WO2016013544A1 - 高速応答・高感度乾湿応答センサー - Google Patents
高速応答・高感度乾湿応答センサー Download PDFInfo
- Publication number
- WO2016013544A1 WO2016013544A1 PCT/JP2015/070692 JP2015070692W WO2016013544A1 WO 2016013544 A1 WO2016013544 A1 WO 2016013544A1 JP 2015070692 W JP2015070692 W JP 2015070692W WO 2016013544 A1 WO2016013544 A1 WO 2016013544A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wet
- response sensor
- dry
- sensor
- metal
- Prior art date
Links
- 230000004044 response Effects 0.000 title claims abstract description 96
- 230000035945 sensitivity Effects 0.000 title abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 238000009434 installation Methods 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims description 63
- 239000002184 metal Substances 0.000 claims description 63
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052709 silver Inorganic materials 0.000 claims description 15
- 239000004332 silver Substances 0.000 claims description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 230000004043 responsiveness Effects 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000012212 insulator Substances 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 description 25
- 238000005260 corrosion Methods 0.000 description 25
- 238000005259 measurement Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000000463 material Substances 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 238000001514 detection method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910000975 Carbon steel Inorganic materials 0.000 description 3
- 239000010962 carbon steel Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/048—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance for determining moisture content of the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/4035—Combination of a single ion-sensing electrode and a single reference electrode
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/04—Corrosion probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/045—Circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/121—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
- G01N27/223—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Definitions
- the present invention relates to a high-speed response / high sensitivity dry / humidity response sensor, and more specifically to a dry / humidity response sensor having a structure suitable for downsizing / high sensitivity and realizing a high-speed response.
- a humidity sensor that detects humidity according to a change in electrical resistance (impedance) or capacitance of a sensor element (dry / moisture response unit) is known.
- electrical resistance humidity sensors use polymers or ceramics as the wet and dry responsive material of the sensor element, and the cost is reduced by mass production because the materials are inexpensive and the structure is simple.
- the measurement humidity range remains in the range of 10 to 90% RH and is difficult to use in a low humidity environment of less than 10% RH and a high humidity environment of more than 90% RH.
- the electrical resistance humidity sensor has a very large change with time and in many cases has a large temperature dependency, and therefore temperature correction is necessary. Furthermore, the electric resistance type humidity sensor has a problem that accuracy variation is large (about ⁇ 5 to 15% RH) and response time is long (30 seconds to several minutes or more).
- Capacitance-type humidity sensors generally use a polymer film as a dry / wet responsive material for sensor elements, and have a faster response speed (usually around several seconds to 10 seconds) compared to the electrical resistance type. Excellent in reliability and reliability. In addition, it usually has a measurement humidity range of 0 to 100% RH, but the sensor element may be broken under dew condensation conditions. In addition, the capacitance type humidity sensor has a problem that the production cost is higher than that of the electric resistance type humidity sensor.
- an external drive power source for driving the sensor is required for both the electric resistance type and capacitance type humidity sensors.
- an external drive power source for driving the sensor is required for both the electric resistance type and capacitance type humidity sensors.
- a corrosive environment sensor is installed at each location, and the corrosive environment there.
- a method has been developed to estimate and predict the degree of corrosion of steel based on the evaluation results. For example, as shown in FIG. 1, this type of sensor is attached to a steel member such as a bridge, and the corrosion environment of the place is monitored to predict the deterioration of the steel frame.
- Corrosion environment sensors typically include an ACM (Atmospheric Corrosion Monitoring) sensor that detects galvanic current flowing between these metals when different metals come into contact with each other through water.
- ACM Analogpheric Corrosion Monitoring
- the conventional galvanic sensor has a problem in that it is inconvenient to handle and expensive because it is enlarged to compensate for the low sensitivity.
- An object of the present invention is to improve the sensitivity and responsiveness of a wet / dry response sensor based on the detection principle of galvanic current, and to reduce the size of the dry / dry response sensor.
- a wet / dry response sensor in which a first metal thin wire and a second metal thin wire different from the first metal are juxtaposed on an insulating substrate.
- a wet / dry response sensor is provided in which the distance between one thin wire and the second thin wire is in the range of 5 nm or more and less than 20 ⁇ m.
- at least one of the first metal thin wire and the second metal thin wire is provided in plural, and the first metal thin wire and the second metal thin wire are opposed to each other in a direction facing each other. May run parallel to each other.
- the first metal fine wire and the second metal fine wire may be arranged in a double spiral shape.
- the insulating substrate may be a silicon substrate having a silicon oxide film on the surface.
- the first metal may be selected from the group consisting of gold, platinum, silver, titanium and alloys thereof, and carbon.
- the second metal may be selected from the group consisting of silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium, and alloys thereof.
- an insulating protective film is provided to cover a region where the first metal fine wire and the second metal thin wire are juxtaposed, and the insulating protective film has a groove-like opening that exposes at least a part of the thin wire. It's okay.
- a groove-like opening that exposes at least a part of the gap between the first metal thin wire and the second metal thin wire may be provided. Further, by removing at least a part of the insulating substrate corresponding to the gap between the first metal thin wire and the second metal thin wire, the insulating substrate penetrates the front and back surfaces of the insulating substrate. An opening may be provided.
- any one of the wet / dry response sensors is attached to an attachment member having an attachment portion to the installation target object at one end, and the dry / humidity response sensor is disposed at a position away from the installation target object.
- a remote location ground wet / dry response sensor assembly is provided.
- a wet / dry response sensor system comprising a plurality of any of the above dry / wet response sensors and disconnecting the dry / wet response sensor that is short-circuited or does not generate an output current. It is done.
- the wet / dry response sensor may be disconnected by electrically disconnecting the wet / dry response sensor or not using the output of the wet / dry response sensor.
- a high-sensitivity and high-speed response wet / dry response sensor that does not require sensor driving power with a simple structure is provided, so that the wet / dry response sensor can be reduced in size and price.
- a photograph showing an example of using a conventional corrosive environment sensor The figure which shows the structure of the corrosion environment sensor by the conventional galvanic current detection.
- the unit of the dimension in the figure is mm.
- the conceptual diagram for demonstrating a galvanic current detection The conceptual diagram for demonstrating the structure for improving the sensitivity of the corrosion environment sensor by galvanic current detection.
