WO2016013286A1 - Phase difference calculation device, sound source direction detection device, and phase difference calculation method - Google Patents

Phase difference calculation device, sound source direction detection device, and phase difference calculation method Download PDF

Info

Publication number
WO2016013286A1
WO2016013286A1 PCT/JP2015/064814 JP2015064814W WO2016013286A1 WO 2016013286 A1 WO2016013286 A1 WO 2016013286A1 JP 2015064814 W JP2015064814 W JP 2015064814W WO 2016013286 A1 WO2016013286 A1 WO 2016013286A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
microphone
audio signal
sound source
phase
Prior art date
Application number
PCT/JP2015/064814
Other languages
French (fr)
Japanese (ja)
Inventor
中村 圭介
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016013286A1 publication Critical patent/WO2016013286A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a phase difference calculation device that calculates a phase difference between audio signals obtained from a plurality of microphones, a sound source direction detection device including the phase difference calculation device, and a phase difference calculation method.
  • a technique for detecting the direction or position of a sound source by measuring a temporal shift (phase difference) of an audio signal obtained from each microphone using a plurality of microphones is known.
  • a technique for determining the phase difference of an audio signal obtained from each of a plurality of microphones there is a technique for obtaining a phase difference spectrum in an acoustic signal as disclosed in Patent Document 1 and Patent Document 2, for example.
  • Patent Document 1 a phase difference spectrum in two acoustic signals is obtained, and all or part of the obtained phase difference spectrum is approximated by a linear function relating to a frequency passing through the origin, and the direction of the sound source is determined from the slope of the linear function.
  • a method for calculating is disclosed.
  • Patent Document 2 obtains a phase difference spectrum between two acoustic signals, obtains a power spectrum of at least one of the two acoustic signals, and generates a sound source for each sound source based on the obtained phase difference spectrum and the power spectrum.
  • a method for determining a direction is disclosed.
  • the frequency component of human voice greatly fluctuates depending on the pronunciation of words. Therefore, when a human voice is a sound source, it is difficult to accurately measure the deviation of each audio signal obtained from a plurality of microphones. For example, the sound of “shi” includes many relatively high-frequency sounds, and “o” includes many low-frequency sounds.
  • the sound input to each microphone is not necessarily a sound from a single sound source like the utterance from a single person, but also includes ambient noise and reflected sound from nearby walls.
  • the same waveform signal shifted on the axis is not input to each microphone in the same manner. Therefore, it is difficult to accurately measure the deviation of each signal when the surrounding noise is large or there is a hard wall that easily reflects sound in the vicinity.
  • an object of the present invention is to provide a phase difference calculation device and a phase difference calculation device that can more accurately calculate a phase difference between audio signals output from different microphones.
  • An object of the present invention is to provide a sound source direction detecting device including a device and a phase difference calculating method.
  • a phase difference calculation device includes a plurality of microphones that are arranged at different positions and that convert external sound into an audio signal and output the sound, and the plurality of microphones.
  • the phase-shifted audio signal in which the relative phase shift amount between the audio signal output from one of the microphones and the audio signal output from the other microphone is changed stepwise
  • a phase-shifted sound signal creating unit that creates each amount
  • an integrated value calculating unit that calculates an integrated value of the difference between output values within a certain range of the two sound signals in the phase-shifted sound signal corresponding to each phase-shifted amount
  • the phase difference between the audio signal output from the one microphone and the audio signal output from the other microphone based on the integrated value. It comprises a phase difference calculating unit for output, a.
  • a sound source direction detection method includes a step of converting external sound into an audio signal using a plurality of microphones arranged at different positions and outputting the sound signal; The phase-shifted sound in which the relative phase shift amount between the sound signal output from one of the plurality of microphones and the sound signal output from the other microphone is changed stepwise.
  • the phase difference between audio signals output from different microphones can be calculated more accurately.
  • FIG. 5 is a diagram for explaining a method of creating a deviation value graph from two audio data in an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a method of creating a deviation value graph from two audio data in an embodiment of the present invention. It is a figure which shows the example of audio
  • FIG. 5 is a shift value graph when the audio signal obtained from the first microphone in FIG. 4 is phase-shifted in the positive direction toward the audio signal obtained from the second microphone.
  • FIG. 6 is a diagram for explaining a method of specifying a sound source direction from a phase difference between two audio signals in an embodiment of the present invention. It is a figure which shows the example of audio
  • FIG. 1 is a block diagram showing a sound source direction detection device 1 according to this embodiment.
  • the sound source direction detection device 1 is a device that detects the direction of a sound source using a plurality of microphones.
  • the sound source direction detection device 1 can be mounted on, for example, a robot that has a conversation with a human. By detecting the direction of the person who is speaking by the sound source direction detection device 1, the face or line of sight of the robot can be directed toward the speaker.
  • the sound source direction detection device 1 can be mounted on the microphone unit of the telephone conference system.
  • the sound source direction detection device 1 can identify the person by detecting the direction of the person who is speaking among the participants in the conference.
  • the sound source direction detection device 1 can also be installed in a security monitoring system. Even an intruder who is hidden behind the object and is not reflected in the camera of the security monitoring system can detect the approximate position of the intruder if the sound source direction detection device 1 can detect sound.
  • the sound source direction detecting device 1 includes a first microphone 2a, a second microphone 2b, a first microphone signal input unit 3a, a second microphone signal input unit 3b, a first microphone signal storage unit 4a, and a second microphone.
  • a microphone signal storage unit 4b, an audio signal evaluation unit 5, a sound source direction specifying unit 6 (specifying unit), and an angle table 7 are provided.
  • the first microphone 2a, the second microphone 2b, the first microphone signal input unit 3a, the second microphone signal input unit 3b, the first microphone signal storage unit 4a, the second microphone signal storage unit 4b, and the audio signal evaluation unit 5 However, it functions as the phase difference calculation apparatus 10 according to the present invention.
  • the first microphone 2a and the second microphone 2b are microphones that convert external sounds into audio signals.
  • the first microphone 2a and the second microphone 2b are arranged at different positions.
  • the first microphone signal input unit 3a creates sound data obtained by digitizing the sound signal converted by the first microphone 2a.
  • the second microphone signal input unit 3b creates audio data in which the audio signal converted by the second microphone 2b is digitized.
  • the audio data is data indicating the relationship between the output value of the audio signal and time (change in the output value of the audio signal over time).
  • the first microphone signal storage unit 4a stores voice data created by the first microphone signal input unit 3a
  • the second microphone signal storage unit 4b stores voice data created by the second microphone signal input unit 3b. is doing. Both the first microphone signal storage unit 4a and the second microphone signal storage unit 4b always store audio data for an arbitrary fixed time.
  • the audio signal evaluation unit 5 refers to the audio data stored in the first microphone signal storage unit 4a and the second microphone signal storage unit 4b, and measures the temporal shift of the audio signal represented by each audio data. Thus, the phase difference between the two audio signals is obtained.
  • a block diagram of the audio signal evaluation unit is shown in FIG. As shown in FIG. 2, the audio signal evaluation unit 5 includes a phase shift audio signal creation unit 51, a deviation value calculation unit 52 (integrated value calculation unit), a deviation value graph creation unit 53, a determination unit 54, and a phase difference calculation unit. 55. Details of these members and a method of calculating a phase difference by these members will be described later.
  • the sound source direction specifying unit 6 specifies the sound source direction based on the phase difference calculated by the audio signal evaluating unit 5. Specifically, the angle table 7 stores the angle direction corresponding to each phase difference, and when the phase difference is received from the sound source direction specifying unit 6, the angle of the sound source direction corresponding to the phase difference is specified. Send to part 6.
  • the angle of the sound source direction is an angle between the sound source direction and a reference direction.
  • the sound source direction specifying unit 6 specifies the angle direction of the sound source from the angle obtained using the angle table 7. Then, the sound source direction specifying unit 6 outputs the specified angular direction to the outside as a detection result of the sound source direction.
  • FIG. 3 and 4 are diagrams for explaining a method of creating a deviation value graph from two audio data.
  • audio data indicated by a solid line represents an audio signal obtained from the first microphone 2a
  • audio data indicated by a dotted line represents an audio signal obtained from the second microphone 2b.
  • the phase-shifted sound signal creating unit 51 of the sound signal evaluating unit 5 creates a phase-shifted sound signal in which the relative phase shift amount between two sound signals is changed stepwise for each phase shift amount.
  • the deviation value calculation unit 52 obtains an integrated value of the difference between the output values within a certain range of the two audio signals in the phase-shifted audio signal corresponding to each phase shift amount.
  • the difference between the output values is the absolute value of the difference between the output values of the two audio signals at a specific point (time).
  • These integrated values are the two audio signals within a certain range (in FIG. 2).
  • (A) in (A) is a gray area).
  • the integrated value of the difference between the output values within a certain range in the two audio signals is referred to as a “deviation value”. It is considered that the larger the deviation value, the larger the phase difference between the two audio signals, and the smaller the deviation value, the smaller the phase difference between the two audio signals.
  • the deviation value graph creating unit 53 creates a deviation value graph showing the change of the deviation value over time when the relative phase shift amount between the two audio signals is changed in stages.
  • FIG. 3B shows a state when the audio signal (solid line) obtained from the first microphone 2a in FIG. 3A is phase-shifted by +1 in the right direction (plus direction) of the drawing. Further, from this state, the state when the audio signal obtained from the first microphone 2a is phase-shifted by +1 in the right direction of the drawing is (C) in FIG. 3, and the state when the phase is further shifted by +1 is shown. It is (D) in FIG. By plotting the deviation value in each state, the deviation value graph shown in FIG. 2 is obtained.
  • the present invention is not necessarily limited thereto.
  • the audio signal obtained from the second microphone 2b may be phase-shifted with reference to the audio signal obtained from the first microphone 2a.
  • the deviation value graph when the audio signal obtained from the second microphone 2b in FIG. 3A is phase-shifted in the left direction (minus direction) in the drawing is the deviation value graph shown in FIG. .
  • the shift value graph when the audio signal obtained from the second microphone 2b of (A) in FIG. 4 is phase-shifted in the right direction (plus direction) in the drawing is the shift value graph shown in FIG.
  • the determination unit 54 determines whether or not the audio signals obtained from the first microphone 2a and the second microphone 2b are appropriate for calculating the phase difference based on the deviation value graph created by the deviation value graph creation unit 53. .
  • the phase difference calculation unit 55 includes the deviation value graph creation unit 53. Based on the generated deviation value graph, the phase difference between the audio signals obtained from the first microphone 2a and the second microphone 2b is calculated. A determination method by the determination unit 54 will be described later, and a phase difference calculation method by the phase difference calculation unit 55 will be described below.
  • FIG. 5 shows an example of sound data suitable for calculating the phase difference. Then, the deviation value graph when the audio signal evaluation unit 5 phase-shifts the audio signal obtained from the first microphone 2a in FIG. 5 in the positive direction toward the audio signal obtained from the second microphone 2b. Is shown in FIG.
  • the point where the deviation value is minimum is one point or two consecutive points.
  • the deviation value is minimized when the two audio signals substantially match. Therefore, the phase shift amount when the deviation value between the two audio signals becomes the minimum is the temporal deviation (phase difference) between the two audio signals.
  • the phase difference between the two audio signals is +9.
  • the integrated value (the difference between the output values of the two within a certain range when the relative phase shift amount between the audio signals output from the first microphone 2a and the second microphone 2b is changed stepwise.
  • the phase difference between the audio signals output from the first microphone 2a and the second microphone 2b can be calculated based on the deviation value. Therefore, the phase difference calculation unit 55 calculates the phase difference between the audio signals output from the first microphone 2a and the second microphone 2b based on the deviation value for each phase shift amount.
  • FIG. 7 is a diagram for explaining a method of specifying the sound source direction from the phase difference between two audio signals.
  • the direction from the second microphone 2b to the first microphone 2a is a 0 degree direction
  • the direction from the first microphone 2a to the second microphone 2b is a 180 degree direction.
  • the phase difference here refers to the phase shift amount of the audio signal obtained from the first microphone 2a with reference to the audio signal obtained from the second microphone 2b.
  • the locus of a point where the difference in distance from each of the two points is a constant amount is a hyperbolic function with the two points as the focal point. If the point is sufficiently far away from the distance between the two focal points, the point is located on the asymptote of the hyperbolic function, and the slope of the asymptote can be regarded as the direction in which the point is located. it can. That is, the sound source is located on the asymptote of the hyperbolic function having the respective positions of the first microphone 2a and the second microphone 2b as the focal points, and the direction in which the sound source is located can be regarded as the slope of the asymptote.
  • the angle of the sound source direction is arccos (9/14) ⁇ 50 degrees. Said angle is angle (theta) between 0 degree directions. That is, the sound source direction is a 50 degree direction.
  • the angle table 7 stores the angle of the sound source direction corresponding to each phase difference.
  • the sound source direction specifying unit 6 sends the phase difference calculated by the audio signal evaluation unit 5 to the angle table 7, the sound source direction specifying unit 6 receives the angle of the sound source direction corresponding to the phase difference from the angle table 7.
  • the sound source direction specifying unit 6 specifies the angle direction of the sound source from the angle obtained using the angle table 7 and outputs the specified angle direction to the outside as a detection result of the sound source direction.
  • the angle direction specified from the phase difference calculated by the audio signal evaluation unit 5 can be the left and right directions with respect to the straight line connecting the first microphone 2a and the second microphone 2b. Therefore, in the angle direction specified from one phase difference, it cannot be specified whether the sound source direction is the left and right directions with respect to the straight line connecting the first microphone 2a and the second microphone 2b. Therefore, the sound source direction detection device 1 according to the present embodiment is preferably used when detecting a sound source located on one side with respect to a straight line connecting the first microphone 2a and the second microphone 2b, such as when installed near a wall. .
  • FIG. 1 An example of audio data when there is a lot of noise around is shown in FIG. In this figure, in addition to the main voice showing a large waveform, another voice showing a small waveform is emitted from a different direction.
  • the audio signal evaluation unit 5 creates a deviation value graph by the same method as described above.
  • the created deviation value graph is as shown in FIG.
  • the point where the deviation value is minimum is one point or two consecutive points
  • the value of the minimum value is higher than that of the deviation value graph shown in FIG. This means that the degree of coincidence between the two audio signals is low.
  • the phase difference is calculated using such a deviation value graph, it is difficult to calculate an accurate phase difference, and it is easy to erroneously detect the sound source direction. For this reason, such a deviation value graph is inappropriate for calculating the phase difference and not suitable for detecting the direction of the sound source.
  • the determination unit 54 of the audio signal evaluation unit 5 sets a predetermined threshold value and a deviation value graph having a minimum value equal to or greater than the threshold value is obtained, the obtained audio data is not suitable for calculating the phase difference. Judge that it is appropriate. And the phase difference calculation part 55 does not calculate a phase difference using the said audio
  • the predetermined threshold is, for example, the minimum value of the deviation value graph obtained from appropriate audio data (the deviation value graph shown in FIG. 6) and the deviation value graph obtained from inappropriate audio data (the deviation shown in FIG. 9). It can be a value between the minimum value of the value graph).
  • FIG. 10 shows an example of high-frequency audio data exceeding a predetermined frequency. This figure shows a state in which sound having a dense waveform is emitted.
  • the audio signal evaluation unit 5 creates a deviation value graph by the same method as described above.
  • the created deviation value graph is as shown in FIG.
  • the phase difference is calculated using such a deviation value graph, it is difficult to calculate an accurate phase difference, and it is easy to erroneously detect the sound source direction. For this reason, such a deviation value graph is inappropriate for calculating the phase difference and not suitable for detecting the direction of the sound source.
  • the determination unit 54 of the audio signal evaluation unit 5 determines that the obtained audio data is inappropriate for calculating the phase difference when the deviation value graph has two or more minimum points. .
  • the phase difference calculation part 55 does not calculate a phase difference using the said audio
  • the number of minimum points in the deviation value graph can be easily obtained by counting the number of times the slope of the graph changes from ⁇ (negative value) to + (positive value).
  • the phase difference calculation unit 55 calculates the phase difference using only audio data appropriate for the phase difference calculation. Can do. For this reason, the sound source direction detection device 1 can calculate the phase difference more accurately.
  • the sound source direction specifying unit 6 can detect the sound source direction based on the phase difference calculated using only sound data appropriate for the calculation of the phase difference. For this reason, the sound source direction detection device 1 can detect the sound source direction more accurately.
  • the frequency component of human voice greatly fluctuates due to the pronunciation of words.
  • the sound signal may be intermittently generated due to mixing of other noise from the surroundings.
  • the sound source direction detecting device requires many processing members. It becomes.
  • the sound source direction detection apparatus 1 according to the present embodiment does not detect the sound source direction using the audio data as shown in FIGS. 9 and 11, the processing until the sound source direction is specified can be reduced. The processing members required for the sound source direction detection device 1 can be suppressed.
  • the determination unit 54 determines whether the audio data is appropriate for calculating the phase difference using the deviation value graph, and the phase difference calculation unit 55 uses the deviation value graph to determine whether the audio data is appropriate.
  • the phase difference between signals is calculated.
  • the sound source direction detection device 1 can determine whether or not the sound data is appropriate for calculating the phase difference and calculate the phase difference between the sound signals only by creating a deviation value graph. It is possible to reduce the processing required to specify the sound source direction.
  • the audio signal evaluation unit 5 acquires audio data stored in the first microphone signal storage unit 4a and the second microphone signal storage unit 4b (step S1; hereinafter abbreviated as S1).
  • the phase-shifted audio signal creating unit 51 of the audio signal evaluating unit 5 converts the phase-shifted audio signal in which the relative phase shift amount between the audio signals indicated by each of the two audio data is changed stepwise for each phase shift amount.
  • Create (S2) Then, the deviation value calculation unit 52 obtains an integrated value (deviation value) of the difference between the output values within a certain range of the two audio signals in the phase-shifted audio signal corresponding to each phase shift amount (S3), and the deviation value graph
  • the creating unit 53 creates a deviation value graph indicating the change of the deviation value with time (S4).
  • the determination unit 54 determines whether or not the audio signals output from the first microphone 2a and the second microphone 2b are appropriate for calculating the phase difference based on the deviation value graph created by the deviation value graph creation unit 53. judge. Specifically, the determination unit 54 determines whether or not the minimum value of the deviation value graph is larger than a predetermined threshold (S5). If the minimum value of the deviation value graph is larger than the predetermined threshold value, the determination unit 54 determines that the sound signals output from the first microphone 2a and the second microphone 2b are inappropriate for calculating the phase difference. Then, the process returns to S1, and the processing after S2 is performed again using another audio data.
  • S5 a predetermined threshold
  • the determination unit 54 specifies the number of local minimum points of the deviation value graph (S6). And the determination part 54 determines whether the number of the specified minimum points is one (S7). When the number of local minimum points in the deviation value graph is two or more, the determination unit 54 determines that the audio signals output from the first microphone 2a and the second microphone 2b are inappropriate for calculating the phase difference. Then, the process returns to S1, and the processing after S2 is performed again using another audio data.
  • the determination unit 54 determines that the audio signals output from the first microphone 2a and the second microphone 2b are appropriate for calculating the phase difference. . Then, the phase difference calculation unit 55 calculates the phase shift amount at the minimum value of the deviation value graph as the phase difference between the two audio signals indicated by the two audio data (S8).
  • the sound source direction specifying unit 6 specifies the sound source direction based on the phase difference calculated by the phase difference calculating unit 55 (S9). Specifically, the sound source direction identification unit 6 sends the phase difference calculated by the phase difference calculation unit 55 to the angle table 7 and receives the angle of the sound source direction corresponding to the phase difference from the angle table 7. Then, the sound source direction specifying unit 6 specifies the angle direction of the sound source from the angle obtained using the angle table 7, and outputs the specified angle direction to the outside as a detection result of the sound source direction (S10).
  • FIG. 13 is a block diagram showing the sound source direction detection device 11 according to the present embodiment.
  • the sound source direction detection device 11 includes a first microphone 2a, a second microphone 2b, a third microphone 2c, a first microphone signal input unit 3a, a second microphone signal input unit 3b, and a third microphone signal input.
  • the first microphone 2a, the second microphone 2b, the third microphone 2c, the first microphone signal input unit 3a, the second microphone signal input unit 3b, the third microphone signal input unit 3c, the first microphone signal storage unit 4a, the first microphone The 2 microphone signal storage unit 4b, the third microphone signal storage unit 4c, and the audio signal evaluation unit 5 function as the phase difference calculation device 20 according to the present invention.
  • the sound source direction detection device 11 is different from the sound source direction detection device 1 in that it includes a third microphone 2c, a third microphone signal input unit 3c, and a third microphone signal storage unit 4c.
  • the third microphone 2c is a microphone that converts external sound into an audio signal.
  • the 1st microphone 2a, the 2nd microphone 2b, and the 3rd microphone 2c are arranged in a mutually different position, and are arranged so that it may not be located on the same straight line.
  • the third microphone signal input unit 3c creates voice data in which the voice signal converted by the third microphone 2c is digitized.
  • the third microphone signal storage unit 4c stores the voice data created by the third microphone signal input unit 3c, and always stores voice data for an arbitrary fixed time.
  • the audio signal evaluation unit 5 Since the sound source direction detection device 11 has three microphones, that is, the first microphone 2a, the second microphone 2b, and the third microphone 2c, the audio signal evaluation unit 5 has a combination of two microphones out of the three microphones. In addition, the phase difference between the audio signals obtained from each microphone is calculated. That is, the audio signal evaluation unit 5 calculates the phase difference for each of the three combinations of microphones. In principle, the audio signal evaluation unit 5 may calculate the phase difference of at least two combinations of microphones.
  • the angle direction specified from the phase difference calculated by the audio signal evaluation unit 5 may be the left and right directions with respect to the straight line connecting the two microphones. For this reason, in the angular direction specified from one phase difference, it cannot be specified whether the sound source direction is the left and right directions with respect to the straight line connecting the two microphones.
  • the sound source direction specifying unit 6 specifies, as the sound source direction, the direction in which the angle direction specified from the phase difference coincides between at least two phase differences calculated by the audio signal evaluation unit 5. That is, the sound source direction specifying unit 6 specifies, as the sound source direction, a direction that matches one of the angle directions specified from the other phase difference among the angle directions specified from the one phase difference. The sound source direction specifying unit 6 outputs the specified sound source direction to the outside as a detection result.
  • the sound source direction detection device 11 can detect the sound source direction from all directions of 360 degrees on a plane including three microphones.
  • the use place is restricted such as being installed near a wall.
  • the use place is not restricted, and the sound source can be placed at a favorite place.
  • a direction detection device 11 can be installed.
  • two sound source direction detection devices 11 according to the second embodiment are used, and both are installed at locations separated from each other. Then, by using a triangulation method from the sound source direction detected by each sound source direction detection device 11, the distance from each sound source direction detection device to the sound source can be calculated, and the position of the sound source can be specified.
  • the position of the sound source can be detected by using the two sound source direction detection devices 11. That is, in this embodiment, the two sound source direction detection devices 11 can be used as the sound source position detection device.
  • FIG. 14 is a block diagram showing the sound source direction detection device 21 according to this embodiment.
  • the sound source direction detection device 21 includes a first microphone 2a, a second microphone 2b, a third microphone 2c, a fourth microphone 2d, a first microphone signal input unit 3a, a second microphone signal input unit 3b, Third microphone signal input unit 3c, fourth microphone signal input unit 3d, first microphone signal storage unit 4a, second microphone signal storage unit 4b, third microphone signal storage unit 4c, fourth microphone signal storage unit 4d, audio signal An evaluation unit 5, a sound source direction specifying unit 6, and an angle table 7 are provided.
  • the input unit 3d, the first microphone signal storage unit 4a, the second microphone signal storage unit 4b, the third microphone signal storage unit 4c, the fourth microphone signal storage unit 4d, and the audio signal evaluation unit 5 are phase differences according to the present invention. It functions as the calculation device 30.
  • the sound source direction detection device 21 is different from the sound source direction detection device 11 in that it includes a fourth microphone 2d, a fourth microphone signal input unit 3d, and a fourth microphone signal storage unit 4d.
  • the fourth microphone 2d is a microphone that converts external sound into an audio signal.
  • the 1st microphone 2a, the 2nd microphone 2b, the 3rd microphone 2c, and the 4th microphone 2d are arranged in a mutually different position, and are arranged so that it may not be located on the same plane.
  • the fourth microphone signal input unit 3d creates voice data obtained by digitizing the voice signal converted by the fourth microphone 2d.
  • the fourth microphone signal storage unit 4d stores the voice data created by the fourth microphone signal input unit 3d, and always stores voice data for an arbitrary fixed time.
  • FIG. 15 is a diagram for explaining a method of specifying a sound source direction using four microphones.
  • the fourth microphone 2d is arranged at a position perpendicular to the plane including the first microphone 2a, the second microphone 2b, and the third microphone 2c and on a straight line passing through the third microphone 2c.
  • the plane (the first microphone 2a, the second microphone 2b, and the third microphone 2c are replaced by the method described in the second embodiment).
  • the angle ⁇ 1 in the sound source direction is obtained.
  • the angle ⁇ 1 is an angle between a straight line passing through the first microphone 2a and the second microphone 2b in the plane.
  • the sound source direction with respect to the straight line (the straight line passing through the third microphone 2c and the fourth microphone 2d) is specified by the method described in the first embodiment.
  • the angle ⁇ 2 in the sound source direction is obtained.
  • the angle ⁇ 2 is an angle between the straight line. That is, the sound source direction is a direction passing through a conical surface having the above-mentioned straight line as a main axis and an apex angle of 2 ⁇ ⁇ 2.
  • the sound source direction can be specified from the three-dimensional vector of the polar coordinate system obtained from the two angles ⁇ 1 and ⁇ 2 obtained as described above.
  • the angle between the third microphone 2c and the straight line passing through the fourth microphone 2d is an angle ⁇ 2
  • the plane includes the first microphone 2a, the second microphone 2b, and the third microphone 2c.
  • the sound source direction specifying unit 6 outputs the sound source direction specified as described above to the outside as a detection result.
  • the sound source direction detection device 21 can detect the direction of the sound source position in the three-dimensional space instead of detecting the sound source direction on the plane.
  • the sound source is a human voice
  • the position of the mouth of the person talking can be detected including the height direction, so that the height can be known to some extent, which makes it possible to distinguish between adults and children. Will also be available.
  • Phase difference calculation apparatuses 10, 20, and 30 according to aspect 1 of the present invention are arranged at different positions, convert a sound from an external sound into a sound signal, and output one of the plurality of microphones.
  • a phase-shifted audio signal is created for each phase-shifted amount by gradually changing the relative phase-shifted amount between the audio signals output from one of the microphones and the audio signal output from the other microphones.
  • a phase shift audio signal creation unit 51 that performs an integrated value calculation unit that calculates an integrated value of a difference between output values within a certain range of two audio signals in the phase shift audio signal corresponding to each phase shift amount (deviation value) Based on the calculation unit 52), the audio signal output from the one microphone, and the audio signal output from the other microphone based on the integrated value It includes a phase difference calculator 55 for calculating a phase difference, a.
  • the phase difference between the two can be calculated.
  • the frequency component of human voice greatly fluctuates due to the pronunciation of words.
  • the sound signal may be intermittently generated due to mixing of other noise from the surroundings.
  • the phase difference calculation apparatus can calculate the phase difference between audio signals output from different microphones more accurately.
  • the phase difference calculation unit 55 is configured such that the accumulated value when the phase shift amount is changed stepwise. In such a change, the phase shift amount when the integrated value becomes the minimum is calculated as a phase difference between the audio signal output from the one microphone and the audio signal output from the other microphone.
  • the phase shift amount when the integrated value becomes the minimum is the time shift (phase difference) between the two audio signals. Therefore, in the above configuration, the integrated value is the smallest in the change over time of the integrated value when the audio signal output from the other microphone is phase-shifted with respect to the audio signal output from one microphone. Is calculated as the phase difference between the audio signals output by both microphones.
  • the phase difference calculation apparatuses 10, 20, and 30 according to the aspect 3 of the present invention are based on the time-dependent change in the integrated value when the phase shift amount is changed stepwise in the aspect 1 or 2.
  • the sound signal output from the microphone further includes a determination unit that determines whether or not the sound signal is appropriate for calculating the phase difference, and the phase difference calculation unit 55 includes the sound output from each microphone.
  • the determination unit 54 determines that the signal is appropriate for calculating the phase difference
  • the audio signal output from the one microphone and the other based on the change over time of the integrated value
  • the phase difference from the audio signal output by the microphone is calculated.
  • the determination unit 54 recognizes an audio signal inappropriate for calculating the phase difference, and the phase difference calculation unit 55 does not use the audio signal for calculating the phase difference.
  • the phase difference can be calculated using only an appropriate audio signal. Therefore, the phase difference calculation apparatuses 10, 20, and 30 according to one aspect of the present invention can calculate the phase difference more accurately.
  • the determination unit 54 determines that each of the microphones has a minimum point in the change with time of the integrated value. It is determined that the output audio signal is appropriate for calculating the phase difference.
  • phase difference is calculated only when there is one local minimum point in the temporal change in the integrated value, so that the phase difference can be calculated more accurately.
  • the determination unit 54 determines that the minimum value of the integrated value in the change over time of the integrated value is less than a predetermined threshold value. In this case, it is determined that the audio signal output from each microphone is appropriate for calculating the phase difference.
  • the phase difference is calculated only when the minimum value of the integrated value in the temporal change of the integrated value is less than a predetermined threshold value, and therefore the phase difference can be calculated more accurately. Can do.
  • the sound source direction detection devices 1, 11 and 21 according to aspect 6 of the present invention determine the sound source direction of the sound based on the phase difference calculated by the phase difference calculation devices 10, 20, and 30 according to aspects 1 to 5. Identify.
  • the sound source direction can be detected using the accurate phase difference calculated by the phase difference calculation devices 10, 20, and 30 according to one aspect of the present invention, a more accurate sound source Direction detection is possible.
  • the sound source direction detection devices 11 and 21 according to aspect 7 of the present invention include the three or more microphones in the aspect 6, and the phase difference calculating devices 20 and 30 output the three or more microphones. With respect to the audio signal, the phase difference is calculated, and the sound source direction is specified based on the two or more phase differences calculated by the phase difference calculation devices 20 and 30.
  • a phase difference calculation method includes a step of converting an external sound into an audio signal using a plurality of microphones arranged at different positions, and outputting one of the plurality of microphones. Creating a phase-shifted audio signal in which the relative phase shift amount between the audio signals output from the two microphones and the audio signals output from the other microphones are changed stepwise; A step of calculating an integrated value of a difference between output values within a predetermined range of the two audio signals in the phase-shifted audio signal corresponding to the phase shift amount; and the audio signal output from the one microphone based on the integrated value And calculating a phase difference with the audio signal output from the other microphone.
  • the present invention can be suitably used as a phase difference calculating device of a sound source direction detecting device used for a robot that talks with a human, a microphone unit of a telephone conference system, or a security monitoring system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

The present invention more accurately calculates the phase difference between audio signals output by different microphones. An audio signal evaluation unit (5) of a sound source direction detection device (1) creates phase shift audio signals in which the relative phase shift amounts of the audio signals output by a first microphone (2a) and a second microphone (2b) are changed in steps and calculates the phase difference between the two audio signals on the basis of the integrated value of the differences between the output values of the two audio signals within a fixed range in each phase shift audio signal.

Description

位相差算出装置、音源方向検知装置、および位相差算出方法Phase difference calculation device, sound source direction detection device, and phase difference calculation method
 本発明は、複数のマイクロフォンから得られた音声信号間の位相差を算出する位相差算出装置、当該位相差算出装置を備える音源方向検知装置、および位相差算出方法に関する。 The present invention relates to a phase difference calculation device that calculates a phase difference between audio signals obtained from a plurality of microphones, a sound source direction detection device including the phase difference calculation device, and a phase difference calculation method.
 従来、複数のマイクロフォンを用い、各マイクロフォンから得られる音声信号の時間的なずれ(位相差)を計測することにより、音源の方向または位置を検知する技術が知られている。複数のマイクロフォン各々から得られる音声信号の位相差を判定する技術としては、例えば特許文献1および特許文献2に開示されているような、音響信号における位相差スペクトルを求める技術がある。 Conventionally, a technique for detecting the direction or position of a sound source by measuring a temporal shift (phase difference) of an audio signal obtained from each microphone using a plurality of microphones is known. As a technique for determining the phase difference of an audio signal obtained from each of a plurality of microphones, there is a technique for obtaining a phase difference spectrum in an acoustic signal as disclosed in Patent Document 1 and Patent Document 2, for example.
 特許文献1には、2つの音響信号における位相差スペクトルを求め、求めた位相差スペクトルの全てまたは一部を、原点を通る周波数に関する一次関数で近似し、当該一次関数の傾きから音源の方向を算出する方法が開示されている。 In Patent Document 1, a phase difference spectrum in two acoustic signals is obtained, and all or part of the obtained phase difference spectrum is approximated by a linear function relating to a frequency passing through the origin, and the direction of the sound source is determined from the slope of the linear function. A method for calculating is disclosed.
 また、特許文献2には、2つの音響信号における位相差スペクトルを求めると共に、2つの音響信号の少なくともいずれか一方のパワースペクトラムを求め、求めた位相差スペクトラムとパワースペクトラムとに基づき音源ごとの音源方向を求める方法が開示されている。 Further, Patent Document 2 obtains a phase difference spectrum between two acoustic signals, obtains a power spectrum of at least one of the two acoustic signals, and generates a sound source for each sound source based on the obtained phase difference spectrum and the power spectrum. A method for determining a direction is disclosed.
日本国公開特許公報「特開2003-337164号公報(2003年11月28日公開)」Japanese Patent Publication “JP 2003-337164 A (published on November 28, 2003)” 日本国公開特許公報「特開2007-183202号公報(2007年7月19日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2007-183202 (Published July 19, 2007)”
 人の声は、言葉の発音によって周波数成分が大きく揺れる。そのため、人の声が音源の場合は、複数のマイクロフォンから得られる各音声信号のずれを正確に計測することが困難である。たとえば、「シ」の音は比較的高周波の音が多く含まれ、「オ」は低周波の音が多く含まれる。 The frequency component of human voice greatly fluctuates depending on the pronunciation of words. Therefore, when a human voice is a sound source, it is difficult to accurately measure the deviation of each audio signal obtained from a plurality of microphones. For example, the sound of “shi” includes many relatively high-frequency sounds, and “o” includes many low-frequency sounds.
 また、各マイクロフォンに入力される音声は、必ずしも唯一の人物からの発声のように単一の音源からの音とは限らず、周囲の雑音や近傍の壁面からの反射音等も加わるため、時間軸上にずれた同一波形の信号が各マイクロフォンに同様に入力されるわけではない。そのため、周囲の雑音が大きい場合や近傍に音を反射しやすい固い壁面がある場合には各信号のずれを正確に計測することが困難である。 In addition, the sound input to each microphone is not necessarily a sound from a single sound source like the utterance from a single person, but also includes ambient noise and reflected sound from nearby walls. The same waveform signal shifted on the axis is not input to each microphone in the same manner. Therefore, it is difficult to accurately measure the deviation of each signal when the surrounding noise is large or there is a hard wall that easily reflects sound in the vicinity.
 そこで、本発明は、上記の課題に鑑みてなされたものであり、その目的は、異なるマイクロフォンから出力された音声信号間の位相差をより正確に算出可能な位相差算出装置、当該位相差算出装置を備える音源方向検知装置および位相差算出方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a phase difference calculation device and a phase difference calculation device that can more accurately calculate a phase difference between audio signals output from different microphones. An object of the present invention is to provide a sound source direction detecting device including a device and a phase difference calculating method.
 上記の課題を解決するために、本発明の一態様に係る位相差算出装置は、互いに異なる位置に配置され、外部の音を音声信号に変換して出力する複数のマイクロフォンと、上記複数のマイクロフォンのうちの1つの上記マイクロフォンが出力した上記音声信号と、他の上記マイクロフォンが出力した上記音声信号との間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を上記位相シフト量ごとに作成する位相シフト音声信号作成部と、各上記位相シフト量に対応する上記位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値を算出する積算値算出部と、上記積算値に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出する位相差算出部と、を備える。 In order to solve the above-described problems, a phase difference calculation device according to one embodiment of the present invention includes a plurality of microphones that are arranged at different positions and that convert external sound into an audio signal and output the sound, and the plurality of microphones. The phase-shifted audio signal in which the relative phase shift amount between the audio signal output from one of the microphones and the audio signal output from the other microphone is changed stepwise A phase-shifted sound signal creating unit that creates each amount, and an integrated value calculating unit that calculates an integrated value of the difference between output values within a certain range of the two sound signals in the phase-shifted sound signal corresponding to each phase-shifted amount And the phase difference between the audio signal output from the one microphone and the audio signal output from the other microphone based on the integrated value. It comprises a phase difference calculating unit for output, a.
 上記の課題を解決するために、本発明の一態様に係る音源方向検知方法は、互いに異なる位置に配置された複数のマイクロフォンを用いて、外部の音を音声信号に変換して出力する工程と、上記複数のマイクロフォンのうちの1つの上記マイクロフォンが出力した上記音声信号と、他の上記マイクロフォンが出力した上記音声信号との間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を作成する工程と、各上記位相シフト量に対応する上記位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値を算出する工程と、上記積算値に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出する工程と、を含む。 In order to solve the above problem, a sound source direction detection method according to an aspect of the present invention includes a step of converting external sound into an audio signal using a plurality of microphones arranged at different positions and outputting the sound signal; The phase-shifted sound in which the relative phase shift amount between the sound signal output from one of the plurality of microphones and the sound signal output from the other microphone is changed stepwise. A step of generating a signal, a step of calculating an integrated value of a difference between output values within a certain range of two audio signals in the phase-shifted audio signal corresponding to each of the phase shift amounts, and based on the integrated value, Calculating a phase difference between the audio signal output from one microphone and the audio signal output from the other microphone.
 本発明の一態様によれば、異なるマイクロフォンから出力された音声信号間の位相差をより正確に算出可能である。 According to one aspect of the present invention, the phase difference between audio signals output from different microphones can be calculated more accurately.
本発明の一実施形態に係る音源方向検知装置を示すブロック図である。It is a block diagram which shows the sound source direction detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る音声信号評価部を示すブロック図である。It is a block diagram which shows the audio | voice signal evaluation part which concerns on one Embodiment of this invention. 本発明の一実施形態において、2つの音声データからずれ値グラフを作成する方法を説明するための図である。FIG. 5 is a diagram for explaining a method of creating a deviation value graph from two audio data in an embodiment of the present invention. 本発明の一実施形態において、2つの音声データからずれ値グラフを作成する方法を説明するための図である。FIG. 5 is a diagram for explaining a method of creating a deviation value graph from two audio data in an embodiment of the present invention. 位相差の算出に適切な音声データの例を示す図である。It is a figure which shows the example of audio | voice data suitable for calculation of a phase difference. 図4中の第1マイクロフォンから得られた音声信号を、第2マイクロフォンから得られた音声信号に向けてプラス方向に位相シフトさせたときのずれ値グラフである。5 is a shift value graph when the audio signal obtained from the first microphone in FIG. 4 is phase-shifted in the positive direction toward the audio signal obtained from the second microphone. 本発明の一実施形態において、2つの音声信号の位相差から音源方向を特定する方法を説明するための図である。FIG. 6 is a diagram for explaining a method of specifying a sound source direction from a phase difference between two audio signals in an embodiment of the present invention. 周囲に雑音が多いときの音声データの例を示す図である。It is a figure which shows the example of audio | voice data when there is much noise around. 図4の音声データから得られるずれ値グラフである。5 is a deviation value graph obtained from the audio data of FIG. 4. 所定の周波数を超える高周波の音声データの例を示す図である。It is a figure which shows the example of the audio | voice data of the high frequency exceeding a predetermined frequency. 図9の音声データから得られるずれ値グラフである。10 is a deviation value graph obtained from the audio data of FIG. 9. 本発明の一実施形態に係る音源方向検知方法の流れを示すフロー図である。It is a flowchart which shows the flow of the sound source direction detection method which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る音源方向検知装置を示すブロック図である。It is a block diagram which shows the sound source direction detection apparatus which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る音源方向検知装置を示すブロック図である。It is a block diagram which shows the sound source direction detection apparatus which concerns on further another embodiment of this invention. 本発明の一実施形態において、4つのマイクロフォンを用いて音源方向を特定する方法を説明するための図である。FIG. 6 is a diagram for explaining a method of specifying a sound source direction using four microphones in an embodiment of the present invention.
 〔実施形態1〕
 (音源方向検知装置の構成)
 以下、本発明の実施形態1に係る音源方向検知装置ついて、図1を参照して詳細に説明する。図1は、本実施形態に係る音源方向検知装置1を示すブロック図である。
[Embodiment 1]
(Configuration of sound source direction detection device)
Hereinafter, a sound source direction detection apparatus according to Embodiment 1 of the present invention will be described in detail with reference to FIG. FIG. 1 is a block diagram showing a sound source direction detection device 1 according to this embodiment.
 音源方向検知装置1は、複数のマイクロフォンを用いて、音源の方向を検知する装置である。音源方向検知装置1は、例えば人間と会話するロボットに搭載することができる。音源方向検知装置1が話している人間の方向を検知することにより、ロボットの顔または視線を話し手の方向に向けることができる。あるいは、音源方向検知装置1は、電話会議システムのマイクロフォン部に搭載することができる。音源方向検知装置1が会議の参加者のうち話している人物の方向を検知することにより、当該人物を特定することができる。また、音源方向検知装置1は、セキュリティ監視システムにも搭載することができる。物陰に隠れてセキュリティ監視システムのカメラには映らない侵入者であっても、音源方向検知装置1が音を検知できれば、侵入者のおおよその位置を検知することができる。 The sound source direction detection device 1 is a device that detects the direction of a sound source using a plurality of microphones. The sound source direction detection device 1 can be mounted on, for example, a robot that has a conversation with a human. By detecting the direction of the person who is speaking by the sound source direction detection device 1, the face or line of sight of the robot can be directed toward the speaker. Alternatively, the sound source direction detection device 1 can be mounted on the microphone unit of the telephone conference system. The sound source direction detection device 1 can identify the person by detecting the direction of the person who is speaking among the participants in the conference. The sound source direction detection device 1 can also be installed in a security monitoring system. Even an intruder who is hidden behind the object and is not reflected in the camera of the security monitoring system can detect the approximate position of the intruder if the sound source direction detection device 1 can detect sound.
 図1に示すように、音源方向検知装置1は、第1マイクロフォン2a、第2マイクロフォン2b、第1マイクロフォン信号入力部3a、第2マイクロフォン信号入力部3b、第1マイクロフォン信号記憶部4a、第2マイクロフォン信号記憶部4b、音声信号評価部5、音源方向特定部6(特定部)、および角度テーブル7を有している。なお、第1マイクロフォン2a、第2マイクロフォン2b、第1マイクロフォン信号入力部3a、第2マイクロフォン信号入力部3b、第1マイクロフォン信号記憶部4a、第2マイクロフォン信号記憶部4b、および音声信号評価部5が、本発明に係る位相差算出装置10として機能する。 As shown in FIG. 1, the sound source direction detecting device 1 includes a first microphone 2a, a second microphone 2b, a first microphone signal input unit 3a, a second microphone signal input unit 3b, a first microphone signal storage unit 4a, and a second microphone. A microphone signal storage unit 4b, an audio signal evaluation unit 5, a sound source direction specifying unit 6 (specifying unit), and an angle table 7 are provided. The first microphone 2a, the second microphone 2b, the first microphone signal input unit 3a, the second microphone signal input unit 3b, the first microphone signal storage unit 4a, the second microphone signal storage unit 4b, and the audio signal evaluation unit 5 However, it functions as the phase difference calculation apparatus 10 according to the present invention.
 第1マイクロフォン2aおよび第2マイクロフォン2bは、外部の音を音声信号に変換するマイクロフォンである。第1マイクロフォン2aおよび第2マイクロフォン2bは、互いに異なる位置に配置されている。 The first microphone 2a and the second microphone 2b are microphones that convert external sounds into audio signals. The first microphone 2a and the second microphone 2b are arranged at different positions.
 第1マイクロフォン信号入力部3aは、第1マイクロフォン2aが変換した音声信号を数値化した音声データを作成する。同様に、第2マイクロフォン信号入力部3bは、第2マイクロフォン2bが変換した音声信号を数値化した音声データを作成する。具体的には、音声データとは、音声信号の出力値と時間との関係(音声信号の出力値の経時的な変化)を示すデータである。 The first microphone signal input unit 3a creates sound data obtained by digitizing the sound signal converted by the first microphone 2a. Similarly, the second microphone signal input unit 3b creates audio data in which the audio signal converted by the second microphone 2b is digitized. Specifically, the audio data is data indicating the relationship between the output value of the audio signal and time (change in the output value of the audio signal over time).
 第1マイクロフォン信号記憶部4aは、第1マイクロフォン信号入力部3aが作成した音声データを記憶しており、第2マイクロフォン信号記憶部4bは、第2マイクロフォン信号入力部3bが作成した音声データを記憶している。第1マイクロフォン信号記憶部4aおよび第2マイクロフォン信号記憶部4bはいずれも任意の一定時間分の音声データを常に記憶している。 The first microphone signal storage unit 4a stores voice data created by the first microphone signal input unit 3a, and the second microphone signal storage unit 4b stores voice data created by the second microphone signal input unit 3b. is doing. Both the first microphone signal storage unit 4a and the second microphone signal storage unit 4b always store audio data for an arbitrary fixed time.
 音声信号評価部5は、第1マイクロフォン信号記憶部4aと第2マイクロフォン信号記憶部4bに記憶されている音声データを参照し、それぞれの音声データが表す音声信号の時間的なずれを計測することにより、2つの音声信号の位相差を求める。音声信号評価部のブロック図を図2に示す。図2に示すように、音声信号評価部5は、位相シフト音声信号作成部51、ずれ値算出部52(積算値算出部)、ずれ値グラフ作成部53、判定部54、および位相差算出部55を有している。これらの部材の詳細、およびこれらの部材による位相差の算出方法については、後述する。 The audio signal evaluation unit 5 refers to the audio data stored in the first microphone signal storage unit 4a and the second microphone signal storage unit 4b, and measures the temporal shift of the audio signal represented by each audio data. Thus, the phase difference between the two audio signals is obtained. A block diagram of the audio signal evaluation unit is shown in FIG. As shown in FIG. 2, the audio signal evaluation unit 5 includes a phase shift audio signal creation unit 51, a deviation value calculation unit 52 (integrated value calculation unit), a deviation value graph creation unit 53, a determination unit 54, and a phase difference calculation unit. 55. Details of these members and a method of calculating a phase difference by these members will be described later.
 音源方向特定部6は、音声信号評価部5が算出した位相差に基づき、音源方向を特定する。具体的には、角度テーブル7には、各位相差に対応する角度方向が格納されており、音源方向特定部6から位相差を受け取ると、当該位相差に対応する音源方向の角度を音源方向特定部6に送る。音源方向の角度とは、音源方向と基準となる方向との間の角度である。音源方向特定部6は、角度テーブル7を用いて得られた角度より音源の角度方向を特定する。そして、音源方向特定部6は、特定した角度方向を、音源方向の検知結果として外部に出力する。 The sound source direction specifying unit 6 specifies the sound source direction based on the phase difference calculated by the audio signal evaluating unit 5. Specifically, the angle table 7 stores the angle direction corresponding to each phase difference, and when the phase difference is received from the sound source direction specifying unit 6, the angle of the sound source direction corresponding to the phase difference is specified. Send to part 6. The angle of the sound source direction is an angle between the sound source direction and a reference direction. The sound source direction specifying unit 6 specifies the angle direction of the sound source from the angle obtained using the angle table 7. Then, the sound source direction specifying unit 6 outputs the specified angular direction to the outside as a detection result of the sound source direction.
 (位相差の算出方法)
 以下に、音声信号評価部5が、第1マイクロフォン信号記憶部4aと第2マイクロフォン信号記憶部4bとに記憶されている音声データに基づき、2つの音声信号の位相差を算出する方法について、図3および図4を参照して説明する。図3および図4は、2つの音声データからずれ値グラフを作成する方法を説明するための図である。
(Calculation method of phase difference)
Hereinafter, a method in which the audio signal evaluation unit 5 calculates the phase difference between two audio signals based on the audio data stored in the first microphone signal storage unit 4a and the second microphone signal storage unit 4b will be described. 3 and FIG. 3 and 4 are diagrams for explaining a method of creating a deviation value graph from two audio data.
 図3中の(A)に示すような、2つの音声データを例に挙げて説明する。例えば、実線で示した音声データは第1マイクロフォン2aから得られた音声信号を表し、点線で示した音声データは第2マイクロフォン2bから得られた音声信号を表すとする。 The explanation will be given by taking two audio data as shown in FIG. For example, it is assumed that audio data indicated by a solid line represents an audio signal obtained from the first microphone 2a, and audio data indicated by a dotted line represents an audio signal obtained from the second microphone 2b.
 まず音声信号評価部5の位相シフト音声信号作成部51は、2つの音声信号の間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を位相シフト量ごとに作成する。ずれ値算出部52は、各位相シフト量に対応する位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値を求める。出力値の差分とは、特定の点(時間)における2つの音声信号の出力値の差の絶対値であり、これらの積算値とは、一定範囲内における2つの音声信号の間(図2中の(A)で灰色に塗りつぶされた領域)の面積に相当する。以下では、2つの音声信号における一定範囲内の出力値の差分の積算値を「ずれ値」と呼ぶ。ずれ値は、値が大きいほど2つの音声信号の位相差が大きく、小さいほど2つの音声信号の位相差が小さいと考えられる。 First, the phase-shifted sound signal creating unit 51 of the sound signal evaluating unit 5 creates a phase-shifted sound signal in which the relative phase shift amount between two sound signals is changed stepwise for each phase shift amount. The deviation value calculation unit 52 obtains an integrated value of the difference between the output values within a certain range of the two audio signals in the phase-shifted audio signal corresponding to each phase shift amount. The difference between the output values is the absolute value of the difference between the output values of the two audio signals at a specific point (time). These integrated values are the two audio signals within a certain range (in FIG. 2). (A) in (A) is a gray area). Hereinafter, the integrated value of the difference between the output values within a certain range in the two audio signals is referred to as a “deviation value”. It is considered that the larger the deviation value, the larger the phase difference between the two audio signals, and the smaller the deviation value, the smaller the phase difference between the two audio signals.
 そして、ずれ値グラフ作成部53は、2つの音声信号の間の相対的な位相シフト量を段階的に変化させたときのずれ値の経時的な変化を示すずれ値グラフを作成する。図3中の(A)の第1マイクロフォン2aから得られた音声信号(実線)を紙面右方向(プラス方向)に+1だけ位相シフトしたときの状態が図3中の(B)である。さらにこの状態から、第1マイクロフォン2aから得られた音声信号を紙面右方向に+1だけ位相シフトしたときの状態が図3中の(C)であり、またさらに+1だけ位相シフトしたときの状態が図2中の(D)である。各状態におけるずれ値をプロットすることにより、図2中に示すずれ値グラフが得られる。 Then, the deviation value graph creating unit 53 creates a deviation value graph showing the change of the deviation value over time when the relative phase shift amount between the two audio signals is changed in stages. FIG. 3B shows a state when the audio signal (solid line) obtained from the first microphone 2a in FIG. 3A is phase-shifted by +1 in the right direction (plus direction) of the drawing. Further, from this state, the state when the audio signal obtained from the first microphone 2a is phase-shifted by +1 in the right direction of the drawing is (C) in FIG. 3, and the state when the phase is further shifted by +1 is shown. It is (D) in FIG. By plotting the deviation value in each state, the deviation value graph shown in FIG. 2 is obtained.
 一方、図4中の(A)に示すような、2つの音声データが得られたとする。この場合は、図4中の(A)の第1マイクロフォン2aから得られた音声信号(実線)を紙面左方向(マイナス方向)に-1だけ位相シフトする。このときの状態が図4中の(B)である。さらにこの状態から、第1マイクロフォン2aから得られた音声信号を紙面右方向に-1だけ位相シフトしたときの状態が図4中の(C)であり、またさらに-1だけ位相シフトしたときの状態が図4中の(D)である。各状態におけるずれ値をプロットすることにより、図4中に示すずれ値グラフが得られる。 On the other hand, it is assumed that two audio data as shown in (A) of FIG. 4 are obtained. In this case, the audio signal (solid line) obtained from the first microphone 2a of (A) in FIG. 4 is phase-shifted by −1 in the left direction (minus direction) of the drawing. The state at this time is (B) in FIG. Further, from this state, the state when the audio signal obtained from the first microphone 2a is phase-shifted by -1 in the right direction of the drawing is (C) in FIG. 4, and when the phase is further shifted by -1. The state is (D) in FIG. By plotting the deviation value in each state, the deviation value graph shown in FIG. 4 is obtained.
 なお、以上では、第2マイクロフォン2bから得られた音声信号を基準にして、第1マイクロフォン2aから得られた音声信号を位相シフトする例を示したが、必ずしもこれに限定されるわけではない。第1マイクロフォン2aから得られた音声信号を基準にして、第2マイクロフォン2bから得られた音声信号を位相シフトしてもよい。この場合、図3中の(A)の第2マイクロフォン2bから得られた音声信号を紙面左方向(マイナス方向)に位相シフトしたときのずれ値グラフは、図4中に示すずれ値グラフとなる。また、図4中の(A)の第2マイクロフォン2bから得られた音声信号を紙面右方向(プラス方向)に位相シフトしたときのずれ値グラフは、図3中に示すずれ値グラフとなる。 In the above, the example in which the audio signal obtained from the first microphone 2a is phase-shifted based on the audio signal obtained from the second microphone 2b has been described, but the present invention is not necessarily limited thereto. The audio signal obtained from the second microphone 2b may be phase-shifted with reference to the audio signal obtained from the first microphone 2a. In this case, the deviation value graph when the audio signal obtained from the second microphone 2b in FIG. 3A is phase-shifted in the left direction (minus direction) in the drawing is the deviation value graph shown in FIG. . Also, the shift value graph when the audio signal obtained from the second microphone 2b of (A) in FIG. 4 is phase-shifted in the right direction (plus direction) in the drawing is the shift value graph shown in FIG.
 判定部54は、ずれ値グラフ作成部53が作成したずれ値グラフに基づき、第1マイクロフォン2aおよび第2マイクロフォン2bから得られた音声信号が位相差の算出に適切であるか否かを判定する。判定部54により、第1マイクロフォン2aおよび第2マイクロフォン2bから得られた音声信号が位相差の算出に適切であると判定された場合は、位相差算出部55は、ずれ値グラフ作成部53が作成したずれ値グラフに基づき、第1マイクロフォン2aおよび第2マイクロフォン2bから得られた音声信号間の位相差を算出する。判定部54による判定方法については後述し、以下には位相差算出部55による位相差の算出方法を説明する。 The determination unit 54 determines whether or not the audio signals obtained from the first microphone 2a and the second microphone 2b are appropriate for calculating the phase difference based on the deviation value graph created by the deviation value graph creation unit 53. . When the determination unit 54 determines that the audio signals obtained from the first microphone 2a and the second microphone 2b are appropriate for the calculation of the phase difference, the phase difference calculation unit 55 includes the deviation value graph creation unit 53. Based on the generated deviation value graph, the phase difference between the audio signals obtained from the first microphone 2a and the second microphone 2b is calculated. A determination method by the determination unit 54 will be described later, and a phase difference calculation method by the phase difference calculation unit 55 will be described below.
 図5に、位相差の算出に適切な音声データの例を示す。そして、音声信号評価部5が、図5中の第1マイクロフォン2aから得られた音声信号を、第2マイクロフォン2bから得られた音声信号に向けてプラス方向に位相シフトさせたときのずれ値グラフを図6に示す。 FIG. 5 shows an example of sound data suitable for calculating the phase difference. Then, the deviation value graph when the audio signal evaluation unit 5 phase-shifts the audio signal obtained from the first microphone 2a in FIG. 5 in the positive direction toward the audio signal obtained from the second microphone 2b. Is shown in FIG.
 図6に示すずれ値グラフでは、ずれ値が最小となる点が1点または連続する2点となっている。ずれ値が最小となるのは、2つの音声信号が略一致しているときである。したがって、2つの音声信号のずれ値が最小になるときの位相シフト量が、2つの音声信号の時間的なずれ(位相差)である。例えば、図6では、位相シフト量が+9のときにずれ値が最小となっているため、2つの音声信号の位相差は+9となる。 In the deviation value graph shown in FIG. 6, the point where the deviation value is minimum is one point or two consecutive points. The deviation value is minimized when the two audio signals substantially match. Therefore, the phase shift amount when the deviation value between the two audio signals becomes the minimum is the temporal deviation (phase difference) between the two audio signals. For example, in FIG. 6, since the shift value is minimum when the phase shift amount is +9, the phase difference between the two audio signals is +9.
 このように、第1マイクロフォン2aおよび第2マイクロフォン2bが出力した音声信号の間の相対的な位相シフト量を段階的に変化させたときの一定範囲内における両者の出力値の差分の積算値(ずれ値)に基づいて、第1マイクロフォン2aおよび第2マイクロフォン2bが出力した音声信号間の位相差を算出することができる。そこで、位相差算出部55は、位相シフト量ごとのずれ値に基づいて、第1マイクロフォン2aおよび第2マイクロフォン2bが出力した音声信号間の位相差を算出している。 Thus, the integrated value (the difference between the output values of the two within a certain range when the relative phase shift amount between the audio signals output from the first microphone 2a and the second microphone 2b is changed stepwise. The phase difference between the audio signals output from the first microphone 2a and the second microphone 2b can be calculated based on the deviation value. Therefore, the phase difference calculation unit 55 calculates the phase difference between the audio signals output from the first microphone 2a and the second microphone 2b based on the deviation value for each phase shift amount.
 (音源方向の特定方法)
 以下に、音源方向特定部6が、音声信号評価部5が算出した位相差に基づき、音源の方向を特定する方法について、図7を参照して説明する。図7は、2つの音声信号の位相差から音源方向を特定する方法を説明するための図である。
(Sound source direction identification method)
Hereinafter, a method in which the sound source direction specifying unit 6 specifies the direction of the sound source based on the phase difference calculated by the audio signal evaluating unit 5 will be described with reference to FIG. FIG. 7 is a diagram for explaining a method of specifying the sound source direction from the phase difference between two audio signals.
 図7に示すように、マイクロフォン間の距離が100mm、音速343.5m/s、音声のサンプリングレート48KHzのときを例に挙げて説明する。なお、第2マイクロフォン2bから第1マイクロフォン2aへの方向を基準の方向として0度方向とし、第1マイクロフォン2aから第2マイクロフォン2bへの方向を180度方向とする。このとき、0度方向に音源がある場合は位相差=14となり、180度方向に音源がある時は位相差=-14となるものとする。ここで言う位相差は、第2マイクロフォン2bから得られた音声信号を基準にした、第1マイクロフォン2aから得られた音声信号の位相シフト量を指す。第1マイクロフォン2aから得られた音声信号を基準にした、第2マイクロフォン2bから得られた音声信号の位相シフト量を位相差とする場合は、0度方向に音源がある場合は位相差=-14となり、180度方向に音源がある時は位相差=14となる。 As shown in FIG. 7, a description will be given by taking as an example a case where the distance between the microphones is 100 mm, the sound speed is 343.5 m / s, and the sound sampling rate is 48 KHz. Note that the direction from the second microphone 2b to the first microphone 2a is a 0 degree direction, and the direction from the first microphone 2a to the second microphone 2b is a 180 degree direction. At this time, when there is a sound source in the 0 degree direction, the phase difference = 14, and when there is a sound source in the 180 degree direction, the phase difference = -14. The phase difference here refers to the phase shift amount of the audio signal obtained from the first microphone 2a with reference to the audio signal obtained from the second microphone 2b. When the phase shift amount of the audio signal obtained from the second microphone 2b based on the audio signal obtained from the first microphone 2a is used as the phase difference, the phase difference = − when there is a sound source in the 0 degree direction. 14 and when there is a sound source in the direction of 180 degrees, the phase difference = 14.
 一般的に、2つの地点それぞれからの距離の差が一定量となるような点の軌跡は、2つの地点を焦点とする双曲線関数となる。そして、上記の点が2つの焦点間の距離よりも十分遠方にある場合は、上記の点は双曲線関数の漸近線上に位置し、漸近線の傾きを上記の点の位置する方向とみなすことができる。すなわち、音源は、第1マイクロフォン2aおよび第2マイクロフォン2bそれぞれの位置を焦点とする双曲線関数の漸近線上に位置し、音源の位置する方向は、当該漸近線の傾きと見なすことができる。 In general, the locus of a point where the difference in distance from each of the two points is a constant amount is a hyperbolic function with the two points as the focal point. If the point is sufficiently far away from the distance between the two focal points, the point is located on the asymptote of the hyperbolic function, and the slope of the asymptote can be regarded as the direction in which the point is located. it can. That is, the sound source is located on the asymptote of the hyperbolic function having the respective positions of the first microphone 2a and the second microphone 2b as the focal points, and the direction in which the sound source is located can be regarded as the slope of the asymptote.
 したがって、音声信号評価部5が算出した位相差が+9の場合、音源方向の角度は、
 arccos(9/14)≒50度
となる。上記の角度は、0度方向との間の角度θである。すなわち、音源方向は、50度方向となる。
Therefore, when the phase difference calculated by the audio signal evaluation unit 5 is +9, the angle of the sound source direction is
arccos (9/14) ≒ 50 degrees. Said angle is angle (theta) between 0 degree directions. That is, the sound source direction is a 50 degree direction.
 位相差ごとに上記の計算を行った結果は、角度テーブル7に記憶されている。すなわち、角度テーブル7では、各位相差に対応する音源方向の角度が格納されている。音源方向特定部6は、音声信号評価部5が算出した位相差を角度テーブル7に送ると、角度テーブル7から当該位相差に対応する音源方向の角度を受け取る。音源方向特定部6は、角度テーブル7を用いて得られた角度より音源の角度方向を特定し、特定した角度方向を、音源方向の検知結果として外部に出力する。 The result of the above calculation for each phase difference is stored in the angle table 7. That is, the angle table 7 stores the angle of the sound source direction corresponding to each phase difference. When the sound source direction specifying unit 6 sends the phase difference calculated by the audio signal evaluation unit 5 to the angle table 7, the sound source direction specifying unit 6 receives the angle of the sound source direction corresponding to the phase difference from the angle table 7. The sound source direction specifying unit 6 specifies the angle direction of the sound source from the angle obtained using the angle table 7 and outputs the specified angle direction to the outside as a detection result of the sound source direction.
