WO2016018033A1 - 평행한 출사빔 제공이 가능한 광학적 소자 - Google Patents

평행한 출사빔 제공이 가능한 광학적 소자 Download PDF

Info

Publication number
WO2016018033A1
WO2016018033A1 PCT/KR2015/007842 KR2015007842W WO2016018033A1 WO 2016018033 A1 WO2016018033 A1 WO 2016018033A1 KR 2015007842 W KR2015007842 W KR 2015007842W WO 2016018033 A1 WO2016018033 A1 WO 2016018033A1
Authority
WO
WIPO (PCT)
Prior art keywords
exit
incident
emission
output
optical element
Prior art date
Application number
PCT/KR2015/007842
Other languages
English (en)
French (fr)
Inventor
조규만
잉싱허
윤승현
박준규
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2016018033A1 publication Critical patent/WO2016018033A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining

Definitions

  • the present invention relates to an optical device, and more particularly, to an optical device for providing an incident beam divided into two parallel output beams.
  • a beam splitter (BS) or a polarization beam splitter (PBS) divides an incident beam incident on an incident surface into two beams and is perpendicular to each other.
  • the first and second exit beams are provided through the exit surface, respectively. At this time, the exit beams constitute a vertical direction to each other.
  • FIG. 1 is a cross-sectional view illustrating a general polarization beam splitter (PBS). As shown in FIG. 1, the incident beam is divided into two beams by the coating surface, and then output through the first and second emission surfaces, where the two emission beams proceed in a perpendicular direction to each other.
  • PBS general polarization beam splitter
  • FIG. 2 is a system configuration diagram exemplarily illustrating a conventional interferometer.
  • Figure 2 is a system configuration diagram showing the overall "scanning microscope using a heterodyne interferometer" disclosed in Korean Patent No. 10-0866038.
  • the incident beam is divided into two beams using PBS and provided as a target and a mirror, respectively, in order to obtain a signal light and a reference light.
  • the two beams reflected or transmitted from the PBS are emitted in a perpendicular direction to each other, it becomes a hassle to design a system configuration precisely so that an optical path difference between reference light and signal light does not occur.
  • the reference light and the signal light proceeds in different paths, optical parts must be disposed in each path, and thus a large number of optical parts are required, thereby increasing the manufacturing cost and increasing the overall size.
  • An object of the present invention for solving the above-mentioned problems is to provide an optical device capable of simply emitting two parallel beams through a structural change.
  • the optical device for dividing the incident beam into first and second output beams parallel to each other, at least one incident surface and the first It is composed of a hexahedron made of a transparent material including a first exit surface and a second exit surface to reflect or transmit the incident beam incident on the incident surface to output the first and second output beams to the first and second output surfaces, respectively.
  • the first emission surface and the second emission surface are spaced apart from each other at a predetermined angle, a coating surface is formed in the center between the first output surface and the second output surface, a portion of the incident beam is coated After reflecting from the surface is output through the first exit surface to form a first exit beam, the remainder of the incident beam is transmitted through the coating surface and then output through the second exit surface to constitute a second exit beam
  • the separation angle between the first emission surface and the second emission surface is configured to have an angle smaller than 90 degrees so that the first emission beam and the second emission beam output from the beam displacer are not perpendicular to each other.
  • the incident beam includes an s-polarized beam and a p-polarized beam
  • the coating surface of the beam displacer transmits the p-polarized beam of the incident beam and It is preferable to reflect the s-polarized beam.
  • the separation distance between the beam displacer and the lens is preferably set according to the separation distance required for the parallel first and second output beams.
  • An optical element comprising: a housing for fixing the beam displacer and a lens; And a position changer configured to change the position of the lens in the housing, so that the separation distance between the lens and the beam displacer can be adjusted.
  • An optical device relates to an optical device for dividing and outputting an incident beam into first and second emission beams parallel to each other, and including at least one incident surface, a first emission surface, and a second emission surface. It is composed of a hexahedron made of a transparent material including a characterized in that for reflecting or transmitting the incident beam incident on the incident surface to output the first and second output beam to the first and second output plane, respectively,
  • the first exit surface and the second exit surface are spaced apart from each other at a predetermined angle, a coating surface is formed between the first exit surface and the second exit surface, a portion of the incident beam is in the coating surface After being reflected is output through the first exit surface to form a first exit beam, the remainder of the incident beam is transmitted through the coating surface and then output through the second exit surface to constitute a second exit beam ,
  • the separation angle between the first emission surface and the second emission surface may be set such that the first and second emission beams are parallel to each other.
  • the first and second emission beams are s-polarized beam and p-polarized beam, respectively, and the coating surface reflects the s-polarized beam of the incident beam and p- It is preferable to transmit the polarizing beam.
  • the optical device can divide the incident beam into two beams and output them in parallel.
  • the incident beam including the s and p polarization components may be divided into the s polarization beam and the p polarization beam and output as a parallel beam.
  • the signal light and the reference light can travel in the same optical path, so that the two optical paths can be precisely balanced and the number of optical parts can be minimized.
  • the overall size of the interferometer can be reduced, or the manufacturing cost can be reduced.
  • 1 is a cross-sectional view illustrating a general polarizing beam splitter.
  • FIG. 2 is a system configuration diagram illustrating an interferometer using a conventional polarizing beam splitter (PBS) of FIG. 2.
  • PBS polarizing beam splitter
  • FIG 3 is a cross-sectional view illustrating an optical device according to a first embodiment of the invention.
  • FIG. 4 is a cross-sectional view illustrating an optical device according to a second exemplary embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an optical device according to a second embodiment of the present invention to adjust the separation interval of the first and second emission beams according to the separation distance between the beam displacer and the lens.
  • FIG. 6 is a system configuration diagram showing an exemplary heterodyne interferometer using the optical device according to the present invention.
  • the optical device according to the present invention is characterized by dividing the incident beam into two exit beams and outputting them in parallel beams.
  • the optical device 30 is entirely composed of a hexahedron made of a transparent material, and disposed on both sides of at least one incident surface 300, a coating surface 310, and a coating surface.
  • First and second exit surfaces 320 and 322 are provided.
  • the optical element 30 is characterized in that for reflecting or transmitting the incident beam incident on the incident surface and outputs the first and second output beam to the first and second emission surface, respectively.
  • the first exit surface and the second exit surface are spaced apart from each other at a predetermined angle, the coating surface is located in the center between the first exit surface and the second exit surface, a part of the incident beam is the coating After being reflected from the plane, it is output through the first exit plane to form a first exit beam, and the remainder of the incident beam is transmitted through the coating plane and then output through the second exit plane to constitute a second exit beam.
  • the separation angle between the first emission surface and the second emission surface is preferably set such that the first and second emission beams are parallel to each other.
  • the optical element In order to configure the first and second output beams to be parallel to each other, it is preferable to configure the optical element to satisfy the following equations (1) and (2).
  • ⁇ a is the angle of incidence on the first exit surface
  • ⁇ b is the angle of refraction at the first exit surface
  • ⁇ c is the angle between the first exit surface and the coating surface.
  • the separation angle between the first emission surface and the coating surface and the separation angle between the second emission surface and the coating surface are respectively 9.88 degrees, so that the first and second emission beams may constitute a parallel beam.
  • the separation distances d1 and d2 of the first emission beam and the second emission beam may be determined according to a position at which light is incident on the incident surface.
  • the optical device may be configured by combining the reflective surfaces of two prisms, and the coating surface may be configured by using an adhesive or coating an appropriate material on the reflective surfaces to which the prisms are coupled.
  • the coating surface may be configured of a stack of inorganic insulating films positioned at Brewster's angle, so as to reflect the s-polarized beam of the incident beam and transmit the p-polarized beam.
  • the incident beam includes both an s-polarized component and a p-polarized component
  • the first and second output beams are each s-polarized.
  • a p-polarized beam As a result, the optical element according to the present embodiment can emit the s-polarized beam and the p-polarized beam in parallel with each other.
  • a part of the incident beam is reflected and the other part is transmitted It can be configured to.
  • the optical device according to the present embodiment is composed of a beam displacer and a lens, and divides the incident beam into two exit beams and outputs them in parallel.
  • FIG. 4 is a cross-sectional view illustrating an optical device according to a second exemplary embodiment of the present invention.
  • the optical element 40 includes a beam displacer 41 and a lens 42 positioned in front of the beam displacer so that incident beams incident on the beam displacer are parallel to each other. Characterized in that the output is divided into first and second output beam.
  • the beam displacer 41 is entirely composed of a hexahedron made of a transparent material, and includes at least one entrance surface 400, a coating surface 410, and first and second emission surfaces 420 positioned on both sides of the coating surface. 422).
  • the beam displayer reflects or transmits an incident beam incident on the incident surface to output first and second output beams to the first and second emission surfaces, respectively.
  • the first emission surface and the second emission surface are disposed to be spaced apart from each other at a predetermined angle, and a coating surface 410 is formed at the center between the first emission surface and the second emission surface, to form a part of the incident beam. Is reflected through the coating surface and is output through the first output surface to form a first output beam, and the remainder of the incident beam is transmitted through the coating surface and then output through the second output surface to produce a second output beam. It is characterized by the configuration.
  • the separation angle between the first emission surface and the second emission surface is configured to be less than 90 degrees so that the first emission beam and the second emission beam output from the beam displacer are not perpendicular to each other.
  • the beam displacer may be configured by combining the reflective surfaces of the two prisms, and the coating surface may be configured by using an adhesive or coating an appropriate material on the reflective surfaces to which the prisms are coupled.
  • the coating surface may be configured of a stack of inorganic insulating films positioned at Brewster's angle, so as to reflect the s-polarized beam of the incident beam and transmit the p-polarized beam.
  • PBS general polarization beam splitter
  • the incident beam includes both an s-polarized component and a p-polarized component
  • the first and second output beams are each s-polarized.
  • a p-polarized beam when the incident beam includes both an s-polarized component and a p-polarized component, the first and second output beams are each s-polarized. And a p-polarized beam.
  • a part of the incident beam is reflected and the other part is transmitted It can be configured to.
  • the lens 42 is disposed in front of the first and second exit surface of the beam displacer, and outputs in parallel to each other by refracting the first and second exit beam output from the beam displacer It is preferable to make it.
  • the separation distance between the beam displacer and the lens is preferably set according to the separation distance required for parallel first and second output beams (d in FIG. 4).
  • the beam displacer and the lens may be integrally formed or separated according to system design needs.
  • the optical device according to the present embodiment may further include a housing for fixing the beam displacer and the lens.
  • the optical element according to the present embodiment further includes a position changer for changing the position of the lens, so that the distance between the beam displacer and the lens can be adjusted. By adjusting the separation distance between the beam displacer and the lens through the position changing unit, it is possible to adjust the separation interval of the parallel first and second output beam.
  • FIG. 5 is a diagram illustrating an optical device according to a second embodiment of the present invention to adjust the separation interval of the first and second emission beams according to the separation distance between the beam displacer and the lens.
  • the separation distance 'd1' of the first and second output beams is narrowed, and when the lens is far from the beam displacer, the first and second The spacing interval 'd2' of the emission beam becomes wider.
  • the above-described optical elements according to the present invention can output the incident beam into two parallel output beams through a simple structure. Therefore, the above-described optical elements according to the present invention can be used in an interferometer using a conventional beam splitter or a polarizing beam splitter.
  • FIG. 6 is a system configuration diagram showing an exemplary heterodyne interferometer using the optical device according to the present invention.
  • the light provided from the light source is reflected or transmitted through the beam splitter 600, and the light reflected from the beam splitter 600 passes through the polarizer 610 and is detected by the first photodetector PD1.
  • the light transmitted through the beam splitter 600 is divided into two beams in the optical element 630 and then proceeds to the target 650.
  • the signal light and the reference light are reflected back from the target and pass through the phase delay plate (QWP) 640, and then reflect and transmit the optical element 630 to generate an interference signal.
  • the interference signal is passed through the polarizer 620. 2 is detected by the photodetector PD2.
  • the heterodyne interferometer provides a signal light to a target sample, and converts and outputs the signal light and the reference light that have been focused and collimated with the sample into an I (In-phase) signal and a Q (Quadrature-phase) signal.
  • the signal light and the reference light are interferometers having different frequencies.
  • optical element according to the present invention can be widely used in interferometers and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

본 발명은 입사빔을 서로 평행한 제1 및 제2 출사빔으로 나누어 출력하는 광학적 소자에 관한 것이다. 상기 광학적 소자는, 적어도 하나의 입사면과 제1 출사면 및 제2 출사면을 포함하는 투명 재질의 육면체로 구성되어 상기 입사면으로 입사된 입사빔을 반사 또는 투과시켜 제1 및 제2 출사면으로 각각 제1 및 제2 출사빔으로 출력시키는 것을 특징으로 하며, 상기 제1 출사면과 제2 출사면은 사전 설정된 각도로 서로 이격되어 배치되고, 상기 제1 출사면과 제2 출사면의 사이에 코팅면이 형성되어, 상기 입사빔의 일부는 상기 코팅면에서 반사된 후 제1 출사면을 통해 출력되어 제1 출사빔을 구성하고, 상기 입사빔의 나머지는 상기 코팅면에서 투과된 후 제2 출사면을 통해 출력되어 제2 출사빔을 구성하는 것을 특징으로 하며, 상기 제1 출사면과 제2 출사면의 이격 각도는 상기 제1 및 제2 출사빔이 서로 평행하도록 설정된다.

Description

평행한 출사빔 제공이 가능한 광학적 소자
본 발명은 광학적 소자에 관한 것으로서, 더욱 구체적으로는, 입사빔을 2개의 평행한 출사빔으로 나누어 제공하는 광학적 소자에 관한 것이다.
일반적으로, 빔 스플리터(Beam splitter;'BS') 또는 편광 빔 스플리터(Polarization beam splitter;'PBS')는 입사면으로 입사된 입사빔을 2개의 빔으로 나누어, 서로 수직을 이루는 제1 및 제2 출사면을 통해 각각 제1 및 제2 출사빔을 제공하게 된다. 이 때, 출사빔들은 서로 수직 방향을 구성하게 된다.
도 1은 일반적인 편광 빔 스플리터(Polarization Beam Splitter;'PBS')를 도시한 단면도이다. 도 1에 도시된 바와 같이, 입사빔은 코팅면에 의해 2개의 빔으로 나뉘어진 후, 제1 및 제2 출사면을 통해 출력되는데, 이때 2개의 출사빔은 서로 수직 방향으로 진행하게 된다.
도 2는 종래의 간섭계를 예시적으로 도시한 시스템 구성도이다. 도 2는 한국등록특허 제 10-0866038 호에 개시된 "헤테로다인 간섭계를 이용한 주사 현미경"을 전체적으로 도시한 시스템 구성도이다. 도 2에 도시한 바와 같이, 종래의 간섭계에서는 신호빛과 기준빛을 얻기 위하여, PBS를 이용하여 입사빔을 2개의 빔으로 나누어 타겟과 미러로 각각 제공함으로써, 신호빛과 기준빛으로 사용하게 된다. 이 때, PBS에서 반사되거나 투과되어 출사되는 2개의 빔은 서로 수직 방향으로 진행되므로, 기준빛과 신호빛에 대한 광 경로차가 발생되지 않도록 하기 위하여 시스템 구성을 정밀하게 설계하여야 되는 번거러움이 발생하게 된다. 또한, 기준빛과 신호빛이 서로 다른 경로로 진행하므로, 각 경로마다 광 부품이 배치되어야 하므로, 많은 개수의 광 부품이 필요하므로 제작 비용이 증가하고 전체 크기도 증가되는 문제점이 발생하게 된다.
전술한 문제점을 해결하기 위한 본 발명은 간단하게 구조 변경을 통해 2개의 평행빔을 출사할 수 있는 광학적 소자를 제공하는 것을 목적으로 한다.
전술한 기술적 과제를 달성하기 위한 본 발명의 제1 특징에 따른 광학적 소자는, 입사빔을 서로 평행한 제1 및 제2 출사빔으로 나누어 출력하는 광학적 소자에 관한 것으로서, 적어도 하나의 입사면과 제1 출사면 및 제2 출사면을 포함하는 투명 재질의 육면체로 구성되어 상기 입사면으로 입사된 입사빔을 반사 또는 투과시켜 제1 및 제2 출사면으로 각각 제1 및 제2 출사빔을 출력시키는 빔 디스플레이서; 및 상기 빔 디스플레이서의 제1 및 제2 출사면의 전면에 배치되어, 상기 빔 디스플레이서로부터 출력되어 입사된 상기 제1 및 제2 출사빔을 굴절시켜 서로 평행하게 출력시키는 렌즈;를 구비하고,
상기 제1 출사면과 제2 출사면은 사전 설정된 각도로 서로 이격되어 배치되고, 상기 제1 출사면과 제2 출사면의 사이의 중심에 코팅면이 형성되어, 상기 입사빔의 일부는 상기 코팅면에서 반사된 후 제1 출사면을 통해 출력되어 제1 출사빔을 구성하고, 상기 입사빔의 나머지는 상기 코팅면에서 투과된 후 제2 출사면을 통해 출력되어 제2 출사빔을 구성하는 것을 특징으로 하며,
상기 제1 출사면과 제2 출사면의 이격 각도는 90도보다 작은 각도로 구성되어 상기 빔 디스플레이서로부터 출력된 제1 출사빔과 제2 출사빔이 서로 수직이 되지 않는 것을 특징으로 한다.
전술한 제1 특징에 따른 광학적 소자에 있어서, 상기 입사빔은 s-편광빔과 p-편광빔을 포함하며, 상기 빔 디스플레이서의 코팅면은 입사빔의 p-편광빔은 투과시키고 입사빔의 s-편광빔은 반사시키는 것이 바람직하다.
전술한 제1 특징에 따른 광학적 소자에 있어서, 상기 빔 디스플레이서와 렌즈의 이격 거리는 평행한 제1 및 제2 출사빔에 대해 요구되는 이격 거리에 따라 설정된 것이 바람직하다.
전술한 제1 특징에 따른 광학적 소자에 있어서, 상기 빔 디스플레이서와 렌즈를 고정시킬 수 있는 하우징; 및 상기 하우징내에서 렌즈의 위치를 변경시킬 수 있도록 구성된 위치 변경부;를 더 구비하여, 렌즈와 빔 디스플레이서의 이격 거리를 조정할 수 있도록 한 것이 바람직하다.
본 발명의 제2 특징에 따른 광학적 소자는, 입사빔을 서로 평행한 제1 및 제2 출사빔으로 나누어 출력하는 광학적 소자에 관한 것으로서, 적어도 하나의 입사면과 제1 출사면 및 제2 출사면을 포함하는 투명 재질의 육면체로 구성되어 상기 입사면으로 입사된 입사빔을 반사 또는 투과시켜 제1 및 제2 출사면으로 각각 제1 및 제2 출사빔으로 출력시키는 것을 특징으로 하며,
상기 제1 출사면과 제2 출사면은 사전 설정된 각도로 서로 이격되어 배치되고, 상기 제1 출사면과 제2 출사면의 사이에 코팅면이 형성되어, 상기 입사빔의 일부는 상기 코팅면에서 반사된 후 제1 출사면을 통해 출력되어 제1 출사빔을 구성하고, 상기 입사빔의 나머지는 상기 코팅면에서 투과된 후 제2 출사면을 통해 출력되어 제2 출사빔을 구성하는 것을 특징으로 하며,
상기 제1 출사면과 제2 출사면의 이격 각도는 상기 제1 및 제2 출사빔이 서로 평행하도록 설정된 것을 특징으로 한다.
본 발명의 제2 특징에 따른 광학적 소자에 있어서, 상기 제1 및 제2 출사빔은 각각 s-편광빔 및 p-편광빔이며, 상기 코팅면은 입사빔의 s-편광빔은 반사시키고 p-편광빔은 투과시키는 것이 바람직하다.
전술한 특징들에 따른 광학적 소자를 이용하여, 신호빛과 기준빛을 검출하는 헤테로다인 간섭계를 구성할 수 있다.
본 발명에 따른 광학적 소자는 입사빔을 2개의 빔으로 나누어 평행하게 출력할 수 있다. 특히, s 및 p 편광성분을 포함하는 입사빔을 s 편광빔과 p 편광빔으로 나누어 평행빔으로 출력시킬 수 있게 된다.
본 발명에 따른 광학적 소자를 간섭계에 적용하는 경우, 신호빛과 기준빛이 동일한 광 경로로 진행할 수 있게 되어 두 광경로가 정확하게 밸런스될 수 있을 뿐만 아니라, 광 부품수를 최소화시킬 수 있게 된다. 이와 같이, 간섭계의 광 부품수를 최소화시킴에 따라 간섭계의 전체 크기를 감소시킬 수 있으며, 또는 제작 비용도 감소시킬 수 있게 된다.
도 1은 일반적인 편광 빔 스플리터를 도시한 단면도이다.
도 2의 종래의 편광빔 스플리터(PBS)를 이용한 간섭계를 예시적으로 도시한 시스템 구성도이다.
도 3은 발명의 제1 실시예에 따른 광학적 소자를 도시한 단면도이다.
도 4는 본 발명의 제2 실시예에 따른 광학적 소자를 도시한 단면도이다.
도 5는 본 발명의 제2 실시예에 따른 광학적 소자에 있어서, 빔 디스플레이서와 렌즈간의 이격 거리에 따라 제1 및 제2 출사빔의 이격 간격이 조절되는 것을 설명하기 위하여 도시한 그림이다.
도 6은 본 발명에 따른 광학적 소자를 이용한 헤테로다인 간섭계를 예시적으로 도시한 시스템 구성도이다.
본 발명에 따른 광학적 소자는 입사빔을 2개의 출사빔으로 나누어 서로 평행한 빔으로 출력시키는 것을 특징으로 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들에 따른 광학적 소자들에 대하여 구체적으로 설명한다.
< 제1 실시예 >
도 3은 발명의 제1 실시예에 따른 광학적 소자를 도시한 단면도이다. 도 3을 참조하면, 본 실시예에 따른 광학적 소자(30)는 전체적으로 투명 재질의 육면체로 구성되며, 적어도 하나의 입사면(300), 코팅면(310) 및 코팅면을 중심으로 양측에 배치된 제1 및 제2 출사면(320, 322)을 구비한다. 상기 광학적 소자(30)는 상기 입사면으로 입사된 입사빔을 반사 또는 투과시켜 제1 및 제2 출사면으로 각각 제1 및 제2 출사빔으로 출력시키는 것을 특징으로 한다.
상기 제1 출사면과 제2 출사면은 사전 설정된 각도로 서로 이격되어 배치되고, 상기 제1 출사면과 제2 출사면의 사이의 중앙에 코팅면이 위치하여, 상기 입사빔의 일부는 상기 코팅면에서 반사된 후 제1 출사면을 통해 출력되어 제1 출사빔을 구성하고, 상기 입사빔의 나머지는 상기 코팅면에서 투과된 후 제2 출사면을 통해 출력되어 제2 출사빔을 구성한다.
상기 제1 출사면과 제2 출사면의 이격 각도는 상기 제1 및 제2 출사빔이 서로 평행하도록 설정된 것이 바람직하다.
제1 및 제2 출사빔이 서로 평행하도록 구성하기 위하여, 아래의 수학식 1 및 2를 만족하도록 광학적 소자를 구성하는 것이 바람직하다.
Figure PCTKR2015007842-appb-M000001
Figure PCTKR2015007842-appb-M000002
여기서, θa는 제1 출사면으로의 입사각이며, θb는 제1 출사면에서의 굴절각이며, θc는 제1 출사면과 코팅면의 사이각이다.
예컨대, 상기 제1 출사면과 코팅면의 이격 각도 및 상기 제2 출사면과 코팅면의 이격 각도를 각각 9.88도로 구성함으로써, 제1 및 제2 출사빔은 평행빔을 구성할 수 있게 된다. 한편, 제1 출사빔과 제2 출사빔의 이격 간격(d1, d2)은 빛이 입사면으로 입사되는 위치에 따라 결정될 수 있다.
상기 광학적 소자는 2개의 프리즘의 반사면을 결합하여 구성될 수 있으며, 상기 프리즘들이 결합되는 반사면에 접착제를 사용하거나 적절한 물질을 코팅하여 상기 코팅면을 구성할 수 있다.
한편, 상기 코팅면은 브루스터 각(Brewster's angle)에 위치한 무기 절연성 필름의 스택으로 구성하여, 입사빔의 s-편광빔은 반사시키고 p-편광빔은 투과시키도록 구성할 수 있다. 이 경우, 일반적인 편광 빔 스플리터(Polarization Beam Splitter; 'PBS')와 같이, 입사빔이 s-편광 성분과 p-편광 성분을 모두 포함하는 경우, 상기 제1 및 제2 출사빔은 각각 s-편광빔 및 p-편광빔을 구성하게 된다. 그 결과, 본 실시예에 따른 광학적 소자는 s-편광빔과 p-편광빔이 서로 평행하게 출사시킬 수 있게 된다.
또한, 상기 코팅면에 얇은 금속(metal)을 코팅하여 구성하거나 2개의 프리즘간의 간격을 조절함으로써, 일반적인 빔 스프리터(Beam splitter;'BS')와 같이, 입사빔의 일부는 반사하고 나머지 일부는 투과되도록 구성할 수 있다.
< 제2 실시예 >
이하, 본 발명의 제2 실시예에 따른 광학적 소자에 대하여 구체적으로 설명한다. 본 실시예에 따른 광학적 소자는 빔 디스플레이서 및 렌즈로 구성되어, 입사빔을 2개의 출사빔으로 나누어 서로 평행하게 출력시키는 것을 특징으로 한다.
도 4는 본 발명의 제2 실시예에 따른 광학적 소자를 도시한 단면도이다.
도 4를 참조하면, 본 실시예에 따른 광학적 소자(40)는 빔 디스플레이서(41) 및 빔 디스플레이서의 전면에 위치한 렌즈(42)를 구비하여, 빔 디스플레이서로 입사된 입사빔을 서로 평행한 제1 및 제2 출사빔으로 나누어 출력하는 것을 특징으로 한다.
상기 빔 디스플레이서(41)는 전체적으로 투명 재질의 육면체로 구성되며, 적어도 하나의 입사면(400), 코팅면(410) 및 상기 코팅면을 중심으로 양측에 위치한 제1 및 제2 출사면(420, 422)을 구비한다. 상기 빔 디스플레이서는 상기 입사면으로 입사된 입사빔을 반사 또는 투과시켜 제1 및 제2 출사면으로 각각 제1 및 제2 출사빔을 출력시킨다.
상기 제1 출사면과 제2 출사면은 사전 설정된 각도로 서로 이격되어 배치되고, 상기 제1 출사면과 제2 출사면의 사이의 중심에 코팅면(410)이 형성되어, 상기 입사빔의 일부는 상기 코팅면에서 반사된 후 제1 출사면을 통해 출력되어 제1 출사빔을 구성하고, 상기 입사빔의 나머지는 상기 코팅면에서 투과된 후 제2 출사면을 통해 출력되어 제2 출사빔을 구성하는 것을 특징으로 한다.
상기 제1 출사면과 제2 출사면의 이격 각도는 90도보다 작은 각도로 구성되어 상기 빔 디스플레이서로부터 출력된 제1 출사빔과 제2 출사빔이 서로 수직이 되지 않는 것이 바람직하다.
상기 빔 디스플레이서는 2개의 프리즘의 반사면을 결합하여 구성될 수 있으며, 상기 프리즘들이 결합되는 반사면에 접착제를 사용하거나 적절한 물질을 코팅하여 상기 코팅면을 구성할 수 있다.
한편, 상기 코팅면은 브루스터 각(Brewster's angle)에 위치한 무기 절연성 필름의 스택으로 구성하여, 입사빔의 s-편광빔은 반사시키고 p-편광빔은 투과시키도록 구성할 수 있다. 이 경우, 일반적인 편광 빔 스플리터(Polarization Beam Splitter; 'PBS')와 같이, 입사빔이 s-편광 성분과 p-편광 성분을 모두 포함하는 경우, 상기 제1 및 제2 출사빔은 각각 s-편광빔 및 p-편광빔을 구성하게 된다.
또한, 상기 코팅면에 얇은 금속(metal)을 코팅하여 구성하거나 2개의 프리즘간의 간격을 조절함으로써, 일반적인 빔 스프리터(Beam splitter;'BS')와 같이, 입사빔의 일부는 반사하고 나머지 일부는 투과되도록 구성할 수 있다.
한편, 상기 렌즈(42)는 상기 빔 디스플레이서의 제1 및 제2 출사면의 전면에 배치되어, 상기 빔 디스플레이서로부터 출력되어 입사된 상기 제1 및 제2 출사빔을 굴절시켜 서로 평행하게 출력시키는 것이 바람직하다.
상기 빔 디스플레이서와 렌즈의 이격 거리는 평행한 제1 및 제2 출사빔에 대해 요구되는 이격 거리(도 4의 'd')에 따라 설정된 것이 바람직하다.
상기 빔 디스플레이서와 렌즈는 시스템 설계상 필요에 따라 일체형으로 구성되거나 분리형으로 구성될 수 있다.
한편, 본 실시예에 따른 광학적 소자는 빔 디스플레이서와 렌즈를 고정시킬 수 있는 하우징을 더 구비할 수 있다. 또한, 본 실시예에 따른 광학적 소자는 렌즈의 위치를 변경시킬 수 있도록 하는 위치 변경부를 더 구비하여, 빔 디스플레이서와 렌즈와의 이격 거리를 조정할 수 있도록 한다. 상기 위치 변경부를 통해 빔 디스플레이서와 렌즈와의 이격 거리를 조정함에 따라, 평행한 제1 및 제2 출사빔의 이격 간격을 조절할 수 있게 된다.
도 5는 본 발명의 제2 실시예에 따른 광학적 소자에 있어서, 빔 디스플레이서와 렌즈간의 이격 거리에 따라 제1 및 제2 출사빔의 이격 간격이 조절되는 것을 설명하기 위하여 도시한 그림이다. 도 5에 도시된 바와 같이, 렌즈가 빔 디스플레이서와 가깝게 위치되면 제1 및 제2 출사빔의 이격 간격('d1')이 좁아지게 되고, 렌즈가 빔 디스플레이서로부터 멀어지면 제1 및 제2 출사빔의 이격 간격('d2')이 넓어지게 된다.
전술한 본 발명에 따른 광학적 소자들은 간단한 구조를 통해 입사빔을 평행한 2개의 출사빔으로 나누어 출력할 수 있게 된다. 따라서, 전술한 본 발명에 따른 광학적 소자들은 종래의 빔 스플리터 또는 편광 빔 스플리터를 사용하는 간섭계에 사용될 수 있다.
도 6은 본 발명에 따른 광학적 소자를 이용한 헤테로다인 간섭계를 예시적으로 도시한 시스템 구성도이다. 도 6을 참조하면, 광원으로부터 제공된 빛이 빔 스플리터(600)에서 반사 또는 투과되며, 빔 스플리터(600)에서 반사된 빛은 편광판(610)을 통과하여 제1 광검출기(PD1)에서 검출되며, 빔 스플리터(600)를 투과한 빛은 광학적 소자(630)에서 2개의 빔으로 나뉘어진 후 타겟(650)으로 진행한다. 타겟에서 신호빛과 기준빛이 되반사되어 위상지연판(QWP; 640)을 통과한 후 다시 광학적 소자(630)를 반사 및 투과되어 간섭 신호가 생성되며 이러한 간섭 신호는 편광판(620)을 거쳐 제2 광검출기(PD2)에서 검출된다.
헤테로다인 간섭계는, 타겟인 시료로 신호빛을 제공하고, 상기 시료에 대해 집광 및 시준되어 되돌아온 신호빛과 기준빛을 I (In-phase) 신호 및 Q (Quadrature-phase) 신호로 변환하여 출력하는 간섭계로서, 신호빛과 기준빛이 서로 다른 주파수를 가지는 간섭계이다.
도 2의 종래의 편광빔 스플리터(PBS)를 이용한 헤테로다인 간섭계와 도 6의 본 발명에 따른 광학적 소자를 이용한 헤테로다인 간섭계를 비교하면, 본 발명에 따른 광학적 소자를 사용함으로써, 신호빛과 기준빛의 광경로를 정확하게 일치시킬 수 있게 되어 성능을 향상시킬 수 있게 되고, 광학적 부품의 개수를 감소시킬 수 있게 되어 전체 시스템의 크기를 감소시키고 제조 비용을 감소시킬 수 있게 됨을 쉽게 파악할 수 있게 된다.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 그리고, 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명에 따른 광학적 소자는 간섭계 등에 널리 사용될 수 있다.

Claims (9)

  1. 입사빔을 서로 평행한 제1 및 제2 출사빔으로 나누어 출력하는 광학적 소자에 있어서,
    상기 광학적 소자는,
    적어도 하나의 입사면과 제1 출사면 및 제2 출사면을 포함하는 투명 재질의 육면체로 구성되어 상기 입사면으로 입사된 입사빔을 반사 또는 투과시켜 제1 및 제2 출사면으로 각각 제1 및 제2 출사빔을 출력시키는 빔 디스플레이서; 및
    상기 빔 디스플레이서의 제1 및 제2 출사면의 전면에 배치되어, 상기 빔 디스플레이서로부터 출력되어 입사된 상기 제1 및 제2 출사빔을 굴절시켜 서로 평행하게 출력시키는 렌즈;를 구비하고,
    상기 제1 출사면과 제2 출사면은 사전 설정된 각도로 서로 이격되어 배치되고, 상기 제1 출사면과 제2 출사면의 사이의 중심에 코팅면이 형성되어,
    상기 입사빔의 일부는 상기 코팅면에서 반사된 후 제1 출사면을 통해 출력되어 제1 출사빔을 구성하고, 상기 입사빔의 나머지는 상기 코팅면에서 투과된 후 제2 출사면을 통해 출력되어 제2 출사빔을 구성하는 것을 특징으로 하며,
    상기 제1 출사면과 제2 출사면의 이격 각도는 90도보다 작은 각도로 구성되어 상기 빔 디스플레이서로부터 출력된 제1 출사빔과 제2 출사빔이 서로 수직이 되지 않는 것을 특징으로 하는 입사빔이 평행한 2개의 출사빔으로 출력되는 광학적 소자.
  2. 제1항에 있어서, 상기 입사빔은 s-편광빔과 p-편광빔으로 구성되고,
    상기 빔 디스플레이서의 코팅면은 입사빔의 p-편광빔은 투과시키고 입사빔의 s-편광빔은 반사시키는 것을 특징으로 하는 광학적 소자.
  3. 제1항에 있어서, 상기 빔 디스플레이서와 렌즈의 이격 거리는 평행한 제1 및 제2 출사빔에 대해 요구되는 이격 거리에 따라 설정된 것을 특징으로 하는 광학적 소자.
  4. 제1항에 있어서, 상기 광학적 소자는,
    상기 빔 디스플레이서와 렌즈를 고정시킬 수 있는 하우징; 및
    상기 하우징내에서 렌즈의 위치를 변경시킬 수 있도록 구성된 위치 변경부;를 더 구비하여, 렌즈와 빔 디스플레이서의 이격 거리를 조정할 수 있도록 한 것을 특징으로 하는 광학적 소자.
  5. 입사빔을 서로 평행한 제1 및 제2 출사빔으로 나누어 출력하는 광학적 소자에 있어서,
    상기 광학적 소자는,
    적어도 하나의 입사면과 제1 출사면 및 제2 출사면을 포함하는 투명 재질의 육면체로 구성되어 상기 입사면으로 입사된 입사빔을 반사 또는 투과시켜 제1 및 제2 출사면으로 각각 제1 및 제2 출사빔으로 출력시키는 것을 특징으로 하며,
    상기 제1 출사면과 제2 출사면은 사전 설정된 각도로 서로 이격되어 배치되고, 상기 제1 출사면과 제2 출사면의 사이에 코팅면이 형성되어,
    상기 입사빔의 일부는 상기 코팅면에서 반사된 후 제1 출사면을 통해 출력되어 제1 출사빔을 구성하고, 상기 입사빔의 나머지는 상기 코팅면에서 투과된 후 제2 출사면을 통해 출력되어 제2 출사빔을 구성하는 것을 특징으로 하며,
    상기 제1 출사면과 제2 출사면의 이격 각도는 상기 제1 및 제2 출사빔이 서로 평행하도록 설정된 것을 특징으로 하는 광학적 소자.
  6. 제5항에 있어서, 상기 제1 및 제2 출사빔은 각각 s-편광빔 및 p-편광빔인 것을 특징으로 하며,
    상기 코팅면은 입사빔의 s-편광빔은 반사시키고 p-편광빔은 투과시키는 것을 특징으로 하는 광학적 소자.
  7. 제5항에 있어서, 상기 제1 출사면과 코팅면은 아래의 수학식을 만족하는 것을 특징으로 하는 광학적 소자.
    Figure PCTKR2015007842-appb-I000001
    Figure PCTKR2015007842-appb-I000002
    여기서, θa는 제1 출사면으로의 입사각이며, θb는 제1 출사면에서의 굴절각이며, θc는 제1 출사면과 코팅면의 사이각이며, n은 광학적 소자의 굴절율임.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 광학적 소자를 이용하여, 신호빛과 기준빛을 검출하는 것을 특징으로 하는 간섭계.
  9. 제8항에 있어서, 상기 간섭계는,
    타겟인 시료로 신호빛을 제공하고, 상기 시료에 대해 집광 및 시준되어 되돌아온 신호빛과 기준빛을 I 신호 및 Q 신호로 변환하여 출력하는 헤테로다인 간섭계인 것을 특징으로 하는 간섭계.
PCT/KR2015/007842 2014-08-01 2015-07-28 평행한 출사빔 제공이 가능한 광학적 소자 WO2016018033A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0098955 2014-08-01
KR1020140098955A KR20160017718A (ko) 2014-08-01 2014-08-01 평행한 출사빔 제공이 가능한 광학적 소자

Publications (1)

Publication Number Publication Date
WO2016018033A1 true WO2016018033A1 (ko) 2016-02-04

Family

ID=55217837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007842 WO2016018033A1 (ko) 2014-08-01 2015-07-28 평행한 출사빔 제공이 가능한 광학적 소자

Country Status (2)

Country Link
KR (1) KR20160017718A (ko)
WO (1) WO2016018033A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225975A1 (en) * 2020-05-07 2021-11-11 Beijing Voyager Technology Co., Ltd. Enhanced polarized light collection in coaxial lidar architecture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009940A (en) * 1974-04-27 1977-03-01 Takata Ophthalmic Instruments Co., Ltd. Apparatus for producing optical interference pattern with continuously variable fringe spacing
JP2006322835A (ja) * 2005-05-19 2006-11-30 Nikon Corp 干渉測定装置及びリニアエンコーダ
KR20070121565A (ko) * 2006-06-22 2007-12-27 에이에스엠엘 네델란즈 비.브이. 각도-분해 분광 리소그래피 특성화를 위한 방법 및 장치
KR20120044064A (ko) * 2010-10-27 2012-05-07 삼성전자주식회사 광학 측정 장치
KR20140071832A (ko) * 2012-12-04 2014-06-12 주식회사 나래나노텍 미세 패턴 형성용 노광 장치 및 방법, 및 이를 구비한 편광 필름 제조 장치 및 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040000686A (ko) 2002-06-25 2004-01-07 주식회사 펜타팜 원적외선 및 음이온 방사천과, 방사제품
US20040227994A1 (en) 2003-05-16 2004-11-18 Jiaying Ma Polarizing beam splitter and projection systems using the polarizing beam splitter
KR100866038B1 (ko) 2007-08-01 2008-11-05 서강대학교산학협력단 헤테로다인 간섭계를 이용한 주사 현미경
TWI595306B (zh) 2011-10-24 2017-08-11 3M新設資產公司 色彩結合器及影像投影器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009940A (en) * 1974-04-27 1977-03-01 Takata Ophthalmic Instruments Co., Ltd. Apparatus for producing optical interference pattern with continuously variable fringe spacing
JP2006322835A (ja) * 2005-05-19 2006-11-30 Nikon Corp 干渉測定装置及びリニアエンコーダ
KR20070121565A (ko) * 2006-06-22 2007-12-27 에이에스엠엘 네델란즈 비.브이. 각도-분해 분광 리소그래피 특성화를 위한 방법 및 장치
KR20120044064A (ko) * 2010-10-27 2012-05-07 삼성전자주식회사 광학 측정 장치
KR20140071832A (ko) * 2012-12-04 2014-06-12 주식회사 나래나노텍 미세 패턴 형성용 노광 장치 및 방법, 및 이를 구비한 편광 필름 제조 장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225975A1 (en) * 2020-05-07 2021-11-11 Beijing Voyager Technology Co., Ltd. Enhanced polarized light collection in coaxial lidar architecture
US20210349196A1 (en) * 2020-05-07 2021-11-11 Beijing Voyager Technology Co., Ltd. Enhanced polarized light collection in coaxial lidar architecture
US11681033B2 (en) * 2020-05-07 2023-06-20 Beijing Voyager Technology Co., Ltd. Enhanced polarized light collection in coaxial LiDAR architecture

Also Published As

Publication number Publication date
KR20160017718A (ko) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2017023106A1 (ko) 광파 탐지 및 거리 측정 장치
WO2018212395A1 (en) Lidar device and lidar system including the same
JP5265757B2 (ja) プリズムビームスプリッタ
CN114730025B (zh) 基于等腰棱镜的复合棱镜及其激光测距望远镜
JP2020514838A (ja) 多機能望遠鏡に用いられる複合プリズム及びその双眼鏡光学システム
US9664988B2 (en) Light source system with light coupling module and display apparatus comprising the same
WO2021002728A1 (ko) 소형 반사부를 이용한 카메라 모듈 및 이를 이용한 증강 현실용 광학 장치
CN110286483B (zh) 一种测距双筒望远镜光学系统
WO2016018033A1 (ko) 평행한 출사빔 제공이 가능한 광학적 소자
CN107678107B (zh) 一种集成化耦合模块
WO2013154232A1 (ko) 자체상관기
WO2016068504A1 (ko) 다기능 분광장치
GB2058398A (en) Ring interferometers
US11346988B2 (en) Miniaturized optical circulator
WO2016048040A1 (ko) 광학 이미지 검출 장치
JP2024510392A (ja) Lidarシステムにおける循環器の使用
CN112462497A (zh) 光子集成干涉大视场成像系统
JP3590565B2 (ja) 光波距離計を有する測量機
JPS5814112A (ja) 光分波器
US12019240B2 (en) Imaging apparatus integrated with display for head-mounted display
RU2104484C1 (ru) Лазерный приемопередатчик
CN114253093B (zh) 一种对准装置、对准方法及光刻系统
JP3339014B2 (ja) 送受信一体型光通信装置
RU2346393C1 (ru) Терминал для системы открытой оптической связи
JP2001317940A (ja) Af測量機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15828323

Country of ref document: EP

Kind code of ref document: A1