WO2016013544A1 - 高速応答・高感度乾湿応答センサー - Google Patents

高速応答・高感度乾湿応答センサー Download PDF

Info

Publication number
WO2016013544A1
WO2016013544A1 PCT/JP2015/070692 JP2015070692W WO2016013544A1 WO 2016013544 A1 WO2016013544 A1 WO 2016013544A1 JP 2015070692 W JP2015070692 W JP 2015070692W WO 2016013544 A1 WO2016013544 A1 WO 2016013544A1
Authority
WO
WIPO (PCT)
Prior art keywords
wet
response sensor
dry
sensor
metal
Prior art date
Application number
PCT/JP2015/070692
Other languages
English (en)
French (fr)
Inventor
仁 川喜多
篠原 正
知京 豊裕
生田目 俊秀
暁彦 大井
知子 大木
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to EP15824136.4A priority Critical patent/EP3173778B1/en
Priority to JP2016535935A priority patent/JP6448007B2/ja
Priority to US15/327,103 priority patent/US10267756B2/en
Publication of WO2016013544A1 publication Critical patent/WO2016013544A1/ja
Priority to US16/225,087 priority patent/US20190145920A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/048Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/4035Combination of a single ion-sensing electrode and a single reference electrode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/045Circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Definitions

  • the present invention relates to a high-speed response / high sensitivity dry / humidity response sensor, and more specifically to a dry / humidity response sensor having a structure suitable for downsizing / high sensitivity and realizing a high-speed response.
  • a humidity sensor that detects humidity according to a change in electrical resistance (impedance) or capacitance of a sensor element (dry / moisture response unit) is known.
  • electrical resistance humidity sensors use polymers or ceramics as the wet and dry responsive material of the sensor element, and the cost is reduced by mass production because the materials are inexpensive and the structure is simple.
  • the measurement humidity range remains in the range of 10 to 90% RH and is difficult to use in a low humidity environment of less than 10% RH and a high humidity environment of more than 90% RH.
  • the electrical resistance humidity sensor has a very large change with time and in many cases has a large temperature dependency, and therefore temperature correction is necessary. Furthermore, the electric resistance type humidity sensor has a problem that accuracy variation is large (about ⁇ 5 to 15% RH) and response time is long (30 seconds to several minutes or more).
  • Capacitance-type humidity sensors generally use a polymer film as a dry / wet responsive material for sensor elements, and have a faster response speed (usually around several seconds to 10 seconds) compared to the electrical resistance type. Excellent in reliability and reliability. In addition, it usually has a measurement humidity range of 0 to 100% RH, but the sensor element may be broken under dew condensation conditions. In addition, the capacitance type humidity sensor has a problem that the production cost is higher than that of the electric resistance type humidity sensor.
  • an external drive power source for driving the sensor is required for both the electric resistance type and capacitance type humidity sensors.
  • an external drive power source for driving the sensor is required for both the electric resistance type and capacitance type humidity sensors.
  • a corrosive environment sensor is installed at each location, and the corrosive environment there.
  • a method has been developed to estimate and predict the degree of corrosion of steel based on the evaluation results. For example, as shown in FIG. 1, this type of sensor is attached to a steel member such as a bridge, and the corrosion environment of the place is monitored to predict the deterioration of the steel frame.
  • Corrosion environment sensors typically include an ACM (Atmospheric Corrosion Monitoring) sensor that detects galvanic current flowing between these metals when different metals come into contact with each other through water.
  • ACM Analogpheric Corrosion Monitoring
  • the conventional galvanic sensor has a problem in that it is inconvenient to handle and expensive because it is enlarged to compensate for the low sensitivity.
  • An object of the present invention is to improve the sensitivity and responsiveness of a wet / dry response sensor based on the detection principle of galvanic current, and to reduce the size of the dry / dry response sensor.
  • a wet / dry response sensor in which a first metal thin wire and a second metal thin wire different from the first metal are juxtaposed on an insulating substrate.
  • a wet / dry response sensor is provided in which the distance between one thin wire and the second thin wire is in the range of 5 nm or more and less than 20 ⁇ m.
  • at least one of the first metal thin wire and the second metal thin wire is provided in plural, and the first metal thin wire and the second metal thin wire are opposed to each other in a direction facing each other. May run parallel to each other.
  • the first metal fine wire and the second metal fine wire may be arranged in a double spiral shape.
  • the insulating substrate may be a silicon substrate having a silicon oxide film on the surface.
  • the first metal may be selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
  • the second metal may be selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium, and alloys thereof.
  • an insulating protective film is provided to cover a region where the first metal fine wire and the second metal thin wire are juxtaposed, and the insulating protective film has a groove-like opening that exposes at least a part of the thin wire. It's okay.
  • a groove-like opening that exposes at least a part of the gap between the first metal thin wire and the second metal thin wire may be provided. Further, by removing at least a part of the insulating substrate corresponding to the gap between the first metal thin wire and the second metal thin wire, the insulating substrate penetrates the front and back surfaces of the insulating substrate. An opening may be provided.
  • any one of the wet / dry response sensors is attached to an attachment member having an attachment portion to the installation target object at one end, and the dry / humidity response sensor is disposed at a position away from the installation target object.
  • a remote location ground wet / dry response sensor assembly is provided.
  • a wet / dry response sensor system comprising a plurality of any of the above dry / wet response sensors and disconnecting the dry / wet response sensor that is short-circuited or does not generate an output current. It is done.
  • the wet / dry response sensor may be disconnected by electrically disconnecting the wet / dry response sensor or not using the output of the wet / dry response sensor.
  • a high-sensitivity and high-speed response wet / dry response sensor that does not require sensor driving power with a simple structure is provided, so that the wet / dry response sensor can be reduced in size and price.
  • a photograph showing an example of using a conventional corrosive environment sensor The figure which shows the structure of the corrosion environment sensor by the conventional galvanic current detection.
  • the unit of the dimension in the figure is mm.
  • the conceptual diagram for demonstrating a galvanic current detection The conceptual diagram for demonstrating the structure for improving the sensitivity of the corrosion environment sensor by galvanic current detection.
  • FIG. 2A is a plan view of the corrosive environment sensor
  • FIG. 2B is an enlarged view of the vicinity of the center of the AA ′ cross-sectional view.
  • This corrosion environment sensor forms an insulating film made of an insulating paste on a substrate by applying an insulating paste (for example, SiO 2 , BN, etc.) on a metal substrate such as carbon steel. By applying a conductive paste on the insulating film, a film of another metal such as silver is formed.
  • an insulating paste for example, SiO 2 , BN, etc.
  • the light stripes in the interdigital region (sensor region) are not formed with a metal film such as silver or an insulating paste, and a metal substrate such as carbon steel. Is the exposed part.
  • FIG. 2B shows a cross-sectional structure of this portion.
  • a copper foil is attached to a portion outside the sensor region on a metal film such as silver to form an electrode.
  • Another electrode is also drawn from a substrate made of a metal such as carbon steel (FIG. 2 (a) upper left corner).
  • an ammeter is connected between both electrodes to measure the galvanic current.
  • This local battery is conceptually shown in FIG. Since the battery is formed in this manner in the sensor region, a galvanic current corresponding to the amount of electrolyte in the rainwater flows when the copper foil and the substrate are connected. This current is measured by an ammeter connected here. The magnitude of the galvanic current measured in this way is known to have a strong correlation with corrosion caused by local batteries formed on the steel surface in the same place due to rainwater, etc. The progress of corrosion can be evaluated.
  • the corrosion environment sensor If the corrosive environment sensor is miniaturized, the degree of freedom of the mounting position increases, and the mounting position becomes less conspicuous, so that there are fewer restrictions on the mounting position. Further, since the cost is generally reduced by downsizing, it is easy to increase the number of measurement positions.
  • a corrosive environment sensor using a galvanic current as shown in FIG. 2 in principle, as shown in FIG. 4, if the distance between two electrodes made of different metals is shortened, the sensitivity is improved.
  • the corrosion environment sensor having the structure shown in FIG. FIG.
  • Non-Patent Document 5 is cited from Non-Patent Document 5, and is a graph plotting the results of actual measurement of the relationship between the interelectrode distance (d) of this type of corrosive environment sensor and the galvanic current at that time.
  • d interelectrode distance
  • the galvanic current increases, that is, the sensitivity is improved.
  • the distance between the electrodes can only be shortened to about 20 ⁇ m at most. Therefore, it has been difficult to improve the sensitivity of the corrosive environment sensor using the galvanic current (more specifically, to improve the sensitivity per unit area of the sensor region).
  • the inventors of the present invention have examined the cause of such restrictions and the solution thereof.
  • the two electrodes are insulative paste. It has been found that there is a problem in the structure of being stacked up and down via an insulating layer made of. That is, unlike elements used in a protected environment such as ordinary electronic devices, the elements such as direct outside air, various weather conditions, sunlight irradiation, collision of particles such as dust, interference by animals and plants, etc.
  • the metal substrate and another metal In order not to lose the sensor function due to direct contact with the membrane, there is a limit to shortening the distance between the electrodes by thinning the insulating layer. Also, since the insulating layer is made by applying an insulating paste, if the layer is made thinner than a certain limit, insulation failure occurs in the process of making the sensor, and even if there is no problem at the beginning of manufacturing, Insulation can be destroyed by aging in harsh environments. Furthermore, it is ideal that the edges of the vertical stripes composed of the insulating layer and the metal layer stand up vertically from the substrate, but in reality this tends to be slightly inclined as shown in FIG. However, the distance between the electrodes becomes large.
  • the inventors of the present application placed a metal electrode and another metal electrode adjacent to each other in the lateral direction in parallel on the insulating substrate instead of the conventional stacked structure of electrodes as shown in FIG.
  • the idea that the above-mentioned problem can be solved by adopting the structure to be obtained was obtained.
  • the opposing part of both electrodes is a part that mainly functions as a locally generated battery, it is preferable to use both electrodes rather than increasing the area of the electrodes on the substrate. It is effective to increase the battery capacity, that is, to increase the galvanic current that can be taken out, by increasing the length of the portions facing each other. Therefore, these electrodes can be made thin and arranged almost parallel to each other over a long distance.
  • a parallel running distance As a configuration for increasing the length of the adjacent portion (hereinafter referred to as a parallel running distance) between the thin wires (electrodes) by arranging such thin wires in parallel, for example, a comb structure or a double spiral structure is used. Can be adopted. In addition, since the structure itself for making the parallel distance of the two electrodes as long as possible within a certain plane region is well known in the field of semiconductor devices, such a structure may be adopted as necessary. In the present invention, “arranging the electrodes on the substrate” does not specify the mutual orientation of the plurality of electrodes placed on the substrate, but the electrodes are arranged apart from each other on the same plane of the substrate. That means.
  • the present invention allows the droplets existing on the solid surface to be separated between the electrodes made of different materials by the phenomenon that water vapor contained in the air is condensed on the solid surface or the phenomenon that the water droplets are adsorbed on the solid surface.
  • a wet / dry response sensor capable of distinguishing the dry / wet state at high speed and with high sensitivity is realized.
  • the wet / dry response sensor according to the present invention can directly detect droplets adhering to the sensor surface from the air as compared to a conventional humidity sensor that measures the dry / wet state through a moisture absorption process to the dry / dry response material. , Has fast response.
  • the wet / dry response sensor according to the present invention has high sensitivity which is essentially completely different from that of the conventional sensor because there is a dependency between the distance between the electrodes of the sensor and the droplet size. This point will be described in detail below.
  • the insulating substrate has an insulating property that does not hinder the measurement of the galvanic current from the above-described battery formed thereon, and the durability required under the assumed use environment.
  • Any material may be used as long as it has the following.
  • various insulating materials such as plastic, rubber, and the like can be used.
  • an insulating substrate or a type of substrate having an insulating property as viewed from the electrode by forming an insulating coating or coating on the conductive material is also applied. Then, it should be noted that it is included in the category of “insulating substrate”.
  • the distance between the electrodes can be reduced to about 5 nm by using the technique of the semiconductor manufacturing process.
  • the upper limit of the interelectrode distance is not particularly limited, but may be less than 20 ⁇ m, which is shorter than the above-described interelectrode distance. This detects even very small water droplets and the attachment of a few water molecules just before condensation, which was difficult to detect with a sensor having an interelectrode distance of 20 ⁇ m or more produced using conventional machining or printing techniques. It becomes possible. Therefore, in the wet / dry response sensor according to the present invention, the correlation between the detection result of the sensor and the actual progress of corrosion improves.
  • the inter-electrode distance may be a fixed value or a combination of a plurality of set values depending on the use and installation environment of the wet / dry response sensor.
  • conductive fine particles such as metal powder existing in the air or rainwater will adhere between the electrodes and cause a short circuit.
  • the occurrence of the problem can be prevented by taking the following measures for this problem. (1) By providing a mesh-like material on the front surface of the electrode, fine particles are prevented from reaching the electrode. (2) An insulating protective film such as silicon oxide is provided on the front surface of the electrode, and a fine opening exposing at least a part of each electrode fine wire (and at least a part of the gap between the fine wires as necessary) is provided. Opened in this insulating protective film.
  • the wet and dry response sensor itself uses the one having the normal structure according to the present invention, but a plurality of such sensors are arranged close to each other, and a short circuit between the cathode electrode and the anode electrode is detected, Alternatively, remove the sensor whose output current is not detected at all while the output current is detected from other sensors (disconnect it electrically, leave the electrical connection intact, but use the output current measurement value) It is also possible to respond as a sensor system.
  • the substrate on which no metal is deposited in the gap between the cathode electrode and the anode electrode May be removed by etching or the like so that air flows between the cathode electrode and the anode electrode while water is not attached to the sensor. More specifically, for example, by removing at least a part of the position corresponding to the gap between the thin lines, it is possible to provide an opening that penetrates the front and back of the substrate. With this configuration, it can be used as a sensor for moisture in the air and other components.
  • the mechanical strength is reduced by completely removing the substrate in the gap, or has a natural frequency that may cause inconvenience by resonating with external mechanical vibrations in the usage environment. In such a case, it is sufficient to take measures such as leaving a substrate in a part of the gap.
  • the sensors described so far are assumed to be used for evaluating the corrosive environment of the surface of the structure by installing it directly on the surface of the structure such as a steel frame, but the corrosive environment of free space is evaluated instead of the surface environment.
  • the use to do is also considered. Even in such an application, it is necessary to fix the sensor in the space. However, if the sensor is directly attached to the surface of some large installation object for that purpose, the substance adhering to the object may flow on the sensor due to rain, etc., or splashes may flow, or the airflow is different from that in free space, etc.
  • the measurement value may affect the object. In order to eliminate such adverse effects, it is desirable to adopt a configuration in which the sensor is floated far from the installation position on the installation target object.
  • one end of a mounting device such as a plate or a bar to which the sensor is attached is attached to an installation symmetrical object, and one or more sensors are placed at a position away from the installation target object on the attachment member. It only has to be attached.
  • the wet / dry response sensor according to the present invention can be used as a humidity sensor.
  • the wet / dry response sensor of the present invention can be downsized by greatly reducing the distance between the electrodes as compared with the conventional sensor, and further, no external power is required to drive the sensor.
  • no external power is required to drive the sensor.
  • electronic devices, logistics systems, industrial plants, etc. that were difficult to install due to the fact that the sensor was large and external power could not be secured. It is expected that it will be possible to manage the desired humidity conditions.
  • FIG. 6 shows the structure of the main part of the wet / dry response sensor, that is, an electrode arrangement structure, in which an anode electrode made of metal such as iron and a cathode electrode made of another metal such as silver are arranged in a comb shape on an insulating substrate.
  • an anode electrode made of metal such as iron and a cathode electrode made of another metal such as silver are arranged in a comb shape on an insulating substrate.
  • the insulating substrate for example, a silicon wafer having a silicon oxide film can be used.
  • Examples of materials that can be used for the cathode electrode include gold, platinum, silver, titanium, and alloys thereof, and carbon and allotropes thereof.
  • anode electrode for example, silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium, and alloys thereof can be used.
  • silver and its alloy as an anode electrode, it is better to use a cathode electrode other than silver and its alloy among the cathode electrodes shown above.
  • the side close to the signal lead-out terminal (not shown) to the outside of the wet / dry response sensor is a concentrated portion that is gathered into one (each in the horizontal direction up and down in FIG. 6). (Shown as a running thick line), branching into a plurality of lines near each end. In the embodiment shown in FIG. 6, there are 10 branches each.
  • the branched cathode electrode and anode electrode extend in a parallel direction to each other (more specifically, an antiparallel direction, hereinafter simply referred to as a parallel direction), and run close to each other in the parallel direction over most of the extended distance.
  • the concentrated portions of the cathode electrode and the anode electrode are separated from each other by 1180 ⁇ m and extend in the antiparallel direction, and the branched portions extend by 1090 ⁇ m toward the opposite concentrated portions.
  • Each thin wire of the branching portion runs in parallel with the thin wire of the extension portion on the other side over 1000 ⁇ m excluding 90 ⁇ m of the root portion.
  • three kinds of gaps of 0.5 ⁇ m, 1 ⁇ m, and 10 ⁇ m were prepared as the distance between both electrodes in the parallel portion (distance between the branch thin wire of the cathode electrode and the branch thin wire of the anode electrode).
  • FIG. 7A and 7B show an example of a process composed of steps (a) to (l) performed to create a wet / dry response sensor having the structure shown in FIG. FIG. 7A and FIG. 7B correspond to a portion of the sensor where the fine lines of the cathode electrode and the anode electrode run side by side.
  • a silicon wafer having a silicon oxide film on the surface was prepared, a resist was applied to the surface (step (a)), and the resist at the position where the cathode electrode was provided was removed by photolithography (step (b)). Next, an adhesion layer for the cathode electrode was formed at the position where the resist was removed by depositing 10 nm of titanium on the entire surface (step (c)).
  • step (d) gold is deposited to a thickness of 150 nm (step (d)), and then titanium is deposited to a thickness of 10 nm (step (e)). A layer was formed. Now that the formation of the cathode electrode is complete, the resist and the excess metal layer thereon are lifted off, leaving only the cathode electrode on the silicon oxide layer (step (f)). Next, by executing a series of steps similar to those for the cathode electrode (step (g) to step (l); however, the layer deposited as the metal of the anode electrode body in step (j) is 150 nm thick copper), An anode electrode was formed at a position parallel to the cathode electrode.
  • FIG. 8A shows the entire electrode part of the wet / dry response sensor fabricated in this manner.
  • an electrode pad for connecting the lead wire to the cathode electrode and the anode electrode is a slightly lighter square area than the surrounding area. Is visible.
  • a line running horizontally from each electrode pad is a concentrated portion running horizontally near the upper end and the lower end of FIG.
  • the black linear portion running up and down in the center of FIG. 8A is a branched portion of the cathode electrode and anode electrode running up and down in the vicinity of the center of FIG. FIG.
  • FIG. 8B shows an enlarged photograph of the vicinity of the center of this branched portion in FIG. 8A.
  • FIG. 8B also shows enlarged photographs of these three types of branch portions.
  • each of these three types of sensors is provided with ten fine wires at the branch portions of the cathode electrode and the anode electrode.
  • the thin wire of the branch part covers the entire or almost the entire main body region. The narrower the number of fine lines increases. Therefore, if the distance between the electrodes is reduced, the sensitivity of this sensor increases rapidly due to both the effect of increasing the sensitivity per unit parallel distance and the effect of increasing the parallel distance per unit area due to the reduction in the distance between electrodes. Please note that.
  • FIG. 9B shows actual measurement data for the wet and dry response sensor having the interelectrode distances of 10 ⁇ m, 1 ⁇ m, and 0.5 ⁇ m.
  • the water film becomes very thin, so that oxygen easily reaches the gold electrode surface, and the corrosion rate increases.
  • the resistance between the electrodes increases with the decrease in the moisture remaining so as to connect the electrodes, so that the current decreases.
  • the distance between the electrodes is about 400 pA when the width is 10 ⁇ m, about 800 pA when the width is 1 ⁇ m and 0.5 ⁇ m, and the width is up to 1 ⁇ m. It was confirmed that the output value was improved by reducing.
  • gold and copper are used as the metal material of the electrode, but the sensor output (current) naturally depends on the combination of the metal materials of the electrode. For example, with Ag / Fe and Au / Ag, the combination of Ag / Fe has a higher corrosion rate per the same area, so that the obtained current value becomes larger. Instead, Au / Ag has a longer life because it consumes less electrode.
  • the number of cathode electrodes and anode electrodes is 10 respectively.
  • the electrodes are laid as long as possible within a certain length (range).
  • the S / N ratio is about 1: 100 or more, it can be said that the sensor prototyped in the above embodiment can sense without amplification or noise filtering. If the width of the electrode itself is narrowed (thinned), the number of pairs in the same laying width increases, so that the output is further improved.
  • FIG. 10 is an attenuation curve of the current value after recording the maximum current value in the wet / dry response sensor of the present example in which the distance between the electrodes is 10 ⁇ m, 1 ⁇ m, and 0.5 ⁇ m in relation to FIG. 9B.
  • the shorter the distance between the electrodes the longer the time required to reach the background current (10 ⁇ 11 A). This suggests that the current can be measured until the size of the droplet remaining between the electrodes becomes smaller as the distance between the electrodes becomes narrower. That is, it was suggested that the wet / dry response sensor of the present invention can discriminate the size of the droplet remaining between the electrodes.
  • FIG. 11 shows the results of the output current measured under the humidity conditions of 0% RH, 38% RH and 100% RH using the dry / humidity response sensor of this example with the distance between the electrodes being 1.0 ⁇ m.
  • the wet / dry response sensor of the present invention can perform highly accurate detection in a humidity range of 0 to 100% RH.
  • Each humidity condition was set as follows. 0% RH: The sensor surface is dried with a dryer 38% RH: The humidity of the measurement environment is measured with a commercially available hygrometer 100% RH: The sensor surface is blown and the entire sensor surface is cloudy
  • the sensor output can be improved by adjusting the number of electrodes in accordance with the laying conditions and the like in addition to the distance between the electrodes.
  • the anode electrode when the galvanic current repeatedly flows in the wet / dry response sensor, the anode electrode is gradually consumed due to ionization of the metal of the anode electrode.
  • the distance between the electrodes gradually increases due to the consumption of the anode electrode, particularly in a dry / humid response sensor in which the electrodes are thinned to increase the laying density.
  • the thin wire of the electrode may be cut off.
  • the anode electrode may be thickened, or the width of the anode electrode may be increased, and the width of the cathode electrode may be decreased instead.
  • a wet / dry response sensor that is greatly reduced in size as compared with the conventional one without reducing the sensitivity is provided, so that it can be installed in various places and inconspicuously. As a result, it is expected to contribute to improving the accuracy of evaluation and prediction of corrosion and deterioration of structures such as steel frames exposed to corrosive environments.
  • the wet / dry response sensor of the present invention is not only for monitoring the corrosive environment, but also for dry / wet monitoring / tracking from manufacturing and growth of industrial products and foodstuffs to logistics, and predicting the occurrence of mold in indoor bathrooms and washing machines. It can be applied to various humidity measurements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 ガルバニ電流を利用した乾湿応答センサーの感度および応答性を向上させ、またこれによって乾湿応答センサーを小型化する。従来のアノード電極とカソード電極を絶縁体を介して積層する構造ではなく、図示のように両電極を絶縁性基板上で例えば櫛型電極状に併走させる構造とした。半導体製造プロセスその他の微細加工技術を利用することにより、電極間距離を従来のセンサーに比較してきわめて短くして電極の単位敷設面積あたりの感度を向上できる。従って、乾湿応答センサーの小型化も容易に実現できる。

