximately 19 mm is merely an example, and the diameter may be appropriately determined within a range that does not hinder measurement.
  • the abrasive carbon randoms # 300, # 600, and # 1200 are used in order in order to remove the blade marks of the rotation cut.
  • mirror polishing was performed with a polishing pad and a diamond polishing agent of 0.1 ⁇ m.
  • the crystal grain size can be measured from 0.5 ⁇ m to several tens of ⁇ m in the measurement of the crystal grain size by EBSD, the distribution state of the crystal grain size can be understood by expressing the measurement result with a histogram.
  • Table 3 shows the crystal grain size and crystal orientation at normal pressure (Comparative Examples 1 and 2), 0.45 MPa (Example 1), 0.6 MPa (Example 2), and 0.9 MPa (Example 3). The evaluation results of properties and thermal diffusivity are summarized.
  • the crystal grain size tends to decrease, and the width of the crystal grain size distribution tends to narrow.
  • the crystal grain size distribution directly affects, for example, thermal diffusivity (thermal conductivity), crystallinity, residual stress, fracture strength, and fragility, so it is indispensable for stable production of single crystal silicon. Information.
  • the orientation state (orientation ratio) of the crystal grains having a mirror index face of (111) and the crystal grains having a mirror index face of (220) can be controlled by controlling the furnace pressure. I can read what I can do.
  • the thermal diffusivity is a physical quantity that does not depend on the thermal equilibrium relationship, and represents the amount of heat that can be diffused per unit time in terms of area. Thermal diffusivity is important as a parameter associated with dynamic heat input and output in thermal equilibrium during single crystal silicon production.
  • the present invention provides a technique capable of controlling the characteristics of polycrystalline silicon in order to realize a crystal grain size, crystal orientation, and thermal diffusivity suitable for use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 本発明では、シーメンス法により多結晶シリコン棒を製造するに際し、多結晶シリコンの析出反応を行う際の反応温度を例えば1100℃~1150℃の範囲に設定し、反応炉内を0.45~0.9MPaの圧力範囲に制御した状態で、多結晶シリコンを析出させる。このような圧力範囲に制御することで、任意の部位において、EBSD法により評価した場合の結晶粒径の平均値が6μm以下である多結晶シリコン棒を得ることができる。また、圧力範囲を0.6~0.9MPaに制御することとした場合には、任意の部位において、EBSD法により評価した場合の結晶粒径の平均値が2μm以下である多結晶シリコン棒を得ることができる。

Description

多結晶シリコン棒の製造方法および多結晶シリコン棒
 本発明は、多結晶シリコンの製造技術に関する。より詳細には、多結晶シリコンの結晶粒径、結晶配向性、熱拡散率を所望の範囲に制御することを可能とする、高品質多結晶シリコンの製造技術に関する。
 高純度かつ高品質なシリコン基板は、今日の半導体デバイス等の製造に不可欠な半導体材料である。
 このようなシリコン基板は多結晶シリコンを原料としてCZ法やFZ法により製造され、半導体グレードの多結晶シリコンは、多くの場合、シーメンス法により製造される(例えば、特許文献1(特表2004-532786号公報)を参照)。シーメンス法とは、トリクロロシランやモノシラン等のシラン原料ガスを、加熱されたシリコン芯線に接触させることにより、当該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法により気相成長(析出)させる方法である。
 シーメンス法では、一般に、反応ガスとして、キャリアガスとしての水素ガスと原料ガスとしてのトリクロロシランが用いられる。また、多結晶シリコンの生産性を高めるべく、トリクロロシランのガス濃度を可能な限り高めるとともに、多結晶シリコンの析出速度を上げるために、ベルジャ内での反応温度は概ね900℃から1200℃程度の範囲に制御される。
 多結晶シリコンを単結晶シリコン製造用の原料として用いる場合、多結晶シリコンの結晶粒径、結晶配向性、および、熱拡散率は、最も基本的で且つ重要な特性値となる。それは、単結晶シリコン製造時の多結晶シリコンの融解性や融解速度はこれらの特性値に依存するため、単結晶シリコンの結晶品質に直接的に影響するためである。
 一般的に、多結晶シリコンの用途がCZ法による単結晶シリコン製造のための原料である場合には、結晶配向性についての特別な要求はない一方、結晶粒径が比較的大きなものが好まれる傾向にある。
 また、多結晶シリコンの用途がFZ法による単結晶シリコン製造のための原料である場合には、結晶粒径が小さく無配向性のものが好まれる傾向にある。
 しかし、上述の一般的傾向は絶対的なものではなく、CZ法による単結晶シリコン製造の原料としての多結晶シリコンであっても、例えば、石英ルツボ内での融解時間を短縮したい場合は、結晶粒径の比較的小さいものが好まれる場合がある。また、融解のための供給電力を少なくしたい場合には、無配向性のものが好まれる場合がある。
 このように、多結晶シリコンの製造に際しては、その用途に適した結晶粒径、結晶配向性、および、熱拡散率となるように、多結晶シリコンの特性制御が求められる。
 従来技術においても、結晶粒径、結晶配向性、および、熱拡散率の測定方法については個別に検討はされてきた。
 結晶粒径に関しては、本発明者らによる特許文献2(特開2014-031297号公報)に、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供することを目的とした発明であって、多結晶シリコン棒から採取された板状試料の主面に電子線を照射して得られる電子後方散乱回折像を解析し、粒径が0.5μm以上の結晶粒が検出されない領域の総和面積が、電子線照射された面積全体の10%以下であること(条件1)、および、粒径が0.5μm以上で3μm未満の範囲にある結晶粒の個数が、検出された結晶粒の全体の45%以上であること(条件2)、を同時に満足する多結晶シリコン棒を単結晶シリコン製造用原料として選択するという手法が開示されている。
 結晶配向性に関しては、本発明者らによる特許文献3(特開2013-217653号公報)に、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供することを目的とした発明であって、多結晶シリコンを板状試料とし、ミラー指数面<hkl>からのブラッグ反射が検出される位置に前記板状試料を配置し、スリットにより定められるX線照射領域が前記円板状試料の主面上をφスキャンするように前記円板状試料の中心を回転中心として回転角度φで面内回転させ、前記ミラー指数面<hkl>からのブラッグ反射強度の前記板状試料の回転角度(φ)依存性を示すチャートを求め、該チャートに現れるピークの本数で多結晶シリコンの結晶配向度を評価するという手法が開示されている。
 熱拡散率に関しては、本発明者らによる特許文献4(特開2014-034506号公報)に、単結晶シリコン製造用原料として好適な多結晶シリコンを高い定量性と再現性で選別し、単結晶シリコンの安定的製造に寄与する技術を提供することうを目的とした発明であって、化学成長法による析出で育成された多結晶シリコン棒の径方向に垂直な断面を主面とする板状試料を採取して、この板状試料の熱拡散率α(T)を測定し、標準試料の熱拡散率αR(T)と比較して、熱拡散率の比(α(T)/αR(T))に基づいて単結晶シリコン製造用の原料として好適な多結晶シリコン棒を選択するという手法が開示されている。