 なお、音声信号評価部5が算出した位相差から特定される角度方向は、第1マイクロフォン2aおよび第2マイクロフォン2bを結ぶ直線に対して左側および右側の方向であり得る。そのため、1つの位相差から特定される角度方向では、音源方向が第1マイクロフォン2aおよび第2マイクロフォン2bを結ぶ直線に対して左側および右側の方向であるのかを特定することができない。そこで、本実施形態に係る音源方向検知装置1は、壁際に設置する場合等、第1マイクロフォン2aおよび第2マイクロフォン2bを結ぶ直線に対して片側に位置する音源を検知するときに好適に用いられる。 It should be noted that the angle direction specified from the phase difference calculated by the audio signal evaluation unit 5 can be the left and right directions with respect to the straight line connecting the first microphone 2a and the second microphone 2b. Therefore, in the angle direction specified from one phase difference, it cannot be specified whether the sound source direction is the left and right directions with respect to the straight line connecting the first microphone 2a and the second microphone 2b. Therefore, the sound source direction detection device 1 according to the present embodiment is preferably used when detecting a sound source located on one side with respect to a straight line connecting the first microphone 2a and the second microphone 2b, such as when installed near a wall. .
 (位相差の算出に不適切な音声データの回避)
 周囲に雑音が多いときの音声データの例を図8に示す。この図では、大きな波形を示しているメインの音声の他に、小さな波形を示している他の音声が別の方角から発せられている様子を表している。
(Avoidance of audio data inappropriate for phase difference calculation)
An example of audio data when there is a lot of noise around is shown in FIG. In this figure, in addition to the main voice showing a large waveform, another voice showing a small waveform is emitted from a different direction.
 音声信号評価部5は、上記と同様の方法によって、ずれ値グラフを作成する。作成したずれ値グラフは、図9に示すようなグラフとなる。図9に示すずれ値グラフでは、ずれ値が最小となる点が1点または連続する2点となっているものの、図6に示すずれ値グラフと比較して最小値の値が高い。これは、2つの音声信号の一致度が低いことを意味している。このようなずれ値グラフを用いて位相差の算出を行うと、正確な位相差を算出し難く、音源方向を誤検知しやすい。このため、このようなずれ値グラフは、位相差の算出に不適切であり、音源方向の検知には適さない。 The audio signal evaluation unit 5 creates a deviation value graph by the same method as described above. The created deviation value graph is as shown in FIG. In the deviation value graph shown in FIG. 9, although the point where the deviation value is minimum is one point or two consecutive points, the value of the minimum value is higher than that of the deviation value graph shown in FIG. This means that the degree of coincidence between the two audio signals is low. When the phase difference is calculated using such a deviation value graph, it is difficult to calculate an accurate phase difference, and it is easy to erroneously detect the sound source direction. For this reason, such a deviation value graph is inappropriate for calculating the phase difference and not suitable for detecting the direction of the sound source.
 そこで、音声信号評価部5の判定部54は、所定の閾値を設定し、閾値以上の最小値を持つずれ値グラフが得られた場合には、得られた音声データは位相差の算出に不適切であると判定する。そして、位相差算出部55は、当該音声データを用いて位相差の算出を行わない。これにより、位相差の算出に不適切な音声データを用いて位相差を算出することによる音源方向の誤検知を防ぎ、より正確な音源方向の検知を行うことができる。なお、所定の閾値は、例えば、適切な音声データから得られるずれ値グラフ(図6に示すずれ値グラフ)の最小値と、不適切な音声データから得られるずれ値グラフ(図9に示すずれ値グラフ)の最小値との間の値とすることができる。 Therefore, when the determination unit 54 of the audio signal evaluation unit 5 sets a predetermined threshold value and a deviation value graph having a minimum value equal to or greater than the threshold value is obtained, the obtained audio data is not suitable for calculating the phase difference. Judge that it is appropriate. And the phase difference calculation part 55 does not calculate a phase difference using the said audio | voice data. Thereby, it is possible to prevent erroneous detection of the sound source direction by calculating the phase difference using sound data inappropriate for calculating the phase difference, and to perform more accurate detection of the sound source direction. The predetermined threshold is, for example, the minimum value of the deviation value graph obtained from appropriate audio data (the deviation value graph shown in FIG. 6) and the deviation value graph obtained from inappropriate audio data (the deviation shown in FIG. 9). It can be a value between the minimum value of the value graph).
 続いて、所定の周波数を超える高周波の音声データの例を図10に示す。この図では、密な波形を持つ音声が発せられている様子を示している。 Next, FIG. 10 shows an example of high-frequency audio data exceeding a predetermined frequency. This figure shows a state in which sound having a dense waveform is emitted.
 音声信号評価部5は、上記と同様の方法によって、ずれ値グラフを作成する。作成したずれ値グラフは、図11に示すようなグラフとなる。図11に示すずれ値グラフでは、極小点が2点存在している。これは、一方の音声信号を他方の音声信号に向けて位相シフトさせたときに、前後どちらに位相シフトさせても複数回にわたって2つの音声信号が一致してしまうほどに当該2つの音声信号が密な波形を有しているためである。このようなずれ値グラフを用いて位相差の算出を行うと、正確な位相差を算出し難く、音源方向を誤検知しやすい。このため、このようなずれ値グラフは、位相差の算出に不適切であり、音源方向の検知には適さない。 The audio signal evaluation unit 5 creates a deviation value graph by the same method as described above. The created deviation value graph is as shown in FIG. In the deviation value graph shown in FIG. 11, there are two minimum points. This is because, when one audio signal is phase-shifted toward the other audio signal, the two audio signals are matched so that the two audio signals coincide with each other multiple times regardless of whether the phase is shifted forward or backward. This is because it has a dense waveform. When the phase difference is calculated using such a deviation value graph, it is difficult to calculate an accurate phase difference, and it is easy to erroneously detect the sound source direction. For this reason, such a deviation value graph is inappropriate for calculating the phase difference and not suitable for detecting the direction of the sound source.
 そこで、音声信号評価部5の判定部54は、ずれ値グラフが2つ以上の極小点を有している場合には、得られた音声データは位相差の算出に不適切であると判定する。そして、位相差算出部55は、当該音声データを用いて位相差の算出を行わない。これにより、位相差の算出に不適切な音声データを用いて位相差の算出を行うことによる音源方向の誤検知を防ぎ、より正確な音源方向の検知を行うことができる。なお、ずれ値グラフにおける極小点の個数は、グラフの傾きが-(負の値)から+(正の値)に変化する回数を数えることにより容易に求めることができる。 Accordingly, the determination unit 54 of the audio signal evaluation unit 5 determines that the obtained audio data is inappropriate for calculating the phase difference when the deviation value graph has two or more minimum points. . And the phase difference calculation part 55 does not calculate a phase difference using the said audio | voice data. As a result, it is possible to prevent erroneous detection of the sound source direction due to calculation of the phase difference using sound data inappropriate for calculation of the phase difference, and to detect the sound source direction more accurately. Note that the number of minimum points in the deviation value graph can be easily obtained by counting the number of times the slope of the graph changes from − (negative value) to + (positive value).
 このように、判定部54が、位相差の算出に不適切な音声データを見分けるため、位相差算出部55では、位相差の算出に適切な音声データのみを用いて位相差の算出を行うことができる。このため、音源方向検知装置1では、より正確に位相差を算出することができる。そして、音源方向特定部6では、位相差の算出に適切な音声データのみを用いて算出された位相差に基づき、音源方向の検知を行うことができる。このため、音源方向検知装置1では、より正確に音源方向を検知することができる。例えば、人の声は、言葉の発音によって周波数成分が大きく揺れる。また、周囲から別の雑音が混入することにより音声信号が乱されることが断続的に発生することがある。このような音源であっても、ずれ値を算出することにより、当該ずれ値によって音声信号を評価することにより、両者の位相差を正確に算出可能な音声信号の部分を抽出することができる。このように、本実施形態では、異なるマイクロフォンから出力された音声信号間の位相差をより正確に算出可能である。 Thus, in order for the determination unit 54 to identify audio data inappropriate for calculating the phase difference, the phase difference calculation unit 55 calculates the phase difference using only audio data appropriate for the phase difference calculation. Can do. For this reason, the sound source direction detection device 1 can calculate the phase difference more accurately. The sound source direction specifying unit 6 can detect the sound source direction based on the phase difference calculated using only sound data appropriate for the calculation of the phase difference. For this reason, the sound source direction detection device 1 can detect the sound source direction more accurately. For example, the frequency component of human voice greatly fluctuates due to the pronunciation of words. In addition, the sound signal may be intermittently generated due to mixing of other noise from the surroundings. Even for such a sound source, by calculating the deviation value, by evaluating the audio signal based on the deviation value, it is possible to extract a portion of the audio signal that can accurately calculate the phase difference between the two. Thus, in this embodiment, the phase difference between the audio signals output from different microphones can be calculated more accurately.
 特に、図9および図11に示したような音声データを用いて音源方向の検知を行おうとすると、音源方向を特定するまでの処理が多いため、音源方向検知装置には多くの処理部材が必要となる。しかし、本実施形態に係る音源方向検知装置1では、図9および図11に示したような音声データを用いて音源方向の検知は行わないため、音源方向を特定するまでの処理が少なくて済み、音源方向検知装置1に必要な処理部材を抑えることができる。 In particular, if the sound source direction is detected using the audio data as shown in FIGS. 9 and 11, since many processes are required until the sound source direction is specified, the sound source direction detecting device requires many processing members. It becomes. However, since the sound source direction detection apparatus 1 according to the present embodiment does not detect the sound source direction using the audio data as shown in FIGS. 9 and 11, the processing until the sound source direction is specified can be reduced. The processing members required for the sound source direction detection device 1 can be suppressed.
 また、判定部54は、ずれ値グラフを用いて、音声データが位相差を算出するために適切であるか否かを判定し、位相差算出部55は、当該ずれ値グラフを用いて、音声信号間の位相差を算出している。このように、音源方向検知装置1では、ずれ値グラフを作成するだけで音声データが位相差を算出するために適切であるか否かの判定および音声信号間の位相差の算出を行うことができ、音源方向を特定するまでに要する処理を削減することができる。 In addition, the determination unit 54 determines whether the audio data is appropriate for calculating the phase difference using the deviation value graph, and the phase difference calculation unit 55 uses the deviation value graph to determine whether the audio data is appropriate. The phase difference between signals is calculated. As described above, the sound source direction detection device 1 can determine whether or not the sound data is appropriate for calculating the phase difference and calculate the phase difference between the sound signals only by creating a deviation value graph. It is possible to reduce the processing required to specify the sound source direction.
 (音源方向の検知手順)
 以上の処理の流れは、図12に示すとおりである。
(Sound source direction detection procedure)
The flow of the above processing is as shown in FIG.
 まず、音声信号評価部5は、第1マイクロフォン信号記憶部4aおよび第2マイクロフォン信号記憶部4bに記憶されている音声データを取得する(ステップS1;以下、S1と略記する)。音声信号評価部5の位相シフト音声信号作成部51は、2つの音声データ各々が示す音声信号の間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を位相シフト量ごとに作成する(S2)。そして、ずれ値算出部52は、各位相シフト量に対応する位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値(ずれ値)を求め(S3)、ずれ値グラフ作成部53は、当該ずれ値の経時的な変化を示すずれ値グラフを作成する(S4)。 First, the audio signal evaluation unit 5 acquires audio data stored in the first microphone signal storage unit 4a and the second microphone signal storage unit 4b (step S1; hereinafter abbreviated as S1). The phase-shifted audio signal creating unit 51 of the audio signal evaluating unit 5 converts the phase-shifted audio signal in which the relative phase shift amount between the audio signals indicated by each of the two audio data is changed stepwise for each phase shift amount. Create (S2). Then, the deviation value calculation unit 52 obtains an integrated value (deviation value) of the difference between the output values within a certain range of the two audio signals in the phase-shifted audio signal corresponding to each phase shift amount (S3), and the deviation value graph The creating unit 53 creates a deviation value graph indicating the change of the deviation value with time (S4).
 判定部54は、ずれ値グラフ作成部53が作成したずれ値グラフに基づき、第1マイクロフォン2aおよび第2マイクロフォン2bから出力された音声信号が位相差を算出するために適切であるか否かを判定する。具体的には、判定部54は、ずれ値グラフの最小値が所定の閾値よりも大きいか否かを判定する(S5)。ずれ値グラフの最小値が所定の閾値よりも大きい場合は、判定部54は、第1マイクロフォン2aおよび第2マイクロフォン2bから出力された音声信号が位相差を算出するために不適切であると判定し、S1に戻り、別の音声データを用いて再びS2以降の処理を進める。 The determination unit 54 determines whether or not the audio signals output from the first microphone 2a and the second microphone 2b are appropriate for calculating the phase difference based on the deviation value graph created by the deviation value graph creation unit 53. judge. Specifically, the determination unit 54 determines whether or not the minimum value of the deviation value graph is larger than a predetermined threshold (S5). If the minimum value of the deviation value graph is larger than the predetermined threshold value, the determination unit 54 determines that the sound signals output from the first microphone 2a and the second microphone 2b are inappropriate for calculating the phase difference. Then, the process returns to S1, and the processing after S2 is performed again using another audio data.
 一方、ずれ値グラフの最小値が所定の閾値よりも小さい場合は、判定部54は、ずれ値グラフの極小点の個数を特定する(S6)。そして、判定部54は、特定した極小点の個数が1つであるか否かを判定する(S7)。ずれ値グラフの極小点の個数が2つ以上の場合は、判定部54は、第1マイクロフォン2aおよび第2マイクロフォン2bから出力された音声信号が位相差を算出するために不適切であると判定し、S1に戻り、別の音声データを用いて再びS2以降の処理を進める。 On the other hand, when the minimum value of the deviation value graph is smaller than the predetermined threshold, the determination unit 54 specifies the number of local minimum points of the deviation value graph (S6). And the determination part 54 determines whether the number of the specified minimum points is one (S7). When the number of local minimum points in the deviation value graph is two or more, the determination unit 54 determines that the audio signals output from the first microphone 2a and the second microphone 2b are inappropriate for calculating the phase difference. Then, the process returns to S1, and the processing after S2 is performed again using another audio data.
 一方、ずれ値グラフの極小点の個数が1つの場合は、判定部54は、第1マイクロフォン2aおよび第2マイクロフォン2bから出力された音声信号が位相差を算出するために適切であると判定する。そして、位相差算出部55は、ずれ値グラフの最小値における位相シフト量を、2つの音声データが示す2つの音声信号の位相差として算出する(S8)。 On the other hand, when the number of local minimum points in the deviation value graph is one, the determination unit 54 determines that the audio signals output from the first microphone 2a and the second microphone 2b are appropriate for calculating the phase difference. . Then, the phase difference calculation unit 55 calculates the phase shift amount at the minimum value of the deviation value graph as the phase difference between the two audio signals indicated by the two audio data (S8).
 音源方向特定部6は、位相差算出部55が算出した位相差に基づき、音源方向を特定する(S9)。具体的には、音源方向特定部6は、位相差算出部55が算出した位相差を角度テーブル7に送り、角度テーブル7から当該位相差に対応する音源方向の角度を受け取る。そして、音源方向特定部6は、角度テーブル7を用いて得られた角度より音源の角度方向を特定し、特定した角度方向を、音源方向の検知結果として外部に出力する(S10)。 The sound source direction specifying unit 6 specifies the sound source direction based on the phase difference calculated by the phase difference calculating unit 55 (S9). Specifically, the sound source direction identification unit 6 sends the phase difference calculated by the phase difference calculation unit 55 to the angle table 7 and receives the angle of the sound source direction corresponding to the phase difference from the angle table 7. Then, the sound source direction specifying unit 6 specifies the angle direction of the sound source from the angle obtained using the angle table 7, and outputs the specified angle direction to the outside as a detection result of the sound source direction (S10).
