WO2016024319A1 - Vehicle braking system, rotating electrical machine, and vehicle - Google Patents

Vehicle braking system, rotating electrical machine, and vehicle Download PDF

Info

Publication number
WO2016024319A1
WO2016024319A1 PCT/JP2014/071198 JP2014071198W WO2016024319A1 WO 2016024319 A1 WO2016024319 A1 WO 2016024319A1 JP 2014071198 W JP2014071198 W JP 2014071198W WO 2016024319 A1 WO2016024319 A1 WO 2016024319A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical machine
rotating electrical
rotor
vehicle
parking brake
Prior art date
Application number
PCT/JP2014/071198
Other languages
French (fr)
Japanese (ja)
Inventor
野中 剛
隆明 石井
大戸 基道
森本 進也
荘平 大賀
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to PCT/JP2014/071198 priority Critical patent/WO2016024319A1/en
Publication of WO2016024319A1 publication Critical patent/WO2016024319A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/106Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/12Structural association with clutches, brakes, gears, pulleys or mechanical starters with auxiliary limited movement of stators, rotors or core parts, e.g. rotors axially movable for the purpose of clutching or braking

Definitions

  • the disclosed embodiment relates to a vehicle brake system, a rotating electrical machine, and a vehicle.
  • Patent Document 1 describes a brake device that is mounted on a hybrid vehicle and includes a regenerative brake mechanism, a hydraulic brake mechanism, and a parking brake.
  • the present invention has been made in view of such problems, and an object thereof is to provide a vehicle brake system, a rotating electrical machine, and a vehicle that can simplify the configuration and control.
  • a vehicle brake system mounted on a vehicle having a function of traveling using a rotating electrical machine, and the rotating electrical machine has a parking brake function.
  • a vehicle brake system having means and an operation member operated to turn on or off the parking brake function of the rotating electric machine is applied.
  • a rotating electrical machine used for the vehicle brake system is applied.
  • a vehicle including the vehicle brake system is applied.
  • the configuration and control of the vehicle brake system can be simplified.
  • FIG. 3 is a cross-sectional view of the rotating electrical machine taken along a line AA in FIG. 2. It is a perspective view showing an example of the structure of a shaft, a slider, and a hub. It is a perspective view showing an example of operation of a rotor when strengthening field magnetic flux. It is a perspective view showing an example of operation of a rotor when field magnetic flux is weakened.
  • a parking brake system 100 (an example of a vehicle brake system) is mounted on a vehicle C.
  • the vehicle C has a function of traveling using the rotating electrical machine 1 and is, for example, an electric vehicle (EV) or a hybrid vehicle (HEV).
  • the parking brake system 100 includes a rotating electrical machine 1 having a parking brake function, and an operation member 51 that is operated to turn on or off the parking brake function of the rotating electrical machine 1.
  • a lever is illustrated as an example of the operation member 51, but another member such as a pedal or a switch may be used.
  • illustration of a brake system other than the parking brake is omitted.
  • the parking brake system 100 also includes a variable field mechanism 50 that varies the field magnetic flux of the rotating electrical machine 1 and a controller 52.
  • the controller 52 outputs a control signal to the control motor 55 of the variable field mechanism 50 according to the operation of the operation member 51 to control the field magnetic flux of the rotating electrical machine 1. More specifically, the controller 52 controls the variable field mechanism 50 so that the field magnetic flux of the rotating electrical machine 1 is maximized when the operation member 51 is operated to turn on the parking brake function.
  • the rotating electrical machine 1 exhibits a parking brake function by a variable field mechanism 50 and a controller 52 that controls the variable field mechanism 50. That is, in the present embodiment, the variable field mechanism 50 and the controller 52 correspond to an example of “means for giving the rotating electrical machine a parking brake function”.
  • the rotating electrical machine 1 is a variable field type rotating electrical machine capable of changing a field magnetic flux.
  • the rotating electrical machine 1 includes an annular stator 2, a shaft 34 disposed concentrically on the radially inner side of the stator 2, and a rotor 3 provided on the shaft 34. .
  • the stator 2 is, for example, an annular stator core 13 provided on the inner peripheral surface of a substantially cylindrical frame 17 and having a plurality of teeth portions 13a in the circumferential direction, and a plurality of stators mounted on the plurality of teeth portions 13a.
  • a winding 12 is provided.
  • the stator core 13 includes a slot 13b (corresponding to an example of a winding gap) that is opened radially inward between adjacent tooth portions 13a. Both sides in the circumferential direction of the stator winding 12 attached to the tooth portion 13a are accommodated in slots 13b on both sides of the tooth portion 13a.
  • the stator iron core 13 is fastened to the load side bracket 16 by a stator fastening bolt 14.
  • On the non-load side (left side in FIG. 2) of the stator core 13 a connection part 21 for connecting the winding start and end terminals of the stator winding 12 is arranged.
  • the load side bracket 16 and the frame 17 are provided with a load side bearing 18 and an anti-load side bearing 19, respectively.
  • the shaft 34 is rotatably supported by the load side bearing 18 and the anti-load side bearing 19.
  • the “load side” refers to the direction in which a load is attached to the rotating electrical machine 1, that is, the direction in which the shaft 34 protrudes (right side in FIG. 2) in this example.
  • the direction opposite to the load side that is, the direction in which the gear wheel 23 and the like are arranged with respect to the rotating electrical machine 1 in this example (left side in FIG. 2) is indicated.
  • the frame 17 is fixed to the load side bracket 16 by the frame fastening bolt 11 inserted from the non-load side.
  • a sensor magnet 20 is attached to the anti-load side plate 33 provided on the anti-load side of the rotor 3, and a position detection unit 25 for detecting the rotational position of the rotor 3 by the sensor magnet 20 is provided inside the frame 17. It is done.
  • the rotor 3 is divided into three in the axial direction. That is, the rotor 3 includes one movable rotor 47 disposed in the center in the axial direction, a fixed rotor 46 disposed on the load side of the movable rotor 47, and a fixed rotor 48 disposed on the non-load side.
  • the number of divisions of the rotor 3 is not limited to 3, but may be, for example, 5 divisions. However, for the sake of explanation, the case of 3 divisions will be described as an example.
  • the movable rotor 47 includes a rotor core 38 disposed with a magnetic gap between the stator 2 and a plurality of permanent magnets 39 provided on the rotor core 38.
  • the plurality of permanent magnets 39 is a mode in which two permanent magnets 39 in which the same magnetic poles of N poles or S poles face each other form a V-shaped pair projecting radially inward when viewed from the axial direction. Opposing magnetic poles of the same polarity are alternately arranged in the circumferential direction and arranged inside the rotor core 38.
  • N pole and S pole magnetic pole portions 47 a having different polarities alternately in the circumferential direction are formed on the outer periphery of the movable rotor 47.
  • variable field mechanism 50 including a drive mechanism for relatively rotating the movable rotor 47 will be described later.
  • the fixed rotors 46 and 48 have the same configuration as the movable rotor 47. As shown in FIGS. 5A and 5B, the fixed rotors 46 and 48 include a rotor core 38 and the same number of permanent magnets 39 as the permanent magnets 39 of the movable rotor 47. The permanent magnet 39 is arranged in the same manner as the movable rotor 47, and N and S pole portions 46a and 48a having different polarities in the circumferential direction are formed on the outer circumferences of the fixed rotors 46 and 48, respectively. .
  • An annular load side plate 31 and an anti load side plate 33 are fixed to the load side and the anti load side of the rotor 3, respectively.
  • the fixed rotors 46, 48 are fixed to the load side plate 31 and the anti-load side plate 33 by the bolts 35, so that the shaft 34 passes through the load side plate 31 and the anti-load side plate 33. Fixed to.
  • variable field mechanism 50 An example of the configuration of the variable field mechanism 50 will be described with reference to FIGS. 2, 3, and 4.
  • the rotor core 38 of the movable rotor 47 is attached to the shaft 34 via the hub 32 and the slider 37.
  • the variable field mechanism 50 includes the hub 32, the slider 37, and the like.
  • the shaft 34 is formed with a square spline portion 34 a along the axial direction on the outer peripheral surface near the anti-load side (oblique left lower side in FIG. 4).
  • the groove part 34b of the radial direction both sides which the both ends of the pin 36 which penetrated the slider 37 penetrates is formed between square-shaped spline parts 34a.
  • the groove part 34b is provided in the shape of a long hole from the substantially central part in the axial direction of the square spline part 34a to the vicinity of the end part on the load side (oblique upper right side in FIG. 4).
  • a square spline portion 37a is formed along the axial direction on the inner peripheral surface, and the pin 36 penetrates in the radial direction.
  • the slider 37 is mounted on the outer periphery of the shaft 34, and the square spline portion 37 a is engaged with the square spline portion 34 a of the shaft 34.
  • the slider 37 can move in the axial direction within the range of the groove 34b with respect to the shaft 34 by the movement of the pin 36 in the axial direction.
  • a torsion spline portion 37 b inclined in the circumferential direction is formed on the outer peripheral surface of the slider 37.
  • the movable rotor 47 is mounted on the outer peripheral surface of the hub 32.
  • a torsion spline portion 32a inclined in the same direction as the torsion spline portion 37b of the slider 37 is provided on the inner peripheral surface of the hub 32.
  • the torsion spline portion 32 a engages with the torsion spline portion 37 b of the slider 37.
  • the hub 32 rotates by a predetermined amount in the circumferential direction by the movement of the slider 37 by a predetermined amount in the axial direction.
  • An uneven portion 32 b is provided on the outer peripheral surface of the hub 32.
  • the uneven portion 32 b engages with an uneven portion 38 a (see FIG.
  • the movable rotor 47 rotates a predetermined amount in the circumferential direction integrally with the hub 32 by a predetermined amount of movement of the slider 37 in the axial direction.
  • the central portion of the pin 36 is attached to a pin holder 28 installed in the shaft 34 so as to be movable in the axial direction.
  • the pin holder 28 is attached to the load side end portion of the feed male screw 42 via the movable bearing 40.
  • the movable bearing 40 is, for example, a pair of angular bearings, and is arranged so that the axial support directions face each other.
  • the movable bearing 40 is held by a bearing holder 44 fixed to the load side end of the feed male screw 42 by a bolt 45.
  • the opposite end of the feed male screw 42 is engaged with the feed screw 43.
  • a fixed bearing 41 is mounted between the feed screw 43 and the shaft 34.
  • the fixed bearing 41 is fixed to the feed screw 43 by the nut 29.
  • the fixed bearing 41 is a pair of angular bearings, for example, and is arranged so that the axial support directions face each other.
  • a hexagonal hole 42 a is formed at the end of the feed male screw 42 on the side opposite to the load.
  • the variable field mechanism 50 includes a gear wheel 23 having a shaft portion 23a inserted into a hole 42a of a feed male screw 42, a worm shaft 27 meshing with the gear wheel 23, a worm A control motor 55 (see FIG. 1) having a shaft 27 attached to the output shaft is provided.
  • the gear wheel 23 is rotatably supported by the bearing 26 with respect to the feed screw 43.
  • the gear wheel 23, the bearing 26, the worm shaft 27, and the like are covered with a cover 24 attached to the non-load side of the frame 17.
  • the variable field mechanism 50 operates as follows.
  • the control motor 55 rotates the worm shaft 27, the gear wheel 23 rotates and the feed male screw 42 moves in the axial direction with respect to the feed screw 43.
  • the feed male screw 42 moves the pin 36 and the pin holder 28 in the axial direction while being blocked from the rotation of the shaft 34 by the movable bearing 40 attached to the end portion on the load side.
  • the pin 36 moves the slider 37 outside the shaft 34 in the axial direction. Since the slider 37 is engaged with the hub 32 by the torsion spline portions 37b and 32a, when the slider 37 moves in the axial direction, the hub 32 and the movable rotor 47 fixed thereto are two fixed rotations fixed to the shaft 34. It rotates with respect to the children 46 and 48.
  • the rotating electrical machine 1 functions as a motor when the vehicle C is accelerated, etc., and also functions as a generator when the vehicle is decelerated, and generates braking force of the vehicle C while regenerating electric power. This regenerative braking force decreases as the speed of the vehicle C decreases, and does not occur in a stopped state.
  • the rotation of the rotor 3 is prevented using the cogging torque that acts on the magnetic pole portion of the rotor 3 of the rotating electrical machine 1, and the parking brake function is exhibited. This will be described in detail with reference to FIGS. 6A and 6B and FIGS. 7A and 7B.
  • the rotating electrical machine 1 having, for example, 10 poles and 12 slots (the number of poles of the rotor 3 is 10 and the number of slots of the stator 2 is 12), in principle, during one rotation of the rotor 3 60 cycles of cogging torque are generated.
  • cogging torque generated in the magnetic pole portion 47a of the central movable rotor 47 and cogging torque generated in the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48 on both sides are separately generated.
  • the magnitude of the cogging torque can be adjusted by relatively rotating the magnetic pole part 47a and the magnetic pole parts 46a and 48a by the variable field mechanism 50.
  • 6A and 6B show the relationship between the angular position of the rotor 3 in the rotational direction and the cogging torque.
  • the “cogging torque ratio” on the vertical axis represents the ratio of the cogging torque when the maximum value of the cogging torque of the magnetic pole portion 47a of the central movable rotor 47 is 1.
  • “center” indicated by a broken line in the figure is the cogging torque of the movable rotor 47
  • “both sides” indicated by a thin solid line is a combination of cogging torques of the fixed rotors 46 and 48
  • “synthesis” indicated by a thick solid line is the movable rotor.
  • the cogging torque of the rotor 3 as a whole obtained by combining the cogging torque of 47 and the cogging torque of the fixed rotors 46 and 48 is shown.
  • FIG. 6A shows the cogging torque when the rotor 3 is in the state shown in FIG. 7A. That is, as shown in FIG. 7A, the magnetic pole portion 47a of the movable rotor 47 and the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48, each having the same polarity, are aligned in the axial direction (the relative rotation angle is approximately 0 degrees). ).