Description

高速応答・高感度乾湿応答センサー
 本発明は高速応答・高感度乾湿応答センサーに関し、より具体的には、小型化・高感度化に適する構造を有し、かつ高速応答を実現する乾湿応答センサーに関する。
 従来、乾湿応答センサーとしては、センサー素子(乾湿応答部)の電気抵抗値(インピーダンス)または静電容量の変化に応じて湿度を検知する湿度センサーが知られている。電気抵抗式の湿度センサーは、一般に、センサー素子の乾湿応答材料として高分子やセラミックなどが用いられており、材料が安価であることや構造がシンプルであるため量産による低コスト化が可能である。しかしながら、水に濡れるとセンサー素子が壊れるため、結露が生じる条件下では使用することができない。そのため、測定湿度範囲は、10~90%RHの範囲に留まっており、10%RH未満の低湿環境や90%RHを超える高湿環境では使用が困難である。また、電気抵抗式湿度センサーは、経時変化が非常に大きく、多くの場合、温度依存性も大きいため、温度補正が必要である。さらに、電気抵抗式湿度センサーは、精度のばらつきが大きく(±5~15%RH程度)、応答時間が長い(30秒~数分以上)という問題もある。
 静電容量式の湿度センサーは、一般に、センサー素子の乾湿応答材料として高分子膜が用いられており、電気抵抗式と比較して応答速度が速く(通常数秒~10秒前後)、精度・再現性・信頼性に優れている。また、通常、0~100%RHの測定湿度範囲を有するが、結露条件下ではセンサー素子が壊れる場合がある。また、静電容量式の湿度センサーは、電気抵抗式湿度センサーよりも生産コストが高いという問題もある。
 さらに、電気抵抗式および静電容量式のいずれの湿度センサーの場合でも、センサーを駆動するための外部駆動電源を必要とする。また、従来の湿度センサーにおいては、そのセンサー構造や検出原理に起因して、センサー素子表面に付着した水滴のサイズを検出することは不可能であった。
 ところで、近年、ガルバニ作用に基づく乾湿応答センサーの開発が行われており、主に建造物の腐食環境モニタリング用の腐食環境センサーとして使用されている。
 橋梁その他の各種の建造物では鋼材が外部に露出していることが多いため、その耐久性能には使用されている鋼材の腐食の程度が大きな影響を与える。鋼材の腐食の進行は、単に鋼材自体の性質だけではなく、大気や雨水中の腐食性物質や電解質の量、雨水の付着量や濡れている時間等の使用環境によって大きく変化する。従って、この種の建造物の余寿命を評価して適切に検査・補修等の保守を行うためには、個別の建造物毎に、また必要に応じて一つの建造物でも腐食の環境条件が異なると考えられる箇所毎に、腐食状況の評価を継続的に行うことが望ましい。
 しかしながら、構造物を構成する鋼材それ自体の腐食の程度そのものの検査を現場で行うことは困難であり、かつ費用が掛かるため、実際にはそれぞれの場所に腐食環境センサーを取り付け、そこでの腐食環境を評価し、その評価結果に基づいて鋼材の腐食の程度を推定・予測する手法が開発された。例えば、図1に示すように、橋梁等の鉄骨部材にこの種のセンサーを取り付け、その場所の腐食環境をモニタすることにより、この鉄骨の劣化を予測していた。
 腐食環境センサーとしては、代表的には異種金属同士が水を介して接触することでこれらの金属間に流れるガルバニ電流を検出するACM(Atmospheric Corrosion Monitoring)センサーが挙げられる。その構造や測定データの評価方法等については非特許文献1~4を参照されたい。しかしながら、従来のガルバニ式センサーは感度が低いことを補うために大型化するため、取り扱いが不便であり、また高価格化するという問題があった。
 本発明の課題は、ガルバニ電流の検出を動作原理とする乾湿応答センサーの感度および応答性を向上させ、またこれによって乾湿応答センサーを小型化することにある。
 本発明の一側面によれば、第1の金属の細線と、前記第1の金属とは異なる第2の金属の細線とを絶縁性基板上に並置した、乾湿応答センサーであって、前記第1の細線と前記第2の細線との間の間隔は5nm以上、20μm未満の範囲である、乾湿応答センサーが与えられる。
 ここで、前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走してよい。
 また、前記第1の金属の細線と前記第2の金属の細線とが二重渦巻き状に配置されてよい。
 また、前記絶縁性基板は表面に酸化シリコン膜を有するシリコン基板であってよい。
 また、前記第1の金属は金、白金、銀、チタン及びこれらの合金、並びに炭素からなる群から選択されてよい。
 また、前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウム及びこれらの合金からなる群から選択されてよい。
 また、第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う網の目状部材を設けてよい。
 また、第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う絶縁保護膜を設け、前記絶縁保護膜は前記細線の少なくとも一部を露出する溝状開口を有してよい。
 また、更に第1の金属の細線と前記第2の金属の細線との間のギャップの少なくとも一部を露出する溝状開口部を有してよい。
 また、前記絶縁性基板の、前記第1の金属の細線と前記第2の金属の細線との間のギャップに対応する位置の少なくとも一部を除去することにより、前記絶縁性基板の表裏を貫通する開口部を設けてよい。
 本発明の他の側面によれば、一端に設置対象物体への取り付け部を有する取り付け部材に上記何れかの乾湿応答センサーが取り付けられ、前記設置対象物体から離間した位置に前記乾湿応答センサーを配置するようにした、離間位置接地用乾湿応答センサー組立体が与えられる。
 本発明の更に他の側面によれば、複数の上記何れかの乾湿応答センサーを設け、前記乾湿応答センサー中の短絡し、または出力電流を発生しない乾湿応答センサーを切り離す、乾湿応答センサーシステムが与えられる。
 ここで、前記乾湿応答センサーの切り離しは乾湿応答センサーを電気的に切り離すかまたは乾湿応答センサーの出力を使用しないことによってよい。
 本発明によれば、単純な構造でセンサー駆動電力を必要としない高感度かつ高速応答性の乾湿応答センサーが提供されるため、乾湿応答センサーを小型化、低価格化することができる。
従来の腐食環境センサーの使用例を示す写真。 従来のガルバニ電流検出による腐食環境センサーの構造を示す図。図中の寸法の単位はmmである。 ガルバニ電流検出を説明するための概念図。 ガルバニ電流検出による腐食環境センサーの感度を向上させるための構造を説明するための概念図。 従来のガルバニ電流検出による腐食環境センサーの電極間隔の下限を示すグラフ。 本発明のガルバニ電流検出による乾湿応答センサーの電極配置構造の一例を示す図。 本発明の実施例の乾湿応答センサーの製造プロセスの前半を模式的に示す図。 本発明の実施例の乾湿応答センサーの製造プロセスの後半を模式的に示す図。 本発明の実施例の乾湿応答センサーのカソード電極及びアノード電極全体の写真。 本発明の実施例の乾湿応答センサーの主要部において電極間隔が10μm、1μm及び0.5μmの場合について示す写真。 本発明の乾湿応答センサー出力の時間変化を説明するための図。 電極間距離を10μm、1μm及び0.5μmとした本発明の実施例の乾湿応答センサーの出力例を示す図。 電極間距離を10μm、1μm及び0.5μmとした本発明の実施例の乾湿応答センサーにおいて、最大電流値を記録した後の電流値の減衰曲線を示す図。 電極間距離を1.0μmとした本発明の実施例の乾湿応答センサーを用いて、0%RH、38%RH及び100%RHの湿度条件で測定した出力電流の結果を示す図。 電極間距離を1.0μmとし、電極のペア数を10、50及び200とした本発明の実施例の乾湿応答センサーの出力例を示す図。
 先ず、非特許文献3に示されている従来のガルバニ電流検出による腐食環境センサーの構造を、図面を参照して説明する。図2(a)は腐食環境センサーの平面図、同図(b)はそのA-A'断面図の中央部付近を拡大した図である。この腐食環境センサーは、例えば炭素鋼等の金属の基板上に絶縁性ペースト(例えばSiO、BN等)を塗布することで、基板上に絶縁性ペーストからなる絶縁膜を形成する。この絶縁膜の上に導電性ペーストを塗布することによって、例えば銀等の別の金属の膜を形成する。図2(a)においてすだれ状になっている領域(センサー領域)中の色が薄い縦縞部分は、銀等の金属の膜も絶縁性ペーストも形成されておらず、炭素鋼等の金属の基板が露出している部分である。図2(b)はこの部分の断面構造を示している。更に、銀等の金属の膜上のセンサー領域から外れた部分に銅箔を貼り付けて電極としている。炭素鋼等の金属からなる基板からも別の電極を引出す(図2(a)左上隅)。この腐食環境センサーの使用時には、両電極間に電流計を接続して、ガルバニ電流を測定する。
 この腐食環境センサーを戸外に設置すると、降雨による雨水等の水(以下、雨水で代表させる)が付着する。当然ながら雨水は純水ではなく、大気中を浮遊している塩類の微粒子や水に融解してイオンを生成するガス類(二酸化炭素、二酸化硫黄、窒素酸化物等)を溶かし込んでおり、また特に降雨の初期には腐食環境センサー表面に付着していた固形物を溶解するため、センサー領域に付着した雨水は異種金属(基板を構成する鉄及び絶縁膜上の銀)を接続する電解液となる。これにより、図2(b)に示すように、鉄-雨水-金からなる局所的な電池がセンサー領域中の銀の縦縞領域の周辺に沿って形成される。この局所的な電池を図3に概念的に示す。センサー領域にこのようにして電池が形成されるため、銅箔と基板間を接続すると雨水中の電解質の量等に応じたガルバニ電流が流れる。この電流をここに接続された電流計により測定する。このようにして測定されたガルバニ電流の大きさは、同じく雨水などによって同じ場所の鋼材表面に形成される局部電池による腐食と強い相間があることが知られているため、ガルバニ電流の測定により、腐食の進行の評価が可能となる。
 腐食環境センサーを小型化すれば、取り付け位置の自由度が大きくなり、また、取り付けても目立たなくなるため、この点でも取り付け位置の制約が少なくなる。また、小型化により一般にはコストが低くなるので、測定位置の多点化も容易となる。図2に示すようなガルバニ電流を利用する腐食環境センサーでは、原理的には図4に示すように、異種金属からなる2つの電極間の距離を短くすれば感度も向上する。しかしながら、図2に示す構造の腐食環境センサーでは電極間距離の短縮には制約があった。図5は非特許文献5から引用したものであり、この種の腐食環境センサーの電極間距離(d)とその時のガルバニ電流との関係を実測した結果をプロットしたグラフである。このグラフに示されるように、バラつきはあるものの、電極間距離dを短縮すればガルバニ電流が増大する、つまり、感度が向上する。しかし、電極間距離は高々20μm程度までしか短縮できていない。従って、ガルバニ電流を利用する腐食環境センサーの感度向上(より具体的にはセンサー領域の単位面積当たりの感度向上)は困難であった。