 〔実施形態2〕
 本発明の実施形態2について、図13に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図13は、本実施形態に係る音源方向検知装置11を示すブロック図である。
[Embodiment 2]
The second embodiment of the present invention will be described below with reference to FIG. For convenience of explanation, members having the same functions as those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted. FIG. 13 is a block diagram showing the sound source direction detection device 11 according to the present embodiment.
 図13に示すように、音源方向検知装置11は、第1マイクロフォン2a、第2マイクロフォン2b、第3マイクロフォン2c、第1マイクロフォン信号入力部3a、第2マイクロフォン信号入力部3b、第3マイクロフォン信号入力部3c、第1マイクロフォン信号記憶部4a、第2マイクロフォン信号記憶部4b、第3マイクロフォン信号記憶部4c、音声信号評価部5、音源方向特定部6、および角度テーブル7を有している。なお、第1マイクロフォン2a、第2マイクロフォン2b、第3マイクロフォン2c、第1マイクロフォン信号入力部3a、第2マイクロフォン信号入力部3b、第3マイクロフォン信号入力部3c、第1マイクロフォン信号記憶部4a、第2マイクロフォン信号記憶部4b、第3マイクロフォン信号記憶部4c、および音声信号評価部5が、本発明に係る位相差算出装置20として機能する。 As shown in FIG. 13, the sound source direction detection device 11 includes a first microphone 2a, a second microphone 2b, a third microphone 2c, a first microphone signal input unit 3a, a second microphone signal input unit 3b, and a third microphone signal input. A unit 3c, a first microphone signal storage unit 4a, a second microphone signal storage unit 4b, a third microphone signal storage unit 4c, an audio signal evaluation unit 5, a sound source direction specifying unit 6, and an angle table 7. The first microphone 2a, the second microphone 2b, the third microphone 2c, the first microphone signal input unit 3a, the second microphone signal input unit 3b, the third microphone signal input unit 3c, the first microphone signal storage unit 4a, the first microphone The 2 microphone signal storage unit 4b, the third microphone signal storage unit 4c, and the audio signal evaluation unit 5 function as the phase difference calculation device 20 according to the present invention.
 音源方向検知装置11では、第3マイクロフォン2c、第3マイクロフォン信号入力部3c、および第3マイクロフォン信号記憶部4cを有している点で音源方向検知装置1と異なる。第3マイクロフォン2cは、外部の音を音声信号に変換するマイクロフォンである。第1マイクロフォン2a、第2マイクロフォン2b、および第3マイクロフォン2cは、互いに異なる位置に配置され、同一直線上に位置しないように配置されている。 The sound source direction detection device 11 is different from the sound source direction detection device 1 in that it includes a third microphone 2c, a third microphone signal input unit 3c, and a third microphone signal storage unit 4c. The third microphone 2c is a microphone that converts external sound into an audio signal. The 1st microphone 2a, the 2nd microphone 2b, and the 3rd microphone 2c are arranged in a mutually different position, and are arranged so that it may not be located on the same straight line.
 第3マイクロフォン信号入力部3cは、第3マイクロフォン2cが変換した音声信号を数値化した音声データを作成する。また、第3マイクロフォン信号記憶部4cは、第3マイクロフォン信号入力部3cが作成した音声データを記憶しており、任意の一定時間分の音声データを常に記憶している。 The third microphone signal input unit 3c creates voice data in which the voice signal converted by the third microphone 2c is digitized. The third microphone signal storage unit 4c stores the voice data created by the third microphone signal input unit 3c, and always stores voice data for an arbitrary fixed time.
 音源方向検知装置11は、第1マイクロフォン2a、第2マイクロフォン2bおよび第3マイクロフォン2cの3つのマイクロフォンを有しているため、音声信号評価部5は、3つのマイクロフォンのうち2つのマイクロフォンの組み合わせごとに、各マイクロフォンから得られた音声信号間の位相差を算出する。すなわち、音声信号評価部5は、マイクロフォンの3つの組み合わせごとに位相差を算出する。なお、原理上、音声信号評価部5は、マイクロフォンの少なくとも2つの組み合わせの位相差を算出すればよい。 Since the sound source direction detection device 11 has three microphones, that is, the first microphone 2a, the second microphone 2b, and the third microphone 2c, the audio signal evaluation unit 5 has a combination of two microphones out of the three microphones. In addition, the phase difference between the audio signals obtained from each microphone is calculated. That is, the audio signal evaluation unit 5 calculates the phase difference for each of the three combinations of microphones. In principle, the audio signal evaluation unit 5 may calculate the phase difference of at least two combinations of microphones.
 ここで、音声信号評価部5が算出した位相差から特定される角度方向は、2つのマイクロフォンを結ぶ直線に対して左側および右側の方向であり得る。そのため、1つの位相差から特定される角度方向では、音源方向が2つのマイクロフォンを結ぶ直線に対して左側および右側の方向であるのかを特定することができない。 Here, the angle direction specified from the phase difference calculated by the audio signal evaluation unit 5 may be the left and right directions with respect to the straight line connecting the two microphones. For this reason, in the angular direction specified from one phase difference, it cannot be specified whether the sound source direction is the left and right directions with respect to the straight line connecting the two microphones.
 そこで、音源方向特定部6は、音声信号評価部5が算出した少なくとも2つの位相差の間で、当該位相差から特定される角度方向が一致する方向を音源方向と特定する。すなわち、音源方向特定部6は、1つの位相差から特定される角度方向のうち、もう1つの位相差から特定される角度方向のうちのいずれかと一致する方向を音源方向として特定する。音源方向特定部6は、特定した音源方向を検知結果として外部に出力する。 Therefore, the sound source direction specifying unit 6 specifies, as the sound source direction, the direction in which the angle direction specified from the phase difference coincides between at least two phase differences calculated by the audio signal evaluation unit 5. That is, the sound source direction specifying unit 6 specifies, as the sound source direction, a direction that matches one of the angle directions specified from the other phase difference among the angle directions specified from the one phase difference. The sound source direction specifying unit 6 outputs the specified sound source direction to the outside as a detection result.
 これにより、音源方向検知装置11では、3つのマイクロフォンを含む平面上において、360度全方向からの音源方向を検知することができる。実施形態1に係る音源方向検知装置1では、壁際に設置する等、利用場所が制限されるが、本実施形態に係る音源方向検知装置11では、利用場所が制限されず、好きな場所に音源方向検知装置11を設置することができる。 Thereby, the sound source direction detection device 11 can detect the sound source direction from all directions of 360 degrees on a plane including three microphones. In the sound source direction detection device 1 according to the first embodiment, the use place is restricted such as being installed near a wall. However, in the sound source direction detection device 11 according to the present embodiment, the use place is not restricted, and the sound source can be placed at a favorite place. A direction detection device 11 can be installed.
 〔実施形態3〕
 本発明の実施形態3について説明すれば、以下のとおりである。なお、説明の便宜上、実施形態2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The third embodiment of the present invention will be described as follows. For convenience of explanation, members having the same functions as those described in the second embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態では、実施形態2に係る音源方向検知装置11を2つ用い、双方を互いに離れた場所に設置する。そして、各音源方向検知装置11が検知した音源方向から、三角測量の手法を用いることにより、各音源方向検知装置から音源までの距離を算出し、音源の位置を特定することができる。 In the present embodiment, two sound source direction detection devices 11 according to the second embodiment are used, and both are installed at locations separated from each other. Then, by using a triangulation method from the sound source direction detected by each sound source direction detection device 11, the distance from each sound source direction detection device to the sound source can be calculated, and the position of the sound source can be specified.
 このように、本実施形態では、2つの音源方向検知装置11を用いることにより、音源の位置を検知することができる。つまり、本実施形態では、2つの音源方向検知装置11を、音源位置検知装置として利用することができる。 Thus, in the present embodiment, the position of the sound source can be detected by using the two sound source direction detection devices 11. That is, in this embodiment, the two sound source direction detection devices 11 can be used as the sound source position detection device.
 〔実施形態4〕
 本発明の実施形態4について、図14に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、実施形態2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。図14は、本実施形態に係る音源方向検知装置21を示すブロック図である。
[Embodiment 4]
Embodiment 4 of the present invention will be described below with reference to FIG. For convenience of explanation, members having the same functions as those described in the second embodiment are denoted by the same reference numerals and description thereof is omitted. FIG. 14 is a block diagram showing the sound source direction detection device 21 according to this embodiment.
 図14に示すように、音源方向検知装置21は、第1マイクロフォン2a、第2マイクロフォン2b、第3マイクロフォン2c、第4マイクロフォン2d、第1マイクロフォン信号入力部3a、第2マイクロフォン信号入力部3b、第3マイクロフォン信号入力部3c、第4マイクロフォン信号入力部3d、第1マイクロフォン信号記憶部4a、第2マイクロフォン信号記憶部4b、第3マイクロフォン信号記憶部4c、第4マイクロフォン信号記憶部4d、音声信号評価部5、音源方向特定部6、および角度テーブル7を有している。なお、第1マイクロフォン2a、第2マイクロフォン2b、第3マイクロフォン2c、第4マイクロフォン2d、第1マイクロフォン信号入力部3a、第2マイクロフォン信号入力部3b、第3マイクロフォン信号入力部3c、第4マイクロフォン信号入力部3d、第1マイクロフォン信号記憶部4a、第2マイクロフォン信号記憶部4b、第3マイクロフォン信号記憶部4c、第4マイクロフォン信号記憶部4d、および音声信号評価部5が、本発明に係る位相差算出装置30として機能する。 As shown in FIG. 14, the sound source direction detection device 21 includes a first microphone 2a, a second microphone 2b, a third microphone 2c, a fourth microphone 2d, a first microphone signal input unit 3a, a second microphone signal input unit 3b, Third microphone signal input unit 3c, fourth microphone signal input unit 3d, first microphone signal storage unit 4a, second microphone signal storage unit 4b, third microphone signal storage unit 4c, fourth microphone signal storage unit 4d, audio signal An evaluation unit 5, a sound source direction specifying unit 6, and an angle table 7 are provided. The first microphone 2a, the second microphone 2b, the third microphone 2c, the fourth microphone 2d, the first microphone signal input unit 3a, the second microphone signal input unit 3b, the third microphone signal input unit 3c, and the fourth microphone signal. The input unit 3d, the first microphone signal storage unit 4a, the second microphone signal storage unit 4b, the third microphone signal storage unit 4c, the fourth microphone signal storage unit 4d, and the audio signal evaluation unit 5 are phase differences according to the present invention. It functions as the calculation device 30.
 音源方向検知装置21では、第4マイクロフォン2d、第4マイクロフォン信号入力部3d、および第4マイクロフォン信号記憶部4dを有している点で音源方向検知装置11と異なる。第4マイクロフォン2dは、外部の音を音声信号に変換するマイクロフォンである。第1マイクロフォン2a、第2マイクロフォン2b、第3マイクロフォン2c、および第4マイクロフォン2dは、互いに異なる位置に配置され、同一平面上に位置しないように配置されている。 The sound source direction detection device 21 is different from the sound source direction detection device 11 in that it includes a fourth microphone 2d, a fourth microphone signal input unit 3d, and a fourth microphone signal storage unit 4d. The fourth microphone 2d is a microphone that converts external sound into an audio signal. The 1st microphone 2a, the 2nd microphone 2b, the 3rd microphone 2c, and the 4th microphone 2d are arranged in a mutually different position, and are arranged so that it may not be located on the same plane.
 第4マイクロフォン信号入力部3dは、第4マイクロフォン2dが変換した音声信号を数値化した音声データを作成する。また、第4マイクロフォン信号記憶部4dは、第4マイクロフォン信号入力部3dが作成した音声データを記憶しており、任意の一定時間分の音声データを常に記憶している。 The fourth microphone signal input unit 3d creates voice data obtained by digitizing the voice signal converted by the fourth microphone 2d. The fourth microphone signal storage unit 4d stores the voice data created by the fourth microphone signal input unit 3d, and always stores voice data for an arbitrary fixed time.
 音源方向特定部6が、音声信号評価部5が算出した位相差に基づき、音源の方向を特定する方法について、図15を参照して説明する。図15は、4つのマイクロフォンを用いて音源方向を特定する方法を説明するための図である。 A method in which the sound source direction identification unit 6 identifies the direction of the sound source based on the phase difference calculated by the audio signal evaluation unit 5 will be described with reference to FIG. FIG. 15 is a diagram for explaining a method of specifying a sound source direction using four microphones.
 図15に示すように、第1マイクロフォン2a、第2マイクロフォン2b、および第3マイクロフォン2cを含む平面に垂直、かつ、第3マイクロフォン2cを通る直線上の位置に第4マイクロフォン2dが配置されている場合を想定する。この場合、第1マイクロフォン2a、第2マイクロフォン2b、および第3マイクロフォン2cを用いて、実施形態2で示した方法により上記の平面(第1マイクロフォン2a、第2マイクロフォン2b、および第3マイクロフォン2cを含む平面)上における音源方向を特定する。これにより、音源方向の角度θ1が得られる。角度θ1は、上記の平面における第1マイクロフォン2aおよび第2マイクロフォン2bを通る直線との間の角度である。 As shown in FIG. 15, the fourth microphone 2d is arranged at a position perpendicular to the plane including the first microphone 2a, the second microphone 2b, and the third microphone 2c and on a straight line passing through the third microphone 2c. Assume a case. In this case, using the first microphone 2a, the second microphone 2b, and the third microphone 2c, the plane (the first microphone 2a, the second microphone 2b, and the third microphone 2c are replaced by the method described in the second embodiment). Specify the direction of the sound source on the plane containing the sound source. Thereby, the angle θ1 in the sound source direction is obtained. The angle θ1 is an angle between a straight line passing through the first microphone 2a and the second microphone 2b in the plane.
 続いて、第3マイクロフォン2cと第4マイクロフォン2dを用いて、実施形態1で示した方法により上記の直線(第3マイクロフォン2cと第4マイクロフォン2dとを通る直線)に対する音源方向を特定する。これにより、音源方向の角度θ2が得られる。角度θ2は、上記の直線との間の角度である。すなわち、音源方向は、上記の直線を主軸とし、頂角を角度2×θ2とした円錐面を通る方向となる。 Subsequently, by using the third microphone 2c and the fourth microphone 2d, the sound source direction with respect to the straight line (the straight line passing through the third microphone 2c and the fourth microphone 2d) is specified by the method described in the first embodiment. Thereby, the angle θ2 in the sound source direction is obtained. The angle θ2 is an angle between the straight line. That is, the sound source direction is a direction passing through a conical surface having the above-mentioned straight line as a main axis and an apex angle of 2 × θ2.
 以上より得られた2つの角度θ1および角度θ2によって得られる極座標系の3次元ベクトルから、音源方向を特定することができる。具体的には、第3マイクロフォン2cと第4マイクロフォン2dとを通る直線との間の角度が角度θ2であり、かつ、第1マイクロフォン2a、第2マイクロフォン2b、および第3マイクロフォン2cを含む平面上において、第1マイクロフォン2aおよび第2マイクロフォン2bを通る直線と平行な直線との間の角度が角度θ1(=角度θ1’)となる方向が音源方向である。 The sound source direction can be specified from the three-dimensional vector of the polar coordinate system obtained from the two angles θ1 and θ2 obtained as described above. Specifically, the angle between the third microphone 2c and the straight line passing through the fourth microphone 2d is an angle θ2, and the plane includes the first microphone 2a, the second microphone 2b, and the third microphone 2c. , The direction in which the angle between the straight line passing through the first microphone 2a and the second microphone 2b and the parallel line is the angle θ1 (= angle θ1 ′) is the sound source direction.
 音源方向特定部6は、以上のようにして特定した音源方向を検知結果として外部に出力する。このように、音源方向検知装置21では、平面上での音源方向の検知でなく、立体空間での音源位置の方向検知が可能となる。これにより、音源が人物の声である場合には、話している人物の口の位置を高さ方向も含めて検知することができるので、身長がある程度分かることから、大人と子供との識別にも利用可能となる。 The sound source direction specifying unit 6 outputs the sound source direction specified as described above to the outside as a detection result. As described above, the sound source direction detection device 21 can detect the direction of the sound source position in the three-dimensional space instead of detecting the sound source direction on the plane. As a result, when the sound source is a human voice, the position of the mouth of the person talking can be detected including the height direction, so that the height can be known to some extent, which makes it possible to distinguish between adults and children. Will also be available.
 〔まとめ〕
 本発明の態様1に係る位相差算出装置10,20,30は、互いに異なる位置に配置され、外部の音を音声信号に変換して出力する複数のマイクロフォンと、上記複数のマイクロフォンのうちの1つの上記マイクロフォンが出力した上記音声信号と、他の上記マイクロフォンが出力した上記音声信号との間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を上記位相シフト量ごとに作成する位相シフト音声信号作成部51と、各上記位相シフト量に対応する上記位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値を算出する積算値算出部(ずれ値算出部52)と、上記積算値に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出する位相差算出部55と、を備える。
[Summary]
Phase difference calculation apparatuses 10, 20, and 30 according to aspect 1 of the present invention are arranged at different positions, convert a sound from an external sound into a sound signal, and output one of the plurality of microphones. A phase-shifted audio signal is created for each phase-shifted amount by gradually changing the relative phase-shifted amount between the audio signals output from one of the microphones and the audio signal output from the other microphones. A phase shift audio signal creation unit 51 that performs an integrated value calculation unit that calculates an integrated value of a difference between output values within a certain range of two audio signals in the phase shift audio signal corresponding to each phase shift amount (deviation value) Based on the calculation unit 52), the audio signal output from the one microphone, and the audio signal output from the other microphone based on the integrated value It includes a phase difference calculator 55 for calculating a phase difference, a.
 上記の構成によれば、1つのマイクロフォンの音声信号と、他のマイクロフォンの音声信号との相対的な位相シフト量を段階的に変化させた位相シフト音声信号における2つの音声信号の一定範囲内における出力値の差分の積算値に基づき、両者の位相差を算出することができる。例えば、人の声は、言葉の発音によって周波数成分が大きく揺れる。また、周囲から別の雑音が混入することにより音声信号が乱されることが断続的に発生することがある。このような音源であっても、位相シフト量ごとの2つの音声信号の一定範囲内における出力値の差分の積算値を算出することにより、当該積算値によって音声信号を評価することにより、両者の位相差を正確に算出可能な音声信号の部分を抽出することができる。このように、本発明の一態様に係る位相差算出装置は、異なるマイクロフォンから出力された音声信号間の位相差をより正確に算出可能である。 According to the above configuration, within a certain range of the two audio signals in the phase-shifted audio signal in which the relative phase shift amount between the audio signal of one microphone and the audio signal of the other microphone is changed stepwise. Based on the integrated value of the difference between the output values, the phase difference between the two can be calculated. For example, the frequency component of human voice greatly fluctuates due to the pronunciation of words. In addition, the sound signal may be intermittently generated due to mixing of other noise from the surroundings. Even in such a sound source, by calculating the integrated value of the difference between the output values within a certain range of the two audio signals for each phase shift amount, by evaluating the audio signal based on the integrated value, It is possible to extract a portion of the audio signal that can accurately calculate the phase difference. As described above, the phase difference calculation apparatus according to one embodiment of the present invention can calculate the phase difference between audio signals output from different microphones more accurately.
 本発明の態様2に係る位相差算出装置10,20,30は、上記態様1において、上記位相差算出部55は、上記位相シフト量を段階的に変化させたときの上記積算値の経時的な変化において、当該積算値が最小となるときの位相シフト量を、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差として算出する。 In the phase difference calculation devices 10, 20, and 30 according to the second aspect of the present invention, the phase difference calculation unit 55 according to the first aspect is configured such that the accumulated value when the phase shift amount is changed stepwise. In such a change, the phase shift amount when the integrated value becomes the minimum is calculated as a phase difference between the audio signal output from the one microphone and the audio signal output from the other microphone.
 上記積算値が最小となるのは、2つの音声信号が略一致しているときである。したがって、上記積算値が最小になるときの位相シフト量が、2つの音声信号の時間的なずれ(位相差)である。そこで、上記の構成においては、1つのマイクロフォンが出力した音声信号に対して、他のマイクロフォンが出力した音声信号を位相シフトさせたときの上記積算値の経時的な変化において、当該積算値が最小となるときの位相シフト量を、両マイクロフォンが出力した音声信号間の位相差として算出している。 The above integrated value is minimized when the two audio signals are substantially coincident. Therefore, the phase shift amount when the integrated value becomes the minimum is the time shift (phase difference) between the two audio signals. Therefore, in the above configuration, the integrated value is the smallest in the change over time of the integrated value when the audio signal output from the other microphone is phase-shifted with respect to the audio signal output from one microphone. Is calculated as the phase difference between the audio signals output by both microphones.
 本発明の態様3に係る位相差算出装置10,20,30は、上記態様1または2において、上記位相シフト量を段階的に変化させたときの上記積算値の経時的な変化に基づき、各上記マイクロフォンが出力した上記音声信号が、上記位相差を算出するために適切であるか否かを判定する判定部54をさらに備え、上記位相差算出部55は、各上記マイクロフォンが出力した上記音声信号が、上記位相差を算出するために適切であると上記判定部54が判定した場合に、上記積算値の経時的な変化に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出する。 The phase difference calculation apparatuses 10, 20, and 30 according to the aspect 3 of the present invention are based on the time-dependent change in the integrated value when the phase shift amount is changed stepwise in the aspect 1 or 2. The sound signal output from the microphone further includes a determination unit that determines whether or not the sound signal is appropriate for calculating the phase difference, and the phase difference calculation unit 55 includes the sound output from each microphone. When the determination unit 54 determines that the signal is appropriate for calculating the phase difference, the audio signal output from the one microphone and the other based on the change over time of the integrated value The phase difference from the audio signal output by the microphone is calculated.
 上記の構成によれば、判定部54が、位相差の算出に不適切な音声信号を見分け、位相差算出部55では、当該音声信号は位相差の算出に用いないため、位相差の算出に適切な音声信号のみを用いて位相差の算出を行うことができる。このため、本発明の一態様に係る位相差算出装置10,20,30では、より正確に位相差を算出することができる。 According to the above configuration, the determination unit 54 recognizes an audio signal inappropriate for calculating the phase difference, and the phase difference calculation unit 55 does not use the audio signal for calculating the phase difference. The phase difference can be calculated using only an appropriate audio signal. Therefore, the phase difference calculation apparatuses 10, 20, and 30 according to one aspect of the present invention can calculate the phase difference more accurately.
 本発明の態様4に係る位相差算出装置10,20,30は、上記態様3において、上記判定部54は、上記積算値の経時的な変化における極小点が1つの場合に、各上記マイクロフォンが出力した上記音声信号が、上記位相差の算出するために適切であると判定する。 In the phase difference calculation devices 10, 20, and 30 according to aspect 4 of the present invention, in the aspect 3, the determination unit 54 determines that each of the microphones has a minimum point in the change with time of the integrated value. It is determined that the output audio signal is appropriate for calculating the phase difference.
 上記積算値の経時的な変化における極小点が2つ以上存在するのは、一方の音声信号を他方の音声信号に向けて位相シフトさせたときに、前後どちらに位相シフトさせても複数回にわたって2つの音声信号が一致してしまうほどに当該2つの音声信号が密な波形を有しているためである。このような音声信号を用いて位相差の算出を行うと、正確な位相差を算出し難い。そこで、上記の構成によれば、上記積算値の経時的な変化における極小点が1つ存在する場合のみに位相差の算出を行うため、より正確に位相差を算出することができる。 There are two or more local minimum points in the change of the integrated value over time. When one audio signal is phase-shifted toward the other audio signal, it can be shifted multiple times regardless of whether it is phase-shifted forward or backward. This is because the two audio signals have a dense waveform such that the two audio signals match. When the phase difference is calculated using such an audio signal, it is difficult to calculate an accurate phase difference. Therefore, according to the above configuration, the phase difference is calculated only when there is one local minimum point in the temporal change in the integrated value, so that the phase difference can be calculated more accurately.
 本発明の態様5に係る位相差算出装置10,20,30は、上記態様4において、上記判定部54は、上記積算値の経時的な変化における当該積算値の最小値が所定の閾値未満の場合に、各上記マイクロフォンが出力した上記音声信号が、上記位相差の算出するために適切であると判定する。 In the phase difference calculation devices 10, 20, and 30 according to aspect 5 of the present invention, in the aspect 4, the determination unit 54 determines that the minimum value of the integrated value in the change over time of the integrated value is less than a predetermined threshold value. In this case, it is determined that the audio signal output from each microphone is appropriate for calculating the phase difference.
 上記積算値の経時的な変化における当該積算値の最小値が所定の閾値以上の場合は、2つの音声信号の一致度が低いことを意味している。このような音声信号を用いて位相差の算出を行うと、正確な位相差を算出し難い。そこで、上記の構成によれば、上記積算値の経時的な変化における当該積算値の最小値が所定の閾値未満の場合のみに位相差の算出を行うため、より正確に位相差を算出することができる。 When the minimum value of the integrated value in the change over time of the integrated value is equal to or greater than a predetermined threshold value, it means that the degree of coincidence between the two audio signals is low. When the phase difference is calculated using such an audio signal, it is difficult to calculate an accurate phase difference. Therefore, according to the above configuration, the phase difference is calculated only when the minimum value of the integrated value in the temporal change of the integrated value is less than a predetermined threshold value, and therefore the phase difference can be calculated more accurately. Can do.
 本発明の態様6に係る音源方向検知装置1,11,21は、上記態様1~5に記載の位相差算出装置10,20,30により算出した上記位相差に基づき、上記音の音源方向を特定する。 The sound source direction detection devices 1, 11 and 21 according to aspect 6 of the present invention determine the sound source direction of the sound based on the phase difference calculated by the phase difference calculation devices 10, 20, and 30 according to aspects 1 to 5. Identify.
 上記の構成によれば、本発明の一態様に係る位相差算出装置10,20,30によって算出された正確な位相差を用いて、音源方向の検知を行うことができるため、より正確な音源方向の検知が可能となる。 According to the above configuration, since the sound source direction can be detected using the accurate phase difference calculated by the phase difference calculation devices 10, 20, and 30 according to one aspect of the present invention, a more accurate sound source Direction detection is possible.
 本発明の態様7に係る音源方向検知装置11,21は、上記態様6において、3つ以上の上記マイクロフォンを備え、上記位相差算出装置20,30は、上記3つ以上のマイクロフォンが出力した上記音声信号に関して、上記位相差を算出し、上記位相差算出装置20,30が算出した2つ以上の上記位相差に基づき、上記音源方向を特定する。 The sound source direction detection devices 11 and 21 according to aspect 7 of the present invention include the three or more microphones in the aspect 6, and the phase difference calculating devices 20 and 30 output the three or more microphones. With respect to the audio signal, the phase difference is calculated, and the sound source direction is specified based on the two or more phase differences calculated by the phase difference calculation devices 20 and 30.
 上記の構成によれば、3つのマイクロフォンを用いることにより、3つのマイクロフォンを含む平面上において、360度全方向からの音源方向を検知することができる。また、4つのマイクロフォンを用いることにより、平面上での音源方向の検知でなく、立体空間での音源位置の方向検知が可能となる。 According to the above configuration, by using three microphones, it is possible to detect the sound source direction from all directions of 360 degrees on a plane including the three microphones. Further, by using four microphones, it is possible to detect the direction of the sound source position in the three-dimensional space, not the direction of the sound source on the plane.
 本発明の態様8に係る位相差算出方法は、互いに異なる位置に配置された複数のマイクロフォンを用いて、外部の音を音声信号に変換して出力する工程と、上記複数のマイクロフォンのうちの1つの上記マイクロフォンが出力した上記音声信号と、他の上記マイクロフォンが出力した上記音声信号との間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を作成する工程と、各上記位相シフト量に対応する上記位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値を算出する工程と、上記積算値に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出する工程と、を含む。 A phase difference calculation method according to aspect 8 of the present invention includes a step of converting an external sound into an audio signal using a plurality of microphones arranged at different positions, and outputting one of the plurality of microphones. Creating a phase-shifted audio signal in which the relative phase shift amount between the audio signals output from the two microphones and the audio signals output from the other microphones are changed stepwise; A step of calculating an integrated value of a difference between output values within a predetermined range of the two audio signals in the phase-shifted audio signal corresponding to the phase shift amount; and the audio signal output from the one microphone based on the integrated value And calculating a phase difference with the audio signal output from the other microphone.
 上記の方法によれば、本発明の一態様に係る位相差算出装置と同様の効果を奏することができる。 According to the above method, the same effects as those of the phase difference calculation apparatus according to one aspect of the present invention can be obtained.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、人間と会話するロボット、電話会議システムのマイクロフォン部、またはセキュリティ監視システム等に用いる音源方向検知装置の位相差算出装置として好適に利用できる。 The present invention can be suitably used as a phase difference calculating device of a sound source direction detecting device used for a robot that talks with a human, a microphone unit of a telephone conference system, or a security monitoring system.
  1 音源方向検知装置
  2a 第1マイクロフォン
  2b 第2マイクロフォン
  2c 第3マイクロフォン
  2d 第4マイクロフォン
  3a 第1マイクロフォン信号入力部
  3b 第2マイクロフォン信号入力部
  3c 第3マイクロフォン信号入力部
  3d 第4マイクロフォン信号入力部
  4a 第1マイクロフォン信号記憶部
  4b 第2マイクロフォン信号記憶部
  4c 第3マイクロフォン信号記憶部
  4d 第4マイクロフォン信号記憶部
  5 音声信号評価部(位相シフト部,積算値算出部,位相差算出部,判定部)
  6 音源方向特定部(特定部)
  7 角度テーブル
  11 音源方向検知装置
  21 音源方向検知装置
  10 位相差算出装置
  20 位相差算出装置
  30 位相差算出装置
DESCRIPTION OF SYMBOLS 1 Sound source direction detection apparatus 2a 1st microphone 2b 2nd microphone 2c 3rd microphone 2d 4th microphone 3a 1st microphone signal input part 3b 2nd microphone signal input part 3c 3rd microphone signal input part 3d 4th microphone signal input part 4a First microphone signal storage unit 4b Second microphone signal storage unit 4c Third microphone signal storage unit 4d Fourth microphone signal storage unit 5 Audio signal evaluation unit (phase shift unit, integrated value calculation unit, phase difference calculation unit, determination unit)
6 Sound source direction identification part (specification part)
7 Angle table 11 Sound source direction detection device 21 Sound source direction detection device 10 Phase difference calculation device 20 Phase difference calculation device 30 Phase difference calculation device

