WO2016017404A1 - 非水電解液電池用電解液、及びこれを用いた非水電解液電池 - Google Patents

非水電解液電池用電解液、及びこれを用いた非水電解液電池 Download PDF

Info

Publication number
WO2016017404A1
WO2016017404A1 PCT/JP2015/069939 JP2015069939W WO2016017404A1 WO 2016017404 A1 WO2016017404 A1 WO 2016017404A1 JP 2015069939 W JP2015069939 W JP 2015069939W WO 2016017404 A1 WO2016017404 A1 WO 2016017404A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aqueous electrolyte
compound
examples
atom
Prior art date
Application number
PCT/JP2015/069939
Other languages
English (en)
French (fr)
Inventor
孝敬 森中
誠 久保
渉 河端
建太 山本
幹弘 高橋
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to PL15827881T priority Critical patent/PL3166170T3/pl
Priority to KR1020197006606A priority patent/KR102085879B1/ko
Priority to US15/500,984 priority patent/US10847838B2/en
Priority to KR1020177005775A priority patent/KR101957398B1/ko
Priority to CN201580053638.4A priority patent/CN107112589A/zh
Priority to EP15827881.2A priority patent/EP3166170B1/en
Publication of WO2016017404A1 publication Critical patent/WO2016017404A1/ja
Priority to US17/069,284 priority patent/US11652238B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte battery electrolyte containing a specific electrolyte salt and a silane compound, and a non-aqueous electrolyte battery using the same.
  • Non-aqueous electrolyte batteries such as lithium ion batteries, lithium batteries, lithium ion capacitors, and sodium ion batteries have been actively developed as one candidate.
  • Patent Document 1 discloses that by adding difluoro (bis (oxalato)) lithium phosphate, difluoro (oxalato) lithium borate or the like to a non-aqueous electrolyte, the internal resistance of the battery is increased and the cycle characteristics are deteriorated.
  • Patent Documents 2 to 5 a silicon compound such as a silicone compound or a fluorosilane compound is added to a non-aqueous electrolyte to suppress an increase in cycle characteristics of the non-aqueous electrolyte battery or an increase in internal resistance. A method for improving the characteristics has been proposed. Further, Patent Documents 6 and 7 disclose that the specific silicon fluoride compound and lithium bis (oxalato) borate are combined and added to the non-aqueous electrolyte, thereby suppressing the cycle characteristics and resistance increase of the non-aqueous electrolyte battery. A method for improving the effect has been proposed.
  • Non-aqueous electrolyte batteries using non-aqueous electrolytes disclosed in Patent Documents 1 to 7 have further improvements in high-temperature cycle characteristics and high-temperature storage characteristics assuming use at high temperatures of 60 ° C. or higher. In some cases, there was room for improvement.
  • the present invention provides an electrolyte for a non-aqueous electrolyte battery that can exhibit excellent high-temperature cycle characteristics and high-temperature storage characteristics at a high temperature of 60 ° C. or higher, and a non-aqueous electrolyte battery using the same. It is.
  • the present inventors have made the electrolyte solution a non-aqueous electrolyte solution by using a specific electrolyte salt and a silane compound as a non-aqueous electrolyte battery electrolyte solution.
  • the inventors When used in a battery, the inventors have found that excellent high-temperature cycle characteristics and high-temperature storage characteristics can be exhibited, and the present invention has been achieved.
  • non-aqueous solvent solute, At least one first compound represented by the following general formula (1)
  • an electrolyte solution for a non-aqueous electrolyte battery characterized by containing at least one second compound represented by the following general formula (2) (hereinafter simply referred to as “non-aqueous electrolyte solution” or “electrolyte solution”) May be described).
  • M represents a boron atom, a phosphorus atom or a silicon atom, m is 1 to 3, n is 1 to 4, and p is 0 or 1.
  • R 1 represents an alkylene group having 3 to 10 carbon atoms, a halogenated alkylene group having 3 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these The group may contain a substituent in the structure or may contain a hetero atom, and when m is 2 or more, m R 1 s may be bonded to each other.
  • R 2 represents a halogen atom
  • X 1 and X 2 each independently represent an oxygen atom or a sulfur atom
  • X 3 represents a carbon atom or a sulfur atom.
  • q is 1 when X 3 is a carbon atom, and 1 or 2 when X 3 is a sulfur atom.
  • a a + represents an alkali metal cation, an alkaline earth metal cation, or an onium cation, and a represents the valence of the corresponding cation.
  • R 3 each independently represents a group having a carbon-carbon unsaturated bond.
  • R 4 each independently represents a fluorine atom, an alkyl group, an alkoxy group, an alkenyl group, an alkenyloxy group, an alkynyl group, an alkynyloxy group, an aryl group, or an aryloxy group, The group may have a fluorine atom and / or an oxygen atom.
  • x is 2-4.
  • x is 2 or more.
  • x is more preferably 2 to 3 from the viewpoint of output characteristics.
  • the concentration of the first compound is preferably in the range of 0.07 to 7.0% by mass with respect to the total amount of the electrolyte for nonaqueous electrolyte batteries.
  • the concentration of the second compound is preferably in the range of 0.005 to 7.0% by mass with respect to the total amount of the electrolyte for nonaqueous electrolyte batteries.
  • the first compound is bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, tetrafluoro (oxalato) phosphate. And tetrafluoro (malonato) phosphate.
  • the groups represented by R 3 in the general formula (2) are each independently selected from the group consisting of a vinyl group, an allyl group, a 1-propenyl group, an ethynyl group, and a 2-propynyl group. It is preferably a group.
  • the groups represented by R 4 in the general formula (2) are each independently a fluorine atom, methyl group, ethyl group, propyl group, 2,2,2-trifluoroethyl group, 2,2 , 3,3-tetrafluoropropyl group, 1,1,1-trifluoroisopropyl group, 1,1,1,3,3,3-hexafluoroisopropyl group, 2,2,2-trifluoroethoxy group, 2 , 2,3,3-tetrafluoropropoxy group, 2,2,3,3,3-pentafluoropropoxy group, 1,1,1-trifluoroisopropoxy group, and 1,1,1,3,3,
  • a group selected from the group consisting of 3-hexafluoroisopropoxy groups is preferred.
  • the solutes are lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), bis (trifluoromethanesulfonyl) imidolithium (LiN (CF 3 SO 2 ) 2 ), bis (fluorosulfonyl). It is at least one selected from the group consisting of imidolithium (LiN (FSO 2 ) 2 ), bis (difluorophosphoryl) imide lithium (LiN (POF 2 ) 2 ), and lithium difluorophosphate (LiPO 2 F 2 ). Is preferred.
  • the non-aqueous solvent is at least one selected from the group consisting of cyclic carbonates, chain carbonates, cyclic esters, chain esters, cyclic ethers, chain ethers, sulfone compounds, sulfoxide compounds, and ionic liquids. Is preferred.
  • the present invention also provides a nonaqueous electrolyte battery comprising at least a positive electrode, a negative electrode, and an electrolyte for a nonaqueous electrolyte battery, wherein the electrolyte for a nonaqueous electrolyte battery is the nonaqueous electrolyte battery described above.
  • the present invention provides a non-aqueous electrolyte battery characterized by being an electrolytic solution for use.
  • the present invention provides an electrolyte for a non-aqueous electrolyte battery that can exhibit excellent high-temperature cycle characteristics and high-temperature storage characteristics at a high temperature of 60 ° C. or higher when used in a non-aqueous electrolyte battery. Can do.
  • the non-aqueous electrolyte battery electrolyte of the present invention is At least non-aqueous solvent, solute, At least one first compound represented by the following general formula (1), and An electrolyte solution for a non-aqueous electrolyte battery, comprising at least one second compound represented by the following general formula (2).
  • M represents a boron atom, a phosphorus atom or a silicon atom
  • m is 1 to 3
  • n is 1 to 4
  • p is 0 or 1.
  • R 1 represents an alkylene group having 3 to 10 carbon atoms, a halogenated alkylene group having 3 to 10 carbon atoms, an arylene group having 6 to 20 carbon atoms, or a halogenated arylene group having 6 to 20 carbon atoms (these The group may contain a substituent in the structure or may contain a hetero atom, and when m is 2 or more, m R 1 s may be bonded to each other.
  • R 2 represents a halogen atom
  • X 1 and X 2 each independently represent an oxygen atom or a sulfur atom
  • X 3 represents a carbon atom or a sulfur atom.
  • q is 1 when X 3 is a carbon atom, and 1 or 2 when X 3 is a sulfur atom.
  • a a + represents an alkali metal cation, an alkaline earth metal cation, or an onium cation, and a represents the valence of the corresponding cation.
  • R 3 each independently represents a group having a carbon-carbon unsaturated bond.
  • R 4 each independently represents a fluorine atom, an alkyl group, an alkoxy group, an alkenyl group, an alkenyloxy group, an alkynyl group, an alkynyloxy group, an aryl group, or an aryloxy group, The group may have a fluorine atom and / or an oxygen atom.
  • x is 2-4.
  • Each of the first compounds decomposes on the positive electrode and the negative electrode to form a film having good ion conductivity on the surface of the positive electrode and the negative electrode.
  • This film suppresses direct contact between the non-aqueous solvent or solute and the electrode active material, prevents decomposition of the non-aqueous solvent or solute, and suppresses deterioration of battery performance.
  • the high temperature cycle characteristics and the high temperature storage characteristics of the obtained nonaqueous electrolyte battery at a high temperature of 60 ° C. or higher are as follows: It may not be enough.
  • the second compound also forms a stable film on the surfaces of the positive electrode and the negative electrode and has an effect of suppressing the deterioration of the battery.
  • the second compound is not used in combination with the first compound and the second compound.
  • the obtained nonaqueous electrolyte battery may not have sufficient high-temperature cycle characteristics and high-temperature storage characteristics at a high temperature of 60 ° C. or higher.
  • the high temperature at a high temperature of 60 ° C. or higher compared to the case where the first compound group is added alone.
  • the coexistence of the first compound and the second compound is better than that derived from the mixed composition of the first compound and the second compound.
  • the film formed by the second compound covers the surface of the film formed by the first compound, This is presumed to prevent the film formed by the first compound from reacting with the solvent or solute at high temperatures.
  • the amount of decomposition gas generated from the electrolyte at a high temperature of 60 ° C. or higher is higher than when the first compound group is added alone. There is a small tendency.
  • the effect of reducing the generation amount of the cracked gas is considered to be an effect brought about by the good film as described above.
  • the high-temperature cycle characteristics and the high-temperature storage characteristics of the battery at a high temperature of 60 ° C. or higher can be improved as compared with the case where each of them is used alone. .
  • a suitable concentration of the first compound is 0.07% by mass or more, preferably 0.3% by mass or more, more preferably 0.5% by mass or more, based on the total amount of the nonaqueous electrolytic solution. Is 7.0% by mass or less, preferably 4.5% by mass or less, more preferably 3.5% by mass or less. If the concentration is less than 0.07% by mass, it is not preferable because the effect of improving the high-temperature cycle characteristics and the high-temperature storage characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • the concentration exceeds 7.0% by mass
  • the excess first compound that is not used for film formation tends to generate gas due to a decomposition reaction other than the film formation reaction, which causes battery swelling and performance deterioration. Since it is easy to cause, it is not preferable.
  • These first compounds may be used alone as long as they do not exceed 7.0% by mass, or two or more of them may be used in any combination and ratio according to the application. good.
  • a suitable concentration of the second compound is 0.005% by mass or more, preferably 0.03% by mass or more, more preferably 0.7% by mass or more, based on the total amount of the non-aqueous electrolyte. Is 7.0% by mass or less, preferably 5.5% by mass or less, and more preferably 2.5% by mass or less. If the concentration is less than 0.005% by mass, it is not preferable because the effect of improving the high-temperature cycle characteristics and the high-temperature storage characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte is not sufficiently obtained.
  • the concentration exceeds 7.0% by mass, it is difficult to sufficiently obtain the effect of improving the high-temperature cycle characteristics and the high-temperature storage characteristics of a non-aqueous electrolyte battery using the non-aqueous electrolyte, which is not preferable.
  • These second compounds may be used alone as long as they do not exceed 7.0% by mass, or two or more of them may be used in any combination and ratio according to the application. good.
  • Examples of the first compound represented by the general formula (1) include bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphate, Tetrafluoro (oxalato) phosphate, tris (oxalato) silicate, difluorobis (oxalato) silicate, tetrafluoro (malonato) phosphate, difluoro (sulfoacetate) borate, difluoro (maleato) borate And difluoro (fumarato) borate.
  • bis (oxalato) borate, difluoro (oxalato) borate, tris (oxalato) phosphate, difluorobis (oxalato) phosphorus from the viewpoint of solubility in the electrolyte and thermal stability at high temperatures
  • It is preferably at least one salt selected from the group consisting of acid salts, tetrafluoro (oxalato) phosphates, and tetrafluoro (malonato) phosphates.
  • the counter cation of the above compound (A a + in the general formula (1)) is an alkali metal cation, an alkaline earth metal cation, or an onium cation, and among them, the solubility in the electrolyte and the ionic conductivity.
  • lithium ions, sodium ions, potassium ions, tetraalkylammonium ions, or tetraalkylphosphonium ions are preferable.
  • the group having a carbon-carbon unsaturated bond represented by R 3 includes a vinyl group, an allyl group, a 1-propenyl group, an isopropenyl group, a 2-butenyl group, 1,3- Alkenyl groups having 2 to 8 carbon atoms such as butadienyl groups or alkenyloxy groups derived from these groups, ethynyl groups, 2-propynyl groups, 1,1 dimethyl-2-propynyl groups and the like having 2 to 8 carbon atoms Or an alkynyloxy group derived from these groups, an aryl group having 6 to 12 carbon atoms such as a phenyl group, a tolyl group or a xylyl group, or an aryloxy group derived from these groups.
  • the above group may have a fluorine atom and an oxygen atom.
  • a group containing a carbon-carbon unsaturated bond having 6 or less carbon atoms is preferable.
  • the resistance when a film is formed on the electrode tends to be relatively large.
  • a group selected from the group consisting of a vinyl group, an allyl group, a 1-propenyl group, an ethynyl group, and a 2-propynyl group is preferable.