  • the cogging torque of the magnetic pole portion 47a of the central movable rotor 47 and the cogging torque of the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48 on both sides have substantially the same amplitude with a rotation angle of approximately 6 ° as one cycle. It changes like a sine wave.
  • the cogging torque of the magnetic pole portion 47a and the cogging torque of the magnetic pole portions 46a and 48a are strengthened, and the cogging torque obtained by combining the movable rotor 47 and the fixed rotors 46 and 48 is the maximum.
  • electromagnetic design is performed on each magnetic pole portion 47a, 46a, 48a of the rotating electrical machine 1 so that the maximum cogging torque becomes the cogging torque necessary for locking the vehicle C.
  • FIG. 6B shows the cogging torque when the rotor 3 is in the state shown in FIG. 7B. That is, as shown in FIG. 7B, the relative rotation angle between the magnetic pole portion 47a of the movable rotor 47 and the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48, each having the same polarity, is approximately 3 degrees. In this state, the cogging torque of the magnetic pole part 47a and the cogging torque of the magnetic pole parts 46a and 48a are out of phase by a half period, so the cogging torques cancel each other. Accordingly, the cogging torque obtained by combining the movable rotor 47 and the fixed rotors 46 and 48 is minimized.
  • the controller 52 when the operation member 51 is operated to turn on the parking brake function when the vehicle C is stopped or parked, the controller 52 outputs a control signal to the control motor 55 of the variable field mechanism 50 to output the rotor.
  • the controller 52 When the operation member 51 is operated so as to turn off the parking brake function when the vehicle C starts, the controller 52 outputs a control signal to the control motor 55 of the variable field mechanism 50 to rotate the rotor 3.
  • the cogging torque can be minimized and the vehicle C can be started easily.
  • the field magnetic flux is varied by the variable field mechanism 50 in accordance with the traveling state. However, since the rotor 3 is rotating, the cogging torque is applied regardless of the magnitude of the cogging torque. It will not be.
  • the parking brake system 100 includes the rotating electrical machine 1 and means for giving the rotating electrical machine 1 a parking brake function.
  • the rotating electrical machine 1 is used as a motor at the time of acceleration in normal traveling, and is used as a generator that performs regenerative braking at the time of deceleration.
  • the parking brake function with which the rotary electric machine 1 is provided at the time of a stop and parking is used.
  • a single brake system in which a plurality of brake systems (regenerative brake and parking brake) are integrated can be constructed. Thereby, compared with the case where a some brake system is mounted separately, a structure can be simplified and the control becomes easy. Further, since the system configuration is simplified, the mounting property on the vehicle is improved and the cost can be reduced.
  • the parking brake system 100 includes an operation member 51 that is operated to turn on or off the parking brake function of the rotating electrical machine 1, and means for causing the rotating electrical machine 1 to have a parking brake function is provided. And a variable field mechanism 50 and a controller 52.
  • the cogging torque of the rotating electrical machine 1 can be maximized to make the rotating electrical machine 1 almost in a locked state. Therefore, the rotary electric machine 1 can be provided with a parking brake function without using a hydraulic mechanism or a friction mechanism.
  • the rotating electrical machine 1 a variable field type, it is possible to obtain a strong acceleration / deceleration torque by adjusting the field magnetic flux so as to increase during rapid acceleration / deceleration. As described above, the field magnetic flux can be adjusted to an optimum value according to the traveling state, so that it is possible to travel while obtaining high efficiency.
  • the rotating electrical machine 1 has a stator core 13 in which a slot 13b in which the stator winding 12 is accommodated opens toward the radially inner side.
  • a stator core 13 in which a slot 13b in which the stator winding 12 is accommodated opens toward the radially inner side.
  • the field magnetic flux is made variable by partially rotating the rotor 3 divided in the axial direction by the variable field mechanism 50.
  • the variable field changing the field magnetic flux of the rotating electrical machine 1 is changed.
  • the magnetic mechanism is not limited to this.
  • the field magnetic flux may be varied by partially rotating the rotor divided in the radial direction.
  • the rotor may include a rotor winding, and the field magnetic flux may be varied by changing the current.
  • Second Embodiment> the field magnetic flux of the rotating electrical machine 1 is varied and the cogging torque of the rotor 3 is used to give the rotating electrical machine 1 a parking brake function. It is good also as a structure which brakes and gives the rotary electric machine 1A the parking brake function.
  • the second embodiment will be described with reference to FIGS. 8, 9, 10A, and 10B.
  • the parking brake system 100 includes the operation member 51 described above and the rotating electrical machine 1A.
  • the rotating electrical machine 1 ⁇ / b> A includes a load side plate 31 ⁇ / b> A and an anti-load side plate 33 ⁇ / b> A (corresponding to an example of a side plate) that fix the rotor 3 to the shaft 34.
  • the rotating electrical machine 1A is in contact with the anti-load side plate 33A and applies a braking force to the rotor 3, and a drive for moving the braking plate 61 back and forth with respect to the rotor 3 according to the operation of the operation member 51.
  • a device 60 is provided.
  • FIG. 10A shows an example of the structure of the brake plate 61
  • FIG. 10B shows an example of the structure of the anti-load side plate 33A
  • a plurality of through-holes 33a (corresponding to an example of recesses) penetrating in the axial direction are formed in the anti-load side plate 33A at regular intervals along the circumferential direction.
  • the brake plate 61 is, for example, an annular plate member made of a magnetic material (for example, iron).
  • a plurality of support shafts 64 are provided along the circumferential direction on the outer peripheral portion of the surface of the brake plate 61 on the side opposite to the load.
  • a protrusion 64a that can be engaged with the through hole 33a of the anti-load side plate 33A is provided at a position corresponding to the support shaft 64.
  • the support shaft 64 and the protrusion 64a may be used as a single member, and the brake plate 61 may be penetrated.
  • the brake plate 61 may be integrally formed by casting or the like as a shape including the support shaft 64 and the protrusion 64a. Good.
  • the brake plate 61 is movable in the axial direction while being prevented from moving in the rotational direction by inserting the support shaft 64 into the hole 17 a provided in the frame 17.
  • the driving device 60 includes a spring 62, an electromagnet 63, and the like.
  • the spring 62 is attached to the support shaft 64 and provided between the frame 17 and the brake plate 61, and biases the brake plate 61 in the axial direction toward the rotor 3.
  • the electromagnet 63 is attached to the inner peripheral side of the hole 17a of the frame 17, for example.
  • the electromagnet 63 is excited by passing a current through the coil 63 a and attracts the braking plate 61 against the urging force of the spring 62.
  • the power supply to the coil 63a is controlled by, for example, the controller 52 in accordance with the operation of the operation member 51 (see FIG. 1). Note that power supply to the coil 63a may be controlled by a control device different from the controller 52.
  • the operation member 51 when the operation member 51 is operated to turn on the parking brake function when the vehicle C is stopped or parked, the power supply to the coil 63a is cut off, and the brake plate 61 is moved by the spring 62 as shown in FIG. It is pressed against the anti-load side plate 33A. As a result, the brake plate 61 applies a frictional force to the anti-load side plate 33A, and the protrusions 64a of the brake plate 61 fit into the through holes 33a of the anti-load side plate 33A, and the rotation of the rotating electrical machine 1 is locked.
  • the operation member 51 when the operation member 51 is operated to turn off the parking brake function when the vehicle C starts, power is supplied to the coil 63a, and the brake plate 61 is moved by the electromagnet 63 as shown in FIG. It is adsorbed and separated from the anti-load side plate 33A. Thereby, the braking plate 61 does not hinder the rotation of the anti-load side plate 33A, and the braking of the rotating electrical machine 1 is released.
  • the rotating electrical machine 1 ⁇ / b> A exhibits the parking brake function by the anti-load side plate 33 ⁇ / b> A, the brake plate 61, and the drive device 60. That is, in the second embodiment, the anti-load side plate 33A, the braking plate 61, and the driving device 60 correspond to an example of “means for giving the rotating electrical machine a parking brake function”.
  • a rotating electrical machine having a parking brake function can be realized with a simple configuration in which the rotating electrical machine 1A is provided with the anti-load side plate 33A, the braking plate 61, and the driving device 60. Further, since the brake plate 61 is made of a magnetic material, the magnetic attraction force of the rotor 3 can be used when pressing the brake plate 61 against the anti-load side plate 33A. Thereby, the structure of the drive device 60 can be simplified.
  • the braking plate 61 may be an annular plate having no protrusion 64a, and the braking force may be applied to the rotor 3 by a frictional force caused by simple contact with the anti-load side plate 33A.
  • the driving device 60 that moves the braking plate 61 forward and backward with respect to the rotor 3 is not limited to the above-described spring 62 and electromagnet 63.
  • the brake plate 61 and the like are provided on the anti-load side plate 33A side.
  • the brake plate 61 and the like may be provided on the load side plate 31A side, and the load side plate 31A and the anti load side may be provided.
  • a brake plate 61 or the like may be provided for both of the plates 33A.
  • a mechanism for changing the field magnetic flux of the rotating electrical machine 1A may be provided, such as the variable field mechanism 50 of the first embodiment described above.
  • the parking brake system 100 includes the operation member 51 described above and the rotating electrical machine 1B.
  • the rotating electrical machine 1 ⁇ / b> B includes a load side plate 31 ⁇ / b> B and an anti-load side plate 33 ⁇ / b> B (corresponding to an example of a side plate) that fix the rotor 3 to the shaft 34.
  • the rotating electrical machine 1B is in contact with the anti-load side plate 33B and applies a braking force to the rotor 3, and a drive for moving the braking plate 71 forward and backward with respect to the rotor 3 according to the operation of the operation member 51.
  • a device 70 is provided.
  • the brake plate 71 is, for example, an arc-shaped or fan-shaped plate member, and is made of a nonmagnetic material (for example, aluminum).
  • the brake plate 71 may be made of a magnetic material (for example, iron).
  • the brake plate 71 has a friction material 71a that is pressed against the anti-load side plate 33B on the load side surface when contacting the anti-load side plate 33B.
  • the driving device 70 includes a feed screw 72 provided on the frame 17, a feed male screw 73 that supports the outer peripheral side of the brake plate 71 and meshed with the feed screw 72, and a feed male screw 73 as a rotation shaft.
  • the driving device 70 is provided between the shaft portion 76 that supports the inner peripheral side of the brake plate 71 and protrudes from the frame 17, and a collar portion 76 a provided at an end portion of the shaft portion 76 and the frame 17. And a spring 77.
  • the drive device 70 When the vehicle is stopped and parked, if the operation member 51 is operated so as to turn on the parking brake function, the drive device 70 operates as follows. That is, when the control motor 56 is operated to rotate the worm gear 75, the feed gear 74 is rotated, the feed male screw 73 is moved to the load side with respect to the feed screw 72, and the brake plate 71 is moved to the anti-load side plate 33. Move towards Thereby, the friction material 71a is pressed against the anti-load side plate 33, and the rotor 3 is braked by the frictional force.
  • the control motor 56 is opened, and the braking plate 71 is moved against the anti-load side plate 33B by the urging force of the spring 77. And the braking of the rotor 3 is released.
  • the control motor 56 rotates the worm gear 75 and the feed gear 74 in the opposite direction to the on state, and the feed male screw 73 is moved to the opposite load side with respect to the feed screw 72. You may let them.
  • the control motor 56 is controlled by, for example, the controller 52 in accordance with the operation of the operation member 51 (see FIG. 1). Note that the control motor 56 may be controlled by a control device different from the controller 52.
  • the rotating electrical machine 1 ⁇ / b> B exhibits the parking brake function by the anti-load side plate 33 ⁇ / b> B, the brake plate 71, and the drive device 70. That is, in the third embodiment, the anti-load side plate 33B, the brake plate 71, and the drive device 70 correspond to an example of “means for giving the rotating electrical machine a parking brake function”.
  • the pressing force of the brake plate 71 can be adjusted to an arbitrary magnitude using the control motor 56, not only the parking brake function but also the brake function used when the vehicle C is decelerated, etc.
  • the provided rotating electrical machine can be realized.
  • the brake plate 71 is made of a nonmagnetic material (aluminum or the like), an eddy current can be generated in the brake plate 71 in a state of being separated from the rotor 3 to generate a braking force.
  • the braking force by the eddy current can be used as an auxiliary force for the regenerative brake at the time of sudden deceleration or the like.
  • the brake plate 71 is made of a magnetic material, the magnetic attraction force of the rotor 3 can be used when the brake plate 71 is pressed against the anti-load side plate 33B, so that the configuration of the drive device 70 can be simplified.
  • the braking plate 61 may be an annular plate having no protrusion 64a, and the braking force may be applied to the rotor 3 by a frictional force caused by simple contact with the anti-load side plate 33A.
  • the drive device 70 for moving the brake plate 61 forward and backward with respect to the rotor 3 is not limited to the device using the above-described control motor or the like.
  • the brake plate 71 and the like are provided on the anti-load side plate 33B side.
  • the brake plate 71 and the like may be provided on the load side plate 31B side, and the load side plate 31B and the anti load side may be provided.
  • a brake plate 71 or the like may be provided for both of the plates 33B.
  • a mechanism for changing the field magnetic flux of the rotating electrical machine 1A may be provided, such as the variable field mechanism 50 of the first embodiment described above.

Abstract

[Problem] To simplify the configuration and controls for a vehicle braking system or the like. [Solution] Provided is a vehicle braking system 100 installed in a vehicle C that is provided with a function for traveling using a rotating electrical machine 1, wherein in order to provide a parking brake function to the rotating electrical machine 1, the vehicle braking system includes: a variable field mechanism 50 that changes the field magnetic flux of the rotating electrical machine 1; a controller 52 that controls the variable field mechanism 50; and an operation member 51 that is operated to turn the parking brake function of the rotating electrical machine 1 ON or OFF.

Description

車両用ブレーキシステム、回転電機、車両Vehicle brake system, rotating electrical machine, vehicle
 開示の実施形態は、車両用ブレーキシステム、回転電機、車両に関する。 The disclosed embodiment relates to a vehicle brake system, a rotating electrical machine, and a vehicle.
 特許文献1には、ハイブリッド車両に搭載され、回生ブレーキ機構、液圧ブレーキ機構及びパーキングブレーキを備えたブレーキ装置が記載されている。 Patent Document 1 describes a brake device that is mounted on a hybrid vehicle and includes a regenerative brake mechanism, a hydraulic brake mechanism, and a parking brake.
特開2013-193606号公報JP 2013-193606 A
 上記従来技術では3種類のブレーキシステムを車両に搭載するので、構成が複雑となる上、それらを使いこなすための制御も複雑となるという課題があった。 In the above prior art, since three types of brake systems are mounted on the vehicle, there is a problem that the configuration becomes complicated and the control for using them becomes complicated.
 本発明はこのような問題点に鑑みてなされたものであり、構成及び制御を簡素化することが可能な車両用ブレーキシステム、回転電機、車両を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a vehicle brake system, a rotating electrical machine, and a vehicle that can simplify the configuration and control.
 上記課題を解決するため、本発明の一の観点によれば、回転電機を用いて走行する機能を備えた車両に搭載される車両用ブレーキシステムであって前記回転電機にパーキングブレーキ機能を持たせる手段と、前記回転電機のパーキングブレーキ機能をオン又はオフさせるために操作される操作部材と、を有する車両用ブレーキシステムが適用される。 In order to solve the above-described problem, according to one aspect of the present invention, there is provided a vehicle brake system mounted on a vehicle having a function of traveling using a rotating electrical machine, and the rotating electrical machine has a parking brake function. A vehicle brake system having means and an operation member operated to turn on or off the parking brake function of the rotating electric machine is applied.
 また、本発明の別の観点によれば、上記車両用ブレーキシステムに使用される回転電機が適用される。 Further, according to another aspect of the present invention, a rotating electrical machine used for the vehicle brake system is applied.
 また、本発明のさらに別の観点によれば、上記車両用ブレーキシステムを備える車両が適用される。 Further, according to still another aspect of the present invention, a vehicle including the vehicle brake system is applied.
 本発明によれば、車両用ブレーキシステムの構成及び制御を簡素化することができる。 According to the present invention, the configuration and control of the vehicle brake system can be simplified.
第1実施形態に係るパーキングブレーキシステムの構成の一例を概念的に表す説明図である。It is explanatory drawing which represents notionally an example of a structure of the parking brake system which concerns on 1st Embodiment. パーキングブレーキシステムに使用される回転電機の構成の一例を表す軸方向断面図である。It is an axial direction sectional view showing an example of composition of a rotary electric machine used for a parking brake system. 図2中A-A断面による回転電機の断面図である。FIG. 3 is a cross-sectional view of the rotating electrical machine taken along a line AA in FIG. 2. シャフト、スライダ、及びハブの構造の一例を表す斜視図である。It is a perspective view showing an example of the structure of a shaft, a slider, and a hub. 界磁磁束を強めるときの回転子の動作の一例を表す斜視図である。It is a perspective view showing an example of operation of a rotor when strengthening field magnetic flux. 界磁磁束を弱めるときの回転子の動作の一例を表す斜視図である。It is a perspective view showing an example of operation of a rotor when field magnetic flux is weakened. 回転子のコギングトルクが最大となるときの回転方向の角度位置とコギングトルク比との関係の一例を表すグラフである。It is a graph showing an example of the relationship between the angular position of a rotation direction when a cogging torque of a rotor becomes the maximum, and a cogging torque ratio. 回転子のコギングトルクが最小となるときの回転方向の角度位置とコギングトルク比との関係の一例を表すグラフである。It is a graph showing an example of the relationship between the angular position of a rotation direction when a cogging torque of a rotor becomes the minimum, and a cogging torque ratio. 回転子のコギングトルクが最大となるときの回転子の磁極部の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of the magnetic pole part of a rotor when the cogging torque of a rotor becomes the maximum. 回転子のコギングトルクが最小となるときの回転子の磁極部の状態の一例を表す斜視図である。It is a perspective view showing an example of the state of the magnetic pole part of a rotor when the cogging torque of a rotor becomes the minimum. 第2実施形態に係る回転電機の車両走行時の構成の一例を模式的に表す軸方向断面図である。It is an axial direction sectional view showing typically an example of composition at the time of vehicles running of a rotating electrical machine concerning a 2nd embodiment. 第2実施形態に係る回転電機の車両停車・駐車時の構成の一例を模式的に表す軸方向断面図である。It is an axial sectional view showing typically an example of composition at the time of vehicles stopping and parking of a rotating electrical machine concerning a 2nd embodiment. 制動板の構成の一例を表す斜視図である。It is a perspective view showing an example of composition of a brake board. 反負荷側プレートの構成の一例を表す斜視図である。It is a perspective view showing an example of composition of a counter load side plate. 第3実施形態に係る回転電機の構成の一例を模式的に表す軸方向断面図である。It is an axial direction sectional view showing typically an example of composition of a rotary electric machine concerning a 3rd embodiment.
 以下、実施の形態について図面を参照しつつ説明する。なお、以下において、回転電機等の構成の説明の便宜上、上下左右等の方向を適宜使用する場合があるが、回転電機等の各構成の位置関係を限定するものではない。 Hereinafter, embodiments will be described with reference to the drawings. In the following, for convenience of description of the configuration of the rotating electrical machine and the like, directions such as up, down, left, and right may be used as appropriate, but the positional relationship of each configuration of the rotating electrical machine and the like is not limited.
 <1.第1実施形態>
  (1-1.パーキングブレーキシステムの構成)
 図1を用いて、第1実施形態に係るパーキングブレーキシステム100の構成の一例について概念的に説明する。図1に示すように、パーキングブレーキシステム100(車両用ブレーキシステムの一例)は車両Cに搭載される。車両Cは、回転電機1を用いて走行する機能を備えており、例えば電気自動車(EV)やハイブリッド自動車(HEV)等である。パーキングブレーキシステム100は、パーキングブレーキ機能を備えた回転電機1と、回転電機1のパーキングブレーキ機能をオン又はオフさせるために操作される操作部材51を有する。なお、図1では操作部材51の一例としてレバーを図示しているが、例えばペダルやスイッチ等、他の部材としてもよい。また、図1ではパーキングブレーキ以外のブレーキシステムの図示を省略している。
<1. First Embodiment>
(1-1. Configuration of parking brake system)
An example of the configuration of the parking brake system 100 according to the first embodiment will be conceptually described with reference to FIG. As shown in FIG. 1, a parking brake system 100 (an example of a vehicle brake system) is mounted on a vehicle C. The vehicle C has a function of traveling using the rotating electrical machine 1 and is, for example, an electric vehicle (EV) or a hybrid vehicle (HEV). The parking brake system 100 includes a rotating electrical machine 1 having a parking brake function, and an operation member 51 that is operated to turn on or off the parking brake function of the rotating electrical machine 1. In FIG. 1, a lever is illustrated as an example of the operation member 51, but another member such as a pedal or a switch may be used. In FIG. 1, illustration of a brake system other than the parking brake is omitted.
 また、パーキングブレーキシステム100は、回転電機1の界磁磁束を可変させる可変界磁機構50と、コントローラ52を有する。コントローラ52は、操作部材51の操作に応じて制御信号を可変界磁機構50の制御モータ55に出力し、回転電機1の界磁磁束を制御する。より具体的には、コントローラ52は、操作部材51がパーキングブレーキ機能をオンさせるように操作された場合、回転電機1の界磁磁束を最大にするように可変界磁機構50を制御する。回転電機1は、可変界磁機構50とこれを制御するコントローラ52によって、パーキングブレーキ機能を発揮する。つまり本実施形態では、可変界磁機構50とコントローラ52が「回転電機にパーキングブレーキ機能を持たせる手段」の一例に相当する。 The parking brake system 100 also includes a variable field mechanism 50 that varies the field magnetic flux of the rotating electrical machine 1 and a controller 52. The controller 52 outputs a control signal to the control motor 55 of the variable field mechanism 50 according to the operation of the operation member 51 to control the field magnetic flux of the rotating electrical machine 1. More specifically, the controller 52 controls the variable field mechanism 50 so that the field magnetic flux of the rotating electrical machine 1 is maximized when the operation member 51 is operated to turn on the parking brake function. The rotating electrical machine 1 exhibits a parking brake function by a variable field mechanism 50 and a controller 52 that controls the variable field mechanism 50. That is, in the present embodiment, the variable field mechanism 50 and the controller 52 correspond to an example of “means for giving the rotating electrical machine a parking brake function”.
  (1-2.回転電機の構成)
 図2及び図3を用いて、パーキングブレーキシステム100に使用される回転電機1の構成の一例について説明する。回転電機1は、界磁磁束を変化させることが可能な可変界磁型の回転電機である。
(1-2. Configuration of rotating electrical machine)
An example of the configuration of the rotating electrical machine 1 used in the parking brake system 100 will be described with reference to FIGS. 2 and 3. The rotating electrical machine 1 is a variable field type rotating electrical machine capable of changing a field magnetic flux.
 図2及び図3に示すように、回転電機1は、環状の固定子2と、固定子2の径方向内側に同心に配置されたシャフト34と、シャフト34に設けられた回転子3を備える。 As shown in FIGS. 2 and 3, the rotating electrical machine 1 includes an annular stator 2, a shaft 34 disposed concentrically on the radially inner side of the stator 2, and a rotor 3 provided on the shaft 34. .
 固定子2は、例えば略円筒状のフレーム17の内周面に設けられ周方向に複数のティース部13aを有する環状の固定子鉄心13と、複数のティース部13aに装着された複数の固定子巻線12を備える。固定子鉄心13は、隣り合うティース部13a同士の間に、径方向内側に向けて開口したスロット13b(巻線用空隙の一例に相当)を備える。ティース部13aに装着された固定子巻線12の周方向両側部は、ティース部13aの両側のスロット13bに収容される。固定子鉄心13は、負荷側ブラケット16に固定子締結ボルト14により締結される。固定子鉄心13の反負荷側(図2中左側)には、固定子巻線12の巻き始め及び巻き終りの端末を結線処理する結線部21が配置される。 The stator 2 is, for example, an annular stator core 13 provided on the inner peripheral surface of a substantially cylindrical frame 17 and having a plurality of teeth portions 13a in the circumferential direction, and a plurality of stators mounted on the plurality of teeth portions 13a. A winding 12 is provided. The stator core 13 includes a slot 13b (corresponding to an example of a winding gap) that is opened radially inward between adjacent tooth portions 13a. Both sides in the circumferential direction of the stator winding 12 attached to the tooth portion 13a are accommodated in slots 13b on both sides of the tooth portion 13a. The stator iron core 13 is fastened to the load side bracket 16 by a stator fastening bolt 14. On the non-load side (left side in FIG. 2) of the stator core 13, a connection part 21 for connecting the winding start and end terminals of the stator winding 12 is arranged.
 負荷側ブラケット16及びフレーム17には、それぞれ負荷側軸受18及び反負荷側軸受19が設けられる。シャフト34は、負荷側軸受18及び反負荷側軸受19により回転自在に支持される。 The load side bracket 16 and the frame 17 are provided with a load side bearing 18 and an anti-load side bearing 19, respectively. The shaft 34 is rotatably supported by the load side bearing 18 and the anti-load side bearing 19.
 なお、本明細書において「負荷側」とは回転電機1に対して負荷が取り付けられる方向、すなわちこの例ではシャフト34が突出する方向(図2中右側)を指し、「反負荷側」とは負荷側の反対方向、すなわちこの例では回転電機1に対してギヤホイール23等が配置される方向(図2中左側)を指す。 In this specification, the “load side” refers to the direction in which a load is attached to the rotating electrical machine 1, that is, the direction in which the shaft 34 protrudes (right side in FIG. 2) in this example. The direction opposite to the load side, that is, the direction in which the gear wheel 23 and the like are arranged with respect to the rotating electrical machine 1 in this example (left side in FIG. 2) is indicated.
 フレーム17は、反負荷側から挿通したフレーム締結ボルト11によって負荷側ブラケット16に固定される。回転子3の反負荷側に設けられた反負荷側プレート33にはセンサマグネット20が取り付けられ、フレーム17の内側にはセンサマグネット20により回転子3の回転位置を検出する位置検出部25が設けられる。 The frame 17 is fixed to the load side bracket 16 by the frame fastening bolt 11 inserted from the non-load side. A sensor magnet 20 is attached to the anti-load side plate 33 provided on the anti-load side of the rotor 3, and a position detection unit 25 for detecting the rotational position of the rotor 3 by the sensor magnet 20 is provided inside the frame 17. It is done.
 なお、図3等には、回転電機1が10ポール12スロットである場合を一例として図示しているが、回転電機1のスロットコンビネーションはこれに限定されるものではない。 In FIG. 3 and the like, the case where the rotating electrical machine 1 has 10 poles and 12 slots is shown as an example, but the slot combination of the rotating electrical machine 1 is not limited to this.
  (1-3.回転子の構成)
 図2、図3、図5A及び図5Bを用いて、回転子3の構成の一例について説明する。回転子3は、この例では軸方向に3つに分割される。すなわち、回転子3は、軸方向中央に配置された1つの可動回転子47と、可動回転子47の負荷側に配置された固定回転子46及び反負荷側に配置された固定回転子48を有する。なお、回転子3の分割数は3に限定されるものではなく、例えば5分割等でもよいが、以下では説明の便宜上3分割の場合を一例として説明する。
(1-3. Configuration of rotor)
An example of the configuration of the rotor 3 will be described with reference to FIGS. 2, 3, 5A, and 5B. In this example, the rotor 3 is divided into three in the axial direction. That is, the rotor 3 includes one movable rotor 47 disposed in the center in the axial direction, a fixed rotor 46 disposed on the load side of the movable rotor 47, and a fixed rotor 48 disposed on the non-load side. Have. Note that the number of divisions of the rotor 3 is not limited to 3, but may be, for example, 5 divisions. However, for the sake of explanation, the case of 3 divisions will be described as an example.
 図3に示すように、可動回転子47は、固定子2と磁気的空隙を空けて配置された回転子鉄心38と、回転子鉄心38に設けられた複数の永久磁石39を備える。複数の永久磁石39は、軸方向から見て、N極又はS極の同極の磁極同士を対向させた2つの永久磁石39が径方向内側に凸のV字状の対をなす態様で、対向する同極の磁極を周方向に交互に異ならせて回転子鉄心38の内部に配置される。これにより、可動回転子47の外周には周方向に交互に極性の異なるN極とS極の磁極部47aが形成される。 As shown in FIG. 3, the movable rotor 47 includes a rotor core 38 disposed with a magnetic gap between the stator 2 and a plurality of permanent magnets 39 provided on the rotor core 38. The plurality of permanent magnets 39 is a mode in which two permanent magnets 39 in which the same magnetic poles of N poles or S poles face each other form a V-shaped pair projecting radially inward when viewed from the axial direction. Opposing magnetic poles of the same polarity are alternately arranged in the circumferential direction and arranged inside the rotor core 38. As a result, N pole and S pole magnetic pole portions 47 a having different polarities alternately in the circumferential direction are formed on the outer periphery of the movable rotor 47.