特表2004-532786号公報 特開2014-031297号公報 特開2013-217653号公報 特開2014-034506号公報
 上述のとおり、多結晶シリコンの製造に際しては、その用途に適した結晶粒径、結晶配向性、および、熱拡散率となるように、多結晶シリコンの特性制御が求められる。
 しかし、上述の特許文献2~4に開示の手法も含め、従来技術では、結晶粒径、結晶配向性、および、熱拡散率を多結晶シリコンの製造条件(析出条件)と関連付けることができないため、多結晶シリコンのもつ特性を析出条件にフィードバックすることができなかった。
 本発明は、このような問題に鑑みてなされたもので、その目的とするところは、用途に適した結晶粒径、結晶配向性、および、熱拡散率を実現するための、多結晶シリコンの特性制御を可能とする技術を提供することにある。
 上記課題を解決するために、本発明に係る多結晶シリコン棒の製造方法は、シーメンス法による多結晶シリコン棒の製造方法であって、反応炉内を0.45~0.9MPaの圧力範囲に制御した状態で、多結晶シリコンを析出させ、前記多結晶シリコン棒の任意の部位において、EBSD法(電子後方散乱回折測定法)により評価した場合の結晶粒径の平均値が6μm以下である多結晶シリコン棒を得る、ことを特徴とする。
 好ましくは、上記圧力範囲を0.6~0.9MPaに制御する。
 多結晶シリコンの析出反応を行う際の反応温度は、例えば、1100℃~1150℃の範囲に設定する。
 本発明に係る多結晶シリコン棒は、上記方法で育成された多結晶シリコン棒であって、前記多結晶シリコン棒の任意の部位から採取した板状試料をEBSD法(電子後方散乱回折測定法)により評価した場合に、結晶粒径が0.5~30μmの範囲にあり且つ平均粒径が6μm以下である。
 また、本発明に係る多結晶シリコン棒は、上記方法で育成された多結晶シリコン棒であって、前記多結晶シリコン棒の任意の部位から採取したn枚の板状試料のそれぞれを、ミラー指数面(111)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折強度の平均値を求め、前記n枚の板状試料の測定結果の母集団の母標準偏差をσとし母平均をμとしたときに、CV=σ/μで定義される変動係数の値が25%以下である。
 また、本発明に係る多結晶シリコン棒は、上記方法で育成された多結晶シリコン棒であって、前記多結晶シリコン棒の任意の部位から採取したn枚の板状試料のそれぞれを、ミラー指数面(220)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折強度の平均値を求め、前記n枚の板状試料の測定結果の母集団の母標準偏差をσとし母平均をμとしたときに、CV=σ/μで定義される変動係数の値が30%以下である。
 また、本発明に係る多結晶シリコン棒は、上記方法で育成された多結晶シリコン棒であって、前記多結晶シリコン棒の任意の部位から採取したn枚の板状試料のそれぞれにつき、ミラー指数面(220)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折チャート中に現れる回折ピークの面積の全回折強度の面積に対する比を前記n枚の板状試料毎に求め、該n個の面積比の平均が5%以上である。
 また、本発明に係る多結晶シリコン棒は、上記方法で育成された多結晶シリコン棒であって、前記多結晶シリコン棒の任意の部位から採取した板状試料の熱拡散率が、73mm/秒以下である。
 本発明により、用途に適した結晶粒径、結晶配向性、および、熱拡散率を実現するための、多結晶シリコンの特性制御を可能とする技術が提供される。
多結晶シリコン棒製造用反応炉の構成例を説明するための断面概略図である。 化学気相法で析出させて育成された多結晶シリコン棒からの板状試料の採取例について説明するための図である。 化学気相法で析出させて育成された多結晶シリコン棒からの板状試料の採取例について説明するための図である。
 以下に、図面を参照して本願発明に係る多結晶シリコン棒の製造方法について説明する。
 図1は、多結晶シリコン棒製造用反応炉の構成例を説明するための断面概略図である。
 反応炉100は、シーメンス法によりシリコン芯線12の表面に多結晶シリコンを気相成長させ、多結晶シリコン棒13を得る装置であり、内部の状態を確認するためののぞき窓2を備えたベルジャ1と底板5とにより内部が密閉され、当該密閉空間内に鳥居型に組んだシリコン芯線12を複数配置させてこのシリコン芯線(またはシリコン棒13)の表面に多結晶シリコンを析出させる。
 底板5には、シリコン芯線12の両端から通電して発熱させるための芯線ホルダ11及び金属電極10と、ベルジャ1内部に窒素ガス、水素ガス、トリクロロシランガスなどのプロセスガスを供給するガス供給ノズル9と、反応後のガスをベルジャ1の外部に排出するための反応排ガス口8が設置されている。なお、図1には、ノズル9は3つ図示したが、ノズル9は1つ以上であればよい。
