WO2016021585A1 - 端末装置、集積回路、および、通信方法 - Google Patents

端末装置、集積回路、および、通信方法 Download PDF

Info

Publication number
WO2016021585A1
WO2016021585A1 PCT/JP2015/072056 JP2015072056W WO2016021585A1 WO 2016021585 A1 WO2016021585 A1 WO 2016021585A1 JP 2015072056 W JP2015072056 W JP 2015072056W WO 2016021585 A1 WO2016021585 A1 WO 2016021585A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
terminal device
unit
cell
base station
Prior art date
Application number
PCT/JP2015/072056
Other languages
English (en)
French (fr)
Inventor
翔一 鈴木
立志 相羽
克成 上村
一成 横枕
高橋 宏樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP15829337.3A priority Critical patent/EP3179822B1/en
Priority to US15/500,983 priority patent/US10075887B2/en
Priority to CN201580041843.9A priority patent/CN106576396B/zh
Priority to JP2016540240A priority patent/JP6635267B2/ja
Publication of WO2016021585A1 publication Critical patent/WO2016021585A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/033Reselecting a link using a direct mode connection in pre-organised networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/23Manipulation of direct-mode connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • H04W36/00692Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using simultaneous multiple data streams, e.g. cooperative multipoint [CoMP], carrier aggregation [CA] or multiple input multiple output [MIMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/249Reselection being triggered by specific parameters according to timing information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a terminal device, an integrated circuit, and a communication method.
  • This application claims priority based on Japanese Patent Application No. 2014-159392 filed in Japan on August 5, 2014, the contents of which are incorporated herein by reference.
  • EUTRA Cellular mobile communication radio access method
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • 3GPP Third Generation Partnership Project
  • EUTRA and EUTRAN are also referred to as LTE (Long Term Term Evolution).
  • a base station apparatus is also called eNodeB (evolvedvolveNodeB), and a terminal device is also called UE (UserUEEquipment).
  • LTE is a cellular communication system in which a plurality of areas covered by a base station apparatus are arranged in a cellular shape.
  • a single base station apparatus may manage a plurality of cells.
  • ProSe Proximity based Services
  • ProSe discovery is a process of identifying that a terminal device is in proximity to other terminal devices using EUTRA (in proximity).
  • ProSe communication is communication between two adjacent terminals using an EUTRAN communication path established between the two terminal devices. For example, the communication path may be established directly between terminal devices.
  • Each of ProSe discovery and ProSe communication is also referred to as D2D (Device-to-Device) discovery and D2D communication.
  • ProSe discovery and ProSe communication are collectively referred to as ProSe.
  • D2D discovery and D2D communication are collectively referred to as D2D.
  • the communication path is also referred to as a link.
  • Non-Patent Document 1 a subset of resource blocks are reserved for D2D, a network sets a set of D2D resources, and a terminal device is allowed to transmit D2D signals in the set resources It is described.
  • An object of the present invention is to provide a terminal device capable of efficiently performing D2D, an integrated circuit mounted on the terminal device, and a communication method used for the terminal device.
  • One aspect of the present invention is a terminal device configured to be handed over from a source cell to a target cell, wherein the source cell receives first information indicating a frequency of the target cell, and the target cell And a resource pool indicated by the system information received in the target cell when the handover from the source cell to the target cell fails.
  • a transmission unit configured to transmit the first communication using a resource included in the first communication, wherein the first communication is a communication in which the terminal device and another terminal device communicate directly with each other. Mode.
  • a second aspect of the present invention is an integrated circuit mounted on a terminal device configured to be handed over from a source cell to a target cell, wherein the source cell indicates the frequency of the target cell.
  • the function of receiving the information of 1 the function of receiving the system information related to the first communication in the target cell, and the received in the target cell when the handover from the source cell to the target cell fails.
  • the 3rd aspect of this invention is a communication method used for the terminal device comprised so that it may hand over from the source cell corresponding to a source base station apparatus to the target cell corresponding to a target base station apparatus, Receiving first information indicating the frequency of the target cell generated by the target base station device and transferred by the source base station device, receiving system information relating to first communication in the target cell, and When the handover from the source cell to the target cell fails, the first communication is transmitted using resources included in the resource pool indicated by the system information received from the target cell, 1 communication is communication in which the terminal device and other terminal devices communicate directly with each other. It is a mode.
  • the terminal device can efficiently perform D2D.
  • one or a plurality of cells are set in the terminal device.
  • a technique in which a terminal device communicates via a plurality of cells is referred to as cell aggregation or carrier aggregation.
  • the present invention may be applied to each of a plurality of cells set for a terminal device. Further, the present invention may be applied to some of the plurality of set cells.
  • a cell set in the terminal device is referred to as a serving cell.
  • the serving cell is used for EUTRAN communication.
  • a cell set for D2D is referred to as a D2D cell.
  • the D2D cell may be a serving cell.
  • the D2D cell may be a cell other than the serving cell.
  • the set plurality of serving cells include one primary cell and one or more secondary cells.
  • the primary cell is a serving cell in which an initial connection establishment (initial connection establishment) procedure has been performed, a serving cell that has initiated a connection re-establishment procedure, or a cell designated as a primary cell in a handover procedure.
  • a secondary cell may be set when an RRC (Radio Resource Control) connection is established or later.
  • a TDD (Time Division Duplex) method or an FDD (Frequency Division Duplex) method may be applied to all of a plurality of cells.
  • cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated.
  • FIG. 1 is a conceptual diagram of the wireless communication system of the present embodiment.
  • the radio communication system includes terminal apparatuses 1A to 1C and a base station apparatus 3.
  • the terminal devices 1A to 1C are referred to as the terminal device 1.
  • the serving cell 4 indicates an area (range) covered by the base station device 3 (LTE, EUTRAN).
  • the terminal device 1A is in-coverage of EUTRAN.
  • the terminal device 1B and the terminal device 1C are out-of-coverage of EUTRAN.
  • the terminal device 1 within the EUTRAN range may include the terminal device 1 with which a link with the EUTRAN is established.
  • the terminal device 1 that is outside the range of EUTRAN may include the terminal device 1 in which a link with EUTRAN is not established and / or the terminal device 1 in the RRC_IDLE state.
  • the uplink 5 is a link from the terminal device 1 to the base station device 3.
  • the downlink 7 is a link from the base station device 3 to the terminal device 1.
  • the uplink 5 and the downlink 7 are also referred to as a cellular link or a cellular communication path. Communication between the terminal device 1 and the base station device 3 is also referred to as cellular communication or communication with EUTRAN.
  • the D2D link 9 is a link between the terminal devices 1.
  • the D2D link 9 is also referred to as a D2D communication path, a ProSe link, or a ProSe communication path.
  • D2D discovery is a process / procedure that specifies that a terminal device 1 is in proximity to another terminal device 1 using EUTRA (in proximity).
  • the D2D communication is communication between a plurality of adjacent terminal devices 1 using an EUTRAN communication path established between the plurality of terminal devices 1. For example, the communication path may be established directly between the terminal devices 1.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the D2D physical channel and the D2D physical signal are collectively referred to as a D2D signal.
  • the physical channel is used to transmit information output from an upper layer. Physical signals are not used to transmit information output from higher layers, but are used by the physical layer.
  • the following D2D physical channels are used in the wireless communication of the D2D link 9 between the terminal devices 1.
  • ⁇ PD2DSCH Physical Device to Device Synchronization Channel
  • ⁇ PD2DDCH Physical Device to Device Data Channel
  • the PD2DSCH is used to transmit information related to synchronization.
  • the information related to synchronization includes a D2D frame number or information indicating SFN (System Frame Number).
  • PD2DDCH is used to transmit D2D data (ProCommunication Shared Channel: PSCH) and D2DSA (Device to Device Scheduling Assignment). D2D data and D2DSA are not mapped to the same PD2DSCH. D2DSA is used for scheduling of PD2DSCH used for transmission of D2D data.
  • the D2DSA includes information indicating a resource of the PD2DSCH used for transmitting D2D data, information indicating a destination identifier (destination identity), information indicating a source identifier (source identity), and the like.
  • the D2D data and D2DSA corresponding to the D2D discovery are referred to as discovery signals.
  • the D2D data and D2DSA corresponding to the D2D communication are referred to as communication signals.
  • the PD2DSCH may be PUSCH (Physical Uplink Shared Shared Channel). That is, PUSCH may be used for transmission of D2D data and D2DSA.
  • PUSCH used for D2D is referred to as PD2DSCH.
  • PUSCH used for communication with EUTRAN is simply referred to as PUSCH. Details of PUSCH will be described later.
  • D2D physical signals are used in D2D wireless communication.
  • D2D Synchronization Signal D2DSS
  • D2D Reference Signal D2D Reference Signal
  • D2DSS is used for synchronization in the D2D link.
  • D2DSS includes PD2DSS (Primary D2D Synchronization Signal) and SD2DSS (Secondary D2D synchronization Signal).
  • D2DSS is related to the transmission of PD2DSCH.
  • D2DSS may be time multiplexed with PD2DSCH.
  • the terminal apparatus 1 may use D2DSS to perform PD2DSCH propagation path correction.
  • D2DRS is related to transmission of PD2DSCH or PD2DDCH.
  • D2DRS may be time multiplexed with PUSCH or PUCCH.
  • the terminal device 1 may use D2DRS in order to perform PD2DSCH propagation path correction.
  • the terminal device 1 can operate in two modes (mode 1 and mode 2) for resource allocation of D2D communication.
  • EUTRAN base station apparatus 3 schedules accurate resources used by terminal apparatus 1 for transmission of communication signals (D2D data and D2DSA).
  • the terminal device 1 selects a resource from the resource pool for transmission of communication signals (D2D data and D2DSA).
  • a resource pool is a set of resources.
  • the resource pool for mode 2 may be set / restricted semi-statically by EUTRAN (base station apparatus 3). Alternatively, the resource pool for mode 2 may be pre-configured.
  • the terminal device 1 having the capability of D2D communication and in-coverage of the EUTRAN may support mode 1 and mode 2.
  • the terminal device 1 out-of-coverage of EUTRAN having the capability of D2D communication may support only mode 2.
  • a preset setting (for example, a resource pool for mode 2) is used by the terminal device 1 outside the EUTRAN range.
  • settings other than the preset settings are used by the terminal device 1 within the EUTRAN range.
  • settings other than those set in advance in the present embodiment are effective only in a cell or a group of cells.
  • Type 1 and Type 2 Two types (Type 1 and Type 2) are defined as D2D discovery procedures.
  • the type 1 D2D discovery procedure is a D2D discovery procedure in which resources for discovery signals are not individually assigned to the terminal device 1. That is, in the type 1 D2D discovery procedure, a resource for a discovery signal may be allocated to all terminal devices 1 or a group of terminal devices 1.
  • the type 2 D2D discovery procedure is a D2D discovery procedure in which resources for discovery signals are individually assigned to the terminal device 1.
  • the discovery procedure in which resources are assigned to each individual transmission instance of the discovery signal is referred to as a type 2A discovery procedure.
  • a type 2 discovery procedure in which resources are assigned semi-persistently for transmission of discovery signals is referred to as a type 2B discovery procedure.
  • uplink physical channels are used in uplink wireless communication.
  • -PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • PUCCH is a physical channel used for transmitting uplink control information (Uplink Control Information: UCI).
  • UCI Uplink Control Information
  • PUSCH is a physical channel used for transmitting uplink data (Uplink-Shared Channel: UL-SCH) and / or HARQ-ACK and / or channel state information.
  • uplink data Uplink-Shared Channel: UL-SCH
  • HARQ-ACK ACK-ACK
  • PRACH is a physical channel used to transmit a random access preamble.
  • the PRACH is used in an initial connection establishment (initial connection establishment) procedure, a handover procedure, and a connection reestablishment (connection re-establishment) procedure.
  • uplink Physical signals are used in uplink wireless communication.
  • UL RS Uplink Reference Signal
  • DMRS Demodulation Reference Signal
  • SRS Sounding Reference Signal
  • DMRS is related to transmission of PUSCH or PUCCH. DMRS is time-multiplexed with PUSCH or PUCCH. The base station apparatus 3 uses DMRS to perform propagation channel correction for PUSCH or PUCCH. SRS is not related to PUSCH or PUCCH transmission. The base station apparatus 3 uses SRS to measure the uplink channel state.
  • the following downlink physical channels are used in downlink wireless communication.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PMCH Physical Multicast Channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used in the terminal device 1.
  • MIB includes information indicating SFN.
  • SFN system frame number
  • MIB is system information.
  • PCFICH is used for transmitting information indicating a region (OFDM symbol) used for transmission of PDCCH.
  • PHICH is used to transmit an HARQ indicator indicating ACK (ACKnowledgement) or NACK (Negative ACKnowledgement) for uplink data (Uplink Shared Channel: UL-SCH) received by the base station apparatus 3.
  • HARQ indicator indicating ACK (ACKnowledgement) or NACK (Negative ACKnowledgement) for uplink data (Uplink Shared Channel: UL-SCH) received by the base station apparatus 3.
  • the PDCCH and EPDCCH are used to transmit downlink control information (Downlink Control Information: DCI).
  • DCI Downlink Control Information
  • the downlink control information is also referred to as a DCI format.
  • the downlink control information includes a downlink grant (downlink grant), an uplink grant (uplink grant), and a D2D grant (D2D grant).
  • the downlink grant is also referred to as downlink assignment (downlink allocation) or downlink assignment (downlink allocation).
  • the uplink grant is used for scheduling a single PUSCH within a single cell.
  • the uplink grant is used for scheduling a single PUSCH in a certain subframe.
  • the downlink grant is used for scheduling a single PDSCH within a single cell.
  • the downlink grant is used for scheduling the PDSCH in the same subframe as the subframe in which the downlink grant is transmitted.
  • the D2D grant is used for scheduling of PD2DDCH related to mode 1 of D2D communication.
  • CRC Cyclic Redundancy Check
  • CRC parity bits are scrambled by C-RNTI (Cell-Radio Network Temporary Identifier), SPS C-RNTI (Semi-Persistent Scheduling Cell-Radio Network Network Temporary Identifier), or D2D-RNTI (D2D-Radio Network Temporary Identifier).
  • C-RNTI, SPS C-RNTI, and D2D-RNTI are identifiers for identifying the terminal device 1 in the cell.
  • the C-RNTI is used to control PDSCH resources or PUSCH resources in a single subframe.
  • the SPS C-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • D2D-RNTI is used for transmission of D2D grant. That is, D2D-RNTI is used for scheduling of PD2DSCH for mode 1 D2D communication.
  • PDSCH is used to transmit downlink data (Downlink Shared Channel: DL-SCH).
  • PMCH is used to transmit multicast data (Multicast Channel: MCH).
  • the synchronization signal is used for the terminal device 1 to synchronize the downlink frequency domain and time domain.
  • the synchronization signal is arranged in subframes 0 and 5 in the radio frame.
  • the downlink reference signal is used for the terminal device 1 to correct the propagation path of the downlink physical channel.
  • the downlink reference signal is used for the terminal device 1 to calculate downlink channel state information.
  • the downlink reference signal is used for the terminal device 1 to measure the geographical position of the own device.
  • downlink reference signals the following five types are used.
  • -CRS Cell-specific Reference Signal
  • URS UE-specific Reference Signal
  • PDSCH PDSCH
  • DMRS Demodulation Reference Signal
  • EPDCCH Non-Zero Power Chanel State Information-Reference Signal
  • ZP CSI-RS Zero Power Chanel State Information-Reference Signal
  • MBSFN RS Multimedia Broadcast and Multicast Service over Single Frequency Network Reference signal
  • CRS is transmitted in the entire bandwidth of the subframe.
  • CRS is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH.
  • the CRS may be used for the terminal device 1 to calculate downlink channel state information.
  • PBCH / PDCCH / PHICH / PCFICH is transmitted through an antenna port used for CRS transmission.
  • URS related to PDSCH is transmitted in a subframe and a band used for transmission of PDSCH related to URS.
  • URS is used to demodulate the PDSCH with which the URS is associated.
  • the PDSCH is transmitted through an antenna port used for CRS transmission or an antenna port used for URS transmission.
  • DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS.
  • DMRS is used to demodulate the EPDCCH with which DMRS is associated.
  • the EPDCCH is transmitted through an antenna port used for DMRS transmission.
  • NZP CSI-RS is transmitted in the set subframe.
  • the resource for transmitting the NZP CSI-RS is set by the base station apparatus 3.
  • the NZP CSI-RS is used by the terminal device 1 to calculate downlink channel state information.
  • the terminal device 1 performs signal measurement (channel measurement) using NZP CSI-RS.
  • ZP CSI-RS resources are set by the base station device 3.
  • the base station apparatus 3 transmits ZP CSI-RS with zero output. That is, the base station apparatus 3 does not transmit ZP CSI-RS.
  • the base station apparatus 3 does not transmit PDSCH and EPDCCH in the resource set by ZP CSI-RS.
  • the terminal device 1 can measure interference in a resource supported by NZP CSI-RS in a certain cell.
  • the MBSFN RS is transmitted in the entire band of the subframe used for PMCH transmission.
  • the MBSFN RS is used for PMCH demodulation.
  • PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
  • PSCH, BCH, MCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in a medium access control (Medium Access Control: MAC) layer is referred to as a transport channel.
  • a unit of data in a transport channel used in the MAC layer is also referred to as a transport block (transport block: TB) or a MAC PDU (Protocol Data Unit).
  • transport block transport block: TB
  • MAC PDU Protocol Data Unit
  • HARQ HybridbrAutomatic Repeat reQuest
  • the transport block is a unit of data that the MAC layer delivers to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process is performed for each code word.
  • LTE supports two radio frame structures.
  • the two radio frame structures are frame structure type 1 and frame structure type 2.
  • Frame structure type 1 is applicable to FDD.
  • Frame structure type 2 is applicable to TDD.
  • FIG. 2 is a diagram illustrating a schematic configuration of a radio frame according to the present embodiment.
  • the horizontal axis is a time axis.
  • Each of the type 1 and type 2 radio frames is 10 ms long and is defined by 10 subframes.
  • Each subframe is 1 ms long and is defined by two consecutive slots.
  • Each of the slots is 0.5 ms long.
  • the i-th subframe in the radio frame is composed of a (2 ⁇ i) th slot and a (2 ⁇ i + 1) th slot.
  • the downlink subframe is a subframe reserved for downlink transmission.
  • the uplink subframe is a subframe reserved for uplink transmission.
  • the special subframe is composed of three fields. The three fields are DwPTS (Downlink Pilot Time Slot), GP (Guard Period), and UpPTS (Uplink Pilot Time Slot). The total length of DwPTS, GP, and UpPTS is 1 ms.
  • DwPTS is a field reserved for downlink transmission.
  • UpPTS is a field reserved for uplink transmission.
  • GP is a field in which downlink transmission and uplink transmission are not performed. Note that the special subframe may be composed of only DwPTS and GP, or may be composed of only GP and UpPTS.
  • the frame structure type 2 radio frame is composed of at least a downlink subframe, an uplink subframe, and a special subframe.
  • FIG. 3 is a diagram showing the configuration of the slot according to the present embodiment.
  • normal CP Cyclic Prefix
  • SC-FDMA symbol The physical signal or physical channel transmitted in each of the slots is represented by a resource grid.
  • the horizontal axis is a time axis
  • the vertical axis is a frequency axis.
  • the resource grid is defined by a plurality of subcarriers and a plurality of OFDM symbols.
  • the resource grid is defined by a plurality of subcarriers and a plurality of SC-FDMA symbols.
  • a resource grid may be defined by multiple subcarriers and multiple SC-FDMA symbols.
  • the number of subcarriers constituting one slot depends on the cell bandwidth.
  • the number of OFDM symbols or SC-FDMA symbols constituting one slot is seven.
  • Each element in the resource grid is referred to as a resource element.
  • the resource element is identified using a subcarrier number and an OFDM symbol or SC-FDMA symbol number.
  • the resource block is used to express mapping of a certain physical channel (such as PDSCH or PUSCH) to a resource element.
  • resource blocks virtual resource blocks and physical resource blocks are defined.
  • a physical channel is first mapped to a virtual resource block. Thereafter, the virtual resource block is mapped to the physical resource block.
  • One physical resource block is defined by 7 consecutive OFDM symbols or SC-FDMA symbols in the time domain and 12 consecutive subcarriers in the frequency domain. Therefore, one physical resource block is composed of (7 ⁇ 12) resource elements.
  • One physical resource block corresponds to one slot in the time domain and corresponds to 180 kHz in the frequency domain. Physical resource blocks are numbered from 0 in the frequency domain.
  • extended CP may be applied to OFDM symbols or SC-FDMA symbols.
  • the number of OFDM symbols or SC-FDMA symbols constituting one slot is seven.
  • FIG. 4 is a diagram showing the D2D resource of the present embodiment.
  • Resources reserved for D2D are referred to as D2D resources.
  • the horizontal axis is a time axis
  • the vertical axis is a frequency axis.
  • D indicates a downlink subframe
  • S indicates a special subframe
  • U indicates an uplink subframe.
  • One FDD cell corresponds to one downlink carrier and one uplink carrier.
  • One TDD cell corresponds to one TDD carrier.
  • the downlink signal used for the cellular communication is arranged in the subframe of the downlink carrier, and the uplink signal used for the cellular communication is arranged in the subframe of the uplink carrier.
  • the D2D signal to be used is arranged in a subframe of the uplink carrier.
  • a carrier corresponding to a cell in the downlink is referred to as a downlink component carrier.
  • a carrier corresponding to a cell in the uplink is referred to as an uplink component carrier.
  • the TDD carrier is a downlink component carrier and an uplink component carrier.
  • downlink signals used for cellular communication are arranged in downlink subframes and DwPTS
  • uplink signals used for cellular communication are arranged in uplink subframes and UpPTS
  • D2D The D2D signal to be used is arranged in the uplink subframe and the UpPTS.
  • the base station apparatus 3 controls D2D resources reserved for D2D.
  • the base station apparatus 3 reserves a part of the uplink carrier resources of the FDD cell as D2D resources.
  • the base station apparatus 3 reserves part of the uplink subframe of the TDD cell and the UpPTS resource as the D2D resource.
  • the base station apparatus 3 may transmit an upper layer signal including information indicating a set (pool) of D2D resources reserved in each cell to the terminal apparatus 1.
  • the terminal device 1 sets a parameter D2D-ResourceConfig indicating the D2D resource reserved in each of the cells based on the upper layer signal received from the base station device 3. That is, the base station apparatus 3 sets the parameter D2D-ResourceConfig indicating the D2D resource reserved in each cell to the terminal apparatus 1 via the upper layer signal.
  • PD2DSCH and D2DSS may be transmitted using 62 subcarriers around the center frequency of the uplink component carrier.
  • the base station apparatus 3 may set one or more parameters indicating one or more sets of resources reserved for D2D in the terminal apparatus 1 via higher layer signals.
  • the set of resources for PD2DSCH and D2DSS and the set of resources reserved for PD2DDCH may be set individually.
  • a set of resources for each of D2D discovery type 1, D2D discovery type 2, D2D communication mode 1, and D2D communication mode 2 may be individually set.
  • the resource set for D2D transmission and reception may be set individually.
  • a set of resources for PD2DDCH related to transmission of D2D data and a set of resources for PD2DDCH related to transmission of D2DSA may be individually set.
  • terminal device 1 From the viewpoint of the terminal device 1, some of the resource sets described above may be transparent. For example, since PD2DDCH for D2D data of D2D communication is scheduled by D2DSA, terminal device 1 does not have to set a set of resources for receiving / monitoring PD2DDCH related to D2D data of D2D communication.
  • the base station apparatus 3 may notify the terminal apparatus 1 whether or not each of the D2D resource sets is a set of resources for PS. Further, the terminal device 1 may be authenticated for D2D for PS via EUTRAN. That is, the terminal device 1 in which D2D for PS is not authenticated cannot perform D2D with a set of resources for PS.
  • D2D communication and D2D discovery may be individually authenticated. Also, each of D2D discovery type 1, D2D discovery type 2, D2D communication mode 1, and D2D communication mode 2 may be individually authenticated.
  • the terminal device 1 for which D2D communication is authenticated is simply referred to as a terminal device 1.
  • the base station device 3 controls the uplink and downlink CP lengths.
  • the base station device 3 may individually control the uplink and downlink CP lengths for each serving cell.
  • the terminal device 1 detects the CP length of the downlink signal for the serving cell, excluding the PMCH and the MBSFN RS, based on the synchronization signal and / or PBCH for the serving cell. Extended CP is always applied to PMCH and MBSFN RS.
  • the base station apparatus 3 transmits an upper layer signal including information indicating the CP length of the uplink signal in the serving cell to the terminal apparatus 1.
  • the terminal device 1 sets a parameter UL-CyclicPrefixLength indicating the uplink CP length in the serving cell based on the upper layer signal received from the base station device 3. That is, the base station apparatus 3 sets the parameter UL-CyclicPrefixLength indicating the uplink CP length in the serving cell to the terminal apparatus 1 via the higher layer signal.
  • the base station apparatus 3 may transmit an upper layer signal including information indicating the CP length for D2D to the terminal apparatus 1.
  • the terminal device 1 may set the parameter D2D-CyclicPrefixLength indicating the CP length for D2D based on the upper layer signal received from the base station device 3. That is, the base station apparatus 3 may set the parameter D2D-CyclicPrefixLength indicating the CP length for D2D in the terminal apparatus 1 via the higher layer signal.
  • the CP length of PD2DSCH and D2DSS and the CP length of PD2DDCH may be set individually.
  • the CP length for each of D2D discovery type 1, D2D discovery type 2, D2D communication mode 1, and D2D communication mode 2 may be individually set.
  • the CP length for PD2DDCH related to transmission of D2D data and the CP length of PD2DDCH related to transmission of D2DSA may be set individually.
  • the CP lengths of PD2DSCH and D2DSS are defined in advance by specifications and may be fixed.
  • the CP length of the PD2DDCH related to the transmission of D2DSA is defined in advance in the specification and may be fixed.
  • the terminal device 1 outside the EUTRAN range may set mode 2 for D2D communication. Terminal devices 1 outside the EUTRAN range should not set mode 1 for D2D communication.
  • the terminal device 1 transmits, to the terminal device 1 within the EUTRAN range, information indicating D2D communication mode 1 or D2D communication mode 2 via a higher layer (RRC layer) signal to the base station You may receive from the apparatus 3.
  • RRC layer higher layer
  • the terminal device 1 within the range of EUTRAN may set D2D communication mode 1 or D2D communication mode 2 based on the information received from the base station device 3.
  • Information indicating the mode 1 of D2D communication or the mode 2 of D2D communication is included in the RRCConnectionReconfiguration message which is a message of the RRC layer.
  • the terminal device 1 within the EUTRAN range may set the D2D communication mode in the target cell based on the handover command received from the base station device 3.
  • the handover command is an RRCConnectionReconfiguration message including mobilityControlInfo.
  • the mobilityControlInfo includes information regarding the frequency of the target cell, information regarding the cell identifier of the target cell, and the like.
  • the RRCConnectionReconfiguration message including mobilityControlInfo includes information indicating the D2D communication mode in the target cell and information indicating the parameter in the RRC layer in the target cell.
  • FIG. 5 and 6 are diagrams for explaining a method for setting the mode of D2D communication in the present embodiment.
  • the terminal device 1 has succeeded in the handover.
  • the terminal device 1 has failed in the handover.
  • a period 10 in FIGS. 5 and 6 is a period in which the terminal device 1 performs D2D communication based on a mode in which D2D communication is set in the source cell before the handover.
  • the terminal device 1 may set the D2D communication mode via the RRCConnectionReconfiguration message during the initial access procedure or the RRC connection reconfiguration procedure.
  • the source cell may include a source primary cell.
  • the source primary cell is the primary cell before the handover procedure.
  • the period 12 may be a period from the start of the handover procedure to the application of the information indicating the D2D communication mode in the target cell included in the handover command.
  • the target cell may include a target primary cell.
  • the target primary cell is a primary cell to be handed over.
  • the terminal device 1 starts the T304 timer when receiving the RRCConnectionReconfiguration message including mobilityControlInfo.
  • the value of the T304 timer is set to a value indicated by information included in mobilityControlInfo. If the terminal device 1 succeeds in the handover, the terminal device 1 stops the T304 timer. For example, when the MAC successfully completes the random access procedure after the RRC layer outputs the RRCConnectionReconfigurationComplete message to the lower layer, the RRC layer of the terminal device 1 stops the T304 timer.
  • the terminal device 1 may perform one of the following reception / monitoring processes or a plurality of reception / monitoring processes.
  • the terminal device 1 outside the range of EUTRAN performs D2D communication based on a preset setting of D2D communication.
  • the settings for D2D communication include settings such as a resource pool and CP length for D2D communication.
  • the terminal apparatus 1 may determine whether to perform any one of the processes (1) to (3) based on information (for example, a handover command) received from the EUTRAN. .
  • the terminal device 1 may determine that none of the processes (1) to (3) is performed in the period 12 based on the information received from the EUTRAN.
  • the terminal device 1 may perform one or more of the following transmission processes.
  • the terminal apparatus 1 may determine whether to perform any one of the processes (4) to (8) based on information (for example, a handover command) received from the EUTRAN. .
  • the terminal device 1 may determine that none of the processes (4) to (8) is performed in the period 12 based on the information received from the EUTRAN.
  • the period 14 in FIG. 5 is a period in which the terminal device 1 performs D2D communication based on the mode in which D2D communication is set in the target cell after the handover.
  • the terminal device 1 is set to the D2D communication mode via the handover command.
  • a period 16 in FIG. 6 is a period from when the terminal device 1 fails in the handover until the RRC connection reconfiguration procedure is completed.
  • the dedicated D2D setting includes the mode 1 setting of D2D communication.
  • the setting of mode 2 (resource pool setting) of D2D communication may be included in the dedicated D2D setting.
  • the setting of D2D communication mode 2 (resource pool setting) may be transmitted via a system information block that is common to a plurality of terminal devices 1.
  • the dedicated D2D setting is based on information / message dedicated to the terminal device 1.
  • the system information block includes information / messages common to the plurality of terminal devices 1.
  • the information / message common to the plurality of terminal devices 1 is information / message common in the cell.
  • the handover command may include information / message dedicated to the terminal device 1 and information / message common to the plurality of terminal devices 1.
  • the information indicating the setting of the D2D communication mode 2 is information / message dedicated to the terminal apparatus 1 or information / message common to the plurality of terminal apparatuses 1. Based on whether there is, the terminal device 1 may determine which of the processes (1) to (8) is performed.
  • the terminal device 1 when the information indicating the setting of the mode 2 of the D2D communication is information / message common to the plurality of terminal devices 1, the terminal device 1 performs processing (2 in the period 12 in FIGS. 5 and 6). ) And / or processing (5) may be performed.
  • Example 2 when the information indicating the setting of the mode 2 of the D2D communication is information / message dedicated to the terminal device 1, the terminal device 1 performs the process (3) in the period 12 of FIGS. 5 and 6. And / or processing (6) may be performed.
  • Example 3 when the information indicating the setting of the mode 2 of the D2D communication is information / message dedicated to the terminal device 1, the terminal device 1 performs the D2D communication process in the period 12 of FIGS. 5 and 6. It is not necessary to do.
  • Example 4 when the D2D setting of mode 2 is transmitted via the system information block in the target cell in the period 12 in FIG. 5, the terminal device 1 during handover performs the processing (1) and the processing (4). Both or either of them may be performed.
  • Example 5 when the D2D setting of mode 2 is transmitted to the terminal device 1 via the dedicated information / message in the target cell in the period 12 in FIG. You may perform both or any one of (3) and process (6).
  • Example 6 when the D2D setting of mode 2 is transmitted to the terminal device 1 via the dedicated information / message in the target cell in the period 12 in FIG. Communication processing may not be performed.
  • Example 7 in the period 16 in FIG. 6, when the mode 2 D2D setting is transmitted via the system information block in the source cell, the terminal device 1 that failed in the handover receives the process (1) and the process (4 ) Or both of them may be performed.
  • Example 8 in the period 16 in FIG. 6, when the mode 2 D2D setting is transmitted to the terminal device 1 via the dedicated information / message in the source cell, the terminal device 1 that failed in handover is: You may perform both or any one of a process (3) and a process (6).
  • Example 9 when the setting of mode 2 D2D is transmitted to the terminal device 1 via the dedicated information / message in the period 16 in FIG. It is not necessary to perform D2D communication processing.
  • the terminal device 1 may be instructed to perform D2D communication in mode 1 in the source cell. In Example 1 to Example 9 described above, the terminal apparatus 1 may be instructed to perform mode 1 D2D communication in the target cell. In Example 1 to Example 9 above, the terminal device 1 may be instructed to perform mode 2 D2D communication in the source cell. In Example 1 to Example 9 above, the terminal device 1 may be instructed to perform mode 2 D2D communication in the target cell.
  • the terminal apparatus 1 determines which of the processes (1) to (8) is performed. Also good. Based on which mode of D2D communication is instructed by the base station apparatus 3 in the period 12 and / or the period 16, the terminal apparatus 1 determines that none of the processes (1) to (8) is performed. Also good.
  • the terminal device 1 performs any one of the processes (1) to (8) based on the D2D communication mode instructed in the source cell and the D2D communication mode instructed in the target cell. You may decide. In the period 12 and / or the period 16, the terminal device 1 performs any of the processes (1) to (8) based on the D2D communication mode instructed in the source cell and the D2D communication mode instructed in the target cell. You may decide not to.
  • FIG. 7 is a schematic block diagram showing the configuration of the terminal device 1 of the present embodiment.
  • the terminal device 1 includes an upper layer processing unit 101, a control unit 103, a receiving unit 105, a transmitting unit 107, and a transmission / reception antenna unit 109.
  • the upper layer processing unit 101 includes a radio resource control unit 1011, a scheduling information interpretation unit 1013, and a D2D control unit 1015.
  • the reception unit 105 includes a decoding unit 1051, a demodulation unit 1053, a demultiplexing unit 1055, a radio reception unit 1057, and a channel measurement unit 1059.
  • the transmission unit 107 includes an encoding unit 1071, a modulation unit 1073, a multiplexing unit 1075, a radio transmission unit 1077, and an uplink reference signal generation unit 1079.
  • the upper layer processing unit 101 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 107.
  • the upper layer processing unit 101 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and radio resource control. Process the (Radio Resource Control: RRC) layer.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the radio resource control unit 1011 included in the upper layer processing unit 101 manages various setting information / parameters of the own device.
  • the radio resource control unit 1011 sets various setting information / parameters based on the upper layer signal received from the base station apparatus 3. That is, the radio resource control unit 1011 sets various setting information / parameters based on information indicating various setting information / parameters received from the base station apparatus 3. Also, the radio resource control unit 1011 generates information arranged in each uplink channel and outputs the information to the transmission unit 107.
  • the scheduling information interpretation unit 1013 provided in the upper layer processing unit 101 interprets the DCI format (scheduling information) received via the reception unit 105, and based on the interpretation result of the DCI format, the reception unit 105 and the transmission unit Control information is generated in order to perform the control of 107 and output to the control unit 103.
  • the D2D control unit 1015 included in the upper layer processing unit 101 controls D2D discovery, D2D communication, and / or ProSe-assisted WLAN direct communication based on various setting information / parameters managed by the radio resource control unit 1011. I do.
  • the D2D control unit 1015 may generate information related to D2D to be transmitted to another terminal device 1 or EUTRAN (base station device 3).
  • the control unit 103 generates a control signal for controlling the receiving unit 105 and the transmitting unit 107 based on the control information from the higher layer processing unit 101. Control unit 103 outputs the generated control signal to receiving unit 105 and transmitting unit 107 to control receiving unit 105 and transmitting unit 107.
  • the receiving unit 105 separates, demodulates, and decodes the received signal received from the base station apparatus 3 via the transmission / reception antenna unit 109 according to the control signal input from the control unit 103, and the decoded information is the upper layer processing unit 101. Output to.
  • the radio reception unit 1057 converts a downlink signal received via the transmission / reception antenna unit 109 into a baseband signal by orthogonal demodulation (down-conversion: down covert), removes unnecessary frequency components, and has an appropriate signal level.
  • the amplification level is controlled so as to be maintained at, and quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the quadrature demodulated analog signal is converted into a digital signal.
  • the radio reception unit 1057 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal, and performs a fast Fourier transform (FFT) on the signal from which the CP has been removed to obtain a frequency domain signal. Extract.
  • CP Cyclic Prefix
  • the demultiplexing unit 1055 separates the extracted signals into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signals. Further, demultiplexing section 1055 compensates the propagation path of PHICH, PDCCH, EPDCCH, and PDSCH from the estimated propagation path value input from channel measurement section 1059. Also, the demultiplexing unit 1055 outputs the demultiplexed downlink reference signal to the channel measurement unit 1059.
  • the demodulating unit 1053 multiplies the PHICH by a corresponding code and synthesizes the signal, demodulates the synthesized signal using a BPSK (Binary Phase Shift Shift Keying) modulation method, and outputs the demodulated signal to the decoding unit 1051.
  • Decoding section 1051 decodes the PHICH addressed to the own apparatus, and outputs the decoded HARQ indicator to higher layer processing section 101.
  • Demodulation section 1053 performs QPSK modulation demodulation on PDCCH and / or EPDCCH, and outputs the result to decoding section 1051.
  • Decoding section 1051 attempts to decode PDCCH and / or EPDCCH, and outputs the decoded downlink control information and the RNTI corresponding to the downlink control information to higher layer processing section 101 when the decoding is successful.
  • the demodulation unit 1053 demodulates the modulation scheme notified by the downlink grant such as QPSK (Quadrature Shift Keying), 16QAM (Quadrature Amplitude Modulation), 64QAM, and the like to the decoding unit 1051.
  • the decoding unit 1051 performs decoding based on the information regarding the coding rate notified by the downlink control information, and outputs the decoded downlink data (transport block) to the higher layer processing unit 101.
  • the channel measurement unit 1059 measures the downlink path loss and channel state from the downlink reference signal input from the demultiplexing unit 1055, and outputs the measured path loss and channel state to the upper layer processing unit 101. Also, channel measurement section 1059 calculates an estimated value of the downlink propagation path from the downlink reference signal, and outputs it to demultiplexing section 1055. The channel measurement unit 1059 performs channel measurement and / or interference measurement in order to calculate CQI.
  • the transmission unit 107 generates an uplink reference signal according to the control signal input from the control unit 103, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 101, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 3 via the transmission / reception antenna unit 109.
  • the encoding unit 1071 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 101.
  • the encoding unit 1071 performs turbo encoding based on information used for PUSCH scheduling.
  • the modulation unit 1073 modulates the coded bits input from the coding unit 1071 using a modulation method notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation method predetermined for each channel. .
  • Modulation section 1073 determines the number of spatially multiplexed data sequences based on information used for PUSCH scheduling, and transmits the same PUSCH by using MIMO (Multiple Input Multiple Multiple Output) SM (Spatial Multiplexing).
  • MIMO Multiple Input Multiple Multiple Output
  • SM Spatial Multiplexing
  • the uplink reference signal generation unit 1079 is a physical layer cell identifier (physical layer cell identity: PCI, Cell ID, etc.) for identifying the base station apparatus 3, a bandwidth for arranging the uplink reference signal, and an uplink grant.
  • a sequence determined by a predetermined rule (formula) is generated on the basis of the cyclic shift and the parameter value for generating the DMRS sequence notified in (1).
  • the multiplexing unit 1075 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 103, and then performs a discrete Fourier transform (Discrete-Fourier-Transform: DFT). Also, multiplexing section 1075 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 1075 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • DFT discrete Fourier transform
  • Radio transmission section 1077 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed signal to generate an SC-FDMA symbol, adds a CP to the generated SC-FDMA symbol, and A digital signal is generated, the baseband digital signal is converted into an analog signal, an excess frequency component is removed using a low-pass filter, the signal is up-converted to a carrier frequency, and power is amplified. Output to and send.
  • IFFT inverse fast Fourier transform
  • FIG. 8 is a schematic block diagram showing the configuration of the base station apparatus 3 of the present embodiment.
  • the base station apparatus 3 includes an upper layer processing unit 301, a control unit 303, a reception unit 305, a transmission unit 307, and a transmission / reception antenna unit 309.
  • the higher layer processing unit 301 includes a radio resource control unit 3011, a scheduling unit 3013, and a D2D control unit 3015.
  • the reception unit 305 includes a decoding unit 3051, a demodulation unit 3053, a demultiplexing unit 3055, a wireless reception unit 3057, and a channel measurement unit 3059.
  • the transmission unit 307 includes an encoding unit 3071, a modulation unit 3073, a multiplexing unit 3075, a radio transmission unit 3077, and a downlink reference signal generation unit 3079.
  • the upper layer processing unit 301 includes a medium access control (MAC: Medium Access Control) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio). Resource (Control: RRC) layer processing. Further, upper layer processing section 301 generates control information for controlling receiving section 305 and transmitting section 307 and outputs the control information to control section 303.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • Radio Radio Resource
  • the radio resource control unit 3011 included in the higher layer processing unit 301 generates downlink data (transport block), system information, RRC message, MAC CE (Control Element), etc. arranged in the downlink PDSCH, or higher level. Obtained from the node and output to the transmission unit 307.
  • the radio resource control unit 3011 manages various setting information / parameters of each terminal device 1.
  • the radio resource control unit 1011 may set various setting information / parameters for each terminal apparatus 1 via higher layer signals. That is, the radio resource control unit 1011 transmits / broadcasts information indicating various setting information / parameters.
  • the scheduling unit 3013 included in the upper layer processing unit 301 uses the received channel state information and the channel allocation information, the channel estimation value, the channel quality, and the like to assign the physical channel (PDSCH and PUSCH).
  • the coding rate and modulation scheme and transmission power of the frame and physical channels (PDSCH and PUSCH) are determined.
  • the scheduling unit 3013 Based on the scheduling result, the scheduling unit 3013 generates control information (for example, DCI format) for controlling the reception unit 305 and the transmission unit 307 and outputs the control information to the control unit 303.
  • the scheduling unit 3013 further determines timing for performing transmission processing and reception processing.
  • the D2D control unit 3015 included in the upper layer processing unit 301 performs D2D discovery and D2D communication in the terminal device 1 that performs communication using a cellular link based on various setting information / parameters managed by the radio resource control unit 3011. And / or control of ProSe-assisted WLAN direct communication.
  • the D2D control unit 3015 may generate information related to D2D to be transmitted to another base station device 3 or the terminal device 1.
  • the control unit 303 generates a control signal for controlling the reception unit 305 and the transmission unit 307 based on the control information from the higher layer processing unit 301.
  • the control unit 303 outputs the generated control signal to the reception unit 305 and the transmission unit 307 and controls the reception unit 305 and the transmission unit 307.
  • the receiving unit 305 separates, demodulates, and decodes the received signal received from the terminal device 1 via the transmission / reception antenna unit 309 according to the control signal input from the control unit 303, and outputs the decoded information to the higher layer processing unit 301. To do.
  • the radio reception unit 3057 converts the uplink signal received via the transmission / reception antenna unit 309 into a baseband signal by orthogonal demodulation (down-conversion: down covert), removes unnecessary frequency components, and has a signal level of The amplification level is controlled so as to be appropriately maintained, and the quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal subjected to the quadrature demodulation is converted into a digital signal.
  • orthogonal demodulation down-conversion: down covert
  • the wireless receiving unit 3057 removes a portion corresponding to CP (Cyclic Prefix) from the converted digital signal.
  • the radio reception unit 3057 performs fast Fourier transform (FFT) on the signal from which the CP is removed, extracts a frequency domain signal, and outputs the signal to the demultiplexing unit 3055.
  • FFT fast Fourier transform
  • the demultiplexing unit 1055 demultiplexes the signal input from the radio receiving unit 3057 into signals such as PUCCH, PUSCH, and uplink reference signal. Note that this separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 3011 by the base station device 3 and notified to each terminal device 1. In addition, demultiplexing section 3055 compensates for the propagation paths of PUCCH and PUSCH from the propagation path estimation value input from channel measurement section 3059. Further, the demultiplexing unit 3055 outputs the separated uplink reference signal to the channel measurement unit 3059.
  • the demodulator 3053 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH, acquires modulation symbols, and performs BPSK (Binary Shift Keying), QPSK, 16QAM,
  • IDFT inverse discrete Fourier transform
  • BPSK Binary Shift Keying
  • QPSK Quadrature Phase Keying
  • 16QAM 16QAM
  • the received signal is demodulated using a predetermined modulation scheme such as 64QAM, or the modulation method notified by the own device to each terminal device 1 in advance using an uplink grant.
  • the demodulator 3053 uses the MIMO SM based on the number of spatially multiplexed sequences notified in advance to each terminal device 1 using an uplink grant and information indicating precoding performed on the sequences.
  • a plurality of uplink data modulation symbols transmitted on the PUSCH are separated.
  • the decoding unit 3051 encodes the demodulated PUCCH and PUSCH encoding bits in a predetermined encoding scheme, or a coding rate at which the device itself notifies the terminal device 1 in advance with an uplink grant. And the decoded uplink data and the uplink control information are output to the upper layer processing unit 101.
  • decoding section 3051 performs decoding using the encoded bits held in the HARQ buffer input from higher layer processing section 301 and the demodulated encoded bits.
  • Channel measurement section 309 measures an estimated channel value, channel quality, and the like from the uplink reference signal input from demultiplexing section 3055 and outputs the result to demultiplexing section 3055 and higher layer processing section 301.
  • the transmission unit 307 generates a downlink reference signal according to the control signal input from the control unit 303, encodes and modulates the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301. Then, the PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal device 1 via the transmission / reception antenna unit 309.
  • the encoding unit 3071 is a predetermined encoding method such as block encoding, convolutional encoding, turbo encoding, and the like for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 301 Or is encoded using the encoding method determined by the radio resource control unit 3011.
  • the modulation unit 3073 modulates the coded bits input from the coding unit 3071 with a modulation scheme determined in advance by the radio resource control unit 3011 such as BPSK, QPSK, 16QAM, and 64QAM.
  • the downlink reference signal generation unit 3079 generates a known sequence as a downlink reference signal, which is obtained by a predetermined rule based on a physical layer cell identifier (PCI) for identifying the base station apparatus 3 and the like. To do.
  • the multiplexing unit 3075 multiplexes the modulated modulation symbol of each channel and the generated downlink reference signal. That is, multiplexing section 3075 arranges the modulated modulation symbol of each channel and the generated downlink reference signal in the resource element.
  • the wireless transmission unit 3077 performs inverse fast Fourier transform (Inverse Fast Fourier Transform: IFFT) on the multiplexed modulation symbol and the like to generate an OFDM symbol, adds a CP to the generated OFDM symbol, and converts a baseband digital signal. Generate baseband digital signal into analog signal, remove excess frequency component with low-pass filter, upconvert to carrier frequency, power amplify, output to transmit / receive antenna unit 309 and transmit To do.
  • IFFT inverse fast Fourier transform
  • the terminal device 1 of this embodiment is a terminal device 1 that communicates with another terminal device 1 and a base station device 3 (EUTRAN), and the length of a cyclic prefix for a D2D signal transmitted to the other terminal device 1 And a receiving unit 105 that receives information indicating the length of a cyclic prefix for an uplink signal to be transmitted to the base station apparatus 3 from the base station apparatus 3.
  • EUTRAN base station device 3
  • the terminal apparatus 1 of the present embodiment transmits the uplink signal transmitted to the base station apparatus 3 Whether the transmission timing of the link signal and the transmission timing of the D2D signal transmitted to the other terminal apparatus 1 are the same, and / or the length of the cyclic prefix for the uplink signal transmitted to the base station apparatus 3 and the other Both the uplink signal transmitted to the base station apparatus 3 and the D2D signal transmitted to the other terminal apparatus 1 based at least on whether the lengths of the cyclic prefixes of the D2D signal transmitted to the terminal apparatus 1 are the same Or an uplink signal transmitted to the base station apparatus 3 and a D2D signal transmitted to the other terminal apparatus 1 A transmitting unit 107 that determines whether to send a.
  • the upper layer processing unit 101 sets the mode of D2D communication. For example, the upper layer processing unit 101 sets the D2D communication mode based on an instruction from the base station device 3, a T304 timer, and the like.
  • the terminal device 1 is a terminal device that communicates with other terminal devices and EUTRAN (EvolvedvolveTerrestrial Radio ⁇ Access Network), and communication between terminal devices outside the range of the EUTRAN as a mode of communication between the terminal devices. And a mode 2 usable for communication between terminal devices within the range of the EUTRAN, and a first setting (preliminarily used) for communication between the terminal devices of the mode 2 outside the range of the EUTRAN.
  • the reception unit 105 may perform a reception process of communication between terminal devices in the mode 2 based on the first setting during the handover procedure.
  • the reception unit 105 may perform a communication reception process between the mode 2 terminal devices based on the second setting for the source cell during the handover procedure.
  • the reception unit 105 may perform communication reception processing between the mode 2 terminal devices based on the second setting for the target cell during the handover procedure.
  • the transmission unit 107 may perform communication transmission processing between the mode 2 terminal devices based on the first setting during the handover procedure.
  • the transmission unit 107 may perform communication transmission processing between the mode 2 terminal devices based on the second setting for the source cell.
  • the transmission unit 107 may perform communication transmission processing between the mode 2 terminal devices based on the second setting for the target cell during the handover procedure.
  • the transmission unit 107 does not have to perform communication transmission processing between the terminal devices in the mode 2 during the handover procedure.
  • the base station apparatus 3 can control D2D between the terminal devices 1 efficiently using a cellular link.
  • a program that operates in the base station device 3 and the terminal device 1 related to the present invention is a program that controls a CPU (Central Processing Unit) or the like (a computer is functioned) so as to realize the functions of the above-described embodiments related to the present invention Program).
  • Information handled by these devices is temporarily stored in RAM (Random Access Memory) during processing, and then stored in various ROMs such as Flash ROM (Read Only Memory) and HDD (Hard Disk Drive). Reading, correction, and writing are performed by the CPU as necessary.
  • the program for realizing the control function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer system and executed.
  • the “computer system” here is a computer system built in the terminal device 1 or the base station device 3 and includes hardware such as an OS and peripheral devices.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” is a medium that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line,
  • a volatile memory inside a computer system serving as a server or a client may be included and a program that holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the base station device 3 in the above-described embodiment can be realized as an aggregate (device group) composed of a plurality of devices.
  • Each of the devices constituting the device group may include a part or all of each function or each functional block of the base station device 3 according to the above-described embodiment.
  • the device group only needs to have one function or each function block of the base station device 3.
  • the terminal device 1 according to the above-described embodiment can also communicate with the base station device as an aggregate.
  • the base station apparatus 3 in the above-described embodiment may be EUTRAN (Evolved Universal Terrestrial Radio Access Network).
  • the base station device 3 in the above-described embodiment may have a part or all of the functions of the upper node for the eNodeB.
  • a part or all of the terminal device 1 and the base station device 3 in the above-described embodiment may be realized as an LSI that is typically an integrated circuit, or may be realized as a chip set.
  • Each functional block of the terminal device 1 and the base station device 3 may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • the terminal device is described as an example of the communication device.
  • the present invention is not limited to this, and the stationary or non-movable electronic device installed indoors or outdoors,
  • the present invention can also be applied to terminal devices or communication devices such as AV equipment, kitchen equipment, cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention can be used in the field of terminal devices, communication devices including base station devices, and other electronic devices.
  • Terminal device 3 Base station apparatus 101 Upper layer processing section 103 Control section 105 Reception section 107 Transmission section 109 Transmission / reception antenna section 301 Upper layer processing section 303 Control section 305 Reception section 307 Transmission section 309 Transmission / reception antenna section 1011 Radio resource control unit 1013 Scheduling information interpretation unit 1015 D2D control unit 3011 Radio resource control unit 3013 Scheduling unit 3015 D2D control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

他の端末装置およびEUTRAN(Evolved Universal Terrestrial Radio Access Network)と通信する端末装置は、端末装置間の通信のモードとして、前記EUTRANの範囲外における端末装置間の通信および前記EUTRANの範囲内における端末装置間の通信に使用可能なモード2を設定し、ハンドオーバプロシージャ中に、モード2の端末装置間の通信の受信処理を行う。

Description

端末装置、集積回路、および、通信方法
 本発明は、端末装置、集積回路、および、通信方法に関する。
 本願は、2014年8月5日に、日本に出願された特願2014-159392号に基づき優先権を主張し、その内容をここに援用する。
 セルラ(cellular)移動通信の無線アクセス方式(Evolved Universal Terrestrial Radio Access : EUTRA)および無線アクセスネットワーク(Evolved Universal Terrestrial Radio Access Network: EUTRAN)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。EUTRAおよびEUTRANをLTE(Long Term Evolution)とも称する。LTEでは、基地局装置をeNodeB(evolved NodeB)、端末装置をUE(User Equipment)とも称する。LTEは、基地局装置がカバーするエリアをセル状に複数配置するセルラ通信システムである。単一の基地局装置は複数のセルを管理してもよい。
 3GPPにおいて、ProSe(Proximity based Services)の検討が行われている。ProSeは、ProSe発見(discovery)とProSe通信(communication)とを含む。ProSe発見は、端末装置がEUTRAを用いて他の端末装置と近接している(in proximity)ことを特定するプロセスである。ProSe通信は、2つの端末装置間で確立されたEUTRAN通信路(communication path)を用いる近接している該2つの端末間の通信である。例えば、該通信路は端末装置間において直接確立されてもよい。
 ProSe発見およびProSe通信のそれぞれを、D2D(Device to Device)発見およびD2D通信とも称する。ProSe発見およびProSe通信を総称して、ProSeとも称する。D2D発見およびD2D通信を総称して、D2Dとも称する。通信路をリンク(link)とも称する。
 非特許文献1において、リソースブロックのサブセットがD2Dのためにリザーブされること、ネットワークがD2Dリソースのセットを設定すること、および、端末装置は該設定されたリソースにおいてD2D信号の送信を許可されることが記載されている。
"D2D for LTE Proximity Services: Overview", R1-132028, 3GPP TSG-RAN WG1 Meeting #73, 20 - 24 May 2013.
 しかしながら、端末装置がD2Dとセルラ通信を同時に行うことは十分に検討されていない。本発明は、効率的にD2Dを行うことができる端末装置、該端末装置に実装される集積回路、および、該端末装置に用いられる通信方法を提供することである。
 (1)本発明の一態様は、ソースセルからターゲットセルにハンドオーバするよう構成される端末装置であって、前記ソースセルにおいて前記ターゲットセルの周波数を示す第1の情報を受信し、前記ターゲットセルにおいて第1の通信に関するシステム情報を受信するよう構成される受信部と、前記ソースセルから前記ターゲットセルへの前記ハンドオーバに失敗した場合に、前記ターゲットセルにおいて受信した前記システム情報によって示されるリソースプールに含まれるリソースを用いて、前記第1の通信の送信を行うよう構成される送信部と、を備え、前記第1の通信は、前記端末装置および他の端末装置が互いに直接通信する通信のモードである。
 (2)また、本発明の第2の態様は、ソースセルからターゲットセルにハンドオーバするよう構成される端末装置に実装される集積回路であって、前記ソースセルにおいて前記ターゲットセルの周波数を示す第1の情報を受信する機能と、前記ターゲットセルにおいて第1の通信に関するシステム情報を受信する機能と、前記ソースセルから前記ターゲットセルへの前記ハンドオーバに失敗した場合に、前記ターゲットセルにおいて受信した前記システム情報によって示されるリソースプールに含まれるリソースを用いて、前記第1の通信の送信を行う機能と、を含む一連の機能を前記端末装置に発揮させ、前記第1の通信は、前記端末装置および他の端末装置が互いに直接通信する通信のモードである。
 (3)また、本発明の第3の態様は、ソース基地局装置に対応するソースセルからターゲット基地局装置に対応するターゲットセルにハンドオーバするよう構成される端末装置に用いられる通信方法であって、前記ターゲット基地局装置によって生成され、前記ソース基地局装置によって転送される前記ターゲットセルの周波数を示す第1の情報を受信し、前記ターゲットセルにおいて第1の通信に関するシステム情報を受信し、前記ソースセルから前記ターゲットセルへの前記ハンドオーバに失敗した場合に、前記ターゲットセルから受信した前記システム情報によって示されるリソースプールに含まれるリソースを用いて、前記第1の通信の送信を行い、前記第1の通信は、前記端末装置および他の端末装置が互いに直接通信する通信のモードである。
 この発明によれば、端末装置は効率的にD2Dを行うことができる。
本実施形態の無線通信システムの概念図である。 本実施形態の無線フレームの概略構成を示す図である。 本実施形態のスロットの構成を示す図である。 本実施形態のD2Dリソースを示す図である。 本実施形態におけるD2D通信のモードの設定方法について説明するための図である。 本実施形態におけるD2D通信のモードの設定方法について説明するための図である。 本実施形態の端末装置1の構成を示す概略ブロック図である。 本実施形態の基地局装置3の構成を示す概略ブロック図である。
 以下、本発明の実施形態について説明する。
 本実施形態では、端末装置は、1つまたは複数のセルが設定される。端末装置が複数のセルを介して通信する技術をセルアグリゲーション、またはキャリアアグリゲーションと称する。端末装置に対して設定される複数のセルのそれぞれにおいて、本発明が適用されてもよい。また、設定された複数のセルの一部において、本発明が適用されてもよい。端末装置に設定されるセルを、サービングセルと称する。サービングセルは、EUTRANの通信のために用いられる。D2Dのために設定されるセルを、D2Dセルと称する。D2Dセルはサービングセルであってもよい。また、D2Dセルはサービングセル以外のセルであってもよい。
 設定された複数のサービングセルは、1つのプライマリーセルと1つまたは複数のセカンダリーセルとを含む。プライマリーセルは、初期コネクション確立(initial connection establishment)プロシージャが行なわれたサービングセル、コネクション再確立(connection re-establishment)プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリーセルと指示されたセルである。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、セカンダリーセルが設定されてもよい。
 セルアグリゲーションの場合には、複数のセルの全てに対してTDD(Time Division Duplex)方式またはFDD(Frequency Division Duplex)方式が適用されてもよい。また、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。
 図1は、本実施形態の無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A~1C、および、基地局装置3を具備する。端末装置1A~1Cを端末装置1という。サービングセル4は、基地局装置3(LTE、EUTRAN)がカバーするエリア(範囲)を示す。端末装置1Aは、EUTRANの範囲内(in-coverage)である。端末装置1Bおよび端末装置1Cは、EUTRANの範囲外(out-of-coverage)である。EUTRANの範囲内である端末装置1は、EUTRANとのリンクが確立されている端末装置1を含んでもよい。EUTRANの範囲外である端末装置1は、EUTRANとのリンクが確立されていない端末装置1、および/または、RRC_IDLE状態の端末装置1を含んでもよい。
 上りリンク5は、端末装置1から基地局装置3へのリンクである。下りリンク7は、基地局装置3から端末装置1へのリンクである。また、上りリンク5と下りリンク7とをセルラリンク、または、セルラ通信路とも称する。また、端末装置1と基地局装置3の通信をセルラ通信、または、EUTRANとの通信とも称する。
 D2Dリンク9は、端末装置1間のリンクである。尚、D2Dリンク9をD2D通信路、ProSeリンク、または、ProSe通信路とも称する。D2Dリンク9において、D2D発見およびD2D通信が行われる。D2D発見は、端末装置1がEUTRAを用いて他の端末装置1と近接している(in proximity)ことを特定するプロセス/手順である。D2D通信は、複数の端末装置1間で確立されたEUTRAN通信路を用いる、近接している複数の該端末装置1間の通信である。例えば、該通信路は端末装置1間に直接確立されてもよい。
 本実施形態の物理チャネルおよび物理信号について説明する。
 下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号と称する。上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号と称する。D2D物理チャネルおよびD2D物理信号を総称して、D2D信号と称する。物理チャネルは、上位層から出力された情報を送信するために使用される。物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
 図1において、端末装置1間のD2Dリンク9の無線通信では、以下のD2D物理チャネルが用いられる。
・PD2DSCH(Physical Device to Device Synchronization Channel)
・PD2DDCH(Physical Device to Device Data Channel)
 PD2DSCHは、同期に関する情報を送信するために用いられる。例えば、同期に関する情報は、D2Dフレーム番号、または、SFN(System Frame Number)を示す情報などを含む。
 PD2DDCHは、D2Dデータ(ProSe communication Shared Channel: PSCH)およびD2DSA(Device to Device Scheduling Assignment)を送信するために用いられる。D2DデータおよびD2DSAは同じPD2DSCHにマップされない。D2DSAは、D2Dデータの送信のために用いられるPD2DSCHのスケジューリングのために用いられる。D2DSAは、D2Dデータの送信のために用いられるPD2DSCHのリソースを示す情報、宛先識別子(destination identity)を示す情報、ソース識別子(source identity)を示す情報などを含む。D2D発見に対応するD2DデータおよびD2DSAを発見信号(discovery signal)と称する。D2D通信に対応するD2DデータおよびD2DSAを通信信号(communication signal)と称する。
 PD2DSCHは、PUSCH(Physical Uplink Shared Channel)であってもよい。すなわち、D2DデータおよびD2DSAの送信のためにPUSCHが使用されてもよい。本実施形態では、D2Dのために使用されるPUSCHをPD2DSCHと称する。本実施形態では、EUTRANとの通信に用いられるPUSCHを、単にPUSCHと記載する。PUSCHの詳細については後述する。
 図1において、D2Dの無線通信では、以下のD2D物理信号が用いられる。
・D2D同期信号(D2D Synchronization Signal: D2DSS)
・D2D参照信号(D2D Reference Signal: D2DRS)
 D2DSSは、D2Dリンクにおける同期をとるために用いられる。D2DSSは、PD2DSS(Primary D2D Synchronization Signal)およびSD2DSS(Secondary D2D synchronization Signal)を含む。D2DSSは、PD2DSCHの送信に関連する。D2DSSは、PD2DSCHと時間多重されてもよい。端末装置1は、PD2DSCHの伝搬路補正を行なうためにD2DSSを使用してもよい。
 D2DRSは、PD2DSCHまたはPD2DDCHの送信に関連する。D2DRSは、PUSCHまたはPUCCHと時間多重されてもよい。端末装置1は、PD2DSCHの伝搬路補正を行なうためにD2DRSを使用してもよい。
 送信する端末装置1の観点から、端末装置1は、D2D通信のリソース割り当てに対する2つのモード(モード1、モード2)で動作できる。
 モード1において、EUTRAN(基地局装置3)は、通信信号(D2DデータおよびD2DSA)の送信のために端末装置1によって使用される正確なリソースをスケジュールする。
 モード2において、端末装置1は、通信信号(D2DデータおよびD2DSA)の送信のためにリソースプールからリソースを選択する。リソースプールは、リソースのセットである。モード2に対するリソースプールは、EUTRAN(基地局装置3)によって準静的(semi-static)に設定/制限されてもよい。または、モード2に対するリソースプールは予め設定(pre-configured)されていてもよい。
 D2D通信の能力を持つ、EUTRANの範囲内(in-coverage)の端末装置1は、モード1およびモード2をサポートしてもよい。D2D通信の能力を持つ、EUTRANの範囲外(out-of-coverage)の端末装置1は、モード2のみをサポートしてもよい。予め設定された設定(例えば、モード2に対するリソースプール)は、EUTRANの範囲外の端末装置1によって使用される。本実施形態において、予め設定された設定以外の設定は、EUTRANの範囲内の端末装置1によって使用される。また、本実施形態におけて予め設定された設定以外の設定は、セル内、または、セルのグループ内でのみ有効である。
 D2D発見手順として2つのタイプ(タイプ1、タイプ2)が定義される。
 タイプ1のD2D発見手順は、発見信号に対するリソースが端末装置1に対して個別に割り当てられないD2D発見手順である。すなわち、タイプ1のD2D発見手順において、発見信号に対するリソースは全ての端末装置1または端末装置1のグループに対して割り当てられてもよい。
 タイプ2のD2D発見手順は、発見信号に対するリソースが端末装置1に対して個別に割り当てられるD2D発見手順である。リソースが発見信号の個別の送信インスタンス(instance)のそれぞれに対して割り当てられる発見手順を、タイプ2A発見手順と称する。リソースが発見信号の送信のために準永続的(semi-persistently)に割り当てられるタイプ2の発見手順を、タイプ2B発見手順と称する。
 図1において、上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。
 PUSCHは、上りリンクデータ(Uplink-Shared Channel: UL-SCH)および/またはHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられる物理チャネルである。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる物理チャネルである。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャにおいて用いられる。
 図1において、上りリンクの無線通信では、以下の上りリンク物理信号が用いられる。
・上りリンク参照信号(Uplink Reference Signal: UL RS)
 本実施形態において、以下の2つのタイプの上りリンク参照信号が用いられる。
・DMRS(Demodulation Reference Signal)
・SRS(Sounding Reference Signal)
 DMRSは、PUSCHまたはPUCCHの送信に関連する。DMRSは、PUSCHまたはPUCCHと時間多重される。基地局装置3は、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。SRSは、PUSCHまたはPUCCHの送信に関連しない。基地局装置3は、上りリンクのチャネル状態を測定するためにSRSを使用する。
 図1において、下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。
・PBCH(Physical Broadcast Channel)
・PCFICH(Physical Control Format Indicator Channel)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel)
・PDCCH(Physical Downlink Control Channel)
・EPDCCH(Enhanced Physical Downlink Control Channel)
・PDSCH(Physical Downlink Shared Channel)
・PMCH(Physical Multicast Channel)
 PBCHは、端末装置1で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。例えば、MIBは、SFNを示す情報を含む。SFN(system frame number)は無線フレームの番号である。MIBはシステム情報である。
 PCFICHは、PDCCHの送信に用いられる領域(OFDMシンボル)を指示する情報を送信するために用いられる。
 PHICHは、基地局装置3が受信した上りリンクデータ(Uplink Shared Channel: UL-SCH)に対するACK(ACKnowledgement)またはNACK(Negative ACKnowledgement)を示すHARQインディケータを送信するために用いられる。
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報を、DCIフォーマットとも称する。下りリンク制御情報は、下りリンクグラント(downlink grant)、上りリンクグラント(uplink grant)、および、D2Dグラント(D2D grant)を含む。下りリンクグラントは、下りリンクアサインメント(downlink assignment)または下りリンク割り当て(downlink allocation)とも称する。
 上りリンクグラントは、単一のセル内の単一のPUSCHのスケジューリングに用いられる。上りリンクグラントは、あるサブフレーム内の単一のPUSCHのスケジューリングに用いられる。下りリンクグラントは、単一のセル内の単一のPDSCHのスケジューリングに用いられる。下りリンクグラントは、該下りリンクグラントが送信されたサブフレームと同じサブフレーム内のPDSCHのスケジューリングに用いられる。D2Dグラントは、D2D通信のモード1に関連するPD2DDCHのスケジューリングに用いられる。
 DCIフォーマットには、CRC(Cyclic Redundancy Check)パリティビットが付加される。CRCパリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、SPS C-RNTI(Semi Persistent Scheduling Cell-Radio Network Temporary Identifier)、または、D2D-RNTI(D2D-Radio Network Temporary Identifier)でスクランブルされる。C-RNTI、SPS C-RNTI、および、D2D-RNTIは、セル内において端末装置1を識別するための識別子である。C-RNTIは、単一のサブフレームにおけるPDSCHのリソースまたはPUSCHのリソースを制御するために用いられる。SPS C-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。D2D-RNTIは、D2Dグラントの送信のために用いられる。すなわち、D2D-RNTIは、モード1のD2D通信のためのPD2DSCHのスケジューリングに用いられる。
 PDSCHは、下りリンクデータ(Downlink Shared Channel: DL-SCH)を送信するために用いられる。
 PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。
・同期信号(Synchronization signal: SS)
・下りリンク参照信号(Downlink Reference Signal: DL RS)
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。FDD方式において、同期信号は無線フレーム内のサブフレーム0と5に配置される。
 下りリンク参照信号は、端末装置1が下りリンク物理チャネルの伝搬路補正を行なうために用いられる。下りリンク参照信号は、端末装置1が下りリンクのチャネル状態情報を算出するために用いられる。下りリンク参照信号は、端末装置1が自装置の地理的な位置を測定するために用いられる。
 本実施形態において、以下の5つのタイプの下りリンク参照信号が用いられる。
・CRS(Cell-specific Reference Signal)
・PDSCHに関連するURS(UE-specific Reference Signal)
・EPDCCHに関連するDMRS(Demodulation Reference Signal)
・NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)
・ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)
・MBSFN RS(Multimedia Broadcast and Multicast Service over Single Frequency Network Reference signal)
 CRSは、サブフレームの全帯域で送信される。CRSは、PBCH/PDCCH/PHICH/PCFICH/PDSCHの復調を行なうために用いられる。CRSは、端末装置1が下りリンクのチャネル状態情報を算出するために用いられてもよい。PBCH/PDCCH/PHICH/PCFICHは、CRSの送信に用いられるアンテナポートで送信される。
 PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信される。URSは、URSが関連するPDSCHの復調を行なうために用いられる。PDSCHは、CRSの送信に用いられるアンテナポートまたはURSの送信に用いられるアンテナポートで送信される。
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。EPDCCHは、DMRSの送信に用いられるアンテナポートで送信される。
 NZP CSI-RSは、設定されたサブフレームで送信される。NZP CSI-RSが送信されるリソースは、基地局装置3が設定する。NZP CSI-RSは、端末装置1が下りリンクのチャネル状態情報を算出するために用いられる。端末装置1は、NZP CSI-RSを用いて信号測定(チャネル測定)を行なう。
 ZP CSI-RSのリソースは、基地局装置3が設定する。基地局装置3は、ZP CSI-RSをゼロ出力で送信する。つまり、基地局装置3は、ZP CSI-RSを送信しない。基地局装置3は、ZP CSI-RSの設定したリソースにおいて、PDSCHおよびEPDCCHを送信しない。例えば、あるセルにおいてNZP CSI-RSが対応するリソースにおいて、端末装置1は、干渉を測定することができる。
 MBSFN RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信用いられるアンテナポートで送信される。
 PSCH、BCH、MCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルにおけるデータの単位を、トランスポートブロック(transport block: TB)またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行なわれる。
 本実施形態の無線フレーム(radio frame)の構造(structure)について説明する。
 LTEでは、2つの無線フレーム構造がサポートされる。2つの無線フレーム構造は、フレーム構造タイプ1とフレーム構造タイプ2である。フレーム構造タイプ1はFDDに適用可能である。フレーム構造タイプ2はTDDに適用可能である。
 図2は、本実施形態の無線フレームの概略構成を示す図である。図2において、横軸は時間軸である。また、タイプ1およびタイプ2の無線フレームのそれぞれは、10ms長であり、10のサブフレームによって定義される。サブフレームのそれぞれは、1ms長であり、2つの連続するスロットによって定義される。スロットのそれぞれは、0.5ms長である。無線フレーム内のi番目のサブフレームは、(2×i)番目のスロットと(2×i+1)番目のスロットとから構成される。
 フレーム構造タイプ2に対して、以下の3つのタイプのサブフレームが定義される。
・下りリンクサブフレーム
・上りリンクサブフレーム
・スペシャルサブフレーム
 下りリンクサブフレームは下りリンク送信のためにリザーブされるサブフレームである。上りリンクサブフレームは上りリンク送信のためにリザーブされるサブフレームである。スペシャルサブフレームは3つのフィールドから構成される。該3つのフィールドは、DwPTS(Downlink Pilot Time Slot)、GP(Guard Period)、およびUpPTS(Uplink Pilot Time Slot)である。DwPTS、GP、およびUpPTSの合計の長さは1msである。DwPTSは下りリンク送信のためにリザーブされるフィールドである。UpPTSは上りリンク送信のためにリザーブされるフィールドである。GPは下りリンク送信および上りリンク送信が行なわれないフィールドである。尚、スペシャルサブフレームは、DwPTSおよびGPのみによって構成されてもよいし、GPおよびUpPTSのみによって構成されてもよい。
 フレーム構造タイプ2の無線フレームは、少なくとも下りリンクサブフレーム、上りリンクサブフレーム、およびスペシャルサブフレームから構成される。
 本実施形態のスロットの構成について説明する。
 図3は、本実施形態のスロットの構成を示す図である。図3において、OFDMシンボルまたはSC-FDMAシンボルに対してノーマルCP(Cyclic Prefix)が適用される。スロットのそれぞれにおいて送信される物理信号または物理チャネルは、リソースグリッドによって表現される。図3において、横軸は時間軸であり、縦軸は周波数軸である。下りリンクにおいて、リソースグリッドは複数のサブキャリアと複数のOFDMシンボルによって定義される。上りリンクにおいて、リソースグリッドは複数のサブキャリアと複数のSC-FDMAシンボルによって定義される。例えば、D2Dリンクにおいて、リソースグリッドは複数のサブキャリアと複数のSC-FDMAシンボルによって定義されてもよい。1つのスロットを構成するサブキャリアの数は、セルの帯域幅に依存する。1つのスロットを構成するOFDMシンボルまたはSC-FDMAシンボルの数は7である。リソースグリッド内のエレメントのそれぞれをリソースエレメントと称する。リソースエレメントは、サブキャリアの番号とOFDMシンボルまたはSC-FDMAシンボルの番号とを用いて識別する。
 リソースブロックは、ある物理チャネル(PDSCHまたはPUSCHなど)のリソースエレメントへのマッピングを表現するために用いられる。リソースブロックは、仮想リソースブロックと物理リソースブロックが定義される。ある物理チャネルは、まず仮想リソースブロックにマップされる。その後、仮想リソースブロックは、物理リソースブロックにマップされる。1つの物理リソースブロックは、時間領域において7個の連続するOFDMシンボルまたはSC-FDMAシンボルと周波数領域において12個の連続するサブキャリアとから定義される。ゆえに、1つの物理リソースブロックは(7×12)個のリソースエレメントから構成される。また、1つの物理リソースブロックは、時間領域において1つのスロットに対応し、周波数領域において180kHzに対応する。物理リソースブロックは周波数領域において0から番号が付けられる。
 尚、OFDMシンボルまたはSC-FDMAシンボルに対して拡張(extended)CPが適用されてもよい。拡張CPの場合、1つのスロットを構成するOFDMシンボルまたはSC-FDMAシンボルの数は7である。
 本実施形態の物理チャネルおよび物理信号の配置について説明する。
 図4は、本実施形態のD2Dリソースを示す図である。D2Dのためにリザーブされるリソースを、D2Dリソースと称する。図4において、横軸は時間軸であり、縦軸は周波数軸である。図4において、Dは下りリンクサブフレームを示し、Sはスペシャルサブフレームを示し、Uは上りリンクサブフレームを示す。1つのFDDセルは、1つの下りリンクキャリアおよび1つの上りリンクキャリアに対応する。1つのTDDセルは1つのTDDキャリアに対応する。
 FDDセルにおいて、セルラ通信に対して用いられる下りリンク信号は下りリンクキャリアのサブフレームに配置され、セルラ通信に対して用いられる上りリンク信号は上りリンクキャリアのサブフレームに配置され、D2Dに対して用いられるD2D信号は上りリンクキャリアのサブフレームに配置される。下りリンクにおいてセルに対応するキャリアを下りリンクコンポーネントキャリアと称する。また、上りリンクにおいてセルに対応するキャリアを上りリンクコンポーネントキャリアと称する。TDDキャリアは、下りリンクコンポーネントキャリアであり、かつ、上りリンクコンポーネントキャリアである。
 TDDセルにおいて、セルラ通信に対して用いられる下りリンク信号は下りリンクサブフレームおよびDwPTSに配置され、セルラ通信に対して用いられる上りリンク信号は上りリンクサブフレームおよびUpPTSに配置され、D2Dに対して用いられるD2D信号は上りリンクサブフレームおよびUpPTSに配置される。
 基地局装置3は、D2DのためにリザーブされるD2Dリソースを制御する。基地局装置3は、FDDセルの上りリンクキャリアのリソースの一部をD2Dリソースとしてリザーブする。基地局装置3は、TDDセルの上りリンクサブフレームおよびUpPTSのリソースの一部をD2Dリソースとしてリザーブする。
 基地局装置3は、セルのそれぞれにおいてリザーブされたD2Dリソースのセット(プール)を示す情報を含む上位層の信号を、端末装置1に送信してもよい。端末装置1は、セルのそれぞれにおいてリザーブされたD2Dリソースを示すパラメータD2D-ResourceConfigを、基地局装置3から受信した上位層の信号に基づいてセットする。すなわち、基地局装置3は、セルのそれぞれにおいてリザーブされたD2Dリソースを示すパラメータD2D-ResourceConfigを、上位層の信号を介して端末装置1にセットする。
 PD2DSCHおよびD2DSSは、上りリンクコンポーネントキャリアの中心周波数の周りの62サブキャリアを用いて送信されてもよい。
 基地局装置3は、D2Dのためにリザーブされるリソースの1つまたは複数のセットを示す1つまたは複数のパラメータを、上位層の信号を介して端末装置1にセットしてもよい。
 PD2DSCHおよびD2DSSのためのリソースのセットと、PD2DDCHのためにリザーブされるリソースのセットは、個別に設定されてもよい。
 D2D発見のタイプ1、D2D発見のタイプ2、D2D通信のモード1、および、D2D通信のモード2のそれぞれのためのリソースのセットは、個別に設定されてもよい。
 D2Dの送信および受信のためのリソースのセットは、個別に設定されてもよい。
 さらに、D2Dデータの送信に関するPD2DDCHのためのリソースのセットと、D2DSAの送信に関するPD2DDCHのためのリソースのセットは、個別に設定されてもよい。
 端末装置1の観点から、上述したリソースのセットのうち一部のリソースのセットは、透過的(transparent)であってもよい。例えば、D2D通信のD2DデータのためのPD2DDCHは、D2DSAによってスケジュールされるため、端末装置1は、D2D通信のD2Dデータに関するPD2DDCHの受信/モニタのためのリソースのセットを設定しなくてもよい。
 3GPPにおいて、D2Dは、PS(Public Safety)のために用いられることが検討されている。基地局装置3は、D2DリソースのセットのそれぞれがPSのためのリソースのセットであるかどうかを、端末装置1に通知してもよい。また、端末装置1は、EUTRANを介して、PSのためのD2Dが認証されてもよい。すなわち、PSのためのD2Dが認証されていない端末装置1は、PSのためのリソースのセットでD2Dを行うことができない。
 尚、D2D通信とD2D発見は個別に認証されてもよい。また、D2D発見のタイプ1、D2D発見のタイプ2、D2D通信のモード1、および、D2D通信のモード2のそれぞれは、個別に認証されてもよい。
 以下、本実施形態において、D2D通信が認証されている端末装置1を、単に端末装置1と記載する。
 本実施形態のCP長の設定方法について説明する。
 基地局装置3は、上りリンクおよび下りリンクのCP長を制御する。基地局装置3は、サービングセル毎に上りリンクおよび下りリンクのCP長を個別に制御してもよい。
 端末装置1は、サービングセルに対する同期信号および/またはPBCHに基づいて、PMCHおよびMBSFN RSを除く、サービングセルに対する下りリンク信号のCP長を検出する。PMCHおよびMBSFN RSに対して常に拡張CPが適用される。
 基地局装置3は、サービングセルにおける上りリンク信号のCP長を示す情報を含む上位層の信号を、端末装置1に送信する。端末装置1は、サービングセルにおける上りリンクのCP長を示すパラメータUL-CyclicPrefixLengthを、基地局装置3から受信した上位層の信号に基づいてセットする。すなわち、基地局装置3は、サービングセルにおける上りリンクのCP長を示すパラメータUL-CyclicPrefixLengthを、上位層の信号を介して端末装置1にセットする。
 基地局装置3は、D2Dに対するCP長を示す情報を含む上位層の信号を、端末装置1に送信してもよい。端末装置1は、D2Dに対するCP長を示すパラメータD2D-CyclicPrefixLengthを、基地局装置3から受信した上位層の信号に基づいてセットしてもよい。すなわち、基地局装置3は、D2Dに対するCP長を示すパラメータD2D-CyclicPrefixLengthを、上位層の信号を介して端末装置1にセットしてもよい。
 PD2DSCHおよびD2DSSのCP長と、PD2DDCHのCP長は、個別に設定されてもよい。
 D2D発見のタイプ1、D2D発見のタイプ2、D2D通信のモード1、および、D2D通信のモード2のそれぞれのためのCP長は、個別に設定されてもよい。
 D2Dデータの送信に関するPD2DDCHのためのCP長と、D2DSAの送信に関するPD2DDCHのCP長は、個別に設定されてもよい。
 PD2DSCHおよびD2DSSのCP長は、予め仕様などで定義され、固定であってもよい。D2DSAの送信に関するPD2DDCHのCP長は、予め仕様などで定義され、固定であってもよい。
 以下、D2D通信のモードの設定方法について説明する。
 EUTRANの範囲外の端末装置1は、D2D通信に対してモード2を設定してもよい。EUTRANの範囲外の端末装置1は、D2D通信に対してモード1を設定してはいけない。
 端末装置1は、EUTRANの範囲内の端末装置1に対して、D2D通信のモード1、または、D2D通信のモード2を指示する情報を、上位層(RRC層)の信号を介して、基地局装置3から受信してもよい。すなわち、EUTRANの範囲内の端末装置1は、基地局装置3から受信した情報に基づいて、D2D通信のモード1、または、D2D通信のモード2を設定してもよい。D2D通信のモード1、または、D2D通信のモード2を指示する情報は、RRC層のメッセージであるRRCConnectionReconfigurationメッセージに含まれる。
 EUTRANの範囲内の端末装置1は、基地局装置3から受信したハンドオーバコマンドに基づいて、ターゲットセルにおけるD2D通信のモードを設定してもよい。ハンドオーバコマンドは、mobilityControlInfoを含むRRCConnectionReconfigurationメッセージである。mobilityControlInfoは、ターゲットセルの周波数に関する情報、ターゲットセルのセル識別子に関する情報などが含まれる。mobilityControlInfoを含むRRCConnectionReconfigurationメッセージは、ターゲットセルにおけるD2D通信のモードを示す情報、および、ターゲットセルにおけるRRC層におけるパラメータを示す情報を含む。
 図5および図6は、本実施形態におけるD2D通信のモードの設定方法について説明するための図である。図5において、端末装置1はハンドオーバに成功している。図6において、端末装置1はハンドオーバに失敗している。
 図5および図6における期間10は、ハンドオーバ前のソースセルにおいて、端末装置1がD2D通信の設定されたモードに基づいてD2D通信を行う期間である。端末装置1は、初期アクセスプロシージャ、または、RRCコネクション再構築プロシージャ中に、RRCConnectionReconfigurationメッセージを介して、D2D通信のモードが設定されてもよい。ソースセルは、ソースプライマリーセルを含んでもよい。ソースプライマリーセルは、ハンドオーバプロシージャ前のプライマリーセルである。
 図5における期間12は、ハンドオーバプロシージャを開始してから、ハンドオーバコンプリート(RRCConnectionReconfigurationComplete)メッセージをEUTRANに送信するまでの期間である。期間12は、ハンドオーバプロシージャを開始してから、ハンドオーバコマンドに含まれるターゲットセルにおけるD2D通信のモードを示す情報を適用するまでの期間であってもよい。ターゲットセルは、ターゲットプライマリーセルを含んでもよい。ターゲットプライマリーセルは、ハンドオーバの対象となるプライマリーセルである。
 図6における期間12は、T304タイマーがランニングしている期間である。図5においても、期間12はT304タイマーがランニングしている期間であってもよい。端末装置1は、mobilityControlInfoを含むRRCConnectionReconfigurationメッセージを受信した場合に、T304タイマーをスタートする。T304タイマーの値は、mobilityControlInfoに含まれる情報が示す値にセットされる。端末装置1は、ハンドオーバに成功した場合、T304タイマーをストップする。例えば、RRC層が下位層にRRCConnectionReconfigurationCompleteメッセージを出力した後にMACがランダムアクセスプロシージャを成功裏に完了した場合、端末装置1のRRC層は、T304タイマーをストップする。
 図5および図6の期間12において、端末装置1は、以下の受信/モニタの処理のうちの1つ、または、複数の受信/モニタの処理を行ってもよい。
・処理(1):ハンドオーバ前のD2D通信の設定に基づく、通信信号の受信/モニタ処理
・処理(2):ハンドオーバ後のD2D通信の設定に基づく、通信信号の受信/モニタ処理
・処理(3):D2D通信の予め設定された(pre-configured)設定に基づく、通信信号の受信/モニタ処理
 尚、EUTRANの範囲外の端末装置1は、D2D通信の予め設定された設定に基づいて、D2D通信を行う。D2D通信の設定は、D2D通信に対するリソースプール、CP長などの設定を含む。
 図5および図6の期間12において、端末装置1は、EUTRANから受信した情報(例えば、ハンドオーバコマンド)に基づいて、処理(1)から(3)の何れかを行うかを決定してもよい。端末装置1は、EUTRANから受信した情報に基づいて、期間12において、処理(1)から(3)の何れも行わないと決定してもよい。
 図5および図6の期間12において、端末装置1は、以下の送信の処理のうちの1つ、または、複数の送信の処理を行ってもよい。
・処理(4):ハンドオーバ前のD2D通信のモード2の設定に基づく、通信信号の送信処理
・処理(5):ハンドオーバ後のD2D通信のモード2の設定に基づく、通信信号の送信処理
・処理(6):D2D通信のモード2に対する予め設定された(pre-configured)設定に基づく、通信信号の送信処理
・処理(7):ハンドオーバ前のD2D通信のモード1の設定に基づく、通信信号の送信処理
・処理(8):ハンドオーバ後のD2D通信のモード1の設定に基づく、通信信号の送信処理
 図5および図6の期間12において、端末装置1は、EUTRANから受信した情報(例えば、ハンドオーバコマンド)に基づいて、処理(4)から(8)の何れかを行うかを決定してもよい。端末装置1は、EUTRANから受信した情報に基づいて、期間12において、処理(4)から(8)の何れも行わないと決定してもよい。
 図5における期間14は、ハンドオーバ後のターゲットセルにおいて、端末装置1がD2D通信の設定されたモードに基づいてD2D通信を行う期間である。端末装置1は、ハンドオーバコマンドを介して、D2D通信のモードが設定される。
 図6における期間16は、端末装置1がハンドオーバに失敗してからRRCコネクション再構築プロシージャが完了するまでの期間である。
 T304タイマーが満了した場合、端末装置1は、専用のD2Dの設定を除いて、ソースセルにおいて使われていた設定に戻り(revert back)、RRCコネクション再構築プロシージャ(RRC connection re-establishment procedure)を開始する。すなわち、T304タイマーが満了する場合、端末装置1はハンドオーバに失敗している。専用のD2Dの設定は、D2D通信のモード1の設定を含む。D2D通信のモード2の設定(リソースプールの設定)は、専用のD2Dの設定に含まれてもよい。D2D通信のモード2の設定(リソースプールの設定)は、複数の端末装置1に対して共通であるシステムインフォメーションブロックを介して、送信されてもよい。
 専用のD2Dの設定は、端末装置1に対して専用の情報/メッセージに基づく。システムインフォメーションブロックは、複数の端末装置1に対して共通の情報/メッセージを含む。複数の端末装置1に対して共通の情報/メッセージは、セル内で共通の情報/メッセージである。
 ハンドオーバコマンドは、端末装置1に対して専用の情報/メッセージおよび複数の端末装置1に対して共通の情報/メッセージを含んでもよい。
 期間12および/または期間16において、D2D通信のモード2の設定を示す情報が、端末装置1に対して専用の情報/メッセージであるか、複数の端末装置1に対して共通の情報/メッセージであるかに基づいて、端末装置1は処理(1)から(8)の何れを行うかを決定してもよい。
 例1において、D2D通信のモード2の設定を示す情報が、複数の端末装置1に対して共通の情報/メッセージである場合、図5および図6の期間12において、端末装置1は処理(2)および/または処理(5)を行ってもよい。
 例2において、D2D通信のモード2の設定を示す情報が、端末装置1に対して専用の情報/メッセージである場合、図5および図6の期間12において、端末装置1は、処理(3)および/または処理(6)を行なってもよい。
 例3において、D2D通信のモード2の設定を示す情報が、端末装置1に対して専用の情報/メッセージである場合、図5および図6の期間12において、端末装置1は、D2D通信の処理を行なわなくてもよい。
 例4において、図5における期間12において、ターゲットセルにおいてモード2のD2Dの設定がシステムインフォメーションブロックを介して送信されている場合、ハンドオーバ中の端末装置1は、処理(1)および処理(4)の両方または何れか一方を行ってもよい。
 例5において、図5における期間12において、ターゲットセルにおいてモード2のD2Dの設定が端末装置1に対して専用の情報/メッセージを介して送信されている場合、ハンドオーバ中の端末装置1は、処理(3)および処理(6)の両方または何れか一方を行ってもよい。
 例6において、図5における期間12において、ターゲットセルにおいてモード2のD2Dの設定が端末装置1に対して専用の情報/メッセージを介して送信されている場合、ハンドオーバ中の端末装置1は、D2D通信の処理を行わなくてもよい。
 例7において、図6における期間16において、ソースセルにおいてモード2のD2Dの設定がシステムインフォメーションブロックを介して送信されている場合、ハンドオーバに失敗した端末装置1は、処理(1)および処理(4)の両方または何れか一方を行ってもよい。
 例8において、図6における期間16において、ソースセルにおいてモード2のD2Dの設定が端末装置1に対して専用の情報/メッセージを介して送信されている場合、ハンドオーバに失敗した端末装置1は、処理(3)および処理(6)の両方または何れか一方を行ってもよい。
 例9において、図6における期間16において、ソースセルにおいてモード2のD2Dの設定が端末装置1に対して専用の情報/メッセージを介して送信されている場合、ハンドオーバに失敗した端末装置1は、D2D通信の処理を行わなくてもよい。
 上記の例1から例9において、端末装置1はソースセルにおいてモード1のD2D通信を指示されていてもよい。上記の例1から例9において、端末装置1はターゲットセルにおいてモード1のD2D通信を指示されていてもよい。上記の例1から例9において、端末装置1はソースセルにおいてモード2のD2D通信を指示されていてもよい。上記の例1から例9において、端末装置1はターゲットセルにおいてモード2のD2D通信を指示されていてもよい。
 期間12および/または期間16において、基地局装置3によって何れのモードのD2D通信を指示されているかに基づいて、端末装置1は処理(1)から(8)の何れを行うかを決定してもよい。期間12および/または期間16において、基地局装置3によって何れのモードのD2D通信を指示されているかに基づいて、端末装置1は処理(1)から(8)の何れも行わないと決定してもよい。
 期間12および/または期間16において、ソースセルにおいて指示されたD2D通信のモードおよびターゲットセルにおいて指示されたD2D通信のモードに基づいて、端末装置1は処理(1)から(8)の何れを行うかを決定してもよい。期間12および/または期間16において、ソースセルにおいて指示されたD2D通信のモードおよびターゲットセルにおいて指示されたD2D通信のモードに基づいて、端末装置1は処理(1)から(8)の何れも行わないと決定してもよい。
 以下、本実施形態における装置の構成について説明する。
 図7は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、上位層処理部101、制御部103、受信部105、送信部107と送受信アンテナ部109を含んで構成される。また、上位層処理部101は、無線リソース制御部1011、スケジューリング情報解釈部1013、および、D2D制御部1015を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057とチャネル測定部1059を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077と上りリンク参照信号生成部1079を含んで構成される。
 上位層処理部101は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロック)を、送信部107に出力する。また、上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
 上位層処理部101が備える無線リソース制御部1011は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御部1011は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御部1011は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。また、無線リソース制御部1011は、上りリンクの各チャネルに配置される情報を生成し、送信部107に出力する。
 上位層処理部101が備えるスケジューリング情報解釈部1013は、受信部105を介して受信したDCIフォーマット(スケジューリング情報)の解釈をし、前記DCIフォーマットを解釈した結果に基づき、受信部105、および送信部107の制御を行なうために制御情報を生成し、制御部103に出力する。
 上位層処理部101が備えるD2D制御部1015は、無線リソース制御部1011によって管理されている各種設定情報/パラメータに基づいて、D2D発見、D2D通信、および/または、ProSe-assisted WLANダイレクト通信の制御を行う。D2D制御部1015は、他の端末装置1またはEUTRAN(基地局装置3)に送信する、D2Dに関連する情報を生成してもよい。
 制御部103は、上位層処理部101からの制御情報に基づいて、受信部105、および送信部107の制御を行なう制御信号を生成する。制御部103は、生成した制御信号を受信部105、および送信部107に出力して受信部105、および送信部107の制御を行なう。
 受信部105は、制御部103から入力された制御信号に従って、送受信アンテナ部109を介して基地局装置3から受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部101に出力する。
 無線受信部1057は、送受信アンテナ部109を介して受信した下りリンクの信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1057は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。
 多重分離部1055は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部1055は、チャネル測定部1059から入力された伝搬路の推定値から、PHICH、PDCCH、EPDCCH、およびPDSCHの伝搬路の補償を行なう。また、多重分離部1055は、分離した下りリンク参照信号をチャネル測定部1059に出力する。
 復調部1053は、PHICHに対して対応する符号を乗算して合成し、合成した信号に対してBPSK(Binary Phase Shift Keying)変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、自装置宛てのPHICHを復号し、復号したHARQインディケータを上位層処理部101に出力する。復調部1053は、PDCCHおよび/またはEPDCCHに対して、QPSK変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、PDCCHおよび/またはEPDCCHの復号を試み、復号に成功した場合、復号した下りリンク制御情報と下りリンク制御情報が対応するRNTIとを上位層処理部101に出力する。
 復調部1053は、PDSCHに対して、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM等の下りリンクグラントで通知された変調方式の復調を行ない、復号化部1051へ出力する。復号化部1051は、下りリンク制御情報で通知された符号化率に関する情報に基づいて復号を行い、復号した下りリンクデータ(トランスポートブロック)を上位層処理部101へ出力する。
 チャネル測定部1059は、多重分離部1055から入力された下りリンク参照信号から下りリンクのパスロスやチャネルの状態を測定し、測定したパスロスやチャネルの状態を上位層処理部101へ出力する。また、チャネル測定部1059は、下りリンク参照信号から下りリンクの伝搬路の推定値を算出し、多重分離部1055へ出力する。チャネル測定部1059は、CQIの算出のために、チャネル測定、および/または、干渉測定を行なう。
 送信部107は、制御部103から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部101から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ部109を介して基地局装置3に送信する。
 符号化部1071は、上位層処理部101から入力された上りリンク制御情報を畳込み符号化、ブロック符号化等の符号化を行う。また、符号化部1071は、PUSCHのスケジューリングに用いられる情報に基づきターボ符号化を行なう。
 変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。変調部1073は、PUSCHのスケジューリングに用いられる情報に基づき、空間多重されるデータの系列の数を決定し、MIMO(Multiple Input Multiple Output)SM(Spatial Multiplexing)を用いることにより同一のPUSCHで送信される複数の上りリンクデータを、複数の系列にマッピングし、この系列に対してプレコーディング(precoding)を行なう。
 上りリンク参照信号生成部1079は、基地局装置3を識別するための物理レイヤセル識別子(physical layer cell identity: PCI、Cell IDなどと称する。)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値などを基に、予め定められた規則(式)で求まる系列を生成する。多重部1075は、制御部103から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部1075は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部1075は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。
 無線送信部1077は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、ローパスフィルタを用いて余分な周波数成分を除去し、搬送波周波数にアップコンバート(up convert)し、電力増幅し、送受信アンテナ部109に出力して送信する。
 図8は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、上位層処理部301、制御部303、受信部305、送信部307、および、送受信アンテナ部309、を含んで構成される。また、上位層処理部301は、無線リソース制御部3011、スケジューリング部3013、および、D2D制御部3015を含んで構成される。また、受信部305は、復号化部3051、復調部3053、多重分離部3055、無線受信部3057とチャネル測定部3059を含んで構成される。また、送信部307は、符号化部3071、変調部3073、多重部3075、無線送信部3077と下りリンク参照信号生成部3079を含んで構成される。
 上位層処理部301は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部301は、受信部305、および送信部307の制御を行なうために制御情報を生成し、制御部303に出力する。
 上位層処理部301が備える無線リソース制御部3011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、送信部307に出力する。また、無線リソース制御部3011は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御部1011は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御部1011は、各種設定情報/パラメータを示す情報を送信/報知する。
 上位層処理部301が備えるスケジューリング部3013は、受信したチャネル状態情報およびチャネル測定部3059から入力された伝搬路の推定値やチャネルの品質などから、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式および送信電力などを決定する。スケジューリング部3013は、スケジューリング結果に基づき、受信部305、および送信部307の制御を行なうために制御情報(例えば、DCIフォーマット)を生成し、制御部303に出力する。スケジューリング部3013は、さらに、送信処理および受信処理を行うタイミングを決定する。
 上位層処理部301が備えるD2D制御部3015は、無線リソース制御部3011によって管理されている各種設定情報/パラメータに基づいて、セルラリンクを用いて通信している端末装置1におけるD2D発見、D2D通信、および/または、ProSe-assisted WLANダイレクト通信の制御を行う。D2D制御部3015は、他の基地局装置3または端末装置1に送信する、D2Dに関連する情報を生成してもよい。
 制御部303は、上位層処理部301からの制御情報に基づいて、受信部305、および送信部307の制御を行なう制御信号を生成する。制御部303は、生成した制御信号を受信部305、および送信部307に出力して受信部305、および送信部307の制御を行なう。
 受信部305は、制御部303から入力された制御信号に従って、送受信アンテナ部309を介して端末装置1から受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部301に出力する。無線受信部3057は、送受信アンテナ部309を介して受信された上りリンクの信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 無線受信部3057は、変換したディジタル信号からCP(Cyclic Prefix)に相当する部分を除去する。無線受信部3057は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出し多重分離部3055に出力する。
 多重分離部1055は、無線受信部3057から入力された信号をPUCCH、PUSCH、上りリンク参照信号などの信号に分離する。尚、この分離は、予め基地局装置3が無線リソース制御部3011で決定し、各端末装置1に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。また、多重分離部3055は、チャネル測定部3059から入力された伝搬路の推定値から、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部3055は、分離した上りリンク参照信号をチャネル測定部3059に出力する。
 復調部3053は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK(Binary Phase Shift Keying)、QPSK、16QAM、64QAM等の予め定められた、または自装置が端末装置1各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。復調部3053は、端末装置1各々に上りリンクグラントで予め通知した空間多重される系列の数と、この系列に対して行なうプリコーディングを指示する情報に基づいて、MIMO SMを用いることにより同一のPUSCHで送信された複数の上りリンクデータの変調シンボルを分離する。
 復号化部3051は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、又は自装置が端末装置1に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号化部3051は、上位層処理部301から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。チャネル測定部309は、多重分離部3055から入力された上りリンク参照信号から伝搬路の推定値、チャネルの品質などを測定し、多重分離部3055および上位層処理部301に出力する。
 送信部307は、制御部303から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、下りリンクデータを符号化、および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ部309を介して端末装置1に信号を送信する。
 符号化部3071は、上位層処理部301から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部3011が決定した符号化方式を用いて符号化を行なう。変調部3073は、符号化部3071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の予め定められた、または無線リソース制御部3011が決定した変調方式で変調する。
 下りリンク参照信号生成部3079は、基地局装置3を識別するための物理レイヤセル識別子(PCI)などを基に予め定められた規則で求まる、端末装置1が既知の系列を下りリンク参照信号として生成する。多重部3075は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号を多重する。つまり、多重部3075は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号をリソースエレメントに配置する。
 無線送信部3077は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDMシンボルを生成し、生成したOFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、ローパスフィルタにより余分な周波数成分を除去し、搬送波周波数にアップコンバート(up convert)し、電力増幅し、送受信アンテナ部309に出力して送信する。
 本実施形態の端末装置1は、他の端末装置1および基地局装置3(EUTRAN)と通信する端末装置1であって、前記他の端末装置1へ送信するD2D信号に対するサイクリックプリフィックスの長さを示す情報、および、前記基地局装置3へ送信する上りリンク信号に対するサイクリックプリフィックスの長さを示す情報を、前記基地局装置3から受信する受信部105を備える。
 本実施形態の端末装置1は、前記基地局装置3へ送信する上りリンク信号と前記他の端末装置1へ送信するD2D信号が同じセルで同時に発生した場合、前記基地局装置3へ送信する上りリンク信号の送信タイミングと前記他の端末装置1へ送信するD2D信号の送信タイミングが同じかどうか、および/または、前記基地局装置3へ送信する上りリンク信号に対するサイクリックプリフィックスの長さと前記他の端末装置1へ送信するD2D信号のサイクリックプリフィックスの長さが同じかどうかに、少なくとも基づいて、前記基地局装置3へ送信する上りリンク信号と前記他の端末装置1へ送信するD2D信号の両方を送信するか、前記基地局装置3へ送信する上りリンク信号と前記他の端末装置1へ送信するD2D信号の何れか一方を送信するかを決定する送信部107を備える。
 上記の上位層処理部101(設定部)は、D2D通信のモードの設定を行う。例えば、上記の上位層処理部101は、基地局装置3からの指示、T304タイマーなどに基づいて、D2D通信のモードを設定する。
 上記の端末装置1は、他の端末装置およびEUTRAN(Evolved Universal Terrestrial Radio Access Network)と通信する端末装置であって、端末装置間の通信のモードとして、前記EUTRANの範囲外における端末装置間の通信および前記EUTRANの範囲内における端末装置間の通信に使用可能なモード2を設定し、前記EUTRANの範囲外における前記モード2の端末装置間の通信のために少なくとも使用される第1の設定(予め設定された設定)と、前記EUTRANの範囲内における前記モード2の端末装置間の通信のために使用される第2の設定(予め設定された設定以外の設定)を設定する上記の上位層処理部101(設定部)と、ハンドオーバプロシージャ中に、モード2の端末装置間の通信の受信処理を行う受信部105と、を備える。
 上記の受信部105は、ハンドオーバプロシージャ中に、前記第1の設定に基づく、前記モード2の端末装置間の通信の受信処理を行ってもよい。
 上記の受信部105は、ハンドオーバプロシージャ中に、ソースセルに対する前記第2の設定に基づく、前記モード2の端末装置間の通信の受信処理を行ってもよい。
 上記の受信部105は、ハンドオーバプロシージャ中に、ターゲットセルに対する前記第2の設定に基づく、前記モード2の端末装置間の通信の受信処理を行ってもよい。
 上記の送信部107は、ハンドオーバプロシージャ中に、前記第1の設定に基づく、前記モード2の端末装置間の通信の送信処理を行ってもよい。
 上記の送信部107は、ソースセルに対する前記第2の設定に基づく、前記モード2の端末装置間の通信の送信処理を行ってもよい。
 上記の送信部107は、ハンドオーバプロシージャ中に、ターゲットセルに対する前記第2の設定に基づく、前記モード2の端末装置間の通信の送信処理を行ってもよい。
 上記の送信部107は、ハンドオーバプロシージャ中に、前記モード2の端末装置間の通信の送信処理を行わなくてもよい。
 これにより、端末装置1間で効率的にD2Dを行うことができる。また、基地局装置3は、セルラリンクを用いて、端末装置1間のD2Dを効率的に制御することができる。
 本発明に関わる基地局装置3、および端末装置1で動作するプログラムは、本発明に関わる上記実施形態の機能を実現するように、CPU(Central Processing Unit)等を制御するプログラム(コンピュータを機能させるプログラム)であっても良い。そして、これら装置で取り扱われる情報は、その処理時に一時的にRAM(Random Access Memory)に蓄積され、その後、Flash ROM(Read Only Memory)などの各種ROMやHDD(Hard Disk Drive)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行われる。
 尚、上述した実施形態における端末装置1、基地局装置3の一部、をコンピュータで実現するようにしても良い。その場合、この制御機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。
 尚、ここでいう「コンピュータシステム」とは、端末装置1、又は基地局装置3に内蔵されたコンピュータシステムであって、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態における基地局装置3は、複数の装置から構成される集合体(装置グループ)として実現することもできる。装置グループを構成する装置の各々は、上述した実施形態に関わる基地局装置3の各機能または各機能ブロックの一部、または、全部を備えてもよい。装置グループとして、基地局装置3の一通りの各機能または各機能ブロックを有していればよい。また、上述した実施形態に関わる端末装置1は、集合体としての基地局装置と通信することも可能である。
 また、上述した実施形態における基地局装置3は、EUTRAN(Evolved Universal Terrestrial Radio Access Network)であってもよい。また、上述した実施形態における基地局装置3は、eNodeBに対する上位ノードの機能の一部または全部を有してもよい。
 また、上述した実施形態における端末装置1、基地局装置3の一部、又は全部を典型的には集積回路であるLSIとして実現してもよいし、チップセットとして実現してもよい。端末装置1、基地局装置3の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 また、上述した実施形態では、通信装置の一例として端末装置を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置にも適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明は、端末装置、基地局装置を含む通信装置その他の電子機器の分野で利用が可能である。
1(1A、1B、1C)  端末装置
3  基地局装置
101  上位層処理部
103  制御部
105  受信部
107  送信部
109  送受信アンテナ部
301  上位層処理部
303  制御部
305  受信部
307  送信部
309  送受信アンテナ部
1011  無線リソース制御部
1013  スケジューリング情報解釈部
1015  D2D制御部
3011  無線リソース制御部
3013  スケジューリング部
3015  D2D制御部

Claims (3)

  1.  ソースセルからターゲットセルにハンドオーバするよう構成される端末装置であって、
     前記ソースセルにおいて前記ターゲットセルの周波数を示す第1の情報を受信し、前記ターゲットセルにおいて第1の通信に関するシステム情報を受信するよう構成される受信部と、
     前記ソースセルから前記ターゲットセルへの前記ハンドオーバに失敗した場合に、前記ターゲットセルにおいて受信した前記システム情報によって示されるリソースプールに含まれるリソースを用いて、前記第1の通信の送信を行うよう構成される送信部と、を備え、
     前記第1の通信は、前記端末装置および他の端末装置が互いに直接通信する通信のモードである
     端末装置。
  2.  ソースセルからターゲットセルにハンドオーバするよう構成される端末装置に実装される集積回路であって、
     前記ソースセルにおいて前記ターゲットセルの周波数を示す第1の情報を受信する機能と、
     前記ターゲットセルにおいて第1の通信に関するシステム情報を受信する機能と、
     前記ソースセルから前記ターゲットセルへの前記ハンドオーバに失敗した場合に、前記ターゲットセルにおいて受信した前記システム情報によって示されるリソースプールに含まれるリソースを用いて、前記第1の通信の送信を行う機能と、を含む一連の機能を前記端末装置に発揮させ、
     前記第1の通信は、前記端末装置および他の端末装置が互いに直接通信する通信のモードである
     集積回路。
  3.  ソース基地局装置に対応するソースセルからターゲット基地局装置に対応するターゲットセルにハンドオーバするよう構成される端末装置に用いられる通信方法であって、
     前記ターゲット基地局装置によって生成され、前記ソース基地局装置によって転送される前記ターゲットセルの周波数を示す第1の情報を受信し、
     前記ターゲットセルにおいて第1の通信に関するシステム情報を受信し、
     前記ソースセルから前記ターゲットセルへの前記ハンドオーバに失敗した場合に、前記ターゲットセルから受信した前記システム情報によって示されるリソースプールに含まれるリソースを用いて、前記第1の通信の送信を行い、
     前記第1の通信は、前記端末装置および他の端末装置が互いに直接通信する通信のモードである
     通信方法。
PCT/JP2015/072056 2014-08-05 2015-08-04 端末装置、集積回路、および、通信方法 WO2016021585A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15829337.3A EP3179822B1 (en) 2014-08-05 2015-08-04 Terminal device and method for device-to-device communication
US15/500,983 US10075887B2 (en) 2014-08-05 2015-08-04 Terminal device, integrated circuit, and communication method
CN201580041843.9A CN106576396B (zh) 2014-08-05 2015-08-04 终端装置、集成电路以及通信方法
JP2016540240A JP6635267B2 (ja) 2014-08-05 2015-08-04 端末装置、および、通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-159392 2014-08-05
JP2014159392 2014-08-05

Publications (1)

Publication Number Publication Date
WO2016021585A1 true WO2016021585A1 (ja) 2016-02-11

Family

ID=55263847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072056 WO2016021585A1 (ja) 2014-08-05 2015-08-04 端末装置、集積回路、および、通信方法

Country Status (5)

Country Link
US (1) US10075887B2 (ja)
EP (1) EP3179822B1 (ja)
JP (1) JP6635267B2 (ja)
CN (1) CN106576396B (ja)
WO (1) WO2016021585A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512986A (ja) * 2016-04-01 2019-05-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハンドオーバにおけるリソース設定のための方法およびデバイス

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9872286B2 (en) 2014-11-21 2018-01-16 Apple Inc. Compressed system information for link budget limited UEs in a radio access network
US11382080B2 (en) * 2015-01-09 2022-07-05 Apple Inc. System information signaling for link budget limited wireless devices
US10091775B2 (en) 2015-08-18 2018-10-02 Apple Inc. Non-PDCCH signaling of SIB resource assignment
WO2017132997A1 (zh) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 用于切换的资源配置的方法、网络接入点以及移动台
CN111886916A (zh) * 2018-03-16 2020-11-03 瑞典爱立信有限公司 用于设备到设备通信的技术
KR20200034531A (ko) * 2018-09-21 2020-03-31 삼성전자주식회사 무선 통신 시스템에서 차량 통신을 지원하기 위한 장치 및 방법
EP4224928A4 (en) * 2020-09-30 2023-11-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. COMMUNICATION METHOD AND COMMUNICATION APPARATUS

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090215459A1 (en) * 2008-02-25 2009-08-27 Richard Lee-Chee Kuo Method and Apparatus for Improving Random Access Procedure for Handover
US20140171085A1 (en) * 2011-07-26 2014-06-19 Nokia Corporation Method and apparatus for handover processing
CN103686691B (zh) * 2012-09-18 2018-01-05 电信科学技术研究院 信号及配置信息发送和终端发现方法与设备
CN103716850B (zh) * 2012-09-29 2018-10-26 中兴通讯股份有限公司 通信路径的切换方法、系统及装置
US9730090B2 (en) * 2012-11-15 2017-08-08 Mediatek, Inc. Radio link failure report extensions in mobile communication networks
GB2508353B (en) * 2012-11-28 2015-07-22 Broadcom Corp Apparatuses and methods for a communication system
US9407302B2 (en) * 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
US20150045028A1 (en) * 2013-08-09 2015-02-12 Qualcomm Incorporated User equipment specific mobility optimization and improved performance metrics for improving handover performance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"U.S. Department of Commerce, Public safety perspective on resource allocation for D2D group communications", 3GPP TSG-RAN WG1 #76 R1- 140427, 1 February 2014 (2014-02-01) *
ERICSSON: "Frame Structure for D2D-Enabled LTE Carriers", 3GPP TSG RAN WG1 MEETING #76 R1- 140775, 31 January 2014 (2014-01-31), XP050751732 *
ERICSSON: "On scheduling procedure for D2D", 3GPP TSG-RAN WG1 MEETING #76 RL-140778, 1 February 2014 (2014-02-01), XP050752256 *
See also references of EP3179822A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512986A (ja) * 2016-04-01 2019-05-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハンドオーバにおけるリソース設定のための方法およびデバイス
US10813021B2 (en) 2016-04-01 2020-10-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for resource configuration in handover

Also Published As

Publication number Publication date
JPWO2016021585A1 (ja) 2017-05-18
US10075887B2 (en) 2018-09-11
US20170230876A1 (en) 2017-08-10
CN106576396B (zh) 2020-05-19
EP3179822A1 (en) 2017-06-14
EP3179822B1 (en) 2019-10-02
CN106576396A (zh) 2017-04-19
EP3179822A4 (en) 2018-03-07
JP6635267B2 (ja) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6155501B2 (ja) 端末装置、基地局装置および無線通信方法
JP6568066B2 (ja) 移動局装置、基地局装置、および方法
WO2016047753A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP6677642B2 (ja) 端末装置、通信方法、および、集積回路
WO2015020190A1 (ja) 端末装置、基地局装置、通信方法、および集積回路
WO2015020108A1 (ja) 端末、基地局、集積回路、および通信方法
JP6635267B2 (ja) 端末装置、および、通信方法
JP6541008B2 (ja) 端末装置、および、通信方法
JP6639395B2 (ja) 端末装置、通信方法、および、集積回路
JP6201269B2 (ja) 端末装置、通信方法および集積回路
JP6340653B2 (ja) 端末装置、基地局装置、および、通信方法
WO2016125580A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
WO2016125584A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829337

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15500983

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016540240

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015829337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829337

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE