WO2016016481A1 - Cimentación de gravedad para aerogeneradores offshore - Google Patents

Cimentación de gravedad para aerogeneradores offshore Download PDF

Info

Publication number
WO2016016481A1
WO2016016481A1 PCT/ES2014/070617 ES2014070617W WO2016016481A1 WO 2016016481 A1 WO2016016481 A1 WO 2016016481A1 ES 2014070617 W ES2014070617 W ES 2014070617W WO 2016016481 A1 WO2016016481 A1 WO 2016016481A1
Authority
WO
WIPO (PCT)
Prior art keywords
drawer
foundation
cells
gravity
height
Prior art date
Application number
PCT/ES2014/070617
Other languages
English (en)
French (fr)
Inventor
Miguel A. VAZQUEZ ROMERO
Noelia GONZALEZ PATIÑO
Elena Martin Diaz
Enrique DE FARAGÓ BOTELLA
Juan Manuel GONZALEZ ESTEBAN
Jonay CRUZ FERNANDEZ
Carlos Jesús POLIMÓN OLABARRIETA
Original Assignee
Dragados, S.A.
Drace Infraestructuras, S.A.
Proes Consultores, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dragados, S.A., Drace Infraestructuras, S.A., Proes Consultores, S.A. filed Critical Dragados, S.A.
Priority to DK14898896.7T priority Critical patent/DK3176329T3/da
Priority to PL14898896T priority patent/PL3176329T3/pl
Priority to EP14898896.7A priority patent/EP3176329B1/en
Priority to PT148988967T priority patent/PT3176329T/pt
Priority to LTEP14898896.7T priority patent/LT3176329T/lt
Priority to PCT/ES2014/070617 priority patent/WO2016016481A1/es
Priority to ES14898896T priority patent/ES2835551T3/es
Publication of WO2016016481A1 publication Critical patent/WO2016016481A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • E02D27/525Submerged foundations, i.e. submerged in open water using elements penetrating the underwater ground
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/025Reinforced concrete structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/02Caissons able to be floated on water and to be lowered into water in situ
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0069Gravity structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines

Definitions

  • the present invention refers to a gravity foundation for offshore wind turbines, manufactured by floating dock technology.
  • the port drawers have a parallelepipedic shape, with a rectangular or square plan, although in some special cases, drawers with other shapes have been used in order to adapt to the conditions of each project.
  • INNEO ES 2 378 960 describes a structure for gravity foundation for marine wind turbines, with a truncated conical part of the base, which is not slidable in a floating dock and lacks buoyancy auxiliary structures, necessary to maintain stability of the set during the funding phases
  • Gravity foundations of marine wind turbines, also called GBF (Gravity Base Foundation) or GBS (Gravity Base Structures), present a series of problems, or conditions, that need to be taken into account in the design of a new foundation and that basically They can be classified as follows:
  • the gravity foundation for offshore wind towers must allow its connection to the metal mast to be carried out at a sufficiently high level so that this point is safe from the direct actions of the swell even in the greatest storms. This usually means that said connection is made, at least, at the height plus 15 m above sea level. Furthermore, said connection point is usually configured as the tower access platform during the operation phase.
  • Conditioning factors during manufacturing by means of manufacturing methods used so far, large tracts of land are required for the manufacture and collection of structures, in addition to large lifting means for launching or placing on board the vessel in charge of transport it to its positioning place. Structures that are not manufactured in a floating dock used in the manufacture of reinforced concrete drawers for docks or docks pose all these problems. For manufacturing using a floating dock, one of the conditions that indicates the availability or not of appropriate springs is its draft. Conditioning factors during transport: there are two general methods of transporting these structures from their place of manufacture to that of definitive positioning. The first is to transport them aboard a boat.
  • the foundation must be designed to support the loads during the service phase.
  • the loads can be: own weight, environmental loads (including wind and waves), operational loads (those due to the operation of the wind turbine) and accidental loads (for example, the impact of a ship, an iceberg, etc.).
  • the stabilizers correspond to their own weight, while the design must be done considering all other destabilizers.
  • the design must guarantee the correct behavior of the foundation against the balance and geotechnical failure modes, as well as guarantee its structural validity complying with the standards set out in the various standards, so as to ensure its functionality and operability throughout All the life.
  • This factor may condition the design of the GBS.
  • the solution developed here presented for the foundation of marine wind turbines consists of a structure constituted by a prefabricated reinforced concrete drawer, which serves as a support and to transmit the entire load of the rest of the structure to the foundation bench, manufactured in dike floating with the technique of manufacturing port drawers.
  • This drawer has a circular plan and in the lower part of the cells it has a solid concrete ballast of variable thickness depending on the conditions of the site, whose mission is to guarantee the conditions of stability during the towing and anchoring of the structure.
  • the hearth of this drawer is thicker than the side and intermediate walls that separate the cells into which it is divided, which are distributed from a central cell, forming at least two concentric rings of radially distributed cells, which are provided of media to each other and with the outside, equipped with emptying and filling devices that allows self-regulation of the ballast level for anchoring at its final location.
  • the ratio between the diameter of the base and the height of the drawer is between 3: 2 and 8: 5, and preferably is 1 1: 7.
  • This mast From the central part of the drawer a mast is born at the upper end of which the connection with the metal tower of the wind turbine will be realized by means of a metal transition piece.
  • This mast has almost-cylindrical geometry, with slight conicity, and is made of post-tensioned concrete, a lower part within the floating dock itself and the upper area (approximately from 6 m) outside it so that it can slide out of the drawer .
  • the height of the drawer is such that in the service phase it is fully submerged (not so the tower that has an emergent part to facilitate the connection with the remaining mast at a sufficiently high level with respect to sea level).
  • Inside the drawer is divided inside into cells that are closed superiorly by means of a reinforced concrete slab.
  • the height of the mast above the drawer is similar to the height of said drawer.
  • the outer wall of the drawer is lightened by means of lightening of circular cross-section and / or in the upper slab.
  • the radial separation walls of cells have gaps (windows) from a certain height, so that from that height the adjacent cells are communicated.
  • the design has also been adapted to meet the most stringent requirements in terms of safety against accidental situations during towing (flooding of an outer cell) while maintaining stability and maintenance conditions afloat.
  • the funding process is carried out simply by gravity ballasting your cells with seawater, without the need for no additional means, or special auxiliary vessels of great capacity, or of flotation elements outside the structure itself, to confer naval stability since, by design, this structure meets the requirements demanded during all phases of the funding process maintaining at all times the value of the metacentric height greater than one meter: GM> 1, 00 m.
  • the anchoring process is reversible, so that once the drawer begins to sink its refloot is possible by operating the valve and pump system until the level of liquid ballast is adjusted to the desired level.
  • a cell filling procedure has been developed compatible with the rest of the structure design. This procedure is based on the use of conventional suction dredgers that fill the cells by hydraulic drive.
  • the GBS design is capable of using an alternative method, consisting of the removal of the upper covers and filling by means of mechanical dredgers. This is an important advantage that allows to adapt to the conditions of each specific location.
  • Figure 1 shows a general view of the installation of an offshore wind turbine (6), fixed in the foundation object of the invention.
  • Figures 2 and 3 respectively represent a section according to a horizontal plane and a vertical plane through the center of said foundation.
  • Figure 4 is a detail of lightening (17) located in the outer wall of the drawer (1).
  • Figure 5 represents a plan view below the slab (16) of the drawer (1), in which the pre-slabs (8) and the lightening (81) present in them are observed.
  • Figures 6 and 7 show details of said pre-slabs (8) and lightening (81).
  • Figure 8 represents a sectional view, according to a vertical, diametral plane of the foundation when it is ready to be towed floating, before being anchored in the sea (5).
  • the drawer (1) that forms the basis of this foundation and ultimately the support of the whole offshore wind turbine structure is a precast reinforced concrete drawer, which has a circular plan, 33.00 m in diameter in the hearth (14) and 32.00 m in diameter in the shaft (15).
  • the floor (14) has a thickness of 1.20 m, while the cover (16) of the cells is 0.60 m.
  • the total height of the shaft (15) is 19.20 m, while that of the drawer (1) (including the hearth, shaft and upper closing slab) is 21 .00 m.
  • the mast From the central part of the drawer is born a mast (2) at whose upper end (24) the connection with the metal tower (4) of the wind turbine (6) is fixed by means of a metal transition piece (3).
  • the mast has almost-cylindrical geometry, with slight conicity (it has 8.00 m outside diameter at its start and 6.00 m at its upper end).
  • This mast is made of post-tensioned concrete to resist stress to which it will be subject in the service phase.
  • the first 6 meters (21) are manufactured by sliding in the drawer itself after the base drawer, while the upper portion (22) has a slight taper and is built outside the floating dock due to its height.
  • the post-tensioning cables are tested from the head of the mast (2) once it is completed, while said cables have their passive anchors (25) installed in the hearth of the drawer (14).
  • the mast (2) has a height dependent on the depth at which the foundation will be placed, so that the metal tower (4) has a connection height with the post-tensioned concrete mast above 15 m with respect to the level (51) from the sea. Said connection is materialized through the metal transition piece (3).
  • the circular section of the foundation allows to reduce the waves loads, having verified its viability, during the exploitation phase, as a gravity foundation for different drafts, from 35 m to 50 m (always depending on the geotechnical conditions and the maritime climate of the area) and without modifying any of the dimensions of the drawer (only the height of the mast (2)).
  • this drawer (1) it has been taken into account that it must be manufactured entirely in a floating dock, in order to take advantage of the advantages that this technique provides. For this, some forms of the drawer have been adopted that allow the sliding of its walls, so that the construction process is the same as for a port drawer.
  • the outer wall has lightening (17) of circular section throughout the shaft. These lightening can be executed using the sliding technique inside the drawer, so they only influence the design of the formwork.
  • the radial partitions of the interior cells have three windows (18) that, in addition to reducing weight, allow communication between cells from a certain height. This is high enough not to influence the process of ballasting with water (in all cases the drawer is anchored to the required level with a lower level of liquid ballast).
  • the upper pre-slabs (8) which are placed to form the upper cover (16), have structural lightening (81) in the part corresponding to the outer crown.
  • Figure 8 shows how this accidental conditioner can be complied with, taking as an example a drawer corresponding to a foundation at 35 m depth.
  • the drawer has a solid ballast of 0.85 m (height 52) and has no liquid ballast (water), so it has a draft of 13.55 m during towing, and therefore a freeboard of 7.45 m, with a GM> 1 .00 m.
  • GM GM> 1 .00 m
  • the liquid ballast opening valves would be activated to allow the entry by gravity of seawater into the cells on the opposite side, so that the progressive anchorage of the drawer would proceed, but with GM values still older in all its phases.
  • the implementation of said ballasts is a simple process (concrete pouring and opening of valves for the introduction by gravity of seawater into the cells, respectively) fully inserted into the general construction process, this variability does not affect to the general design of the drawer, since the only thing to adapt is the amount of solid ballast (mass concrete) that must be poured inside the cells in each case. And this concrete pouring process is simple and does not affect the manufacturing process of the floating dock drawer, as it is done once the drawer has left it.
  • the gravity structure thus conceived can be towed with the usual tugboats in the ports to the place where it should be installed, then proceeding to its anchorage by ballasting the inner cells of the drawer with seawater, until such time as the drawer is definitely supported on the sidewalk.
  • the ballasting process is It is carried out by the gravity introduction of seawater inside the drawer by means of a system of valves arranged in the outer wall of the drawer, and by means of the corresponding internal communication system between cells.
  • the drawer is connected by means of mooring lines to conventional tugs that, by means of winches, act on said lines, giving them different tensions and allowing plant positioning of the structure in the established location and within the allowable tolerances.
  • the anchoring process avoids the use of special vessels or flotation elements outside the structure itself, the GBS design itself which gives it stability characteristics in all intermediate phases.
  • the next stage consists in filling the cells of the drawer with granular material, an activity that assumes some complexity when submerged and closed by means of the slab. Likewise, since they are offshore structures, access to these structures will only be available by sea.
  • One of the alternatives for the cell filling process consists in the use of hydraulic means (suction dredge type) by means of driving the material by the dredge through a system of pipes that are connected to the drawer by means of flanged connection mouths located on the upper closing slabs of the drawer.
  • hydraulic means suction dredge type
  • the GBS already has the necessary weight to guarantee the stability of the foundation during the entire life of the structure.
  • a valve system is located on the walls of the drawer that allows the entry and exit of air and water both during the flooding and filling phases of cells. Through this system, the overpressures inside the cells due to the progressive entry of water by impulse from the dredge, is limited and dissipates.
  • the foundation has a circular shape to reduce the waves loads, having proven its viability, during the exploitation phase, as a gravity foundation for different drafts, from 35 m to 50 m (always depending on the geotechnical conditions and climate maritime zone) and without the need to modify any of the dimensions of the drawer (only the height of the mast).
  • this drawer allows the dismantling operation to be carried out without additional lifting or flotation means, by providing the GBS with the necessary stability in all flotation phases.

Abstract

Cimentación de gravedad para aerogeneradores offshore, fabricada mediante tecnología de dique flotante, constituida por un cajón (1) de sección circular, interiormente aligerado por celdas huecas (11, 12, 13), cerrado superiormente mediante una o más tapas (16), cuya celda central (13) se prolonga en un mástil (2) de hormigón postensado, sobre el cual se une la torre metálica (4) que sustenta el aerogenerador. Las celdas (11, 12, 13) del cajón se rellenan de un lastre sólido (8) con la finalidad de bajar su centro de gravedad, de manera que el diseño de la cimentación en su conjunto le permite ser remolcado y fondeado en mar abierto sin necesidad de embarcaciones especiales, ni empleo de medios de flotación adicionales, al disponer en todas sus fases de las suficientes condiciones de estabilidad naval.

Description

DESCRIPCIÓN
Cimentación de gravedad para aerogeneradores offshore. Objeto de la invención
La presente invención, como su propio título indica, se refiere a una cimentación de gravedad para aerogeneradores offshore, fabricada mediante tecnología de dique flotante.
Antecedentes de la invención
Usualmente las cimentaciones de los aerogeneradores marinos, o bien se depositan directamente en el fondo marino (gravedad), o bien se enclavan en él (monopilote, trípode o celosía). Estas tipologías así como las variantes basadas en ellas cubren alrededor del 95% de las cimentaciones instaladas hasta la fecha, teniendo constancia de otras de manera muy residual (flotantes e islas artificiales). De manera generalizada, se plantean las soluciones de gravedad para profundidades más reducidas, mientras que por encima de los 35 m suelen concebirse soluciones tipo monopilote y de celosía (jackets) para profundidades hasta 50 ó 60 m. A partir de los 60 m se plantean las soluciones flotantes.
A finales de 2010 se podían contabilizar aproximadamente 225 turbinas con cimentaciones de gravedad, muy lejos de los más 1 .000 con monopilotes. Además, un porcentaje muy elevado de ellas se encontraban a profundidades reducidas (menores de 15 m), estando el diseño de varias de estas primeras cimentaciones de gravedad basados en criterios conceptuales de las cimentaciones de puentes, lo que viene a probar la escasa experiencia con la que aún se cuenta a día de hoy en este tipo de cimentaciones, sobre todo para profundidades de más de 20 m.
En relación con el mayor coste de las instalaciones eólicas offshore respecto a las terrestres, hay que señalar que las turbinas y palas en sí son muy similares, aunque con una tendencia a ser ligeramente mayores en tamaño las marinas, si bien su coste es comparable. Igualmente los equipos marinos requieren de sistemas de protección contra el ambiente salino y abrasivo del mar, lo que puede suponer un aumento del 10 al 15% en el valor de estos equipos. No obstante las principales diferencias se derivan de los costosos procesos de fabricación, transporte y fondeo de las estructuras de cimentación, así como en los procesos de instalación de la turbina en condiciones offshore. Por otro lado, son sobradamente conocidos los cajones portuarios fabricados en dique flotante. Se trata de estructuras de hormigón armado de grandes dimensiones que por su sección transversal aligerada (multicelular) pueden flotar una vez terminadas. Eso les confiere una gran versatilidad en cuanto a construcción (mediante la técnica de encofrado deslizante), transporte flotando y colocación (fondeo) en la obra portuaria, ya sea para muelles, diques u otros. Los diques (obras de abrigo) y muelles (obras de atraque) de cajones son una tipología especialmente utilizada en los puertos españoles, cuya fabricación por medio de diques flotantes es bien conocida en nuestro país, siendo las empresas solicitantes líderes a nivel internacional de la tecnología de construcción de cajones de hormigón armado mediante deslizado en dique flotante, ya que han construido hasta la fecha más de 3.000 unidades.
Por lo general los cajones portuarios tienen forma paralelepipédica, con planta rectangular o cuadrada, si bien en algunos casos especiales han sido empleados cajones con otras formas con objeto de adecuarse a los condicionantes de cada proyecto.
El documento ES 2 378 960 de INNEO describe una estructura para cimentación de gravedad para aerogeneradores marinos, con una parte troncocónica de la base, que no es deslizable en un dique flotante y que carece de las estructuras auxiliares de flotabilidad, necesarias para mantener la estabilidad del conjunto durante las fases de fondeo
El documento WO 2009/130343 de ACCIONA WINDPOWER describe un soporte de sustentación para un aerogenerador marino, consistente en un cajón de hormigón armado construible en dique flotante como cimentación de gravedad. Sin embargo, el cajón queda emergido en su parte superior, por lo que esta solución limita su rango de aplicación en cuanto a calados, condición impuesta por las capacidades de los diques flotantes existentes y por los calados requeridos en los muelles de fabricación. Por lo tanto, a efectos prácticos, esta solución no puede ser de aplicación para calados mayores de 30 m, lejos de los 45-50 m de profundidad que cubre la solución que aquí se propone. No pierde cubierta en ninguna fase durante el fondeo (mantiene el mismo procedimiento que los fondeos de los cajones portuarios convencionales), con lo cual evita fases críticas a costa de aumentar sustancialmente las cargas de oleaje en fase de servicio, pues el oleaje impacta directamente sobre el cajón. Este aumento de cargas solicitantes lleva también aparejado un importante aumento de los materiales (hormigón, acero y relleno), con objeto de darle estabilidad frente a dichas cargas. Por otra parte el cajón tiene una planta rectangular o cuadrada y no circular, lo cual se traduce en un significativo aumento de las cargas de oleaje.
Descripción de la invención
Las cimentaciones de gravedad, de aerogeneradores marinos, también llamadas GBF (Gravity Base Foundation) o GBS (Gravity Base Structures), presentan una serie de problemas, o condicionantes, que es necesario tener en cuenta en el diseño de una nueva cimentación y que básicamente pueden clasificarse del siguiente modo:
- Condicionante de diseño: la cimentación de gravedad para torres eólicas offshore debe permitir que su conexión con el mástil metálico se realice a una cota suficientemente alta para que dicho punto quede a salvo de las acciones directas del oleaje incluso en los mayores temporales. Esto suele traducirse en que dicha conexión se realiza, al menos, a la cota más 15 m sobre el nivel de mar. Además dicho punto de conexión suele configurarse como la plataforma de acceso a la torre durante la fase de explotación.
- Condicionantes durante la fabricación: mediante los métodos de fabricación empleados hasta ahora, se requiere grandes extensiones de tierra para la fabricación y el acopio de las estructuras, además de grandes medios de elevación para su botadura o su colocación a bordo de la embarcación encargada de transportarlo hasta su lugar de posicionamiento. Las estructuras que no se fabriquen en un dique flotante de los empleados en la fabricación de cajones de hormigón armado para muelles o diques portuarios plantean todos estos problemas. Para la fabricación mediante dique flotante uno de los condicionantes que marca la disponibilidad o no de muelles adecuados es su calado. Condicionantes durante el transporte: existen dos métodos generales de transporte de estas estructuras desde su lugar de fabricación hasta el de posicionamiento definitivo. El primero de ellos consiste en transportarlas a bordo de una embarcación. En el segundo caso se efectúa su remolque directo, para lo cual es necesario que el GBS disponga por sí mismo, o por un medio auxiliar, de la flotabilidad adecuada que le confiera estabilidad naval durante su remolque hasta el lugar de fondeo. En relación con la situación de remolque, algunas de las compañías certificadoras imponen como condición en esta fase que la estructura sea estable y no se hunda en el caso accidental de inundación de una de las celdas exteriores por rotura o fisura de una parte de la pared exterior. Este condicionante afecta directamente al diseño del GBS.
Condicionantes durante el posicionamiento: El proceso de posicionamiento sobre el fondo marino o sobre una banqueta de apoyo es también crítico. Hay dos formas genéricas de proceder en dicha maniobra de posicionamiento (fondeo) de la estructura:
o mediante hundimiento progresivo con el sostenimiento por un medio de elevación auxiliar (grúa flotante, heavylift). Este es el procedimiento propio de fondeo para el caso en que el GBS haya sido transportado a bordo de una embarcación;
o mediante hundimiento progresivo sin necesidad de contar con ningún medio de elevación auxiliar. En este segundo caso caben dos opciones igualmente:
que el GBS requiera de un elemento de flotación adicional a su estructura para disponer de estabilidad suficiente durante todas las fases de su hundimiento
que el GBS disponga, por su propio diseño, de la estabilidad necesaria durante todas las fases de fondeo.
Condicionantes durante la fase de relleno interior: uno de los condicionantes principales que se encuentran todas las soluciones de gravedad para cimentaciones de aerogeneradores offshore es poder hacer compatible el procedimiento de relleno interior con la configuración geométrica de la estructura, con su tipología estructural y con los medios marítimos necesarios para realizar dicha operación. Hay que tener en cuenta que el relleno interior es una parte fundamental en el comportamiento de estas estructuras en fase de servicio, pues aporta un porcentaje muy alto en el peso estabilizador frente a las cargas.
- Condicionantes durante la fase de explotación: la cimentación debe estar diseñada para soportar las cargas durante la fase de servicio. Básicamente las cargas pueden ser: peso propio, cargas medioambientales (incluyendo viento y oleaje), cargas operativas (las debidas al funcionamiento del aerogenerador) y cargas accidentales (por ejemplo, el impacto de un barco, de un iceberg, etc.). De todos estos tipos de fuerzas, las estabilizadoras corresponden al peso propio, mientras que el diseño debe realizarse considerando desestabilizadoras todas las demás. El diseño debe garantizar el correcto comportamiento de la cimentación frente a los modos de fallo de equilibrio y geotécnicos, así como garantizar su validez estructural cumpliendo con los estándares recogidos en las diversas normas, de manera que se asegure su funcionalidad y operatividad a lo largo de toda la vida útil.
- Condicionantes durante la fase de desmantelamiento: un requisito habitual en este tipo de estructuras es que debe ser desmantelare al final de su vida útil.
Este factor puede condicionar el diseño del GBS.
La solución desarrollada que aquí se presenta para la cimentación de aerogeneradores marinos consiste en una estructura constituida por un cajón prefabricado de hormigón armado, que sirve de apoyo y para transmitir toda la carga del resto de la estructura a la banqueta de cimentación, fabricado en dique flotante con la técnica de fabricación de cajones portuarios. Este cajón tiene planta circular y en la parte inferior de las celdas dispone de un lastre sólido de hormigón de espesor variable en función de las condiciones del emplazamiento, que tiene por misión garantizar las condiciones de estabilidad durante el remolque y fondeo de la estructura.
La solera de este cajón es de mayor grosor que las paredes laterales e intermedias que separan las celdas en las que se divide, las cuales se distribuyen a partir de una celda central, formando al menos dos anillos concéntricos de celdas distribuidas radialmente, que están provista de medios de comunicación entre sí y con el exterior, dotados de dispositivos de vaciado y llenado que permite la autorregulación del nivel de lastrado para el fondeo en su ubicación final.
La relación entre el diámetro de la base y la altura del cajón está comprendida entre 3:2 y 8:5, y preferentemente es 1 1 :7.
De la parte central del cajón nace un mástil en cuyo extremo superior se materializará la conexión con la torre metálica del aerogenerador por medio de una pieza de transición metálica. Este mástil tiene geometría casi-cilíndrica, con ligera conicidad, y se fabrica de hormigón postensado, una parte inferior dentro del propio dique flotante y la zona superior (aproximadamente a partir de los 6 m) fuera del mismo para que pueda deslizarse fuera del cajonero.
La altura del cajón es tal que en fase de servicio se encuentra totalmente sumergido (no así la torre que tiene una parte emergida para facilitar la conexión con el mástil restante a una cota suficientemente alta respecto del nivel del mar). Interiormente el cajón se encuentra dividido en su interior en celdas que se cierran superiormente por medio de una losa de hormigón armado. En general, la altura del mástil por encima del cajón es similar a la altura de dicho cajón.
La pared exterior del cajón se encuentra aligerada por medio de aligeramientos de sección transversal circular y/o en la losa superior.
Así mismo, los tabiques radiales de separación de celdas disponen de unos huecos (ventanas) a partir de una cierta altura, de manera que a partir de dicha altura las celdas contiguas quedan comunicadas.
A continuación se presentan las ventajas de la presente propuesta:
- En la fabricación:
■ La fabricación mediante la técnica de deslizamiento en dique flotante es un proceso estandarizado que evita el gran requerimiento de medios, instalaciones y ocupación de superficie terrestre que supone la habitual fabricación en tierra, aumentando el número de puertos con capacidad para albergar todo el proceso de fabricación.
■ El diseño propuesto limita la necesidad de capacidad del muelle de fabricación en términos de calado, lo cual es vital de acuerdo con la disponibilidad de infraestructuras existentes capaces de albergar procesos de fabricación de estructuras de gravedad como cimentación de aerogeneradores offshore.
Se mejoran en las condiciones de seguridad y calidad debido a la prefabricación estandarizada.
A su vez incrementa sustancialmente el rendimiento de fabricación, pues el empleo del dique flotante permite disponer de manera continua del principal medio de fabricación, sin necesidad de tiempos improductivos por necesidad de desmontajes de encofrados, ejecución del proceso de botadura desde tierra y nuevo montaje del sistema de encofrados.
El diseño del cajón lo hace aplicable para cimentaciones de torres eólicas offshore desde los 35 m a los 50 m de profundidad, sin necesidad de cambiar la geometría del cajón sino únicamente los niveles de lastre sólido y la longitud del mástil superior. Por lo que, en cualquier caso, se mantienen invariables los trabajos dentro del dique flotante aun cuando se han aumentado considerablemente los potenciales emplazamientos susceptibles de emplear esta cimentación
Esta solución presenta una menor dependencia del precio del acero que las soluciones metálicas
■ Empleo de materiales convencionales (hormigón, acero para armaduras pasivas y activas) y de mano de obra local. No es necesario el empleo de materiales poco usuales (hormigones ligeros, materiales pesados para su empleo como rellenos, etc.) cuya disponibilidad condicionaría la fabricación y encarecería la solución. En el transporte y posicionamiento (fondeo):
Una vez fabricada esta estructura es transportada hasta su ubicación definitiva mediante remolque directo con un remolcador convencional y sin necesidad de medios auxiliares. Esto es debido a que el GBS dispone por sí mismo de una flotabilidad adecuada que le confiere la estabilidad naval.
El diseño también se ha adecuado para cumplir con los requerimientos más estrictos en cuanto a seguridad frente a situaciones accidentales durante el remolque (inundación de una celda exterior) manteniendo las condiciones de estabilidad y mantenimiento a flote.