 通常、底板5は円盤状をしており、この底板5に設けられる金属電極10、ノズル9、反応排ガス口8も、同心円上に設置されることが多い。原料ガスとしてはトリクロロシランと水素の混合ガスが使用されることが多く、反応温度も1000℃~1200℃程度と比較的高温である。このため、ベルジャ1の下部と上部にはそれぞれ冷媒入口3と冷媒出口4が、底板5の両端にも冷媒入口6と冷媒出口7が設けられており、ベルジャ1および底板5それぞれの冷媒路に冷媒が供給されて冷却がなされる。なお、このような冷媒としては、一般に水が用いられる。また、析出反応時のベルジャ1の内表面温度は、概ね150℃~400℃に保たれる。
 金属電極10の頂部にはシリコン芯線12を固定するためのカーボン製の芯線ホルダ11を設置する。シリコン芯線12に通電し、自己発熱させて表面温度が1000~1200℃程度の範囲となるように制御した状態で原料ガスを流すことにより、シリコン芯線12の表面に多結晶シリコンを析出させて多結晶シリコン棒を得る。
 本発明では、シーメンス法により多結晶シリコン棒を製造するに際し、多結晶シリコンの析出反応を行う際の反応温度を例えば1100℃~1150℃の範囲に設定し、反応炉内を0.45~0.9MPaの圧力範囲に制御した状態で、多結晶シリコンを析出させる。
 本発明者らの検討によれば、シーメンス法により多結晶シリコンを析出させる際の炉内圧力は、得られる多結晶の粒径と密接に関係する。その理由につき、本発明者らは、比較的高い圧力下で析出させた場合には、シリコンの自由な結晶成長が阻害される結果、個々の結晶粒の径が小さくなるものと考えている。
 本発明では、上記条件下で析出を行うことにより、任意の部位において、EBSD法(電子後方散乱回折測定法)により評価した場合の結晶粒径の平均値が6μm以下である多結晶シリコン棒を得る。
 上記圧力範囲を0.6~0.9MPaに制御することとした場合には、任意の部位において、EBSD法(電子後方散乱回折測定法)により評価した場合の結晶粒径の平均値が2μm以下である多結晶シリコン棒を得ることができる。
 表1は、多結晶シリコンの析出反応を行う際の反応温度を概ね1100℃に設定し、且つ、反応炉内を常圧(約0.1MPa)、0.45MPa、0.6MPaの圧力に制御した状態で、トリクロロシランガスを原料ガスとして多結晶シリコンを析出させて得た多結晶シリコンから採取した試料を用いて評価した結晶粒径を纏めたものである。
 なお、粒径は、特許文献2(特開2014-031297号公報)に記載されている手法に従い求めており、「粒径」は、電子後方散乱回折像の解析により検出された結晶粒のそれぞれにつきその面積を求め、当該面積を有する円の直径で定義付けている。
Figure JPOXMLDOC01-appb-T000001
 常圧下で析出させたものでは平均粒径が20μmであるところ、圧力が高いほど平均粒径は小さくなり、0.45MPaの場合の平均粒径は6μm、0.6MPaの場合の平均粒径は2μmとなっている。
 炉内の圧力制御は、反応排ガス出口の流量制御により可能である。炉内圧力を高めることにより炉内のガス流量は低下するが、析出速度にさほどの変化はない。これは、副生成物である塩酸の濃度は炉内圧力が高まるほど低くなり、塩酸によるエッチング作用が弱まるためであると考えられる。
 このような炉内圧力の効果は、結晶の配向性にも認められる。
 表2は、上述の3条件で得た多結晶シリコンから採取した試料を用いて評価した結晶配向性を纏めたものである。
 なお、表中のCV値は「変動係数」であり、多結晶シリコン棒の成長方向(半径方向)に10mm間隔で、半径方向に垂直な面を主面とするn枚の板状試料(n=14~16)を採取し、各板状試料を、ミラー指数面(111)または(220)からのブラッグ反射が検出される位置に配置し、スリットにより定められるX線照射領域が板状試料の主面上をφスキャンするように板状試料の中心を回転中心として回転角度φで面内回転させ、ミラー指数面からのブラッグ反射強度の板状試料の回転角度(φ)依存性を示すチャートを求め、このチャートに現れる回折強度の平均値を求め、上記n枚の板状試料の測定結果の母集団の母標準偏差をσとし母平均をμとしたときに、CV=σ/μで定義される。
Figure JPOXMLDOC01-appb-T000002
 常圧下で析出させたもののミラー指数面(111)のCV値は17~42%と高く、(111)面の配向性が高いことが分かる。これに対して、0.45MPaおよび0.6MPaの圧力下で析出させたもののミラー指数面(111)のCV値は12~14%と比較的低く、(111)面の配向性が低いことが分かる。
 表中の(220)ピーク面積比は、多結晶シリコン棒の任意の部位から採取したn枚の板状試料のそれぞれにつき、ミラー指数面(220)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折チャート中に現れる回折ピークの面積の全回折強度の面積に対する比を前記n枚の板状試料毎に求め、該n個の面積比の平均を求めたものである。