 回転子鉄心38がシャフト34の外面にハブ32及びスライダ37を介して設けられることによって、可動回転子47は固定回転子46,48に対し相対的に回転可能となる。可動回転子47を相対回転させる駆動機構を含む可変界磁機構50の詳細については後述する。 Since the rotor core 38 is provided on the outer surface of the shaft 34 via the hub 32 and the slider 37, the movable rotor 47 can rotate relative to the fixed rotors 46 and 48. Details of the variable field mechanism 50 including a drive mechanism for relatively rotating the movable rotor 47 will be described later.
 固定回転子46,48は、可動回転子47と同様な構成を有する。固定回転子46,48は、図5A及び図5Bに示すように、回転子鉄心38と、上記可動回転子47の永久磁石39と同数の永久磁石39を備える。永久磁石39は可動回転子47と同様に配置されており、固定回転子46,48の外周には周方向に交互に極性の異なるN極とS極の磁極部46a,48aがそれぞれ形成される。 The fixed rotors 46 and 48 have the same configuration as the movable rotor 47. As shown in FIGS. 5A and 5B, the fixed rotors 46 and 48 include a rotor core 38 and the same number of permanent magnets 39 as the permanent magnets 39 of the movable rotor 47. The permanent magnet 39 is arranged in the same manner as the movable rotor 47, and N and S pole portions 46a and 48a having different polarities in the circumferential direction are formed on the outer circumferences of the fixed rotors 46 and 48, respectively. .
 回転子3の負荷側及び反負荷側には、それぞれ環状の負荷側プレート31及び反負荷側プレート33が固定されている。固定回転子46,48は、それらの回転子鉄心38がボルト35により負荷側プレート31及び反負荷側プレート33に固定されることによって、負荷側プレート31及び反負荷側プレート33を介してシャフト34に固定される。 An annular load side plate 31 and an anti load side plate 33 are fixed to the load side and the anti load side of the rotor 3, respectively. The fixed rotors 46, 48 are fixed to the load side plate 31 and the anti-load side plate 33 by the bolts 35, so that the shaft 34 passes through the load side plate 31 and the anti-load side plate 33. Fixed to.
  (1-4.可変界磁機構の構成)
 図2、図3及び図4を用いて、可変界磁機構50の構成の一例について説明する。上述したように、可動回転子47の回転子鉄心38は、ハブ32及びスライダ37を介してシャフト34に取り付けられる。可変界磁機構50は、これらハブ32及びスライダ37等を備える。図4に示すように、シャフト34には、反負荷側(図4中斜め左下側)寄りの外周面に軸方向に沿って角型スプライン部34aが形成される。また、スライダ37を貫通したピン36の両端が貫通する径方向両側の溝部34bが、角型スプライン部34a同士の間に形成される。溝部34bは、角型スプライン部34aの軸方向略中央部から負荷側(図4中斜め右上側)の端部近傍まで長穴状に設けられる。
(1-4. Configuration of variable field mechanism)
An example of the configuration of the variable field mechanism 50 will be described with reference to FIGS. 2, 3, and 4. As described above, the rotor core 38 of the movable rotor 47 is attached to the shaft 34 via the hub 32 and the slider 37. The variable field mechanism 50 includes the hub 32, the slider 37, and the like. As shown in FIG. 4, the shaft 34 is formed with a square spline portion 34 a along the axial direction on the outer peripheral surface near the anti-load side (oblique left lower side in FIG. 4). Moreover, the groove part 34b of the radial direction both sides which the both ends of the pin 36 which penetrated the slider 37 penetrates is formed between square-shaped spline parts 34a. The groove part 34b is provided in the shape of a long hole from the substantially central part in the axial direction of the square spline part 34a to the vicinity of the end part on the load side (oblique upper right side in FIG. 4).
 スライダ37には、内周面に軸方向に沿って角型スプライン部37aが形成されるとともに、径方向にピン36が貫通する。スライダ37はシャフト34の外周に装着され、角型スプライン部37aがシャフト34の角型スプライン部34aに係合する。スライダ37は、ピン36の軸方向の移動によりシャフト34に対し溝部34bの範囲内で軸方向に移動可能である。スライダ37の外周面には、周方向に傾斜した捩れスプライン部37bが形成される。 In the slider 37, a square spline portion 37a is formed along the axial direction on the inner peripheral surface, and the pin 36 penetrates in the radial direction. The slider 37 is mounted on the outer periphery of the shaft 34, and the square spline portion 37 a is engaged with the square spline portion 34 a of the shaft 34. The slider 37 can move in the axial direction within the range of the groove 34b with respect to the shaft 34 by the movement of the pin 36 in the axial direction. A torsion spline portion 37 b inclined in the circumferential direction is formed on the outer peripheral surface of the slider 37.
 可動回転子47はハブ32の外周面に装着される。ハブ32の内周面には、スライダ37の捩れスプライン部37bと同方向に傾斜した捩れスプライン部32aが設けられる。この捩れスプライン部32aが、スライダ37の捩れスプライン部37bに係合する。ハブ32は、スライダ37の軸方向の所定量の移動により周方向に所定量回転する。ハブ32の外周面には凹凸部32bが設けられる。この凹凸部32bが可動回転子47の回転子鉄心38の内周面に設けられた凹凸部38a(図3参照)と係合する。なお、可動回転子47の回転子鉄心38とハブ32は、例えば焼き嵌め等で固定される。可動回転子47はスライダ37の軸方向の所定量の移動によりハブ32と一体に周方向に所定量回転する。 The movable rotor 47 is mounted on the outer peripheral surface of the hub 32. On the inner peripheral surface of the hub 32, a torsion spline portion 32a inclined in the same direction as the torsion spline portion 37b of the slider 37 is provided. The torsion spline portion 32 a engages with the torsion spline portion 37 b of the slider 37. The hub 32 rotates by a predetermined amount in the circumferential direction by the movement of the slider 37 by a predetermined amount in the axial direction. An uneven portion 32 b is provided on the outer peripheral surface of the hub 32. The uneven portion 32 b engages with an uneven portion 38 a (see FIG. 3) provided on the inner peripheral surface of the rotor core 38 of the movable rotor 47. The rotor core 38 and the hub 32 of the movable rotor 47 are fixed by shrink fitting, for example. The movable rotor 47 rotates a predetermined amount in the circumferential direction integrally with the hub 32 by a predetermined amount of movement of the slider 37 in the axial direction.
 図2に示すように、ピン36の中央部分は、シャフト34内に軸方向に移動可能に設置されたピンホルダ28に取り付けられる。ピンホルダ28は、送りおねじ42の負荷側端部に可動軸受40を介して取り付けられる。可動軸受40は、例えば一対のアンギュラ軸受であり、軸方向の支持方向が対向するように配置される。可動軸受40は、ボルト45によって送りおねじ42の負荷側端部に固定された軸受ホルダ44により保持される。送りおねじ42の反負荷側端部は、送りめねじ43に歯合される。 As shown in FIG. 2, the central portion of the pin 36 is attached to a pin holder 28 installed in the shaft 34 so as to be movable in the axial direction. The pin holder 28 is attached to the load side end portion of the feed male screw 42 via the movable bearing 40. The movable bearing 40 is, for example, a pair of angular bearings, and is arranged so that the axial support directions face each other. The movable bearing 40 is held by a bearing holder 44 fixed to the load side end of the feed male screw 42 by a bolt 45. The opposite end of the feed male screw 42 is engaged with the feed screw 43.
 送りめねじ43とシャフト34の間には固定軸受41が装着される。固定軸受41は、ナット29によって送りめねじ43に固定される。固定軸受41は、例えば一対のアンギュラ軸受であり、軸方向の支持方向が対向するように配置される。送りおねじ42の反負荷側端部には、例えば六角形状の穴部42aが形成される。 A fixed bearing 41 is mounted between the feed screw 43 and the shaft 34. The fixed bearing 41 is fixed to the feed screw 43 by the nut 29. The fixed bearing 41 is a pair of angular bearings, for example, and is arranged so that the axial support directions face each other. For example, a hexagonal hole 42 a is formed at the end of the feed male screw 42 on the side opposite to the load.
 図2に示すように、可変界磁機構50は、送りおねじ42の穴部42aに挿入されたシャフト部23aを備えたギヤホイール23と、ギヤホイール23に歯合するウォームシャフト27と、ウォームシャフト27を出力軸に取り付けた制御モータ55(図1参照)を有する。ギヤホイール23は、軸受26により送りめねじ43に対して回転自在に支持される。ギヤホイール23、軸受26、及びウォームシャフト27等は、フレーム17の反負荷側に取り付けられたカバー24によって覆われる。 As shown in FIG. 2, the variable field mechanism 50 includes a gear wheel 23 having a shaft portion 23a inserted into a hole 42a of a feed male screw 42, a worm shaft 27 meshing with the gear wheel 23, a worm A control motor 55 (see FIG. 1) having a shaft 27 attached to the output shaft is provided. The gear wheel 23 is rotatably supported by the bearing 26 with respect to the feed screw 43. The gear wheel 23, the bearing 26, the worm shaft 27, and the like are covered with a cover 24 attached to the non-load side of the frame 17.
 可変界磁機構50は、次のように動作する。制御モータ55がウォームシャフト27を回転させると、ギヤホイール23が回転し、送りおねじ42が送りめねじ43に対して軸方向に移動する。送りおねじ42は、負荷側端部に装着された可動軸受40によりシャフト34の回転と遮断されながら、ピン36とピンホルダ28を軸方向に移動させる。ピン36はシャフト34の外側のスライダ37を軸方向に移動させる。スライダ37はハブ32と捩れスプライン部37b,32aで係合するため、スライダ37が軸方向に移動すると、ハブ32とそれに固定された可動回転子47が、シャフト34に固定された2つの固定回転子46,48に対し回動する。 The variable field mechanism 50 operates as follows. When the control motor 55 rotates the worm shaft 27, the gear wheel 23 rotates and the feed male screw 42 moves in the axial direction with respect to the feed screw 43. The feed male screw 42 moves the pin 36 and the pin holder 28 in the axial direction while being blocked from the rotation of the shaft 34 by the movable bearing 40 attached to the end portion on the load side. The pin 36 moves the slider 37 outside the shaft 34 in the axial direction. Since the slider 37 is engaged with the hub 32 by the torsion spline portions 37b and 32a, when the slider 37 moves in the axial direction, the hub 32 and the movable rotor 47 fixed thereto are two fixed rotations fixed to the shaft 34. It rotates with respect to the children 46 and 48.
  (1-5.回転子の界磁磁束の変化)
 図5A及び図5Bを用いて、回転子3の界磁磁束の変化について説明する。図5Aに示すように、可動回転子47が回転方向一方側、すなわち可動回転子47と固定回転子46,48の同じ極性の磁極部同士が近づく方向に回転すると、磁極部46a,47a,48aの磁束が強め合って界磁磁束は増大する。
(1-5. Change in rotor field magnetic flux)
Changes in the field magnetic flux of the rotor 3 will be described with reference to FIGS. 5A and 5B. As shown in FIG. 5A, when the movable rotor 47 rotates in one direction of rotation, that is, in the direction in which the movable rotor 47 and the fixed rotors 46 and 48 come closer to each other with the same polarity, the magnetic pole parts 46a, 47a and 48a. As the magnetic fluxes of each other strengthen, the field magnetic flux increases.
 一方、図5Bに示すように、可動回転子47が回転方向他方側、すなわち可動回転子47と固定回転子46,48の同じ極性の磁極部同士が遠ざかる方向に回転すると、磁極部46a,47a,48aの磁束が相殺されて界磁磁束は減少する。 On the other hand, as shown in FIG. 5B, when the movable rotor 47 rotates in the other direction of rotation, that is, in the direction in which the magnetic pole parts of the same polarity of the movable rotor 47 and the fixed rotors 46 and 48 move away from each other, the magnetic pole parts 46a and 47a. , 48a cancel each other and the field magnetic flux decreases.
 このように、制御モータ55により可動回転子47を回転させることにより、図5A及び図5Bに示すように、回転子3の界磁磁束の強さを変化させることができる。 Thus, by rotating the movable rotor 47 by the control motor 55, the field magnetic flux strength of the rotor 3 can be changed as shown in FIGS. 5A and 5B.
  (1-6.コギングトルクによるパーキングブレーキ機能)
 回転電機1は、車両Cの加速時等にはモータとして機能すると共に、減速時には発電機として機能し、電力を回生しながら車両Cの制動力を発生する。この回生制動力は、車両Cの速度が低下するにつれて小さくなり、停止状態では生じない。本実施形態では、車両Cの停止状態において、回転電機1の回転子3の磁極部に作用するコギングトルクを利用して回転子3の回転を阻止し、パーキングブレーキ機能を発揮させる。この詳細について、図6A及び図6B、図7A及び図7Bを用いて説明する。
(1-6. Parking brake function by cogging torque)
The rotating electrical machine 1 functions as a motor when the vehicle C is accelerated, etc., and also functions as a generator when the vehicle is decelerated, and generates braking force of the vehicle C while regenerating electric power. This regenerative braking force decreases as the speed of the vehicle C decreases, and does not occur in a stopped state. In the present embodiment, when the vehicle C is stopped, the rotation of the rotor 3 is prevented using the cogging torque that acts on the magnetic pole portion of the rotor 3 of the rotating electrical machine 1, and the parking brake function is exhibited. This will be described in detail with reference to FIGS. 6A and 6B and FIGS. 7A and 7B.
 図3等に示すように、例えば10ポール12スロット(回転子3の極数が10極、固定子2のスロット数が12)の回転電機1では、原理的に回転子3の1回転中に60サイクルのコギングトルクが発生する。本実施形態の回転電機1では、中央の可動回転子47の磁極部47aに発生するコギングトルクと両側の固定回転子46,48の磁極部46a,48aに発生するコギングトルクが別々に生じることから、可変界磁機構50により磁極部47aと磁極部46a,48aを相対的に回動することにより、コギングトルクの大きさを調整することができる。 As shown in FIG. 3 and the like, in the rotating electrical machine 1 having, for example, 10 poles and 12 slots (the number of poles of the rotor 3 is 10 and the number of slots of the stator 2 is 12), in principle, during one rotation of the rotor 3 60 cycles of cogging torque are generated. In the rotating electrical machine 1 of the present embodiment, cogging torque generated in the magnetic pole portion 47a of the central movable rotor 47 and cogging torque generated in the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48 on both sides are separately generated. The magnitude of the cogging torque can be adjusted by relatively rotating the magnetic pole part 47a and the magnetic pole parts 46a and 48a by the variable field mechanism 50.
 図6A及び図6Bに、回転子3の回転方向の角度位置とコギングトルクとの関係を示す。なお、図6A及び図6B中、縦軸の「コギングトルク比」は、中央の可動回転子47の磁極部47aのコギングトルクの最大値を1としたときのコギングトルクの比を表している。また、図中破線で示す「中央」は可動回転子47のコギングトルク、細い実線で示す「両側」は固定回転子46,48のコギングトルクの合成、太い実線で示す「合成」は可動回転子47のコギングトルクと固定回転子46,48のコギングトルクを合成した回転子3全体でのコギングトルクを表している。 6A and 6B show the relationship between the angular position of the rotor 3 in the rotational direction and the cogging torque. 6A and 6B, the “cogging torque ratio” on the vertical axis represents the ratio of the cogging torque when the maximum value of the cogging torque of the magnetic pole portion 47a of the central movable rotor 47 is 1. In addition, “center” indicated by a broken line in the figure is the cogging torque of the movable rotor 47, “both sides” indicated by a thin solid line is a combination of cogging torques of the fixed rotors 46 and 48, and “synthesis” indicated by a thick solid line is the movable rotor. The cogging torque of the rotor 3 as a whole obtained by combining the cogging torque of 47 and the cogging torque of the fixed rotors 46 and 48 is shown.