- FIG. 2A is a plan view of the corrosive environment sensor
- FIG. 2B is an enlarged view of the vicinity of the center of the AA ′ cross-sectional view.
- This corrosion environment sensor forms an insulating film made of an insulating paste on a substrate by applying an insulating paste (for example, SiO 2 , BN, etc.) on a metal substrate such as carbon steel. By applying a conductive paste on the insulating film, a film of another metal such as silver is formed.
- an insulating paste for example, SiO 2 , BN, etc.
- the light stripes in the interdigital region (sensor region) are not formed with a metal film such as silver or an insulating paste, and a metal substrate such as carbon steel. Is the exposed part.
- FIG. 2B shows a cross-sectional structure of this portion.
- a copper foil is attached to a portion outside the sensor region on a metal film such as silver to form an electrode.
- Another electrode is also drawn from a substrate made of a metal such as carbon steel (FIG. 2 (a) upper left corner).
- an ammeter is connected between both electrodes to measure the galvanic current.
- This local battery is conceptually shown in FIG. Since the battery is formed in this manner in the sensor region, a galvanic current corresponding to the amount of electrolyte in the rainwater flows when the copper foil and the substrate are connected. This current is measured by an ammeter connected here. The magnitude of the galvanic current measured in this way is known to have a strong correlation with corrosion caused by local batteries formed on the steel surface in the same place due to rainwater, etc. The progress of corrosion can be evaluated.
- the corrosion environment sensor If the corrosive environment sensor is miniaturized, the degree of freedom of the mounting position increases, and the mounting position becomes less conspicuous, so that there are fewer restrictions on the mounting position. Further, since the cost is generally reduced by downsizing, it is easy to increase the number of measurement positions.
- a corrosive environment sensor using a galvanic current as shown in FIG. 2 in principle, as shown in FIG. 4, if the distance between two electrodes made of different metals is shortened, the sensitivity is improved.
- the corrosion environment sensor having the structure shown in FIG. FIG.
- Non-Patent Document 5 is cited from Non-Patent Document 5, and is a graph plotting the results of actual measurement of the relationship between the interelectrode distance (d) of this type of corrosive environment sensor and the galvanic current at that time.
- d interelectrode distance
- the galvanic current increases, that is, the sensitivity is improved.
- the distance between the electrodes can only be shortened to about 20 ⁇ m at most. Therefore, it has been difficult to improve the sensitivity of the corrosive environment sensor using the galvanic current (more specifically, to improve the sensitivity per unit area of the sensor region).
- the inventors of the present invention have examined the cause of such restrictions and the solution thereof.
- the two electrodes are insulative paste. It has been found that there is a problem in the structure of being stacked up and down via an insulating layer made of. That is, unlike elements used in a protected environment such as ordinary electronic devices, the elements such as direct outside air, various weather conditions, sunlight irradiation, collision of particles such as dust, interference by animals and plants, etc.
- the metal substrate and another metal In order not to lose the sensor function due to direct contact with the membrane, there is a limit to shortening the distance between the electrodes by thinning the insulating layer. Also, since the insulating layer is made by applying an insulating paste, if the layer is made thinner than a certain limit, insulation failure occurs in the process of making the sensor, and even if there is no problem at the beginning of manufacturing, Insulation can be destroyed by aging in harsh environments. Furthermore, it is ideal that the edges of the vertical stripes composed of the insulating layer and the metal layer stand up vertically from the substrate, but in reality this tends to be slightly inclined as shown in FIG. However, the distance between the electrodes becomes large.
- the inventors of the present application placed a metal electrode and another metal electrode adjacent to each other in the lateral direction in parallel on the insulating substrate instead of the conventional stacked structure of electrodes as shown in FIG.
- the idea that the above-mentioned problem can be solved by adopting the structure to be obtained was obtained.
- the opposing part of both electrodes is a part that mainly functions as a locally generated battery, it is preferable to use both electrodes rather than increasing the area of the electrodes on the substrate. It is effective to increase the battery capacity, that is, to increase the galvanic current that can be taken out, by increasing the length of the portions facing each other. Therefore, these electrodes can be made thin and arranged almost parallel to each other over a long distance.
- a parallel running distance As a configuration for increasing the length of the adjacent portion (hereinafter referred to as a parallel running distance) between the thin wires (electrodes) by arranging such thin wires in parallel, for example, a comb structure or a double spiral structure is used. Can be adopted. In addition, since the structure itself for making the parallel distance of the two electrodes as long as possible within a certain plane region is well known in the field of semiconductor devices, such a structure may be adopted as necessary. In the present invention, “arranging the electrodes on the substrate” does not specify the mutual orientation of the plurality of electrodes placed on the substrate, but the electrodes are arranged apart from each other on the same plane of the substrate. That means.
- the present invention allows the droplets existing on the solid surface to be separated between the electrodes made of different materials by the phenomenon that water vapor contained in the air is condensed on the solid surface or the phenomenon that the water droplets are adsorbed on the solid surface.
- a wet / dry response sensor capable of distinguishing the dry / wet state at high speed and with high sensitivity is realized.
- the wet / dry response sensor according to the present invention can directly detect droplets adhering to the sensor surface from the air as compared to a conventional humidity sensor that measures the dry / wet state through a moisture absorption process to the dry / dry response material. , Has fast response.
- the wet / dry response sensor according to the present invention has high sensitivity which is essentially completely different from that of the conventional sensor because there is a dependency between the distance between the electrodes of the sensor and the droplet size. This point will be described in detail below.
- the insulating substrate has an insulating property that does not hinder the measurement of the galvanic current from the above-described battery formed thereon, and the durability required under the assumed use environment.
- Any material may be used as long as it has the following.
- various insulating materials such as plastic, rubber, and the like can be used.
- an insulating substrate or a type of substrate having an insulating property as viewed from the electrode by forming an insulating coating or coating on the conductive material is also applied. Then, it should be noted that it is included in the category of “insulating substrate”.
- the distance between the electrodes can be reduced to about 5 nm by using the technique of the semiconductor manufacturing process.
- the upper limit of the interelectrode distance is not particularly limited, but may be less than 20 ⁇ m, which is shorter than the above-described interelectrode distance. This detects even very small water droplets and the attachment of a few water molecules just before condensation, which was difficult to detect with a sensor having an interelectrode distance of 20 ⁇ m or more produced using conventional machining or printing techniques. It becomes possible. Therefore, in the wet / dry response sensor according to the present invention, the correlation between the detection result of the sensor and the actual progress of corrosion improves.
- the inter-electrode distance may be a fixed value or a combination of a plurality of set values depending on the use and installation environment of the wet / dry response sensor.
- conductive fine particles such as metal powder existing in the air or rainwater will adhere between the electrodes and cause a short circuit.
- the occurrence of the problem can be prevented by taking the following measures for this problem. (1) By providing a mesh-like material on the front surface of the electrode, fine particles are prevented from reaching the electrode. (2) An insulating protective film such as silicon oxide is provided on the front surface of the electrode, and a fine opening exposing at least a part of each electrode fine wire (and at least a part of the gap between the fine wires as necessary) is provided. Opened in this insulating protective film.
- the wet and dry response sensor itself uses the one having the normal structure according to the present invention, but a plurality of such sensors are arranged close to each other, and a short circuit between the cathode electrode and the anode electrode is detected, Alternatively, remove the sensor whose output current is not detected at all while the output current is detected from other sensors (disconnect it electrically, leave the electrical connection intact, but use the output current measurement value) It is also possible to respond as a sensor system.
- the substrate on which no metal is deposited in the gap between the cathode electrode and the anode electrode May be removed by etching or the like so that air flows between the cathode electrode and the anode electrode while water is not attached to the sensor. More specifically, for example, by removing at least a part of the position corresponding to the gap between the thin lines, it is possible to provide an opening that penetrates the front and back of the substrate. With this configuration, it can be used as a sensor for moisture in the air and other components.
- the mechanical strength is reduced by completely removing the substrate in the gap, or has a natural frequency that may cause inconvenience by resonating with external mechanical vibrations in the usage environment. In such a case, it is sufficient to take measures such as leaving a substrate in a part of the gap.
- the sensors described so far are assumed to be used for evaluating the corrosive environment of the surface of the structure by installing it directly on the surface of the structure such as a steel frame, but the corrosive environment of free space is evaluated instead of the surface environment.
- the use to do is also considered. Even in such an application, it is necessary to fix the sensor in the space. However, if the sensor is directly attached to the surface of some large installation object for that purpose, the substance adhering to the object may flow on the sensor due to rain, etc., or splashes may flow, or the airflow is different from that in free space, etc.
- the measurement value may affect the object. In order to eliminate such adverse effects, it is desirable to adopt a configuration in which the sensor is floated far from the installation position on the installation target object.
- one end of a mounting device such as a plate or a bar to which the sensor is attached is attached to an installation symmetrical object, and one or more sensors are placed at a position away from the installation target object on the attachment member. It only has to be attached.
- the wet / dry response sensor according to the present invention can be used as a humidity sensor.
- the wet / dry response sensor of the present invention can be downsized by greatly reducing the distance between the electrodes as compared with the conventional sensor, and further, no external power is required to drive the sensor.
- no external power is required to drive the sensor.
- electronic devices, logistics systems, industrial plants, etc. that were difficult to install due to the fact that the sensor was large and external power could not be secured. It is expected that it will be possible to manage the desired humidity conditions.
- FIG. 6 shows the structure of the main part of the wet / dry response sensor, that is, an electrode arrangement structure, in which an anode electrode made of metal such as iron and a cathode electrode made of another metal such as silver are arranged in a comb shape on an insulating substrate.
- an anode electrode made of metal such as iron and a cathode electrode made of another metal such as silver are arranged in a comb shape on an insulating substrate.
- the insulating substrate for example, a silicon wafer having a silicon oxide film can be used.
- Examples of materials that can be used for the cathode electrode include gold, platinum, silver, titanium, and alloys thereof, and carbon and allotropes thereof.
- anode electrode for example, silver, copper, iron, zinc, nickel, cobalt, aluminum, tin, chromium, molybdenum, manganese, magnesium, and alloys thereof can be used.
- silver and its alloy as an anode electrode, it is better to use a cathode electrode other than silver and its alloy among the cathode electrodes shown above.
- the side close to the signal lead-out terminal (not shown) to the outside of the wet / dry response sensor is a concentrated portion that is gathered into one (each in the horizontal direction up and down in FIG. 6). (Shown as a running thick line), branching into a plurality of lines near each end. In the embodiment shown in FIG. 6, there are 10 branches each.
- the branched cathode electrode and anode electrode extend in a parallel direction to each other (more specifically, an antiparallel direction, hereinafter simply referred to as a parallel direction), and run close to each other in the parallel direction over most of the extended distance.
- the concentrated portions of the cathode electrode and the anode electrode are separated from each other by 1180 ⁇ m and extend in the antiparallel direction, and the branched portions extend by 1090 ⁇ m toward the opposite concentrated portions.
- Each thin wire of the branching portion runs in parallel with the thin wire of the extension portion on the other side over 1000 ⁇ m excluding 90 ⁇ m of the root portion.
- three kinds of gaps of 0.5 ⁇ m, 1 ⁇ m, and 10 ⁇ m were prepared as the distance between both electrodes in the parallel portion (distance between the branch thin wire of the cathode electrode and the branch thin wire of the anode electrode).
- FIG. 7A and 7B show an example of a process composed of steps (a) to (l) performed to create a wet / dry response sensor having the structure shown in FIG. FIG. 7A and FIG. 7B correspond to a portion of the sensor where the fine lines of the cathode electrode and the anode electrode run side by side.
- a silicon wafer having a silicon oxide film on the surface was prepared, a resist was applied to the surface (step (a)), and the resist at the position where the cathode electrode was provided was removed by photolithography (step (b)). Next, an adhesion layer for the cathode electrode was formed at the position where the resist was removed by depositing 10 nm of titanium on the entire surface (step (c)).
- step (d) gold is deposited to a thickness of 150 nm (step (d)), and then titanium is deposited to a thickness of 10 nm (step (e)). A layer was formed. Now that the formation of the cathode electrode is complete, the resist and the excess metal layer thereon are lifted off, leaving only the cathode electrode on the silicon oxide layer (step (f)). Next, by executing a series of steps similar to those for the cathode electrode (step (g) to step (l); however, the layer deposited as the metal of the anode electrode body in step (j) is 150 nm thick copper), An anode electrode was formed at a position parallel to the cathode electrode.