 このような制約が出てくる原因とその解決策について本願発明者が検討したところ、図2に構造を示した従来の腐食環境センサーでは、2つの電極(基板及び銀の膜)が絶縁性ペーストからなる絶縁層を介して上下に積層されている構造に問題があることを見出した。すなわち、通常の電子デバイスのような保護された環境で使用される素子とは異なり、直接的に外気、各種の気象条件、日光の照射、砂塵などの粒子の衝突、動植物による干渉等の、素子に損傷を与える畏れのある環境に相当長期間に渡って暴露されることが当然の前提である腐食環境センサーでは、センサー領域にある程度の損傷が生じても金属の基板とそれとは別の金属の膜とが直接接触してセンサーの機能が失われないようにするため、絶縁層を薄くして電極間距離を短縮するには限度がある。また、絶縁層は絶縁ペーストの塗布によって作製しているため、ある限度を超えて薄層化するとセンサーの作成過程での絶縁不良の発生が起こり、また製造当初は問題がなくとも上述のような厳しい環境下での経年変化により絶縁が破壊されることがある。更には、絶縁層と金属層からなる縦縞部分の縁は基板から垂直に立ちあがることが理想的であるが、現実には図2(b)に示すようにやや傾斜しがちになるので、この点でも電極間距離が大きくなってしまう。
 このため、本願発明者らは図2に示したような従来の電極の積層構造の代わりに、金属の電極とそれとは別の金属の電極とを横方向に近接させて絶縁性基板上に並置する構造を採用すれば、上述した問題が解消されるという着想を得た。この構造をより具体的に説明すれば、両電極の対向部分が局所的に生成される電池として主に機能する部分であるので、これらの電極の基板上の面積を大きくするよりは、両電極が近接して対向している部分の長さを長くする方が電池容量の増大、すなわち取り出すことができるガルバニ電流の増大に有効である。従って、これらの電極を細線化して長い距離に渡って互いにほぼ平行に配置するなどの構造とすることができる。このような細線同士を平行に配置することで、細線(電極)間の近接部分の長さ(以下、併走距離と称する)を増大させる構成としては、例えば、櫛形構造や、二重渦巻き構造を採用することができる。その他、一定の平面領域内で2つの電極の併走距離をできるだけ長くするための構造自体は半導体素子分野等で良く知られているので、そのような構造も必要に応じて採用してもよい。なお、本発明において、「電極を基板上に並置する」とは、基板上に置かれる複数の電極の相互の向きを特定するものではなく、電極を基板の同一平面上に離間させて配置することをいう。
 このように、本発明は、空気中に含まれる水蒸気が固体表面で結露する現象、または霧状の水滴が固体表面に吸着する現象により固体表面に存在する液滴を、異種材料からなる電極間でのガルバニ作用に基づく電流により検出することで、乾湿状態を高速かつ高感度で判別可能な乾湿応答センサーを実現するものである。
 本発明に係る乾湿応答センサーは、従来の乾湿応答材料への水分吸収過程を経て乾湿状態を計測する方式の湿度センサーと比較して、空気中からセンサー表面に付着する液滴を直接検出できるため、高速応答性を有している。
 また、本発明に係る乾湿応答センサーは、センサーの電極間距離と液滴サイズの間には依存性があることから、従来のセンサーとは本質的に全く異なる高感度を有している。この点については、以下で詳述する。
 ここで、絶縁性基板はその上に形成される上述の電池からのガルバニ電流の測定に障害とならない程度の絶縁性を有するものであり、かつ想定される使用環境下で必要とされる耐久性を有するものであれば、その材質等は問わない。例えば、後述する実施例で使用する酸化シリコンの皮膜を形成したシリコン基板の他にも、プラスチックやゴムその他の多様な絶縁材料を使用することができる。また、上述した従来技術のように、基板本体は金属等の導電体であってもその上に絶縁性の塗装や被覆等を形成することにより電極から見て絶縁性を有する形式の基板も本願では「絶縁性基板」の範疇に含むことに注意すべきである。
 このような構造を採用することにより、本発明に係る乾湿応答センサーでは、半導体製造プロセスの手法を利用すれば電極間距離を5nm程度まで縮小することができる。また、電極間距離の上限は特にないが、上述した従来技術の電極間距離よりも短い20μm未満としてもよい。これにより、従来の機械加工や印刷技術を用いて作製された電極間距離が20μm以上のセンサーでは検出が困難であった極小サイズの水滴や結露直前の状態の僅かな水分子の付着まで検出することが可能となる。従って、本発明に係る乾湿応答センサーでは、センサーの検出結果と実際の腐食の進行状況との相関性が向上する。なお、電極間距離は、乾湿応答センサーの用途、設置環境等に応じて、一定値であってもよく、複数の設定値を組み合わせてもよい。
 なお、電極間距離を短くしていくと、空中や雨水中などに存在する金属粉等の導電性の微粒子が電極間に付着して短絡を起こす可能性が高くなる。この問題に対しては以下のような対策を取ることで問題の発生を防止することができる。
(1)電極の前面に網の目状物を設けることで、微粒子が電極に到達しないようにする。
(2)シリコン酸化物等の絶縁保護膜を電極前面に設けるとともに、各電極の細線の少なくとも一部(更には必要に応じて細線間のギャップの少なくとも一部も)を露出する微細な開口をこの絶縁保護膜に開設する。このように構成すれば、絶縁保護膜の微細な開口部の入口付近に導電性微粒子が付着しても、電極の細線は絶縁保護膜の厚みだけ奥に位置するので、微粒子が細線に直接接触して短絡が起こるのを防止できる。
(3)乾湿応答センサー自体は本発明に係る通常の構造のものを使用するが、そのようなセンサーを複数個近接させて配置し、カソード電極とアノード電極との間の短絡が検出されたり、あるいは他のセンサーから出力電流が検出されている間も出力電流が全く検出されないセンサーを測定系から排除する(電気的に切り離す、電気的な接続はそのままとするが、出力電流の測定値を使用しない等)等の、センサーシステムとしての対応も可能である。
 本願のセンサーの他の変形例としては、例えば、上述のセンサー構造ではカソード電極とアノード電極との間のギャップには金属が被着されていない基板が存在するが、このようなギャップ部の基板をエッチングなどにより除去することにより、センサーに水が付着していない間はカソード電極とアノード電極との間を空気が流れるようにしてもよい。より具体的には、例えば、細線間のギャップに対応する位置の少なくとも一部を除去することにより、基板の表裏を貫通する開口部を設けることができる。このような構成とすることにより、空気中の水分やその他の成分のセンサーとしても使用することができるようになる。なお、ギャップ部の基板を完全に除去することで機械的強度が低下したり、あるいは使用環境下で外部から与えられる機械的振動に共振することで不都合が生じる恐れのある固有振動数を持つようになる場合には、一部のギャップ部分の基板を残すなどの対策を取ればよい。
 また、これまで説明したセンサーは鉄骨等の構築物表面に直接設置することにより、構築物表面の腐食環境を評価する用途を想定したものであるが、表面の環境ではなく、自由空間の腐食環境を評価する用途も考えられる。そのような用途の場合でもセンサーを空間中に固定する必要がある。しかし、そのためにセンサーを何らかの大きな設置対象物体の表面に直接取り付けると、当該物体に付着した物質が雨等でセンサー上に流れ込んだり飛沫が飛び込むことがあり、あるいは自由空間の場合と気流が異なる等、測定値に当該物体の影響が出ることがある。そのような悪影響を排除するため、設置対象物体への設置位置から遠方にセンサーを浮かす構成を取るのが望ましい。具体的には、例えば、センサーを取り付ける板状、棒状等の取り付け器具の一端を設置対称物体に取り付けて設置し、取り付け部材上の設置対象物体から離間した位置に一つあるいは複数個のセンサーを取り付ければよい。
 また、本発明に係る乾湿応答センサーは、湿度センサーとして使用することができる。上述したように、本発明の乾湿応答センサーでは、従来のセンサーに比べて電極間距離を大幅に縮小することで小型化ができ、また、センサーを駆動するための外部電力が不要であるため、湿度センサーとしての測定精度が向上することに加えて、従来はセンサーが大型であったり、外部電力を確保できない等の理由から設置することが困難であった電子機器、物流システム、工業用プラント等においても所望の湿度条件管理を可能とすることが期待される。
 以下、2つの電極を櫛形に配置することによって、単純な構造でセンサー領域の単位面積当たりの感度を向上させた乾湿応答センサーの実施例を説明する。当然ながら、本発明はこのような特定の形式に限定されるものではなく、本発明の技術的範囲は特許請求の範囲により規定されるものであることに注意されたい。
 図6に、絶縁性の基板上に例えば鉄等の金属のアノード電極と銀などのそれとは別の金属のカソード電極とを櫛形に配置した、乾湿応答センサーの主要部の構造、すなわち電極配置構造の一例を示す。絶縁性の基板としては例えばシリコン酸化膜を有するシリコンウェハーを使用することができる。またカソード電極に使用可能な材料は例えば金、白金、銀、チタン及びこれらの合金、並びに炭素及びその同素体がある。アノード電極にはたとえば銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウム及びこれらの合金を使用することができる。ただし、アノード電極として銀及びその合金を用いる場合には、カソード電極は上記に示したカソード電極のうち、銀及びその合金以外を用いる方がよい。
 カソード電極及びアノード電極において、それぞれ乾湿応答センサーの外部への信号引出端子(図示せず)に近い側は1本にまとめられた集中部分となっているが(それぞれ図6の上下を横方向に走る太線として図示)、それぞれの末端部付近で複数本に分岐している。図6に示す実施例ではそれぞれ10本の分岐が設けられている。分岐したカソード電極とアノード電極とは互いに平行方向(より詳細には反平行方向。以下、単に平行方向と称する)に延び、その延長距離の大部分で互いに近接して平行方向に併走する。本実施例では、カソード電極とアノード電極の集中部分は1180μm離間して反平行方向に延び、分岐部はそれぞれ対向する集中部分へ向かって1090μm伸びる。分岐部の各細線はその根元部分の90μmを除いた1000μmに渡って相手側の延長部の細線と平行方向に並走する。この併走部分の両電極の間隔(カソード電極の分岐細線とアノード電極の分岐細線との離間距離)として、本実施例では0.5μm、1μm及び10μmの三通り作製した。本実施例ではそれぞれ10本のカソード電極の分岐細線とアノード電極の分岐細線とが1000μmに渡って併走している。分岐細線間の併走箇所(カソード電極、アノード電極の分岐細線間のギャップ)は19か所あるため、総併走距離は1000μm×19=19mmとなる。電極間距離を従来の実用上の限度である約20μmよりも大幅に短縮した構造を容易かつ安定的に作製できるため、本発明によれば小さなセンサー領域内で非常に狭い電極間距離かつ長距離の併走距離を実現でき、従ってセンサー領域の単位面積当たりの感度を大幅に向上させることができる。