 図6Aは、回転子3が図7Aに示す状態であるときのコギングトルクである。すなわち、図7Aに示すように、各々が同じ極性である可動回転子47の磁極部47aと固定回転子46,48の磁極部46a,48aが軸方向に揃う状態(相対回転角度が略0度)である。中央の可動回転子47の磁極部47aのコギングトルク、及び、両側の固定回転子46,48の磁極部46a,48aのコギングトルクは、それぞれ回転角略6°を一周期とする略同一振幅の正弦波状に変化する。このため、図7Aに示す状態では、磁極部47aのコギングトルクと磁極部46a,48aのコギングトルクとが強めあい、可動回転子47と固定回転子46,48とを合成したコギングトルクは最大となる。なお、この最大コギングトルクが車両Cのロックに必要なコギングトルクとなるように、回転電機1の各磁極部47a,46a,48aについて電磁設計が行われる。 FIG. 6A shows the cogging torque when the rotor 3 is in the state shown in FIG. 7A. That is, as shown in FIG. 7A, the magnetic pole portion 47a of the movable rotor 47 and the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48, each having the same polarity, are aligned in the axial direction (the relative rotation angle is approximately 0 degrees). ). The cogging torque of the magnetic pole portion 47a of the central movable rotor 47 and the cogging torque of the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48 on both sides have substantially the same amplitude with a rotation angle of approximately 6 ° as one cycle. It changes like a sine wave. Therefore, in the state shown in FIG. 7A, the cogging torque of the magnetic pole portion 47a and the cogging torque of the magnetic pole portions 46a and 48a are strengthened, and the cogging torque obtained by combining the movable rotor 47 and the fixed rotors 46 and 48 is the maximum. Become. In addition, electromagnetic design is performed on each magnetic pole portion 47a, 46a, 48a of the rotating electrical machine 1 so that the maximum cogging torque becomes the cogging torque necessary for locking the vehicle C.
 一方、図6Bは、回転子3が図7Bに示す状態であるときのコギングトルクである。すなわち、図7Bに示すように、各々が同じ極性である可動回転子47の磁極部47aと固定回転子46,48の磁極部46a,48aの相対回転角度が略3度となる状態である。この状態では、磁極部47aのコギングトルクと磁極部46a,48aのコギングトルクは1/2周期だけ位相がずれるので、互いのコギングトルクが相殺される。したがって、可動回転子47と固定回転子46,48とを合成したコギングトルクは最小となる。 On the other hand, FIG. 6B shows the cogging torque when the rotor 3 is in the state shown in FIG. 7B. That is, as shown in FIG. 7B, the relative rotation angle between the magnetic pole portion 47a of the movable rotor 47 and the magnetic pole portions 46a and 48a of the fixed rotors 46 and 48, each having the same polarity, is approximately 3 degrees. In this state, the cogging torque of the magnetic pole part 47a and the cogging torque of the magnetic pole parts 46a and 48a are out of phase by a half period, so the cogging torques cancel each other. Accordingly, the cogging torque obtained by combining the movable rotor 47 and the fixed rotors 46 and 48 is minimized.
 したがって、車両Cの停車又は駐車時に、操作部材51がパーキングブレーキ機能をオンさせるように操作された場合には、コントローラ52が可変界磁機構50の制御モータ55に制御信号を出力して回転子3を図7Aの状態とすることにより、回転子3の回転を阻止して回転電機1をほぼロック状態とすることができる。一方、車両Cの発進時に、操作部材51がパーキングブレーキ機能をオフさせるように操作された場合には、コントローラ52が可変界磁機構50の制御モータ55に制御信号を出力して回転子3を図7Bの状態とすることにより、コギングトルクを最小にして車両Cの発進を容易にすることができる。なお、車両Cの走行中は、可変界磁機構50により走行状態に応じて界磁磁束が可変されるが、回転子3が回転しているため、コギングトルクの大小に関わりなくコギングトルクは負荷にはならない。 Therefore, when the operation member 51 is operated to turn on the parking brake function when the vehicle C is stopped or parked, the controller 52 outputs a control signal to the control motor 55 of the variable field mechanism 50 to output the rotor. By setting 3 to the state shown in FIG. 7A, the rotation of the rotor 3 can be prevented and the rotating electrical machine 1 can be almost locked. On the other hand, when the operation member 51 is operated so as to turn off the parking brake function when the vehicle C starts, the controller 52 outputs a control signal to the control motor 55 of the variable field mechanism 50 to rotate the rotor 3. By setting the state of FIG. 7B, the cogging torque can be minimized and the vehicle C can be started easily. During traveling of the vehicle C, the field magnetic flux is varied by the variable field mechanism 50 in accordance with the traveling state. However, since the rotor 3 is rotating, the cogging torque is applied regardless of the magnitude of the cogging torque. It will not be.
  (1-7.第1実施形態の効果)
 以上説明したように、第1実施形態に係るパーキングブレーキシステム100は、回転電機1と、回転電機1にパーキングブレーキ機能を持たせる手段を有する。そして、車両Cでは、通常の走行における加速時には回転電機1はモータとして使用され、減速時には回生制動を行う発電機として使用される。また、停車・駐車時には回転電機1が備えるパーキングブレーキ機能が使用される。このように、回転電機1がパーキングブレーキ機能を備えることにより、複数のブレーキシステム(回生ブレーキとパーキングブレーキ)を融合させた単一のブレーキシステムを構築できる。これにより、複数のブレーキシステムを個別に搭載する場合に比べて構成を簡素化でき、その制御も容易となる。また、システム構成が簡素化されるので車両への搭載性が向上し、コストも低減できる。
(1-7. Effects of First Embodiment)
As described above, the parking brake system 100 according to the first embodiment includes the rotating electrical machine 1 and means for giving the rotating electrical machine 1 a parking brake function. In the vehicle C, the rotating electrical machine 1 is used as a motor at the time of acceleration in normal traveling, and is used as a generator that performs regenerative braking at the time of deceleration. Moreover, the parking brake function with which the rotary electric machine 1 is provided at the time of a stop and parking is used. Thus, when the rotating electrical machine 1 has the parking brake function, a single brake system in which a plurality of brake systems (regenerative brake and parking brake) are integrated can be constructed. Thereby, compared with the case where a some brake system is mounted separately, a structure can be simplified and the control becomes easy. Further, since the system configuration is simplified, the mounting property on the vehicle is improved and the cost can be reduced.
 また、本実施形態では特に、パーキングブレーキシステム100が、回転電機1のパーキングブレーキ機能をオン又はオフさせるために操作される操作部材51を有し、回転電機1にパーキングブレーキ機能を持たせる手段は、可変界磁機構50とコントローラ52を有する。これにより、回転電機1のコギングトルクを最大にして回転電機1をほぼロックに近い状態とすることができる。したがって、油圧機構や摩擦機構を用いることなく、回転電機1にパーキングブレーキ機能を持たせることができる。また、回転電機1を可変界磁型とすることにより、急激な加速・減速時には界磁磁束を大きくなるように調整して強力な加減速トルクを得ることができる。このように、走行状況に応じて界磁磁束を最適な値に調整できるので、高い効率を得つつ走行することができる。 In the present embodiment, in particular, the parking brake system 100 includes an operation member 51 that is operated to turn on or off the parking brake function of the rotating electrical machine 1, and means for causing the rotating electrical machine 1 to have a parking brake function is provided. And a variable field mechanism 50 and a controller 52. As a result, the cogging torque of the rotating electrical machine 1 can be maximized to make the rotating electrical machine 1 almost in a locked state. Therefore, the rotary electric machine 1 can be provided with a parking brake function without using a hydraulic mechanism or a friction mechanism. In addition, by making the rotating electrical machine 1 a variable field type, it is possible to obtain a strong acceleration / deceleration torque by adjusting the field magnetic flux so as to increase during rapid acceleration / deceleration. As described above, the field magnetic flux can be adjusted to an optimum value according to the traveling state, so that it is possible to travel while obtaining high efficiency.
 また、本実施形態では特に、回転電機1は、固定子巻線12が収容されるスロット13bが径方向内側に向けて開口した固定子鉄心13を有する。このように、固定子鉄心13をいわゆるオープンスロット構造とすることにより、パーキングブレーキオン時のコギングトルクを増大させて、回転電機1のロック機能を高めることができる。 Further, particularly in the present embodiment, the rotating electrical machine 1 has a stator core 13 in which a slot 13b in which the stator winding 12 is accommodated opens toward the radially inner side. Thus, by making the stator iron core 13 into a so-called open slot structure, the cogging torque when the parking brake is on can be increased, and the lock function of the rotating electrical machine 1 can be enhanced.
  (1-8.第1実施形態の変形例)
 以上では、可変界磁機構50が軸方向に分割された回転子3を部分的に相対回転させることにより界磁磁束を可変させるようにしたが、回転電機1の界磁磁束を可変させる可変界磁機構はこれに限定されるものではない。例えば、径方向に分割された回転子を部分的に相対回転させることにより界磁磁束を可変させてもよい。また、例えば回転子が回転子巻線を備える構成とし、電流を変化させることにより界磁磁束を可変させてもよい。
(1-8. Modification of First Embodiment)
In the above, the field magnetic flux is made variable by partially rotating the rotor 3 divided in the axial direction by the variable field mechanism 50. However, the variable field changing the field magnetic flux of the rotating electrical machine 1 is changed. The magnetic mechanism is not limited to this. For example, the field magnetic flux may be varied by partially rotating the rotor divided in the radial direction. Further, for example, the rotor may include a rotor winding, and the field magnetic flux may be varied by changing the current.
 <2.第2実施形態>
 上記第1実施形態では、回転電機1の界磁磁束を可変させて回転子3のコギングトルクを利用して回転電機1にパーキングブレーキ機能を持たせるようにしたが、回転子3を機械的に制動して回転電機1Aにパーキングブレーキ機能を持たせる構成としてもよい。図8、図9、図10A及び図10Bを用いて第2実施形態について説明する。
<2. Second Embodiment>
In the first embodiment, the field magnetic flux of the rotating electrical machine 1 is varied and the cogging torque of the rotor 3 is used to give the rotating electrical machine 1 a parking brake function. It is good also as a structure which brakes and gives the rotary electric machine 1A the parking brake function. The second embodiment will be described with reference to FIGS. 8, 9, 10A, and 10B.
  (2-1.回転電機の構成)
 第2実施形態に係るパーキングブレーキシステム100は、前述の操作部材51と、回転電機1Aを有する。図8及び図9に示すように、回転電機1Aは、回転子3をシャフト34に固定する負荷側プレート31A及び反負荷側プレート33A(側板の一例に相当)を備える。また、回転電機1Aは、反負荷側プレート33Aに接触して回転子3に制動力を与える制動板61と、操作部材51の操作に応じて制動板61を回転子3に対して進退させる駆動装置60を備える。
(2-1. Configuration of rotating electrical machine)
The parking brake system 100 according to the second embodiment includes the operation member 51 described above and the rotating electrical machine 1A. As shown in FIGS. 8 and 9, the rotating electrical machine 1 </ b> A includes a load side plate 31 </ b> A and an anti-load side plate 33 </ b> A (corresponding to an example of a side plate) that fix the rotor 3 to the shaft 34. The rotating electrical machine 1A is in contact with the anti-load side plate 33A and applies a braking force to the rotor 3, and a drive for moving the braking plate 61 back and forth with respect to the rotor 3 according to the operation of the operation member 51. A device 60 is provided.
 図10Aに制動板61の構造の一例を示し、図10Bに反負荷側プレート33Aの構造の一例を示す。図10Bに示すように、反負荷側プレート33Aには、軸方向に貫通した複数の貫通孔33a(凹部の一例に相当)が周方向に沿って例えば等間隔に形成される。なお、貫通孔とせずに凹部としてもよい。また図10Aに示すように、制動板61は、磁性材料(例えば鉄等)で構成された例えば環状の板部材である。制動板61の反負荷側の表面の外周部には、複数の支持軸64が周方向に沿って設けられる。制動板61の負荷側の表面には、例えば支持軸64に対応する位置に、反負荷側プレート33Aの貫通孔33aに係合可能な突起64aが設けられる。なお、支持軸64と突起64aを一部材として制動板61を貫通させた構成としてもよいし、制動板61を支持軸64と突起64aを備えた形状として鋳造等により一体的に成形してもよい。制動板61は、支持軸64がフレーム17に設けられた穴部17aに挿入されることにより、回転方向の移動を阻止されつつ軸方向に移動可能である。 FIG. 10A shows an example of the structure of the brake plate 61, and FIG. 10B shows an example of the structure of the anti-load side plate 33A. As shown in FIG. 10B, a plurality of through-holes 33a (corresponding to an example of recesses) penetrating in the axial direction are formed in the anti-load side plate 33A at regular intervals along the circumferential direction. In addition, it is good also as a recessed part instead of setting it as a through-hole. As shown in FIG. 10A, the brake plate 61 is, for example, an annular plate member made of a magnetic material (for example, iron). A plurality of support shafts 64 are provided along the circumferential direction on the outer peripheral portion of the surface of the brake plate 61 on the side opposite to the load. On the load side surface of the brake plate 61, for example, a protrusion 64a that can be engaged with the through hole 33a of the anti-load side plate 33A is provided at a position corresponding to the support shaft 64. The support shaft 64 and the protrusion 64a may be used as a single member, and the brake plate 61 may be penetrated. Alternatively, the brake plate 61 may be integrally formed by casting or the like as a shape including the support shaft 64 and the protrusion 64a. Good. The brake plate 61 is movable in the axial direction while being prevented from moving in the rotational direction by inserting the support shaft 64 into the hole 17 a provided in the frame 17.
 駆動装置60は、スプリング62及び電磁石63等を備える。スプリング62は、支持軸64に装着されてフレーム17と制動板61との間に設けられ、制動板61を回転子3に向けて軸方向に付勢する。電磁石63は、例えばフレーム17の穴部17aの内周側に取り付けられる。電磁石63は、コイル63aに電流を流すことによって励磁され、制動板61をスプリング62の付勢力に抗して吸着する。コイル63aへの給電は、操作部材51(図1参照)の操作に応じて例えばコントローラ52によって制御される。なお、コイル63aへの給電をコントローラ52とは別の制御装置によって制御してもよい。 The driving device 60 includes a spring 62, an electromagnet 63, and the like. The spring 62 is attached to the support shaft 64 and provided between the frame 17 and the brake plate 61, and biases the brake plate 61 in the axial direction toward the rotor 3. The electromagnet 63 is attached to the inner peripheral side of the hole 17a of the frame 17, for example. The electromagnet 63 is excited by passing a current through the coil 63 a and attracts the braking plate 61 against the urging force of the spring 62. The power supply to the coil 63a is controlled by, for example, the controller 52 in accordance with the operation of the operation member 51 (see FIG. 1). Note that power supply to the coil 63a may be controlled by a control device different from the controller 52.
 例えば車両Cの停車・駐車時に、操作部材51がパーキングブレーキ機能をオンさせるように操作された場合には、コイル63aへの給電が遮断され、図9に示すように制動板61はスプリング62によって反負荷側プレート33Aに押し付けられる。これにより、制動板61が反負荷側プレート33Aに摩擦力を付与すると共に、制動板61の各突起64aが反負荷側プレート33Aの各貫通孔33aにはまり込み、回転電機1の回転がロックされる。一方、例えば車両Cの発進時に、操作部材51がパーキングブレーキ機能をオフさせるように操作された場合には、コイル63aへの給電が行われ、図8に示すように制動板61は電磁石63によって吸着されて反負荷側プレート33Aから離間される。これにより、制動板61は反負荷側プレート33Aの回転を妨げなくなり、回転電機1の制動が解除される。 For example, when the operation member 51 is operated to turn on the parking brake function when the vehicle C is stopped or parked, the power supply to the coil 63a is cut off, and the brake plate 61 is moved by the spring 62 as shown in FIG. It is pressed against the anti-load side plate 33A. As a result, the brake plate 61 applies a frictional force to the anti-load side plate 33A, and the protrusions 64a of the brake plate 61 fit into the through holes 33a of the anti-load side plate 33A, and the rotation of the rotating electrical machine 1 is locked. The On the other hand, for example, when the operation member 51 is operated to turn off the parking brake function when the vehicle C starts, power is supplied to the coil 63a, and the brake plate 61 is moved by the electromagnet 63 as shown in FIG. It is adsorbed and separated from the anti-load side plate 33A. Thereby, the braking plate 61 does not hinder the rotation of the anti-load side plate 33A, and the braking of the rotating electrical machine 1 is released.