  • examples of the alkyl group and alkoxy group represented by R 4 include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert, -Alkyl groups having 1 to 12 carbon atoms such as butyl group and pentyl group or alkoxy groups derived from these groups.
  • examples of the alkenyl group and alkenyloxy group include an alkenyl group having 2 to 8 carbon atoms such as vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, or the like.
  • alkenyloxy group derived from Examples of the alkynyl group and alkynyloxy group include alkynyl groups having 2 to 8 carbon atoms such as ethynyl group, 2-propynyl group, 1,1dimethyl-2-propynyl group, and alkynyloxy groups derived from these groups. It is done.
  • Examples of the aryl group and aryloxy group include aryl groups having 6 to 12 carbon atoms such as phenyl group, tolyl group and xylyl group, and aryloxy groups derived from these groups.
  • the above group may have a fluorine atom and an oxygen atom.
  • a fluorine atom is mentioned as group represented by R ⁇ 4 > other than the above.
  • a group selected from a fluorine atom, an alkyl group and an alkoxy group tends to have a lower resistance when a film is formed on the electrode, and as a result, it is preferable from the viewpoint of output characteristics.
  • the second compound represented by the general formula (2) for example, the following compound No. 1-No. 25 etc. are mentioned.
  • the 2nd compound used by this invention does not receive a restriction
  • the type of the non-aqueous solvent used in the non-aqueous electrolyte battery electrolyte of the present invention is not particularly limited, and any non-aqueous solvent can be used.
  • Specific examples include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate, cyclic esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, propion
  • chain esters such as methyl acid, cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran and dioxane, chain ethers such as dimethoxyethane and diethyl ether, sulfone compounds such as dimethyl sulfoxide and sulfolane, and sulfoxide compounds.
  • a category differs from a nonaqueous solvent, an ionic liquid etc. can also be mentioned.
  • the nonaqueous solvent used for this invention may be used individually by 1 type, and may mix and use two or more types by arbitrary combinations and a ratio according to a use.
  • propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate are particularly preferable from the viewpoint of electrochemical stability against oxidation and reduction and chemical stability related to reaction with heat and solute.
  • the kind of solute used for the electrolyte solution for non-aqueous electrolyte batteries of the present invention is not particularly limited, and any electrolyte salt can be used.
  • any electrolyte salt can be used.
  • a sodium ion battery such as F 7 ) 3 , LiB (CF 3 ) 4 , LiBF 3 (C 2 F 5 ), LiPO 2 F 2 , NaPF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (CF 3
  • the electrolyte salt include SO 2 ) 2 , NaN (
  • solutes may be used alone, or two or more kinds of solutes may be mixed and used in any combination and ratio according to the application.
  • LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiN (FSO 2 ) 2 , LiN (POF 2 ) 2 , LiN (C 2) F 5 SO 2 ) 2 , LiPO 2 F 2, NaPF 6 , NaN (CF 3 SO 2 ) 2 , NaN (FSO 2 ) 2, NaN (F 2 PO) 2 are preferred.
  • the concentration of these solutes is not particularly limited, but preferably the lower limit is 0.5 mol / L or more, more preferably 0.7 mol / L or more, still more preferably 0.9 mol / L or more, The upper limit is 2.5 mol / L or less, more preferably 2.0 mol / L or less, and still more preferably 1.5 mol / L or less. If the concentration is less than 0.5 mol / L, the ionic conductivity tends to decrease and the cycle characteristics and output characteristics of the nonaqueous electrolyte battery tend to decrease. On the other hand, if the concentration exceeds 2.5 mol / L, the nonaqueous electrolyte battery is used. When the viscosity of the electrolytic solution increases, the ionic conductivity also tends to be lowered, and the cycle characteristics and output characteristics of the nonaqueous electrolytic battery may be lowered.
  • the liquid temperature when dissolving the solute in the non-aqueous solvent is not particularly limited, but is preferably ⁇ 20 to 80 ° C., more preferably 0 to 60 ° C.
  • the electrolyte solution for a non-aqueous electrolyte battery of the present invention is generally used as long as the gist of the present invention is not impaired. You may add the additive used in arbitrary ratios.
  • non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a crosslinked polymer as used in a non-aqueous electrolyte battery called a lithium polymer battery.
  • the non-aqueous electrolyte battery according to the present invention is characterized by using the above-described electrolyte for a non-aqueous electrolyte battery according to the present invention, and the other components are those used in general non-aqueous electrolyte batteries. Is used. That is, it comprises a positive electrode and a negative electrode capable of occluding and releasing cations, a current collector, a separator, a container, and the like.
  • the negative electrode material is not particularly limited, but in the case of lithium batteries and lithium ion batteries, lithium metal, alloys of lithium metal and other metals, or intermetallic compounds and various carbon materials (artificial graphite, natural graphite, etc.), Metal oxides, metal nitrides, tin (simple substance), tin compounds, silicon (simple substance), silicon compounds, activated carbon, conductive polymers, and the like are used.
  • the carbon material include graphitizable carbon, non-graphitizable carbon (hard carbon) having a (002) plane spacing of 0.37 nm or more, and graphite having a (002) plane spacing of 0.34 nm or less. Etc.
  • thermally decomposable carbon there are thermally decomposable carbon, cokes, glassy carbon fiber, organic polymer compound fired body, activated carbon or carbon black.
  • coke includes pitch coke, needle coke, petroleum coke, and the like.
  • the organic polymer compound fired body is obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
  • a carbon material is preferable because a change in crystal structure associated with insertion and extraction of lithium is very small, so that a high energy density and excellent cycle characteristics can be obtained.
  • the shape of the carbon material may be any of fibrous, spherical, granular or scale-like.
  • amorphous carbon or a graphite material coated with amorphous carbon on the surface is more preferable because the reactivity between the material surface and the electrolytic solution becomes low.
  • the positive electrode material is not particularly limited.
  • lithium-containing transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , and lithium-containing transition metals A composite oxide in which a plurality of transition metals such as Co, Mn, Ni, etc.
  • transition metal in the lithium-containing transition metal composite oxide is replaced with a metal other than the transition metal, olivine and LiFePO 4, LiCoPO 4, phosphoric acid compound of a transition metal such as LiMnPO 4 called, oxides such as TiO 2, V 2 O 5, MoO 3, TiS 2, sulfides such as FeS, or polyacetylene, polyparaphenylene, polyaniline , And conductive polymers such as polypyrrole, activated carbon, polymers that generate radicals, carbon materials, etc. It is use.
  • acetylene black, ketjen black, carbon fiber, graphite as a conductive material, polytetrafluoroethylene, polyvinylidene fluoride, SBR resin, etc. as a binder to the positive electrode or negative electrode material, and forming into a sheet shape It can be an electrode sheet.
  • a separator for preventing contact between the positive electrode and the negative electrode a nonwoven fabric or a porous sheet made of polypropylene, polyethylene, paper, glass fiber, or the like is used.
  • a non-aqueous electrolyte battery having a coin shape, cylindrical shape, square shape, aluminum laminate sheet shape or the like is assembled from the above elements.
  • non-aqueous electrolyte As a non-aqueous solvent, a mixed solvent of ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate in a volume ratio of 2: 1: 3: 4 is used, and LiPF 6 has a concentration of 1.0 mol / L as a solute in the solvent. As described above, the compound No. 1 was used as the second compound so that the first compound had a concentration of 1.0% by mass of lithium difluoro (bis (oxalato)) phosphate. 1 was dissolved so as to have a concentration of 0.01% by mass. 1 was prepared. In addition, said preparation was performed maintaining a liquid temperature at 25 degreeC. Electrolyte No.
  • Table 1 shows the preparation conditions of 1.
  • the type and concentration of the first compound and the type and concentration of the second compound were changed as shown in Table 1, and the electrolytic solution No. 2-80 were prepared.
  • electrolyte solution No. Compound No. 6 used as the second compound in the preparation of Nos. 66 to 69 26 to 29 are shown below.
  • electrolyte No. 1 As a non-aqueous electrolyte, electrolyte No. 1 was used to produce a cell using LiCoO 2 as a positive electrode material and graphite as a negative electrode material, and actually evaluated the high-temperature cycle characteristics and high-temperature storage characteristics of the battery.
  • the test cell was produced as follows.
  • LiCoO 2 powder 90% by mass of LiCoO 2 powder was mixed with 5% by mass of 5% by mass of polyvinylidene fluoride (PVDF) as a binder and 5% by mass of acetylene black as a conductive material, and further N-methylpyrrolidone was added to form a paste.
  • the paste was applied on an aluminum foil and dried to obtain a test positive electrode body.
  • 90% by mass of graphite powder was mixed with 10% by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methylpyrrolidone was further added to form a slurry. This slurry was applied on a copper foil and dried at 150 ° C. for 12 hours to obtain a test negative electrode body.
  • Discharge capacity retention rate (%) (discharge capacity after 500 cycles / initial discharge capacity) ⁇ 100
  • the numerical values of the discharge capacity retention ratio after 500 cycles shown in Table 2 are the values for Examples 1-1 to 1-39 when the discharge capacity retention ratio after 500 cycles of Comparative Example 1-1 is 100. Relative value. Further, the numerical value of the discharge capacity retention rate after 500 cycles described in Examples 1-40 to 1-44 is a relative value when the discharge capacity retention rate after 500 cycles of Comparative Example 1-6 is taken as 100. . Further, the numerical values of the discharge capacity retention ratio after 500 cycles described in Examples 1-45 to 1-49 are relative values when the discharge capacity retention ratio after 500 cycles of Comparative Example 1-7 is set to 100. .
  • the numerical values of the discharge capacity retention ratio after 500 cycles described in Examples 1-50 to 1-54 are relative values when the discharge capacity retention ratio after 500 cycles of Comparative Example 1-8 is taken as 100.
  • the numerical values of the discharge capacity retention ratio after 500 cycles described in Examples 1-55 to 1-59 are relative values when the discharge capacity retention ratio after 500 cycles of Comparative Example 1-9 is 100.
  • the numerical value of the discharge capacity retention rate after 500 cycles described in Examples 1-60 to 1-64 is a relative value when the discharge capacity retention rate after 500 cycles of Comparative Example 1-10 is 100.
  • the numerical values of the discharge capacity retention rate after 500 cycles described in Comparative Examples 1-11 to 1-16 are relative values when the discharge capacity retention rate after 500 cycles of Comparative Example 1-1 is taken as 100. .
  • the battery was charged at a current density of 0.38 mA / cm 2 by a constant current-constant voltage method at an environmental temperature of 25 ° C. up to a charge upper limit voltage of 4.2 V, and then stored at an environmental temperature of 60 ° C. for 10 days. Thereafter, the battery was discharged at a constant current of 0.38 mA / cm 2 to a discharge end voltage of 3.0 V, and the initial discharge capacity of this discharge capacity (discharge capacity measured before storage at 60 ° C. after the cycle test). The ratio was defined as the remaining capacity ratio, and the storage characteristics of the cell were evaluated.
  • the numerical values of the remaining capacity ratios shown in Table 2 are relative values when the remaining capacity ratio of Comparative Example 1-1 is set to 100 for Examples 1-1 to 1-39.
  • the numerical values of the remaining capacity ratios described in Examples 1-40 to 1-44 are relative values when the remaining capacity ratio of Comparative Example 1-6 is 100.
  • the numerical values of the remaining capacity ratios described in Examples 1-45 to 1-49 are relative values when the remaining capacity ratio of Comparative Example 1-7 is 100.
  • the numerical values of the remaining capacity ratios described in Examples 1-50 to 1-54 are relative values when the remaining capacity ratio of Comparative Example 1-8 is 100.
  • the numerical values of the remaining capacity ratios described in Examples 1-55 to 1-59 are relative values when the remaining capacity ratio of Comparative Example 1-9 is 100.
  • the numerical values of the remaining capacity ratios described in Examples 1-60 to 1-64 are relative values when the remaining capacity ratio of Comparative Example 1-10 is 100.
  • the numerical values of the remaining capacity ratios described in Comparative Examples 1-11 to 1-16 are relative values when the remaining capacity ratio of Comparative Example 1-1 is 100.
  • Electrolyte No. 1 instead of the electrolyte No. Cells similar to Example 1-1 were prepared using 2 to 80, and the high temperature cycle characteristics and the high temperature storage characteristics were similarly evaluated. The evaluation results are shown in Table 2.
  • Examples 1-1 to 1-39 are relative values when the value of Comparative Example 1-1 is set to 100.
  • Values of Examples 1-40 to 1-44 are values of Comparative Example 1-6.
  • the relative values in Examples 1-45 to 1-49 in the case of 100 are the relative values in Examples 1-50 to 1-54 in which the value of Comparative Example 1-7 is 100.
  • Relative values when the value of 1-8 is 100
  • the values of Examples 1-55 to 1-59 are the relative values when the value of Comparative Example 1-9 is 100.
  • the values of Comparative Examples 1-11 to 1-16 are relative values when the value of Comparative Example 1-1 is set to 100
  • the discharge capacity at this time was defined as discharge capacity B, and the value obtained by dividing “discharge capacity B” by “discharge capacity A” was defined as the high output capacity retention rate, and the output characteristics of the cells were evaluated.
  • the numerical values of the high output capacity retention ratios described in Examples 1-4 and 1-16 to 1-39 in Table 3 are relative values when the high output capacity retention ratio of Example 1-26 is 100. is there. Also, the numerical values of the high output capacity retention ratios described in Examples 1-40 to 1-44 are relative values when the high output capacity retention ratio of Example 1-44 is 100. Further, the numerical values of the high output capacity retention ratios described in Examples 1-45 to 1-49 are relative values when the high output capacity retention ratio of Example 1-49 is 100.
  • the numerical values of the high output capacity retention ratios described in Examples 1-50 to 1-54 are relative values when the high output capacity retention ratio of Example 1-54 is 100. Further, the numerical values of the high output capacity retention ratios described in Examples 1-55 to 1-59 are relative values when the high output capacity retention ratio of Example 1-59 is 100. The numerical values of the high output capacity retention ratios described in Examples 1-60 to 1-64 are relative values when the high output capacity retention ratio of Example 1-64 is 100.
  • Examples 1-4 and 1-16 to 1-39 are relative values when the value of Example 1-26 is set to 100.
  • Values of Examples 1-40 to 1-44 are values of Example 1 Relative values when the value of 44 is 100
  • the values of Examples 1-45 to 1-49 are the values of the relative values of Examples 1-50 to 1-54 when the value of Example 1-49 is 100 Relative values when the value of Example 1-54 is set to 100
  • the values of Examples 1-55 to 1-59 are the relative values when the value of Example 1-59 is 100.
  • Example 1-60 The values of 1 to 64 are relative values when the value of Example 1-64 is 100
  • Examples 1-50 to 1-53 in which x is 2 to 3 show higher output characteristics than Example 1-54 in which x is 4.
  • Examples 1-59 to 1-58 in which x is 2 to 3 show higher output characteristics than those in Example 1-59 in which x is 4.
  • Examples 1-60 to 1-63 in which x is 2 to 3 show higher output characteristics than Example 1-64 in which x is 4. Therefore, when the first compound and the second compound coexist in the electrolytic solution, when the electrolytic solution is used in a non-aqueous electrolyte battery, excellent high-temperature cycle characteristics and high-temperature storage characteristics are exhibited.
  • x in the general formula (2) is more preferably 2 to 3 from the viewpoint of output characteristics.
  • Examples 2-1 to 2-15, Comparative examples 2-1 to 2-9 In Examples 2-1 to 2-15 and Comparative Examples 2-1 to 2-9, as shown in Table 4, except that the negative electrode body and the electrolytic solution were changed, non-water was the same as in Example 1-1. An electrolyte solution for an electrolyte battery was prepared, a cell was prepared, and the battery was evaluated. In Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-3 in which the negative electrode active material is Li 4 Ti 5 O 12 , the negative electrode body is composed of 90% by mass of Li 4 Ti 5 O 12 powder.
  • the negative electrode active material is graphite (silicon-containing)
  • the negative electrode body is composed of 81% by mass of graphite powder and 9% by mass of silicon powder.
  • Example 1-1 5% by mass of polyvinylidene fluoride (PVDF) as a binder, 5% by mass of acetylene black as a conductive material, N-methylpyrrolidone is added, and the resulting paste is applied onto a copper foil and dried.
  • PVDF polyvinylidene fluoride
  • acetylene black as a conductive material
  • N-methylpyrrolidone N-methylpyrrolidone
  • the end-of-charge voltage and end-of-discharge voltage during battery evaluation were the same as in Example 1-1.
  • the negative electrode active material is hard carbon
  • the negative electrode body is composed of 90% by mass of hard carbon powder and 5% by mass of polyfluoride as a binder.
  • Examples 3-1 to 3-20, Comparative examples 3-1 to 3-12 In Examples 3-1 to 3-20 and Comparative Examples 3-1 to 3-12, as shown in Table 5, except that the positive electrode body, the negative electrode body, and the electrolytic solution were changed, the same as Example 1-1 A non-aqueous electrolyte battery electrolyte was prepared, a cell was prepared, and the battery was evaluated.
  • the positive electrode body whose positive electrode active material is LiNi 1/3 Co 1/3 Mn 1/3 O 2 is 5% by mass as a binder in 90% by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder.
  • Example 1-1 in Examples 3-1 to 3-5 and Comparative Examples 3-1 to 3-3 in which the negative electrode active material is graphite, the end-of-charge voltage in the battery evaluation was 4.3 V, and the discharge The final voltage was 3.0V.
  • Example 2-6 in Examples 3-11 to 3-15 and Comparative Examples 3-7 to 3-9 in which the negative electrode active material is graphite (silicon-containing), the end-of-charge voltage during battery evaluation was 4 .3V and the discharge end voltage were set to 3.0V.
  • Example 2-11 in Examples 3-16 to 3-20 and Comparative Examples 3-10 to 3-12 in which the negative electrode active material is hard carbon, the end-of-charge voltage during battery evaluation was 4.2 V, The final discharge voltage was 2.2V.
  • Table 5 shows the evaluation results of the high temperature cycle characteristics and the high temperature storage characteristics.
  • the evaluation results in Table 5 (the numerical value of the discharge capacity retention rate after 500 cycles and the numerical value of the remaining capacity ratio) are the electrolyte solution No. in each electrode configuration. It is a relative value when the evaluation result of the comparative example using 65 electrolyte solution is set to 100.
  • Examples 4-1 to 4-15, Comparative examples 4-1 to 4-9 In Examples 4-1 to 4-15 and Comparative Examples 4-1 to 4-9, as shown in Table 6, the nonaqueous solution was the same as Example 1-1 except that the positive electrode body and the electrolytic solution were changed. An electrolyte solution for an electrolyte battery was prepared, a cell was prepared, and the battery was evaluated. In Examples 4-1 to 4-5 and Comparative Examples 4-1 to 4-3 in which the positive electrode active material is LiNi 0.8 Co 0.15 Al 0.05 O 2 , the positive electrode body is LiNi 0.8 Co 0.15 Al 0.05 O 2 powder.
  • PVDF Polyvinylidene fluoride
  • acetylene black as a conductive material
  • N-methylpyrrolidone is added, and the resulting paste is applied onto an aluminum foil and dried.
  • the end-of-charge voltage during battery evaluation was 4.2 V
  • the end-of-discharge voltage was 3.0 V.
  • the positive electrode active material is LiFePO 4
  • the positive electrode body is made of 90% by mass of LiFePO 4 powder coated with amorphous carbon.
  • PVDF polyvinylidene fluoride
  • acetylene black a conductive material
  • N-methylpyrrolidone N-methylpyrrolidone
  • Table 6 shows the evaluation results of the high temperature cycle characteristics and the high temperature storage characteristics.
  • the evaluation results in Table 6 (the numerical value of the discharge capacity retention rate after 500 cycles and the numerical value of the remaining capacity ratio) are the electrolytic solution No. in each electrode configuration. It is a relative value when the evaluation result of the comparative example using 65 electrolyte solution is set to 100.
  • the electrolyte solution for a non-aqueous electrolyte battery of the present invention is used.
  • the high-temperature cycle characteristics and the high-temperature storage characteristics were improved as compared with the corresponding comparative examples. Therefore, it is shown that by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery exhibiting excellent high-temperature cycle characteristics and high-temperature storage characteristics can be obtained regardless of the type of the negative electrode active material. It was.
  • any implementation using LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiMn 2 O 4 , and LiFePO 4 as the positive electrode active material was confirmed that the high-temperature cycle characteristics and the high-temperature storage characteristics were improved by using the non-aqueous electrolyte battery electrolyte of the present invention as compared with the corresponding comparative examples. Therefore, it is shown that by using the electrolyte for a non-aqueous electrolyte battery of the present invention, a non-aqueous electrolyte battery exhibiting excellent high-temperature cycle characteristics and high-temperature storage characteristics can be obtained regardless of the type of the positive electrode active material. It was.
  • Examples 2-1 to 2-15, 3-1 to 3-20, and 4-1 to 4-15 that is, the first compound was difluorobis (oxalato) phosphorus having a concentration of 1.0% by mass.
  • An electrolyte solution electrolyte solutions No. 4, 16, 18, 19, 26 in which the concentration of the second compound is fixed to 0.5% by mass in lithium acid and the type of the second compound is variously changed;
  • the output characteristics of the battery were evaluated by the method described above. Table 7 shows the evaluation results.
  • the numerical values of the high output capacity retention rates described in Examples 2-1 to 2-4 in Table 7 are relative values when the high output capacity retention rate of Example 2-5 is set to 100. Further, the numerical values of the high output capacity retention ratios described in Examples 2-6 to 2-9 are relative values when the high output capacity retention ratio of Example 2-10 is set to 100. Also, the numerical values of the high output capacity retention ratios described in Examples 2-11 to 2-14 are relative values when the high output capacity retention ratio of Example 2-15 is 100. The numerical values of the high output capacity retention ratios described in Examples 3-1 to 3-4 are relative values when the high output capacity retention ratio of Example 3-5 is set to 100.
  • the numerical values of the high output capacity retention ratios described in Examples 3-6 to 3-9 are relative values when the high output capacity retention ratio of Example 3-10 is set to 100. Further, the numerical values of the high output capacity retention ratios described in Examples 3-11 to 3-14 are relative values when the high output capacity retention ratio of Example 3-15 is 100. Further, the numerical values of the high output capacity retention ratios described in Examples 3-16 to 3-19 are relative values when the high output capacity retention ratio of Example 3-20 is 100. The numerical values of the high output capacity retention ratios described in Examples 4-1 to 4-4 are relative values when the high output capacity retention ratio of Example 4-5 is set to 100. Also, the numerical values of the high output capacity retention ratios described in Examples 4-6 to 4-9 are relative values when the high output capacity retention ratio of Example 4-10 is 100. Further, the numerical values of the high output capacity retention ratios described in Examples 4-11 to 4-14 are relative values when the high output capacity retention ratio of Example 4-15 is 100.
  • Examples 2-1 to 2-4 are relative values when the value of Example 2-5 is 100.
  • the values of Examples 2-6 to 2-9 are the values of Example 2-10.
  • Relative value when the value is 100
  • the values of Examples 2-11 to 2-14 are the relative values when the value of Example 2-15 is 100 and the values of the relative values of Examples 3-1 to 3-4 are Relative values when the value of 3-5 is 100
  • the values of Examples 3-6 to 3-9 are the relative values when the value of Example 3-10 is 100.
  • Examples 3-11 to 3-14 The value of Example 3-15 is a relative value when the value of Example 3-15 is 100.
  • the value of Examples 3-16 to 3-19 is the value of the relative value when Example 3-20 is 100.
  • Example 4 The values of -1 to 4-4 are relative values when the value of Example 4-5 is 100.
  • the values of Examples 4-6 to 4-9 are the values when the value of Example 4-10 is 100 Relative value of Example 4- 1 value between 4-14, relative values when the values of Examples 4-15 and 100
  • Examples 4-11 to 4-14 where x is 2 to 3 showed higher output characteristics than Example 4-15 where x was 4. Therefore, regardless of the type of the negative electrode active material or the positive electrode active material, when the first compound and the second compound coexist in the electrolyte, the electrolyte is used in a nonaqueous electrolyte battery.
  • x in the general formula (2) is more preferably 2 to 3 from the viewpoint of output characteristics.
  • Example 5-1 As a non-aqueous solvent, a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used, and in this solvent, NaPF 6 as a solute had a concentration of 1.0 mol / L.
  • the second compound the above compound No. 1 was used so that the concentration of sodium (oxalato) phosphate was 1.0% by mass. 1 was dissolved to a concentration of 0.5% by mass to prepare an electrolyte for a non-aqueous electrolyte battery.
  • Table 8 shows the conditions for preparing the electrolytic solution.
  • the positive electrode body in which the positive electrode active material is NaFe 0.5 Co 0.5 O 2 is 90% by mass of NaFe 0.5 Co 0.5 O 2 powder, 5% by mass of polyvinylidene fluoride (PVDF) as a binder, and 5% of acetylene black as a conductive material. %, And further, N-methylpyrrolidone is added, and the resulting paste is applied on an aluminum foil and dried to produce a charge end voltage of 3.8 V and a discharge end voltage of 1 for battery evaluation. .5V.
  • PVDF polyvinylidene fluoride
  • Examples 5-2 to 5-6, Comparative Examples 5-1 to 5-6 In Examples 5-2 to 5-6 and Comparative Examples 5-1 to 5-6, as shown in Table 8, except that the types and concentrations of the first compound and the second compound were changed, In the same manner as in 5-1, a non-aqueous electrolyte battery electrolyte was prepared, a cell was prepared, and the battery was evaluated.
  • Table 8 shows the evaluation results of the high temperature cycle characteristics and the high temperature storage characteristics.
  • the evaluation results in Table 8 (the numerical value of the discharge capacity retention rate after 500 cycles and the numerical value of the remaining capacity ratio) are 100 as the evaluation result of Comparative Example 5-1 for Examples 5-1 to 5-3.
  • the relative values in Examples 5-4 to 5-6 are relative values when the evaluation result of Comparative Example 5-2 is set to 100.
  • the numerical values of the evaluation results described in Comparative Examples 5-3 to 5-6 are relative values when the evaluation result of Comparative Example 5-1 is 100.
  • Examples 5-1 to 5-3 are relative values when the value of Comparative Example 5-1 is 100.
  • the values of Examples 5-4 to 5-6 are the values of Comparative Example 5-2. Relative value when the value is 100
  • the values of Comparative Examples 5-3 to 5-6 are relative values when the value of Comparative Example 5-1 is 100.
  • Examples 5-1 to 5-6 that is, as shown in Table 9, the concentration of the first compound was fixed at 1.0% by mass, and the concentration of the second compound was fixed at 0.5% by mass. Then, the output characteristics of the batteries were evaluated by the method described above in a system in which the types of these compounds were variously changed. Table 9 shows the evaluation results. Note that the numerical values of the high output capacity retention rates described in Examples 5-1 and 5-2 in Table 9 are relative values when the high output capacity retention rate of Example 5-3 is 100. Further, the numerical values of the high output capacity retention ratios described in Examples 5-4 to 5-5 are relative values when the high output capacity retention ratio of Example 5-6 is set to 100.
  • Examples 5-1 to 5-2 are relative values when the value of Example 5-3 is 100.
  • the values of Examples 5-4 to 5-5 are the values of Example 5-6. Relative value with 100
  • Example 5-3 there are 2 to 3 groups having the carbon-carbon unsaturated bond (that is, x in the general formula (2) is 2 to 3). It was confirmed that 5-2 showed higher output characteristics. Similarly, it was confirmed that Examples 5-4 to 5-5 in which x is 2 to 3 show higher output characteristics than Example 5-6 in which x is 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、60℃以上の高温での優れた高温サイクル特性及び高温貯蔵特性を発揮することができる、非水電解液電池用電解液、及びこれを用いた非水電解液電池を提供する。本発明の非水電解液電池用電解液は、少なくとも、非水溶媒、溶質、下記一般式(1)で示される少なくとも1種の第1の化合物、及び、下記一般式(2)で示される少なくとも1種の第2の化合物を含有することを特徴とする、非水電解液電池用電解液である。 Si(R(R4-x (2)

Description

非水電解液電池用電解液、及びこれを用いた非水電解液電池
 本発明は、特定の電解質塩とシラン化合物を含有する非水電解液電池用電解液及びそれを用いた非水電解液電池に関するものである。
 近年、情報関連機器、又は通信機器、即ちパソコン、ビデオカメラ、デジタルスチールカメラ、携帯電話等の小型機器で、かつ高エネルギー密度を必要とする用途向けの蓄電システムや電気自動車、ハイブリッド車、燃料電池車補助電源、電力貯蔵等の大型機器で、かつパワーを必要とする用途向けの蓄電システムが注目を集めている。その一つの候補としてリチウムイオン電池、リチウム電池、リチウムイオンキャパシタ、ナトリウムイオン電池等の非水電解液電池が盛んに開発されている。
 これらの非水電解液電池は既に実用化されているものも多いが、耐久性に於いて種々の用途で満足できるものではなく、特に環境温度が60℃以上のときの劣化が大きいため、例えば、自動車用など長期間、温度の高い場所で使用する用途では問題がある。
 これまで非水電解液電池の高温特性及び充放電を繰り返した場合の電池特性(サイクル特性)を改善する手段として、正極や負極の活物質をはじめとする様々な電池構成要素の最適化が検討されてきた。非水電解液関連技術もその例外ではなく、活性な正極や負極の表面で電解液が分解することによる劣化を種々の添加剤で抑制することが提案されている。例えば、特許文献1には、ジフルオロ(ビス(オキサラト))リン酸リチウムやジフルオロ(オキサラト)ホウ酸リチウム等を非水電解液に添加することにより、電池の内部抵抗の上昇とサイクル特性の劣化を抑制する方法が提案されている。しかしながらそれらの効果については、より一層の改善が望まれる場合がある。また、特許文献2~5には、シリコーン化合物、フルオロシラン化合物などのケイ素化合物を非水電解液に添加することにより、非水電解液電池のサイクル特性や、内部抵抗の増加を抑制して低温特性を向上させる方法が提案されている。さらに、特許文献6及び7には、特定のフッ化ケイ素化合物とビス(オキサラト)ホウ酸リチウムを併用して非水電解液に添加することにより、非水電解液電池のサイクル特性と抵抗上昇抑制効果を改善する方法が提案されている。
特開2005-032714号公報 特開平8-078053号公報 特開2002-033127号公報 特開2004-039510号公報 特開2004-087459号公報 特開2010-205474号公報 特開2010-238506号公報
 特許文献1~7で開示されている非水電解液を用いた非水電解液電池は、60℃以上の高温での使用を想定した高温サイクル特性及び、高温貯蔵特性において、より一層の改善が望まれる場合があり、改善の余地があった。本発明は、60℃以上の高温での優れた高温サイクル特性及び高温貯蔵特性を発揮することができる、非水電解液電池用電解液、及びこれを用いた非水電解液電池を提供するものである。
 本発明者らは、かかる問題を解決するために鋭意検討した結果、特定の電解質塩とシラン化合物を含有させた非水電解液電池用電解液とすることで、該電解液を非水電解液電池に用いた場合に、優れた高温サイクル特性及び高温貯蔵特性を発揮することができることを見出し、本発明に至った。
 すなわち本発明は、
少なくとも、非水溶媒、溶質、
下記一般式(1)で示される少なくとも1種の第1の化合物、及び、
下記一般式(2)で示される少なくとも1種の第2の化合物を含有することを特徴とする、非水電解液電池用電解液(以降、単純に「非水電解液」又は「電解液」と記載する場合がある)を提供するものである。
Figure JPOXMLDOC01-appb-I000002
[一般式(1)中、Mはホウ素原子、リン原子又はケイ素原子を表し、mは1~3、nは1~4、pは0又は1である。R1は炭素数が3~10のアルキレン基、炭素数が3~10のハロゲン化アルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のハロゲン化アリーレン基(これらの基はその構造中に置換基を含有してもよいし、ヘテロ原子を含有してもよい。また、mが2以上の場合、m個存在するR1はそれぞれが互いに結合していてもよい)を表し、R2はハロゲン原子を表し、X1、X2はそれぞれ互いに独立して酸素原子又は硫黄原子を表し、X3は炭素原子又は硫黄原子を表す。qは、X3が炭素原子の場合は1、硫黄原子の場合は1又は2である。Aa+はアルカリ金属カチオン、アルカリ土類金属カチオン、又はオニウムカチオンを表し、aは該当するカチオンの価数を表す。a~dは1又は2であり、かつ、a×b=c×dを満たす。
 一般式(2)中、R3はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R4はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
 上記一般式(2)のR3で表される炭素-炭素不飽和結合を有する基が2つ以上であること(xが2以上であること)が重要である。電解液中に該構造の第2の化合物と上記第1の化合物とを共存させると、該電解液を非水電解液電池に用いた場合に、優れた高温サイクル特性及び高温貯蔵特性を発揮することができる。上記一般式(2)のxが2~3であると出力特性の観点でさらに好ましい。
 上記第1の化合物の濃度が、非水電解液電池用電解液の総量に対して0.07~7.0質量%の範囲であることが好ましい。
 また、上記第2の化合物の濃度が、非水電解液電池用電解液の総量に対して0.005~7.0質量%の範囲であることが好ましい。
 また、上記第1の化合物が、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、テトラフルオロ(オキサラト)リン酸塩、及びテトラフルオロ(マロナト)リン酸塩からなる群から選択されることが好ましい。
 また、上記一般式(2)のR3で表される基が、それぞれ互いに独立して、ビニル基、アリル基、1-プロペニル基、エチニル基、及び2-プロピニル基からなる群から選択される基であることが好ましい。
 また、上記一般式(2)のR4で表される基が、それぞれ互いに独立して、フッ素原子、メチル基、エチル基、プロピル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、1,1,1-トリフルオロイソプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基からなる群から選択される基であることが好ましい。
 また、上記溶質が、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO22)、ビス(ジフルオロホスホリル)イミドリチウム(LiN(POF22)、及びジフルオロリン酸リチウム(LiPO22)からなる群から選ばれる少なくとも一つであることが好ましい。
 また、上記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つであることが好ましい。
 また、本発明は、少なくとも正極と、負極と、非水電解液電池用電解液とを備えた非水電解液電池において、非水電解液電池用電解液が上記に記載の非水電解液電池用電解液であることを特徴とする、非水電解液電池を提供するものである。
 本発明により、非水電解液電池に用いた場合に、60℃以上の高温での優れた高温サイクル特性及び高温貯蔵特性を発揮することができる、非水電解液電池用電解液を提供することができる。また、該電解液を用いた、60℃以上の高温での優れた高温サイクル特性及び高温貯蔵特性を示す非水電解液電池を提供することができる。
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
 本発明の非水電解液電池用電解液は、
少なくとも、非水溶媒、溶質、
下記一般式(1)で示される少なくとも1種の第1の化合物、及び、
下記一般式(2)で示される少なくとも1種の第2の化合物を含有することを特徴とする、非水電解液電池用電解液である。
Figure JPOXMLDOC01-appb-I000003
[一般式(1)中、Mはホウ素原子、リン原子又はケイ素原子を表し、mは1~3、nは1~4、pは0又は1である。R1は炭素数が3~10のアルキレン基、炭素数が3~10のハロゲン化アルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のハロゲン化アリーレン基(これらの基はその構造中に置換基を含有してもよいし、ヘテロ原子を含有してもよい。また、mが2以上の場合、m個存在するR1はそれぞれが互いに結合していてもよい)を表し、R2はハロゲン原子を表し、X1、X2はそれぞれ互いに独立して酸素原子又は硫黄原子を表し、X3は炭素原子又は硫黄原子を表す。qは、X3が炭素原子の場合は1、硫黄原子の場合は1又は2である。Aa+はアルカリ金属カチオン、アルカリ土類金属カチオン、又はオニウムカチオンを表し、aは該当するカチオンの価数を表す。a~dは1又は2であり、かつ、a×b=c×dを満たす。
 一般式(2)中、R3はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R4はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
 上記第1の化合物は、いずれも正極、及び負極上で分解することによりイオン伝導性の良い皮膜を正極、及び負極表面に形成する。この皮膜は、非水溶媒や溶質と電極活物質との間の直接の接触を抑制して非水溶媒や溶質の分解を防ぎ、電池性能の劣化を抑制する。しかし、第1の化合物と第2の化合物を併用せずに、第1の化合物のみを用いた場合、得られる非水電解液電池の60℃以上の高温での高温サイクル特性及び高温貯蔵特性は十分ではない場合がある。
 また、上記第2の化合物も正極、及び負極表面に安定な皮膜を形成し、電池の劣化を抑制する効果があるが、第1の化合物と第2の化合物を併用せずに、第2の化合物のみを用いた場合、得られる非水電解液電池の60℃以上の高温での高温サイクル特性及び高温貯蔵特性は十分ではない場合がある。
 本発明の非水電解液電池用電解液において、第1の化合物と第2の化合物を併用することにより、第1の化合物群を単独で添加した場合に比べて60℃以上の高温での高温サイクル特性及び高温貯蔵特性が向上するメカニズムの詳細は明らかでないが、第1の化合物と第2の化合物が共存することで、第1の化合物と第2の化合物の混合組成に由来するより良好な皮膜が形成されることにより、高温での溶媒や溶質の分解が抑制される、あるいは、第1の化合物によって形成された皮膜の表面を、第2の化合物によって形成された皮膜が覆うことにより、第1の化合物が形成する皮膜が高温下にて溶媒や溶質と反応することを抑制するためと推測される。また、第1の化合物群を単独で添加した場合に比べて、第1の化合物と第2の化合物を併用した場合は、60℃以上の高温での電解液からの分解ガスの発生量がより少ない傾向がある。該分解ガス発生量の低減効果は上述のような良好な皮膜がもたらす効果であると考えられる。
 このように、第1の化合物と第2の化合物を併用すると、それぞれを単独で用いる場合に比べて、60℃以上の高温での電池の高温サイクル特性、及び高温貯蔵特性を向上することができる。
 第1の化合物の好適な濃度は、非水電解液の総量に対して0.07質量%以上、好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、また、上限は7.0質量%以下、好ましくは4.5質量%以下、さらに好ましくは3.5質量%以下である。上記濃度が0.07質量%を下回ると該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が7.0質量%を超えると、皮膜形成に使われず余剰になった第1の化合物が皮膜形成反応以外の分解反応によりガスを発生し易く、電池の膨れや性能の劣化を引き起こし易いため好ましくない。これらの第1の化合物は、7.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
 第2の化合物の好適な濃度は、非水電解液の総量に対して0.005質量%以上、好ましくは0.03質量%以上、さらに好ましくは0.7質量%以上であり、また、上限は7.0質量%以下、好ましくは5.5質量%以下、さらに好ましくは2.5質量%以下である。上記濃度が0.005質量%を下回ると該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。一方、上記濃度が7.0質量%を超えると、該非水電解液を用いた非水電解液電池の高温サイクル特性や高温貯蔵特性を向上させる効果が十分に得られ難いため好ましくない。これらの第2の化合物は、7.0質量%を超えない範囲であれば一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。
 上記一般式(1)で表される第1の化合物としては、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、テトラフルオロ(オキサラト)リン酸塩、トリス(オキサラト)ケイ酸塩、ジフルオロビス(オキサラト)ケイ酸塩、テトラフルオロ(マロナト)リン酸塩、ジフルオロ(スルホアセタト)ホウ酸塩、ジフルオロ(マレアト)ホウ酸塩、及びジフルオロ(フマラト)ホウ酸塩が挙げられる。それらの中でも、電解液への溶解度や高温での熱安定性の観点から、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、テトラフルオロ(オキサラト)リン酸塩、及びテトラフルオロ(マロナト)リン酸塩からなる群から選ばれる少なくとも一つの塩であることが好ましい。また、上記の化合物の対カチオン(上記一般式(1)のAa+)は、アルカリ金属カチオン、アルカリ土類金属カチオン、又はオニウムカチオンであり、それらの中でも、電解液への溶解度やイオン伝導度の観点から、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラアルキルアンモニウムイオン、又はテトラアルキルホスホニウムイオンが好ましい。
 上記一般式(2)において、R3で表される炭素-炭素不飽和結合を有する基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基等の炭素原子数2~8のアルケニル基又はこれらの基から誘導されるアルケニルオキシ基、エチニル基、2-プロピニル基、1,1ジメチル-2-プロピニル基等の炭素原子数2~8のアルキニル基又はこれらの基から誘導されるアルキニルオキシ基、フェニル基、トリル基、キシリル基等の炭素原子数6~12のアリール基又はこれらの基から誘導されるアリールオキシ基が挙げられる。また、上記の基はフッ素原子及び酸素原子を有していても良い。それらの中でも、炭素数が6以下の炭素-炭素不飽和結合を含有する基が好ましい。上記炭素数が6より多いと、電極上に皮膜を形成した際の抵抗が比較的大きい傾向がある。具体的には、ビニル基、アリル基、1-プロペニル基、エチニル基、及び2-プロピニル基からなる群から選択される基が好ましい。
 また、上記一般式(2)において、R4で表されるアルキル基及びアルコキシ基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基等の炭素原子数1~12のアルキル基又はこれらの基から誘導されるアルコキシ基が挙げられる。アルケニル基及びアルケニルオキシ基としては、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基等の炭素原子数2~8のアルケニル基又はこれらの基から誘導されるアルケニルオキシ基が挙げられる。アルキニル基及びアルキニルオキシ基としては、エチニル基、2-プロピニル基、1,1ジメチル-2-プロピニル基等の炭素原子数2~8のアルキニル基又はこれらの基から誘導されるアルキニルオキシ基が挙げられる。アリール基及びアリールオキシ基としては、フェニル基、トリル基、キシリル基等の炭素原子数6~12のアリール基又はこれらの基から誘導されるアリールオキシ基が挙げられる。また、上記の基はフッ素原子及び酸素原子を有していても良い。また、上記以外のR4で表される基としてフッ素原子が挙げられる。それらの中でも、フッ素原子、アルキル基及びアルコキシ基から選択される基であると電極上に皮膜を形成した際の抵抗がより小さい傾向があり、その結果出力特性の観点で好ましい。特にフッ素原子、メチル基、エチル基、プロピル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、1,1,1-トリフルオロイソプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基からなる群から選択される基であると、上記の抵抗を大きくすることなく高温サイクル特性及び高温貯蔵特性に、より優れた非水電解液電池を得られるため好ましい。
 上記一般式(2)で表される第2の化合物としては、より具体的には、例えば以下の化合物No.1~No.25等が挙げられる。但し、本発明で用いられる第2の化合物は、以下の例示により何ら制限を受けるものではない。
Figure JPOXMLDOC01-appb-I000004

Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000007
 本発明の非水電解液電池用電解液に用いる非水溶媒の種類は、特に限定されず、任意の非水溶媒を用いることができる。具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ-ブチロラクトン、γ-バレロラクトン等の環状エステル、酢酸メチル、プロピオン酸メチル等の鎖状エステル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン等の環状エーテル、ジメトキシエタン、ジエチルエーテル等の鎖状エーテル、ジメチルスルホキシド、スルホラン等のスルホン化合物やスルホキシド化合物等が挙げられる。また、非水溶媒とはカテゴリーが異なるがイオン液体等も挙げることができる。また、本発明に用いる非水溶媒は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。これらの中ではその酸化還元に対する電気化学的な安定性と熱や溶質との反応に関わる化学的安定性の観点から、特にプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが好ましい。
 本発明の非水電解液電池用電解液に用いる溶質の種類は、特に限定されず、任意の電解質塩を用いることができる。具体例としては、リチウム電池及びリチウムイオン電池の場合には、LiPF6、LiBF4、LiClO4、LiAsF6、LiSbF6、LiCF3SO3、LiN(CF3SO22、LiN(FSO22、LiN(POF22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiPF3(C373、LiB(CF34、LiBF3(C25)、LiPO22など、ナトリウムイオン電池の場合には、NaPF6、NaBF4、NaCF3SO3、NaN(CF3SO22、NaN(FSO22、NaN(F2PO)2などに代表される電解質塩が挙げられる。これらの溶質は、一種類を単独で用いても良く、二種類以上を用途に合わせて任意の組み合わせ、比率で混合して用いても良い。中でも、電池としてのエネルギー密度、出力特性、寿命等から考えると、LiPF6、LiBF4、LiN(CF3SO22、LiN(FSO22、LiN(POF22、LiN(C25SO22、LiPO22、NaPF6、NaN(CF3SO22、NaN(FSO22、NaN(F2PO)2が好ましい。
 これら溶質の濃度については、特に制限はないが、好適には、下限は0.5mol/L以上、より好ましくは0.7mol/L以上、さらに好ましくは0.9mol/L以上であり、また、上限は2.5mol/L以下、より好ましくは2.0mol/L以下、さらに好ましくは1.5mol/L以下の範囲である。0.5mol/Lを下回るとイオン伝導度が低下することにより非水電解液電池のサイクル特性、出力特性が低下する傾向があり、一方、2.5mol/Lを超えると非水電解液電池用電解液の粘度が上昇することにより、やはりイオン伝導度を低下させる傾向があり、非水電解液電池のサイクル特性、出力特性を低下させる恐れがある。
 一度に多量の該溶質を非水溶媒に溶解すると、溶質の溶解熱のため液温が上昇することがある。該液温が著しく上昇すると、フッ素を含有した電解質塩の分解が促進されてフッ化水素が生成する恐れがある。フッ化水素は電池性能の劣化の原因となるため好ましくない。このため、該溶質を非水溶媒に溶解する際の液温は特に限定されないが、-20~80℃が好ましく、0~60℃がより好ましい。
 以上が本発明の非水電解液電池用電解液の基本的な構成についての説明であるが、本発明の要旨を損なわない限りにおいて、本発明の非水電解液電池用電解液に一般的に用いられる添加剤を任意の比率で添加しても良い。具体例としては、シクロヘキシルベンゼン、ビフェニル、t-ブチルベンゼン、ビニレンカーボネート、ビニルエチレンカーボネート、ジフルオロアニソール、フルオロエチレンカーボネート、プロパンサルトン、スクシノニトリル、ジメチルビニレンカーボネート等の過充電防止効果、負極皮膜形成効果、正極保護効果を有する化合物が挙げられる。また、リチウムポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
 次に本発明の非水電解液電池の構成について説明する。本発明の非水電解液電池は、上記の本発明の非水電解液電池用電解液を用いることが特徴であり、その他の構成部材には一般の非水電解液電池に使用されているものが用いられる。即ち、カチオンの吸蔵及び放出が可能な正極及び負極、集電体、セパレータ、容器等から成る。
 負極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、リチウム金属、リチウム金属と他の金属との合金、又は金属間化合物や種々の炭素材料(人造黒鉛、天然黒鉛など)、金属酸化物、金属窒化物、スズ(単体)、スズ化合物、ケイ素(単体)、ケイ素化合物、活性炭、導電性ポリマー等が用いられる。
 炭素材料とは、例えば、易黒鉛化炭素や、(002)面の面間隔が0.37nm以上の難黒鉛化炭素(ハードカーボン)や、(002)面の面間隔が0.34nm以下の黒鉛などである。より具体的には、熱分解性炭素、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭あるいはカーボンブラック類などがある。このうち、コークス類にはピッチコークス、ニードルコークスあるいは石油コークスなどが含まれる。有機高分子化合物焼成体とは、フェノール樹脂やフラン樹脂などを適当な温度で焼成して炭素化したものをいう。炭素材料は、リチウムの吸蔵および放出に伴う結晶構造の変化が非常に少ないため、高いエネルギー密度が得られると共に優れたサイクル特性が得られるので好ましい。なお、炭素材料の形状は、繊維状、球状、粒状あるいは鱗片状のいずれでもよい。また、非晶質炭素や非晶質炭素を表面に被覆した黒鉛材料は、材料表面と電解液との反応性が低くなるため、より好ましい。
 正極材料としては、特に限定されないが、リチウム電池及びリチウムイオン電池の場合、例えば、LiCoO2、LiNiO2、LiMnO2、LiMn24等のリチウム含有遷移金属複合酸化物、それらのリチウム含有遷移金属複合酸化物のCo、Mn、Ni等の遷移金属が複数混合したもの、それらのリチウム含有遷移金属複合酸化物の遷移金属の一部が他の遷移金属以外の金属に置換されたもの、オリビンと呼ばれるLiFePO4、LiCoPO4、LiMnPO4等の遷移金属のリン酸化合物、TiO2、V25、MoO3等の酸化物、TiS2、FeS等の硫化物、あるいはポリアセチレン、ポリパラフェニレン、ポリアニリン、及びポリピロール等の導電性高分子、活性炭、ラジカルを発生するポリマー、カーボン材料等が使用される。
 正極や負極材料には、導電材としてアセチレンブラック、ケッチェンブラック、炭素繊維、黒鉛、結着材としてポリテトラフルオロエチレン、ポリフッ化ビニリデン、SBR樹脂等が加えられ、シート状に成型されることにより電極シートにすることができる。
 正極と負極の接触を防ぐためのセパレータとしては、ポリプロピレン、ポリエチレン、紙、及びガラス繊維等で作られた不織布や多孔質シートが使用される。
 以上の各要素からコイン形、円筒形、角形、アルミラミネートシート型等の形状の非水電解液電池が組み立てられる。
 以下、実施例により本発明を具体的に説明するが、本発明はかかる実施例により限定されるものではない。
[非水電解液の調製]
 非水溶媒としてエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートの体積比2:1:3:4の混合溶媒を用い、該溶媒中に溶質としてLiPF6を1.0mol/Lの濃度となるように、第1の化合物としてジフルオロ(ビス(オキサラト))リン酸リチウムを1.0質量%の濃度となるように、第2の化合物として上記化合物No.1を0.01質量%の濃度となるように溶解し、電解液No.1を調製した。なお、上記の調製は、液温を25℃に維持しながら行った。電解液No.1の調製条件を表1に示す。
 また、第1の化合物の種類や濃度、第2の化合物の種類や濃度を表1のように変えて、それ以外は上記と同様の手順で電解液No.2~80を調製した。なお、電解液No.66~69の調製で第2の化合物として用いた化合物No.26~29を以下に示す。
Figure JPOXMLDOC01-appb-I000008
 [実施例1-1]
 非水電解液として電解液No.1を用いて、LiCoO2を正極材料、黒鉛を負極材料としてセルを作製し、実際に電池の高温サイクル特性及び高温貯蔵特性を評価した。試験用セルは以下のように作製した。
 LiCoO2粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、黒鉛粉末90質量%に、バインダーとして10質量%のポリフッ化ビニリデン(PVDF)を混合し、さらにN-メチルピロリドンを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレータに電解液を浸み込ませてアルミラミネート外装の50mAhセルを組み立てた。
 以上のような方法で作製したセルを用いて充放電試験を実施し、後述の方法で高温サイクル特性及び高温貯蔵特性を評価した。評価結果を表2に示す。
 [高温サイクル特性試験]
 60℃の環境温度での充放電試験を実施し、サイクル特性を評価した。充電は4.2Vまで、放電は3.0Vまで行い、電流密度1.9mA/cm2で充放電サイクルを繰り返した。そして、500サイクル後の放電容量維持率でセルの劣化の具合を評価した(サイクル特性評価)。放電容量維持率は下記式で求めた。
<500サイクル後の放電容量維持率>
放電容量維持率(%)=(500サイクル後の放電容量/初放電容量)×100
 なお、表2に記載の500サイクル後の放電容量維持率の数値は、実施例1-1~1-39については比較例1-1の500サイクル後の放電容量維持率を100とした場合の相対値である。また、実施例1-40~1-44に記載の500サイクル後の放電容量維持率の数値は、比較例1-6の500サイクル後の放電容量維持率を100とした場合の相対値である。また、実施例1-45~1-49に記載の500サイクル後の放電容量維持率の数値は、比較例1-7の500サイクル後の放電容量維持率を100とした場合の相対値である。また、実施例1-50~1-54に記載の500サイクル後の放電容量維持率の数値は、比較例1-8の500サイクル後の放電容量維持率を100とした場合の相対値である。また、実施例1-55~1-59に記載の500サイクル後の放電容量維持率の数値は、比較例1-9の500サイクル後の放電容量維持率を100とした場合の相対値である。また、実施例1-60~1-64に記載の500サイクル後の放電容量維持率の数値は、比較例1-10の500サイクル後の放電容量維持率を100とした場合の相対値である。また、比較例1-11~1-16に記載の500サイクル後の放電容量維持率の数値は、比較例1-1の500サイクル後の放電容量維持率を100とした場合の相対値である。
 [高温貯蔵特性試験]
 上記サイクル試験後、25℃の環境温度において充電上限電圧4.2Vまで定電流定電圧法で、電流密度0.38mA/cm2で充電した後、60℃の環境温度で10日間保存した。その後、放電終止電圧3.0Vまで電流密度0.38mA/cm2の定電流で放電し、この放電容量の初期の放電容量(上記サイクル試験後60℃保存前に測っておいた放電容量)に対する割合を残存容量比とし、セルの貯蔵特性を評価した。なお、表2に記載の残存容量比の数値は、実施例1-1~1-39については比較例1-1の残存容量比を100とした場合の相対値である。また、実施例1-40~1-44に記載の残存容量比の数値は、比較例1-6の残存容量比を100とした場合の相対値である。また、実施例1-45~1-49に記載の残存容量比の数値は、比較例1-7の残存容量比を100とした場合の相対値である。また、実施例1-50~1-54に記載の残存容量比の数値は、比較例1-8の残存容量比を100とした場合の相対値である。また、実施例1-55~1-59に記載の残存容量比の数値は、比較例1-9の残存容量比を100とした場合の相対値である。また、実施例1-60~1-64に記載の残存容量比の数値は、比較例1-10の残存容量比を100とした場合の相対値である。また、比較例1-11~1-16に記載の残存容量比の数値は、比較例1-1の残存容量比を100とした場合の相対値である。
[実施例1-2~1-64、比較例1-1~1-16]
 電解液No.1の代わりに、それぞれ、電解液No.2~80を用いて、実施例1-1と同様のセルを作製し、同様に高温サイクル特性及び高温貯蔵特性を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
*実施例1-1~1-39の値は、比較例1-1の値を100とした場合の相対値
実施例1-40~1-44の値は、比較例1-6の値を100とした場合の相対値
実施例1-45~1-49の値は、比較例1-7の値を100とした場合の相対値
実施例1-50~1-54の値は、比較例1-8の値を100とした場合の相対値
実施例1-55~1-59の値は、比較例1-9の値を100とした場合の相対値
実施例1-60~1-64の値は、比較例1-10の値を100とした場合の相対値
比較例1-11~1-16の値は、比較例1-1の値を100とした場合の相対値
 以上の結果を比較すると、第1の化合物と第2の化合物を併用することで、第1の化合物を単独で用いる比較例1-1、1-6~1-10に対し、高温サイクル特性及び高温貯蔵特性が向上していることが確認できた。また同様に、第2の化合物を単独で用いる比較例1-11~1-16に対し、高温サイクル特性及び高温貯蔵特性が向上していることが確認できた。
 また、比較例1-2~1-5のように、第2の化合物中の炭素-炭素不飽和結合を有する基が1つ以下では高温サイクル特性及び高温貯蔵特性の向上は確認できなかった。
 次に、実施例1-4、1-16~1-64において、すなわち、第1の化合物の濃度を1.0質量%に、第2の化合物の濃度を0.5質量%に固定してそれらの化合物の種類を種々変更した系において後述の方法で電池の出力特性を評価した。評価結果を表3に示す。
 [出力特性試験]
 上記高温貯蔵試験後、60℃の環境温度において充電上限電圧4.2Vまで定電流定電圧法で、電流密度0.38mA/cm2で充放電を行った。このときの放電容量を放電容量Aとする。この後、充電上限電圧4.2Vまで定電流定電圧法で、電流密度0.38mA/cm2で充電を行った後、放電終止電圧3.0Vまで電流密度9.5mA/cm2の定電流で放電した。このときの放電容量を放電容量Bとし、「放電容量B」を「放電容量A」で除した値を高出力容量維持率とし、セルの出力特性を評価した。なお、表3の実施例1-4、1-16~1-39に記載の高出力容量維持率の数値は、実施例1-26の高出力容量維持率を100とした場合の相対値である。また、実施例1-40~1-44に記載の高出力容量維持率の数値は、実施例1-44の高出力容量維持率を100とした場合の相対値である。また、実施例1-45~1-49に記載の高出力容量維持率の数値は、実施例1-49の高出力容量維持率を100とした場合の相対値である。また、実施例1-50~1-54に記載の高出力容量維持率の数値は、実施例1-54の高出力容量維持率を100とした場合の相対値である。また、実施例1-55~1-59に記載の高出力容量維持率の数値は、実施例1-59の高出力容量維持率を100とした場合の相対値である。また、実施例1-60~1-64に記載の高出力容量維持率の数値は、実施例1-64の高出力容量維持率を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000011
*実施例1-4、1-16~1-39の値は、実施例1-26の値を100とした場合の相対値
実施例1-40~1-44の値は、実施例1-44の値を100とした場合の相対値
実施例1-45~1-49の値は、実施例1-49の値を100とした場合の相対値
実施例1-50~1-54の値は、実施例1-54の値を100とした場合の相対値
実施例1-55~1-59の値は、実施例1-59の値を100とした場合の相対値
実施例1-60~1-64の値は、実施例1-64の値を100とした場合の相対値
 以上の出力特性の評価の結果、上記一般式(2)のR3で表される炭素-炭素不飽和結合を有する基が4個である(すなわち上記一般式(2)のxが4である)実施例1-26に対して、上記炭素-炭素不飽和結合を有する基が2~3個である(すなわち上記一般式(2)のxが2~3である)実施例1-4、1-16~1-25、1-27~1-39ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例1-44に対して、上記xが2~3である実施例1-40~1-43ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例1-49に対して、上記xが2~3である実施例1-45~1-48ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例1-54に対して、上記xが2~3である実施例1-50~1-53ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例1-59に対して、上記xが2~3である実施例1-55~1-58ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例1-64に対して、上記xが2~3である実施例1-60~1-63ではより高い出力特性を示すことが確認された。
 従って、電解液中に上記第1の化合物と上記第2の化合物とを共存させると、該電解液を非水電解液電池に用いた場合に、優れた高温サイクル特性及び高温貯蔵特性を発揮することができ、上記一般式(2)のxが2~3であると出力特性の観点でさらに好ましいことが確認できた。
[実施例2-1~2-15、比較例2-1~2-9]
 実施例2-1~2-15及び比較例2-1~2-9においては、表4に示すように、負極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。なお、負極活物質がLi4Ti512である実施例2-1~2-5及び比較例2-1~2-3において、負極体は、Li4Ti512粉末90質量%に、バインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電剤としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を2.7V、放電終止電圧を1.5Vとした。また、負極活物質が黒鉛(ケイ素含有)である実施例2-6~2-10及び比較例2-4~2-6において、負極体は、黒鉛粉末81質量%、ケイ素粉末9質量%に、バインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合しさらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧と放電終止電圧は実施例1-1と同様とした。また、負極活物質がハードカーボンである実施例2-11~2-15及び比較例2-7~2-9において、負極体は、ハードカーボン粉末90質量%に、バインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電剤としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストを銅箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.1V、放電終止電圧を2.2Vとした。高温サイクル特性と高温貯蔵特性の評価結果を表4に示す。なお、表4中の評価結果(500サイクル後の放電容量維持率の数値、残存容量比の数値)は、各電極構成において、電解液No.65の電解液を用いた比較例の評価結果を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000012
*各電極構成において、電解液No.65の電解液を用いた比較例の評価結果を100とした場合の相対値
[実施例3-1~3-20、比較例3-1~3-12]
 実施例3-1~3-20及び比較例3-1~3-12においては、表5に示すように、正極体、負極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。なお、正極活物質がLiNi1/3Co1/3Mn1/32である正極体は、LiNi1/3Co1/3Mn1/32粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製した。実施例1-1と同様に負極活物質が黒鉛である実施例3-1~3-5及び比較例3-1~3-3において、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。実施例2-1と同様に負極活物質がLi4Ti512である実施例3-6~3-10及び比較例3-4~3-6において、電池評価の際の充電終止電圧を2.8V、放電終止電圧を1.5Vとした。実施例2-6と同様に負極活物質が黒鉛(ケイ素含有)である実施例3-11~3-15及び比較例3-7~3-9において、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。実施例2-11と同様に負極活物質がハードカーボンである実施例3-16~3-20及び比較例3-10~3-12において、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.2Vとした。高温サイクル特性と高温貯蔵特性の評価結果を表5に示す。なお、表5中の評価結果(500サイクル後の放電容量維持率の数値、残存容量比の数値)は、各電極構成において、電解液No.65の電解液を用いた比較例の評価結果を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000013
*各電極構成において、電解液No.65の電解液を用いた比較例の評価結果を100とした場合の相対値
[実施例4-1~4-15、比較例4-1~4-9]
 実施例4-1~4-15及び比較例4-1~4-9においては、表6に示すように、正極体及び電解液を変えたこと以外は実施例1-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。なお、正極活物質がLiNi0.8Co0.15Al0.052である実施例4-1~4-5及び比較例4-1~4-3において、正極体は、LiNi0.8Co0.15Al0.052粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.3V、放電終止電圧を3.0Vとした。
 また、正極活物質がLiMn24である実施例4-6~4-10及び比較例4-4~4-6において、正極体は、LiMn24粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を3.0Vとした。また、正極活物質がLiFePO4である実施例4-11~4-15及び比較例4-7~4-9において、正極体は、非晶質炭素で被覆されたLiFePO4粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し、電池評価の際の充電終止電圧を4.2V、放電終止電圧を2.5Vとした。高温サイクル特性と高温貯蔵特性の評価結果を表6に示す。なお、表6中の評価結果(500サイクル後の放電容量維持率の数値、残存容量比の数値)は、各電極構成において、電解液No.65の電解液を用いた比較例の評価結果を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000014
*各電極構成において、電解液No.65の電解液を用いた比較例の評価結果を100とした場合の相対値
 上記のように、負極活物質として、Li4Ti512、黒鉛(ケイ素含有)、及びハードカーボンを用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いることによって、それぞれの対応する比較例に比べて、高温サイクル特性及び高温貯蔵特性を向上させることが確認された。したがって、本発明の非水電解液電池用電解液を用いることで、負極活物質の種類によらず、優れた高温サイクル特性及び高温貯蔵特性を示す非水電解液電池を得られることが示された。また、上記のように、正極活物質として、LiNi1/3Co1/3Mn1/32、LiNi0.8Co0.15Al0.052、LiMn24、及びLiFePO4を用いたいずれの実施例においても、本発明の非水電解液電池用電解液を用いることによって、それぞれの対応する比較例に比べて、高温サイクル特性及び高温貯蔵特性を向上させることが確認された。したがって、本発明の非水電解液電池用電解液を用いることで、正極活物質の種類によらず、優れた高温サイクル特性及び高温貯蔵特性を示す非水電解液電池を得られることが示された。
 次に、実施例2-1~2-15、3-1~3-20、4-1~4-15において、すなわち、第1の化合物を濃度1.0質量%のジフルオロビス(オキサラト)リン酸リチウムに、第2の化合物の濃度を0.5質量%に固定して第2の化合物の種類を種々変更した系の電解液(電解液No.4、16、18、19、26)と正極体と負極体を、表7に示すように種々変更した電池構成において、前述の方法で電池の出力特性を評価した。評価結果を表7に示す。なお、表7の実施例2-1~2-4に記載の高出力容量維持率の数値は、実施例2-5の高出力容量維持率を100とした場合の相対値である。また、実施例2-6~2-9に記載の高出力容量維持率の数値は、実施例2-10の高出力容量維持率を100とした場合の相対値である。また、実施例2-11~2-14に記載の高出力容量維持率の数値は、実施例2-15の高出力容量維持率を100とした場合の相対値である。また、実施例3-1~3-4に記載の高出力容量維持率の数値は、実施例3-5の高出力容量維持率を100とした場合の相対値である。また、実施例3-6~3-9に記載の高出力容量維持率の数値は、実施例3-10の高出力容量維持率を100とした場合の相対値である。また、実施例3-11~3-14に記載の高出力容量維持率の数値は、実施例3-15の高出力容量維持率を100とした場合の相対値である。また、実施例3-16~3-19に記載の高出力容量維持率の数値は、実施例3-20の高出力容量維持率を100とした場合の相対値である。また、実施例4-1~4-4に記載の高出力容量維持率の数値は、実施例4-5の高出力容量維持率を100とした場合の相対値である。また、実施例4-6~4-9に記載の高出力容量維持率の数値は、実施例4-10の高出力容量維持率を100とした場合の相対値である。また、実施例4-11~4-14に記載の高出力容量維持率の数値は、実施例4-15の高出力容量維持率を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000015
*実施例2-1~2-4の値は、実施例2-5の値を100とした場合の相対値
実施例2-6~2-9の値は、実施例2-10の値を100とした場合の相対値
実施例2-11~2-14の値は、実施例2-15の値を100とした場合の相対値
実施例3-1~3-4の値は、実施例3-5の値を100とした場合の相対値
実施例3-6~3-9の値は、実施例3-10の値を100とした場合の相対値
実施例3-11~3-14の値は、実施例3-15の値を100とした場合の相対値
実施例3-16~3-19の値は、実施例3-20の値を100とした場合の相対値
実施例4-1~4-4の値は、実施例4-5の値を100とした場合の相対値
実施例4-6~4-9の値は、実施例4-10の値を100とした場合の相対値
実施例4-11~4-14の値は、実施例4-15の値を100とした場合の相対値
 以上の出力特性の評価の結果、上記一般式(2)のR3で表される炭素-炭素不飽和結合を有する基が4個である(すなわち上記一般式(2)のxが4である)実施例2-5に対して、上記炭素-炭素不飽和結合を有する基が2~3個である(すなわち上記一般式(2)のxが2~3である)実施例2-1~2-4ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例2-10に対して、上記xが2~3である実施例2-6~2-9ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例2-15に対して、上記xが2~3である実施例2-11~2-14ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例3-5に対して、上記xが2~3である実施例3-1~3-4ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例3-10に対して、上記xが2~3である実施例3-6~3-9ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例3-15に対して、上記xが2~3である実施例3-11~3-14ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例3-20に対して、上記xが2~3である実施例3-16~3-19ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例4-5に対して、上記xが2~3である実施例4-1~4-4ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例4-10に対して、上記xが2~3である実施例4-6~4-9ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例4-15に対して、上記xが2~3である実施例4-11~4-14ではより高い出力特性を示すことが確認された。
 従って、負極活物質や正極活物質の種類によらず、電解液中に上記第1の化合物と上記第2の化合物とを共存させると、該電解液を非水電解液電池に用いた場合に、優れた高温サイクル特性及び高温貯蔵特性を発揮することができ、上記一般式(2)のxが2~3であると出力特性の観点でさらに好ましいことが確認できた。
[実施例5-1]
 非水溶媒としてエチレンカーボネートとジエチルカーボネートの体積比1:1の混合溶媒を用い、該溶媒中に、溶質としてNaPF6を1.0mol/Lの濃度となるように、第1の化合物としてテトラフルオロ(オキサラト)リン酸ナトリウムを1.0質量%の濃度となるように、第2の化合物として上記化合物No.1を0.5質量%の濃度となるように溶解し、非水電解液電池用電解液を調製した。電解液の調製条件を表8に示す。
 この電解液を用いてNaFe0.5Co0.52を正極材料、ハードカーボンを負極材料とした以外は実施例1-1と同様にセルの作製を行い、実施例1-1と同様に高温サイクル特性及び高温貯蔵特性の評価を実施した。なお、正極活物質がNaFe0.5Co0.52である正極体は、NaFe0.5Co0.52粉末90質量%にバインダーとして5質量%のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量%混合し、さらにN-メチルピロリドンを添加し、得られたペーストをアルミニウム箔上に塗布して、乾燥させることにより作製し電池評価の際の充電終止電圧を3.8V、放電終止電圧を1.5Vとした。
[実施例5-2~5-6、比較例5-1~5-6]
 実施例5-2~5-6及び比較例5-1~5-6においては、表8に示すように、第1の化合物及び第2の化合物の種類や濃度を変えたこと以外は実施例5-1と同様に非水電解液電池用電解液を調製し、セルを作製し、電池の評価を実施した。高温サイクル特性と高温貯蔵特性の評価結果を表8に示す。なお、表8中の評価結果(500サイクル後の放電容量維持率の数値、残存容量比の数値)は、実施例5-1~5-3については比較例5-1の評価結果を100とした場合の相対値であり、実施例5-4~5-6については比較例5-2の評価結果を100とした場合の相対値である。また、比較例5-3~5-6に記載の評価結果の数値は、比較例5-1の評価結果を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000016
*実施例5-1~5-3の値は、比較例5-1の値を100とした場合の相対値
実施例5-4~5-6の値は、比較例5-2の値を100とした場合の相対値
比較例5-3~5-6の値は、比較例5-1の値を100とした場合の相対値
 以上の結果を比較すると、ナトリウムイオン電池においても、第1の化合物と第2の化合物を併用することで、第1の化合物を単独で用いる比較例5-1、5-2に対し、高温サイクル特性及び高温貯蔵特性が向上していることが確認できた。また同様に、第2の化合物を単独で用いる比較例5-3~5-5に対し、高温サイクル特性及び高温貯蔵特性が向上していることが確認できた。
 次に、実施例5-1~5-6において、すなわち表9に示すように、第1の化合物の濃度を1.0質量%に、第2の化合物の濃度を0.5質量%に固定してそれらの化合物の種類を種々変更した系において、前述の方法で電池の出力特性を評価した。評価結果を表9に示す。なお、表9の実施例5-1~5-2に記載の高出力容量維持率の数値は、実施例5-3の高出力容量維持率を100とした場合の相対値である。また、実施例5-4~5-5に記載の高出力容量維持率の数値は、実施例5-6の高出力容量維持率を100とした場合の相対値である。
Figure JPOXMLDOC01-appb-T000017
*実施例5-1~5-2の値は、実施例5-3の値を100とした場合の相対値
実施例5-4~5-5の値は、実施例5-6の値を100とした場合の相対値
 以上の出力特性の評価の結果、上記一般式(2)のR3で表される炭素-炭素不飽和結合を有する基が4個である(すなわち上記一般式(2)のxが4である)実施例5-3に対して、上記炭素-炭素不飽和結合を有する基が2~3個である(すなわち上記一般式(2)のxが2~3である)実施例5-1~5-2ではより高い出力特性を示すことが確認された。
 同様に、上記xが4である実施例5-6に対して、上記xが2~3である実施例5-4~5-5ではより高い出力特性を示すことが確認された。
 従って、ナトリウムイオン電池においても、電解液中に上記第1の化合物と上記第2の化合物とを共存させると、該電解液を非水電解液電池に用いた場合に、優れた高温サイクル特性及び高温貯蔵特性を発揮することができ、上記一般式(2)のxが2~3であると出力特性の観点でさらに好ましいことが確認できた。

Claims (10)

  1. 少なくとも、非水溶媒、溶質、
    下記一般式(1)で示される少なくとも1種の第1の化合物、及び、
    下記一般式(2)で示される少なくとも1種の第2の化合物を含有することを特徴とする、非水電解液電池用電解液。
    Figure JPOXMLDOC01-appb-I000001
    [一般式(1)中、Mはホウ素原子、リン原子又はケイ素原子を表し、mは1~3、nは1~4、pは0又は1である。R1は炭素数が3~10のアルキレン基、炭素数が3~10のハロゲン化アルキレン基、炭素数が6~20のアリーレン基、又は炭素数が6~20のハロゲン化アリーレン基(これらの基はその構造中に置換基を含有してもよいし、ヘテロ原子を含有してもよい。また、mが2以上の場合、m個存在するR1はそれぞれが互いに結合していてもよい)を表し、R2はハロゲン原子を表し、X1、X2はそれぞれ互いに独立して酸素原子又は硫黄原子を表し、X3は炭素原子又は硫黄原子を表す。qは、X3が炭素原子の場合は1、硫黄原子の場合は1又は2である。Aa+はアルカリ金属カチオン、アルカリ土類金属カチオン、又はオニウムカチオンを表し、aは該当するカチオンの価数を表す。a~dは1又は2であり、かつ、a×b=c×dを満たす。
     一般式(2)中、R3はそれぞれ互いに独立して炭素-炭素不飽和結合を有する基を表す。R4はそれぞれ互いに独立して、フッ素原子、アルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基、アルキニル基、アルキニルオキシ基、アリール基、及びアリールオキシ基からなる群から選ばれる基を示し、これらの基はフッ素原子及び/又は酸素原子を有していても良い。xは2~4である。]
  2. 前記第1の化合物の濃度が、非水電解液電池用電解液の総量に対して0.07~7.0質量%の範囲である、請求項1に記載の非水電解液電池用電解液。
  3. 前記第2の化合物の濃度が、非水電解液電池用電解液の総量に対して0.005~7.0質量%の範囲である、請求項1又は2に記載の非水電解液電池用電解液。
  4. 前記第1の化合物が、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロビス(オキサラト)リン酸塩、テトラフルオロ(オキサラト)リン酸塩、及びテトラフルオロ(マロナト)リン酸塩からなる群から選択される、請求項1~3のいずれかに記載の非水電解液電池用電解液。
  5. 前記一般式(2)のR3で表される基が、それぞれ互いに独立して、ビニル基、アリル基、1-プロペニル基、エチニル基、及び2-プロピニル基からなる群から選択される基である、請求項1~4のいずれかに記載の非水電解液電池用電解液。
  6. 前記一般式(2)のR4で表される基が、それぞれ互いに独立して、フッ素原子、メチル基、エチル基、プロピル基、2,2,2-トリフルオロエチル基、2,2,3,3-テトラフルオロプロピル基、1,1,1-トリフルオロイソプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、2,2,2-トリフルオロエトキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、1,1,1-トリフルオロイソプロポキシ基、及び1,1,1,3,3,3-ヘキサフルオロイソプロポキシ基からなる群から選択される基である、請求項1~5のいずれかに記載の非水電解液電池用電解液。
  7. 前記一般式(2)のxが2~3である、請求項1~6のいずれかに記載の非水電解液電池用電解液。
  8. 前記溶質が、ヘキサフルオロリン酸リチウム(LiPF6)、テトラフルオロホウ酸リチウム(LiBF4)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3SO22)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO22)、ビス(ジフルオロホスホリル)イミドリチウム(LiN(POF22)、及びジフルオロリン酸リチウム(LiPO22)からなる群から選ばれる少なくとも一つである、請求項1~7のいずれかに記載の非水電解液電池用電解液。
  9. 前記非水溶媒が、環状カーボネート、鎖状カーボネート、環状エステル、鎖状エステル、環状エーテル、鎖状エーテル、スルホン化合物、スルホキシド化合物、及びイオン液体からなる群から選ばれる少なくとも一つである、請求項1~8のいずれかに記載の非水電解液電池用電解液。
  10. 少なくとも正極と、負極と、非水電解液電池用電解液とを備えた非水電解液電池において、非水電解液電池用電解液が請求項1~9のいずれかに記載の非水電解液電池用電解液であることを特徴とする、非水電解液電池。
PCT/JP2015/069939 2014-08-01 2015-07-10 非水電解液電池用電解液、及びこれを用いた非水電解液電池 WO2016017404A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL15827881T PL3166170T3 (pl) 2014-08-01 2015-07-10 Roztwór elektrolitu do niewodnych akumulatorów elektrolitycznych i niewodny akumulator elektrolityczny z jego wykorzystaniem
KR1020197006606A KR102085879B1 (ko) 2014-08-01 2015-07-10 비수전해액 전지용 전해액, 및 이것을 이용한 비수전해액 전지
US15/500,984 US10847838B2 (en) 2014-08-01 2015-07-10 Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
KR1020177005775A KR101957398B1 (ko) 2014-08-01 2015-07-10 비수전해액 전지용 전해액, 및 이것을 이용한 비수전해액 전지
CN201580053638.4A CN107112589A (zh) 2014-08-01 2015-07-10 非水电解液电池用电解液及使用其的非水电解液电池
EP15827881.2A EP3166170B1 (en) 2014-08-01 2015-07-10 Electrolyte solution for non-aqueous electrolyte solution battery and non-aqueous electrolyte solution battery using same
US17/069,284 US11652238B2 (en) 2014-08-01 2020-10-13 Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014157872A JP6365082B2 (ja) 2014-08-01 2014-08-01 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2014-157872 2014-08-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/500,984 A-371-Of-International US10847838B2 (en) 2014-08-01 2015-07-10 Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
US17/069,284 Continuation US11652238B2 (en) 2014-08-01 2020-10-13 Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same

Publications (1)

Publication Number Publication Date
WO2016017404A1 true WO2016017404A1 (ja) 2016-02-04

Family

ID=55217310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069939 WO2016017404A1 (ja) 2014-08-01 2015-07-10 非水電解液電池用電解液、及びこれを用いた非水電解液電池

Country Status (8)

Country Link
US (2) US10847838B2 (ja)
EP (1) EP3166170B1 (ja)
JP (1) JP6365082B2 (ja)
KR (2) KR102085879B1 (ja)
CN (2) CN113644316A (ja)
HU (1) HUE046474T2 (ja)
PL (1) PL3166170T3 (ja)
WO (1) WO2016017404A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152175A (ja) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
US20180034103A1 (en) * 2015-02-19 2018-02-01 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
EP3416228A4 (en) * 2017-01-20 2019-04-24 LG Chem, Ltd. NONAQUEOUS ELECTROLYTE FOR LITHIUM RECHARGEABLE BATTERY, AND LITHIUM RECHARGEABLE BATTERY COMPRISING SAME
JP2022176997A (ja) * 2017-09-22 2022-11-30 三菱ケミカル株式会社 非水系電解液、非水系電解液二次電池、及びエネルギーデバイス

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191720A (ja) * 2016-04-14 2017-10-19 株式会社デンソー 非水電解質二次電池及びその製造方法
JP6245312B2 (ja) * 2016-05-30 2017-12-13 セントラル硝子株式会社 非水系電解液二次電池用電解液及びそれを用いた非水系電解液二次電池
KR102148895B1 (ko) 2016-07-01 2020-08-27 샌트랄 글래스 컴퍼니 리미티드 비수계 전해액, 및 비수계 전해액 이차전지
JP6860783B2 (ja) 2016-07-01 2021-04-21 セントラル硝子株式会社 非水系電解液、及び非水系電解液二次電池
HUE062119T2 (hu) 2016-07-22 2023-09-28 Daikin Ind Ltd Elektrolitoldat, elektrokémiai eszköz, szekunder akkumulátor, és modul
US20190214682A1 (en) * 2016-07-22 2019-07-11 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, secondary battery, and module
EP3396770B1 (en) * 2016-11-15 2020-02-26 LG Chem, Ltd. Non-aqueous electrolyte for lithium secondary battery, and lithium secondary battery comprising same
CN109075387B (zh) * 2017-01-20 2022-01-04 株式会社Lg化学 用于锂二次电池的非水电解质溶液和包括该非水电解质溶液的锂二次电池
KR102242252B1 (ko) 2017-11-13 2021-04-21 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
JP7116312B2 (ja) * 2018-11-26 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
WO2019117101A1 (ja) * 2017-12-12 2019-06-20 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP7116311B2 (ja) * 2017-12-12 2022-08-10 セントラル硝子株式会社 非水電解液電池用電解液及びそれを用いた非水電解液電池
KR102264732B1 (ko) 2018-02-23 2021-06-15 주식회사 엘지에너지솔루션 이차 전지
CN110858665B (zh) * 2018-08-24 2021-10-01 张家港市国泰华荣化工新材料有限公司 一种锂离子电池电解液及其应用
US10847840B2 (en) * 2018-10-30 2020-11-24 Uchicago Argonne, Llc Additives for lithium batteries and methods
CN111116659A (zh) * 2018-10-31 2020-05-08 张家港市国泰华荣化工新材料有限公司 一种化合物、电解液及锂离子电池
KR102434070B1 (ko) * 2018-11-09 2022-08-22 주식회사 엘지에너지솔루션 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
US12040450B2 (en) 2018-11-09 2024-07-16 Lg Energy Solution, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20200076229A (ko) 2018-12-19 2020-06-29 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR20200076230A (ko) 2018-12-19 2020-06-29 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102452329B1 (ko) 2019-01-17 2022-10-11 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
EP3893312A4 (en) 2019-01-17 2022-03-09 Lg Energy Solution, Ltd. NON-AQUEOUS ELECTROLYTE FOR LITHIUM BATTERY AND LITHIUM BATTERY COMPRISING IT
CN113646943A (zh) * 2019-04-29 2021-11-12 株式会社Lg新能源 锂二次电池用非水电解质以及包含其的锂二次电池
JP7260676B2 (ja) * 2019-05-23 2023-04-18 株式会社厚成 二次電池用電解質添加剤、その製造方法、前記添加剤を含む電解質組成物及び二次電池
CN114175345B (zh) * 2019-07-31 2024-03-08 三菱化学株式会社 非水电解液及能量设备
CN110642883A (zh) * 2019-10-23 2020-01-03 上海如鲲新材料有限公司 一种二氟草酸硼酸盐的制备方法
JPWO2021241333A1 (ja) * 2020-05-26 2021-12-02
CN114597492A (zh) * 2021-04-12 2022-06-07 深圳市研一新材料有限责任公司 非水电解液以及使用其的锂离子电池
CN113764737B (zh) 2021-09-29 2022-04-26 珠海市赛纬电子材料股份有限公司 添加剂和含有该添加剂的电解液及锂离子电池
CN114497744A (zh) * 2022-03-07 2022-05-13 天津市捷威动力工业有限公司 钠离子电解液及其应用、钠离子电池及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134169A (ja) * 2000-10-30 2002-05-10 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2004039510A (ja) * 2002-07-05 2004-02-05 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2007180015A (ja) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP2010205474A (ja) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk 非水電解液及びそれを備えたリチウムイオン二次電池
JP2011527090A (ja) * 2008-07-03 2011-10-20 ボード オブ ガバナーズ フォー ハイヤー エデュケーション, ステート オブ ロード アイランド アンド プロヴィデンス プランテーションズ 電解質添加物によるリチウムイオン電池電解質の酸化の抑制
WO2012147566A1 (ja) * 2011-04-28 2012-11-01 昭和電工株式会社 二次電池用非水電解液および非水電解液二次電池
JP2013175410A (ja) * 2012-02-27 2013-09-05 Gs Yuasa Corp リチウム二次電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5885733A (en) 1994-07-07 1999-03-23 Ricoh Company, Ltd. Non-aqueous secondary lithium battery
JPH0878053A (ja) 1994-07-07 1996-03-22 Ricoh Co Ltd リチウム非水二次電池
DE10027626A1 (de) 2000-06-07 2001-12-13 Merck Patent Gmbh Silanverbindungen als Additive in Elektrolyten für elektrochemischen Zellen
EP1202373B1 (en) 2000-10-30 2012-01-18 Denso Corporation Nonaqueous electrolytic solution and nonaqueous secondary battery
JP4367001B2 (ja) 2002-06-25 2009-11-18 三菱化学株式会社 非水電解液二次電池
JP4450550B2 (ja) * 2002-11-21 2010-04-14 三井化学株式会社 非水電解液およびそれを用いた二次電池
JP4579588B2 (ja) 2003-06-16 2010-11-10 株式会社豊田中央研究所 リチウムイオン二次電池
EP2560229B1 (en) 2005-10-20 2019-06-05 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
CN113594543A (zh) * 2005-10-20 2021-11-02 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
JP4792919B2 (ja) * 2005-10-28 2011-10-12 ソニー株式会社 電池
JP2010027361A (ja) * 2008-07-18 2010-02-04 Denso Corp 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
JP5277045B2 (ja) * 2009-03-31 2013-08-28 三和油化工業株式会社 非水電解液及びそれを用いたリチウムイオン二次電池
WO2012053485A1 (ja) * 2010-10-18 2012-04-26 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP5781294B2 (ja) * 2010-11-16 2015-09-16 株式会社Adeka 非水電解液二次電池
US20120315534A1 (en) * 2011-06-09 2012-12-13 Wildcat Discovery Technologies, Inc. Materials for Battery Electrolytes and Methods for Use
JP5796417B2 (ja) 2011-08-31 2015-10-21 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
KR102161626B1 (ko) * 2014-05-13 2020-10-05 삼성에스디아이 주식회사 음극 및 이를 채용한 리튬 전지
CN209439510U (zh) 2018-12-27 2019-09-27 沈阳睿昇机械设备有限公司 一种便于更换的铣头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134169A (ja) * 2000-10-30 2002-05-10 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2004039510A (ja) * 2002-07-05 2004-02-05 Denso Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2007180015A (ja) * 2005-11-29 2007-07-12 Mitsubishi Chemicals Corp リチウム二次電池用非水系電解液及びそれを用いたリチウム二次電池
JP2011527090A (ja) * 2008-07-03 2011-10-20 ボード オブ ガバナーズ フォー ハイヤー エデュケーション, ステート オブ ロード アイランド アンド プロヴィデンス プランテーションズ 電解質添加物によるリチウムイオン電池電解質の酸化の抑制
JP2010205474A (ja) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk 非水電解液及びそれを備えたリチウムイオン二次電池
WO2012147566A1 (ja) * 2011-04-28 2012-11-01 昭和電工株式会社 二次電池用非水電解液および非水電解液二次電池
JP2013175410A (ja) * 2012-02-27 2013-09-05 Gs Yuasa Corp リチウム二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180034103A1 (en) * 2015-02-19 2018-02-01 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
US10553904B2 (en) * 2015-02-19 2020-02-04 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
US11145904B2 (en) 2015-02-19 2021-10-12 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
US11171361B2 (en) 2015-02-19 2021-11-09 Central Glass Co., Ltd. Electrolyte solution for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using the same
JP2017152175A (ja) * 2016-02-24 2017-08-31 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
EP3416228A4 (en) * 2017-01-20 2019-04-24 LG Chem, Ltd. NONAQUEOUS ELECTROLYTE FOR LITHIUM RECHARGEABLE BATTERY, AND LITHIUM RECHARGEABLE BATTERY COMPRISING SAME
US10700381B2 (en) 2017-01-20 2020-06-30 Lg Chem, Ltd. Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2022176997A (ja) * 2017-09-22 2022-11-30 三菱ケミカル株式会社 非水系電解液、非水系電解液二次電池、及びエネルギーデバイス
JP7265673B2 (ja) 2017-09-22 2023-04-26 三菱ケミカル株式会社 非水系電解液、非水系電解液二次電池、及びエネルギーデバイス

Also Published As

Publication number Publication date
EP3166170A1 (en) 2017-05-10
KR20190026974A (ko) 2019-03-13
KR20170033437A (ko) 2017-03-24
CN113644316A (zh) 2021-11-12
US20210028491A1 (en) 2021-01-28
KR101957398B1 (ko) 2019-03-12
US11652238B2 (en) 2023-05-16
CN107112589A (zh) 2017-08-29
EP3166170B1 (en) 2019-09-11
HUE046474T2 (hu) 2020-03-30
US10847838B2 (en) 2020-11-24
JP2016035820A (ja) 2016-03-17
US20170222264A1 (en) 2017-08-03
JP6365082B2 (ja) 2018-08-01
KR102085879B1 (ko) 2020-03-06
PL3166170T3 (pl) 2020-03-31
EP3166170A4 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US11652238B2 (en) Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
JP7016020B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN108475824B (zh) 非水电解液电池用电解液和使用其的非水电解液电池
JP6361486B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6221365B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6255722B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
KR102427676B1 (ko) 비수전해액용 첨가제, 비수전해액, 및 비수전해액 전지
JP2019057356A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6476611B2 (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2016131059A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
WO2012176871A1 (ja) 非水電解液電池用電解液及び非水電解液電池
CN110880619B (zh) 非水电解液电池用电解液和使用其的非水电解液电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015827881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15500984

Country of ref document: US

Ref document number: 2015827881

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177005775

Country of ref document: KR

Kind code of ref document: A