■ Igualmente el proceso de fondeo se realiza simplemente mediante el lastrado por gravedad de sus celdas con agua de mar, sin necesidad de ningún medio adicional, ni embarcaciones auxiliares especiales de grandes capacidades, ni de elementos de flotación ajenos a la estructura en sí, para conferirle estabilidad naval ya que, por su diseño, esta estructura cumple con los requisitos exigidos durante todas las fases del proceso de fondeo manteniendo en todo momento el valor de la altura metacéntrica mayor que un metro: GM >1 ,00 m.
Al evitar la necesidad de empleo de embarcaciones especiales (de difícil disponibilidad en el mercado) y de medios auxiliares para el remolque y fondeo, se reducen los tiempos de maniobra y se permite ajustar el calendario de ejecución a las ventanas de buen tiempo disponibles, optimizando de esta manera el proceso de ejecución en su conjunto, pues el tiempo que se requiere para la preparación de la estructura previo a dichas maniobras es mínimo desde el momento en que se disponga de una predicción de tiempo favorable.
■ Como resultado de lo anterior, se reducen sustancialmente los costes asociados a estas operaciones.
Además el proceso de fondeo es reversible, de manera que una vez el cajón comienza a hundirse es posible su reflote mediante el accionamiento del sistema de válvulas y bombas hasta ajustar el nivel de lastre líquido al deseado.
- Relleno de celdas:
Se ha desarrollado un procedimiento de relleno de las celdas compatible con el resto del diseño de la estructura. Este procedimiento se basa en el empleo de dragas de succión convencionales que rellenan las celdas mediante impulsión hidráulica.
Además del anterior sistema de relleno de celdas, el diseño del GBS es susceptible de emplear un método alternativo, consistente en la retirada de las tapas superiores y rellenar por medio de dragas mecánicas. Esta es una importante ventaja que permite adecuarse a los condicionantes de cada emplazamiento concreto.
Descripción de las figuras Para complementar la descripción que se está realizando y con objeto de facilitar la comprensión de las características de la invención, se acompaña a la presente memoria descriptiva un juego de dibujos en los que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1 muestra una vista general de la instalación de un aerogenerador (6) offshore, fijado en la cimentación objeto de la invención.
Las figuras 2 y 3 representan respectivamente una sección según un plano horizontal y un plano vertical por el centro de dicha cimentación. La figura 4 es un detalle de unos aligeramientos (17) situados en la pared exterior del cajón (1 ).
La figura 5 representa una vista en planta por debajo de la losa (16) del cajón (1 ), en la que se observan las prelosas (8) y los aligeramientos (81 ) presentes en éstas.
Las figuras 6 y 7 muestran detalles de dichas prelosas (8) y aligeramientos (81 ).
La figura 8 representa una vista en sección, según un plano vertical, diametral de la cimentación cuando está en disposición de ser remolcada flotando, antes de ser fondeada en el mar (5).
Realización preferente de la invención
Como se aprecia en las figuras el cajón (1 ) que constituye la base de esta cimentación y en definitiva el apoyo del conjunto de la estructura del aerogenerador offshore, es un cajón prefabricado de hormigón armado, que tiene planta circular, de 33.00 m de diámetro en la solera (14) y 32.00 m de diámetro en el fuste (15). La solera (14) tiene un espesor de 1 .20 m, mientras que la tapa (16) de las celdas es de 0.60 m. La altura total del fuste (15) es de 19.20 m, mientras que la del cajón (1 ) (incluyendo la solera, fuste y la losa de cierre superior) es de 21 .00 m.
De la parte central del cajón nace un mástil (2) en cuyo extremo superior (24) se fija la conexión con la torre metálica (4) del aerogenerador (6) por medio de una pieza de transición metálica (3). El mástil tiene geometría casi-cilíndrica, con ligera conicidad (tiene 8.00 m de diámetro exterior en su arranque y 6.00 m en su extremo superior). Este mástil se fabrica de hormigón postensado para resistir los esfuerzos a los que estará sometido en fase de servicio. Los primeros 6 metros (21 ) se fabrican por deslizamiento en el propio cajonero a continuación del cajón-base, mientras que la porción superior (22), presenta una ligera conicidad y se construye fuera del dique flotante debido a su altura. Los cables del postensado se tesan desde la cabeza del mástil (2) una vez completado éste, mientras que dichos cables tienen sus anclajes pasivos (25) instalados en la solera del cajón (14). El mástil (2) presenta una altura dependiente de la profundidad a la que se situará la cimentación, a fin de que la torre metálica (4) tenga una cota de conexión con el mástil de hormigón postensado por encima de 15 m con respecto al nivel (51 ) del mar. Dicha conexión se materializa a través de la pieza de transición metálica (3).
La sección circular de la cimentación permite reducir las cargas de oleaje, habiéndose comprobado su viabilidad, durante la fase de explotación, como cimentación de gravedad para distintos calados, desde los 35 m hasta los 50 m (siempre en función de las condiciones geotécnicas y del clima marítimo de la zona) y sin necesidad de modificar ninguna de las dimensiones del cajón (sólo la altura del mástil (2)). En el diseño de este cajón (1 ) se ha tenido en cuenta que debe ser fabricado en su totalidad en un dique flotante, con objeto de aprovechar las ventajas que esta técnica aporta. Para ello se han adoptado unas formas del cajón que permiten el deslizado de sus paredes, de manera que el proceso constructivo es el mismo que para un cajón portuario.
Otro condicionante constructivo a tener en cuenta radica en el hecho de que el calado necesario en el/los muelle/s de fabricación de acuerdo al proceso descrito debe estar limitado, pues en la práctica la disponibilidad real de muelles de grandes calados puede ser escasa en función de la ubicación del parque eólico offshore. El GBS que se propone requiere un calado en el muelle de fabricación de unos 16.50 m. Con ese calado, se pueden ejecutar sin necesidad de actuaciones adicionales todas las fases de construcción. Con objeto de reducir este calado y limitar la influencia de este condicionante, el GBS diseñado dispone de unos aligeramientos en sus elementos estructurales. Básicamente estos aligeramientos son de 3 tipos:
- La pared exterior dispone de unos aligeramientos (17) de sección circular en todo el fuste. Estos aligeramientos se pueden ejecutar mediante la técnica de deslizado dentro del cajonero, por lo que sólo influyen en el diseño del encofrado. - Los tabiques radiales de las celdas interiores disponen de tres ventanas (18) que, además de reducir peso, permiten la comunicación entre celdas a partir de una determinada altura. Ésta es lo suficientemente alta como para no influir en el proceso de lastrado con agua (en todos los casos el cajón queda fondeado a la cota requerida con un nivel de lastre líquido menor).
- Las prelosas superiores (8), que se colocan para conformar la tapa superior (16), tiene unos aligeramientos estructurales (81 ) en la parte correspondiente a la corona exterior.
Mediante estos tres aligeramientos se consigue reducir unas 950 T de peso, disminuyendo el calado en fase de fabricación alrededor de 1 .20 m. A fin de adecuar el diseño a los condicionantes durante las fases de remolque y fondeo, tratando de evitar medios adicionales para el remolque y el fondeo del GBS, que requieren una altura metacéntrica al menos mayor que un metro: GM > 1 .00 m se ha previsto adecuar la longitud del mástil dependiendo de la profundidad a la que la torre eólica offshore vaya a ser ubicada, ya que su cota de coronación siempre debe ser, al menos, la cota + 15.00 m. Este hecho implica distintas condiciones de estabilidad en fase naval (remolque y fondeo), ya que la distribución de pesos es diferente dependiendo de la longitud del mástil en cada caso. Esta variabilidad queda solventada mediante la aplicación de distintas cantidades de lastre sólido (7) (hormigón en masa) en el interior de las celdas (1 1 y 12) del cajón (1 ). Así, para un cajón que vaya a ser instalado a 35 m de profundidad, basta con un espesor de lastre sólido de 0.415 m, mientras que para un cajón que va a ir fondeado a la cota - 50 m requiere de unos 2.30 m de espesor.
Por otra parte, es necesario mantener la estabilidad y capacidad de flotación sin pérdida de cubierta en caso de inundación accidental de una de las celdas exteriores (1 1 ) durante el remolque del GBS lo cual condiciona fuertemente el diseño. La solución que aquí se propone es compatible con dicho condicionante, simplemente añadiendo más o menos lastre sólido en el fondo de las celdas. Al igual que se ha explicado anteriormente, como lastre sólido (7) se emplea hormigón en masa, sin función estructural, cuyo único objetivo es dar suficiente peso a una cota baja, de manera que baje el centro de gravedad de la estructura y mejore sus condiciones de estabilidad naval. La aplicación de dicho lastre sólido es totalmente compatible con el proceso constructivo propuesto, pues se ejecuta mediante la simple puesta en obra de hormigón en masa una vez que el cajón ha salido del dique flotante.
En la figura 8 se muestra cómo se puede dar cumplimiento a este condicionante accidental, tomando como ejemplo un cajón correspondiente a una cimentación a 35 m de profundidad. En este caso el cajón dispone de un lastre sólido de 0.85 m (cota 52) y no tiene lastre líquido (agua), por lo que tiene un calado de 13.55 m durante el remolque, y por tanto un francobordo de 7.45 m, con un GM> 1 .00 m. En dicha situación, en el caso de que se produjera la inundación accidental de una de las celdas exteriores del cajón, éste se escoraría unos 15e pero se mantendría a flote sin perder cubierta, pudiendo completar de esa manera el remolque. A partir de esta situación, se accionarían las válvulas de apertura de lastre líquido para permitir la entrada por gravedad de agua de mar en las celdas del lateral opuesto, de manera que se procedería al fondeo progresivo del cajón, pero con unos valores de GM aún mayores en todas sus fases. Como puede entenderse, entre la cimentación a 35 m y la de 50 m de profundidad hay una infinidad de posibles situaciones intermedias que requieren una distinta combinación de niveles de lastres sólidos y líquidos. Sin embargo, debido a que la implementación de dichos lastres es un proceso sencillo (vertido de hormigón y apertura de válvulas para la introducción por gravedad de agua de mar en las celdas, respectivamente) totalmente insertado dentro del proceso constructivo general, esta variabilidad no afecta al diseño general del cajón, ya que lo único que hay que adaptar es la cantidad de lastre sólido (hormigón en masa) que hay que verter en el interior de las celdas en cada caso. Y este proceso de vertido de hormigón es sencillo y no afecta al proceso de fabricación del cajón en dique flotante, pues se realiza una vez que el cajón ha salido de él.
La estructura de gravedad así concebida puede ser remolcada con los remolcadores habituales en los puertos hasta el lugar donde deba ser instalado, procediendo a continuación a su fondeo mediante el lastrado de las celdas interiores del cajón con agua de mar, hasta el momento en que el cajón queda apoyado definitivamente sobre la banqueta de escollera. El proceso de lastrado se realiza mediante la introducción por gravedad de agua de mar en el interior del cajón mediante un sistema de válvulas dispuestas en el paramento exterior del cajón, y mediante el correspondiente sistema de comunicación interior entre celdas. Durante el proceso de fondeo, el cajón está conectado por medio de líneas de amarre a remolcadores convencionales que, por medio de cabrestantes, actúan sobre dichas líneas confiriéndoles distintas tensiones y permitiendo el posicionamiento en planta de la estructura en la ubicación establecida y dentro de las tolerancias admisibles.
El proceso de fondeo evita el empleo de embarcaciones especiales o de elementos de flotación ajenos a la estructura en sí, siendo el propio diseño del GBS el que le confiere unas características de estabilidad en todas las fases intermedias. Una vez fondeado en el lugar de instalación del aerogenerador, la siguiente etapa consiste en el relleno de las celdas del cajón con material granular, actividad que supone cierta complejidad al encontrarse sumergidas y cerradas por medio de la losa. Igualmente, al tratarse de estructuras offshore, sólo se dispondrá acceso a estas estructuras por medios marítimos.
Una de las alternativas para el proceso de relleno de celdas consiste en el empleo de medios hidráulicos (tipo dragas de succión) mediante impulsión del material por parte de la draga a través de un sistema de tuberías que son conectadas al cajón mediante bocas de conexión embridadas situadas sobre las losas de cierre superior del cajón. Mediante este relleno interior, el GBS dispone ya del peso necesario para garantizar la estabilidad de la cimentación durante toda la vida útil de la estructura. En las paredes del cajón está situado un sistema de válvulas que permiten la entrada y salida de aire y agua tanto durante las fases de inundación como de relleno de celdas. Mediante este sistema, las sobrepresiones en el interior de las celdas debido a la entrada progresiva de agua por impulsión desde la draga, queda limitada y va disipándose.
Como alternativa a este proceso para el relleno de celdas, es posible adecuar el diseño del GBS para permitir la retirada de las losas superiores una vez que el cajón ha sido fondeado y completada la inundación de todas sus celdas interiores. En dicho momento, en que se han igualado las presiones del agua dentro y fuera de las celdas, es posible la retirada de los tapes que conforman la losa superior de cierre de celdas, empleando una grúa flotante. Por su parte la unión de las tapas a las paredes del cajón se configura de manera que puedan desvincularse fácilmente, actuando sobre unos cierres tipo cerrojo. Una vez que las tapas han quedado retiradas y las celdas sumergidas pero al descubierto, el proceso de relleno de las celdas se facilita, pudiéndose realizar bien mediante impulsión directamente al interior de las celdas, bien de forma mecánica mediante una draga con cuchara. En este caso en que el cajón queda sin tapas, el material de relleno interior queda protegido en su parte superior disponiendo dos capas de escolleras de peso suficiente para soportar las acciones de las corrientes y garantizar la estabilidad del relleno en el interior de las celdas durante toda la vida útil de la estructura.
La cimentación tiene forma circular para reducir las cargas de oleaje, habiéndose comprobado su viabilidad, durante la fase de explotación, como cimentación de gravedad para distintos calados, desde los 35 m hasta los 50 m (siempre en función de las condiciones geotécnicas y del clima marítimo de la zona) y sin necesidad de modificar ninguna de las dimensiones del cajón (sólo la altura del mástil).
Igualmente el diseño de este cajón permite que la operación de desmantelamiento pueda ser llevada a cabo sin medios de elevación o de flotación adicionales, al disponer el GBS de la estabilidad necesaria en todas las fases de flotación.

Claims

REIVINDICACIONES
1 . - Cimentación de gravedad para aerogeneradores offshore, fabricada mediante tecnología de dique flotante, que comprende:
- un cajón (1 ) prefabricado de hormigón armado, de sección circular, interiormente aligerado por celdas huecas (1 1 , 12, 13), cerrado superiormente mediante una o más tapas (16), y dotado de unos aligeramiento estructurales que reducen su peso a fin de que el conjunto de la estructura se mantenga a flote y pueda ser fabricada en un muelle de calado menor que la altura de dicho cajón;
- un mástil (2) de hormigón postensado, sobre el cual se une la torre metálica (4) que sustenta el aerogenerador, que es prolongación de la celda central (13) del cajón y presenta una configuración cilindrica en la zona inferior (21 ), la cual también se fabrica deslizando en el propio cajonero del dique flotante, mientras que la zona superior (22), preferentemente con una ligera conicidad, se fabrica a posteriori fuera de la factoría del dique flotante.
- un lastre sólido (8) que rellena la zona inferior de las celdas (1 1 , 12) en las que se divide el cajón (1 ) una vez construido, que tiene por objetivo bajar el centro de gravedad del conjunto para, manteniendo sus condiciones de flotabilidad con un altura metacéntrica mayor que 1 ,00 m en todas sus fases, poder ser remolcada y fondeada en mar abierto sin necesidad de embarcaciones especiales, ni empleo de medios de flotación adicionales.
2. - Cimentación, según la reivindicación anterior, caracterizada por que el cajón (1 ) presenta una solera de mayor grosor que las paredes laterales e intermedias que separan las celdas en las que se divide, y su distribución en planta presenta una celda central (13) en torno a la cual se forman al menos dos anillos concéntricos de celdas (12) y (1 1 ), las cuales tienen la misma distribución radial y disponen de medios de comunicación entre sí y con el exterior, dotados de dispositivos de vaciado y llenado que permite la autorregulación del nivel de lastrado con agua de mar para el fondeo en su ubicación final.
3. - Cimentación, según las reivindicaciones anteriores, caracterizada por que la relación entre el diámetro de la base y la altura del cajón (1 ) está comprendida entre 3:2 y 8:5, y preferentemente de 1 1 :7.
4. - Cimentación, según las reivindicaciones anteriores, caracterizada por que el mástil (2) presenta una altura dependiente de la profundidad a la que se situará la cimentación, a fin de que su conexión con la torre eólica offshore (4) por medio de la correspondiente pieza de transición metálica (3) esté a una cota al menos de 15 m con respecto al nivel del mar (51 ).
5. - Cimentación, según las reivindicaciones anteriores, caracterizada por que la tapa o tapas del cajón prefabricado (1 ) disponen de medios que facilitan la apertura del cajón que permitan rellenar las celdas interiores de un material granular, una vez lastrada la cimentación en el lugar de instalación, a fin de garantizar su estabilidad en fase de servicio.
6. - Cimentación, según las reivindicaciones anteriores, caracterizada por que la pared exterior del cajón (1 ) dispone de unos aligeramientos (17) de sección circular en todo el fuste.
7. - Cimentación, según las reivindicaciones anteriores, caracterizada por que los tabiques radiales de las celdas interiores del cajón (1 ) disponen de unas ventanas (18) que, además de reducir peso, permiten la comunicación entre celdas a partir de una determinada altura.
8. - Cimentación, según las reivindicaciones anteriores, caracterizada por que la losa superior que conforma la tapa (16) dispone de unas prelosas con aligeramientos estructurales (81 ).
PCT/ES2014/070617 2014-07-30 2014-07-30 Cimentación de gravedad para aerogeneradores offshore WO2016016481A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DK14898896.7T DK3176329T3 (da) 2014-07-30 2014-07-30 Tyngdekraftsbaseret fundament til offshorevindmøller
PL14898896T PL3176329T3 (pl) 2014-07-30 2014-07-30 Fundament grawitacyjny dla morskich turbin wiatrowych
EP14898896.7A EP3176329B1 (en) 2014-07-30 2014-07-30 Gravity-based foundation for offshore wind turbines
PT148988967T PT3176329T (pt) 2014-07-30 2014-07-30 Fundações baseadas na gravidade para turbinas eólicas offshore
LTEP14898896.7T LT3176329T (lt) 2014-07-30 2014-07-30 Pakrančių vandenų vėjo turbinų gravitacinis pamatas
PCT/ES2014/070617 WO2016016481A1 (es) 2014-07-30 2014-07-30 Cimentación de gravedad para aerogeneradores offshore
ES14898896T ES2835551T3 (es) 2014-07-30 2014-07-30 Cimentación de gravedad para aerogeneradores offshore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2014/070617 WO2016016481A1 (es) 2014-07-30 2014-07-30 Cimentación de gravedad para aerogeneradores offshore

Publications (1)

Publication Number Publication Date
WO2016016481A1 true WO2016016481A1 (es) 2016-02-04

Family

ID=55216800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070617 WO2016016481A1 (es) 2014-07-30 2014-07-30 Cimentación de gravedad para aerogeneradores offshore

Country Status (7)

Country Link
EP (1) EP3176329B1 (es)
DK (1) DK3176329T3 (es)
ES (1) ES2835551T3 (es)
LT (1) LT3176329T (es)
PL (1) PL3176329T3 (es)
PT (1) PT3176329T (es)
WO (1) WO2016016481A1 (es)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106907045A (zh) * 2017-04-25 2017-06-30 周俊麟 一种重力式海洋测风塔
JP2017129061A (ja) * 2016-01-20 2017-07-27 電源開発株式会社 洋上風力発電設備及びその施工方法
WO2017174834A1 (es) * 2016-04-07 2017-10-12 Dragados, S.A. Dispositivo de protección frente a la socavación de rellenos granulares sumergidos en estructuras de gravedad
WO2018150063A1 (es) 2017-02-14 2018-08-23 Berenguer Ingenieros S.L. Estructura marítima para la cimentación por gravedad de edificaciones, instalaciones y aerogeneradores en el medio marino
CN109356186A (zh) * 2018-10-22 2019-02-19 中铁第四勘察设计院集团有限公司 一种适用于深水软土地区的桥塔复合基础及施工方法
US20190063029A1 (en) * 2016-02-18 2019-02-28 Holcim Technology Ltd Foundation for a wind mill
CN110027685A (zh) * 2019-05-21 2019-07-19 福建永福电力设计股份有限公司 一种海上风电基础
CN113530761A (zh) * 2020-04-21 2021-10-22 中国电建集团华东勘测设计研究院有限公司 一种格栅式结构的海上风电机组漂浮式基础及施工方法
CN114084302A (zh) * 2020-08-24 2022-02-25 上海电气风电集团股份有限公司 海上风机固定式基础、海上风机装置及海上风机整机的运输安装方法
CN114687373A (zh) * 2022-03-23 2022-07-01 浙江浙能国电投嵊泗海上风力发电有限公司 一种重力式堆石混凝土海上风电基础
CN114809064A (zh) * 2022-02-28 2022-07-29 上海勘测设计研究院有限公司 一种单柱复合筒型基础结构及其施工方法
CN114809063A (zh) * 2022-02-28 2022-07-29 上海勘测设计研究院有限公司 一种多分舱复合筒型基础及其施工方法
US20220380006A1 (en) * 2019-11-12 2022-12-01 Beridi Maritime S.L. Structure for supporting marine installations and procedure for the execution thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2022433B1 (en) * 2019-01-22 2020-08-18 Koninklijke Bam Groep Nv Method for manufacturing a gravity based foundation for an offshore installation, and gravity based foundation.
GB2604909A (en) 2021-03-18 2022-09-21 Subsea 7 Ltd Subsea foundations
CN115012437A (zh) * 2022-06-20 2022-09-06 东北电力大学 一种水田用格构式角钢输电塔装配式基础及其施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630161A (en) * 1968-05-17 1971-12-28 Hydro Betong Ab Multiple purpose floating concrete ring
WO1997000194A1 (en) * 1995-06-16 1997-01-03 Stanley Derby Hollow concrete-walled structure for marine use
ES2396010T3 (es) * 2009-03-25 2013-02-18 Tiefbau-Gmbh "Unterweser" Cuerpo de cimiento para una instalación de energía eólica
EP2559814A1 (en) * 2011-08-15 2013-02-20 Gravitas Offshore Limited Gravity foundation
US20130326970A1 (en) * 2010-10-08 2013-12-12 Gregor Prass Foundation for a Wind Turbine
ES2461065A1 (es) * 2014-02-26 2014-05-16 University Of Stuttgart Public-Law Institution Estructura flotante para soporte de turbinas eólicas marinas y procedimiento para su construcción e instalación

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008041849A1 (de) * 2008-09-05 2010-03-25 Max Bögl Bauunternehmung GmbH & Co. KG Off-Shore-Anlage, Fundament einer Off-Shore-Anlage und Verfahren zum Errichten einer Off-Shore-Anlage
ES2378960B1 (es) * 2010-09-22 2013-02-25 Inneo Torres S.L. Procedimiento de instalación de torre para uso aguas adentro.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630161A (en) * 1968-05-17 1971-12-28 Hydro Betong Ab Multiple purpose floating concrete ring
WO1997000194A1 (en) * 1995-06-16 1997-01-03 Stanley Derby Hollow concrete-walled structure for marine use
ES2396010T3 (es) * 2009-03-25 2013-02-18 Tiefbau-Gmbh "Unterweser" Cuerpo de cimiento para una instalación de energía eólica
US20130326970A1 (en) * 2010-10-08 2013-12-12 Gregor Prass Foundation for a Wind Turbine
EP2559814A1 (en) * 2011-08-15 2013-02-20 Gravitas Offshore Limited Gravity foundation
ES2461065A1 (es) * 2014-02-26 2014-05-16 University Of Stuttgart Public-Law Institution Estructura flotante para soporte de turbinas eólicas marinas y procedimiento para su construcción e instalación

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129061A (ja) * 2016-01-20 2017-07-27 電源開発株式会社 洋上風力発電設備及びその施工方法
US20190063029A1 (en) * 2016-02-18 2019-02-28 Holcim Technology Ltd Foundation for a wind mill
US11795653B2 (en) 2016-02-18 2023-10-24 Holcim Technology Ltd Foundation for a wind mill
US10968592B2 (en) * 2016-02-18 2021-04-06 Holcim Technology Ltd Foundation for a wind mill
US20190071839A1 (en) * 2016-04-07 2019-03-07 Drace Infraestructuras, S.A. Device for protecting against the scouring of granular fillings submerged in gravity structures
US10450714B2 (en) 2016-04-07 2019-10-22 Dragados, S.A. Device for protecting against the scouring of granular fillings submerged in gravity structures
WO2017174834A1 (es) * 2016-04-07 2017-10-12 Dragados, S.A. Dispositivo de protección frente a la socavación de rellenos granulares sumergidos en estructuras de gravedad
WO2018150063A1 (es) 2017-02-14 2018-08-23 Berenguer Ingenieros S.L. Estructura marítima para la cimentación por gravedad de edificaciones, instalaciones y aerogeneradores en el medio marino
CN106907045A (zh) * 2017-04-25 2017-06-30 周俊麟 一种重力式海洋测风塔
CN109356186A (zh) * 2018-10-22 2019-02-19 中铁第四勘察设计院集团有限公司 一种适用于深水软土地区的桥塔复合基础及施工方法
CN109356186B (zh) * 2018-10-22 2024-03-15 中铁第四勘察设计院集团有限公司 一种适用于深水软土地区的桥塔复合基础及施工方法
CN110027685A (zh) * 2019-05-21 2019-07-19 福建永福电力设计股份有限公司 一种海上风电基础
CN110027685B (zh) * 2019-05-21 2024-03-26 福建永福电力设计股份有限公司 一种海上风电基础
US20220380006A1 (en) * 2019-11-12 2022-12-01 Beridi Maritime S.L. Structure for supporting marine installations and procedure for the execution thereof
CN113530761B (zh) * 2020-04-21 2023-02-24 中国电建集团华东勘测设计研究院有限公司 一种格栅式结构的海上风电机组漂浮式基础及施工方法
CN113530761A (zh) * 2020-04-21 2021-10-22 中国电建集团华东勘测设计研究院有限公司 一种格栅式结构的海上风电机组漂浮式基础及施工方法
CN114084302A (zh) * 2020-08-24 2022-02-25 上海电气风电集团股份有限公司 海上风机固定式基础、海上风机装置及海上风机整机的运输安装方法
CN114809063A (zh) * 2022-02-28 2022-07-29 上海勘测设计研究院有限公司 一种多分舱复合筒型基础及其施工方法
CN114809064A (zh) * 2022-02-28 2022-07-29 上海勘测设计研究院有限公司 一种单柱复合筒型基础结构及其施工方法
CN114687373A (zh) * 2022-03-23 2022-07-01 浙江浙能国电投嵊泗海上风力发电有限公司 一种重力式堆石混凝土海上风电基础
CN114687373B (zh) * 2022-03-23 2023-11-28 浙江浙能国电投嵊泗海上风力发电有限公司 一种重力式堆石混凝土海上风电基础

Also Published As

Publication number Publication date
DK3176329T3 (da) 2020-12-07
PL3176329T3 (pl) 2021-05-04
EP3176329B1 (en) 2020-09-02
EP3176329A4 (en) 2018-04-11
PT3176329T (pt) 2020-12-09
EP3176329A1 (en) 2017-06-07
LT3176329T (lt) 2021-02-25
ES2835551T3 (es) 2021-06-22

Similar Documents

Publication Publication Date Title
ES2835551T3 (es) Cimentación de gravedad para aerogeneradores offshore
ES2952964T3 (es) Estructura marítima para la cimentación de edificaciones y su método de instalación
ES2784658T3 (es) Cimentación por gravedad para la instalación de aerogeneradores offshore
ES2386402T3 (es) Estructura portante de cimentación flotante con componentes de flotación, con un diseño de elementos separados
EP3945164A1 (en) Underwater traffic tunnel
ES2785674T3 (es) Estructura base de lecho marino y método para la instalación de la misma
MX2011002385A (es) Central marina, fundamento de central marina y metodo de construccion de una central marina.
CN103228909A (zh) 用于安装海上塔的方法
ES2452933A1 (es) Sistema de cimentación por gravedad para la instalación de aerogeneradores offshore
WO2017194813A1 (es) Sistema flotante auxiliar para la instalación y/o el transporte de estructuras marinas y procedimiento que comprende dicho sistema
WO2021094630A1 (es) Estructura para soporte de instalaciones marinas y procedimiento de ejecución
WO2016042173A1 (es) Cimentación por gravedad para la instalación de aerogeneradores offshore y torres meteorológicas
LT6027B (lt) Gravitacinio-estakadinio tipo hidrotechninis statinys
US3958426A (en) Offshore harbor tank and installation
ES2840055T3 (es) Planta portuaria y método para amarrar un cuerpo flotante en una planta portuaria
WO2020136288A1 (es) Plataforma flotante para aerogeneradores de gran potencia
JP7389893B2 (ja) 海上構造及び建設方法
WO2020188127A1 (es) Método de instalación de estructura marítima offshore y estructura marítima offshore
ES2638011B1 (es) Cimentación por gravedad para la instalación de aerogeneradores offshore y torres meteorológicas
ES2650735T3 (es) Base de cimentación
ES2660886A1 (es) Fundación para aerogeneradores flotantes
ES2549367B1 (es) Procedimiento de fabricación e implantación de una plataforma flotante modular y plataforma flotante modular para llevar a cabo el procedimiento
Howard et al. Structural design of deep water pontoon mooring anchors
WO2023006955A1 (en) Gravity based foundation
ES2913839A1 (es) Plataforma flotante para construcción de grandes estructuras de hormigón

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014898896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898896

Country of ref document: EP