Claims (8)

  1.  互いに異なる位置に配置され、外部の音を音声信号に変換して出力する複数のマイクロフォンと、
     上記複数のマイクロフォンのうちの1つの上記マイクロフォンが出力した上記音声信号と、他の上記マイクロフォンが出力した上記音声信号との間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を上記位相シフト量ごとに作成する位相シフト音声信号作成部と、
     各上記位相シフト量に対応する上記位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値を算出する積算値算出部と、
     上記積算値に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出する位相差算出部と、を備えることを特徴とする位相差算出装置。
    A plurality of microphones that are arranged at different positions, convert external sounds into audio signals, and output them;
    A phase-shifted audio signal in which the relative phase shift amount between the audio signal output from one of the plurality of microphones and the audio signal output from the other microphone is changed stepwise. For each phase shift amount, a phase shift audio signal creation unit,
    An integrated value calculating unit that calculates an integrated value of the difference between output values within a certain range of two audio signals in the phase-shifted audio signal corresponding to each phase shift amount;
    A phase difference calculating unit that calculates a phase difference between the audio signal output from the one microphone and the audio signal output from the other microphone based on the integrated value; Calculation device.
  2.  上記位相差算出部は、上記位相シフト量を段階的に変化させたときの上記積算値の経時的な変化において、当該積算値が最小となるときの上記位相シフト量を、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差として算出することを特徴とする請求項1に記載の位相差算出装置。 The phase difference calculation unit is configured to determine the phase shift amount when the integrated value is minimized in the change with time of the integrated value when the phase shift amount is changed stepwise by the one microphone. The phase difference calculation apparatus according to claim 1, wherein the phase difference is calculated as a phase difference between the output audio signal and the audio signal output by the other microphone.
  3.  上記位相シフト量を段階的に変化させたときの上記積算値の経時的な変化に基づき、各上記マイクロフォンが出力した上記音声信号が、上記位相差を算出するために適切であるか否かを判定する判定部をさらに備え、
     上記位相差算出部は、各上記マイクロフォンが出力した上記音声信号が、上記位相差を算出するために適切であると上記判定部が判定した場合に、上記積算値の経時的な変化に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出することを特徴とする請求項1または2に記載の位相差算出装置。
    Based on the change over time of the integrated value when the phase shift amount is changed stepwise, it is determined whether or not the audio signal output from each microphone is appropriate for calculating the phase difference. A determination unit for determining;
    The phase difference calculation unit, when the determination unit determines that the audio signal output from each microphone is appropriate for calculating the phase difference, based on the change over time of the integrated value, The phase difference calculation apparatus according to claim 1, wherein a phase difference between the audio signal output from the one microphone and the audio signal output from the other microphone is calculated.
  4.  上記判定部は、上記積算値の経時的な変化における極小点が1つの場合に、各上記マイクロフォンが出力した上記音声信号が、上記位相差を算出するために適切であると判定することを特徴とする請求項3に記載の位相差算出装置。 The determination unit determines that the audio signal output from each microphone is appropriate for calculating the phase difference when there is one minimum point in the change with time of the integrated value. The phase difference calculation apparatus according to claim 3.
  5.  上記判定部は、上記積算値の経時的な変化における当該積算値の最小値が所定の閾値以上の場合に、各上記マイクロフォンが出力した上記音声信号が、上記位相差を算出するために適切であると判定することを特徴とする請求項3に記載の位相差算出装置。 The determination unit is suitable for calculating the phase difference between the audio signals output from the microphones when a minimum value of the integrated value in a change with time of the integrated value is equal to or greater than a predetermined threshold. The phase difference calculation apparatus according to claim 3, wherein it is determined that the phase difference is present.
  6.  請求項1~5のいずれか1項に記載の位相差算出装置と、
     上記位相差算出装置により算出された上記位相差に基づき、上記音の音源方向を特定する音源方向特定部とを備えることを特徴とする音源方向検知装置。
    A phase difference calculation apparatus according to any one of claims 1 to 5;
    A sound source direction detecting device comprising: a sound source direction specifying unit that specifies a sound source direction of the sound based on the phase difference calculated by the phase difference calculating device.
  7.  上記位相差算出装置は、3つ以上の上記マイクロフォンを備え、上記3つ以上のマイクロフォンが出力した上記音声信号に関して、上記位相差を算出し、
     上記音源方向特定部は、上記位相差算出装置により算出された2つ以上の上記位相差に基づき、上記音源方向を特定することを特徴とする請求項6に記載の音源方向検知装置。
    The phase difference calculating device includes three or more microphones, calculates the phase difference with respect to the audio signals output by the three or more microphones,
    The sound source direction detecting device according to claim 6, wherein the sound source direction specifying unit specifies the sound source direction based on the two or more phase differences calculated by the phase difference calculating device.
  8.  互いに異なる位置に配置された複数のマイクロフォンを用いて、外部の音を音声信号に変換して出力する工程と、
     上記複数のマイクロフォンのうちの1つの上記マイクロフォンが出力した上記音声信号と、他の上記マイクロフォンが出力した上記音声信号との間の相対的な位相シフト量を段階的に変化させた位相シフト音声信号を作成する工程と、
     各上記位相シフト量に対応する上記位相シフト音声信号における2つの音声信号の一定範囲内の出力値の差分の積算値を算出する工程と、
     上記積算値に基づき、上記1つのマイクロフォンが出力した上記音声信号と、上記他のマイクロフォンが出力した上記音声信号との位相差を算出する工程と、を含むことを特徴とする位相差算出方法。
    Using a plurality of microphones arranged at different positions, converting external sound into an audio signal, and outputting the sound signal;
    A phase-shifted audio signal in which the relative phase shift amount between the audio signal output from one of the plurality of microphones and the audio signal output from the other microphone is changed stepwise. And the process of creating
    Calculating an integrated value of a difference between output values within a certain range of two audio signals in the phase-shifted audio signal corresponding to each phase shift amount;
    A phase difference calculation method comprising: calculating a phase difference between the sound signal output from the one microphone and the sound signal output from the other microphone based on the integrated value.
PCT/JP2015/064814 2014-07-25 2015-05-22 Phase difference calculation device, sound source direction detection device, and phase difference calculation method WO2016013286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014152102A JP2016031243A (en) 2014-07-25 2014-07-25 Phase difference calculation device, sound source direction detection device, and phase difference calculation method
JP2014-152102 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013286A1 true WO2016013286A1 (en) 2016-01-28