 常圧下で析出させたもののミラー指数面(220)ピーク面積比は0%である一方、0.45MPaおよび0.6MPaの圧力下で析出させたもののミラー指数面(220)ピーク面積比は5%以上である。
 なお、表中の「針状結晶」とは、上述のX線回折測定チャートにおいて、ベースライン上に出現しているピークを与えているものであり、これは局所的に配向した針状結晶の断面が表面に露出しているものに相当する。
 これらの結果を総合すると、常圧下で析出させたものでは、結晶粒径が比較的大きく、ミラー指数面(111)の配向性が高い一方、高圧下で析出させたものでは、結晶粒径が比較的小さく、ミラー指数面(111)の配向性は認められないが、ミラー指数面(220)を析出面とする針状結晶が局所的に存在する傾向がある。
 このように、本発明に係る方法によれば、多結晶シリコン棒の任意の部位から採取した板状試料をEBSD法(電子後方散乱回折測定法)により評価した場合に、結晶粒径が0.5~30μmの範囲にあり且つ平均粒径が6μm以下である多結晶シリコン棒を得ることができる。
 また、このような多結晶シリコン棒は、任意の部位から採取したn枚の板状試料のそれぞれを、ミラー指数面(111)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折強度の平均値を求め、前記n枚の板状試料の測定結果の母集団の母標準偏差をσとし母平均をμとしたときに、CV=σ/μで定義される変動係数の値が25%以下である多結晶シリコン棒である。
 また、このような多結晶シリコン棒は、任意の部位から採取したn枚の板状試料のそれぞれを、ミラー指数面(220)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折強度の平均値を求め、前記n枚の板状試料の測定結果の母集団の母標準偏差をσとし母平均をμとしたときに、CV=σ/μで定義される変動係数の値が30%以下である多結晶シリコン棒である。
 また、このような多結晶シリコン棒は、任意の部位から採取したn枚の板状試料のそれぞれにつき、ミラー指数面(220)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折チャート中に現れる回折ピークの面積の全回折強度の面積に対する比を前記n枚の板状試料毎に求め、該n個の面積比の平均が5%以上である多結晶シリコン棒である。
 さらに、後述するように、このような多結晶シリコン棒は、任意の部位から採取した板状試料の熱拡散率が、73mm/秒以下である多結晶シリコン棒である。
 本発明に係る多結晶シリコン棒は、そのままの状態でFZ法による単結晶シリコン製造用の原料として用いることとしてもよいし、これを粉砕してシリコン塊とし、CZ法による単結晶シリコン製造用の原料として用いることとしてもよい。
 析出時の炉内圧力の、結晶粒径および結晶配向性への影響を確認するため、析出反応温度、トリクロロシランのガス濃度を一定とし、炉内圧力のみ(常圧、0.45MPa、0.6MPa、0.9MPa)を変化させて多結晶シリコン棒を育成した。
 析出反応温度は、多結晶シリコン棒の表面温度を放射温度計によりモニターし、1100~1150℃の範囲に制御した。また、トリクロロシランと水素ガスの混合ガスを炉内に供給し、この混合ガス中のトリクロロシラン濃度は30モル%とした。
 ガス流量は、常圧条件下では0.05mol/cm・hとし、反応排ガス出口において、各炉内圧力に設定した際に定まる流量とした。なお、上記ガス流量の単位中の「cm」は、反応炉内のシリコン多結晶棒の表面積である。
 上記の条件により、各圧力について、直径140~160mmまで多結晶シリコン棒を成長させ、反応終了後に多結晶シリコン棒を取り出し、多結晶シリコン棒の成長方向(半径方向)に10mm間隔で、半径方向に垂直な面を主面とするn枚の板状試料(n=14~16)を採取し、結晶粒径、配向性、および、熱拡散率の評価を行った。
 なお、炉内圧力の上限を0.9MPaとした理由は、ベルジャの耐圧性の観点と析出速度の過度な低下を回避する観点からである。
 板状試料は、例えば特許文献3に開示されている方法に従い採取した。板状試料は、直径が約19mmで厚みが約2mmの円板状のものである。具体的には、下記のように採取した。
 図2A及び図2Bは、多結晶シリコン棒13からの板状試料20の採取の仕方を概念的に説明するための図である。図中、符号12で示したものは、表面に多結晶シリコンを析出させてシリコン棒とするためのシリコン芯線である。なお、この図に示した例では、説明を簡略化するため、3つの部位(CTR:シリコン芯線1に近い部位、EDG:多結晶シリコン棒10の側面に近い部位、R/2:CTRとEGDの中間の部位)から板状試料20を採取しているが、実際には、多結晶シリコン棒の成長方向(半径方向)に10mm間隔でn枚の板状試料(n=14~16)を採取している。
 図2Aで例示した多結晶シリコン棒13の直径は概ね150mmであり、この多結晶シリコン棒13の側面側から、直径が概ね19mmで長さが概ね75mmのロッド14を、シリコン芯線1の長手方向と垂直にくり抜く。
 そして、図2Bに図示したように、このロッド14のシリコン芯線12に近い部位(CTR)、多結晶シリコン棒13の側面に近い部位(EDG)、CTRとEGDの中間の部位(R/2)からそれぞれ、多結晶シリコン棒13の径方向に垂直な断面を主面とする厚みが概ね2mmの円板状試料(20CTR、20EDG、20R/2)を採取する。
 なお、ロッド14を採取する部位、長さ、および本数は、シリコン棒13の直径やくり抜くロッド14の直径に応じて適宜定めればよく、板状試料20もくり抜いたロッド14のどの部位から採取してもよいが、シリコン棒13全体の性状を合理的に推定可能な位置であることが好ましい。例えば2枚の板状試料を取得する場合には、シリコン棒の周の半径に対し、中心から半径の2分の1である点よりも中心側にある位置と、外側にある位置の2箇所から円板状試料を取得することが好ましい。更に、例えば比較を行う2つのサンプルの取得位置を、中心から半径の3分の1である点よりも中心側にある位置と、中心から半径の3分の2である点よりも外側にある位置とした場合、より高精度な比較ができる。また、比較する板状試料は2枚以上であればよく、特に上限はない。
 また、板状試料20の直径を概ね19mmとしたのも例示に過ぎず、直径は測定時に支障がない範囲で適当に定めればよい。
 試料表面は、EBSD測定を行うために平坦であり、鏡面であることが必要であるため、回転切りの刃跡を除去するために研磨剤カーボンランダム#300、#600、#1200にて、順番に研磨を行い、終了後にHF:HNO=1:5(HF=50wt%、HNO=70wt%)にてエッチングを1分間行い、研磨剤を除去した。その後にポリッシングパッドとダイアモンド研磨剤0.1μmにより鏡面加工を行った。
 EBSDによる結晶粒径の測定は、結晶粒径が0.5μmから数十μmまで測定できるため、測定結果をヒストグラムで表せば結晶粒径の分布状態がわかる。
 表3に、常圧(比較例1および2)、0.45MPa(実施例1)、0.6MPa(実施例2)、0.9MPa(実施例3)の場合の、結晶粒径、結晶配向性、熱拡散率の評価結果を纏めた。
Figure JPOXMLDOC01-appb-T000003
 炉内圧力を高めると結晶粒径は小さくなり、結晶粒径分布の幅も狭まる傾向がある。結晶粒径分布は、例えば、熱拡散率(熱伝導率)、結晶性、残留応力、破壊強度、割れ易さに直接、影響を及ぼすため、安定して単結晶シリコンを製造するために必要不可欠な情報である。
 また、表3に示した結果から、炉内圧力の制御により、ミラー指数面が(111)の結晶粒とミラー指数面が(220)の結晶粒の配向状態(配向割合)を制御することもできることが読み取れる。
 X線回折チャートに現れたミラー指数面(220)に対応する回折強度を解析すると、常圧下で析出させたものに比べ、高い圧力下で析出させたものでは鋭いピークが観察される傾向にあり、その傾向(およびピーク強度)も高くなる。
 ミラー指数面(220)に対応する鋭いピークを示した試料の表面をノマルスキー微分干渉型顕微鏡で組織観察した結果、局所的に結晶相が異なる領域の存在が確認され、その領域数とピーク数は概ね一致していた。
 熱伝導率についてみると、傾向として、炉内圧力が高くなるほど低くなる。これは、炉内圧力が高い条件下で析出させるほど、その析出面(成長方向に垂直な面)にはミラー指数面(220)を主面とする針状結晶が局所的に形成されやすくなることによると考えている。
 なお、熱拡散率は、単位時間あたりに拡散できる熱の大小を面積で表したものであり、熱の平衡関係に依らない物理量である。熱拡散率は、単結晶シリコン製造時の熱的平衡における、動的な熱の出入りに伴うパラメータとして重要である。
 なお、表3中に設けたCZおよびFZの項目は、用途適合性を評価したものであって、CZ用途のものは2、000本の多結晶シリコン棒を母集団とし、FZ用途のものは150本の多結晶シリコン棒を母集団とし、製造歩留りを、低い順から、×、△、○、◎の順でランク付けしたものである。
 本発明は、用途に適した結晶粒径、結晶配向性、および、熱拡散率を実現するための、多結晶シリコンの特性制御を可能とする技術を提供する。
100 反応炉
1 ベルジャ
2 のぞき窓
3 冷媒入口(ベルジャ)
4 冷媒出口(ベルジャ)
5 底板
6 冷媒入口(底板)
7 冷媒出口(底板)
8 反応排ガス出口
9 ガス供給ノズル
10 電極
11 芯線ホルダ
12 シリコン芯線
13 多結晶シリコン棒
14 ロッド
20 板状試料