 図7A及び図7Bに、図6に示した構造の乾湿応答センサーを作成するために行った、ステップ(a)~ステップ(l)から構成されるプロセス例を示す。図7A及び図7Bはこのセンサーのうちのカソード電極とアノード電極の細線が併走している部分に対応している。シリコン酸化膜を表面に有するシリコンウェハーを準備し、レジストをその表面に塗布し(ステップ(a))、フォトリソグラフィーによりカソード電極が設けられる位置のレジストを除去した(ステップ(b))。次に全体にチタンを10nm蒸着することによって、レジストが除去された位置にカソード電極のための密着層を形成した(ステップ(c))。更に全体に金を150nm蒸着し(ステップ(d))、次にチタンを10nm蒸着する(ステップ(e))ことで、この位置に金からなるカソード電極の本体及びその上にチタンからなる安定化層を形成した。これでカソード電極の形成が完了したので、レジスト及びその上の余分な金属の層をリフトオフすることで、シリコン酸化物層の上にカソード電極だけを残した(ステップ(f))。次にカソード電極と同様な一連のステップ(ステップ(g)~ステップ(l);ただしステップ(j)でアノード電極本体の金属として蒸着する層は150nmの厚さの銅)を実行することで、カソード電極に併走する位置にアノード電極を形成した。
 このようにして作製した乾湿応答センサーの電極部全体を図8Aに示す。図8Aを横長の向きに置いて見たとき、左上隅及び右下隅付近には、カソード電極及びアノード電極へのリード線を接続する電極パッド(信号引出端子)が周囲よりもやや淡色の正方形領域として見えている。各電極パッドから水平に走る線(周囲よりもやや淡色の部分)が図6の上端及び下端付近を水平に走る集中部分である。図8Aの中央を上下に走る黒色の線状部分は図6の中央付近を上下に走るカソード電極、アノード電極の分岐部分である。図8Aのこの分岐部分の中央付近を拡大した写真を図8Bに示す。既に説明した通り、電極間距離が10μm、1μm及び0.5μmの三種類の乾湿応答センサーを作成したので、図8Bにもこれら三種類の分岐部分の拡大写真を示す。乾湿応答センサーの基本的な性能を評価するため、これら三種類のセンサーは何れもカソード電極及びアノード電極の分岐部の細線をそれぞれ10本設けている。実際の乾湿応答センサーを構成する場合には、使用できるセンサー本体部領域の面積を有効利用するため、この本体領域の全体あるいはほぼ全体を分岐部の細線が覆うようにするため、電極間距離を狭くするほど細線の本数も増加する。従って、電極間距離を狭くすれば、電極間距離を狭くしたことによる単位併走距離当たりの感度増大の効果と単位面積当たりの併走距離の増大の効果の両方により、このセンサーの感度が急激に高くなることに注意されたい。
 このようにして作製した乾湿応答センサーに水を滴下することで流れる電流の変化を測定することによって、本発明の乾湿応答センサーの感度を実測した。電極間距離が10μm、1μm及び0.5μmの乾湿応答センサーについての実測データを図9Bに示す。
 測定に当たっては、純水1μLを乾湿応答センサーの図6に示す集中部分、つまり櫛形電極部分に滴下し、乾燥してしばらく後までの電流の時間経過を測定した。図9Aに示す乾湿応答センサー出力の時間変化を説明するためのグラフからわかるように、滴下直後の水膜が厚いときには金属(ここではアノード電極の成分である銅)の溶解量は水の量に依存するので、水の量が多いほど腐食速度は大きく、センサー出力は大きい。時間が経つほど水膜が薄くまた狭くなるので腐食速度が小さくなり、センサー出力も減少する。乾燥直前になると水膜が非常に薄くなるため、酸素が金電極表面に到達し易くなり、逆に腐食速度が増大する。乾燥すると、電極間を結ぶように残存する水分の減少に伴い、電極間の抵抗が大きくなるため電流が減少する。
 液滴をセンサーに滴下した後から乾燥直前までこのように推移する電流の平均値を取ると、電極間距離が10μm幅では約400pA、1μmと0.5μm幅では約800pAとなり、1μmまでは幅を小さくしたことによる出力値の向上が確認できた。なお、本実施例では電極の金属材料として金及び銅を使用したが、当然ながら、センサー出力(電流)は電極の金属材料の組合せに依存する。例えばAg/FeとAu/Agとでは、Ag/Feの組み合わせの方が同じ面積当たりの腐食速度が大きいため、得られる電流値が大きくなる。その代わり、Au/Agの方が電極の消耗が少ないため長寿命になる。
 先に説明したように、図6に示す実施例においてはカソード電極、アノード電極の本数をそれぞれ10本としているが、ある長さ(範囲)の間に電極をできるだけ敷設することを考えると、電極の敷設密度は以下のように見積もることができる。電極自体の幅が1μmであり電極のペア数をnとすると、電極間距離10μmでは、敷設幅は2n+10×(2n-1)=22n-10μmと計算される。同様に、電極間距離1μm及び0.5umでは、敷設幅はそれぞれ4n-1μm及び3n-0.5μmとなる。従って、同じ敷設幅におけるペア数の比は、電極間距離10μmを基準にすると、1μmに対して(22n-10)/(4n-1)=(22-10/n)/(4-1/n)となり、nが十分に大きいと(例えば100以上)、nを分母とする分数はゼロとみなせるので、22/4=5.5となる。また、0.5μmではこの比の値は同様な計算により22/3=7となる。実施例で得られた電流の平均値の関係を考慮すると、同じ敷設幅で、電極間距離10μmが1μmになると11倍、0.5μmになると14倍の出力になると言うことができる。現状の計測系においても、S/N比は1:100程度以上取れているため、上の実施例で試作したセンサーでも、増幅やノイズフィルタリングなしでセンシングできていると言える。電極自体の幅を狭く(細く)すれば同じ敷設幅におけるペア数は増えるので、出力はより向上する。
 図10は、図9Bに関連して、電極間距離を10μm、1μm及び0.5μmとした本実施例の乾湿応答センサーにおいて、最大電流値を記録した後の電流値の減衰曲線である。図10からわかるように、電極間距離が狭いほど、バックグラウンド電流(10-11A)に到達するまでの時間が長い。このことは、電極間距離を狭くするほど、電極間に残存する液滴のサイズがより小さくなるまで電流を計測できることを示唆している。すなわち、本発明の乾湿応答センサーでは、電極間に残存する液滴のサイズを判別可能であることが示唆された。
 図11は、電極間距離を1.0μmとした本実施例の乾湿応答センサーを用いて、0%RH、38%RH及び100%RHの湿度条件で測定した出力電流の結果である。図11からわかるように、本発明の乾湿応答センサーは、0~100%RHの湿度範囲において、高精度な検出が可能である。なお、各々の湿度条件は、以下のようにして設定した。
 0%RH:ドライヤにてセンサー表面を乾燥させた状態
 38%RH:測定環境の湿度を市販の湿度計にて計測した値
 100%RH:センサー表面に息を吹きかけ、センサー表面全体が曇った状態
 次に、上述した方法と同様の作製方法によって、電極間距離を1.0μmとし、電極のペア数nを10、50及び200とした3種類の乾湿応答センサーを作製し、各センサーの感度を実測した。結果を図12に示す。
 測定に当たっては、センサー表面に息を吹きかけ(これにより、電流値が上昇する)、電流値がバックグラウンドに戻った後、再び息を吹きかける動作を繰り返し行った。図12からわかるように、電極のペア数nを10から50、200に増やすことによって、センサー出力がそれぞれ20倍、50倍に増加した。このように、本発明の乾湿応答センサーでは、電極間距離に加えて、敷設条件等に応じて電極の組数を調整することにより、センサー出力を向上させることができる。
 なお、乾湿応答センサーにおいて繰り返しガルバニ電流が流れるとアノード電極の金属がイオン化することでアノード電極が次第に消耗する。また、多湿かつ塩害の大きな環境で長期間使用することを想定した場合、特に敷設密度を高くするために電極を細くした乾湿応答センサーでは、このアノード電極の消耗によって電極間距離が次第に大きくなったり、電極の細線が切れてしまう可能性がある。電極の敷設密度を維持したままでこの問題に対処するには、例えばアノード電極を厚くしたり、あるいはアノード電極の幅を広くし、その代わりにカソード電極の幅を狭くする等すればよい。また、電極間距離を非常に短くした場合には、アノード電極の消耗による電極間距離のわずかな増大が測定結果に与える影響が大きくなる。このような影響が問題になる場合には、例えば、アノード電極の金属の消耗が原理的にはガルバニ電流の時間積分に比例することを利用して測定結果に対して補償演算を行うという測定系全体としての対策も可能である。
 また、本実施例では、電極間距離を一定とした例を示したが、所望の用途等に応じて、電極間距離が異なるセンサーモジュールを複数組み合わせたセンサーシステムとすることもできる。
 以上説明したように、本発明によれば感度を低下させることなく従来に比較して大幅に小型化された乾湿応答センサーが提供されるので、多様な場所に、また目立たずに設置することができるようになり、腐食環境に暴露される鉄骨などの構造物の腐食・劣化の評価や予測の精度の向上への貢献が期待される。また、本発明の乾湿応答センサーは、腐食環境モニタリングのみならず、工業製品や食料品等の製造・生育から物流に至るまでの乾湿モニタリング・トラッキング、屋内の浴室や洗濯機等のカビ発生状況予測等、様々な湿度計測への適用が可能である。
F. Mansfeld at al., Corrosion Science, Vol. 16, pp. 111` to 122 (1976). Peter Norberg, Service Life Prediction Methodology and Metrologies, ACS Symposium Series 805, Jonathan W Martin and David R. Bauer, Eds., American Chemical Society, 2002, pp23-36. T. Shinohara et al., Journal of Metals, Materials and Minerals, Vol.20 No.2 pp.23-27, 2010 篠原正、他、材料と環境第54巻第8号(2005)375~382ページ Engajiet al, Toyota Tech. rep., 40(1987) p.57.

Claims (13)

  1.  第1の金属の細線と、
     前記第1の金属とは異なる第2の金属の細線と
    を絶縁性基板上に並置した、乾湿応答センサーであって、
     前記第1の細線と前記第2の細線との間の間隔は5nm以上、20μm未満の範囲である、乾湿応答センサー。
  2.  前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、
     前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走する、請求項1に記載の乾湿応答センサー。
  3.  前記第1の金属の細線と前記第2の金属の細線とが二重渦巻き状に配置される、請求項1に記載の乾湿応答センサー。
  4.  前記絶縁性基板は表面に酸化シリコン膜を有するシリコン基板である、請求項1から3の何れかに記載の乾湿応答センサー。
  5.  前記第1の金属は金、白金、銀、チタン及びこれらの合金、並びに炭素からなる群から選択される、請求項1から4の何れかに記載の乾湿応答センサー。
  6.  前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウム及びこれらの合金からなる群から選択される、請求項1から5の何れかに記載の乾湿応答センサー。
  7.  第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う網の目状部材を設けた、請求項1から6の何れかに記載の乾湿応答センサー。
  8.  第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う絶縁保護膜を設け、
     前記絶縁保護膜は前記細線の少なくとも一部を露出する溝状開口を有する、請求項1から6の何れかに記載の乾湿応答センサー。
  9.  更に第1の金属の細線と前記第2の金属の細線との間のギャップの少なくとも一部を露出する溝状開口を有する、請求項8に記載の乾湿応答センサー。
  10.  前記絶縁性基板の、前記第1の金属の細線と前記第2の金属の細線との間のギャップに対応する位置の少なくとも一部を除去することにより、前記絶縁性基板の表裏を貫通する開口部を設けた、請求項1から6の何れかに記載の乾湿応答センサー。
  11.  一端に設置対象物体への取り付け部を有する取り付け部材に請求項1から10の何れかに記載の乾湿応答センサーが取り付けられ、前記設置対象物体から離間した位置に前記乾湿応答センサーを配置するようにした、離間位置接地用乾湿応答センサー組立体。
  12.  請求項1から10の何れかに記載の乾湿応答センサーを複数設け、前記乾湿応答センサー中の短絡し、または出力電流を発生しない乾湿応答センサーを切り離す、乾湿応答センサーシステム。
  13.  前記乾湿応答センサーの切り離しは、乾湿応答センサーを電気的に切り離すかまたは乾湿応答センサーの出力を使用しないことによる、請求項12に記載の乾湿応答センサーシステム。
PCT/JP2015/070692 2014-07-23 2015-07-21 高速応答・高感度乾湿応答センサー WO2016013544A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15824136.4A EP3173778B1 (en) 2014-07-23 2015-07-21 Dryness/wetness response sensor having high-speed response and high sensitivity
JP2016535935A JP6448007B2 (ja) 2014-07-23 2015-07-21 高速応答・高感度乾湿応答センサー
US15/327,103 US10267756B2 (en) 2014-07-23 2015-07-21 Dryness/wetness responsive sensor having first and second wires spaced 5 nm to less than 20 μm apart
US16/225,087 US20190145920A1 (en) 2014-07-23 2018-12-19 DRYNESS/WETNESS RESPONSIVE SENSOR HAVING FIRST AND SECOND WIRES SPACED 5 nm TO LESS THAN 20 um APART

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014149505 2014-07-23
JP2014-149505 2014-07-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/327,103 A-371-Of-International US10267756B2 (en) 2014-07-23 2015-07-21 Dryness/wetness responsive sensor having first and second wires spaced 5 nm to less than 20 μm apart
US16/225,087 Continuation US20190145920A1 (en) 2014-07-23 2018-12-19 DRYNESS/WETNESS RESPONSIVE SENSOR HAVING FIRST AND SECOND WIRES SPACED 5 nm TO LESS THAN 20 um APART

Publications (1)

Publication Number Publication Date
WO2016013544A1 true WO2016013544A1 (ja) 2016-01-28

Family

ID=55163069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070692 WO2016013544A1 (ja) 2014-07-23 2015-07-21 高速応答・高感度乾湿応答センサー

Country Status (4)

Country Link
US (2) US10267756B2 (ja)
EP (1) EP3173778B1 (ja)
JP (1) JP6448007B2 (ja)
WO (1) WO2016013544A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195861A1 (ja) * 2016-05-13 2017-11-16 国立研究開発法人物質・材料研究機構 液滴サイズ判別装置及び液滴サイズ判別方法
WO2017213118A1 (ja) * 2016-06-08 2017-12-14 国立研究開発法人物質・材料研究機構 露点測定方法及び露点測定装置
WO2018150903A1 (ja) 2017-02-14 2018-08-23 国立研究開発法人物質・材料研究機構 結露および結露に伴う光散乱の予防方法および予防システム
JP2019032277A (ja) * 2017-08-09 2019-02-28 株式会社シュリンクス 環境モニタリングセンサ及び環境モニタリング装置
WO2019044640A1 (ja) 2017-09-01 2019-03-07 国立研究開発法人物質・材料研究機構 乾湿応答センサー
JP2019196957A (ja) * 2018-05-09 2019-11-14 日新電機株式会社 腐食性環境測定装置
WO2020100778A1 (ja) 2018-11-12 2020-05-22 国立研究開発法人物質・材料研究機構 結露検出素子
JPWO2023276982A1 (ja) * 2021-06-30 2023-01-05
WO2023048076A1 (ja) 2021-09-21 2023-03-30 国立研究開発法人物質・材料研究機構 揮発性脂肪酸の検知方法および測定装置
WO2023171472A1 (ja) 2022-03-09 2023-09-14 国立研究開発法人物質・材料研究機構 心拍変動測定システムおよび心拍変動測定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200141A (ja) * 2018-05-16 2019-11-21 マツダ株式会社 湿気センサ及び該センサを用いた腐食試験方法
DE102018006950A1 (de) * 2018-09-03 2020-03-05 Ewald Dörken Ag Feuchtesensor
JP7096635B2 (ja) * 2019-03-22 2022-07-06 株式会社日立製作所 水分検出素子、呼気ガス検出装置、呼気検査システム及び水分検出素子の製造方法
CN110873735A (zh) * 2019-12-05 2020-03-10 中国特种飞行器研究所 一种飞机表面湿度在线监测传感探头

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123140A (ja) * 1987-11-06 1989-05-16 Toyota Motor Corp 結露センサ
JPH052007A (ja) * 1991-06-24 1993-01-08 Nippon Telegr & Teleph Corp <Ntt> ウオールジエツト型電気化学的検出器およびその製造方法
JPH05332964A (ja) * 1992-06-02 1993-12-17 Matsushita Electric Works Ltd 結露センサ
JPH1038843A (ja) * 1996-04-12 1998-02-13 Teledyne Ind Inc 不活性ガスのためのガス/湿気センサ
JP2001349867A (ja) * 2000-06-07 2001-12-21 Nippon Soken Inc 酸性、塩基性度検出用センサ
JP2006070287A (ja) * 2004-08-31 2006-03-16 Sumitomo Electric Ind Ltd ダイヤモンド局所配線電極
JP2006317263A (ja) * 2005-05-12 2006-11-24 Nippon Telegr & Teleph Corp <Ntt> カテコールアミン類の測定方法、および該方法に用いられるカテコールアミン類測定用電極およびその製造方法ならびに電気化学セル
JP2008261691A (ja) * 2007-04-11 2008-10-30 Alps Electric Co Ltd 結露センサ
JP2011085516A (ja) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd 外気導入装置及びそれを備えた屋外構造物
JP2011128091A (ja) * 2009-12-21 2011-06-30 National Institute Of Advanced Industrial Science & Technology 極微量水分計測素子および該計測素子を用いた防湿封止性能評価方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540278A (en) * 1968-09-04 1970-11-17 Whirlpool Co Moisture sensor
US4515653A (en) * 1983-04-30 1985-05-07 Sharp Kabushiki Kaisha Method for production of a moisture sensor
US4816748A (en) * 1986-08-28 1989-03-28 Nippon Mining Co., Ltd. Electronic thermohygrometer with square-wave pulse signal generator
GB2222261B (en) * 1988-08-22 1992-09-16 Seiko Epson Corp Humidity measuring apparatus
DE3911812C2 (de) * 1989-04-11 1996-09-19 Siemens Ag Schneller Feuchtesensor auf Polymerbasis
JPH0318750A (ja) * 1989-06-15 1991-01-28 Seiko Epson Corp 湿度センサ素子
JPH05506711A (ja) * 1989-08-29 1993-09-30 エー ウント エー エレクトロニク ゲゼルシャフト エム ベー ハー 膨潤性プラスチックを抵抗湿度センサの製造に用いる方法および抵抗湿度センサの製造方法
JPH04326053A (ja) * 1991-04-25 1992-11-16 Seiko Epson Corp 湿度センサ
JPH05119010A (ja) * 1991-10-30 1993-05-14 Seiko Epson Corp 湿度センサ
JP2874026B2 (ja) * 1991-11-15 1999-03-24 マルコン電子株式会社 湿度センサ
US5331287A (en) * 1992-07-31 1994-07-19 Hughes Aircraft Company Device and method for sensing water and/or acid in the presence of water in non-aqueous media
US5455513A (en) * 1993-12-07 1995-10-03 Falmouth Scientific, Inc. System for measuring properties of materials
US5650062A (en) * 1995-03-17 1997-07-22 Matsushita Electric Industrial Co., Ltd. Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same
DE19547681C2 (de) * 1995-12-20 1999-10-21 Mannesmann Vdo Ag Feuchtesensor
US5903222A (en) * 1997-04-03 1999-05-11 Zaggie, Inc. Wet garment detector
TW571093B (en) * 1998-12-28 2004-01-11 Tdk Corp Moisture sensor
WO2001092476A2 (de) 2000-05-31 2001-12-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. In vitro-gewebetestsystem
JP2003004683A (ja) * 2001-06-15 2003-01-08 Denso Corp 容量式湿度センサ
EP1474676A4 (en) * 2001-12-20 2005-03-09 Prec Instr Corp ON-LINE OIL STATE SENSOR SYSTEM FOR ROTARY AND ALTERNATIVE MOTION MACHINES
JP2003270189A (ja) * 2002-03-20 2003-09-25 Denso Corp 容量式湿度センサ
DE102004045210A1 (de) * 2004-09-17 2006-04-06 Infineon Technologies Ag Sensor-Anordnung und Verfahren zum Ermitteln eines Sensorereignisses
JP4566784B2 (ja) * 2005-02-24 2010-10-20 株式会社デンソー 湿度センサ装置
JP2007303936A (ja) 2006-05-10 2007-11-22 Sumitomo Electric Ind Ltd センサチップ及びその製造方法
JP2008045876A (ja) 2006-08-10 2008-02-28 Seiko Epson Corp バイオセンサ及びバイオセンサの製造方法
US7605710B2 (en) * 2006-08-18 2009-10-20 Fresenius Medical Care Holdings, Inc. Wetness sensor
JP2008096235A (ja) 2006-10-11 2008-04-24 Sharp Corp 電気化学計測マイクロチップ
US9236622B2 (en) * 2009-08-07 2016-01-12 Ford Global Technologies, Llc Fuel cell system with wetness sensor
EP2492481A1 (en) * 2011-02-22 2012-08-29 Delphi Technologies Holding S.à.r.l. Soot sensor functional capability monitoring
WO2014018288A1 (en) * 2012-07-26 2014-01-30 Luna Innovations Incorporated Sensing systems and methods for determining and classifying corrosivity
ITMI20130484A1 (it) * 2013-03-29 2014-09-30 St Microelectronics Srl Dispositivo elettronico integrato per il monitoraggio di umidita' e/o acidita'/basicita' ambientali e/o corrosione
US20150338363A1 (en) * 2014-05-13 2015-11-26 Auburn University Capacitive fringing field sensors and electrical conductivity sensors integrated into printed circuit boards
DE102014210122B4 (de) * 2014-05-27 2025-04-30 Robert Bosch Gmbh Vorrichtung zum Bestimmen eines Werts einer zu messenden Eigenschaft eines Fluids, Verfahren zum Betreiben einer Vorrichtung zum Bestimmen eines Werts einer zu messenden Eigenschaft eines Fluids
WO2016065180A1 (en) * 2014-10-22 2016-04-28 President And Fellows Of Harvard College Detecting gases and respiration by the conductivity of water within a porous substrate sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123140A (ja) * 1987-11-06 1989-05-16 Toyota Motor Corp 結露センサ
JPH052007A (ja) * 1991-06-24 1993-01-08 Nippon Telegr & Teleph Corp <Ntt> ウオールジエツト型電気化学的検出器およびその製造方法
JPH05332964A (ja) * 1992-06-02 1993-12-17 Matsushita Electric Works Ltd 結露センサ
JPH1038843A (ja) * 1996-04-12 1998-02-13 Teledyne Ind Inc 不活性ガスのためのガス/湿気センサ
JP2001349867A (ja) * 2000-06-07 2001-12-21 Nippon Soken Inc 酸性、塩基性度検出用センサ
JP2006070287A (ja) * 2004-08-31 2006-03-16 Sumitomo Electric Ind Ltd ダイヤモンド局所配線電極
JP2006317263A (ja) * 2005-05-12 2006-11-24 Nippon Telegr & Teleph Corp <Ntt> カテコールアミン類の測定方法、および該方法に用いられるカテコールアミン類測定用電極およびその製造方法ならびに電気化学セル
JP2008261691A (ja) * 2007-04-11 2008-10-30 Alps Electric Co Ltd 結露センサ
JP2011085516A (ja) * 2009-10-16 2011-04-28 Mitsubishi Heavy Ind Ltd 外気導入装置及びそれを備えた屋外構造物
JP2011128091A (ja) * 2009-12-21 2011-06-30 National Institute Of Advanced Industrial Science & Technology 極微量水分計測素子および該計測素子を用いた防湿封止性能評価方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017195861A1 (ja) * 2016-05-13 2019-03-14 国立研究開発法人物質・材料研究機構 液滴サイズ判別装置及び液滴サイズ判別方法
WO2017195861A1 (ja) * 2016-05-13 2017-11-16 国立研究開発法人物質・材料研究機構 液滴サイズ判別装置及び液滴サイズ判別方法
US10830573B2 (en) 2016-05-13 2020-11-10 National Institute For Materials Science Droplet size determining device and droplet size determining method
JP2021073458A (ja) * 2016-06-08 2021-05-13 国立研究開発法人物質・材料研究機構 露点測定方法及び露点測定装置
WO2017213118A1 (ja) * 2016-06-08 2017-12-14 国立研究開発法人物質・材料研究機構 露点測定方法及び露点測定装置
JPWO2017213118A1 (ja) * 2016-06-08 2019-03-28 国立研究開発法人物質・材料研究機構 露点測定方法及び露点測定装置
US11454603B2 (en) 2016-06-08 2022-09-27 National Institute For Materials Science Dew point measuring method and dew point measuring device
EP3470829A4 (en) * 2016-06-08 2020-03-11 National Institute for Materials Science METHOD FOR MEASURING THE DEW POINT AND DEVICE FOR MEASURING THE DEW POINT
US11856664B2 (en) 2017-02-14 2023-12-26 National Institute For Materials Science Method and system for preventing dew condensation and light scattering due to dew condensation
WO2018150903A1 (ja) 2017-02-14 2018-08-23 国立研究開発法人物質・材料研究機構 結露および結露に伴う光散乱の予防方法および予防システム
EP3584571A4 (en) * 2017-02-14 2020-12-16 National Institute for Materials Science METHOD AND SYSTEM FOR PREVENTING FOG FORMATION AND LIGHT SCATTERING ASSOCIATED WITH FOG FORMATION
JP2019032277A (ja) * 2017-08-09 2019-02-28 株式会社シュリンクス 環境モニタリングセンサ及び環境モニタリング装置
JP7033798B2 (ja) 2017-09-01 2022-03-11 国立研究開発法人物質・材料研究機構 乾湿応答センサー
WO2019044640A1 (ja) 2017-09-01 2019-03-07 国立研究開発法人物質・材料研究機構 乾湿応答センサー
US11486843B2 (en) 2017-09-01 2022-11-01 National Institute For Materials Science Dryness/wetness responsive sensor
JP2019196957A (ja) * 2018-05-09 2019-11-14 日新電機株式会社 腐食性環境測定装置
JP7151155B2 (ja) 2018-05-09 2022-10-12 日新電機株式会社 腐食性環境測定装置
WO2020100778A1 (ja) 2018-11-12 2020-05-22 国立研究開発法人物質・材料研究機構 結露検出素子
US11913892B2 (en) 2018-11-12 2024-02-27 National Institute For Materials Science Condensation detection element
WO2023276982A1 (ja) 2021-06-30 2023-01-05 国立研究開発法人物質・材料研究機構 液滴センサー、結露検出装置およびそれらの製造方法
JPWO2023276982A1 (ja) * 2021-06-30 2023-01-05
JP7623738B2 (ja) 2021-06-30 2025-01-29 国立研究開発法人物質・材料研究機構 液滴センサー、結露検出装置およびそれらの製造方法
WO2023048076A1 (ja) 2021-09-21 2023-03-30 国立研究開発法人物質・材料研究機構 揮発性脂肪酸の検知方法および測定装置
JPWO2023048076A1 (ja) * 2021-09-21 2023-03-30
WO2023171472A1 (ja) 2022-03-09 2023-09-14 国立研究開発法人物質・材料研究機構 心拍変動測定システムおよび心拍変動測定方法

Also Published As

Publication number Publication date
US20170167995A1 (en) 2017-06-15
JPWO2016013544A1 (ja) 2017-04-27
US20190145920A1 (en) 2019-05-16
EP3173778A1 (en) 2017-05-31
US10267756B2 (en) 2019-04-23
EP3173778A4 (en) 2018-02-21
JP6448007B2 (ja) 2019-01-09
EP3173778B1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6448007B2 (ja) 高速応答・高感度乾湿応答センサー
US8390306B2 (en) Corrosion sensors
JP6058442B2 (ja) 腐食センサ、並びにこれを使用した腐食速度測定方法及び腐食速度測定装置
US9804077B2 (en) Device and method for monitoring corrosive environment
KR100856577B1 (ko) 탄소나노튜브 센서 및 그 제조방법
CN105606668A (zh) 一种电化学式薄膜凝露传感器
US11486843B2 (en) Dryness/wetness responsive sensor
WO2020100778A1 (ja) 結露検出素子
JP2013134111A (ja) 物体の腐食速度測定方法
US20170089828A1 (en) Corrosion sensor
US20190250117A1 (en) Capacitive gas sensor
JP2013205211A (ja) 腐食センサ、劣化検知センサおよび劣化モニタ
JPH02291952A (ja) 金属の腐食監視装置
JP6381167B1 (ja) Acmセンサを用いた腐食速度測定方法及び環境モニタリング装置
CN205210015U (zh) 一种凝露传感器
JP6834558B2 (ja) 腐食モニタリング用測定モジュール、腐食モニタリング用測定方法、腐食モニタリングシステム、及び、腐食モニタリング方法
Chen et al. MEMS electric field sensor with biased electrically floating cover to measure electric field in ionic environments
JP2005207813A (ja) 腐食度センサー、その製造方法、及び測定システム
WO2005010536A1 (ja) 非接触式センサ
JP2000131258A (ja) 汚損検出センサ
JP5332037B2 (ja) 絶縁劣化モニタ装置、電気機器および絶縁劣化モニタ方法
US20140159751A1 (en) Passive Multi-Layered Corrosion Sensor
JP2025090885A (ja) 濡れセンサおよび濡れ評価装置
CN209280628U (zh) 重金属传感芯片
JP2007165438A (ja) 太陽電池モジュールの評価方法、及び太陽電池モジュールの評価装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535935

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327103

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015824136

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015824136

Country of ref document: EP