Family

ID=55162823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064814 WO2016013286A1 (en) 2014-07-25 2015-05-22 Phase difference calculation device, sound source direction detection device, and phase difference calculation method

Country Status (2)

Country Link
JP (1) JP2016031243A (en)
WO (1) WO2016013286A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763657A (en) * 2020-06-04 2021-12-07 浙江宇视科技有限公司 Monitoring alarm device, monitoring alarm control method and monitoring system
US11714158B2 (en) 2019-08-21 2023-08-01 University Of Washington Position determination systems and methods utilizing error of multiple candidate positions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6988321B2 (en) * 2017-09-27 2022-01-05 株式会社Jvcケンウッド Signal processing equipment, signal processing methods, and programs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287062A (en) * 1994-04-18 1995-10-31 Sony Corp Sound-direction sensor
JP2004077277A (en) * 2002-08-19 2004-03-11 Fujitsu Ltd Visualization display method for sound source location and sound source location display apparatus
JP2005049153A (en) * 2003-07-31 2005-02-24 Toshiba Corp Sound direction estimating device and its method
WO2008056649A1 (en) * 2006-11-09 2008-05-15 Panasonic Corporation Sound source position detector
WO2008146565A1 (en) * 2007-05-30 2008-12-04 Nec Corporation Sound source direction detecting method, device, and program
JP2012226438A (en) * 2011-04-15 2012-11-15 Toyota Motor Corp Approximating vehicle detection device and approximating vehicle detection method
WO2013048708A1 (en) * 2011-09-30 2013-04-04 Microsoft Corporation Sound-based positioning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07287062A (en) * 1994-04-18 1995-10-31 Sony Corp Sound-direction sensor
JP2004077277A (en) * 2002-08-19 2004-03-11 Fujitsu Ltd Visualization display method for sound source location and sound source location display apparatus
JP2005049153A (en) * 2003-07-31 2005-02-24 Toshiba Corp Sound direction estimating device and its method
WO2008056649A1 (en) * 2006-11-09 2008-05-15 Panasonic Corporation Sound source position detector
WO2008146565A1 (en) * 2007-05-30 2008-12-04 Nec Corporation Sound source direction detecting method, device, and program
JP2012226438A (en) * 2011-04-15 2012-11-15 Toyota Motor Corp Approximating vehicle detection device and approximating vehicle detection method
WO2013048708A1 (en) * 2011-09-30 2013-04-04 Microsoft Corporation Sound-based positioning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11714158B2 (en) 2019-08-21 2023-08-01 University Of Washington Position determination systems and methods utilizing error of multiple candidate positions
CN113763657A (en) * 2020-06-04 2021-12-07 浙江宇视科技有限公司 Monitoring alarm device, monitoring alarm control method and monitoring system

Also Published As

Publication number Publication date
JP2016031243A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP6289936B2 (en) Sound source direction estimating apparatus, sound source direction estimating method and program
US10225680B2 (en) Motion detection of audio sources to facilitate reproduction of spatial audio spaces
US20180137876A1 (en) Speech Signal Processing System and Devices
WO2017039632A1 (en) Passive self-localization of microphone arrays
WO2016013286A1 (en) Phase difference calculation device, sound source direction detection device, and phase difference calculation method
US9811311B2 (en) Using ultrasound to improve IMU-based gesture detection
JP2008261688A (en) Apparatus and method for separating sound source
JP2006194700A (en) Sound source direction estimation system, sound source direction estimation method and sound source direction estimation program
JP2005250397A (en) Robot
KR20220117282A (en) Audio device auto-location
JP2010181326A (en) Ultrasonic measuring device
Scheuing et al. Disambiguation of TDOA estimates in multi-path multi-source environments (DATEMM)
Al-Sheikh et al. Sound source direction estimation in horizontal plane using microphone array
JP6697982B2 (en) Robot system
US10104489B2 (en) Method for using a mobile device equipped with at least two microphones for determining the direction of loudspeakers in a setup of a surround sound system
KR100730297B1 (en) Sound source localization method using Head Related Transfer Function database
JP2005049153A (en) Sound direction estimating device and its method
JP2011033369A (en) Conference device
JP6433630B2 (en) Noise removing device, echo canceling device, abnormal sound detecting device, and noise removing method
Levorato et al. Probabilistic 2d acoustic source localization using direction of arrivals in robot sensor networks
TWI402531B (en) Method for locating sound sorce and sound source locating system and computer program product using the same
TWI577194B (en) Environmental voice source recognition system and environmental voice source recognizing method thereof
TWI633275B (en) Distance detection device and distance detection method thereof
Zamaninezhad et al. Localization of environmental reflectors from a single measured transfer function
JP2007006353A (en) Microphone array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824335

Country of ref document: EP

Kind code of ref document: A1