 

Claims (13)

  1.  シーメンス法による多結晶シリコン棒の製造方法であって、
     反応炉内を0.45~0.9MPaの圧力範囲に制御した状態で、多結晶シリコンを析出させ、
     前記多結晶シリコン棒の任意の部位において、EBSD法(電子後方散乱回折測定法)により評価した場合の結晶粒径の平均値が6μm以下である多結晶シリコン棒を得る、ことを特徴とする多結晶シリコン棒の製造方法。
  2.  前記圧力範囲を0.6~0.9MPaに制御する、請求項1に記載の多結晶シリコン棒の製造方法。
  3.  多結晶シリコンの析出反応を行う際の反応温度を1100℃~1150℃の範囲に設定する、請求項1または2に記載の多結晶シリコン棒の製造方法。
  4.  請求項1または2に記載の方法で育成された多結晶シリコン棒であって、
     前記多結晶シリコン棒の任意の部位から採取した板状試料をEBSD法(電子後方散乱回折測定法)により評価した場合に、結晶粒径が0.5~30μmの範囲にあり且つ平均粒径が6μm以下である、多結晶シリコン棒。
  5.  請求項4に記載の多結晶シリコン棒を粉砕して得られた多結晶シリコン塊。
  6.  請求項1または2に記載の方法で育成された多結晶シリコン棒であって、
     前記多結晶シリコン棒の任意の部位から採取したn枚の板状試料のそれぞれを、ミラー指数面(111)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折強度の平均値を求め、前記n枚の板状試料の測定結果の母集団の母標準偏差をσとし母平均をμとしたときに、CV=σ/μで定義される変動係数の値が25%以下である、多結晶シリコン棒。
  7.  請求項6に記載の多結晶シリコン棒を粉砕して得られた多結晶シリコン塊。
  8.  請求項1または2に記載の方法で育成された多結晶シリコン棒であって、
     前記多結晶シリコン棒の任意の部位から採取したn枚の板状試料のそれぞれを、ミラー指数面(220)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折強度の平均値を求め、前記n枚の板状試料の測定結果の母集団の母標準偏差をσとし母平均をμとしたときに、CV=σ/μで定義される変動係数の値が30%以下である、多結晶シリコン棒。
  9.  請求項8に記載の多結晶シリコン棒を粉砕して得られた多結晶シリコン塊。
  10.  請求項1または2に記載の方法で育成された多結晶シリコン棒であって、
     前記多結晶シリコン棒の任意の部位から採取したn枚の板状試料のそれぞれにつき、ミラー指数面(220)からのブラッグ反射が検出される位置に配置し、該板状試料を測定面内で回転させながらX線回折検出量を測定して得られた回折チャート中に現れる回折ピークの面積の全回折強度の面積に対する比を前記n枚の板状試料毎に求め、該n個の面積比の平均が5%以上である、多結晶シリコン棒。
  11.  請求項10に記載の多結晶シリコン棒を粉砕して得られた多結晶シリコン塊。
  12.  請求項1または2に記載の方法で育成された多結晶シリコン棒であって、
     前記多結晶シリコン棒の任意の部位から採取した板状試料の熱拡散率が、73mm/秒以下である、多結晶シリコン棒。
  13.  請求項12に記載の多結晶シリコン棒を粉砕して得られた多結晶シリコン塊。

     
PCT/JP2015/003759 2014-08-18 2015-07-28 多結晶シリコン棒の製造方法および多結晶シリコン棒 WO2016027416A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15833085.2A EP3184489A1 (en) 2014-08-18 2015-07-28 Method for manufacturing polycrystalline silicon bar and polycrystalline silicon bar
CN201580043372.5A CN106660809A (zh) 2014-08-18 2015-07-28 多晶硅棒的制造方法和多晶硅棒
KR1020177003339A KR20170042576A (ko) 2014-08-18 2015-07-28 다결정 실리콘 봉의 제조 방법 및 다결정 실리콘 봉
US15/327,693 US20170210630A1 (en) 2014-08-18 2015-07-28 Method for manufacturing polycrystalline silicon bar and polycrystalline silicon bar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014166103A JP2016041636A (ja) 2014-08-18 2014-08-18 多結晶シリコン棒の製造方法および多結晶シリコン棒
JP2014-166103 2014-08-18

Publications (1)

Publication Number Publication Date
WO2016027416A1 true WO2016027416A1 (ja) 2016-02-25

Family

ID=55350388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003759 WO2016027416A1 (ja) 2014-08-18 2015-07-28 多結晶シリコン棒の製造方法および多結晶シリコン棒

Country Status (6)