 以上のように、回転電機1Aは、反負荷側プレート33Aと、制動板61と、駆動装置60によって、パーキングブレーキ機能を発揮する。つまり、第2実施形態では、これら反負荷側プレート33A、制動板61及び駆動装置60が「回転電機にパーキングブレーキ機能を持たせる手段」の一例に相当する。 As described above, the rotating electrical machine 1 </ b> A exhibits the parking brake function by the anti-load side plate 33 </ b> A, the brake plate 61, and the drive device 60. That is, in the second embodiment, the anti-load side plate 33A, the braking plate 61, and the driving device 60 correspond to an example of “means for giving the rotating electrical machine a parking brake function”.
  (2-2.第2実施形態の効果)
 以上のように、第2実施形態によれば、回転電機1Aに反負荷側プレート33Aと制動板61と駆動装置60を設けるという単純な構成で、パーキングブレーキ機能を備えた回転電機を実現できる。また、制動板61を磁性材料で構成するので、制動板61を反負荷側プレート33Aへ押し付ける際に回転子3の磁気吸引力を利用できる。これにより、駆動装置60の構成を簡素化できる。
(2-2. Effect of Second Embodiment)
As described above, according to the second embodiment, a rotating electrical machine having a parking brake function can be realized with a simple configuration in which the rotating electrical machine 1A is provided with the anti-load side plate 33A, the braking plate 61, and the driving device 60. Further, since the brake plate 61 is made of a magnetic material, the magnetic attraction force of the rotor 3 can be used when pressing the brake plate 61 against the anti-load side plate 33A. Thereby, the structure of the drive device 60 can be simplified.
  (2-3.第2実施形態の変形例)
 なお、制動板61を突起64aを有しない環状板とし、反負荷側プレート33Aとの単なる接触による摩擦力で回転子3に制動力を付与するようにしてもよい。
(2-3. Modification of Second Embodiment)
The braking plate 61 may be an annular plate having no protrusion 64a, and the braking force may be applied to the rotor 3 by a frictional force caused by simple contact with the anti-load side plate 33A.
 また、制動板61を回転子3に対して進退させる駆動装置60は、上述のスプリング62及び電磁石63に限定されるものではない。例えば、後述の第3実施形態のように制御モータ等を用いた駆動装置としてもよい。 Further, the driving device 60 that moves the braking plate 61 forward and backward with respect to the rotor 3 is not limited to the above-described spring 62 and electromagnet 63. For example, it is good also as a drive device using a control motor etc. like 3rd Embodiment mentioned later.
 また、第2実施形態では反負荷側プレート33A側に制動板61等を設ける構成としたが、負荷側プレート31A側に制動板61等を設けてもよいし、負荷側プレート31A及び反負荷側プレート33Aの両方に対して制動板61等を設けてもよい。 In the second embodiment, the brake plate 61 and the like are provided on the anti-load side plate 33A side. However, the brake plate 61 and the like may be provided on the load side plate 31A side, and the load side plate 31A and the anti load side may be provided. A brake plate 61 or the like may be provided for both of the plates 33A.
 また、第2実施形態において、例えば前述の第1実施形態の可変界磁機構50等のように、回転電機1Aの界磁磁束を可変させる機構を設けてもよい。これにより、第2実施形態の構成と前述のコギングトルクを利用したブレーキとを併用することが可能となり、パーキングブレーキ機能をさらに向上できる。 In the second embodiment, a mechanism for changing the field magnetic flux of the rotating electrical machine 1A may be provided, such as the variable field mechanism 50 of the first embodiment described above. Thereby, it becomes possible to use together the structure of 2nd Embodiment and the brake using the above-mentioned cogging torque, and can further improve a parking brake function.
 <3.第3実施形態>
 第3実施形態では、回転子3を機械的に制動して回転電機1Bにパーキングブレーキ機能を持たせる他の例を説明する。図11を用いて第3実施形態について説明する。
<3. Third Embodiment>
In the third embodiment, another example in which the rotor 3 is mechanically braked to give the rotating electrical machine 1B a parking brake function will be described. A third embodiment will be described with reference to FIG.
  (3-1.回転電機の構成)
 第3実施形態に係るパーキングブレーキシステム100は、前述の操作部材51と、回転電機1Bを有する。図11に示すように、回転電機1Bは、回転子3をシャフト34に固定する負荷側プレート31B及び反負荷側プレート33B(側板の一例に相当)を備える。また、回転電機1Bは、反負荷側プレート33Bに接触して回転子3に制動力を与える制動板71と、操作部材51の操作に応じて制動板71を回転子3に対して進退させる駆動装置70を備える。
(3-1. Configuration of rotating electrical machine)
The parking brake system 100 according to the third embodiment includes the operation member 51 described above and the rotating electrical machine 1B. As shown in FIG. 11, the rotating electrical machine 1 </ b> B includes a load side plate 31 </ b> B and an anti-load side plate 33 </ b> B (corresponding to an example of a side plate) that fix the rotor 3 to the shaft 34. The rotating electrical machine 1B is in contact with the anti-load side plate 33B and applies a braking force to the rotor 3, and a drive for moving the braking plate 71 forward and backward with respect to the rotor 3 according to the operation of the operation member 51. A device 70 is provided.
 制動板71は、例えば円弧状又は扇状の板部材であり、非磁性材料(例えばアルミ等)で構成される。なお、制動板71を磁性材料(例えば鉄)で構成してもよい。制動板71は、負荷側の表面に、反負荷側プレート33Bへの接触時に当該反負荷側プレート33Bに押し付けられる摩擦材71aを有する。 The brake plate 71 is, for example, an arc-shaped or fan-shaped plate member, and is made of a nonmagnetic material (for example, aluminum). The brake plate 71 may be made of a magnetic material (for example, iron). The brake plate 71 has a friction material 71a that is pressed against the anti-load side plate 33B on the load side surface when contacting the anti-load side plate 33B.
 駆動装置70は、フレーム17に設けられた送りめねじ72と、制動板71の外周側を支持するとともに送りめねじ72に歯合された送りおねじ73と、送りおねじ73を回転軸とする送りギヤ74と、送りギヤ74に歯合するウォームギヤ75と、ウォームギヤ75が取り付けられた制御モータ56を有する。また、駆動装置70は、制動板71の内周側を支持するととともにフレーム17から突出した軸部76と、軸部76の端部に設けられたつば部76aとフレーム17との間に設けられたスプリング77を有する。 The driving device 70 includes a feed screw 72 provided on the frame 17, a feed male screw 73 that supports the outer peripheral side of the brake plate 71 and meshed with the feed screw 72, and a feed male screw 73 as a rotation shaft. A feed gear 74, a worm gear 75 meshing with the feed gear 74, and a control motor 56 to which the worm gear 75 is attached. The driving device 70 is provided between the shaft portion 76 that supports the inner peripheral side of the brake plate 71 and protrudes from the frame 17, and a collar portion 76 a provided at an end portion of the shaft portion 76 and the frame 17. And a spring 77.
 車両の停車・駐車時には、操作部材51がパーキングブレーキ機能をオンさせるように操作された場合には、駆動装置70は次のように動作する。つまり、制御モータ56が作動してウォームギヤ75を回転させると、送りギヤ74が回転し、送りおねじ73が送りめねじ72に対して負荷側に移動し、制動板71が反負荷側プレート33に向けて移動する。これにより、摩擦材71aが反負荷側プレート33に押し付けられ、摩擦力により回転子3が制動される。一方、例えば車両Cの発進時に、操作部材51がパーキングブレーキ機能をオフさせるように操作された場合には、制御モータ56が開放され、スプリング77の付勢力により制動板71が反負荷側プレート33Bから離間し、回転子3の制動が解除される。なお、パーキングブレーキ機能をオフする際に、制御モータ56によりウォームギヤ75及び送りギヤ74をオンの場合と反対方向に回転させて、送りおねじ73を送りめねじ72に対して反負荷側に移動させてもよい。制御モータ56は、操作部材51(図1参照)の操作に応じて例えばコントローラ52によって制御される。なお、制御モータ56をコントローラ52とは別の制御装置によって制御してもよい。 When the vehicle is stopped and parked, if the operation member 51 is operated so as to turn on the parking brake function, the drive device 70 operates as follows. That is, when the control motor 56 is operated to rotate the worm gear 75, the feed gear 74 is rotated, the feed male screw 73 is moved to the load side with respect to the feed screw 72, and the brake plate 71 is moved to the anti-load side plate 33. Move towards Thereby, the friction material 71a is pressed against the anti-load side plate 33, and the rotor 3 is braked by the frictional force. On the other hand, for example, when the operation member 51 is operated so as to turn off the parking brake function when the vehicle C starts, the control motor 56 is opened, and the braking plate 71 is moved against the anti-load side plate 33B by the urging force of the spring 77. And the braking of the rotor 3 is released. When the parking brake function is turned off, the control motor 56 rotates the worm gear 75 and the feed gear 74 in the opposite direction to the on state, and the feed male screw 73 is moved to the opposite load side with respect to the feed screw 72. You may let them. The control motor 56 is controlled by, for example, the controller 52 in accordance with the operation of the operation member 51 (see FIG. 1). Note that the control motor 56 may be controlled by a control device different from the controller 52.
 以上のように、回転電機1Bは、反負荷側プレート33Bと、制動板71と、駆動装置70によって、パーキングブレーキ機能を発揮する。つまり、第3実施形態では、これら反負荷側プレート33B、制動板71及び駆動装置70が「回転電機にパーキングブレーキ機能を持たせる手段」の一例に相当する。 As described above, the rotating electrical machine 1 </ b> B exhibits the parking brake function by the anti-load side plate 33 </ b> B, the brake plate 71, and the drive device 70. That is, in the third embodiment, the anti-load side plate 33B, the brake plate 71, and the drive device 70 correspond to an example of “means for giving the rotating electrical machine a parking brake function”.
  (3-2.第3実施形態の効果)
 第3実施形態によれば、制御モータ56を用いて制動板71の押し付け力を任意の大きさに調整できるので、パーキングブレーキ機能のみでなく、車両Cの減速時等に使用されるブレーキ機能を備えた回転電機を実現できる。また、制動板71を非磁性材料(アルミ等)で構成するので、回転子3から離間した状態で制動板71に渦電流を発生させて制動力を発生させることができる。これにより、例えば急減速時等に上記渦電流による制動力を回生ブレーキの補助力として使用する等が可能となる。なお、制動板71を磁性材料で構成する場合には、制動板71を反負荷側プレート33Bへ押し付ける際に回転子3の磁気吸引力を利用できるので、駆動装置70の構成を簡素化できる。
(3-2. Effects of Third Embodiment)
According to the third embodiment, since the pressing force of the brake plate 71 can be adjusted to an arbitrary magnitude using the control motor 56, not only the parking brake function but also the brake function used when the vehicle C is decelerated, etc. The provided rotating electrical machine can be realized. Further, since the brake plate 71 is made of a nonmagnetic material (aluminum or the like), an eddy current can be generated in the brake plate 71 in a state of being separated from the rotor 3 to generate a braking force. As a result, for example, the braking force by the eddy current can be used as an auxiliary force for the regenerative brake at the time of sudden deceleration or the like. When the brake plate 71 is made of a magnetic material, the magnetic attraction force of the rotor 3 can be used when the brake plate 71 is pressed against the anti-load side plate 33B, so that the configuration of the drive device 70 can be simplified.
  (3-3.第3実施形態の変形例)
 なお、制動板61を突起64aを有しない環状板とし、反負荷側プレート33Aとの単なる接触による摩擦力で回転子3に制動力を付与するようにしてもよい。
(3-3. Modification of Third Embodiment)
The braking plate 61 may be an annular plate having no protrusion 64a, and the braking force may be applied to the rotor 3 by a frictional force caused by simple contact with the anti-load side plate 33A.
 また、制動板61を回転子3に対して進退させる駆動装置70は、上述の制御モータ等を用いた装置に限定されるものではない。例えば、前述の第2実施形態のように電磁石やスプリング等を用いた駆動装置としてもよい。 Further, the drive device 70 for moving the brake plate 61 forward and backward with respect to the rotor 3 is not limited to the device using the above-described control motor or the like. For example, it is good also as a drive device using an electromagnet, a spring, etc. like the above-mentioned 2nd Embodiment.
 また、第3実施形態では反負荷側プレート33B側に制動板71等を設ける構成としたが、負荷側プレート31B側に制動板71等を設けてもよいし、負荷側プレート31B及び反負荷側プレート33Bの両方に対して制動板71等を設けてもよい。 In the third embodiment, the brake plate 71 and the like are provided on the anti-load side plate 33B side. However, the brake plate 71 and the like may be provided on the load side plate 31B side, and the load side plate 31B and the anti load side may be provided. A brake plate 71 or the like may be provided for both of the plates 33B.
 また、第3実施形態において、例えば前述の第1実施形態の可変界磁機構50等のように、回転電機1Aの界磁磁束を可変させる機構を設けてもよい。これにより、第3実施形態の構成と前述のコギングトルクを利用したブレーキとを併用することが可能となり、パーキングブレーキ機能をさらに向上できる。 In the third embodiment, a mechanism for changing the field magnetic flux of the rotating electrical machine 1A may be provided, such as the variable field mechanism 50 of the first embodiment described above. Thereby, it becomes possible to use the structure of 3rd Embodiment and the brake using the above-mentioned cogging torque together, and can further improve a parking brake function.
 以上既に述べた以外にも、上記各実施形態による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above embodiments may be used in appropriate combination.
 その他、一々例示はしないが、上記各実施形態は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, each of the above-described embodiments is implemented with various modifications within a range not departing from the gist thereof.
 1      回転電機
 1A     回転電機
 1B     回転電機
 3      回転子
 12     固定子巻線
 13     固定子鉄心
 13b    スロット(巻線用空隙の一例)
 33A    反負荷側プレート(側板の一例、パーキングブレーキ機能を持たせる手段の一例)
 33B    反負荷側プレート(側板の一例、パーキングブレーキ機能を持たせる手段の一例)
 33a    貫通孔(凹部の一例)
 34     シャフト
 50     可変界磁機構(パーキングブレーキ機能を持たせる手段の一例)
 51     操作部材
 52     コントローラ(パーキングブレーキ機能を持たせる手段の一例)
 60     駆動装置(パーキングブレーキ機能を持たせる手段の一例)
 61     制動板(パーキングブレーキ機能を持たせる手段の一例)
 64a    突起
 70     駆動装置(パーキングブレーキ機能を持たせる手段の一例)
 71     制御板(パーキングブレーキ機能を持たせる手段の一例)
 71a    摩擦材
 100    パーキングブレーキシステム(車両用ブレーキシステムの一例)
 C      車両
DESCRIPTION OF SYMBOLS 1 Rotating electrical machine 1A Rotating electrical machine 1B Rotating electrical machine 3 Rotor 12 Stator winding 13 Stator core 13b Slot (an example of a gap for winding)
33A Anti-load side plate (an example of a side plate, an example of means for providing a parking brake function)
33B Anti-load side plate (an example of a side plate, an example of means for providing a parking brake function)
33a Through hole (an example of a recess)
34 Shaft 50 Variable field mechanism (an example of means for providing a parking brake function)
51 Operation member 52 Controller (an example of means for providing a parking brake function)
60 Drive device (an example of means for providing a parking brake function)
61 Brake plate (an example of means for providing a parking brake function)
64a protrusion 70 driving device (an example of means for providing a parking brake function)
71 Control board (an example of means for providing a parking brake function)
71a Friction material 100 Parking brake system (an example of a vehicle brake system)
C vehicle