- FIG. 8A shows the entire electrode part of the wet / dry response sensor fabricated in this manner.
- an electrode pad for connecting the lead wire to the cathode electrode and the anode electrode is a slightly lighter square area than the surrounding area. Is visible.
- a line running horizontally from each electrode pad is a concentrated portion running horizontally near the upper end and the lower end of FIG.
- the black linear portion running up and down in the center of FIG. 8A is a branched portion of the cathode electrode and anode electrode running up and down in the vicinity of the center of FIG. FIG.
- FIG. 8B shows an enlarged photograph of the vicinity of the center of this branched portion in FIG. 8A.
- FIG. 8B also shows enlarged photographs of these three types of branch portions.
- each of these three types of sensors is provided with ten fine wires at the branch portions of the cathode electrode and the anode electrode.
- the thin wire of the branch part covers the entire or almost the entire main body region. The narrower the number of fine lines increases. Therefore, if the distance between the electrodes is reduced, the sensitivity of this sensor increases rapidly due to both the effect of increasing the sensitivity per unit parallel distance and the effect of increasing the parallel distance per unit area due to the reduction in the distance between electrodes. Please note that.
- FIG. 9B shows actual measurement data for the wet and dry response sensor having the interelectrode distances of 10 ⁇ m, 1 ⁇ m, and 0.5 ⁇ m.
- the water film becomes very thin, so that oxygen easily reaches the gold electrode surface, and the corrosion rate increases.
- the resistance between the electrodes increases with the decrease in the moisture remaining so as to connect the electrodes, so that the current decreases.
- the distance between the electrodes is about 400 pA when the width is 10 ⁇ m, about 800 pA when the width is 1 ⁇ m and 0.5 ⁇ m, and the width is up to 1 ⁇ m. It was confirmed that the output value was improved by reducing.
- gold and copper are used as the metal material of the electrode, but the sensor output (current) naturally depends on the combination of the metal materials of the electrode. For example, with Ag / Fe and Au / Ag, the combination of Ag / Fe has a higher corrosion rate per the same area, so that the obtained current value becomes larger. Instead, Au / Ag has a longer life because it consumes less electrode.
- the number of cathode electrodes and anode electrodes is 10 respectively.
- the electrodes are laid as long as possible within a certain length (range).
- the S / N ratio is about 1: 100 or more, it can be said that the sensor prototyped in the above embodiment can sense without amplification or noise filtering. If the width of the electrode itself is narrowed (thinned), the number of pairs in the same laying width increases, so that the output is further improved.
- FIG. 10 is an attenuation curve of the current value after recording the maximum current value in the wet / dry response sensor of the present example in which the distance between the electrodes is 10 ⁇ m, 1 ⁇ m, and 0.5 ⁇ m in relation to FIG. 9B.
- the shorter the distance between the electrodes the longer the time required to reach the background current (10 ⁇ 11 A). This suggests that the current can be measured until the size of the droplet remaining between the electrodes becomes smaller as the distance between the electrodes becomes narrower. That is, it was suggested that the wet / dry response sensor of the present invention can discriminate the size of the droplet remaining between the electrodes.
- FIG. 11 shows the results of the output current measured under the humidity conditions of 0% RH, 38% RH and 100% RH using the dry / humidity response sensor of this example with the distance between the electrodes being 1.0 ⁇ m.
- the wet / dry response sensor of the present invention can perform highly accurate detection in a humidity range of 0 to 100% RH.
- Each humidity condition was set as follows. 0% RH: The sensor surface is dried with a dryer 38% RH: The humidity of the measurement environment is measured with a commercially available hygrometer 100% RH: The sensor surface is blown and the entire sensor surface is cloudy
- the sensor output can be improved by adjusting the number of electrodes in accordance with the laying conditions and the like in addition to the distance between the electrodes.
- the anode electrode when the galvanic current repeatedly flows in the wet / dry response sensor, the anode electrode is gradually consumed due to ionization of the metal of the anode electrode.
- the distance between the electrodes gradually increases due to the consumption of the anode electrode, particularly in a dry / humid response sensor in which the electrodes are thinned to increase the laying density.
- the thin wire of the electrode may be cut off.
- the anode electrode may be thickened, or the width of the anode electrode may be increased, and the width of the cathode electrode may be decreased instead.
- a wet / dry response sensor that is greatly reduced in size as compared with the conventional one without reducing the sensitivity is provided, so that it can be installed in various places and inconspicuously. As a result, it is expected to contribute to improving the accuracy of evaluation and prediction of corrosion and deterioration of structures such as steel frames exposed to corrosive environments.
- the wet / dry response sensor of the present invention is not only for monitoring the corrosive environment, but also for dry / wet monitoring / tracking from manufacturing and growth of industrial products and foodstuffs to logistics, and predicting the occurrence of mold in indoor bathrooms and washing machines. It can be applied to various humidity measurements.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Molecular Biology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
ここで、前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走してよい。
また、前記第1の金属の細線と前記第2の金属の細線とが二重渦巻き状に配置されてよい。
また、前記絶縁性基板は表面に酸化シリコン膜を有するシリコン基板であってよい。
また、前記第1の金属は金、白金、銀、チタン及びこれらの合金、並びに炭素からなる群から選択されてよい。
また、前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウム及びこれらの合金からなる群から選択されてよい。
また、第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う網の目状部材を設けてよい。
また、第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う絶縁保護膜を設け、前記絶縁保護膜は前記細線の少なくとも一部を露出する溝状開口を有してよい。
また、更に第1の金属の細線と前記第2の金属の細線との間のギャップの少なくとも一部を露出する溝状開口部を有してよい。
また、前記絶縁性基板の、前記第1の金属の細線と前記第2の金属の細線との間のギャップに対応する位置の少なくとも一部を除去することにより、前記絶縁性基板の表裏を貫通する開口部を設けてよい。
本発明の他の側面によれば、一端に設置対象物体への取り付け部を有する取り付け部材に上記何れかの乾湿応答センサーが取り付けられ、前記設置対象物体から離間した位置に前記乾湿応答センサーを配置するようにした、離間位置接地用乾湿応答センサー組立体が与えられる。
本発明の更に他の側面によれば、複数の上記何れかの乾湿応答センサーを設け、前記乾湿応答センサー中の短絡し、または出力電流を発生しない乾湿応答センサーを切り離す、乾湿応答センサーシステムが与えられる。
ここで、前記乾湿応答センサーの切り離しは乾湿応答センサーを電気的に切り離すかまたは乾湿応答センサーの出力を使用しないことによってよい。
(1)電極の前面に網の目状物を設けることで、微粒子が電極に到達しないようにする。
(2)シリコン酸化物等の絶縁保護膜を電極前面に設けるとともに、各電極の細線の少なくとも一部(更には必要に応じて細線間のギャップの少なくとも一部も)を露出する微細な開口をこの絶縁保護膜に開設する。このように構成すれば、絶縁保護膜の微細な開口部の入口付近に導電性微粒子が付着しても、電極の細線は絶縁保護膜の厚みだけ奥に位置するので、微粒子が細線に直接接触して短絡が起こるのを防止できる。
(3)乾湿応答センサー自体は本発明に係る通常の構造のものを使用するが、そのようなセンサーを複数個近接させて配置し、カソード電極とアノード電極との間の短絡が検出されたり、あるいは他のセンサーから出力電流が検出されている間も出力電流が全く検出されないセンサーを測定系から排除する(電気的に切り離す、電気的な接続はそのままとするが、出力電流の測定値を使用しない等)等の、センサーシステムとしての対応も可能である。
0%RH:ドライヤにてセンサー表面を乾燥させた状態
38%RH:測定環境の湿度を市販の湿度計にて計測した値
100%RH:センサー表面に息を吹きかけ、センサー表面全体が曇った状態
Claims (13)
- 第1の金属の細線と、
前記第1の金属とは異なる第2の金属の細線と
を絶縁性基板上に並置した、乾湿応答センサーであって、
前記第1の細線と前記第2の細線との間の間隔は5nm以上、20μm未満の範囲である、乾湿応答センサー。 - 前記第1の金属の細線と前記第2の金属の細線の少なくとも一方は複数本設けられ、
前記第1の金属の細線と前記2の金属の細線とは互いに対向する方向から相手側に向かって伸びることにより、互いに平行に併走する、請求項1に記載の乾湿応答センサー。 - 前記第1の金属の細線と前記第2の金属の細線とが二重渦巻き状に配置される、請求項1に記載の乾湿応答センサー。
- 前記絶縁性基板は表面に酸化シリコン膜を有するシリコン基板である、請求項1から3の何れかに記載の乾湿応答センサー。
- 前記第1の金属は金、白金、銀、チタン及びこれらの合金、並びに炭素からなる群から選択される、請求項1から4の何れかに記載の乾湿応答センサー。
- 前記第2の金属は銀、銅、鉄、亜鉛、ニッケル、コバルト、アルミニウム、スズ、クロム、モリブデン、マンガン、マグネシウム及びこれらの合金からなる群から選択される、請求項1から5の何れかに記載の乾湿応答センサー。
- 第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う網の目状部材を設けた、請求項1から6の何れかに記載の乾湿応答センサー。
- 第1の金属の細線及び前記第2の金属の細線が並置されている領域を覆う絶縁保護膜を設け、
前記絶縁保護膜は前記細線の少なくとも一部を露出する溝状開口を有する、請求項1から6の何れかに記載の乾湿応答センサー。 - 更に第1の金属の細線と前記第2の金属の細線との間のギャップの少なくとも一部を露出する溝状開口を有する、請求項8に記載の乾湿応答センサー。
- 前記絶縁性基板の、前記第1の金属の細線と前記第2の金属の細線との間のギャップに対応する位置の少なくとも一部を除去することにより、前記絶縁性基板の表裏を貫通する開口部を設けた、請求項1から6の何れかに記載の乾湿応答センサー。
- 一端に設置対象物体への取り付け部を有する取り付け部材に請求項1から10の何れかに記載の乾湿応答センサーが取り付けられ、前記設置対象物体から離間した位置に前記乾湿応答センサーを配置するようにした、離間位置接地用乾湿応答センサー組立体。
- 請求項1から10の何れかに記載の乾湿応答センサーを複数設け、前記乾湿応答センサー中の短絡し、または出力電流を発生しない乾湿応答センサーを切り離す、乾湿応答センサーシステム。
- 前記乾湿応答センサーの切り離しは、乾湿応答センサーを電気的に切り離すかまたは乾湿応答センサーの出力を使用しないことによる、請求項12に記載の乾湿応答センサーシステム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15824136.4A EP3173778B1 (en) | 2014-07-23 | 2015-07-21 | Dryness/wetness response sensor having high-speed response and high sensitivity |
JP2016535935A JP6448007B2 (ja) | 2014-07-23 | 2015-07-21 | 高速応答・高感度乾湿応答センサー |
US15/327,103 US10267756B2 (en) | 2014-07-23 | 2015-07-21 | Dryness/wetness responsive sensor having first and second wires spaced 5 nm to less than 20 μm apart |
US16/225,087 US20190145920A1 (en) | 2014-07-23 | 2018-12-19 | DRYNESS/WETNESS RESPONSIVE SENSOR HAVING FIRST AND SECOND WIRES SPACED 5 nm TO LESS THAN 20 um APART |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014149505 | 2014-07-23 | ||
JP2014-149505 | 2014-07-23 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/327,103 A-371-Of-International US10267756B2 (en) | 2014-07-23 | 2015-07-21 | Dryness/wetness responsive sensor having first and second wires spaced 5 nm to less than 20 μm apart |
US16/225,087 Continuation US20190145920A1 (en) | 2014-07-23 | 2018-12-19 | DRYNESS/WETNESS RESPONSIVE SENSOR HAVING FIRST AND SECOND WIRES SPACED 5 nm TO LESS THAN 20 um APART |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013544A1 true WO2016013544A1 (ja) | 2016-01-28 |
Family
ID=55163069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070692 WO2016013544A1 (ja) | 2014-07-23 | 2015-07-21 | 高速応答・高感度乾湿応答センサー |
Country Status (4)
Country | Link |
---|---|
US (2) | US10267756B2 (ja) |
EP (1) | EP3173778B1 (ja) |
JP (1) | JP6448007B2 (ja) |
WO (1) | WO2016013544A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017195861A1 (ja) * | 2016-05-13 | 2017-11-16 | 国立研究開発法人物質・材料研究機構 | 液滴サイズ判別装置及び液滴サイズ判別方法 |
WO2017213118A1 (ja) * | 2016-06-08 | 2017-12-14 | 国立研究開発法人物質・材料研究機構 | 露点測定方法及び露点測定装置 |
WO2018150903A1 (ja) | 2017-02-14 | 2018-08-23 | 国立研究開発法人物質・材料研究機構 | 結露および結露に伴う光散乱の予防方法および予防システム |
JP2019032277A (ja) * | 2017-08-09 | 2019-02-28 | 株式会社シュリンクス | 環境モニタリングセンサ及び環境モニタリング装置 |
WO2019044640A1 (ja) | 2017-09-01 | 2019-03-07 | 国立研究開発法人物質・材料研究機構 | 乾湿応答センサー |
JP2019196957A (ja) * | 2018-05-09 | 2019-11-14 | 日新電機株式会社 | 腐食性環境測定装置 |
WO2020100778A1 (ja) | 2018-11-12 | 2020-05-22 | 国立研究開発法人物質・材料研究機構 | 結露検出素子 |
JPWO2023276982A1 (ja) * | 2021-06-30 | 2023-01-05 | ||
WO2023048076A1 (ja) | 2021-09-21 | 2023-03-30 | 国立研究開発法人物質・材料研究機構 | 揮発性脂肪酸の検知方法および測定装置 |
WO2023171472A1 (ja) | 2022-03-09 | 2023-09-14 | 国立研究開発法人物質・材料研究機構 | 心拍変動測定システムおよび心拍変動測定方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019200141A (ja) * | 2018-05-16 | 2019-11-21 | マツダ株式会社 | 湿気センサ及び該センサを用いた腐食試験方法 |
DE102018006950A1 (de) * | 2018-09-03 | 2020-03-05 | Ewald Dörken Ag | Feuchtesensor |
JP7096635B2 (ja) * | 2019-03-22 | 2022-07-06 | 株式会社日立製作所 | 水分検出素子、呼気ガス検出装置、呼気検査システム及び水分検出素子の製造方法 |
CN110873735A (zh) * | 2019-12-05 | 2020-03-10 | 中国特种飞行器研究所 | 一种飞机表面湿度在线监测传感探头 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01123140A (ja) * | 1987-11-06 | 1989-05-16 | Toyota Motor Corp | 結露センサ |
JPH052007A (ja) * | 1991-06-24 | 1993-01-08 | Nippon Telegr & Teleph Corp <Ntt> | ウオールジエツト型電気化学的検出器およびその製造方法 |
JPH05332964A (ja) * | 1992-06-02 | 1993-12-17 | Matsushita Electric Works Ltd | 結露センサ |
JPH1038843A (ja) * | 1996-04-12 | 1998-02-13 | Teledyne Ind Inc | 不活性ガスのためのガス/湿気センサ |
JP2001349867A (ja) * | 2000-06-07 | 2001-12-21 | Nippon Soken Inc | 酸性、塩基性度検出用センサ |
JP2006070287A (ja) * | 2004-08-31 | 2006-03-16 | Sumitomo Electric Ind Ltd | ダイヤモンド局所配線電極 |
JP2006317263A (ja) * | 2005-05-12 | 2006-11-24 | Nippon Telegr & Teleph Corp <Ntt> | カテコールアミン類の測定方法、および該方法に用いられるカテコールアミン類測定用電極およびその製造方法ならびに電気化学セル |
JP2008261691A (ja) * | 2007-04-11 | 2008-10-30 | Alps Electric Co Ltd | 結露センサ |
JP2011085516A (ja) * | 2009-10-16 | 2011-04-28 | Mitsubishi Heavy Ind Ltd | 外気導入装置及びそれを備えた屋外構造物 |
JP2011128091A (ja) * | 2009-12-21 | 2011-06-30 | National Institute Of Advanced Industrial Science & Technology | 極微量水分計測素子および該計測素子を用いた防湿封止性能評価方法 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3540278A (en) * | 1968-09-04 | 1970-11-17 | Whirlpool Co | Moisture sensor |
US4515653A (en) * | 1983-04-30 | 1985-05-07 | Sharp Kabushiki Kaisha | Method for production of a moisture sensor |
US4816748A (en) * | 1986-08-28 | 1989-03-28 | Nippon Mining Co., Ltd. | Electronic thermohygrometer with square-wave pulse signal generator |
GB2222261B (en) * | 1988-08-22 | 1992-09-16 | Seiko Epson Corp | Humidity measuring apparatus |
DE3911812C2 (de) * | 1989-04-11 | 1996-09-19 | Siemens Ag | Schneller Feuchtesensor auf Polymerbasis |
JPH0318750A (ja) * | 1989-06-15 | 1991-01-28 | Seiko Epson Corp | 湿度センサ素子 |
JPH05506711A (ja) * | 1989-08-29 | 1993-09-30 | エー ウント エー エレクトロニク ゲゼルシャフト エム ベー ハー | 膨潤性プラスチックを抵抗湿度センサの製造に用いる方法および抵抗湿度センサの製造方法 |
JPH04326053A (ja) * | 1991-04-25 | 1992-11-16 | Seiko Epson Corp | 湿度センサ |
JPH05119010A (ja) * | 1991-10-30 | 1993-05-14 | Seiko Epson Corp | 湿度センサ |
JP2874026B2 (ja) * | 1991-11-15 | 1999-03-24 | マルコン電子株式会社 | 湿度センサ |
US5331287A (en) * | 1992-07-31 | 1994-07-19 | Hughes Aircraft Company | Device and method for sensing water and/or acid in the presence of water in non-aqueous media |
US5455513A (en) * | 1993-12-07 | 1995-10-03 | Falmouth Scientific, Inc. | System for measuring properties of materials |
US5650062A (en) * | 1995-03-17 | 1997-07-22 | Matsushita Electric Industrial Co., Ltd. | Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same |
DE19547681C2 (de) * | 1995-12-20 | 1999-10-21 | Mannesmann Vdo Ag | Feuchtesensor |
US5903222A (en) * | 1997-04-03 | 1999-05-11 | Zaggie, Inc. | Wet garment detector |
TW571093B (en) * | 1998-12-28 | 2004-01-11 | Tdk Corp | Moisture sensor |
WO2001092476A2 (de) | 2000-05-31 | 2001-12-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | In vitro-gewebetestsystem |
JP2003004683A (ja) * | 2001-06-15 | 2003-01-08 | Denso Corp | 容量式湿度センサ |
EP1474676A4 (en) * | 2001-12-20 | 2005-03-09 | Prec Instr Corp | ON-LINE OIL STATE SENSOR SYSTEM FOR ROTARY AND ALTERNATIVE MOTION MACHINES |
JP2003270189A (ja) * | 2002-03-20 | 2003-09-25 | Denso Corp | 容量式湿度センサ |
DE102004045210A1 (de) * | 2004-09-17 | 2006-04-06 | Infineon Technologies Ag | Sensor-Anordnung und Verfahren zum Ermitteln eines Sensorereignisses |
JP4566784B2 (ja) * | 2005-02-24 | 2010-10-20 | 株式会社デンソー | 湿度センサ装置 |
JP2007303936A (ja) | 2006-05-10 | 2007-11-22 | Sumitomo Electric Ind Ltd | センサチップ及びその製造方法 |
JP2008045876A (ja) | 2006-08-10 | 2008-02-28 | Seiko Epson Corp | バイオセンサ及びバイオセンサの製造方法 |
US7605710B2 (en) * | 2006-08-18 | 2009-10-20 | Fresenius Medical Care Holdings, Inc. | Wetness sensor |
JP2008096235A (ja) | 2006-10-11 | 2008-04-24 | Sharp Corp | 電気化学計測マイクロチップ |
US9236622B2 (en) * | 2009-08-07 | 2016-01-12 | Ford Global Technologies, Llc | Fuel cell system with wetness sensor |
EP2492481A1 (en) * | 2011-02-22 | 2012-08-29 | Delphi Technologies Holding S.à.r.l. | Soot sensor functional capability monitoring |
WO2014018288A1 (en) * | 2012-07-26 | 2014-01-30 | Luna Innovations Incorporated | Sensing systems and methods for determining and classifying corrosivity |
ITMI20130484A1 (it) * | 2013-03-29 | 2014-09-30 | St Microelectronics Srl | Dispositivo elettronico integrato per il monitoraggio di umidita' e/o acidita'/basicita' ambientali e/o corrosione |
US20150338363A1 (en) * | 2014-05-13 | 2015-11-26 | Auburn University | Capacitive fringing field sensors and electrical conductivity sensors integrated into printed circuit boards |
DE102014210122B4 (de) * | 2014-05-27 | 2025-04-30 | Robert Bosch Gmbh | Vorrichtung zum Bestimmen eines Werts einer zu messenden Eigenschaft eines Fluids, Verfahren zum Betreiben einer Vorrichtung zum Bestimmen eines Werts einer zu messenden Eigenschaft eines Fluids |
WO2016065180A1 (en) * | 2014-10-22 | 2016-04-28 | President And Fellows Of Harvard College | Detecting gases and respiration by the conductivity of water within a porous substrate sensor |
-
2015
- 2015-07-21 WO PCT/JP2015/070692 patent/WO2016013544A1/ja active Application Filing
- 2015-07-21 US US15/327,103 patent/US10267756B2/en active Active
- 2015-07-21 JP JP2016535935A patent/JP6448007B2/ja active Active
- 2015-07-21 EP EP15824136.4A patent/EP3173778B1/en active Active
-
2018
- 2018-12-19 US US16/225,087 patent/US20190145920A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01123140A (ja) * | 1987-11-06 | 1989-05-16 | Toyota Motor Corp | 結露センサ |
JPH052007A (ja) * | 1991-06-24 | 1993-01-08 | Nippon Telegr & Teleph Corp <Ntt> | ウオールジエツト型電気化学的検出器およびその製造方法 |
JPH05332964A (ja) * | 1992-06-02 | 1993-12-17 | Matsushita Electric Works Ltd | 結露センサ |
JPH1038843A (ja) * | 1996-04-12 | 1998-02-13 | Teledyne Ind Inc | 不活性ガスのためのガス/湿気センサ |
JP2001349867A (ja) * | 2000-06-07 | 2001-12-21 | Nippon Soken Inc | 酸性、塩基性度検出用センサ |
JP2006070287A (ja) * | 2004-08-31 | 2006-03-16 | Sumitomo Electric Ind Ltd | ダイヤモンド局所配線電極 |
JP2006317263A (ja) * | 2005-05-12 | 2006-11-24 | Nippon Telegr & Teleph Corp <Ntt> | カテコールアミン類の測定方法、および該方法に用いられるカテコールアミン類測定用電極およびその製造方法ならびに電気化学セル |
JP2008261691A (ja) * | 2007-04-11 | 2008-10-30 | Alps Electric Co Ltd | 結露センサ |
JP2011085516A (ja) * | 2009-10-16 | 2011-04-28 | Mitsubishi Heavy Ind Ltd | 外気導入装置及びそれを備えた屋外構造物 |
JP2011128091A (ja) * | 2009-12-21 | 2011-06-30 | National Institute Of Advanced Industrial Science & Technology | 極微量水分計測素子および該計測素子を用いた防湿封止性能評価方法 |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017195861A1 (ja) * | 2016-05-13 | 2019-03-14 | 国立研究開発法人物質・材料研究機構 | 液滴サイズ判別装置及び液滴サイズ判別方法 |
WO2017195861A1 (ja) * | 2016-05-13 | 2017-11-16 | 国立研究開発法人物質・材料研究機構 | 液滴サイズ判別装置及び液滴サイズ判別方法 |
US10830573B2 (en) | 2016-05-13 | 2020-11-10 | National Institute For Materials Science | Droplet size determining device and droplet size determining method |
JP2021073458A (ja) * | 2016-06-08 | 2021-05-13 | 国立研究開発法人物質・材料研究機構 | 露点測定方法及び露点測定装置 |
WO2017213118A1 (ja) * | 2016-06-08 | 2017-12-14 | 国立研究開発法人物質・材料研究機構 | 露点測定方法及び露点測定装置 |
JPWO2017213118A1 (ja) * | 2016-06-08 | 2019-03-28 | 国立研究開発法人物質・材料研究機構 | 露点測定方法及び露点測定装置 |
US11454603B2 (en) | 2016-06-08 | 2022-09-27 | National Institute For Materials Science | Dew point measuring method and dew point measuring device |
EP3470829A4 (en) * | 2016-06-08 | 2020-03-11 | National Institute for Materials Science | METHOD FOR MEASURING THE DEW POINT AND DEVICE FOR MEASURING THE DEW POINT |
US11856664B2 (en) | 2017-02-14 | 2023-12-26 | National Institute For Materials Science | Method and system for preventing dew condensation and light scattering due to dew condensation |
WO2018150903A1 (ja) | 2017-02-14 | 2018-08-23 | 国立研究開発法人物質・材料研究機構 | 結露および結露に伴う光散乱の予防方法および予防システム |
EP3584571A4 (en) * | 2017-02-14 | 2020-12-16 | National Institute for Materials Science | METHOD AND SYSTEM FOR PREVENTING FOG FORMATION AND LIGHT SCATTERING ASSOCIATED WITH FOG FORMATION |
JP2019032277A (ja) * | 2017-08-09 | 2019-02-28 | 株式会社シュリンクス | 環境モニタリングセンサ及び環境モニタリング装置 |
JP7033798B2 (ja) | 2017-09-01 | 2022-03-11 | 国立研究開発法人物質・材料研究機構 | 乾湿応答センサー |
WO2019044640A1 (ja) | 2017-09-01 | 2019-03-07 | 国立研究開発法人物質・材料研究機構 | 乾湿応答センサー |
US11486843B2 (en) | 2017-09-01 | 2022-11-01 | National Institute For Materials Science | Dryness/wetness responsive sensor |
JP2019196957A (ja) * | 2018-05-09 | 2019-11-14 | 日新電機株式会社 | 腐食性環境測定装置 |
JP7151155B2 (ja) | 2018-05-09 | 2022-10-12 | 日新電機株式会社 | 腐食性環境測定装置 |
WO2020100778A1 (ja) | 2018-11-12 | 2020-05-22 | 国立研究開発法人物質・材料研究機構 | 結露検出素子 |
US11913892B2 (en) | 2018-11-12 | 2024-02-27 | National Institute For Materials Science | Condensation detection element |
WO2023276982A1 (ja) | 2021-06-30 | 2023-01-05 | 国立研究開発法人物質・材料研究機構 | 液滴センサー、結露検出装置およびそれらの製造方法 |
JPWO2023276982A1 (ja) * | 2021-06-30 | 2023-01-05 | ||
JP7623738B2 (ja) | 2021-06-30 | 2025-01-29 | 国立研究開発法人物質・材料研究機構 | 液滴センサー、結露検出装置およびそれらの製造方法 |
WO2023048076A1 (ja) | 2021-09-21 | 2023-03-30 | 国立研究開発法人物質・材料研究機構 | 揮発性脂肪酸の検知方法および測定装置 |
JPWO2023048076A1 (ja) * | 2021-09-21 | 2023-03-30 | ||
WO2023171472A1 (ja) | 2022-03-09 | 2023-09-14 | 国立研究開発法人物質・材料研究機構 | 心拍変動測定システムおよび心拍変動測定方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170167995A1 (en) | 2017-06-15 |
JPWO2016013544A1 (ja) | 2017-04-27 |
US20190145920A1 (en) | 2019-05-16 |
EP3173778A1 (en) | 2017-05-31 |
US10267756B2 (en) | 2019-04-23 |
EP3173778A4 (en) | 2018-02-21 |
JP6448007B2 (ja) | 2019-01-09 |
EP3173778B1 (en) | 2019-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6448007B2 (ja) | 高速応答・高感度乾湿応答センサー | |
US8390306B2 (en) | Corrosion sensors | |
JP6058442B2 (ja) | 腐食センサ、並びにこれを使用した腐食速度測定方法及び腐食速度測定装置 | |
US9804077B2 (en) | Device and method for monitoring corrosive environment | |
KR100856577B1 (ko) | 탄소나노튜브 센서 및 그 제조방법 | |
CN105606668A (zh) | 一种电化学式薄膜凝露传感器 | |
US11486843B2 (en) | Dryness/wetness responsive sensor | |
WO2020100778A1 (ja) | 結露検出素子 | |
JP2013134111A (ja) | 物体の腐食速度測定方法 | |
US20170089828A1 (en) | Corrosion sensor | |
US20190250117A1 (en) | Capacitive gas sensor | |
JP2013205211A (ja) | 腐食センサ、劣化検知センサおよび劣化モニタ | |
JPH02291952A (ja) | 金属の腐食監視装置 | |
JP6381167B1 (ja) | Acmセンサを用いた腐食速度測定方法及び環境モニタリング装置 | |
CN205210015U (zh) | 一种凝露传感器 | |
JP6834558B2 (ja) | 腐食モニタリング用測定モジュール、腐食モニタリング用測定方法、腐食モニタリングシステム、及び、腐食モニタリング方法 | |
Chen et al. | MEMS electric field sensor with biased electrically floating cover to measure electric field in ionic environments | |
JP2005207813A (ja) | 腐食度センサー、その製造方法、及び測定システム | |
WO2005010536A1 (ja) | 非接触式センサ | |
JP2000131258A (ja) | 汚損検出センサ | |
JP5332037B2 (ja) | 絶縁劣化モニタ装置、電気機器および絶縁劣化モニタ方法 | |
US20140159751A1 (en) | Passive Multi-Layered Corrosion Sensor | |
JP2025090885A (ja) | 濡れセンサおよび濡れ評価装置 | |
CN209280628U (zh) | 重金属传感芯片 | |
JP2007165438A (ja) | 太陽電池モジュールの評価方法、及び太陽電池モジュールの評価装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15824136 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016535935 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15327103 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015824136 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015824136 Country of ref document: EP |