Country Link
US (1) US20170210630A1 (ja)
EP (1) EP3184489A1 (ja)
JP (1) JP2016041636A (ja)
KR (1) KR20170042576A (ja)
CN (1) CN106660809A (ja)
WO (1) WO2016027416A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454599B2 (en) * 2018-09-06 2022-09-27 Showa Denko K.K. Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314097B2 (ja) 2015-02-19 2018-04-18 信越化学工業株式会社 多結晶シリコン棒
JP6454248B2 (ja) * 2015-09-14 2019-01-16 信越化学工業株式会社 多結晶シリコン棒
JP6969917B2 (ja) * 2017-07-12 2021-11-24 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン棒の製造方法
JP6951936B2 (ja) * 2017-10-20 2021-10-20 信越化学工業株式会社 多結晶シリコン棒および単結晶シリコンの製造方法
JP7050581B2 (ja) * 2018-06-04 2022-04-08 信越化学工業株式会社 多結晶シリコンロッドの選別方法
JP7345441B2 (ja) * 2020-07-02 2023-09-15 信越化学工業株式会社 多結晶シリコン製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037699A (ja) * 2009-07-15 2011-02-24 Mitsubishi Materials Corp 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
JP2011068553A (ja) * 2009-08-28 2011-04-07 Mitsubishi Materials Corp 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
JP2013063884A (ja) * 2011-09-20 2013-04-11 Shin-Etsu Chemical Co Ltd 多結晶シリコン製造装置および多結晶シリコンの製造方法
JP2013100211A (ja) * 2011-11-10 2013-05-23 Shin-Etsu Chemical Co Ltd 多結晶シリコンの製造方法
JP2013112566A (ja) * 2011-11-29 2013-06-10 Shin-Etsu Chemical Co Ltd 多結晶シリコンの製造方法および多結晶シリコン製造用反応炉
JP2013173644A (ja) * 2012-02-24 2013-09-05 Shin-Etsu Chemical Co Ltd 多結晶シリコンおよび多結晶シリコン製造装置
WO2014061212A1 (ja) * 2012-10-16 2014-04-24 信越化学工業株式会社 多結晶シリコン製造用原料ガスの供給方法および多結晶シリコン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037699A (ja) * 2009-07-15 2011-02-24 Mitsubishi Materials Corp 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
JP2011068553A (ja) * 2009-08-28 2011-04-07 Mitsubishi Materials Corp 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
JP2013063884A (ja) * 2011-09-20 2013-04-11 Shin-Etsu Chemical Co Ltd 多結晶シリコン製造装置および多結晶シリコンの製造方法
JP2013100211A (ja) * 2011-11-10 2013-05-23 Shin-Etsu Chemical Co Ltd 多結晶シリコンの製造方法
JP2013112566A (ja) * 2011-11-29 2013-06-10 Shin-Etsu Chemical Co Ltd 多結晶シリコンの製造方法および多結晶シリコン製造用反応炉
JP2013173644A (ja) * 2012-02-24 2013-09-05 Shin-Etsu Chemical Co Ltd 多結晶シリコンおよび多結晶シリコン製造装置
WO2014061212A1 (ja) * 2012-10-16 2014-04-24 信越化学工業株式会社 多結晶シリコン製造用原料ガスの供給方法および多結晶シリコン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11454599B2 (en) * 2018-09-06 2022-09-27 Showa Denko K.K. Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method

Also Published As

Publication number Publication date
US20170210630A1 (en) 2017-07-27
CN106660809A (zh) 2017-05-10
JP2016041636A (ja) 2016-03-31
KR20170042576A (ko) 2017-04-19
EP3184489A1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2016027416A1 (ja) 多結晶シリコン棒の製造方法および多結晶シリコン棒
JP5828795B2 (ja) 多結晶シリコンの結晶配向度評価方法、多結晶シリコン棒の選択方法、および単結晶シリコンの製造方法
EP2863212B1 (en) Polycrystalline silicon rod selection method
CN107848808B (zh) 多晶硅棒
EP2826748B1 (en) Polycrystalline silicon rod
WO2015194170A1 (ja) 多結晶シリコン棒の表面温度の算出方法および制御方法、多結晶シリコン棒の製造方法、多結晶シリコン棒、ならびに、多結晶シリコン塊
CN107614761A (zh) 金刚石单晶、工具以及金刚石单晶的制造方法
EP3260415B1 (en) Production method for a polycrystalline silicon rod
JP2022009646A (ja) 多結晶シリコン棒および多結晶シリコン棒の製造方法
JP5969956B2 (ja) 多結晶シリコンの粒径評価方法および多結晶シリコン棒の選択方法
JP2016028990A (ja) 多結晶シリコン棒の製造方法および多結晶シリコン塊
JP5923463B2 (ja) 多結晶シリコンの結晶粒径分布の評価方法、多結晶シリコン棒の選択方法、多結晶シリコン棒、多結晶シリコン塊、および、単結晶シリコンの製造方法
CN109694076B (zh) 多晶硅棒和单晶硅的制造方法
JP6470223B2 (ja) 単結晶シリコンの製造方法
JP6378147B2 (ja) 多結晶シリコン棒の製造方法およびcz単結晶シリコンの製造方法
JP2016121052A (ja) 多結晶シリコン棒、多結晶シリコン棒の加工方法、多結晶シリコン棒の結晶評価方法、および、fz単結晶シリコンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833085

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015833085

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15327693

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177003339

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE