WO2016020373A1 - Prodrugs comprising an aminoalkyl glycine linker - Google Patents
Prodrugs comprising an aminoalkyl glycine linker Download PDFInfo
- Publication number
- WO2016020373A1 WO2016020373A1 PCT/EP2015/067929 EP2015067929W WO2016020373A1 WO 2016020373 A1 WO2016020373 A1 WO 2016020373A1 EP 2015067929 W EP2015067929 W EP 2015067929W WO 2016020373 A1 WO2016020373 A1 WO 2016020373A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alkyl
- group
- formula
- independently
- prodrug
- Prior art date
Links
- 0 CC1(C*C1)N(C)* Chemical compound CC1(C*C1)N(C)* 0.000 description 14
- CJMPQJDYEONFGO-UHFFFAOYSA-N C1C2C=CC1C1C2CNC1 Chemical compound C1C2C=CC1C1C2CNC1 CJMPQJDYEONFGO-UHFFFAOYSA-N 0.000 description 1
- PMSSGBHWXUPKOP-UHFFFAOYSA-N CC(C(CS)N)=O Chemical compound CC(C(CS)N)=O PMSSGBHWXUPKOP-UHFFFAOYSA-N 0.000 description 1
- AKYZNGLLWXGHMQ-UHFFFAOYSA-N CC(C)CC(C)(C)CN Chemical compound CC(C)CC(C)(C)CN AKYZNGLLWXGHMQ-UHFFFAOYSA-N 0.000 description 1
- APQBSUNGPSYRQX-UHFFFAOYSA-N CC(C)Oc(c(F)c(c(F)c1F)F)c1F Chemical compound CC(C)Oc(c(F)c(c(F)c1F)F)c1F APQBSUNGPSYRQX-UHFFFAOYSA-N 0.000 description 1
- NBDRBROIEIOFTH-UHFFFAOYSA-N CNOCc1cc2ccccc2[n]1C Chemical compound CNOCc1cc2ccccc2[n]1C NBDRBROIEIOFTH-UHFFFAOYSA-N 0.000 description 1
- JDFXJJLFADUZIY-UHFFFAOYSA-N CON(C(CC1)=O)C1=O Chemical compound CON(C(CC1)=O)C1=O JDFXJJLFADUZIY-UHFFFAOYSA-N 0.000 description 1
- WQZPUWMOQOEQHK-UHFFFAOYSA-N CON(C(CC1S(O)(=O)=O)=O)C1=O Chemical compound CON(C(CC1S(O)(=O)=O)=O)C1=O WQZPUWMOQOEQHK-UHFFFAOYSA-N 0.000 description 1
- ZRQUIRABLIQJRI-UHFFFAOYSA-N COc(c(F)c(c(F)c1F)F)c1F Chemical compound COc(c(F)c(c(F)c1F)F)c1F ZRQUIRABLIQJRI-UHFFFAOYSA-N 0.000 description 1
- CVYZVNVPQRKDLW-UHFFFAOYSA-N COc(c([N+]([O-])=O)c1)ccc1[N+]([O-])=O Chemical compound COc(c([N+]([O-])=O)c1)ccc1[N+]([O-])=O CVYZVNVPQRKDLW-UHFFFAOYSA-N 0.000 description 1
- BNUHAJGCKIQFGE-UHFFFAOYSA-N COc(cc1)ccc1[N+]([O-])=O Chemical compound COc(cc1)ccc1[N+]([O-])=O BNUHAJGCKIQFGE-UHFFFAOYSA-N 0.000 description 1
- GPIUUMROPXDNRH-UHFFFAOYSA-N O=C(C1C2C3C=CC1C3)NC2=O Chemical compound O=C(C1C2C3C=CC1C3)NC2=O GPIUUMROPXDNRH-UHFFFAOYSA-N 0.000 description 1
- OAZFTIPKNPTDIO-UHFFFAOYSA-N O=C(c1c2cccc1)N(CCCCCCBr)C2=O Chemical compound O=C(c1c2cccc1)N(CCCCCCBr)C2=O OAZFTIPKNPTDIO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/542—Carboxylic acids, e.g. a fatty acid or an amino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/65—Peptidic linkers, binders or spacers, e.g. peptidic enzyme-labile linkers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6889—Conjugates wherein the antibody being the modifying agent and wherein the linker, binder or spacer confers particular properties to the conjugates, e.g. peptidic enzyme-labile linkers or acid-labile linkers, providing for an acid-labile immuno conjugate wherein the drug may be released from its antibody conjugated part in an acidic, e.g. tumoural or environment
Definitions
- the present invention relates to novel prodrugs of primary or secondary amine- or hydroxyl- comprising biologically active moieties and pharmaceutically acceptable salts thereof, prodrug reagents, pharmaceutical compositions comprising said prodrugs and the use of said prodrugs.
- such drug can be conjugated with a carrier.
- carriers in drug delivery are either used in a non- covalent fashion, with the drug physicochemically formulated into a solvent-carrier mixture, or by covalent attachment of a carrier reagent to one of the drug's functional groups.
- a drug may be covalently conjugated to a carrier via a stable linker or via a reversible prodrug linker moiety from which the drug is released. If the drug is stably connected to the carrier, such conjugate needs to exhibit sufficient residual activity to have a pharmaceutical effect and the conjugate is constantly in an active form.
- conjugates are referred to as carrier-linked prodrugs.
- carrier-linked prodrugs may exhibit no or little drug activity, i.e. carrier-linked prodrug is pharmacologically inactive.
- This approach is applied to various classes of molecules, from so-called small molecules, through natural products up to large proteins.
- the biologically active moiety of such a carrier-linked prodrug can be released by enzymatic or non-enzymatic cleavage of the linkage between the carrier and the biologically active moiety, or by a sequential combination of both.
- enzyme-dependence is usually less preferred, because enzyme levels may vary significantly between patients which makes the correct dosing difficult.
- non-enzymatically cleavable reversible prodrug linkers are known in the art, such as for example those disclosed in WO2005/099768 A2, WO2006/136586 A2, WO2009/095479 A2, WO2011/012722 Al, WO2011/089214 Al, WO2011/089216 Al and WO2011/089215 Al .
- the chain connecting the biologically active moiety with the spacer and/or carrier does not comprise the same type of linkage that is used to connect the biologically active moiety to the reversible prodrug linker.
- ester linkages may potentially lead to a small amount of linker cleavage at the second ester linkage and not at the ester connecting the biologically active moiety to the reversible linker moiety. This is undesired, because in such case the drug would not be released in its native form, but with a small tag attached.
- -D is a primary or secondary amine- or hydroxyl-comprising biologically active moiety
- -L comprises, preferably consists of, a linker moiety -L 1 represented by formula (I)
- the dashed line indicates attachment to the primary or secondary amine or hydroxyl of the biologically active moiety by forming an amide or ester linkage, respectively;
- each R 10 , R 10a , R 10b is independently selected from the group consisting of -H, -T, Ci -2 o alkyl, C 2 _ 2 o alkenyl, and C 2 _ 20 alkynyl; wherein -T, C ⁇ o alkyl, C 2 _ 20 alkenyl, and C 2 _ 2 o alkynyl are optionally substituted with one or more R n , which are the same or different and wherein Ci -20 alkyl, C 2-20 alkenyl, and C 2-20 alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, -C(0)0-, -0-, -C(O)-, -C(0)N(R 12 )
- one or more of the pairs R'/R la , R 2 /R 2a , R 3 /R 3a , R 6 /R 6a , R 7 /R 7a are joined together with the atom to which they are attached to form a C 3- io cycloalkyl or a 3- to 10-membered heterocyclyl;
- one or more of the pairs RVR 2 , RVR 3 , R'/R 4 , R'/R 5 , RVR 6 , RVR 7 , R 2 /R 3 , R 2 /R 4 , R 2 /R 5 , R 2 /R 6 , R 2 /R 7 , R 3 /R 4 , R 3 /R 5 , R 3 /R 6 , R 3 /R 7 , R 4 /R 5 , R 4 /R 6 , R 4 /R 7 , R 5 /R 6 , R 5 /R 7 , R 6 /R 7 are joint together with the atoms to which they are attached to form a ring A;
- A is selected from the group consisting of phenyl; naphthyl; indenyl; indanyl; tetralinyl; C 3- io cycloalkyl; 3- to 10-membered heterocyclyl; and 8- to 11-membered heterobicyclyl; wherein -L 1 is substituted with one to five moieties -L 2 -Z, preferably -L 1 is substituted with one moiety -L -Z, and is optionally further substituted; wherein
- -L - is a single chemical bond or a spacer moiety
- -Z is a carrier moiety.
- R 5 and R 5a are other than -H, it is preferred that they are connected to the nitrogen of moiety
- prodrugs comprising the reversible prodrug linker moiety L of formula (I) or their pharmaceutically acceptable salts release their biologically active moiety with advantageous properties, such as without releasing undesired side products and with a favourable pH dependency of the release.
- drug refers to a substance used in the treatment, cure, prevention, or diagnosis of a disease or used to otherwise enhance physical or mental well-being. If a drug is conjugated to another moiety, the part of the resulting product that originated from the drug is referred to as "biologically active moiety". It is understood that the term “primary or secondary amine-comprising drug” refers to a drug having at least one primary or secondary amine functional group, which primary or secondary amine-comprising drug may optionally have one or more further functional group(s) including one or more additional primary and/or secondary amine functional group(s).
- primary or secondary amine-comprising drug is conjugated to, for example, a moiety -L 1 , it is referred to as "primary or amine-comprising biologically active moiety", even though it is understood that said primary or secondary amine functional group became part of the amide bond connecting both moieties.
- hydroxyl-comprising drug and “hydroxyl- comprising biologically active moiety” are used accordingly: It is understood that the term “hydroxyl-comprising drug” refers to a drug having at least one hydroxyl functional group, which hydroxyl-comprising drug may optionally have one or more further functional group(s) including one or more additional hydroxyl group(s).
- hydroxyl-comprising drug is conjugated to, for example, a moiety -L 1 , it is referred to as “hydroxyl-comprising biologically active moiety", even though it is understood that said hydroxyl functional group became part of the ester bond connecting both moieties.
- An alternative term for “primary or secondary amine-comprising biologically active moiety” is “primary or secondary amine- comprising drug moiety”.
- an alternative term for "hydroxyl-comprising biologically active moiety” is “hydroxyl-comprising drug moiety”.
- prodrug or “carrier-linked prodrug” refers to a biologically active moiety reversibly and covalently connected to a specialized protective group through a reversible prodrug linker moiety comprising a reversible linkage with the biologically active moiety to alter or to eliminate undesirable properties in the parent molecule. This also includes the enhancement of desirable properties in the drug and the suppression of undesirable properties.
- the specialized non-toxic protective group is referred to as "carrier”.
- a prodrug releases it reversibly and covalently bound biologically active moiety in the form of its corresponding drug.
- a “biodegradable linkage” or a “reversible linkage” is a linkage that is hydrolytically degradable, i.e. cleavable, in the absence of enzymes under physiological conditions (aqueous buffer at pH 7.4, 37°C) with a half-life ranging from one hour to twelve months.
- a "permanent linkage” is not hydrolytically degradable, i.e. cleavable, in the absence of enzymes under physiological conditions (aqueous buffer at pH 7.4, 37°C) with a half-life of less than twelve months.
- the term "traceless prodrug linker” means a reversible prodrug linker which upon cleavage releases the drug in its free form.
- the term “free form” of a drug means the drug in its unmodified, pharmacologically active form.
- the reversible prodrug linker of the present invention, L 1 is a traceless prodrug linker.
- the term “excipient” refers to a diluent, adjuvant, or vehicle with which the therapeutic is administered.
- Such pharmaceutical excipient can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, including but not limited to peanut oil, soybean oil, mineral oil, sesame oil and the like.
- Water is a preferred excipient when the pharmaceutical composition is administered orally.
- Saline and aqueous dextrose are preferred excipients when the pharmaceutical composition is administered intravenously.
- Saline solutions and aqueous dextrose and glycerol solutions are preferably employed as liquid excipients for injectable solutions.
- Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, mannitol, trehalose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- the pharmaceutical composition can also contain minor amounts of wetting or emulsifying agents, pH buffering agents, like, for example, acetate, succinate, tris, carbonate, phosphate, HEPES (4- (2-hydroxyethyl)-l-piperazineethanesulfonic acid), MES (2-( ⁇ 1 ⁇ 1 ⁇ ) ⁇ 1 ⁇ 8 ⁇ 1 ⁇ ) ⁇ acid), or can contain detergents, like Tween, poloxamers, poloxamines, CHAPS, Igepal, or amino acids like, for example, glycine, lysine, or histidine.
- pH buffering agents like, for example, acetate, succinate, tris, carbonate, phosphate, HEPES (4- (2-hydroxyethyl)-l-piperazineethanesulfonic acid), MES (2-( ⁇ 1 ⁇ 1 ⁇ ) ⁇ 1 ⁇ 8 ⁇ 1 ⁇ ) ⁇ acid
- detergents like Tween, poloxamers, poloxamines, CHAPS, Igepal, or amino
- the pharmaceutical composition can be formulated as a suppository, with traditional binders and excipients such as triglycerides.
- Oral formulation can include standard excipients such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.
- Such compositions will contain a therapeutically effective amount of the drug or biologically active moiety, together with a suitable amount of excipient so as to provide the form for proper administration to the patient.
- the formulation should suit the mode of administration.
- hydrogel means a hydrophilic or amphiphilic polymeric network composed of homopolymers or copolymers, which is insoluble due to the presence of covalent chemical crosslinks.
- the crosslinks provide the network structure and physical integrity.
- Hydrogels exhibit a thermodynamic compatibility with water which allows them to swell in aqueous media.
- reagent means a chemical compound which comprises at least one functional group for reaction with the functional group of another chemical compound or drug. It is understood that a drug comprising a functional group (such as a primary or secondary amine or hydroxyl functional group) is also a reagent.
- backbone reagent means a reagent, which is suitable as a starting material for forming hydrogels.
- a backbone reagent preferably does not comprise biodegradable linkages.
- a backbone reagent may comprise a "branching core” which term refers to an atom or moiety to which more than one other moiety is attached.
- crosslinker reagent means a linear or branched reagent, which is suitable as a starting material for crosslinking backbone reagents.
- the crosslinker reagent is a linear chemical compound.
- a crosslinker reagent preferably comprises at least one biodegradable linkage.
- moiety means a part of a molecule, which lacks one or more atom(s) compared to the corresponding reagent. If, for example, a reagent of the formula "H-X-H” reacts with another reagent and becomes part of the reaction product, the corresponding moiety of the reaction product has the structure "H-X-” or "-X- " , whereas each "- " indicates attachment to another moiety. Accordingly, a biologically active moiety is released from a prodrug as a drug.
- lysine in bound form refers to a lysine moiety which lacks one or more atom(s) of the lysine reagent and is part of a molecule.
- the term "functional group” means a group of atoms which can react with other groups of atoms.
- activated functional group means a functional group, which is connected to an activating group, i.e. a functional group was reacted with an activating reagent.
- Preferred activated functional groups include but are not limited to activated ester groups, activated carbamate groups, activated carbonate groups and activated thiocarbonate groups.
- Preferred activating groups are selected from formulas (f-i) to (f-vii):
- b is 1, 2, 3 or 4;
- X H is CI, Br, I, or F.
- a preferred activated ester has the formula
- X F is selected from formula (f-i), (f-ii), (f-iii), (f-iv), (f-v), (f-vi) and (f-vii).
- a preferred activated carbamate has the formula
- X F is selected from formula (f-i), (f-ii), (f-iii), (f-iv), (f-v), (f-vi) and (f-vii).
- a preferred activated carbonate has the formula
- X F is selected from formula (f-i), (f-ii), (f-iii), (f-iv), (f-v), (f-vi) and (f-vii).
- a preferred activated thioester has the formula
- X F is selected from formula (f-i), (f-ii), (f-iii), (f-iv), (f-v), (f-vi) and (f-vii).
- an "activated end functional group” is an activated functional group which is localized at the end of a moiety or molecule, i.e. is a terminal activated functional group.
- the term “capping group” means a moiety which is irreversibly, i.e. permanently, connected to a functional group to render it incapable of reacting with functional groups of other reagents or moieties.
- the term “protecting group” means a moiety which is reversibly connected to a functional group to render it incapable of reacting with, for example, another functional group.
- Suitable alcohol (-OH) protecting groups are, for example, acetyl, benzoyl, benzyl, ⁇ - methoxyethoxymethyl ether, dimethoxytrityl, methoxymethyl ether, methoxytrityl, p- methoxybenzyl ether, methylthiomethyl ether, pivaloyl, tetrahydropyranyl, trityl, trimethylsilyl, teri-butyldimethylsilyl, tri-z ' so-propylsilyloxymethyl, triisopropylsilyl ether, methyl ether, and ethoxyethyl ether.
- Suitable amine protecting groups are, for example, ortho nitrobenzosulfonyl, carbobenzyloxy, p-methoxybenzyl carbonyl, tert-butyloxycarbonyl, 9- fluorenylmethyloxyarbonyl, acetyl, benzoyl, benzyl, carbamate, p-methoxybenzyl, 3,4- dimethoxybenzyl, /7-methoxyphenyl, and tosyl.
- Suitable carbonyl protecting groups are, for example, acetals and ketals, acylals and dithianes.
- Suitable carboxylic acid protecting groups are, for example, methyl esters, benzyl esters, tert-butyl esters, 2,6-dimethylphenol, 2,6- diisopropylphenol, 2,6.-di-tert-butylphenol, silyl esters, orthoesters, and oxazoline.
- Suitable phosphate protecting groups are, for example, 2-cyanoethyl and methyl.
- the invention also comprises their corresponding pharmaceutically or toxicologically acceptable salts, in particular their pharmaceutically utilizable salts.
- the compounds of the formula (I) which contain acidic groups can be used according to the invention, for example, as alkali metal salts, alkaline earth metal salts or as ammonium salts. More precise examples of such salts include sodium salts, potassium salts, calcium salts, magnesium salts or salts with ammonia or organic amines such as, for example, ethylamine, ethanolamine, triethanolamine or amino acids.
- Compounds of the formula (I) which contain one or more basic groups, i.e. groups which can be protonated, can be present and can be used according to the invention in the form of their addition salts with inorganic or organic acids.
- acids examples include hydrogen chloride, hydrogen bromide, phosphoric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acids, oxalic acid, acetic acid, tartaric acid, lactic acid, salicylic acid, benzoic acid, formic acid, propionic acid, pivalic acid, diethylacetic acid, malonic acid, succinic acid, pimelic acid, fumaric acid, maleic acid, malic acid, sulfaminic acid, phenylpropionic acid, gluconic acid, ascorbic acid, isonicotinic acid, citric acid, adipic acid, and other acids known to the person skilled in the art.
- the invention also includes, in addition to the salt forms mentioned, inner salts or betaines (zwitterions).
- inner salts or betaines zwitterions.
- the respective salts according to the formula (I) can be obtained by customary methods which are known to the person skilled in the art like, for example by contacting these with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange with other salts.
- the present invention also includes all salts of the compounds of the formula (I) which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of pharmaceutically acceptable salts.
- pharmaceutically acceptable means approved by a regulatory agency such as the EMEA (Europe) and/or the FDA (US) and/or any other national regulatory agency for use in animals, preferably in humans.
- small molecule biologically active moiety refers to an organic biologically active moiety having a molecular weight of less than 1000 Da, such as less than 900 Da or less than 800 Da.
- oligonucleotide refers to double- or single- stranded RNA and DNA with preferably 2 to 1000 nucleotides and any modifications thereof. Modifications include, but are not limited to, those which provide other chemical groups that incorporate additional charge, polarizability, hydrogen bonding, electrostatic interaction, and fluxionality to the nucleic acid ligand bases or to the nucleic acid ligand as a whole.
- modifications include, but are not limited, to 2'-position sugar modifications, 5-position pyrimidine modifications, 8-position purine modifications, modifications at exocyclic amines, substitution of 4-thiouridines, substitution of 5-bromo or 5-iodo-uracil; backbone modifications, methylations, unusual base-pairing combinations such as the isobases isocytidine and isoguanidine and the like. Modifications can also include 3' and 5' modifications such as capping and change of stereochemistry. The term also includes aptamers.
- peptide nucleic acids refers to organic polymers having a peptidic backbone, i.e. a backbone in which the monomers are connected to each other through peptide linkages, to which nucleobases, preferably adenine, cytosine, guanine, thymine and uracil, are attached.
- a preferred backbone comprises N-(2-aminoethyl)-glycine.
- peptide refers to a chain of at least 2 and up to and including 50 amino acid monomer moieties linked by peptide (amide) linkages.
- peptide also includes peptidomimetics, such as D-peptides, peptoids or beta-peptides, and covers such peptidomimetic chains with up to and including 50 monomer moieties.
- protein refers to a chain of more than 50 amino acid monomer moieties linked by peptide linkages, in which preferably no more than 12000 amino acid monomers are linked by peptide linkages, such as no more than 10000 amino acid monomer moieties, no more than 8000 amino acid monomer moieties, no more than 5000 amino acid monomer moieties or no more than 2000 amino acid monomer moieties.
- polymer means a molecule comprising repeating structural units, i.e. the monomers, connected by chemical bonds in a linear, circular, branched, crosslinked or dendrimeric way or a combination thereof, which may be of synthetic or biological origin or a combination of both. It is understood that a polymer may also comprise one or more other chemical group(s) and/or moiety/moieties, such as, for example, one or more functional group(s).
- a soluble polymer has a molecular weight of at least 0.5 kDa, e.g.
- polymeric means a reagent or a moiety comprising one or more polymer(s).
- the molecular weight ranges, molecular weights, ranges of numbers of monomers in a polymer and numbers of monomers in a polymer as used herein refer to the number average molecular weight and number average of monomers.
- number average molecular weight means the ordinary arithmetic means of the molecular weights of the individual polymers.
- polymerization or “polymerizing” means the process of reacting monomer or macromonomer reagents in a chemical reaction to form polymer chains or networks, including but not limited to hydrogels.
- macromonomer means a molecule that was obtained from the polymerization of monomer reagents.
- condensation polymerization or “condensation reaction” means a chemical reaction, in which the functional groups of two reagents react to form one single molecule, i.e. the reaction product, and a low molecular weight molecule, for example water, is released.
- the term "suspension polymerization” means a heterogeneous and/or biphasic polymerization reaction, wherein the monomer reagents are dissolved in a first solvent, forming the disperse phase which is emulsified in a second solvent, forming the continuous phase.
- the monomer reagents are the at least one backbone reagent and the at least one crosslinker reagent. Both the first solvent and the monomer reagents are not soluble in the second solvent.
- Such emulsion is formed by stirring, shaking, exposure to ultrasound or MicrosieveTM emulsification, more preferably by stirring or MicrosieveTM emulsification and more preferably by stirring.
- This emulsion is stabilized by an appropriate emulsifier.
- the polymerization is initiated by addition of a base as initiator which is soluble in the first solvent.
- a suitable commonly known base suitable as initiator may be a tertiary base, such as tetramethylethylenediamine (TMEDA).
- TEDA tetramethylethylenediamine
- the term "immiscible" means the property where two substances are not capable of combining to form a homogeneous mixture.
- polyamine means a reagent or moiety comprising more than one amine (-NH- and/or -NH 2 ), e.g. from 2 to 64 amines, from 4 to 48 amines, from 6 to 32 amines, from 8 to 24 amines, or from 10 to 16 amines.
- Particularly preferred polyamines comprise from 2 to 32 amines.
- hydrogel means a hydrophilic or amphiphilic polymeric network composed of homopolymers or copolymers, which is insoluble due to the presence of covalent chemical crosslinks.
- the crosslinks provide the network structure and physical integrity.
- PEG-based comprising at least X% PEG in relation to a moiety or reagent means that said moiety or reagent comprises at least X% (w/w) ethylene glycol units (-CH2CH2O-), wherein the ethylene glycol units may be arranged blockwise, alternating or may be randomly distributed within the moiety or reagent and preferably all ethylene glycol units of said moiety or reagent are present in one block; the remaining weight percentage of the PEG-based moiety or reagent are other moieties preferably selected from the following moieties and linkages:
- Ci-50 alkyl C 2- 5o alkenyl, C2-50 alkynyl, C 3- io cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, phenyl, naphthyl, indenyl, indanyl, and tetralinyl; and
- dashed lines indicate attachment to the remainder of the moiety or reagent
- R and R a are independently of each other selected from the group consisting of H, methyl, ethyl, propyl, butyl, pentyl and hexyl.
- hyaluronic acid-based comprising at least X% hyaluronic acid is used accordingly.
- substituted means that one or more -H atom(s) of a molecule or moiety are replaced by a different atom or a group of atoms, which are referred to as "substituent".
- the one or more further optional substituents are independently of each other selected from the group consisting of halogen, -CN, -COOR xl , -OR xl , -C(0)R xl , -C(0)N(R xl R xla ), -S(0) 2 N(R xl R xla ), -S(0)N(R xl R xla ), -S(0) 2 R xl , -S(0)R xl , -N(R xl )S(0) 2 N(R xla R xlb ), -SR xl , -N(R xl R xla ), -N0 2 , -OC(0)R xl , -N(R xl )C(0)R xla , -N(R xl )S(0) 2 R xla , -N(R xl )S(0) 2 R xla , -N(R x
- the one or more further optional substituents are independently of each other selected from the group consisting of halogen, -CN, -COOR xl , -OR xl , -C(0)R xl , -C(0)N(R xl R xla ), -S(0) 2 N(R xl R xla ), -S(0)N(R xl R xla ), -S(0) 2 R xl , -S(0)R xl , -N(R xl )S(0) 2 N(R xla R xlb ), -SR xl , -N(R xl R xla ), -N0 2 , -OC(0)R xl , -N(R xl )C(0)R xla , -N(R xl )S(0) 2 R xla , -N(R xl )S(0) 2 R xla , -N(R x
- each R x , R x a , R x is independently selected from the group consisting of -H, halogen, Ci -6 alkyl, C 2 _ 6 alkenyl, and C 2 _ 6 alkynyl;
- the one or more further optional substituents are independently of each other selected from the group consisting of halogen, -CN, -COOR xl , -OR xl , -C(0)R xl , -C(0)N(R xl R xla ), -S(0) 2 N(R xl R xla ), -S(0)N(R xl R xla ), -S(0) 2 R xl , -S(0)R xl , -N(R xl )S(0) 2 N(R xla R xlb ), -SR xl , -N(R xl R xla ), -N0 2 , -OC(0)R xl , -N(R xl )C(0)R xla , -N(R xl )S(0) 2 R xla , -N(R xl )S(0) 2 R xla , -N(R x
- a maximum of 6 -H atoms of an optionally substituted molecule are independently replaced by a substituent, e.g. 5 -H atoms are independently replaced by a substituent, 4 -H atoms are independently replaced by a substituent, 3 -H atoms are independently replaced by a substituent, 2 -H atoms are independently replaced by a substituent, or 1 -H atom is replaced by a substituent.
- the term "interrupted" means that a moiety is inserted between two carbon atoms or - if the insertion is at one of the moiety's ends - between a carbon and a hydrogen atom.
- C 1-4 alkyl alone or in combination means a straight-chain or branched alkyl moiety having 1 to 4 carbon atoms. If present at the end of a molecule, examples of straight-chain or branched Ci_ 4 alkyl are methyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, sec-butyl and tert-butyl.
- C 1-4 alkyl groups are -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -CH 2 -CH 2 -CH 2 -, -CH(C 2 H 5 )-, -C(CH 3 ) 2 -.
- Each hydrogen of a C 1-4 alkyl carbon may optionally be replaced by a substituent as defined above.
- a C 1-4 alkyl may be interrupted by one or more moieties as defined below.
- 0 1-6 alkyl alone or in combination means a straight-chain or branched alkyl moiety having 1 to 6 carbon atoms. If present at the end of a molecule, examples of straight-chain and branched C 1-6 alkyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-methylbutyl, 2,2-dimethylpropyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl and 3,3- dimethylpropyl.
- C 1-6 alkyl groups are -CH 2 -, -CH 2 -CH 2 -, -CH(CH 3 )-, -CH 2 -CH 2 -CH 2 - , -CH(C 2 H 5 )- and -C(CH 3 ) 2 -.
- Each hydrogen atom of a C 1-6 carbon may optionally be replaced by a substituent as defined above.
- a C 1-6 alkyl may be interrupted by one or more moieties as defined below.
- CM O alkyl means an alkyl chain having 1 to 10, 1 to 20 or 1 to 50 carbon atoms, respectively, wherein each hydrogen atom of the CM O , C 1-20 or Ci_5o carbon may optionally be replaced by a substituent as defined above.
- a C ⁇ io or Ci_5o alkyl may be interrupted by one or more moieties as defined below.
- C 2-1 o alkenyl means a straight-chain or branched hydrocarbon moiety comprising at least one carbon-carbon double bond having 2 to 10, 2 to 20 or 2 to 50 carbon atoms.
- Each hydrogen atom of a C 2- io alkenyl, C 2-20 alkenyl or C 2-5 o alkenyl group may optionally be replaced by a substituent as defined above.
- a C 2-1 o alkenyl, C 2-20 alkenyl or C 2-5 o alkenyl may be interrupted by one or more moieties as defined below.
- C 2- 6 alkynyl alone or in combination means straight-chain or branched hydrocarbon moiety comprising at least one carbon-carbon triple bond having 2 to 6 carbon atoms. If present at the end of a molecule, examples are -C ⁇ CH, -CH 2 -C ⁇ CH, CH 2 -CH 2 -C ⁇ CH and CH 2 -C ⁇ C-CH 3 . When two moieties of a molecule are linked by the alkynyl group, then an example is -C ⁇ C-. Each hydrogen atom of a C 2-6 alkynyl group may optionally be replaced by a substituent as defined above. Optionally, one or more double bond(s) may occur. Optionally, a C 2 _ 6 alkynyl may be interrupted by one or more moieties as defined below.
- C 2-1 o alkynyl means a straight- chain or branched hydrocarbon moiety comprising at least one carbon-carbon triple bond having 2 to 10, 2 to 20 or 2 to 50 carbon atoms, respectively.
- Each hydrogen atom of a C 2 _io alkynyl, C 2 _ 20 alkynyl or C 2 _5o alkynyl group may optionally be replaced by a substituent as defined above.
- one or more double bond(s) may occur.
- a C 2-1 o alkynyl, C 2-20 alkynyl or C 2-5 o alkynyl may be interrupted by one or more moieties as defined below.
- a C 1-4 alkyl, C 1-6 alkyl, C 1-10 alkyl, C 1-2 o alkyl, Ci -5 o alkyl, C 2-6 alkenyl, C 2- io alkenyl, C 2-20 alkenyl, C 2-50 alkenyl, C 2-6 alkynyl, C 2-10 alkynyl, C 2-20 alkenyl or C 2-50 alkynyl may optionally be interrupted by one or more of the following moieties: R
- R and R a are independently of each other selected from the group consisting of H, methyl, ethyl, propyl, butyl, pentyl and hexyl.
- C 3-10 cycloalkyl means a cyclic alkyl chain having 3 to 10 carbon atoms, which may be saturated or unsaturated, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl.
- Each hydrogen atom of a C 3-10 cycloalkyl carbon may be replaced by a substituent as defined above.
- C 3-1 o cycloalkyl also includes bridged bicycles like norbornane or norbornene.
- 8- to 30-membered carbopolycyclyl or "8- to 30-membered carbopolycycle” means a cyclic moiety of two or more rings with 8 to 30 ring atoms, where two neighboring rings share at least one ring atom and that may contain up to the maximum number of double bonds (aromatic or non-aromatic ring which is fully, partially or un-saturated).
- a 8- to 30-membered carbopolycyclyl means a cyclic moiety of two, three, four or five rings, more preferably of two, three or four rings.
- 3- to 10-membered heterocycles include but are not limited to aziridine, oxirane, thiirane, azirine, oxirene, thiirene, azetidine, oxetane, thietane, furan, thiophene, pyrrole, pyrroline, imidazole, imidazoline, pyrazole, pyrazoline, oxazole, oxazoline, isoxazole, isoxazoline, thiazole, thiazoline, isothiazole, isothiazoline, thiadiazole, thiadiazoline, tetrahydrofuran, tetrahydrothiophene, pyrrolidine, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine, thiadiazolidine, sulfolane, pyran, dihydropyran, tetra
- Examples for an 8- to 11-membered heterobicycle are indole, indoline, benzofuran, benzothiophene, benzoxazole, benzisoxazole, benzothiazole, benzisothiazole, benzimidazole, benzimidazoline, quinoline, quinazoline, dihydroquinazoline, quinoline, dihydroquinoline, tetrahydroquinoline, decahydroquinoline, isoquinoline, decahydroisoquinoline, tetrahydroisoquinoline, dihydroisoquinoline, benzazepine, purine and pteridine.
- 8- to 11-membered heterobicycle also includes spiro structures of two rings like l,4-dioxa-8- azaspiro[4.5]decane or bridged heterocycles like 8-aza-bicyclo[3.2.1]octane.
- Each hydrogen atom of an 8- to 11-membered heterobicyclyl or 8- to 11-membered heterobicycle carbon may be replaced by a substituent as defined below.
- phrase "the pair R ! /R L A is joined together with the atom to which they are attached to form a ⁇ 3 _ 10 cycloalkyl or a 3- to 10-membered heterocyclyl” refers to a moiety having the following structure:
- R is the C3_ 10 cycloalkyl or a 3- to 10-membered heterocyclyl. This applies analogously to the pairs R 2 /R 2A , R 3 /R 3A , R 6 /R 6A and R 7 /R 7A .
- terminal alkyne means a moiety
- halogen means fluoro, chloro, bromo or iodo. It is generally preferred that halogen is fluoro or chloro.
- -D of formula (I) is a primary or secondary amine-comprising biologically active moiety which is connected to -L 1 through an amide linkage.
- -D of formula (I) is a hydroxyl-comprising biologically active moiety which is connected to -L 1 through an ester linkage.
- -D of formula (I) is preferably a small molecule biologically active moiety, oligonucleotide moiety, peptide nucleic acid moiety, peptide moiety or protein moiety.
- -D of formula (I) is a small molecule biologically active moiety.
- -D of formula (I) is a peptide moiety.
- -D of formula (I) is a protein moiety, even more preferably a monoclonal or polyclonal antibody or fragment or fusion thereof.
- Another aspect of the present invention is a prodrug reagent comprising a conjugate L'-Q, wherein
- -U comprises, preferably consists of, a linker moiety -L represented by formula ( ⁇ )
- R 4 , R 5 and R 5a are independently of each other selected from the group consisting of -H, -C(R 9 R 9a R 9b ) and -T; al and a2 are independently of each other 0 or 1 ; each R 6 , R 6a , R 7 , R 7a , R 8 , R 8a , R 8b , R 9 , R 9a , R 9b are independently of each other selected from the group consisting of -H, halogen, -CN, -COOR 10 , -OR 10 , -C(0)R 10 , -C(O)N(R 10 R 10a ), -S(O) 2 N(R 10 R 10a ), -S(O) N(R 10 R 10a ), -S(0) 2 R 10 , -S(0)R 10 , -N(R 10 )S(O) 2 N(R 10a R 10b ), -SR 10 , -N(R 10 R 10a ),
- each R 10 , R 10a , R 10b is independently selected from the group consisting of -H, -T, Ci_ 2 o alkyl, C 2-20 alkenyl, and C 2-20 alkynyl; wherein -T, Ci -2 o alkyl, C 2-2 o alkenyl, and C 2-20 alkynyl are optionally substituted with one or more R 11 , which are the same or different and wherein C 1-2 o alkyl, C 2 _ 2 o alken
- one or more of the pairs RVR 2 , RVR 3 , R'/R 4 , R'/R 5 , RVR 6 , RVR 7 , R 2 /R 3 , R 2 /R 4 , R 2 /R 5 , R 2 /R 6 , R 2 /R 7 , R 3 /R 4 , R 3 /R 5 , R 3 /R 6 , R 3 /R 7 , R 4 /R 5 , R 4 /R 6 , R 4 /R 7 , R 5 /R 6 , R 5 /R 7 , R 6 /R 7 are joint together with the atoms to which they are attached to form a ring A;
- A is selected from the group consisting of phenyl; naphthyl; indenyl; indanyl; tetralinyl; C 3-10 cycloalkyl; 3- to 10-membered heterocyclyl; and 8- to 11-membered heterobicyclyl; wherein -L 1 is substituted with one to five moieties -L 2 -Z and/or -L 2 -Y, preferably -L1 is substituted with one moiety -L 2 -Z or -L 2 -Y, and is optionally further substituted; wherein -L 2 - and -L 2 - are independently of each other a single chemical bond or a spacer moiety;
- -Z is a carrier moiety
- -Y is a functional group which may optionally be present in its protected form.
- -Q of formula ( ⁇ ) is selected from the group consisting of chloride, bromide, fluoride, nitrophenoxy, imidazolyl, N-hydroxysuccinimidyl, N-hydroxybenzotriazolyl, N- hydroxyazobenzotriazolyl, pentafluorphenoxy, N-hydroxysulfosuccinimidyl, diphenylphosphinomethanethiyl, 2-diphenylphosphinophenoxy, norbornene-N- hydroxysuccinimidyl, N-hydroxyphthalimide, pyridinoxy, nonafluoro tert.-butyloxy and hexafluoro isopropyloxy.
- -Y of formula ( ⁇ ) is selected from the group consisting of thiol, maleimide, amine, hydroxyl, carboxylic acid and derivatives, carbonate and derivatives, carbamate and derivatives, isothiocyanate, disulfide, pyridyl disulfide, methylthiosulfonyl, vinylsulfone, aldehyde, ketone, haloacetyl, selenide, azide, -NH-NH 2 , -0-NH 2 , a terminal alkyne, a compound of formula (z'i)
- Y 1 , Y 2 are independently of each other C or N,
- R a , R a ', R al , R al' are independently of each other -H or Ci -6 alkyl
- axl is 0, if Y is N; axl is 1, if Y is C, optionally the pair R /R al forms a chemical bond, if Y 2 is C, optionally, the pair R a /R al are joined together with the atom to which they are attached to form a ring A', if Y" is C,
- A' is cyclopropyl or phenyl; a compound of formula (z'ii)
- R a2 , R a2' , R a3 , R a3' are -H, indicates a single or double bond, optionally, the pair R 2 /R a3 are joint together with the atoms to which they are attached to form a ring A 1 ' ;
- a 1 ' is 5-membered heterocyclyl
- R a4 , R a4' , R a5 , R a5' are -H, optionally the pair R a4 /R a5 forms a chemical bond, optionally, the pair R 4 /R a5 are joint together with the atoms to which they are attached to form a ring A ', A 2 ' is 5-membered heterocyclyl; a compound of formula (z'vi)
- R a6 , R a6 are either both Ci_ 6 alkyl or one of R a6 , R a6 is -H and the other one is selected from C 1-6 alkyl, -COOR a7 ; -CONHR a7 , and CH 2 OR a7" ,
- R a7 , R a7 , R a7" are independently of each other -H or C 1-4 alkyl; a compound of formula (z'vii)
- R a8 , R a8 , R a8 are independently of each other selected from the group consisting of -H and C 1-4 alkyl; a compound of formula (z'ix)
- R a9 is -H or C alkyl; a compound of formula (z'x)
- R a9 is selected from -COOR a11 , -CONHR a
- R al2 is selected from the group consisting of -H, COOR a13 , -CONR l3 R a13 , -CH 2 NR l3 R a13 , and -NR al3 COR a13 ,
- R al3 , R al3 are independently of each other selected from the group consisting of-HandC 1-4 alkyl,
- a a3 is selected from -H, methyl, tert-butyl, -CF 3 , -COOR,
- each Y 5 , Y 6 , Y 7 , Y 8 is independently of each other C or N, provided that no more than 3 of Y 5 , Y 6 , Y 7 , Y 8 are N,
- each of Y 9 , Y 10 , Y 11 , Y 12 , Y 13 is either C, N, S or O, provided that no more than 4 of Y 9 , Y 10 , Y 11 , Y 12 , Y 13 are N, S, or O;
- R al9 , R al9 are independently of each other selected from the group consisting of -H, C ) -6 alkyl, C 2 . 6 alkenyl, C 2- 6 alkynyl, C 3-8 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, phenyl, naphthyl, indenyl, indanyl, and tetralinyl; a compound of formula (z'xiii)
- R a20 is selected from the group consisting of -H, Ci -6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3 _8 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, phenyl, naphthyl, indenyl, indanyl, and tetralinyl; ipound of formula (z'xiv)
- Ar is selected from phenyl, naphthyl, indenyl, indanyl, and tetralinyl,
- Y 14 is selected from halogen
- R , R , R are independently of each other selected from the group consisting of -H, Ci-6 alkyl, C 2- 6 alkenyl, C 2-6 alkynyl, C 3- s cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 1 1-membered heterobicyclyl, phenyl, naphthyl, indenyl, indanyl, and tetralinyl; a compound of formula (z'xv)
- Ar is selected from phenyl, naphthyl, indenyl, indanyl, and tetralinyl
- R a24 , R a24 , R a24 , R a24 are independently of each other selected from the group consisting of -H, Ci_ 6 alkyl, C 2 _6 alkenyl, C 2 _ 6 alkynyl, C 3 _8 cycloalkyl, 3- to 10- membered heterocyclyl, 8- to 11-membered heterobicyclyl, phenyl, naphthyl, indenyl, indanyl, and tetralinyl; a compound of formula (z'xvi)
- R a25 is selected from the group consisting of -H, C 1-6 alkyl, C 2 _ 6 alkenyl, C 2 _ 6 alkynyl, C 3- 8 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, phenyl, naphthyl, indenyl, indanyl, and tetralinyl; a compound of formula (z'xvii)
- R a27 , R a27 are independently of each other -H or Ci_ 6 alkyl; a compound of formula (z'xviii)
- PPh 2 represents a group having the following formula wherein the dashed line indicates attachment to the rest of the moiety of formula (z'xix),
- R al2 is selected from
- q 1 or 2
- Y 16 is O or S; and a compound of formula (z'xx)
- the dashed line indicates attachment to -L 2' -; wherein the moieties of formula (z'i), (z'ii), (z'iii), (z'iv), (z'v), (z'vi), (z'vii), (z'viii), (z'ix), (z'x), (z'xi), (z'xii), (z'xiii), (z'xiv), (z'xv), (z'xvi), (z'xvii) and (z'xviii) are substituted with a moiety -L 2' - and are optionally further substituted.
- Y 1 of formula (z'i) is C.
- R a , R a' , R al , R al ' of formula (z'i) are -H.
- R a R a1 R a1 ' are used as defined in formula (z'i).
- R al9 is H, methyl, ethyl, propyl or butyl.
- Ar is selected from phenyl, naphthyl, indenyl, indanyl, and tetralinyl, and
- Y 14 is halogen
- Ar is selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, and tetralinyl;
- R a24 , R a24 , R a24 are independently of each other selected from the group consisting of H, methyl, ethyl, propyl and butyl.
- a preferred embodiment of formula (z'xvi) is
- al of formula (I) and ( ⁇ ) is 0. In another embodiment al of formula (I) and ( ⁇ ) is 1. Preferably, al of formula (I) and ( ⁇ ) is 0. In one embodiment a2 of formula (I) and ( ⁇ ) is 0. In another embodiment a2 of formula (I) and ( ⁇ ) is 1. Preferably, a2 of formula (I) and ( ⁇ ) is 0.
- al and a2 of formula (I) and ( ⁇ ) are both 0. In another embodiment al and a2 of formula (I) and ( ⁇ ) are both 1. In an even further embodiment al of formula (I) and ( ⁇ ) is 0 and a2 of formula (I) and ( ⁇ ) is 1. In an even further embodiment al of formula (I) and ( ⁇ ) is 1 and a2 of formula (I) and ( ⁇ ) is 0. Preferably, al and a2 of formula (I) and ( ⁇ ) are both 0.
- R 1 , R la , R 7 and R 7a of formula (I) and ( ⁇ ) are independently of each other selected from the group consisting of -H, methyl, ethyl, n-propyl, iso-propyl, n- butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 3- methybutyl, 1-methylbutyl, 1-ethylpropyl,
- dashed lines indicate attachment to the remainder of -L 1 .
- R 1 , R la , R 7 and R 7a of formula (I) and ( ⁇ ) are independently of each other selected from the group consisting of -H, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec- butyl, iso-butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 3-methybutyl, 1 -methylbutyl and 1-ethylpropyl.
- R 1 , R la , R 7 and R 7a of formula (I) and ( ⁇ ) are independently of each other selected from the group consisting of -H, methyl, ethyl, n-propyl, and iso-propyl. Even more preferably, R 1 , R la , R 7 and R 7a of formula (I) and ( ⁇ ) are independently of each other -H or methyl. Most preferably, R 1 , R la , R 7 and R 7a of formula (I) and ( ⁇ ) are -H.
- al of formula (I) and ( ⁇ ) is 0 and R 1 and R la of formula (I) and ( ⁇ ) are independently of each other selected from -H and methyl.
- one of R 1 and R la of formula (I) and ( ⁇ ) is -H.
- R 2 , R 2a , R 6 and R 6a of formula (I) and ( ⁇ ) are independently of each other selected from the group consisting of -H, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso- butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 3-methybutyl, 1- methylbutyl, and 1-ethylpropyl.
- R 2 , R 2a , R 6 and R 6a of formula (I) and ( ⁇ ) are independently of each other selected from the group consisting of -H, methyl, ethyl, n-propyl, and iso-propyl. Even more preferably, R 2 , R 2a , R 6 and R 6a of formula (I) and ( ⁇ ) are independently of each other -H or methyl. Most preferably, R 2 , R 2a , R 6 and R 6a of formula (I) and ( ⁇ ) are -H.
- a2 is 0 and R 2 and R 2a of formula (I) and ( ⁇ ) are both -H.
- R 3 and R 3a of formula (I) and ( ⁇ ) are independently of each other selected from the group consisting of -H, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl, 2,2-dimethylpropyl, 3-methybutyl, 1-methylbutyl, and 1-ethylpropyl.
- R 3 and R 3a of formula (I) and ( ⁇ ) are selected from -H, methyl, ethyl, n- propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, 1,1-dimethylpropyl, 2,2- dimefhylpropyl, 3-methybutyl, 1-methylbutyl and 1-ethylpropyl.
- R and R 3a of formula (I) and ( ⁇ ) are selected from -H, methyl and ethyl.
- R 3 and R 3a of formula (I) and ( ⁇ ) are both methyl. In an even more preferred embodiment R 3 and R 3a of formula (I) and ( ⁇ ) are both -H.
- R 4 of formula (I) and ( ⁇ ) is selected from the group consisting of -H, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, 1,1- dimethylpropyl, 2,2-dimethylpropyl, 3-methybutyl, 1-methylbutyl, and 1-ethylpropyl. More preferably, R 4 of formula (I) and ( ⁇ ) is -H or methyl.
- R 5 of formula (I) and ( ⁇ ) is selected from the group consisting of -H, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, 1,1- dimethylpropyl, 2,2-dimethylpropyl, 3-methybutyl, 1-methylbutyl, and 1-ethylpropyl. More preferably, R 5 of formula (I) and ( ⁇ ) is selected from -H and methyl.
- R 5a of formula (I) and ( ⁇ ) is selected from the group consisting of -H, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, 1,1- dimethylpropyl, 2,2-dimethylpropyl, 3-methybutyl, 1-methylbutyl and 1-ethylpropyl.
- R 5a of formula (I) and ( ⁇ ) is selected from -H, methyl and ethyl.
- R 5a is -H.
- -D is a primary or secondary amine-containing biologically active moiety and R 5a is -H.
- each R 6 , R 6a , R 7 , R 7a , R 8 , R 8a , R 8b , R 9 , R 9a , R 9b of formula (I) and ( ⁇ ) is independently of each other selected from the group consisting of -H, halogen, -CN, -COOR 10 , -OR 10 , -C(0)R 10 , -C(O)N(R 10 R 10a ), -S(O) 2 N(R 10 R 10a ), -S(O)N(R 10 R 10a ), -S(0) 2 R 10 , -S(0)R 10 , -N(R 10 )S(O) 2 N(R 10a R 10b ), -SR 10 , -N(R 10 R 10a ), -N0 2 , -OC(0)R 10 , -N(R 10 )C(O)R 10a , -N(R 10 )S(O) 2 R 10a
- each R 6 , R 6a , R 7 , R 7a , R 8 , R 8a , R 8b , R 9 , R 9a , R 9b of formula (I) and ( ⁇ ) is independently of each other selected from the group consisting of -H, halogen, -CN, -COOR 10 , -OR 10 , -C(0)R 10 , -C(O)N(R 10 R 10a ), -S(O) 2 N(R 10 R 10a ), -S(O)N(R 10 R 10a ), -S(0) 2 R 10 , -S(0)R 10 , -N(R 10 )S(O) 2 N(R 10a R 10b ), -SR 10 , -N(R 10 R 10a ), -N0 2 , -OC(0)R 10 , -N(R 10 )C(O)R 10a , -N(R 10 )S(O) 2 R 10a
- each R 10 , R 10a , R 10b is independently selected from the group consisting of -H, -T, Ci -6 alkyl, C 2 _6 alkenyl, and C 2 _ 6 alkynyl; each T is independently of each other selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, ⁇ 3 _ 10 cyclo
- each R 12 , R 12A is independently of each other selected from the group consisting of -H, and
- C 1-4 alkyl wherein C 1-6 alkyl is optionally substituted with one or more halogen, which are the same or different.
- one or more of the pairs R'/R 2 , RVR 3 , RVR 4 , RVR 5 , RVR 6 , RVR 7 , R 2 /R 3 , R 2 /R 4 , R 2 /R 5 , R 2 /R 6 , R 2 /R 7 , R 3 /R 4 , R 3 /R 5 , R 3 /R 6 , R 3 /R 7 , R 4 /R 5 , R 4 /R 6 , R 4 /R 7 , R 5 /R 6 , R 5 /R 7 , R 6 /R 7 of formula (I) and ( ⁇ ) are joint together with the atoms to which they are attached to form a ring A.
- one or more of the pairs RVR 2 , RVR 4 , RVR 6 , RVR 7 , R 2 /R 3 , R 2 /R 4 , R 2 /R 6 , R 2 /R 7 , R 3 /R 5 , R 3 /R 6 , R 4 /R 7 , R 5 /R 6 , R 6 /R 7 are optionally joint together with the atoms to which they are attached to form a ring A.
- one or more of the pairs RVR 4 , RVR 7 , R 2 /R 4 , R 2 /R 6 , R 3 /R 5 , R 3 /R 6 are optionally joint together with the atoms to which they are attached to form a ring A.
- a of formula (I) and ( ⁇ ) is selected from phenyl, C 3-1 o cycloalkyl and 3- to 10- membered heterocyclyl.
- the prodrug of the present invention is of formula (la) or (lb)
- R 1 , R L A , R 2 , R 2A , R 3 , R 3A , R 4 , R 5 , R 5A , -L 2 - and -Z are used as defined for formula
- the prodrug of the present invention is of formula (la). In an equally preferred embodiment the prodrug of the present invention is of formula (lb).
- R 1 , R la , R 2 , R 2a , R 3 , R 3a , R 4 , R 5 and R 5a of formula (la) and (lb) are as described for formula (I).
- the prodrug reagent of the present invention is of formula (I'a) (I'b)
- R 1 , R la , R 2 , R 2a , R 3 , R 3a , R 4 , R 5 , R 5a , -L 2 -, -L 2' -, Z and Y are used as defined for formula ( ⁇ ). It is understood that in formula (I'a) R 4 is selected as being -H which is replaced by -L 2 -Z or -L 2 -Y and that in formula (I'b) R 5 is selected as being -H which is replaced by -L 2 -Z or -L 2' -Y.
- the prodrug reagent of the present invention is of formula (I'a). In an equally preferred embodiment the prodrug reagent of the present invention is of formula (I'b).
- R 1 , R la , R 2 , R a , R 3 , R 3a , R 4 , R 5 and R 5a of formula (I'a) and (I'b) are as described for formula ( ⁇ ).
- -L 1 - of the rodrug of the present invention is of formula (Ila)
- R 4 is selected as being -H which is replaced by -L 2 -Z.
- -L 1 - of the prodrug reagent of the present invention is of formula (Ila')
- the dashed line marked with the asterisk indicates attachment to -L 2 -Z or -L 2 -Y.
- R 4 is selected as being -H which is replaced by -L 2 -Z or -L 2' -Y.
- Z is a carrier.
- Z comprises a C -1 alkyl group or a polymer with a molecular weight of at least 0.5 kDa.
- Z comprises a C 8-18 alkyl group.
- Z comprises a polymer with a molecular weight of at least 0.5 kDa, preferably of at least 1 kDa, more preferably of at least 2 kDa, even more preferably at least 4 kDa, even more preferably 5 kDa, even more preferably of at least 7.5 kDa, even more preferably of at least 10 kDa.
- the polymer is a soluble polymer, it is preferred that it has at most a molecular weight of 2000 kDa, more preferably of at most 1000 kDa, even more preferably of at most 750 kDa, even more preferably of at most 500 kDa, even more preferably of at most 250 kDa and most preferably of at most 150 kDa.
- a polymeric carrier Z comprises at least one of the polymers selected from the group consisting of 2-methacryloyl-oxyethyl phosphoyl cholins, poly(acrylic acids), poly(acrylates), poly(acrylamides), poly(alkyloxy) polymers, poly(amides), poly(amidoamines), poly(amino acids), poly(anhydrides), poly(aspartamides), poly(butyric acids), poly(glycolic acids), polybutylene terephthalates, poly(caprolactones), poly(carbonates), poly(cyanoacrylates), poly(dimethylacrylamides), poly(esters), poly(ethylenes), poly(ethyleneglycols), poly( ethylene oxides), poly(ethyl phosphates), poly(ethyloxazolines), poly(glycolic acids), poly(hydroxyethyl acrylates), poly(hydroxyethyl- oxazolines), poly(hydroxymethacrylates), poly(hydroxypropylme
- Z comprises a protein. Even more preferably, Z comprises a protein selected from the group consisting of albumin, transferrin, and immunoglobulin.
- Z comprises a protein carrier as disclosed in WO2013/024049A1, which is hereby incorporated by reference.
- Z comprises a PEG-based polymer comprising at last 10% PEG, such as at least 20 % PEG, at least 30 % PEG, at least 40 % PEG or at least 50% PEG; or a hyaluronic acid-based polymer comprising at least 10 % hyaluronic acid, such as at least 20 % hyaluronic acid, at least 30% hyaluronic acid, at least 40 % hyaluronic acid or at least 50 % hyaluronic acid.
- Z comprises a water-soluble polymer with a molecular weight of at least 0.5 kDa, preferably of at least 1 kDa, more preferably of at least 2 kDa, even more preferably at least 4 kDa, even more preferably 5 kDa, even more preferably of at least 7.5 kDa, even more preferably of at least 10 kDa.
- such water-soluble polymer has at most a molecular weight of 2000 kDa, more preferably of at most 1000 kDa, even more preferably of at most 750 kDa, even more preferably of at most 500 kDa, even more preferably of at most 250 kDa and most preferably of at most 150 kDa.
- Z comprises a linear, branched or dendritic PEG-based polymer comprising at least 10 % PEG (such as at least 20 % PEG, at least 30% PEG, at least 40 % PEG or at least 50 % PEG) with a molecular weight from 2,000 Da to 150,000 Da.
- Z comprises a PEG-based carrier as disclosed in W02103/024047 Al and WO2013/024047 Al, which are hereby incorporated by reference.
- Z comprises a water-insoluble polymer.
- Z comprises a water-insoluble hydrogel, more preferably a PEG-based hydrogel comprising at least 10 % PEG (such as at least 20 % PEG, at least 30% PEG, at least 40 % PEG or at least 50 % PEG) or a hyaluronic acid-based hydrogel comprising at least 10 % hyaluronic acid (such as at least 20 % hyaluronic acid, at least 30% hyaluronic acid, at least 40 % hyaluronic acid or at least 50 % hyaluronic acid) and most preferably Z comprises a hydrogel as disclosed in WO2006/003014 A2, WO2011/012715 Al or WO2014/056926 Al, which are hereby incorporated by reference.
- Z comprises a hydrogel obtained from a process for the preparation of a hydrogel comprising the steps of:
- b is 1, 2, 3 or 4,
- X H is CI, Br, I, or F
- step (a-ii) at least one crosslinker reagent, wherein the at least one crosslinker reagent has a molecular weight ranging from 0.2 to 40 kDa and comprises at least two functional end groups selected from the group consisting of activated ester groups, activated carbamate groups, activated carbonate groups, activated thiocarbonate groups, amine groups and thiol groups; in a weight ratio of the at least one backbone reagent to the at least one crosslinker reagent ranging from 1 :99 to 99: 1 and wherein the molar ratio of A x0 to functional end groups is >1 ; polymerizing the mixture of step (a) in a suspension polymerization to a hydrogel.
- the crosslinker reagent of step (a-ii) comprises at least one reversible linkage. Even more preferably, such at least one reversible linkage is an ester and/or carbonate.
- the mixture of step (a) comprises a first solvent and at least a second solvent.
- Said first solvent is preferably selected from the group comprising dichloromethane, chloroform, tetrahydrofuran, ethyl acetate, dimethylformamide, acetonitrile, dimethyl sulfoxide, propylene carbonate, N-methylpyrrolidone, methanol, ethanol, isopropanol and water and mixtures thereof.
- the at least one backbone reagent and at least one crosslinker reagent are dissolved in the first solvent, i.e. the disperse phase of the suspension polymerization.
- the backbone reagent and the crosslinker reagent are dissolved separately, i.e. in different containers, using either the same or different solvent and preferably using the same solvent for both reagents.
- the backbone reagent and the crosslinker reagent are dissolved together, i.e. in the same container and using the same solvent.
- a suitable solvent for the backbone reagent is an organic solvent.
- the solvent is selected from the group consisting of dichloromethane, chloroform, tetrahydrofuran, ethyl acetate, dimethylformamide, acetonitrile, dimethyl sulfoxide, propylene carbonate, N- methylpyrrolidone, methanol, ethanol, isopropanol and water and mixtures thereof.
- the backbone reagent is dissolved in a solvent selected from the group comprising acetonitrile, dimethyl sulfoxide, methanol or mixtures thereof. Most preferably, the backbone reagent is dissolved in dimethylsulfoxide.
- the backbone reagent is dissolved in the solvent in a concentration ranging from 1 to 300 mg/ml, more preferably from 5 to 60 mg/ml and most preferably from 10 to 40 mg/ml.
- a suitable solvent for the crosslinker reagent is an organic solvent.
- the solvent is selected from the group comprising dichloromethane, chloroform, tetrahydrofuran, ethyl acetate, dimethylformamide, acetonitrile, dimethyl sulfoxide, propylene carbonate, N- methylpyrrolidone, methanol, ethanol, isopropanol, water or mixtures thereof.
- the crosslinker reagent is dissolved in a solvent selected from the group comprising dimethylformamide, acetonitrile, dimethyl sulfoxide, methanol or mixtures thereof.
- the crosslinker reagent is dissolved in dimethylsulfoxide.
- the crosslinker reagent is dissolved in the solvent in a concentration ranging from 5 to 500 mg/ml, more preferably from 25 to 300 mg/ml and most preferably from 50 to 200 mg/ml.
- the at least one backbone reagent and the at least one crosslinker reagent are mixed in a weight ratio ranging from 1 :99 to 99:1, e.g. in a ratio ranging from 2:98 to 90: 10, in a weight ratio ranging from 3:97 to 88: 12, in a weight ratio ranging from 3:96 to 85:15, in a weight ratio ranging from 2:98 to 90: 10 and in a weight ratio ranging from 5:95 to 80:20; particularly preferred in a weight ratio from 5:95 to 80:20, wherein the first number refers to the backbone reagent and the second number to the crosslinker reagent.
- the ratios are selected such that the mixture of step (a) comprises a molar excess of funcational groups A x0 from the backbone reagent compared to the activated functional end groups of the crosslinker reagent. Consequently, the hydrogel resulting from the process has free functional groups A x0 which can be used to couple other moieties to the hydrogel, such as spacers, and/or reversible prodrug linker moieties L 1 .
- the at least one second solvent i.e. the continuous phase of the suspension polymerization, is preferably an organic solvent, more preferably an organic solvent selected from the group comprising linear, branched or cyclic C 5- 3o alkanes; linear, branched or cyclic C 5- 3o alkenes; linear, branched or cyclic Cs -3 o alkynes; linear or cyclic poly(dimethylsiloxanes); aromatic C 6 -2o hydrocarbons; and mixtures thereof.
- an organic solvent more preferably an organic solvent selected from the group comprising linear, branched or cyclic C 5- 3o alkanes; linear, branched or cyclic C 5- 3o alkenes; linear, branched or cyclic Cs -3 o alkynes; linear or cyclic poly(dimethylsiloxanes); aromatic C 6 -2o hydrocarbons; and mixtures thereof.
- the at least second solvent is selected from the group comprising linear, branched or cyclic C5_ 16 alkanes; toluene; xylene; mesitylene; hexamethyldisiloxane; or mixtures thereof.
- the at least second solvent selected from the group comprising linear C 7-11 alkanes, such as heptane, octane, nonane, decane and undecane.
- the mixture of step (a) further comprises a detergent.
- Preferred detergents are Cithrol DPHS, Hypermer 70A, Hypermer B246, Hypermer 1599A, Hypermer 2296, and Hypermer 1083.
- the detergent has a concentration of 0.1 g to 100 g per 1 L total mixture, i.e. disperse phase and continuous phase together. More preferably, the detergent has a concentration of 0.5 g to 10 g per 1 L total mixture, and most preferably, the detergent has a concentration of 0.5 g to 5 g per 1 L total mixture.
- the mixture of step (a) is an emulsion.
- the polymerization in step (b) is initiated by adding a base.
- the base is a non- nucleophilic base soluble in alkanes, more preferably the base is selected from ⁇ , ⁇ , ⁇ ', ⁇ '- tetramethylethylene diamine (TMEDA), 1 ,4-dimethylpiperazine, 4-methylmorpholine, 4- ethylmorpholine, l,4-diazabicyclo[2.2.2]octane, 1,1,4,7,10,10- hexamethyltriethylenetetramine, 1 ,4,7-trimethyl-l ,4,7-triazacyclononane, tris[2-
- TEDA ⁇ , ⁇ , ⁇ ', ⁇ '- tetramethylethylene diamine
- (dimethylamino)ethyl]amine triethylamine, DIPEA, trimethylamine, N,N- dimethylethylamine, N,N,N',N'-tetramethyl-l ,6-hexanediamine, N,N,N',N",N"- pentamethyldiethylenetriamine, l,8-diazabicyclo[5.4.0]undec-7-ene, 1,5- diazabicyclo[4.3.0]non-5-ene, and hexamethylenetetramine.
- the base is selected from TMEDA, 1 ,4-dimethylpiperazine, 4-methylmorpholine, 4-ethylmorpholine, 1 ,4- diazabicyclo[2.2.2]octane, 1 , 1 ,4,7, 10, 10-hexamethyltriethylenetetramine, 1 ,4,7-trimethyl- 1 ,4,7-triazacyclononane, tris[2-(dimethylamino)ethyl] amine, 1 ,8-diazabicyclo[5.4.0]undec-7- ene, l,5-diazabicyclo[4.3.0]non-5-ene, and hexamethylenetetramine.
- the base is TMEDA.
- the base is added to the mixture of step (a) in an amount of 1 to 500 equivalents per activated functional end group in the mixture, preferably in an amount of 5 to 50 equivalents, more preferably in an amount of 5 to 25 equivalents and most preferably in an amount of 10 equivalents.
- the polymerization of the hydrogel is a condensation reaction, which preferably occurs under continuous stirring of the mixture of step (a).
- the polymerization reaction is carried out in a cylindrical vessel equipped with baffles.
- the diameter to height ratio of the vessel may range from 4:1 to 1 :2, more preferably the diameter to height ratio of the vessel ranges from 2: 1 to 1 :1.
- the reaction vessel is equipped with an axial flow stirrer selected from the group comprising pitched blade stirrer, marine type propeller, or Lightnin A-310. More preferably, the stirrer is a pitched blade stirrer.
- Step (b) can be performed in a broad temperature range, preferably at a temperature from -10°C to 100 C°, more preferably at a temperature of 0°C to 80°C, even more preferably at a temperature of 10°C to 50 °C and most preferably at ambient temperature.
- Ambient temperature refers to the temperature present in a typical laboratory environment and preferably means a temperature ranging from 17 to 25°C.
- the hydrogel obtained from the polymerization is a shaped article, such as a coating, mesh, stent, nanoparticle or a microparticle. More preferably, the hydrogel is in the form of microparticular beads having a diameter from 1 to 500 micrometer, more preferably with a diameter from 10 to 300 micrometer, even more preferably with a diameter from 20 and 150 micrometer and most preferably with a diameter from 30 to 130 micrometer. The afore-mentioned diameters are measured when the hydrogel microparticles are fully hydrated in water.
- the process for the preparation of a hydrogel further comprises the step of: (c) working-up the hydrogel.
- Step (c) comprises one or more of the following step(s):
- step (c) sterilizing the hydrogel, preferably by gamma radiation
- step (c) comprises all of the following steps
- the at least one backbone reagent has a molecular weight ranging from 1 to 100 kDa, preferably from 2 to 50 kDa, more preferably from 5 and 30 kDa, even more preferably from 5 to 25 kDa and most preferably from 5 to 15 kDa.
- the backbone reagent is PEG-based comprising at least 10% PEG, more preferably comprising at least 20% PEG, even more preferably comprising at least 30% PEG and most preferably comprising at least 40% PEG.
- the backbone reagent of step (a-i) is present in the form of its acidic salt, preferably in the form of an acid addition salt.
- Suitable acid addition salts are formed from acids which form non-toxic salts. Examples include but are not limited to the acetate, aspartate, benzoate, besylate, bicarbonate, carbonate, bisulphate, sulphate, borate, camsylate, citrate, edisylate, esylate, formate, fumarate, gluceptate, gluconate, glucuronate, hexafluorophosphate, hibenzate, hydrochloride, hydrobromide, hydroiodide, isethionate, lactate, malate, maleate, malonate, mesylate, methylsulphate, naphthylate, nicotinate, nitrate, orotate, oxalate, palmitate, pamoate, phosphate, hydrogen phosphate, dihydrogen phosphate,
- the at least one backbone reagent is selected from the group consisting of a compound of formula (al)
- SP is a spacer moiety selected from the group consisting of C 1-6 alkyl, C 2 -6 alkenyl and C 2-6 alkynyl,
- P is a PEG-based polymeric chain comprising at least 80% PEG, preferably at least 85% PEG, more preferably at least 90% PEG and most preferably at least 95% PEG,
- Hyp 1 is a moiety comprising an amine (-NH 2 and/or -NH-) or a polyamine comprising at least two amines (-NH 2 and/or -NH-),
- x is an integer from 3 to 16
- xl, x2 are independently of each other 0 or 1, provided that xl is 0, if x2 is 0, A 0 , A 1 , A 2 are independently of each other selected from the group consisting of wherein R 1 and R la are independently of each other selected from H and C 1-6 alkyl; a compound of formula (all)
- Hyp 2 , Hyp 3 are independently of each other a polyamine comprising at least two amines (-NH 2 and/or -NH-), and A 3 and A 4 are independently selected from the group consisting of
- R 1 and R la are independently of each other selected from H and Ci_ 6 alkyl; a compound of formula (alii) P' - A ⁇ Hyp 4 (alii), wherein
- P 1 is a PEG-based polymeric chain comprising at least 80% PEG, preferably at least 85% PEG, more preferably at least 90% PEG and most preferably at least 95% PEG,
- Hyp 4 is a polyamine comprising at least three amines (-NH 2 and/or -NH), and
- a 5 is selected from the group consisting of
- R 1 and R la are independently of each other selected from H and Ci_ 6 alkyl; and a compound of formula (a!V),
- a polyamine comprising at least three amines (-N3 ⁇ 4 and/or -NH), and is selected from the group consisting of
- R 1 and R la are independently of each other selected from H and Ci_ 6 alkyl
- T 1 is selected from the group consisting of C 1 -50 alkyl, C 2- 5o alkenyl and C 2-5 o alkynyl, which fragment is optionally interrupted by one or more group(s) selected from -NH-, -N(C M alkyl)-, -0-, -S-, -C(O)-, -C(0)NH-
- Hyp x refers to Hyp 1 , Hyp 2 , Hyp 3 , Hyp 4 and Hyp 5 collectively.
- the backbone reagent is a compound of formula (al), (all) or (alii), more preferably the backbone reagent is a compound of formula (al) or (alii), and most preferably the backbone reagent is a compound of formula (al).
- x is 4, 6 or 8.
- x is 4 or 8, most preferably, x is 4.
- a 0 , A 1 , A 2 , A 3 , A 4 , A 5 and A 6 are selected from the group comprising
- a 0 is
- a 1 is
- A is and A 4 is
- a 5 is
- T 1 is selected from H and Ci_ 6 alkyl.
- the branching core B is selected from the following structures:
- dashed lines indicate attachment to A 0 or, if xl and x2 are both 0, to A 1 ,
- t is 1 or 2; preferably t is 1,
- v is 1, 2, 3, 4, 5, ,6 ,7 ,8 , 9, 10, 11, 12, 13 or 14; preferably, v is 2, 3, 4, 5, 6;
- v is 2, 4 or 6; most preferably, v is 2.
- B has a structure of formula (a-i), (a-ii), (a-iii), (a-iii), (a-iv), (a-v), (a-vi), (a-vii), (a-viii), (a-ix), (a-x), (a-xiv), (a-xv) or (a-xvi). More preferably, B has a structure of formula (a-iii), (a-iv), (a-v), (a-vi), (a-vii), (a-viii), (a-ix), (a-x) or (a-iv). Most preferably, B has a structure of formula (a-xiv).
- a preferred embodiment is a combination of B and A 0 , or, if xl and x2 are both 0 a preferred combination of B and A 1 , which is selected from the following structures:
- dashed lines indicate attachment to SP or, if xl and x2 are both 0, to P. More preferably, the combination of B and A or, if xl and x2 are both 0, the combination of B and A 1 , has a structure of formula of formula (b-i), (b-iv), (b-vi) or (b-viii) and most preferably has a structure of formula of formula (b-i).
- xl and x2 of formula (al) are 0.
- the PEG-based polymeric chain P has a molecular weight from 0.3 kDa to 40 kDa; e.g. from 0.4 to 35 kDa, from 0.6 to 38 kDA, from 0.8 to 30 kDa, from 1 to 25 kDa, from 1 to 15 kDa or from 1 to 10 kDa. Most preferably P has a molecular weight from 1 to 10 kDa.
- the PEG-based polymeric chain P 1 has a molecular weight from 0.3 kDa to 40 kDa; e.g. from 0.4 to 35 kDa, from 0.6 to 38 kDA, from 0.8 to 30 kDa, from 1 to 25 kDa, from 1 to 15 kDa or from 1 to 10 kDa. Most preferably P 1 has a molecular weight from 1 to 10 kDa.
- P in the compounds of formulas (al) or (all), P has the structure of formula
- n ranges from 6 to 900, more preferably n ranges from 20 to 700 and most preferably n ranges from 20 to 250.
- P 1 has the structure of formula (c-
- n ranges from 6 to 900, more preferably n ranges from 20 to 700 and most preferably n ranges from 20 to 250; is selected from the group comprising Ci_ 6 alkyl, C 2 - 6 alkenyl and C 2 - 6 alkynyl, which is optionally interrupted by one or more group(s) selected from -NH-, -N(C 1-4 alkyl)-, -0-, -S-, -C(O)-, -C(0)NH-, -C(0)N(C 1-4 alkyl)-, -O-C(O)-, -S(O)- and -S(0) 2 -.
- the moiety Hyp x is a polyamine and preferably comprises in bound form and, where applicable, in R- and/or S- configuration a moiety of the formulas (d-i), (d-ii), (d-iii) and/or (d-vi):
- Hyp x comprises in bound form and in R- and/or S-configuration lysine, ornithine, diaminoproprionic acid and/or diaminobutyric acid. Most preferably, Hyp x comprises in bound form and in R- and/or S-configuration lysine.
- Hyp x has a molecular weight from 40 Da to 30 kDa, preferably from 0.3 kDa to 25 kDa, more preferably from 0.5 kDa to 20 kDa, even more preferably from 1 kDa to 20 kDa and most preferably from 2 kDa to 15 kDa.
- Hyp x is preferably selected from the group consisting of a moiety of formula (e-i)
- pi is an integer from 1 to 5, preferably pi is 4, and
- the dashed line indicates attachment to A if the backbone reagent has a structure of formula (al) and to A 3 or A 4 if the backbone reagent has the structure of formula (all); - a moiety of formula (e-ii)
- p2, p3 and p4 are identical or different and each is independently of the others an integer from 1 to 5, preferably p2, p3 and p4 are 4, and
- the dashed line indicates attachment to A if the backbone reagent has a structure of formula (al), to A 3 or A 4 if the backbone reagent has a structure of formula (all), to A 5 if the backbone reagent has a structure of formula (alll) and to A 6 if the backbone reagent has a structure of formula (a!V); a moiety of formula (e-iii) wherein
- p5 to pi 1 are identical or different and each is independently of the others an integer from 1 to 5, preferably p5 to pi 1 are 4, and
- the dashed line indicates attachment to A 2 if the backbone reagent is of formula (al), to
- pl2 to p26 are identical or different and each is independently of the others an integer from 1 to 5, preferably pl2 to p26 are 4, and
- the dashed line indicates attachment to A 2 if the backbone reagent has a structure of formula (al), to A 3 or A 4 if the backbone reagent has a structure of formula (all), to A 5 if the backbone reagent has a structure of formula (alll) and to A 6 if the backbone reagent has a structure of formula (a!V); - a moiety of formula (e-v)
- p27 and p28 are identical or different and each is independently of the other an integer from 1 to 5, preferably p27 and p28 are 4,
- q is an integer from 1 to 8, preferably q is 2 or 6 and most preferably 1 is 6, and
- the dashed line indicates attachment to A 2 if the backbone reagent has a structure of formula (al), to A 3 or A 4 if the backbone reagent has a structure of formula (all), to A 5 if the backbone reagent has a structure of formula (alll) and to A 6 if the backbone reagent has a structure of formula (a!V); a moiety of formula (e
- p29 and p30 are identical or different and each is independently of the other an integer from 2 to 5, preferably p29 and p30 are 3, and
- the dashed line indicates attachment to A 2 if the backbone reagent has the structure of formula (al), to A 3 or A 4 if the backbone reagent has the structure of formula (all), to A 5 if the backbone reagent has the structure of formula (alll) and to A 6 if the backbone reagent has the structure of formula (a!V); a moiety of formula (e-vii) wherein
- p31 to p36 are identical or different and each is independently of the others an integer from 2 to 5, preferably p31 to p36 are 3, and
- the dashed line indicates attachment to A if the backbone reagent has a structure of formula (al), to A 3 or A 4 if the backbone reagent has a structure of formula (all), to A 5 if the backbone reagent has a structure of formula (alll) and to A 6 if the backbone reagent has a structure of formula (a!V); a moiety of formula (e-viii)
- p37 to p50 are identical or different and each is independently of the others an integer from 2 to 5, preferably p37 to p50 are 3, and
- the dashed line indicates attachment to A if the backbone reagent has a structure of formula (al), to A 3 or A 4 if the backbone reagent has a structure of formula (all), to A 5 if the backbone reagent has a structure of formula (alll) and to A 6 if the backbone reagent has a structure of formula (a!V); and - a moiety of formula (e-ix):
- p51 to p80 are identical or different and each is independently of the others an integer from 2 to 5, preferably p51 to p80 are 3, and the dashed line indicates attachment to A if the backbone reagent has a structure of formula (al), to A 3 or A 4 if the backbone reagent has a structure of formula (all), to A 5 if the backbone reagent has a structure of formula (alll) and to A 6 if the backbone reagent has a structure of formula (a!V); and wherein the moieties (e-i) to (e-v) may at each chiral center be in either R- or S-configuration, preferably, all chiral centers of a moiety (e-i) to (e-v) are in the same configuration.
- Hyp x is has a structure of formulas (e-i), (e-ii), (e-iii), (e-iv), (e-vi), (e-vii), (e-viii) or (e-ix). More preferably, Hyp x has a structure of formulas (e-ii), (e-iii), (e-iv), (e-vii), (e- viii) or (e-ix), even more preferably Hyp x has a structure of formulas (e-ii), (e-iii), (e-vii) or (e-viii) and most preferably Hyp x has the structure of formula (e-iii).
- a preferred moiety - A 2 - Hyp 1 is a moiety of the formula
- E is selected from formulas (e-i) to (e-ix).
- E 1 is selected from formulas (e-i) to (e-ix); and a preferred moiety - A 4 - Hyp 3 is a moiety of the formula
- E 1 is selected from formulas (e-i) to (e-ix).
- a preferred moiety - A 5 - Hyp 4 is a moiety of the formula
- E 1 is selected from formulas (e-i) to (e-ix).
- the backbone reagent has a structure of formula (al) and B has a structure of formula (a-xiv).
- the backbone reagent has the structure of formula (al)
- B has the structure of formula (a-xiv)
- xl and x2 are 0, and
- a 1 is -0-.
- the backbone reagent has the structure of formula (al), B has the structure of formula (a-xiv), A 1 is -0-, and P has a structure of formula (c-i).
- the backbone reagent is formula (al)
- B is of formula (a-xiv)
- xl and x2 are 0,
- a 1 is -0-
- P is of formula (c-i)
- Hyp 1 is of formula (e-iii).
- the backbone reagent has the following formula:
- n ranges from 10 to 40, preferably from 10 to 30, more preferably from
- n 28.
- the crosslinker reagent has a molecular weight ranging from 0.5 to 40 kDa, more preferably ranging from 0.75 to 30 kDa, even more preferably ranging from 1 to 20 kDa, even more preferably ranging from 1 to 10 kDa, even more preferably ranging from 1 to 7.5 kDa and most preferably ranging from 2 kDa to 4 kDa.
- the crosslinker reagent comprises at least two activated functional end groups selected from the group comprising activated ester groups, activated carbamate groups, activated carbonate groups and activated thiocarbonate groups, which during polymerization react with the amine groups of the backbone reagents, forming amide linkages.
- the crosslinker reagent is a compound of formula (V-I):
- each D 1 , D 2 , D 3 and D 4 are identical or different and each is independently of the others selected from the group comprising -0-, -NR 5 -, -S- and -CR 6 R 6A -; each R 1 , R L A , R 2 , R 2A , R 3 , R 3A , R 4 , R 4A , R 6 and R 6A are identical or different and each is independently of the others selected from the group comprising -H, -OR , - NR 7 R 7A , -SR 7 and C 1 -6 alkyl; optionally, each of the pair(s) RVR 2 , R 3 /R 4 , R L A /R 2A , and R 3A /R 4 may independently form a chemical bond and/or each of the pairs R !
- R 2 /R 2A , R 3 /R 3A , R 4 /R 4A , R 6 /R 6A , RVR 2 , R 3 /R 4 , R L A /R 2A , and R 3A /R 4A are independently of each other joined together with the atoms to which they are attached to form a C 3 _8 cycloalkyl or to form a ring A or are joined together with the atoms to which they are attached to form a 3- to 10-membered heterocyclyl or 8- to 11-membered heterobicyclyl or adamantyl;
- each R 5 is independently selected from -H and C 1 -6 alkyl; optionally, each of the pair(s) RVR 5 , R 2 /R 5 , R 3 /R 5 , R 4 /R 5 and R 5 /R 6 may independently form a chemical bond and/or are joined together with the atoms to which they are attached to form a 3- to 10- membered heterocyclyl or 8- to 11-membered heterobicyclyl;
- each R 7 , R 7A is independently selected from H and C 1 -6 alkyl
- A is selected from the group consisting of indenyl, indanyl and tetralinyl;
- m ranges from 120 to 920, preferably from 120 to 460 and more preferably from 120 to 230;
- rl, r2, r7, r8 are independently 0 or 1; r3, r6 are independently 0, 1, 2, 3, or 4;
- r4, r5 are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
- si, s2 are independently 1, 2, 3, 4, 5 or 6;
- Y 1 , Y 2 are identical or different and each is independently of the other selected from formulas (f-i) to (f-vii):
- b is 1 , 2, 3 or 4
- X H is CI, Br, I, or F.
- the crosslinker reagent is a compound of formula (V-II):
- D 1 , D 2 , D 3 and D 4 are identical or different and each is independently of the others selected from the group comprising O, NR 5 , S and CR 5 R 5A ;
- R 1 , R L A , R 2 , R 2A , R 3 , R 3A , R 4 , R 4A , R 5 and R 5A are identical or different and each is independently of the others selected from the group comprising H and C 1 -6 alkyl; optionally, one or more of the pair(s) R !
- R 2 /R 2A , R 3 /R 3A , R 4 /R 4A , RVR 2 , R 3 /R 4 , R L A /R 2A , and R 3A /R 4A form a chemical bond or are joined together with the atom to which they are attached to form a C 3- 8 cycloalkyl or to form a ring A or are joined together with the atom to which they are attached to form a 3- to 10-membered heterocyclyl or 8- to 11-membered heterobicyclyl or adamantyl;
- A is selected from the group consisting of phenyl, naphthyl, indenyl, indanyl and tetralinyl;
- m ranges from 11 to 908, preferably from 17 to 680, even more preferably from 22 to
- rl, r2, r7, r8 are independently 0 or 1;
- r3, r6 are independently 0, 1, 2, 3, or 4;
- r4, r5 are independently 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10;
- si, s2 are independently 1, 2, 3, 4, 5 or 6;
- Y 1 , Y 2 are identical or different and each is independently of the other selected from formulas (f-i) to (f-vii):
- b is 1, 2, 3 or 4
- X H is CI, Br, I, or F.
- Y 1 and Y 2 of formula (V-I) or (V-II) have a structure of formula (f-i), (f-ii) or (f- v). More preferably, Y 1 and Y 2 of formula (V-I) or (V-II) have a structure of formula (f-i) or
- Y 1 and Y 2 have a structure of formula (f-i).
- both moieties Y 1 and Y 2 of formula (V-I) or (V-II) have the same structure. More preferably, both moieties Y 1 and Y 2 have the structure of formula (f-i).
- rl of formula (V-I) or (V-II) is 0.
- rl and si of formula (V-I) or (V-II) are both 0.
- one or more of the pair(s) R R 13 , R 2 /R 2A , R 3 /R 3A , R 4 /R 4A , RVR 2 , R 3 /R 4 , R L A /R 2A , and R 3A /R 4A of formula (V-I) or (V-II) form a chemical bond or are joined together with the atom to which they are attached to form a C 3 _8 cycloalkyl or form a ring A.
- one or more of the pair(s) RVR 2 , R LA /R 2A , R 3 /R 4 , R 3A /R 4A of formula (V-I) or (V-II) are joined together with the atoms to which they are attached to form a 3- to 10-membered heterocyclyl or 8- to 11-membered heterobicyclyl.
- the crosslinker reagent of formula (V-I) and (V-II) is symmetric, i.e. the moiety
- si s2, rl and r8 of formula (V-I) and (V-II) are 0.
- s2, rl and r8 of formula (V-I) and (V-II) are 0 and r4 of formula (V-I) and (V-II) and r5 are 1.
- Preferred crosslinker reagents are of formula (V-l) to (V-54):
- each crosslinker reagent may be in the form of its racemic mixture, where applicable; and m, Y 1 and Y 2 are defined as above.
- Crosslinker reagents V-l l to V-54, V-l and V-2 are preferred crosslinker reagents.
- Crosslinker reagents Va-11 to Va-54, Va-1 and Va-2 are most preferred crosslinker reagents. Most preferred is crosslinker reagent Va-14.
- crosslinker reagents V-l, V-2, V-5, V-6, V-7, V-8, V-9, V-10, V-l l, V-12, V-13, V-14, V-15, V-16, V-17, V-18, V-19, V-20, V-21, V-22, V-23, V-24, V-25, V- 26, V-27, V-28, V-29, V-30, V-31, V-32, V-33, V-34, V-35, V-36, V-37, V-38, V-39, V-40, V-41, V-42, V-43, V-44, V-45, V-46, V-47, V-48, V-49, V-50, V-51, V-52, V-53 an V-54 are preferred crosslinker reagents.
- the at least one crosslinker reagent is of formula V-5, V-6, V-7, V-8, V-9, V-10, V-14, V-22, V-23, V-43, V-44, V-45 or V-46, and most preferably, the at least one crosslinker reagent is of formula V-5, V-6, V-9 or V-14.
- the hydrogel comprises A x0 in the form of primary or secondary amine functional groups.
- such hydrogel contains from 0.01 to 1 mmol/g primary amine groups (-N3 ⁇ 4), more preferably, from 0.02 to 0.5 mmol/g primary amine groups and most preferably from 0.05 to 0.3 mmol/g primary amine groups.
- X mmol/g primary amine groups means that 1 g of dry hydrogel comprises X mmol primary amine groups. Measurement of the amine content of the hydrogel is carried out according to Gude et al. (Letters in Peptide Science, 2002, 9(4): 203-206, which is incorporated by reference in its entirety).
- the term "dry” as used herein means having a residual water content of a maximum of 10%, preferably less than 5% and more preferably less than 2% (determined according to Karl Fischer).
- the preferred method of drying is lyophilization.
- the hydrogel may be modified by conjugating certain moieties other than L 1 to remaining functional groups A x0 , such as for example spacer moieties and/or polymers and that also such modified hydrogel may be one embodiment of Z.
- Z is a hydrogel obtainable from the process for the preparation of a hydrogel as detailed above which is modified by conjugating a spacer moiety to remaining functional groups A x0 .
- Such spacer moiety is preferably selected from the group consisting of -T-, -C(0)0-, -O- , -C(O)-, -C(0)N(R z1 )-, -S(0) 2 N(R z1 )-, -S(0)N(R z1 )-, -S(0) 2 -, -S(O)-, -N(R zl )S(0) 2 N(R zla )- , -S-, -N(R z1 )-, -OC(OR zl )(R zla )-, -N(R zl )C(0)N(R zla )-, -OC(0)N(R z1 )-, C 1-50 alkyl, C 2-50 alkenyl, and C 2-5 o alkynyl; wherein -T-, C ⁇ so alkyl, C 2-5 o alkenyl, and C 2-5 o al
- R zl and R zla are independently of each other selected from the group consisting of -H, -T, Ci.so alkyl, C 2-5 o alkenyl, and C 2-5 o alkynyl; wherein -T, Ci -5 o alkyl, C 2-5 o alkenyl, and C 2-5 o alkynyl are optionally substituted with one or more R z2 , which are the same or different, and wherein C ⁇ o alkyl, C 2 _so alkenyl, and C 2 _5o alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, -C(0)0-, -0-, -C(O)-, -C(0)N(R z4 )- , -S(0) 2 N(R z4 )-, -S(0)N(R z4 )-, -S(0) 2 -, -S(O)-, -N(R
- each R z3 , R z3a , R z4 , R z4a , R z5 , R z5a and R z5b is independently selected from the group consisting of -H, and Ci -6 alkyl; wherein Ci -6 alkyl is optionally substituted with one or more halogen, which are the same or different.
- prodrugs their pharmaceutically acceptable salts and the prodrug reagents of the present invention -L 2 - and -L 2 - of formula (I), ( ⁇ ), (la), (lb), (I'a), (I'b), (Ila) and (Ila') are independently of each other a chemical bond or a spacer moiety.
- -L 2 - and -L 2 - are preferably independently of each other selected from the group consisting of -T-, -C(0)0-, -0-, -C(O)-, -C(0)N(R y1 )-, -S(0) 2 N(R y1 )-, -S(0)N(R y1 )-, -S(0) 2 -, -S(O)-, -N(R yl )S(0) 2 N(R yla )-, -S-, -N(R y, K -OC(OR yl )(R y,a )-, -N(R yl )C(0)N(R y,a )-, -OC(0)N(R y1 )-, C 1-50 alkyl, C 2 _ 50 alkenyl, and C 2-5 o alkynyl
- R yl and R yla are independently of each other selected from the group consisting of -H, -T, Ci_ 5 o alkyl, C 2 _5o alkenyl, and C 2 _5o alkynyl; wherein -T, C 1-5 o alkyl, C 2 _5o alkenyl, and C 2 _5o alkynyl are optionally substituted with one or more R y2 , which are the same or different, and wherein C 1 -5 o alkyl, C 2-5 o alkenyl, and C 2-5 o alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, -C(0)0-, -0-, -C(O)-, -C(0)N(R y4 )- , -S(0) 2 N(R y4 )-, -S(0)N(R y4 )-, -S(0) 2 -, -S(O)-
- Ci_ 6 alkyl is optionally substituted with one or more halogen, which are the same or different; and each R y3 , R y3a , R y4 , R y4a , R y5 , R y5a and R y5b is independently selected from the group consisting of -H, and Ci_ 6 alkyl, wherein Ci_ 6 alkyl is optionally substituted with one or more halogen, which are the same or different.
- -L - and -L - are even more preferably independently of each selected from -T-, -C(0)0-, -0-, -C(O)-, -C(0)N(R y1 )-, -S(0) 2 N(R y1 )-, -S(0)N(R y1 )-, -S(0) 2 -, -S(O)-, -N(R yl )S(0) 2 N(R yla )-, -S-, -N(R y1 )-, -OC(OR yl )(R yla )-, -N(R yl )C(0)N(R yla )-, -OC(0)N(R y1 )-, C 1 -50 alkyl, C 2-50 alkenyl, and C 2-5 o alkynyl; wherein -T-, Ci
- R yl and R yla are independently of each other selected from the group consisting of -H, -T, C[-io alkyl, C 2-1 o alkenyl, and C 2-1 o alkynyl; wherein -T, C ⁇ o alkyl, C 2 _ 10 alkenyl, and C 2 _io alkynyl are optionally substituted with one or more R y2 , which are the same or different, and wherein C 1-10 alkyl, C2 -10 alkenyl, and C 2-1 o alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, -C(0)0-, -0-, -C(O)-, -C(0)N(R y4 )- , -S(0) 2 N(R y4 )-, -S(0)N(R y4 )-, -S(0) 2 -, -S(O)-, -N(R y4
- Ci -6 alkyl is optionally substituted with one or more halogen, which are the same or different; and each R y3 , R y3a , R y4 , R y4a , R y5 , R y5a and R y5b is independently of each other selected from the group consisting of -H, and Ci_ 6 alkyl; wherein C 1-6 alkyl is optionally substituted with one or more halogen, which are the same or different.
- -L 2 - and -L 2' - are even more preferably independently of each other selected from the group consisting of -T-, -C(0)0-, -0-, -C(O)-, -C(0)N(R yl )-, -S(0) 2 N(R yl )-, -S(0)N(R y1 )-, -S(0) 2 -, -S(O)-, -N(R yl )S(0) 2 N(R yla )-, -S-, -N(R y1 )-, -OC(OR yl )(R yla )-,
- R yl and R yla are independently selected from the group consisting of -H, -T, C 1 -10 alkyl, C 2-10 alkenyl, and C 2-1 o alkynyl; each T is independently selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 1 1-membered heterobicyclyl, 8-to 30-membered carbopolycyclyl, and 8- to 30-membered heteropolycyclyl; each R y2 is independently selected from the group consisting of halogen, and C 1 -6 alkyl; and each R y3 , R y3a , R y4 , R y4a , R y5 , R y5a and R y5b is independently of each other selected from the group consisting of -H, and Ci_ 6 alky
- -L - and -L - are a Ci_ 2 o alkyl chain, which is optionally interrupted by one or more groups independently selected from -0-, -T- and -C(0)N(R l aa )-; and which Ci_ 2 o alkyl chain is optionally substituted with one or more groups independently selected from -OH, -T and -C(0)N(R y6 R y6a ); wherein R y6 , R y6a are independently selected from the group consisting of H and Ci_ 4 alkyl and wherein T is selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C ⁇ o cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 1 1-membered heterobicyclyl, 8-to 30-membered carbopolycyclyl, and 8- to 30-membered heteropolycyclyl.
- -L - and -L - have a molecular weight in the range of from 14 g/mol to 750 g/mol.
- -L 2 - comprises a moiety selected from 92
- R and R a are independently of each other selected from the group consisting of -H, methyl, ethyl, propyl, butyl, pentyl and hexyl.
- -L 2 -Z and -L 2' -Y can be attached to -L 1 - of formula (I) or ( ⁇ ) by replacing any -H present.
- one to five of the hydrogen given by R 1 , R la , R 2 , R 2a , R 3 , R 3a , R 4 , R 5 , R 6 , R 6a , R 7 and R 7a are replaced by -L 2 -Z and/or -L 2 -Y. More preferably, only one hydrogen of -L 1 - of formula (I) or ( ⁇ ) is replaced by -L 2 -Z or -L 2 -Y.
- R 4 of formula (I) is substituted with -L 2 -Z, i.e. any one of the -H present in R 4 is replaced by -L 2 -Z.
- R 4 of formula ( ⁇ ) is substituted with -L 2 -Z or -L 2' -Y, i.e. any one of the -H present in R 4 is replaced by -L 2 -Z or -L 2 -Y.
- R 5 of formula (I) is substituted with -L 2 -Z, i.e. any one of the -H present in R 5 is replaced by -L 2 -Z.
- R 5 of formula ( ⁇ ) is substituted with -L 2 -Z or -L 2 -Y, i.e. any one of the -H present in R 5 is replaced by -L 2 -Z or -L 2' -Y.
- Another aspect of the present invention is a method of synthesis of a prodrug or pharmaceutical salt thereof of the present invention.
- the method of synthesis of a prodrug of the present invention comprises the steps of
- -Y is a functional group
- -Q is -OH or a leaving group
- step (c) Reacting a reagent comprising Z having at least one functional group -Y' with -Y of the intermediate of step (b) by forming a linkage between Z and -L 2' -, resulting in Z being conjugated to at least one moiety -L 2 -L l -D;
- step (d) Optionally removing the protecting groups present. It is understood that one or more functional groups - Y' of Z react with a functional group - Y, i.e. that one or more reagents of step (a) are conjugated to Z.
- -Y is a functional group
- -Q is -OH or a leaving group
- step (b) Reacting a reagent comprising Z having at least one functional group -Y' with -Y of the reagent of step (a) by forming a linkage between Z and -L 2 -, resulting in Z being conjugated to at least one moiety -L 2 -L 1 -Q ;
- step (c) Reacting -Q of the intermediate of step (b) with a primary or secondary amine or hydroxyl functional group of a drug D-H by forming an amide or ester linkage between L 1 and D, respectively; wherein the drug optionally comprises further functional groups which may optionally be protected with protecting groups;
- one or more functional groups -Y' of Z react with a functional group -Y, i.e. that one or more reagents of step (a) are conjugated to Z.
- Preferred embodiments for -Y, -L 1 -, -L 2' -, -L 2 -, -D and -Q are as described above.
- Preferred embodiments of -Y' correspond to the preferred embodiments of -Y as described above.
- Preferred pairs Y/Y' are the following:
- Y is maleimide, Y' is selected from thiol, amine and selenide;
- Y' is maleimide, Y is selected from thiol, amine and selenide;
- ⁇ Y is selected from formulas (z'vi), (z'iii) and (z'iv), Y' is of formula (z'x);
- Y' is selected from formulas (z'vi), (z'iii) and (z'iv), Y is of formula (z'x);
- Y is selected from formulas (z'ii), (z'v), (z'vii) and a terminal alkynyl, Y' is azide;
- Y' is selected from formulas (z'ii), (z'v), (z'vii) and a terminal alkynyl, Y is azide;
- Y is of formula (z'xx), Y' is azide;
- ⁇ Y' is of formula (z'xx), Y is azide;
- Y is of formula (z'ix), Y' is of formula (z'iv); It is understood that the above listed pairs Y/Y' are preferred examples and do not represent a comprehensive list of all possible pairs.
- Another aspect of the present invention is a pharmaceutical composition
- a pharmaceutical composition comprising the prodrug of the present invention and one or more excipients.
- a further aspect of the present invention is the prodrug of the present invention or the pharmaceutical composition comprising the prodrug of the present invention for use as a medicament.
- H 2 N-PEG(12)-COOH (example 27, CAS 1415408-69-3) was purchased from Biomatrik Inc., Jiaxing, China. Human Insulin (rDNA Origin) was acquired from Biocon, Bangalore, India.
- HFIP was obtained from ABCR GmbH & Co. KG, Düsseldorf, Germany.
- N-Boc-N-methylethylenediamine and Bis(pentafluorophenyl) carbonate were purchased from Iris Biotech GmbH, Natredwitz, Germany.
- N-(6-Bromohexyl)phthalimide was obtained from Alfa Aesar, Ward Hill, USA.
- m-dPEG 37-NHS ester (example 23) was obtained from Celares GmbH, Berlin, Germany.
- TFA, Et 2 0, MTBE, MeCN, boric acid and MgS0 4 were purchased from Carl Roth GmbH & Co. KG, Düsseldorf, Germany.
- Lipase B from Candida antarctica was purchased from Hampton Research, Aliso Viejo, USA.
- Preparative HPLC was done on a reverse phase column (XBridge BEH300 CI 8 OBD Prep 10 ⁇ 30x150 mm) connected to a Waters 600 or 2535 HPLC system and Waters 2489 absorbance detector. Gradients of solution A (0.1% TFA in H 2 0) and solution B (0.1% TFA in acetonitrile) were used. HPLC fractions containing product were combined and lyophilized. Flash chromatography purifications were performed on an Isolera One system from Biotage AB, Sweden, using Biotage KP-Sil silica cartridges and n-heptane, and ethyl acetate as eluents. Products were detected at 254 nm.
- Analytical UPLC-MS was performed on a Waters Acquity UPLC with an Acquity PDA detector coupled to a Waters Micromass ZQ equipped with a Waters ACQUITY UPLC BEH300 CI 8 reverse phase column (2.1 x 50 mm, 300 A, 1.7 ⁇ , flow: 0.25 ml/min; solvent A: H 2 0 + 0.05% TFA, solvent B: acetonitrile + 0.04% TFA).
- Triphenylmethanethiol (2) (5.00 g; 18.09 mmol; 1.00 eq.) was stirred in ethanol (36.25 ml), yielding a slightly turbid, yellow solution.
- a solution of sodium hydroxide, NaOH (795.90 mg; 19.90 mmol; 1.10 eq.) in water (5.45 ml) was added.
- 1,6-dibromohexane (1) (4.17 ml; 27.14 mmol; 1.50 eq.) in ethanol (7.25 ml) was added dropwise. A slightly yellowish solid precipitated from the solution. The reaction mixture was stirred at room temperature overnight.
- the yellow, oily residue was dissolved in CH 2 CI 2 (7 ml) and hexane (18 ml) was added. A yellowish precipitate was observed after the solution was kept at -20°C for 40 h. The supernatant was decanted and the residue was washed with hexane and dried to yield a first product batch. The mother liquor and the hexane from the washing step were combined, evaporated and dried for 2 h at high vacuum. The residue was taken up in dichloromethane (2 ml) and hexane (15 ml). The solution was kept at -20°C over the weekend. The formed yellowish precipitate was isolated and dried at high vacuum for 2 hours to yield a second batch. The batches were similar in purity and therefore combined.
- the reaction mixture was stirred at room temperature overnight. A white precipitate was observed. An UPLC chromatogram showed full conversion to the product.
- the crude material was purified by preparative HPLC and the product containing fractions were lyophilized.
- tert-butyl N-methyl-N-[2-(6-tritylsulfanylhexylamino)ethyl] carbamate (5) (185.00 mg; 0.35 mmol; 1.00 eq.) was dissolved in anhydrous acetonitrile (3.70 ml).
- Methyl bromoacetate (6) (65.74 ⁇ ; 0.69 mmol; 2.00 eq.) and N,N-diisopropylethylamine (604.82 ⁇ ; 3.47 mmol; 10.00 eq.) were added.
- Methyl 2-[2-[teri-butoxycarbonyl(methyl)amino]ethyl-(6-tritylsulfanylhexyl)amino]acetate (7) (97.00 mg; 0.16 mmol; 1.00 eq.) was dissolved in methanol (7.62 ml).
- a 1 N solution of sodium hydroxide in water (5.08 ml; 1.00 mol/1; 5.08 mmol; 31.67 eq.) and water (4 ml) were added and the reaction mixture was stirred until full conversion was observed by UPLC-MS.
- the reaction was quenched by the addition of 1 N hydrochloric acid (5.08 ml; 1.00 mol/1; 5.08 mol; 31.67 eq.).
- the reaction mixture was stored at 4 °C overnight whereupon an emulsion was formed.
- the supernatant was carefully removed and the second phase was diluted with water, frozen and lyophilized.
- the residue was triturated with 3 ml of dichloromethane. The solution was filtered and the solvent evaporated. The residue was dried under high vacuum for 1 hour.
- Insulin (9) (176.13 mg; 0.03 mmol; 1.00 eq.) was dissolved in reaction buffer (2.5 ml, 4:6( V/V ) borate buffer (0.375 M sodium borate, pH 8.50): DMF). The activated linker solution was added and the reaction mixture was stirred at room temperature for 45 min. A mixture of unmodified insulin, two different mono-adducts and a bis-adduct was observed by UPLC-MS.
- the two mono-adducts were separated by preparative HPLC.
- the fractions containing the major mono-adduct isomer were pooled and lyophilized.
- the protected insulin-linker conjugate 10 (39.60 mg; 0.01 mmol; 1.00 eq.) was dissolved in HFIP (2 ml) to yield a yellow solution.
- TFA 200 ⁇
- TES 50 ⁇
- the solution was stirred at room temperature for 3 h. Full conversion was observed and the crude reaction mixture was concentrated. The resulting crude product was used without further purification in the next step.
- the deprotected insulin-linker conjugate 11 (ca. 5.7 ⁇ , 1.00 eq., crude) was dissolved in 2.5 ml of 1 :1 MeCN/H 2 0 and 616 ⁇ of the PEG stock solution (2 eq, 11.4 ⁇ ) were added.
- the reaction was started by the addition of buffer (600 ⁇ , 0.5 M phosphate, pH 7.5).
- the pH was checked with pH paper (ca. pH 7.5) and stirred for 15 min.
- the reaction was quenched by the addition of 10% AcOH aq (200 ⁇ ).
- the pH was checked with pH paper (ca. pH 4.0).
- the resulting solution was purified by preparative HPLC.
- the product containing fractions were pooled and lyophilized.
- Insulin was released with a half-life of 28 d.
- Phthalimide 15b was synthesized accordingly, starting from amine 4b.
- Amine 15a (139.00 mg; 0.27 mmol; 1.00 eq.) was dissolved in acetonitrile (2.50 ml) and DIPEA (93.56 ⁇ ; 0.54 mmol; 2.00 eq.) was added. Bromide 16 (51.55 ⁇ ; 0.35 mmol; 1.30 eq.) was added and the reaction mixture was stirred at room temperature for 2 h.
- Amine 18b was synthesized accordingly, starting from amine 17b. Exam le 12:
- Product 21a was used immediately (without further purification) in the next step.
- the solution was filtered and the filtrate was diluted with diethyl ether (100 ml) and washed once with saturated NaHC0 3 -solution (100 ml).
- the aqueous phase was extracted with diethyl ether (50 ml) and the combined organic phases were washed twice with 100 ml of a 0.1 M HCl-solution.
- the organic phase was dried over Na 2 S0 4 , filtered and the solvents were removed under reduced pressure.
- Ketone 24 (1.29 g; 5.00 mmol; 1.00 eq.) was dissolved in acetonitrile (16 ml). Sodium borohydride (378.32 mg; 10.00 mmol; 2.00 eq.) was added in portions. At the end ethanol (820.01 ⁇ ) was added. The reaction mixture was stirred overnight at room temperature. An LCMS chromatogram after 19 hours showed full conversion to the product.
- the reaction mixture was diluted with 150 ml of diethyl ether.
- the organic layer was washed twice with 100 ml of water.
- the organic layer was dried over MgS0 4 , filtered and concentrated under reduced pressure.
- Benzyl alcohol 25 (951.00 mg; 4.02 mmol; 1.00 eq.) was dissolved in acetonitrile (20 ml) and cooled to 0°C in an ice bath.
- Bis(pentafluorophenyl) carbonate (3.97 g; 10.06 mmol; 2.50 eq.)
- DMAP 122.91 mg; 1.01 mmol; 0.25 eq.
- DIPEA 3.50 ml; 20.12 mmol; 5.00 eq.
- Carboxylic acid 27a (10.00 mg; 0.01 mmol; 1.10 eq.), DIPEA (5.40 ⁇ ; 0.03 mmol; 2.59 eq.), HOSu (1.38 mg; 0.01 mmol; 1.00 eq.) and N-cyclohexylcarbodiimide-N-methyl polystyrene (18.92 mg; 0.04 mmol; 3.00 eq.) were shaken with anhydrous dichloromethane (0.40 ml) and 40 ⁇ of THF in a syringe reactor overnight.
- Product 28b was synthesized accordingly, starting from amine 27b.
- Deprotected insulin-linker conjugate 30 (0.50 mg; 0.08 ⁇ ; 1.00 eq) was dissolved in 0.5 mL 1 :1 MeCN/H 2 0 + 0.1% TFA. 100 iL of a solution of PEG thiol 36 (2.2 mg/mL; 0.22 mg; 0.12 ⁇ ; 1.50 eq) in 1 :1 MeCN/H 2 0 + 0.1% TFA and 100 of citrate buffer (0.5 M citric acid, pH 5.0) were added. The mixture was agitated for 1 h at ambient temperature.
- the samples were incubated at 37°C in a temperature controlled water bath. At different time points samples were withdrawn and analyzed by RP-HPLC/ESI MS.
- the amount of released insulin for each time point was calculated from the peak areas of the PEG-conjugate and the peak areas of released insulin. Curve-fitting software was applied to estimate the corresponding halftime of release. Halftimes of 2.9 days (pH 7.4) and 9.3 days (pH 5.5) for the insulin release were determined.
- the reaction was quenched by addition of TFA (1.1 ml) and concentrated to a total volume of about 10 ml. 50 ml of cold MTBE were added to the slightly yellow solution, which turned turbid. The mixture was stored at -20°C overnight. A white precipitate formed. The suspension was decanted and the solids were washed with 50 ml of cold MTBE. The white, solid residue was dried, whereupon it melted to yield a yellowish oil. The crude product was taken up in 1 :1 MeCN/H 2 0 + 0.1% TFA and purified by preparative HPLC. The pure fractions were combined, frozen and lyophilized to yield carboxylic acid 40.
- Carboxylic acid 40 (3.16 g; 3.83 mmol; 1.00 eq.), HOSu (528 mg; 4.59 mmol; 1.20 eq.), DMAP (46.7 mg; 0.38 mmol; 0.10 eq.) and DCC (947 mg; 4.59 mmol; 1.20 eq.) were dissolved in dichloromethane (37 ml). The reaction mixture was stirred at room temperature for 30 min. The urea was filtered off with a syringe reactor and DCM was evaporated. The residue was dissolved in 1 : 1 MeCN/H 2 0 + 0.1% TFA and purified by preparative HPLC. The pure fractions were combined, frozen and lyophilized to yield MTS-PEG(12)-NHS handle 41. Yield: 2.88 g; 81 %
- Dry amino functionalized hydrogel 42 (100 mg, 13.8 ⁇ amino groups) as described in WO2015/067791 (example 3 a) is filled into a syringe equipped with a filter frit.
- the hydrogel is suspended in 5 mL NMP/ 2 % DIPEA.
- the solvent is discarded and the hydrogel is washed five times with 5 mL NMP/ 2 % DIPEA, the solvent is discarded.
- 31.8 mg (2.5 eq in respect to the amine content of the hydrogel, 34.5 ⁇ ) of MTS-PEG(12)-NHS handle 41 is dissolved in 1.5 mL NMP and drawn into the syringe.
- the suspension is allowed to incubate for 2 hours at ambient temperature under gentle agitation.
- the solvent is discarded and the hydrogel is washed five times with each time 5 mL NMP, the solvent is each time discarded.
- the hydrogel is washed five times with each time 5 mL 0.1% HOAc, 0.01% Tween 20, the solvent is each time discarded.
- An aqueous solution containing 0.1% HOAc, 0.01% Tween 20 is added to obtain suspension 43 containing 10 mg/niL hydrogel based on initial weight.
- hydrogel suspension 44 5 mL (50 mg hydrogel based on initial weight; 6.9 ⁇ ; 1.00 eq) of hydrogel suspension 44 are transferred to a syringe equipped with a filter frit. The solvent is discarded. The hydrogel is washed ten times with sodium succinate buffer (pH 3.0, 20 mM; 1 mM EDTA, 0.01 % Tween 20). The solvent is each time discarded.
- Deprotected insulin-linker conjugate 30 55 mg; 8.3 ⁇ ; 1.20 eq) is dissolved in 3.0 mL 1 :1 MeCN/H 2 0 + 0.1% TFA. The solution is drawn into the syringe.
- phosphate buffer 0.5 M sodium phosphate, pH 6.1
- the suspension is incubated at ambient temperature for 1 hour.
- the solvent is discarded and the hydrogel is washed ten times with sodium succinate buffer (pH 3.0, 20 mM; 1 mM EDTA, 0.01 % Tween 20) and ten times with sodium acetate buffer (pH 5.0, 10 mM; 130 mM NaCl, 0.01 % Tween 20).
- the insulin content of hydrogel suspension 45 is determined by quantitative amino acid analysis after total hydrolysis under acidic conditions.
- Hydrogel 45 (containing approx. 1 mg insulin) is suspended in 2 ml 60 mM sodium phosphate, 3 mM EDTA, 0.01% Tween 20, pH 7.4, and incubated at 37 °C. The suspension is centrifuged at time intervals and the supernatant is analyzed by RP-HPLC at 280 nm and ESI- MS. UV-signals correlating to liberated insulin are integrated and plotted against incubation time.
- Curve-fitting software is applied to estimate the corresponding halftime of release.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Diabetes (AREA)
- Endocrinology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15745217.8A EP3193941B1 (en) | 2014-08-06 | 2015-08-04 | Prodrugs comprising an aminoalkyl glycine linker |
CA2955569A CA2955569C (en) | 2014-08-06 | 2015-08-04 | Prodrugs comprising an aminoalkyl glycine linker |
US15/502,084 US11633487B2 (en) | 2014-08-06 | 2015-08-04 | Prodrugs comprising an aminoalkyl glycine linker |
AU2015299055A AU2015299055C1 (en) | 2014-08-06 | 2015-08-04 | Prodrugs comprising an aminoalkyl glycine linker |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14180004.5 | 2014-08-06 | ||
EP14180004 | 2014-08-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016020373A1 true WO2016020373A1 (en) | 2016-02-11 |
Family
ID=51265615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/067929 WO2016020373A1 (en) | 2014-08-06 | 2015-08-04 | Prodrugs comprising an aminoalkyl glycine linker |
Country Status (5)
Country | Link |
---|---|
US (1) | US11633487B2 (en) |
EP (1) | EP3193941B1 (en) |
AU (1) | AU2015299055C1 (en) |
CA (1) | CA2955569C (en) |
WO (1) | WO2016020373A1 (en) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018011266A1 (en) | 2016-07-13 | 2018-01-18 | Ascendis Pharma A/S | Conjugation method for carrier-linked prodrugs |
WO2018060310A1 (en) | 2016-09-29 | 2018-04-05 | Ascendis Pharma Bone Diseases A/S | Dosage regimen for a controlled-release pth compound |
WO2018060312A1 (en) | 2016-09-29 | 2018-04-05 | Ascendis Pharma Bone Diseases A/S | Pth compounds with low peak-to-trough ratios |
WO2018060311A1 (en) | 2016-09-29 | 2018-04-05 | Ascendis Pharma Bone Diseases A/S | Incremental dose finding in controlled-release pth compounds |
WO2018175788A1 (en) | 2017-03-22 | 2018-09-27 | Genentech, Inc. | Hydrogel cross-linked hyaluronic acid prodrug compositions and methods |
WO2019185705A1 (en) | 2018-03-28 | 2019-10-03 | Ascendis Pharma A/S | Il-2 conjugates |
WO2019185706A1 (en) | 2018-03-28 | 2019-10-03 | Ascendis Pharma A/S | Conjugates |
WO2019219896A1 (en) | 2018-05-18 | 2019-11-21 | Ascendis Pharma Bone Diseases A/S | Starting dose of pth conjugates |
WO2020064846A1 (en) | 2018-09-26 | 2020-04-02 | Ascendis Pharma A/S | Novel hydrogel conjugates |
WO2020064847A1 (en) | 2018-09-26 | 2020-04-02 | Ascendis Pharma A/S | Degradable hyaluronic acid hydrogels |
WO2020064844A1 (en) | 2018-09-26 | 2020-04-02 | Ascendis Pharma A/S | Treatment of infections |
WO2020141221A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Conjugates of pattern recognition receptor agonists |
WO2020141225A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Minimization of systemic inflammation |
WO2020141222A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Sustained local drug levels for innate immune agonists |
WO2020141223A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Induction of sustained local inflammation |
WO2020165081A1 (en) | 2019-02-11 | 2020-08-20 | Ascendis Pharma Growth Disorders A/S | Dry pharmaceutical formulations of cnp conjugates |
WO2020165087A1 (en) | 2019-02-11 | 2020-08-20 | Ascendis Pharma Bone Diseases A/S | Liquid pharmaceutical formulations of pth conjugates |
US10751417B2 (en) | 2017-04-20 | 2020-08-25 | Novartis Ag | Sustained release delivery systems comprising traceless linkers |
WO2020254609A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Tyrosine kinase inhibitor conjugates |
WO2020254611A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Anti-ctla4 conjugates |
WO2020254617A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Anti-ctla4 compounds with localized pk properties |
WO2020254607A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Anti-ctla4 compounds with localized pd properties |
WO2020254613A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Controlled-release tyrosine kinase inhibitor compounds with localized pk properties |
WO2020254612A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Controlled-release tyrosine kinase inhibitor compounds with localized pd properties |
WO2021136808A1 (en) | 2020-01-03 | 2021-07-08 | Ascendis Pharma A/S | Conjugates undergoing intramolecular rearrangements |
WO2021144249A1 (en) | 2020-01-13 | 2021-07-22 | Ascendis Pharma Bone Diseases A/S | Hypoparathyroidism treatment |
US11116816B2 (en) | 2014-10-22 | 2021-09-14 | Extend Biosciences, Inc. | Therapeutic vitamin d conjugates |
US11154593B2 (en) | 2016-01-08 | 2021-10-26 | Ascendis Pharma Growth Disorders A/S | CNP prodrugs with large carrier moieties |
WO2021224169A1 (en) | 2020-05-04 | 2021-11-11 | Ascendis Pharma A/S | Hydrogel irradiation |
WO2021245130A1 (en) | 2020-06-03 | 2021-12-09 | Ascendis Pharma Oncology Division A/S | Il-2 sequences and uses thereof |
US11224661B2 (en) | 2016-01-08 | 2022-01-18 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with increased NEP stability |
CN114026080A (en) * | 2019-06-21 | 2022-02-08 | 阿森迪斯药物股份有限公司 | Conjugates containing compounds providing a pi-electron pair |
WO2022029178A1 (en) | 2020-08-05 | 2022-02-10 | Ascendis Pharma A/S | Conjugates comprising reversible linkers and uses thereof |
WO2022043493A1 (en) | 2020-08-28 | 2022-03-03 | Ascendis Pharma Oncology Division A/S | Glycosylated il-2 proteins and uses thereof |
WO2022064035A1 (en) | 2020-09-28 | 2022-03-31 | Ascendis Pharma Bone Diseases A/S | Improvement of physical and mental well-being of patients with hypoparathyroidism |
US11311604B2 (en) | 2016-01-08 | 2022-04-26 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with low NPR-C binding |
US11389510B2 (en) | 2016-01-08 | 2022-07-19 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with low initial NPR-B activity |
US11389541B2 (en) | 2018-10-03 | 2022-07-19 | Novartis Ag | Sustained delivery of angiopoetin-like 3 polypeptides |
US11389511B2 (en) | 2016-01-08 | 2022-07-19 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with reduced side-effects |
US11413351B2 (en) | 2016-01-08 | 2022-08-16 | Ascendis Pharma Growth Disorders A/S | CNP prodrugs with carrier attachment at the ring moiety |
WO2022207798A1 (en) | 2021-04-01 | 2022-10-06 | Ascendis Pharma A/S | Use of long-acting growth hormone for treating inflammation-induced diseases |
US11603396B2 (en) | 2019-05-22 | 2023-03-14 | Orna Therapeutics, Inc. | Circular RNA compositions and methods |
WO2023046732A1 (en) | 2021-09-22 | 2023-03-30 | Ascendis Pharma Bone Diseases A/S | Long-acting pth compound treatments |
US11679120B2 (en) | 2019-12-04 | 2023-06-20 | Orna Therapeutics, Inc. | Circular RNA compositions and methods |
WO2023110727A2 (en) | 2021-12-13 | 2023-06-22 | Ascendis Pharma Oncology Division A/S | Novel cancer treatments with tlr7/8 agonists |
WO2023110758A1 (en) | 2021-12-13 | 2023-06-22 | Ascendis Pharma Growth Disorders A/S | Effective doses of cnp conjugates |
US11793861B2 (en) | 2016-03-01 | 2023-10-24 | Ascendis Pharma Bone Diseases A/S | PTH prodrugs |
WO2023227505A1 (en) | 2022-05-23 | 2023-11-30 | Ascendis Pharma Growth Disorders A/S | Liquid pharmaceutical formulations of cnp compounds |
US11845950B2 (en) | 2018-06-06 | 2023-12-19 | Massachusetts Institute Of Technology | Circular RNA for translation in eukaryotic cells |
WO2024094673A1 (en) | 2022-11-02 | 2024-05-10 | Ascendis Pharma Bone Diseases A/S | Pth treatment regimen comprising two pth compounds |
WO2024104922A1 (en) | 2022-11-14 | 2024-05-23 | Ascendis Pharma Growth Disorders A/S | Method of improving skeletal muscle function |
WO2024146920A1 (en) | 2023-01-05 | 2024-07-11 | Ascendis Pharma Ophthalmology Division A/S | Drug conjugates for the treatment of ocular disorders |
WO2024146902A1 (en) | 2023-01-05 | 2024-07-11 | Ascendis Pharma A/S | Methods of producing hydrogel microspheres |
WO2024184354A1 (en) | 2023-03-06 | 2024-09-12 | Ascendis Pharma A/S | Multi-albumin binding compounds |
WO2024184351A1 (en) | 2023-03-06 | 2024-09-12 | Ascendis Pharma A/S | Compounds of drugs with an albumin binding moiety |
WO2024184352A1 (en) | 2023-03-06 | 2024-09-12 | Ascendis Pharma A/S | Drug compounds comprising albumin-binding moieties |
WO2024194300A1 (en) | 2023-03-20 | 2024-09-26 | Ascendis Pharma Growth Disorders A/S | Method of treatment of a thoracolumbar deformity in a human subject with achondroplasia |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0120558A1 (en) * | 1983-02-12 | 1984-10-03 | RECORDATI S.A. CHEMICAL and PHARMACEUTICAL COMPANY | Antihypertensive N-piperazinylalkanoylanilides |
EP0252810A2 (en) * | 1986-07-08 | 1988-01-13 | Synthelabo | N-2(dimethylamino)ethyl N.[2[[2(methylthio)phenyl][phenylmethyl]]amino-2-oxo]ethyl]carbamates or ureas, their preparation and therapeutical use |
WO2011012722A1 (en) * | 2009-07-31 | 2011-02-03 | Ascendis Pharma As | Prodrugs containing an aromatic amine connected by an amido bond to a linker |
US20130090326A1 (en) * | 2009-10-16 | 2013-04-11 | Rib-X Pharmaceuticals, Inc. | Antimicrobial Compounds and Methods of Making and Using the Same |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017954A (en) * | 1989-08-10 | 2000-01-25 | Children's Medical Center Corp. | Method of treating tumors using O-substituted fumagillol derivatives |
WO1997018714A1 (en) * | 1995-11-22 | 1997-05-29 | The Minister Of Agriculture Fisheries & Food In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Alkylphosphines as pesticidal agents |
JP4422916B2 (en) * | 1999-03-12 | 2010-03-03 | トポターゲット・アクティーゼルスカブ | Treatment of accidental overflow of anthracyclines |
US20040101941A1 (en) * | 2001-07-26 | 2004-05-27 | Sara Lavi | Intracellular delivery system for protein phosphatases |
DE60331049D1 (en) * | 2002-03-01 | 2010-03-11 | Univ Tulane | CONJUGATES OF CYTOTOXIC AGENTS AND BIOLOGICALLY ACTIVE PEPTIDES |
US7491695B2 (en) * | 2003-06-18 | 2009-02-17 | Tranzyme Pharma Inc. | Methods of using macrocyclic modulators of the ghrelin receptor |
WO2005099768A2 (en) | 2004-03-23 | 2005-10-27 | Complex Biosystems Gmbh | Polymeric prodrug with a self-immolative linker |
US7968085B2 (en) | 2004-07-05 | 2011-06-28 | Ascendis Pharma A/S | Hydrogel formulations |
WO2006084054A2 (en) * | 2005-02-02 | 2006-08-10 | Children's Medical Center Corporation | Method of treating angiogenic diseases |
GB2427360A (en) | 2005-06-22 | 2006-12-27 | Complex Biosystems Gmbh | Aliphatic prodrug linker |
KR101072899B1 (en) * | 2008-01-21 | 2011-10-17 | 주식회사 파나진 | Synthesis of peptide nucleic acids conjugated with amino acids and their application |
ES2904673T3 (en) | 2008-02-01 | 2022-04-05 | Ascendis Pharma As | Prodrug comprising a drug-linker conjugate. |
SG177761A1 (en) | 2009-07-31 | 2012-03-29 | Ascendis Pharma As | Biodegradable polyethylene glycol based water-insoluble hydrogels |
WO2011089215A1 (en) | 2010-01-22 | 2011-07-28 | Ascendis Pharma As | Dipeptide-based prodrug linkers for aromatic amine-containing drugs |
WO2011089216A1 (en) | 2010-01-22 | 2011-07-28 | Ascendis Pharma As | Dipeptide-based prodrug linkers for aliphatic amine-containing drugs |
US9561285B2 (en) | 2010-01-22 | 2017-02-07 | Ascendis Pharma As | Carrier-linked carbamate prodrug linkers |
US20110294952A1 (en) * | 2010-05-25 | 2011-12-01 | SynDevRX | Optimized Drug Conjugates |
US20140323402A1 (en) | 2011-08-12 | 2014-10-30 | Ascendis Phama A/S | Protein Carrier-Linked Prodrugs |
AU2012296949B2 (en) | 2011-08-12 | 2016-09-15 | Ascendis Pharma A/S | High-loading water-soluble carrier-linked prodrugs |
US20130101527A1 (en) * | 2011-10-14 | 2013-04-25 | Rodolfo R. Llinas | Methods, compounds and pharmaceutical compositions for treating neurological disorders |
AU2013328785B2 (en) | 2012-10-11 | 2016-07-21 | Ascendis Pharma A/S | Hydrogel prodrugs |
US9737386B2 (en) * | 2013-05-10 | 2017-08-22 | Smartvet Pty Ltd | Dosage projectile for remotely treating an animal |
-
2015
- 2015-08-04 EP EP15745217.8A patent/EP3193941B1/en active Active
- 2015-08-04 WO PCT/EP2015/067929 patent/WO2016020373A1/en active Application Filing
- 2015-08-04 CA CA2955569A patent/CA2955569C/en active Active
- 2015-08-04 AU AU2015299055A patent/AU2015299055C1/en active Active
- 2015-08-04 US US15/502,084 patent/US11633487B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0120558A1 (en) * | 1983-02-12 | 1984-10-03 | RECORDATI S.A. CHEMICAL and PHARMACEUTICAL COMPANY | Antihypertensive N-piperazinylalkanoylanilides |
EP0252810A2 (en) * | 1986-07-08 | 1988-01-13 | Synthelabo | N-2(dimethylamino)ethyl N.[2[[2(methylthio)phenyl][phenylmethyl]]amino-2-oxo]ethyl]carbamates or ureas, their preparation and therapeutical use |
WO2011012722A1 (en) * | 2009-07-31 | 2011-02-03 | Ascendis Pharma As | Prodrugs containing an aromatic amine connected by an amido bond to a linker |
US20130090326A1 (en) * | 2009-10-16 | 2013-04-11 | Rib-X Pharmaceuticals, Inc. | Antimicrobial Compounds and Methods of Making and Using the Same |
Non-Patent Citations (2)
Title |
---|
CONOVER C D ET AL: "CAMPTOTHECIN DELIVERY SUSTEMS: THE UTILITY OF AMINO ACID SPACERS FOR THE CONJUGATION OF CAMPTOTHECIN WITH POLYETHYLENE GLYCOL TO CREATE PRODRUGS", ANTI-CANCER DRUGS, LIPPINCOTT WILLIAMS & WILKINS, US; NL, vol. 14, no. 6, 1 December 1999 (1999-12-01), pages 499 - 506, XP001023559, ISSN: 0959-4973 * |
KOHL N E ET AL: "SELECTIVE INHIBITION OF RAS-DEPENDENT TRANSFORMATION BY A FARNESYLTRANSFERASE INHIBITOR", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 260, 25 June 1993 (1993-06-25), pages 1934 - 1937, XP000674770, ISSN: 0036-8075, DOI: 10.1126/SCIENCE.8316833 * |
Cited By (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11116816B2 (en) | 2014-10-22 | 2021-09-14 | Extend Biosciences, Inc. | Therapeutic vitamin d conjugates |
US12076366B2 (en) | 2014-10-22 | 2024-09-03 | Extend Biosciences, Inc. | Therapeutic vitamin D conjugates |
US12083182B2 (en) | 2016-01-08 | 2024-09-10 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with increased NEP stability |
US11413351B2 (en) | 2016-01-08 | 2022-08-16 | Ascendis Pharma Growth Disorders A/S | CNP prodrugs with carrier attachment at the ring moiety |
US11389511B2 (en) | 2016-01-08 | 2022-07-19 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with reduced side-effects |
US11389510B2 (en) | 2016-01-08 | 2022-07-19 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with low initial NPR-B activity |
US11311604B2 (en) | 2016-01-08 | 2022-04-26 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with low NPR-C binding |
US11224661B2 (en) | 2016-01-08 | 2022-01-18 | Ascendis Pharma Growth Disorders A/S | Controlled-release CNP agonists with increased NEP stability |
US11154593B2 (en) | 2016-01-08 | 2021-10-26 | Ascendis Pharma Growth Disorders A/S | CNP prodrugs with large carrier moieties |
US11793861B2 (en) | 2016-03-01 | 2023-10-24 | Ascendis Pharma Bone Diseases A/S | PTH prodrugs |
WO2018011266A1 (en) | 2016-07-13 | 2018-01-18 | Ascendis Pharma A/S | Conjugation method for carrier-linked prodrugs |
US11759504B2 (en) | 2016-09-29 | 2023-09-19 | Ascendis Pharma Bone Diseases A/S | PTH compounds with low peak-to-trough ratios |
IL265591B2 (en) * | 2016-09-29 | 2023-12-01 | Ascendis Pharma Bone Diseases As | Dosage regimen for a controlled-release pth compound |
AU2017336250B2 (en) * | 2016-09-29 | 2023-04-20 | Ascendis Pharma Bone Diseases A/S | Incremental dose finding in controlled-release PTH compounds |
IL265591B1 (en) * | 2016-09-29 | 2023-08-01 | Ascendis Pharma Bone Diseases As | Dosage regimen for a controlled-release pth compound |
AU2017336250C1 (en) * | 2016-09-29 | 2023-08-03 | Ascendis Pharma Bone Diseases A/S | Incremental dose finding in controlled-release PTH compounds |
US11590207B2 (en) | 2016-09-29 | 2023-02-28 | Ascendis Pharma Bone Diseases A/S | Dosage regimen for a controlled-release PTH compound |
EP4218795A3 (en) * | 2016-09-29 | 2023-08-30 | Ascendis Pharma Bone Diseases A/S | Pth compounds with low peak-to-trough ratios |
WO2018060310A1 (en) | 2016-09-29 | 2018-04-05 | Ascendis Pharma Bone Diseases A/S | Dosage regimen for a controlled-release pth compound |
WO2018060312A1 (en) | 2016-09-29 | 2018-04-05 | Ascendis Pharma Bone Diseases A/S | Pth compounds with low peak-to-trough ratios |
WO2018060311A1 (en) | 2016-09-29 | 2018-04-05 | Ascendis Pharma Bone Diseases A/S | Incremental dose finding in controlled-release pth compounds |
JP7483776B2 (en) | 2016-09-29 | 2024-05-15 | アセンディス ファーマ ボーン ディジージズ エー/エス | Titrating controlled release PTH compounds |
JP2022081604A (en) * | 2016-09-29 | 2022-05-31 | アセンディス ファーマ ボーン ディジージズ エー/エス | Incremental dose finding in controlled-release pth compounds |
US11918628B2 (en) | 2016-09-29 | 2024-03-05 | Ascendis Pharma Bone Diseases A/S | Controlled-release PTH compound |
US11890326B2 (en) | 2016-09-29 | 2024-02-06 | Ascendis Pharma Bone Diseases A/S | Controlled-release PTH compound |
EP4275677A3 (en) * | 2016-09-29 | 2024-01-10 | Ascendis Pharma Bone Diseases A/S | Dosage regimen for a controlled-release pth compound |
US11857603B2 (en) | 2016-09-29 | 2024-01-02 | Ascendis Pharma Bone Diseases A/S | PTH compounds with low peak-to-trough ratios |
JP7039574B2 (en) | 2016-09-29 | 2022-03-22 | アセンディス ファーマ ボーン ディジージズ エー/エス | Release control PTH compound escalating dose setting |
JP2019533649A (en) * | 2016-09-29 | 2019-11-21 | アセンディス ファーマ ボーン ディジージズ エー/エス | Increasing dose setting of controlled release PTH compounds |
EP4275677A2 (en) | 2016-09-29 | 2023-11-15 | Ascendis Pharma Bone Diseases A/S | Dosage regimen for a controlled-release pth compound |
US11642415B2 (en) | 2017-03-22 | 2023-05-09 | Ascendis Pharma A/S | Hydrogel cross-linked hyaluronic acid prodrug compositions and methods |
WO2018175788A1 (en) | 2017-03-22 | 2018-09-27 | Genentech, Inc. | Hydrogel cross-linked hyaluronic acid prodrug compositions and methods |
US10751417B2 (en) | 2017-04-20 | 2020-08-25 | Novartis Ag | Sustained release delivery systems comprising traceless linkers |
WO2019185705A1 (en) | 2018-03-28 | 2019-10-03 | Ascendis Pharma A/S | Il-2 conjugates |
WO2019185706A1 (en) | 2018-03-28 | 2019-10-03 | Ascendis Pharma A/S | Conjugates |
WO2019219896A1 (en) | 2018-05-18 | 2019-11-21 | Ascendis Pharma Bone Diseases A/S | Starting dose of pth conjugates |
US11845950B2 (en) | 2018-06-06 | 2023-12-19 | Massachusetts Institute Of Technology | Circular RNA for translation in eukaryotic cells |
US11981909B2 (en) | 2018-06-06 | 2024-05-14 | Massachusetts Institute Of Technology | Circular RNA for translation in eukaryotic cells |
WO2020064844A1 (en) | 2018-09-26 | 2020-04-02 | Ascendis Pharma A/S | Treatment of infections |
WO2020064846A1 (en) | 2018-09-26 | 2020-04-02 | Ascendis Pharma A/S | Novel hydrogel conjugates |
WO2020064847A1 (en) | 2018-09-26 | 2020-04-02 | Ascendis Pharma A/S | Degradable hyaluronic acid hydrogels |
US11389541B2 (en) | 2018-10-03 | 2022-07-19 | Novartis Ag | Sustained delivery of angiopoetin-like 3 polypeptides |
WO2020141221A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Conjugates of pattern recognition receptor agonists |
WO2020141223A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Induction of sustained local inflammation |
WO2020141222A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Sustained local drug levels for innate immune agonists |
WO2020141225A1 (en) | 2019-01-04 | 2020-07-09 | Ascendis Pharma A/S | Minimization of systemic inflammation |
WO2020165087A1 (en) | 2019-02-11 | 2020-08-20 | Ascendis Pharma Bone Diseases A/S | Liquid pharmaceutical formulations of pth conjugates |
WO2020165081A1 (en) | 2019-02-11 | 2020-08-20 | Ascendis Pharma Growth Disorders A/S | Dry pharmaceutical formulations of cnp conjugates |
US11802144B2 (en) | 2019-05-22 | 2023-10-31 | Orna Therapeutics, Inc. | Circular RNA compositions and methods |
US11603396B2 (en) | 2019-05-22 | 2023-03-14 | Orna Therapeutics, Inc. | Circular RNA compositions and methods |
CN114026080A (en) * | 2019-06-21 | 2022-02-08 | 阿森迪斯药物股份有限公司 | Conjugates containing compounds providing a pi-electron pair |
WO2020254609A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Tyrosine kinase inhibitor conjugates |
WO2020254611A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Anti-ctla4 conjugates |
WO2020254617A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Anti-ctla4 compounds with localized pk properties |
WO2020254607A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Anti-ctla4 compounds with localized pd properties |
WO2020254613A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Controlled-release tyrosine kinase inhibitor compounds with localized pk properties |
WO2020254612A1 (en) | 2019-06-21 | 2020-12-24 | Ascendis Pharma Oncology Division A/S | Controlled-release tyrosine kinase inhibitor compounds with localized pd properties |
US11766449B2 (en) | 2019-12-04 | 2023-09-26 | Orna Therapeutics, Inc. | Circular RNA compositions and methods |
US11771715B2 (en) | 2019-12-04 | 2023-10-03 | Orna Therapeutics, Inc. | Circular RNA compositions and methods |
US11679120B2 (en) | 2019-12-04 | 2023-06-20 | Orna Therapeutics, Inc. | Circular RNA compositions and methods |
WO2021136808A1 (en) | 2020-01-03 | 2021-07-08 | Ascendis Pharma A/S | Conjugates undergoing intramolecular rearrangements |
WO2021144249A1 (en) | 2020-01-13 | 2021-07-22 | Ascendis Pharma Bone Diseases A/S | Hypoparathyroidism treatment |
WO2021224169A1 (en) | 2020-05-04 | 2021-11-11 | Ascendis Pharma A/S | Hydrogel irradiation |
WO2021245130A1 (en) | 2020-06-03 | 2021-12-09 | Ascendis Pharma Oncology Division A/S | Il-2 sequences and uses thereof |
US11879001B2 (en) | 2020-06-03 | 2024-01-23 | Ascendis Pharma Oncology Division A/S | Conjugate comprising an IL-2 moiety |
WO2022029178A1 (en) | 2020-08-05 | 2022-02-10 | Ascendis Pharma A/S | Conjugates comprising reversible linkers and uses thereof |
WO2022043493A1 (en) | 2020-08-28 | 2022-03-03 | Ascendis Pharma Oncology Division A/S | Glycosylated il-2 proteins and uses thereof |
WO2022064035A1 (en) | 2020-09-28 | 2022-03-31 | Ascendis Pharma Bone Diseases A/S | Improvement of physical and mental well-being of patients with hypoparathyroidism |
WO2022207798A1 (en) | 2021-04-01 | 2022-10-06 | Ascendis Pharma A/S | Use of long-acting growth hormone for treating inflammation-induced diseases |
WO2023046732A1 (en) | 2021-09-22 | 2023-03-30 | Ascendis Pharma Bone Diseases A/S | Long-acting pth compound treatments |
WO2023110758A1 (en) | 2021-12-13 | 2023-06-22 | Ascendis Pharma Growth Disorders A/S | Effective doses of cnp conjugates |
WO2023110727A2 (en) | 2021-12-13 | 2023-06-22 | Ascendis Pharma Oncology Division A/S | Novel cancer treatments with tlr7/8 agonists |
WO2023227505A1 (en) | 2022-05-23 | 2023-11-30 | Ascendis Pharma Growth Disorders A/S | Liquid pharmaceutical formulations of cnp compounds |
WO2024094673A1 (en) | 2022-11-02 | 2024-05-10 | Ascendis Pharma Bone Diseases A/S | Pth treatment regimen comprising two pth compounds |
WO2024104922A1 (en) | 2022-11-14 | 2024-05-23 | Ascendis Pharma Growth Disorders A/S | Method of improving skeletal muscle function |
WO2024146920A1 (en) | 2023-01-05 | 2024-07-11 | Ascendis Pharma Ophthalmology Division A/S | Drug conjugates for the treatment of ocular disorders |
WO2024146902A1 (en) | 2023-01-05 | 2024-07-11 | Ascendis Pharma A/S | Methods of producing hydrogel microspheres |
WO2024184354A1 (en) | 2023-03-06 | 2024-09-12 | Ascendis Pharma A/S | Multi-albumin binding compounds |
WO2024184351A1 (en) | 2023-03-06 | 2024-09-12 | Ascendis Pharma A/S | Compounds of drugs with an albumin binding moiety |
WO2024184352A1 (en) | 2023-03-06 | 2024-09-12 | Ascendis Pharma A/S | Drug compounds comprising albumin-binding moieties |
WO2024194300A1 (en) | 2023-03-20 | 2024-09-26 | Ascendis Pharma Growth Disorders A/S | Method of treatment of a thoracolumbar deformity in a human subject with achondroplasia |
Also Published As
Publication number | Publication date |
---|---|
US11633487B2 (en) | 2023-04-25 |
AU2015299055C1 (en) | 2021-05-06 |
EP3193941A1 (en) | 2017-07-26 |
EP3193941B1 (en) | 2024-05-22 |
CA2955569A1 (en) | 2016-02-11 |
CA2955569C (en) | 2023-02-14 |
AU2015299055B2 (en) | 2020-12-03 |
AU2015299055A1 (en) | 2017-02-09 |
US20170224829A1 (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2015299055B2 (en) | Prodrugs comprising an aminoalkyl glycine linker | |
AU2013328785B2 (en) | Hydrogel prodrugs | |
US11298427B2 (en) | Prodrugs comprising a pyroglutamate linker | |
KR102235868B1 (en) | Vegf neutralizing prodrugs for the treatment of ocular conditions | |
AU2017295938C1 (en) | Conjugation method for carrier-linked prodrugs | |
EP4084872A1 (en) | Conjugates undergoing intramolecular rearrangements | |
EP2988732B1 (en) | Modified hydrogels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15745217 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2955569 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015299055 Country of ref document: AU Date of ref document: 20150804 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015745217 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015745217 Country of ref document: EP |