Claims (8)

  1.  回転電機を用いて走行する機能を備えた車両に搭載される車両用ブレーキシステムであって、
     前記回転電機と、
     前記回転電機にパーキングブレーキ機能を持たせる手段と、
    を有することを特徴とする車両用ブレーキシステム。
    A vehicle brake system mounted on a vehicle having a function of traveling using a rotating electric machine,
    The rotating electrical machine;
    Means for giving the rotating electrical machine a parking brake function;
    A vehicle brake system characterized by comprising:
  2.  前記回転電機のパーキングブレーキ機能をオン又はオフさせるために操作される操作部材をさらに有し、
     前記回転電機にパーキングブレーキ機能を持たせる手段は、
     前記回転電機の界磁磁束を可変させる可変界磁機構と、
     前記操作部材が前記パーキングブレーキ機能をオンさせるように操作された場合に、前記回転電機の界磁磁束を最大にするように前記可変界磁機構を制御するコントローラと、を有する
    ことを特徴とする請求項1に記載の車両用ブレーキシステム。
    An operation member operated to turn on or off the parking brake function of the rotating electrical machine;
    Means for giving the rotating electrical machine a parking brake function is as follows.
    A variable field mechanism for varying the field magnetic flux of the rotating electrical machine;
    And a controller that controls the variable field mechanism so as to maximize the field magnetic flux of the rotating electrical machine when the operation member is operated to turn on the parking brake function. The vehicle brake system according to claim 1.
  3.  前記回転電機は、
     固定子巻線が収容される巻線用空隙が径方向内側に向けて開口した固定子鉄心を有する
    ことを特徴とする請求項1又は2に記載の車両用ブレーキシステム。
    The rotating electric machine is
    The vehicular brake system according to claim 1 or 2, wherein a winding gap in which the stator winding is accommodated has a stator core that is opened radially inward.
  4.  前記回転電機のパーキングブレーキ機能をオン又はオフさせるために操作される操作部材をさらに有し、
     前記回転電機にパーキングブレーキ機能を持たせる手段は、
     前記回転電機の回転子の少なくとも軸方向一端側に配置され、前記回転子をシャフトに固定する側板と、
     軸方向に移動可能に配置され、前記側板に接触して制動力を付与するように構成された制動板と、
     前記操作部材の操作に応じて前記制動板を前記回転子に対して進退させるように構成された駆動装置と、
    をさらに有することを特徴とする請求項1乃至3のいずれか1項に記載の車両用ブレーキシステム。
    An operation member operated to turn on or off the parking brake function of the rotating electrical machine;
    Means for giving the rotating electrical machine a parking brake function is as follows.
    A side plate disposed on at least one axial end of the rotor of the rotating electrical machine, and fixing the rotor to a shaft;
    A braking plate arranged to be movable in the axial direction and configured to apply a braking force in contact with the side plate;
    A drive device configured to move the brake plate forward and backward with respect to the rotor in response to an operation of the operation member;
    The vehicle brake system according to any one of claims 1 to 3, further comprising:
  5.  前記側板には凹部が形成されており、
     前記制動板は、
     前記側板への接触時に前記凹部にはまり込む突起を有する
    ことを特徴とする請求項4に記載の車両用ブレーキシステム。
    The side plate has a recess,
    The braking plate is
    The vehicle brake system according to claim 4, further comprising a protrusion that fits into the concave portion when contacting the side plate.
  6.  前記制動板は、
     前記側板への接触時に前記側板に押し付けられる摩擦材を有する
    ことを特徴とする請求項4に記載の車両用ブレーキシステム。
    The braking plate is
    The vehicle brake system according to claim 4, further comprising a friction material that is pressed against the side plate when contacting the side plate.
  7.  請求項1乃至6のいずれか1項に記載の車両用ブレーキシステムに使用される
    ことを特徴とする回転電機。
    A rotating electrical machine used in the vehicle brake system according to any one of claims 1 to 6.
  8.  請求項1乃至6のいずれか1項に記載の車両用ブレーキシステムを備える
    ことを特徴とする車両。
    A vehicle comprising the vehicle brake system according to any one of claims 1 to 6.
PCT/JP2014/071198 2014-08-11 2014-08-11 Vehicle braking system, rotating electrical machine, and vehicle WO2016024319A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071198 WO2016024319A1 (en) 2014-08-11 2014-08-11 Vehicle braking system, rotating electrical machine, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071198 WO2016024319A1 (en) 2014-08-11 2014-08-11 Vehicle braking system, rotating electrical machine, and vehicle

Publications (1)

Publication Number Publication Date
WO2016024319A1 true WO2016024319A1 (en) 2016-02-18

Family

ID=55303964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071198 WO2016024319A1 (en) 2014-08-11 2014-08-11 Vehicle braking system, rotating electrical machine, and vehicle

Country Status (1)

Country Link
WO (1) WO2016024319A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828624A (en) * 2019-04-17 2020-10-27 本田技研工业株式会社 Parking device
JP2021008912A (en) * 2019-07-01 2021-01-28 シナノケンシ株式会社 Motor with brake

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109696A (en) * 1995-10-23 1997-04-28 Honda Motor Co Ltd Wheel motor unit and motor-operated vehicle
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
JP2012019642A (en) * 2010-07-09 2012-01-26 Hitachi Ltd Wind turbine generator system
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2013135532A (en) * 2011-12-26 2013-07-08 Aisin Seiki Co Ltd Braking device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109696A (en) * 1995-10-23 1997-04-28 Honda Motor Co Ltd Wheel motor unit and motor-operated vehicle
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
JP2012019642A (en) * 2010-07-09 2012-01-26 Hitachi Ltd Wind turbine generator system
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2013135532A (en) * 2011-12-26 2013-07-08 Aisin Seiki Co Ltd Braking device for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828624A (en) * 2019-04-17 2020-10-27 本田技研工业株式会社 Parking device
JP2020175739A (en) * 2019-04-17 2020-10-29 本田技研工業株式会社 Parking device
JP2021008912A (en) * 2019-07-01 2021-01-28 シナノケンシ株式会社 Motor with brake
US11545872B2 (en) 2019-07-01 2023-01-03 Shinano Kenshi Kabushiki Kaisha Motor with brake

Similar Documents

Publication Publication Date Title
WO2015087604A1 (en) Axial gap motor
US20140015382A1 (en) In-wheel motor and in-wheel driving device
WO2007072622A1 (en) Electric motor
JP2005261024A (en) Permanent magnet rotating electric machine and electric vehicle using it
KR101724787B1 (en) In wheel motor system
CN101779366A (en) Axial gap type motor
JP3711323B2 (en) AC rotating electric machine for vehicles
JP2008271640A (en) Axial gap motor
JP2010076752A (en) Motor device
JP5323592B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
JP2015070765A (en) Rotary electric machine
US20130187501A1 (en) Electric motor assembly with electric phasing of rotor segments to reduce back electromotive force
JP5790264B2 (en) Hub bearing and in-wheel motor
WO2016024319A1 (en) Vehicle braking system, rotating electrical machine, and vehicle
JP7124686B2 (en) disc brake device
JP4500843B2 (en) Axial gap type motor
JP6673142B2 (en) Rotary drive device and shift-by-wire system using the same
JP2014177265A (en) Drive device
JP6779673B2 (en) Electric linear actuator
US20060267425A1 (en) Traction motor with disc brake rotor
JP4960749B2 (en) Axial gap type motor
WO2015033776A1 (en) Vehicle control device
JP5017045B2 (en) Axial gap type motor
JP2010057209A (en) Variable field motor
JP2007221854A (en) Stator fixing structure and electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14899602

Country of ref document: EP

Kind code of ref document: A1