WO2016013193A1 - Vehicular air conditioning device - Google Patents

Vehicular air conditioning device Download PDF

Info

Publication number
WO2016013193A1
WO2016013193A1 PCT/JP2015/003616 JP2015003616W WO2016013193A1 WO 2016013193 A1 WO2016013193 A1 WO 2016013193A1 JP 2015003616 W JP2015003616 W JP 2015003616W WO 2016013193 A1 WO2016013193 A1 WO 2016013193A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
combustor
fuel
refrigerant
refrigeration cycle
Prior art date
Application number
PCT/JP2015/003616
Other languages
French (fr)
Japanese (ja)
Inventor
亮 瀧澤
雅巳 谷口
藤田 明
丈裕 倉田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015003371.8T priority Critical patent/DE112015003371B4/en
Publication of WO2016013193A1 publication Critical patent/WO2016013193A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2203Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from burners
    • B60H1/2209Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from burners arrangements of burners for heating an intermediate liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • B60H1/036Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from the plant exhaust gases and from a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2203Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from burners
    • B60H1/2206Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from burners controlling the operation of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2228Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters
    • B60H2001/2237Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters supplementary heating, e.g. during stop and go of a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2246Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor
    • B60H2001/225Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor related to an operational state of another HVAC device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2259Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant output of a control signal
    • B60H2001/2265Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant output of a control signal related to the quantity of heat produced by the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Definitions

  • the present disclosure relates to a vehicle air conditioner that heats cooling water of a heat source in a vehicle with a refrigeration cycle circuit or the like that serves as a combustor and a heat pump, warms the conditioned air with a heater core, and heats the inside of the vehicle.
  • Patent Document 1 Conventionally, there is a vehicle air conditioner described in Patent Document 1.
  • a water refrigerant heat exchanger is provided in a hot water circuit through which engine cooling water flows. And the hot water temperature required for heating operation is rapidly raised using the refrigerating cycle circuit by flowing the high-temperature / high-pressure refrigerant from the refrigerating cycle circuit to the water refrigerant heat exchanger.
  • the heat pump disclosed in Patent Document 1 has good heating efficiency because it draws heat from the air.
  • the conventional vehicle air conditioner does not consider the efficiency on the basis of fuel consumption, and thus the efficiency on the basis of fuel consumption may be reduced.
  • an object of the present disclosure is to provide a vehicle air conditioner including a combustor and a heat pump that has high efficiency on a fuel consumption basis.
  • the vehicle air conditioner has a cooling water circuit that flows cooling water that cools a heat source provided in the vehicle and that heats the conditioned air blown into the vehicle interior with the heat of the cooling water during heating operation. And a refrigerant compressed by the compressor flows, and a refrigeration cycle circuit that operates as a heat pump that heats the conditioned air with the heat of the refrigerant during heating operation, and a control device.
  • the cooling water circuit includes a water pump that flows cooling water to a heat source, a combustor that generates heat by burning fuel to heat the cooling water, a radiator that dissipates heat from the cooling water to the outside air, and cooling water and air conditioning.
  • a heater core that performs heat exchange with the wind.
  • the refrigeration cycle circuit is driven by power from an engine driven by consuming fuel or by electric power generated by power from the engine, and outdoor heat that exchanges heat between the compressor that pressurizes the refrigerant and the outside air and the refrigerant. And an indoor heat exchanger that performs heat exchange between the refrigerant and the conditioned air.
  • the control device is connected to the combustor and the compressor, and controls the combustor and the compressor.
  • the ratio of the amount of energy given to the conditioned air to the amount of energy of fuel consumed for heating during heating operation is defined as fuel efficiency.
  • the control device includes: a calculation unit that calculates the fuel efficiency of the heat pump and the fuel efficiency of the combustor; and an efficiency selection unit that preferentially operates the heat pump and the combustor that have the higher calculated fuel efficiency. Prepare.
  • the fuel efficiency of the heat pump and the combustor is obtained from the operating conditions including the outside air temperature at that time, and the higher one of the obtained fuel efficiency of the heat pump and the combustor is preferentially operated.
  • the fact that the combustor may be more efficient than the heat pump when considered on a fuel consumption basis can be utilized.
  • the operation of the combustor and the operation state of the heat pump can be combined in accordance with the fuel efficiency. As a result, it is possible to provide a vehicle air conditioner that consumes less fuel and improve the fuel efficiency of the entire vehicle.
  • the cooling water that cools the heat source provided in the vehicle flows, and the cooling water that heats the conditioned air blown into the vehicle interior by the heat of the cooling water during the heating operation.
  • a circuit a refrigerant compressed by a compressor flows, and includes a refrigeration cycle circuit that operates as a heat pump that heats conditioned air with the heat of the refrigerant during heating operation, and a control device.
  • the cooling water circuit exchanges heat between the cooling water and the conditioned air, a water pump that flows cooling water to the heat source, a combustor that can heat the cooling water, a radiator that radiates the heat of the cooling water to the outside air, and A heater core.
  • the refrigeration cycle circuit is driven by power from an engine driven by consuming fuel or by electric power generated by power from the engine, and outdoor heat that exchanges heat between the compressor that pressurizes the refrigerant and the outside air and the refrigerant. And an indoor heat exchanger that performs heat exchange between the refrigerant and the conditioned air.
  • the control device includes a selection unit that selects and operates at least one of the refrigeration cycle circuit and the combustor based on the required heating capacity obtained from a predetermined temperature condition and a fuel consumption-based heat pump operation state.
  • the vehicle according to the first embodiment uses an electric motor that rotates with battery power in the drive system of the vehicle. Driving force can also be generated by engine power.
  • the heat source for heating the hot water in the hot water circuit is an engine composed of a water-cooled internal combustion engine.
  • the battery can be charged by generating power with engine power.
  • FIG. 1 is a schematic diagram illustrating a vehicle air conditioner according to a first embodiment of the present disclosure.
  • the vehicle air conditioner according to the first embodiment includes a heat pump (H / P) including a refrigeration cycle circuit 3 and a combustor 6.
  • the coefficient of performance (COP) of the heat pump is 1.0 or more, and the input energy efficiency is better than a combustor having a coefficient of performance of about 0.8.
  • Input energy efficiency is better than combustor. “Input energy efficiency” is defined as the ratio of the amount of energy applied to the conditioned air to the amount of energy input for heating.
  • the capacity and efficiency of a heat pump may decrease due to a decrease in outside air.
  • the fan and blower which are the ventilation system in a heat pump operate move electrically, the efficiency on the fuel consumption base of a heat pump may fall further from the input energy efficiency of a heat pump. “Efficiency on the basis of fuel consumption”, that is, “fuel efficiency” is defined as the ratio of the amount of energy given to the conditioned air to the amount of fuel consumed for heating.
  • the efficiency obtained by dividing the engine output by the amount of energy of the fuel input to the engine is about 0.3.
  • the vehicle air conditioner according to the present embodiment is operated preferentially from the refrigeration cycle circuit 3 and the combustor 6 that form a heat pump when the inside of the vehicle is heated, from the side with the lower fuel consumption. That is, the refrigeration cycle circuit 3 and the combustor 6 are preferentially operated from the one with higher fuel efficiency.
  • the refrigeration cycle circuit 3 constituting the heat pump is configured to heat the hot water circuit 1 (cooling water circuit) heated by the combustor 6 via the water refrigerant heat exchanger 15 (cooling water refrigerant heat exchanger). ing.
  • the water refrigerant heat exchanger 15 is not essential, but the first embodiment effectively uses the water refrigerant heat exchanger 15.
  • a vehicle air conditioner includes a hot water circuit 1 through which hot water (cooling water) for cooling a heat source 4 in the vehicle flows, and a refrigeration cycle circuit 3 that constitutes a heat pump through which refrigerant compressed by the compressor 2 flows.
  • the heat source 4 in the vehicle is an engine composed of an internal combustion engine that generates driving force for the vehicle.
  • the hot water circuit 1 is a circuit through which water for cooling the engine (made of antifreeze) flows.
  • the hot water circuit 1 includes a water pump 5 for flowing hot water to the heat source 4, a combustor 6 for heating the hot water, a radiator 7 for radiating the heat of the hot water to the outside air, and heat of the hot water and the conditioned air blown into the vehicle. And a heater core 8 for replacement.
  • the water pump 5 rotates an impeller with an electric motor to circulate hot water for engine cooling.
  • the combustor 6 has a burner for burning fuel, and heats hot water flowing through the hot water circuit 1.
  • the combustor 6 is supplied with fuel from a combustor fuel tank 6t formed of a fuel tank different from the engine serving as the heat source 4.
  • the radiator 7 exchanges heat with the outside air, which is air outside the vehicle, in order to lower the temperature of the hot water in the hot water circuit 1 that has become hot.
  • a radiator electric fan is attached to the radiator 7 so that outside air flows through the fins of the radiator 7.
  • the heater core 8 is a heat exchanger that is provided so as to close the inside of the air conditioning duct, and heats the outside air blown by the air conditioning blower or the inside air that is the circulating air in the vehicle.
  • the thermostat etc. which control the flow volume to the radiator 7 of the hot water circuit 1 are abbreviate
  • the refrigeration cycle circuit 3 includes a compressor 2 that pressurizes the refrigerant, an outdoor heat exchanger 13 that exchanges heat with air outside the vehicle, an indoor heat exchanger 14 that adjusts the temperature of the conditioned air, and an accumulator that stores excess refrigerant. 9 etc.
  • the compressor 2 is an electric compressor that is driven by electric power generated by power from the engine, but may be driven by power from an engine that is driven by consuming fuel.
  • the vehicle is equipped with a battery 25 that supplies electric power to an electric motor 32 that drives wheels.
  • a battery management unit 26 that manages the battery voltage, the battery temperature, the battery remaining amount, and the like, which is the state of the battery 25, is mounted in the vehicle. Therefore, the control device 10 can grasp the remaining battery level of the battery 25 via the battery management unit 26.
  • the electric motor 32 is supplied with power from the battery 25 via the electric motor control circuit 31.
  • the refrigeration cycle circuit 3 has the following four modes.
  • the refrigerant dissipates heat in the water / refrigerant heat exchanger 15 and the outdoor heat exchanger 13 and absorbs heat in the indoor heat exchanger 14.
  • the electronic expansion valve 11 is fully opened, the flow rate of the electronic expansion valve 12 is adjusted, and the temperature of the indoor heat exchanger 14 that functions as an evaporator is controlled.
  • the solenoid valve 37 is closed and the solenoid valve 36 is closed.
  • the refrigerant radiates heat with the water refrigerant heat exchanger 15 and absorbs heat with the outdoor heat exchanger 13.
  • the electronic expansion valve 11 adjusts the flow rate and controls the temperature of the outdoor heat exchanger 13 that functions as an evaporator.
  • the electronic expansion valve 12 is closed. Even if the blower is stopped, the indoor heat exchanger 14 slightly exchanges heat by natural convection.
  • the electronic expansion valve 12 is open, a refrigerant flows in the indoor heat exchanger 14, so that the amount of heat exchange increases and acts in a worsening direction. That is, the heating capacity is reduced. Therefore, the electronic expansion valve 12 is closed.
  • the electromagnetic valve 37 is closed and the electromagnetic valve 36 is open.
  • the temperature cannot be adjusted by the indoor heat exchanger 14 during heating.
  • the indoor heat exchanger 14 adjusts the temperature as an evaporator during cooling, and acts as a dehumidifying evaporator during heating.
  • the indoor heat exchanger 14 cannot be used as a condenser.
  • the refrigerant radiates heat to the cooling water in the water / refrigerant heat exchanger 15, and the heater core 8 heats the conditioned air sent to the passenger compartment. That is, as a water heating type, both the heat pump composed of the refrigeration cycle circuit 3 and the combustor 6 warm the cooling water and radiate heat from one heater core to the conditioned air.
  • the electronic expansion valve 11 adjusts the flow rate and controls the temperature of the outdoor heat exchanger 13 that functions as an evaporator.
  • the flow rate of the electronic expansion valve 12 is also adjusted.
  • the electromagnetic valve 37 is opened.
  • the electromagnetic valve 36 is also opened.
  • the well-known reheat action which heats the air cooled with the indoor heat exchanger 14 which functions as an evaporator with the heater core 8 into which warm water flows is needed.
  • the heat exchanger for hot water reheating that is basically the same as that of the heater core 8 and the air mix damper that controls the amount of air passing through the heater core are omitted.
  • the water refrigerant heat exchanger 15 absorbs heat or does nothing, and the outdoor heat exchanger 13 radiates heat. Therefore, the electronic expansion valve 11 is fully opened.
  • the electronic expansion valve 12 is closed.
  • the solenoid valve 37 is closed.
  • the solenoid valve 36 is opened.
  • the control device 10 includes a calculation unit (S205) that calculates the fuel efficiencies of the refrigeration cycle circuit 3 and the combustor 6 constituting the heat pump from operating conditions including the outside air temperature outside the vehicle.
  • the refrigeration cycle circuit 3 heats the hot water in the hot water circuit 1 through the water-refrigerant heat exchanger with the heat of the refrigerant pressurized to the high temperature by the compressor 2 and heats the conditioned air through the heater core 8 that flows through the hot water.
  • the indoor heat exchanger 14 does not function as a condenser but functions only as an evaporator. Since the first embodiment is a water heating type, the hot water circuit is heated. In the case of an air heating type as shown in FIG. 15 described later, the indoor heat exchanger 14 serves as a condenser and has a function of heating the conditioned air.
  • the combustor 6 first heats the hot water in the hot water circuit 1 and heats the conditioned air through the heater core 8 through which the hot water flows.
  • the efficiency selection unit (S208 to S214) of FIG. 2 that preferentially operates the one having the higher calculated fuel efficiency out of the heat pump and the combustor 6 including the refrigeration cycle circuit 3 serving as such a heating device is a control device. 10 within.
  • the control device 10 is known as an air conditioner ECU, and includes a memory as a storage device and a CPU as an arithmetic device. Then, based on the information such as the set temperature in the passenger compartment set by the operation panel and the sensor information such as the outside air temperature, the inside air temperature, and the amount of solar radiation, the control of the compressor 2, the first electronic expansion valve 11, and the second electronic expansion are performed. Control the valve 12 and the like.
  • the control device 10 is electrically connected to the compressor 2 and the combustor 6 as indicated by a dotted line in FIG.
  • the indoor heat exchanger 14 cannot be a capacitor in the circuit configuration of the first embodiment.
  • the control device 10 calculates the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 from the operating conditions including the outside air temperature at that time.
  • the control device 10 may calculate the fuel efficiency based on signals from the compressor 2 and the combustor 6. And the one where the calculated efficiency is higher among the refrigeration cycle circuit 3 and the combustor 6 is operated preferentially. Therefore, the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized. In such a case, a vehicle air conditioner with low fuel consumption can be provided by combining the operation of the combustor 6 and the operation of the refrigeration cycle circuit 3 in accordance with the fuel efficiency.
  • a water / refrigerant heat exchanger 15 is provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performs heat exchange between the refrigerant and the hot water.
  • fever of the refrigerating cycle circuit 3 by providing the water refrigerant heat exchanger 15 is called a water heating type.
  • This method is contrasted with an air heating type that does not have the water-refrigerant heat exchanger 15 (FIG. 13 or FIG. 15 described later). If there is no water-refrigerant heat exchanger, heating is not possible unless it is configured as the configuration of FIG. 13 or FIG. 15 (air heating type).
  • the advantage of the air heating type is that the heating efficiency is high because the air is directly heated. Compared to the water heating type, there is no need to warm water, so there is immediate effect. Furthermore, since it can be separated from the circuit on the vehicle side, it can be easily mounted on the vehicle.
  • the disadvantage is that if it is an air heating type, the heat exchanger for heating will be placed on the ceiling, so the blowout of the heating air will be on the ceiling, and it will not be a head cold foot heat, making it difficult to comfort There is. Moreover, since warm air gathers upward, a circulator or the like is separately required for ceiling blowing.
  • the merit of the water heating type as in the first embodiment is excellent in comfort because the heating air heated by the heater core 8 is blown from the lower side of the vehicle.
  • the radiator 7 of the hot water circuit 1 can be used as a part of the outdoor condenser by passing a part of heat from the refrigerant side to the hot water of the hot water circuit 1 during the cooling operation by the refrigeration cycle circuit 3. Therefore, the efficiency during cooling is improved.
  • thermo management it is easy to expand to future thermal management. For example, it is easy to cope with exhaust heat recovery via a hot water circuit such as a battery temperature control device in a vehicle equipped with a traveling battery.
  • warm water heating by the refrigeration cycle circuit 3 can be used for preheating the engine.
  • the disadvantage of the water heating type is that the immediate effect and efficiency as a refrigeration cycle are inferior to the air heating type.
  • the outdoor heat exchanger 13 constituting the evaporator during heating is mounted on the ceiling of the bus vehicle.
  • the indoor heat exchanger 14 that operates as a dehumidifying evaporator is also mounted on the ceiling.
  • the compressor 2 is mounted on the ceiling in the case of an electric type, but when the compressor 2 is driven via a belt from an engine serving as the heat source 4, the compressor 2 is mounted in an engine room.
  • the control device 10 compares the room temperature Tr from the inside air sensor with a value obtained by subtracting the predetermined temperature difference Tp from the set temperature Tset in step S201.
  • the control device 10 determines that heating is not necessary, and proceeds to step S202, where the refrigeration cycle circuit 3 that forms a heat pump with the combustor 6 Both are turned OFF and the compressor 2 is stopped.
  • the control device 10 determines that heating is necessary. In this case, the process proceeds to step S203, and the control device 10 performs warm-up control as to whether or not warm-up is required to rapidly raise the passenger compartment temperature. If warm-up is necessary, the warm-up procedure described later is executed.
  • a part of the control device 10 that performs the control operation in step S203 may be used as an example of a warm-up control unit that improves the heating performance by operating both the refrigeration cycle circuit 3 and the combustor 6. A detailed flowchart of the warm-up control in step S203 will be described later.
  • control device 10 calculates the necessary capacity required for heating in step S204 of FIG. This calculates the required heating capacity from the deviation between the inside air temperature detected by the current sensor and the set temperature, the amount of solar radiation, and the like.
  • step S205 the control device 10 calculates the heating capacity of the refrigeration cycle circuit 3 and the combustor 6 at that time and the fuel efficiency for obtaining the capacity. This efficiency represents the heating capacity per energy of the fuel consumed per unit time.
  • the compressor speed can be calculated from the engine speed and pulley ratio. Since the state of the refrigeration cycle circuit is determined by these parameters, the efficiency of the refrigeration cycle can be calculated.
  • the heating efficiency of the combustor 6 and the fuel efficiency for obtaining the capacity can be easily handled by reading data regardless of the calculation.
  • the energy per unit time given to the heating air is obtained by operating the combustor with the total fuel amount, and the fuel efficiency is obtained by dividing this energy amount by the total fuel amount.
  • the refrigeration cycle efficiency (coefficient of performance) of the heat pump is calculated as 2.5, for example, from the engine speed, the outside air temperature, and the vehicle interior temperature.
  • 6.0 KW is required for the power of the compressor. Under the assumption that 30% of the energy of the fuel input to the engine per unit time is output as shaft power, 20 KW is required as the amount of fuel energy consumed per unit time.
  • the fan power is 0.6 kW
  • the blower power is 0.4 kW
  • the alternator efficiency is 0.6
  • a total shaft power of 1.7 kW is required.
  • This shaft power corresponds to a fuel energy amount of about 5.6 KW, and 25.6 KW is required together with the fuel energy amount of the compressor.
  • the fuel efficiency of the heat pump is about 0.59 (15 kW / 25.6 kW ⁇ 0.59).
  • the combustor requires a fuel energy amount of about 18.8 KW with an input energy efficiency (coefficient of performance) of 0.8 in order to produce a capacity of 15 KW.
  • the combined power of the water pump and blower accompanying the operation of the combustor is about 0.9 KW. This is 1.5 kW in the shaft power of the alternator, and the fuel energy amount is 5.0 kW.
  • the combustor requires an amount of fuel energy of about 23.8 KW to provide a heating capacity of 15 KW.
  • the fuel efficiency of the combustor is about 0.63 (15 kW / 23.8 kW ⁇ 0.63). That is, the combustor has better fuel efficiency than the heat pump.
  • the calculation may be approximate, and detailed data, such as the wind speed distribution of the heat exchanger, can be omitted.
  • the fuel efficiency of the combustor may be determined as a fixed value of 0.8 without calculating each time.
  • step S203 in FIG. 2 starts both the refrigeration cycle circuit 3 and the combustor 6 regardless of the efficiency. Therefore, the refrigeration cycle circuit 3 and the combustor 6 are turned on simultaneously. In the actual sequence control, the order is always made, but any order may be used.
  • step S206 of FIG. 2 the control device 10 performs power priority control in which priority is given to reducing power consumption.
  • the traveling electric motor is driven using the electric energy of the battery. Accordingly, the remaining battery level is detected and controlled. This power priority control will be described later.
  • step S207 the control device 10 determines whether or not the main fuel tank fuel priority mode prioritizes the fuel in the main fuel tank. Here, it is determined whether there is a surplus in the remaining amount of fuel in the main fuel tank that supplies fuel to the engine. When the remaining amount of fuel in the main fuel tank is not sufficient, the main fuel priority treatment in step S210 is executed. The determination of whether or not the remaining amount of fuel in the main fuel tank has a margin and the main fuel priority treatment will be described later.
  • step S208 the control device 10 compares the fuel efficiency of the refrigeration cycle circuit 3 with the fuel efficiency of the combustor 6.
  • the hot water flow rate is determined from the engine speed or the specifications of the water pump 5.
  • the refrigeration cycle circuit 3 is in a stable operating state in balance from the specifications of the outdoor heat exchanger 13 and the water refrigerant heat exchanger 15, the specifications of the compressor 2, and the rotational speed of the compressor 2. Ask for.
  • the heat radiation efficiency to the hot water circuit 1 with respect to the input of the compressor 2 can be calculated. This may be calculated each time, or may be calculated by creating an efficiency map from the test results performed in advance and referring to the map.
  • the rotation speed of the electric compressor is variable. That is, the rotational speed can be instructed from the control device 10 and does not depend on the engine rotational speed. However, since the required capacity for heating the vehicle interior is determined from the room temperature, the set temperature, and the outside air temperature, the required rotational speed of the electric compressor is determined from this required capacity.
  • the amount of heat transported into the room is calculated from the specifications of the heater core 8, the flow rate of hot water, the detected room temperature, and the air volume of the heater core 8.
  • the input energy of the refrigeration cycle circuit 3 is determined by considering the engine efficiency. This is about 30% of the fuel energy input to the.
  • the alternator serving as a generator is operated using the power of the engine, and the compressor 2 may be electric.
  • the fuel efficiency is calculated on the assumption that the alternator is operated using the shaft power of about 30% of the fuel energy and electric energy is obtained from the alternator with the power generation efficiency of about 60%.
  • electric fans for outdoor heat exchangers and electric blowers that blow to the evaporator first calculate the input energy, and use the data measured in advance for the power consumption of each electric functional product Is good.
  • data such as how many watts should be stored in the memory as a map.
  • the efficiency (coefficient of performance) of the combustor 6 may be about 0.8 regardless of the outside air temperature or the like. From the above, it is possible to calculate the energy that is input as the warm air that is blown out to realize the heating required in the passenger compartment of the bus vehicle by the operation of the refrigeration cycle circuit 3 from the energy of the fuel that is input to the engine. Fuel efficiency can be calculated.
  • the energy input as the warm air blown from the heater core 8 of the hot water circuit 1 can be calculated from the energy of the fuel input to the engine so as to realize the heating required in the interior of the bus vehicle by the operation of the combustor 6. As a result, the fuel efficiency can be calculated.
  • step S209 the control device 10 determines whether the heating capacity of the refrigeration cycle circuit 3 is greater than the required heating capacity calculated in step S204.
  • the control device 10 operates by turning on the refrigeration cycle circuit 3 in step S210, and the operation of the combustor 6 is turned off.
  • the control device 10 determines that the capacity is insufficient if only the refrigeration cycle circuit 3 is present, and in step S211 the refrigeration cycle circuit 3 Is turned on, and the operation of the combustor 6 is also turned on.
  • step S208 for example, the outside air temperature is low and the efficiency of the refrigeration cycle circuit 3 is low, so the fuel efficiency of the refrigeration cycle circuit 3 may not be better than the fuel efficiency of the combustor 6.
  • step S212 the control apparatus 10 determines whether the heating capability of the combustor 6 is large with respect to the required heating capability calculated by step S204.
  • the control device 10 When the heating capacity of the combustor 6 is larger than the required heating capacity in step S212, the control device 10 does not operate by turning off the refrigeration cycle circuit 3 in step S216, and the operation of the combustor 6 is turned on.
  • the control device 10 determines that only the combustor 6 is insufficient, and turns on the refrigeration cycle circuit 3 in step S214. And the combustor 6 is also turned on.
  • control device 10 includes a calculation unit (S205) that determines the fuel efficiencies of the refrigeration cycle circuit 3 and the combustor 6 from the operating conditions including the outside air temperature outside the vehicle.
  • a part of the control device 10 that performs the control operation in step S205 is a ratio of the amount of energy given to the heating conditioned air to the amount of fuel consumed by the refrigeration cycle circuit 3 and the combustor 6 for heating. You may use as an example of the calculation part which calculates a certain fuel efficiency, respectively.
  • a part of the control device 10 that performs the control operations of steps S208 to S214 is an example of an efficiency selection unit that preferentially operates the one having the higher calculated fuel efficiency out of the refrigeration cycle circuit 3 and the combustor 6. May be used.
  • the control device 10 has a selection unit that selects and operates at least one of the refrigeration cycle circuit 3 and the combustor 6 based on the required heating capacity obtained from a predetermined temperature condition and the fuel consumption-based heat pump operation state. is doing.
  • the fuel consumption based heat pump operating state may include the fuel efficiency of the heat pump.
  • the refrigeration cycle circuit 3 of the first embodiment has a water refrigerant heat exchanger 15 and is thermally connected to the hot water circuit 1. That is, the refrigeration cycle circuit 3 is a water heating type.
  • the vehicle air conditioner of the first embodiment includes a hot water circuit 1 through which hot water that cools a heat source in the vehicle flows, and a refrigeration cycle circuit 3 that forms a heat pump through which refrigerant compressed by the compressor 2 flows. Prepare.
  • the vehicle air conditioner of the present embodiment includes a water-refrigerant heat exchanger 15 that is provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performs heat exchange between the refrigerant and the hot water.
  • the vehicle interior can be heated using both the refrigeration cycle circuit 3 and the hot water circuit 1 as in steps S214 and S217. Further, when the hot water temperature is low, the hot water temperature is raised by the action of the refrigeration cycle circuit 3 and the heating efficiency by the heater core 8 of the hot water circuit 1 is increased, so that both the refrigeration cycle circuit 3 and the hot water circuit 1 are efficient.
  • the vehicle interior can be heated.
  • the water-refrigerant heat exchanger 15 of 1st Embodiment is installed under the floor of a vehicle.
  • control device 10 may be required to warm up the temperature of the hot water as soon as possible so as to quickly improve the heating performance.
  • the heating performance is quickly improved by operating both the refrigeration cycle circuit 3 and the combustor 6.
  • the refrigeration cycle circuit 3 and the combustor 6 are operated regardless of the required capacity. By doing so, the temperature of the hot water can be raised rapidly. In other words, the temperature rise rate of hot water can be accelerated.
  • warm-up occurs, for example, when the warm water temperature is lower than a predetermined temperature when heating is requested. This occurs when it is determined from the hot water temperature, the hot water heat capacity, the capacity of the refrigeration cycle circuit 3, the capacity of the combustor 6 and the like that the predetermined blowing temperature is not reached within a predetermined time in the normal operation mode. . In such a case, the warm-up mode is automatically changed.
  • step S203 of FIG. 2 when the process of step S203 of FIG. 2 is started, the control device 10 refers to parameters such as required hot water temperature in the memory. In step S2031, the control device 10 calculates a necessary time T2 until a predetermined temperature of the conditioned air is reached.
  • step S2032 the control device 10 compares the required time T2 with the predetermined time T1, determines that the warm-up is necessary if the required time T2 is longer than the predetermined time T1, and executes the warm-up treatment in step S2033. To do. In the warm-up process, both the refrigeration cycle circuit 3 and the combustor 6 are turned on to rapidly raise the temperature of the hot water.
  • the vehicle according to the first embodiment is a hybrid vehicle, and uses an electric motor 32 that rotates with the electric power of the battery 25 in the drive system of the vehicle, and can also generate a driving force by engine power.
  • the battery 25 can be charged by generating electricity with engine power.
  • the control apparatus 10 has the remaining power amount determination part (S2061) of FIG. 4 which confirms the charge state of the battery 25 and determines whether electric power is insufficient.
  • the control device 10 includes a power consumption acquisition unit (S20621) that calculates or detects power consumption of the combustor 6 and the refrigeration cycle circuit 3. When it is determined that the amount of power is insufficient, the control device 10 selects and operates either the combustor 6 or the refrigeration cycle circuit 3 that preferentially reduces the amount of power used in FIG.
  • a power selection unit (S20622 to S20628) is provided. This will be described in detail below.
  • step S2061 in FIG. 4 the control device 10 compares the battery remaining amount AH2 with the predetermined remaining amount AH1. As a result, when it is determined that the battery remaining amount AH2 is not greater than the predetermined remaining amount AH1 and the battery has no room, the control device 10 executes the power priority process of step S2062.
  • a part of the control device 10 that performs the control operation in step S2061 may be used as an example of a remaining power amount determination unit that checks the charge state of the battery 25 and determines whether or not the power is insufficient.
  • Fig. 5 shows details of the power priority treatment.
  • the control device 10 calculates the power consumption of the refrigeration cycle circuit 3.
  • the power consumption of an electric functional product such as a fan or a blower is stored in a memory as data.
  • the power consumption of the electric compressor depends on the state of the refrigeration cycle. Therefore, it is calculated from the environmental conditions such as the outside air temperature at that time, or a value obtained in advance through an experiment is referred to from the map.
  • a part of the control device 10 that performs the control operation in step S20621 may be used as an example of a power consumption acquisition unit that calculates or measures the power consumption of the combustor 6 and the refrigeration cycle circuit 3.
  • an electric compressor is used as the compressor 2, but if the compressor 2 is driven by a belt, the power consumption of the compressor 2 becomes zero. However, moving the belt-driven compressor 2 moves the engine and consumes fuel in the engine.
  • the power consumption of the combustor 6 is stored as data from the beginning. The power consumption of the combustor 6 is calculated by adding the blower power consumption of the water pump 5 and the heater core 8 as well.
  • step S20622 of FIG. 5 the control device 10 compares the power consumption of the combustor 6 stored in advance in the memory with the calculated power consumption of the refrigeration cycle circuit 3. When the combustor 6 has lower power consumption, the process proceeds to step S20623, and the control device 10 determines whether or not the heating capacity of the combustor 6 is greater than the required heating capacity. If the heating capacity of the combustor 6 is greater than the required heating capacity, the control device 10 turns off the refrigeration cycle circuit 3 and turns on only the combustor 6 in step S20624.
  • the control device 10 performs the refrigeration cycle circuit 3 and the combustor 6 in step S20625. Put both of them into operation.
  • step S20622 if the refrigeration cycle circuit 3 does not consume more power than the combustor 6, the process proceeds to step S20626, and the control device 10 determines whether the heating capacity of the refrigeration cycle circuit 3 is greater than the required heating capacity. Determine whether. If the heating capacity of the refrigeration cycle circuit 3 is greater than the required heating capacity, the control device 10 turns on the refrigeration cycle circuit 3 and turns off the combustor 6 in step S20627.
  • step S20628 the control device 10 turns on both the refrigeration cycle circuit 3 and the combustor 6.
  • a part of the control device 10 that performs the control operations of steps S20622 to S20628 determines that the combustor 6 and the refrigeration cycle circuit 3 that preferentially use the smaller amount of power when it is determined that the amount of power is insufficient.
  • an electric power selection unit that preferentially operates the one with lower power consumption may be used.
  • the one with the smaller power consumption is selected and operated among the combustor 6 and the refrigeration cycle circuit 3, so that the battery Residual power consumption can be suppressed. Further, when the remaining power amount of the battery is relatively small, either the combustor 6 or the refrigeration cycle circuit 3 that preferentially reduces the power consumption amount may be selected and operated.
  • step S2071 of FIG. 6 the control device 10 compares the remaining fuel amount L2 in the main fuel tank with a predetermined remaining amount L1 set in advance, and there is a margin in the remaining fuel amount in the main fuel tank. Judgment of whether or not. When there is no margin in the remaining amount of fuel in the main fuel tank, the control device 10 executes the main fuel priority procedure in step S2072.
  • the combustor 6 of the first embodiment is supplied with fuel from the combustor fuel tank 6t of the first embodiment that stores fuel consumed by the combustor 6 itself.
  • the main fuel tank 20 is the fuel tank of FIG. 9 that stores fuel for driving the engine that constitutes the heat source 4.
  • a measuring device 21 for measuring the remaining amount of fuel in the main fuel tank 20 is provided. This measuring instrument 21 is constituted by a part of a known fuel gauge.
  • the measuring device 21 that measures the remaining amount of fuel in the main fuel tank 20 directly receives a signal from a signal line from a part of a fuel gauge attached to the main fuel tank 20 as shown in FIG. May be.
  • a signal indicating the remaining fuel amount may be received via a multiple signal line from a meter ECU that drives a fuel gauge in a dashboard meter.
  • step S2072 heating by the combustor 6 that receives the supply of fuel from the combustor fuel tank 6t is given priority over heating by the refrigeration cycle circuit 3 in the heating device. This is done regardless of efficiency. That is, the control device 10 consumes fuel from the combustor fuel tank 6t with priority over fuel consumption from the main fuel tank 20 that stores fuel for driving the engine.
  • a part of the control device 10 that performs the control operation in step S2072 performs heating by the combustor 6 when the fuel remaining amount in the main fuel tank 20 measured by the measuring device 21 is smaller than the predetermined remaining amount. May be used as an example of a combustor priority control unit that prioritizes heating by the refrigeration cycle circuit 3 and prioritizes consumption of fuel from the combustor fuel tank 6t over fuel from the main fuel tank.
  • step S20721 the control device 10 determines whether or not the heating capacity of the combustor 6 is greater than the required heating capacity, that is, whether or not the combustor 6 alone can provide heating. Determine. If the heating capacity of the combustor 6 is greater than the required heating capacity, the control device 10 turns off the heat pump of the refrigeration cycle circuit 3 in step S20722 and turns on only the combustor 6 with priority. When the heating capacity of the combustor 6 is not greater than the required heating capacity, the control device 10 turns on both the refrigeration cycle circuit 3 and the combustor 6 in step S20723.
  • the required heating capacity and fuel consumption-based heat pump operating efficiency are calculated from the outside air temperature, the room temperature, and the set temperature.
  • the one with higher efficiency is activated preferentially, and when the required heating capacity cannot be satisfied, the other non-prioritized one is also activated.
  • the efficiency of the fuel consumption base is estimated based on the operating conditions, and the one with the higher efficiency of the device, that is, the one with the lower fuel consumption is operated with priority. The fuel consumption of the entire vehicle can be improved.
  • the fuel in the combustor fuel tank 6t of the first embodiment can be preferentially consumed.
  • a decrease in the fuel in the main fuel tank 20 of FIG. 9 consumed by the engine serving as the heat source 4 can be suppressed, and the travelable distance of the vehicle can be extended.
  • the required heating capacity is the capacity of the refrigeration cycle circuit 3 that balances with the required vehicle heat load.
  • the required vehicle heat load is determined from the outside air temperature, the room temperature, the amount of solar radiation, the heat insulation characteristics of the vehicle, the set temperature, the number of passengers, etc. Determined.
  • the heat insulation performance of the vehicle is simply estimated from the size of the vehicle.
  • it does not necessarily calculate each time, but may be stored in the memory in the control device 10 as data from the beginning. Then, a necessary vehicle heat load is calculated from the internal and external temperatures of the vehicle.
  • FIG. 8 is an explanatory diagram for explaining the arrangement of the vehicle air conditioner in the height direction in the bus vehicle according to the first embodiment.
  • the refrigeration cycle circuit 3 is installed on the ceiling of the bus vehicle.
  • the hot water circuit 1 is arranged together with an engine forming a heat source 4 at the lower part of the bus vehicle. With the heater core 8 through which hot water flows, hot air can be blown out to the feet of the passengers in the passenger compartment.
  • the heavy water refrigerant heat exchanger 15 is arranged at the lower part of the vehicle. Therefore, the refrigerant pipe 3h from the refrigeration cycle circuit 3 extends from the ceiling to the lower part.
  • the heat pump including the refrigeration cycle circuit 3 and the combustor 6 are combined.
  • the heat pump system itself is more expensive than an electric heater, etc., but this is a configuration that has been changed so that a conventional air conditioner for cooling air conditioning can be used as a heat pump. It will not be.
  • the heat pump has a characteristic that the heat pumps up heat from the air, so that the coefficient of performance in input power exceeds 1.0, and the input energy efficiency is better than that of the combustor 6 or the electric heater.
  • the combustor 6 is installed in a hot water circuit 1 that is a cooling water circuit of a bus engine.
  • the combustor 6 is widely used for temperature rise at engine start and for heating in winter. For this reason, when cost and efficiency are considered, it is considered that the combination of the combustor 6 and the heat pump is optimal in terms of capacity and efficiency.
  • the fuel efficiency of the heat pump and the combustor 6 is calculated from the operating conditions including the outside air temperature at that time. Then, the heat pump and the combustor 6 that has the calculated fuel efficiency is preferentially operated.
  • the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized. And the operation of the combustor 6 and the operation state of the heat pump can be combined in accordance with the fuel efficiency to provide a vehicle air conditioner that consumes less fuel.
  • the refrigeration cycle circuit 3 constituting the heat pump includes an indoor heat exchanger 14 for adjusting the temperature of the conditioned air.
  • the hot water circuit 1 includes a heater core 8 that performs heat exchange between the hot water and the conditioned air. Therefore, the vehicle interior can be heated by both the heat pump and the hot water circuit 1.
  • the water-refrigerant heat exchanger 15 provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performing heat exchange between the refrigerant and the hot water is not essential.
  • the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 is calculated from the operating conditions including the outside air temperature at that time, and the refrigeration cycle circuit 3 and the combustor 6 that form a heat pump are calculated. Of these, the one with the higher calculated fuel efficiency is preferentially operated.
  • the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized.
  • a vehicle air conditioner with low fuel consumption can be provided by combining the operation of the combustor 6 and the operation state of the heat pump in accordance with the fuel efficiency.
  • the heat pump and the hot water circuit 1 can exchange heat while the heat pump and the hot water circuit 1 are efficient. It is possible to heat the interior of the vehicle.
  • the water-refrigerant heat exchanger is installed under the floor of the vehicle. Therefore, since a heavy heat exchanger is installed under the floor, the stability of the vehicle is increased, it is easy to mount, the vertical change of the mounting position of the hot water circuit 1 is reduced, and the power consumption of the water pump 5 for flowing hot water is reduced. can do.
  • the pressure loss on the hot water side has a greater effect on the vehicle fuel consumption. For this reason, if the water refrigerant heat exchanger 15 is installed near the hot water circuit 1 under the floor and the hot water circuit 1 is shortened, the power of the compressor 2 increases, but the power of the water pump 5 and the compressor 2 increases. The sum can be small.
  • the heat pump and the combustor 6 regardless of the required heating capability. And actuate both. As a result, the temperature of the hot water can be raised rapidly.
  • the combustor 6 or the heat pump with the smaller power usage amount is selected and operated. You can save the usage amount and secure the possible driving distance.
  • FIG. 10 in 2nd Embodiment, it has the bypass circuit 15b and the bypass valve 15v which bypass the water refrigerant
  • the bypass circuit 15b when the transfer of heat between the refrigeration cycle circuit 3 and the hot water circuit 1 via the water refrigerant heat exchanger 15 is unnecessary or undesirable, the water refrigerant heat exchanger 15 passes through the bypass circuit 15b. The refrigerant flows by bypassing. Therefore, heat exchange between the refrigeration cycle circuit 3 and the hot water circuit 1 through the water refrigerant heat exchanger 15 can be prevented.
  • the bypass valve 15v is connected to the control device 10, and the control device 10 opens and closes the bypass valve 15v.
  • the hot water temperature of the hot water circuit 1 may be higher than the refrigerant temperature on the refrigeration cycle circuit 3 side, and in this case, heat can be transferred from the hot water circuit 1 to the refrigeration cycle circuit 3. End up.
  • the bypass valve 15v of the bypass circuit 15b is opened, and the refrigerant flows toward the bypass circuit 15b. Accordingly, heat transfer from the hot water circuit 1 to the refrigeration cycle circuit 3 is prevented by preventing heat exchange in the water refrigerant heat exchanger 15.
  • it can prevent that the thermal radiation load of the outdoor heat exchanger 13 used as an outdoor condenser becomes large.
  • the hot water in the hot water circuit 1 flows by bypassing the water refrigerant heat exchanger 15.
  • the compressor discharge pipe on the refrigerant side is generally smaller in pipe diameter than the hot water circuit 1. Therefore, the bypass valve 15v that controls the bypass circuit 15b can be reduced in diameter when provided on the refrigerant side.
  • the vehicle air conditioner may be configured so that heat exchange between the refrigeration cycle circuit 3 and the hot water circuit 1 through the bypass circuit 15b is always allowed to pass through the water refrigerant heat exchanger 15. can do.
  • the radiator 7 acting as an outdoor capacitor can be utilized for heat radiation from the refrigeration cycle circuit 3.
  • the water-refrigerant heat exchanger 15 is installed under the vehicle floor. Since the water-refrigerant heat exchanger 15 is under the floor on the side close to the hot water circuit 1, the refrigerant pipe 3h to the water-refrigerant heat exchanger 15 has a long structure extending from the ceiling to the lower part of the vehicle.
  • bypass circuit 15b on the refrigerant side, the path through which the refrigerant flows can be significantly shortened, unnecessary pressure loss can be reduced, and the refrigeration cycle efficiency can be improved.
  • bypassing on the refrigerant side can significantly shorten the path through which the refrigerant flows, reduce unnecessary pressure loss, and improve refrigeration cycle efficiency.
  • a temperature sensor 15c is provided at the refrigerant side inlet of the water refrigerant heat exchanger 15 as shown in FIG.
  • the temperature sensor 15 c is connected to the control device 10, and the control device 10 receives a signal related to the refrigerant side inlet temperature of the water refrigerant heat exchanger 15 from the temperature sensor 15 c.
  • the control device 10 compares the hot water temperature of the hot water circuit 1 with the refrigerant side inlet temperature, and when the refrigerant side inlet temperature is higher than the hot water temperature, opens the bypass valve 15v and causes the bypass circuit 15b to bypass the refrigerant.
  • the vehicle air conditioner may further include a water temperature detector that is provided on the hot water inlet side of the water refrigerant heat exchanger 15 and detects the hot water temperature.
  • step S111 the control device 10 determines whether or not the cooling operation mode is set. In the case of the cooling mode, in step S112, the control device 10 compares the water temperature of the hot water circuit 1 with the compressor discharge temperature that is the discharge refrigerant temperature discharged by the compressor 2. If the hot water temperature is higher, in step S113, the control device 10 opens the bypass valve 15v and causes the bypass circuit 15b to bypass the refrigerant.
  • step S112 as a result of comparing the water temperature of the hot water circuit 1 and the discharged refrigerant temperature discharged by the compressor 2, the refrigerant temperature is high and the hot water temperature may not be higher.
  • the control device 10 closes the bypass valve 15v in step S114. And it is made to flow toward the water-refrigerant heat exchanger 15 without flowing a refrigerant into the bypass circuit 15b. If it is determined in step S111 that the cooling mode is not in the cooling mode, the control device 10 closes the bypass valve 15v in step S115 and does not allow the refrigerant to flow through the bypass circuit 15b. It always flows toward the container 15.
  • the refrigeration cycle circuit 3 is installed on the ceiling of the bus vehicle.
  • the hot water circuit 1 is arranged together with an engine forming a heat source 4 at the lower part of the bus vehicle. Hot air can be blown out to the feet of passengers in the passenger compartment by the heater core 8 through which hot water flows.
  • the water refrigerant heat exchanger 15 is disposed at the lower part of the vehicle. Therefore, the refrigerant pipe 3h from the refrigeration cycle circuit 3 extends from the ceiling to the lower part.
  • the bypass valve 15v is provided so as to form a bypass circuit 15b in which the refrigerant is bypassed by bridging the refrigerant pipes 3h in the vicinity of the ceiling at the top of the vehicle.
  • the second embodiment when the transfer of heat from the hot water circuit 1 to the refrigeration cycle circuit 3 through the water refrigerant heat exchanger 15 is unnecessary or undesirable, the heat of the water refrigerant passes through the bypass circuit 15b. The refrigerant flows through the exchanger 15 by bypass. Therefore, heat exchange between the refrigeration cycle circuit 3 and the hot water circuit 1 through the water refrigerant heat exchanger 15 can be prevented.
  • the hot water temperature may be higher than the temperature on the refrigeration cycle side, and in this case, heat is transferred from the hot water circuit 1 to the refrigeration cycle circuit 3.
  • the bypass circuit 15b it is possible to prevent an increase in the load on the outdoor heat exchanger 13 that serves as a condenser during cooling.
  • the radiator 7 can be used as an outdoor condenser during cooling compared to a case where the heat on the refrigeration cycle circuit 3 side is not always transmitted to the hot water circuit 1 during cooling operation, the efficiency is improved. Become.
  • the second embodiment it is more efficient to pass heat as long as heat can be passed from the refrigeration cycle side to the hot water side even during cooling operation. Therefore, the refrigerant side inlet temperature detected by the temperature sensor is compared with the hot water temperature, and the bypass circuit 15b is not opened under the condition that heat can be passed to the hot water side, and the refrigerant and hot water via the water refrigerant heat exchanger 15 Heat exchange. Thereby, the radiator 7 can be reliably used as a part of the condenser, and the efficiency of the refrigeration cycle can be improved accurately. (Third embodiment)
  • a third embodiment of the present disclosure will be described. A different part from above-described embodiment is demonstrated. Based on FIG.
  • a water / refrigerant heat exchanger 15 is provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performs heat exchange between the refrigerant and the hot water.
  • fever of the refrigerating cycle circuit 3 by providing the water refrigerant heat exchanger 15 will be called a water heating type.
  • This method is contrasted with an air heating method that does not have the water-refrigerant heat exchanger 15 and heats the air that is conditioned air separately in the refrigeration cycle circuit 3 and the hot water circuit 1.
  • the third embodiment shown in FIG. 13 shows an air heating type.
  • the vehicle air conditioner includes a hot water circuit 1 through which hot water that cools a heat source 4 in the vehicle flows, and a refrigeration cycle circuit 3 that constitutes a heat pump through which refrigerant compressed by the compressor 2 flows. It has.
  • the heat source 4 in the vehicle is an engine composed of an internal combustion engine that generates driving force for the vehicle.
  • the hot water circuit 1 is a circuit for flowing hot water made of an antifreeze that cools the engine.
  • the hot water circuit 1 includes a water pump 5 for flowing hot water to the heat source 4, a combustor 6 for heating the hot water, a radiator 7 for radiating the heat of the hot water to the outside air, and heat of the hot water and the conditioned air blown into the vehicle. And a heater core 8 for replacement.
  • the water pump 5 rotates the impeller with a motor to circulate water for cooling the engine.
  • the combustor 6 has a burner for burning fuel, and heats water flowing through the hot water circuit 1.
  • the combustor 6 is supplied with fuel from a dedicated combustor fuel tank 6t formed of a fuel tank different from the engine serving as the heat source 4.
  • the radiator 7 exchanges heat with the outside air, which is the air outside the vehicle, in order to lower the temperature of the hot water in the hot water circuit 1 that has become hot.
  • a radiator fan is attached to the radiator 7 so that outside air flows through the radiator fins.
  • the heater core 8 is a heat exchanger that is provided so as to close the inside of the air-conditioning duct and heats the air-conditioned air composed of the outside air blown by the air-conditioning blower or the inside air that is the circulating air in the vehicle.
  • the thermostat etc. which control the flow volume to the radiator 7 of the hot water circuit 1 are abbreviate
  • FIG. 14 there is a suction port between the indoor heat exchangers 14a1 and 14a2 forming two evaporators.
  • the indoor air is taken in through the suction port, and the air passes through the indoor heat exchangers 14b1 and 14b2 that form an indoor condenser with the indoor heat exchangers 14a1 and 14a2, as indicated by arrows Y141 and Y142. Then, the air is blown from the blowers 14b1b and 14b2b to the air conditioning duct.
  • the first refrigeration cycle circuit 3a and the second refrigeration cycle circuit 3b include a compressor 2 that pressurizes the refrigerant, an outdoor heat exchanger 13 that performs heat exchange with air outside the vehicle, and an indoor heat exchange that adjusts the temperature of the conditioned air. 14a and 14b, and an accumulator 9 for storing excess refrigerant.
  • the indoor heat exchangers 14a and 14b are housed in the air conditioning duct 150 and serve as an evaporator and an indoor condenser.
  • FIG. 15 illustrates a state during a cooling operation in which the air mix door 16 blocks air flowing through the indoor condenser and the conditioned air flows while bypassing the indoor heat exchanger 14b.
  • one of the first refrigeration cycle circuit 3a and the second refrigeration cycle circuit 3b is shown in detail, but the configuration of the other second refrigeration cycle circuit 3b is the same.
  • the indoor heat exchanger 14 functions as a condenser and thus has a function of adjusting the temperature.
  • the control device 10 has a calculation unit that calculates the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 from operating conditions including the outside air temperature outside the vehicle.
  • the refrigeration cycle circuit 3 heats the conditioned air through the indoor heat exchanger 14b with the heat of the refrigerant that has been pressurized by the compressor 2 and has reached a high temperature.
  • the combustor 6 first heats the hot water in the hot water circuit 1 and heats the conditioned air through the heater core 8 through which the hot water flows.
  • an efficiency selection unit S208 to S214
  • the indoor heat exchanger 14b in FIG. 13 heats the conditioned air as an indoor condenser
  • the outdoor heat exchanger 13 functions as an evaporator.
  • the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 is calculated from the operating conditions including the outside air temperature at that time, and the calculated efficiency of the refrigeration cycle circuit 3 and the combustor 6 is higher. Can be preferentially activated.
  • the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized.
  • running state of a heat pump are combined according to fuel efficiency, and the vehicle air conditioner with little fuel consumption can be provided.
  • the refrigeration cycle circuit 3 constituting the heat pump includes indoor heat exchangers 14a and 14b for adjusting the temperature of the conditioned air, and the hot water circuit 1 includes a heater core 8 for exchanging heat between the hot water and the conditioned air. 3 and the hot water circuit 1 can individually heat the passenger compartment.
  • the water / refrigerant heat exchanger 15 provided between the hot water circuit 1 and the refrigeration cycle circuit 3 for exchanging heat between the refrigerant and the hot water is not provided.
  • FIG. 14 is a plan layout view on the ceiling surface of the bus vehicle.
  • indoor heat exchangers 14a1, 14a2 that cool the conditioned air as an indoor evaporator
  • indoor heat exchangers 14b1, 14b2 that heat the conditioned air as an indoor condenser
  • an outdoor heat exchanger 13a that acts as an evaporator during heating, 13b.
  • two sets of these indoor heat exchangers 14a1, 14a2, indoor heat exchangers 14b1, 14b2, and outdoor heat exchangers 13a, 13b are provided, and two sets of compressors 2 are provided.
  • the vehicle compartment is air-conditioned by the two refrigeration cycle circuits 3a and 3b.
  • the two sets of outdoor heat exchangers 13a and 13b are each provided with outdoor heat exchanger fans 13ab and 13bb to exchange heat between the outside air and the outdoor heat exchangers 13a and 13b. Furthermore, three air-conditioning blowers 14b1b and 14b2b for flowing the conditioned air passing through the indoor heat exchangers 14a1 and 14a2 and the indoor heat exchangers 14b1 and 14b2, respectively, are provided.
  • the refrigeration cycle circuit 3 of the fourth embodiment is of the type used in household heat pumps.
  • the outdoor heat exchanger 13 and the indoor heat exchanger 14 exchange the roles of an evaporator and a condenser during heating and cooling, respectively.
  • an electric heater may be used, or the combustor 6 and an electric heater may be used in combination.
  • the heat source is not limited to the engine but may be another heating element in the vehicle.
  • the hot water used as the fluid of the hot water circuit 1 may be a liquid that cools the heat source.
  • the compressor may be electric or engine driven.
  • the fuel consumption characteristics of the engine may be stored as data, and the fuel efficiency characteristics of the engine at that time may be taken into account for calculating the efficiency of the refrigeration cycle circuit 3.
  • the control device 10 is not limited to the air conditioner ECU, and some functions may be provided in the engine ECU.
  • the fuel efficiency of the refrigeration cycle circuit 3 was calculated from the operating conditions including the outside air temperature outside the vehicle, the input energy efficiency of the combustor 6 was fixed in the above embodiment. However, the input energy efficiency of the combustor 6 may be calculated from operating conditions including the outside air temperature outside the vehicle.
  • the fuel efficiencies are compared with each other. In short, it is only necessary to compare which device can reduce the fuel consumption of the vehicle. Therefore, the fuel consumptions at that time may be compared to compare the efficiency. That is, the fuel efficiency of this indication should just be a parameter showing that fuel consumption is small.
  • the present disclosure does not require a water-refrigerant heat exchanger and a bypass circuit, individual effects are exhibited by providing these.
  • the vehicle is not limited to a bus but may be a train or a passenger car.
  • a water refrigerant heat exchanger is not restricted to what is installed under the floor of a vehicle.
  • a three-way valve may be used as a bypass valve that opens and closes a bypass circuit that flows the refrigerant by bypassing the water refrigerant heat exchanger. Further, the bypass circuit may be provided on either or both of the refrigerant side and the hot water side.
  • the bypass valve is always closed when not in the cooling mode, but the bypass valve may be opened to reduce the pressure loss of the refrigerant according to conditions such as a sufficiently high temperature of hot water.
  • the conditions under which heat can be transferred from the refrigeration cycle circuit 3 to the hot water circuit 1 during cooling operation can be specified by methods other than temperature comparison.
  • the condition may be specified from the elapsed time since the engine was started, the elapsed time after the compressor was started, or the refrigerant pressure.
  • both the heat pump and the combustor 6 are operated to quickly raise the temperature in the passenger compartment. Can do.
  • FIG. 13 shows an air heating type, the indoor heat exchanger 14a performs only dehumidification as an evaporator and heats it with the indoor heat exchanger 14b that forms a heater core.
  • the vehicle may be a vehicle that runs on a single engine instead of a hybrid vehicle.
  • the heat source may be a fuel cell.
  • the vehicle in this case is a fuel cell vehicle.
  • the engine may be an electric vehicle that does not directly guide the output of the engine to the drive wheels, but drives the generator exclusively and charges the battery for traveling with the generator.
  • the control device checks the state of charge of the battery and determines whether or not the remaining power amount is insufficient.
  • the combustor 6 or the heat pump with the smaller electric power consumption is preferentially operated. In this case, even if it is better to use the heat pump in consideration of only the fuel consumption, the combustor 6 with a small power consumption is prioritized. However, it may be possible to select in advance for each vehicle or each user whether priority is given to low fuel consumption or low power consumption.
  • the combustor has shown what receives fuel supply from the fuel tank for combustors which stores the fuel which self consumes, you may receive fuel supply from the main fuel tank shared with an engine.
  • about 40% of the energy input to the engine that is received by the cooling water can be used for heating in the water heating type heat pump. It may be calculated in consideration of the amount.

Abstract

A vehicular air conditioning device is provided with a coolant circuit (1) through which a coolant for cooling an in-vehicle heat source (4) flows and a refrigeration cycle circuit (3) that is used as a heat pump through which a refrigerant compressed by a compressor (2) flows. The coolant circuit (1) is provided with a burner (6) that heats the coolant, a radiator (7) that causes the heat of the coolant to be dissipated to the outside air, and a heater core (8) that performs heat exchange between the coolant and conditioned air that is blown into the vehicle. A control device (10) is provided with a calculation unit that calculates the fuel efficiency of each of the refrigeration cycle circuit (3) and the burner (6) and an efficiency selection unit that preferentially operates whichever of the heat pump and the burner (6) has higher fuel efficiency. In this way, the fact that there are cases in which the burner (6) has higher efficiency than the heat pump with respect to fuel consumption is put to practical use, and it is thus possible to provide a vehicular air conditioning device that has high efficiency with respect to fuel consumption.

Description

車両用空調装置Air conditioner for vehicles 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年7月23日に出願された日本特許出願2014-150102を基にしている。 This application is based on Japanese Patent Application No. 2014-150102 filed on July 23, 2014, the disclosure of which is incorporated into this application by reference.
 本開示は、車両内の熱源の冷却水を、燃焼器及びヒートポンプとなる冷凍サイクル回路などで加熱し、ヒータコアで空調風を暖め、車両内を暖房する車両用空調装置に関する。 The present disclosure relates to a vehicle air conditioner that heats cooling water of a heat source in a vehicle with a refrigeration cycle circuit or the like that serves as a combustor and a heat pump, warms the conditioned air with a heater core, and heats the inside of the vehicle.
 従来、特許文献1に記載の車両用空調装置がある。この装置は、エンジン冷却水が流れる温水回路に水冷媒熱交換器を設けている。そして、水冷媒熱交換器には、冷凍サイクル回路からの高温高圧の冷媒が流されることにより冷凍サイクル回路を用いて暖房運転に必要な温水温度を急速に立ち上げている。 Conventionally, there is a vehicle air conditioner described in Patent Document 1. In this apparatus, a water refrigerant heat exchanger is provided in a hot water circuit through which engine cooling water flows. And the hot water temperature required for heating operation is rapidly raised using the refrigerating cycle circuit by flowing the high-temperature / high-pressure refrigerant from the refrigerating cycle circuit to the water refrigerant heat exchanger.
 上記特許文献1のヒートポンプは、空気から熱をくみ上げるため、暖房効率が良い。 The heat pump disclosed in Patent Document 1 has good heating efficiency because it draws heat from the air.
 しかし、従来の車両用空調装置においては、燃料消費量ベースでの効率を考慮していないため、燃料消費量ベースでの効率が低下する場合があった。 However, the conventional vehicle air conditioner does not consider the efficiency on the basis of fuel consumption, and thus the efficiency on the basis of fuel consumption may be reduced.
特開平6-183249号公報JP-A-6-183249
 本開示は、上記点に鑑み、燃料消費量ベースで考えた効率が高い、燃焼器とヒートポンプとを備えた車両用空調装置を提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a vehicle air conditioner including a combustor and a heat pump that has high efficiency on a fuel consumption basis.
 従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。 The contents of the patent documents listed as the prior art can be introduced or incorporated by reference as an explanation of the technical elements described in this specification.
 本開示の一態様によると、車両用空調装置は、車両に設けられた熱源を冷却する冷却水が流れ、暖房運転時に冷却水の熱で車室内に送風される空調風を加熱する冷却水回路と、圧縮機で圧縮された冷媒が流れ、暖房運転時に冷媒の熱で空調風を加熱するヒートポンプとして作動する冷凍サイクル回路と、制御装置と、を備える。冷却水回路は、熱源に冷却水を流すウォータポンプと、燃料を燃やすことで熱を発生させて冷却水を加熱する燃焼器と、冷却水の熱を外気に放熱させるラジエータと、冷却水と空調風との熱交換を行うヒータコアと、を備える。冷凍サイクル回路は、燃料を消費して駆動されるエンジンからの動力又はエンジンからの動力で発電された電力で駆動され、冷媒を加圧する圧縮機と、外気と冷媒との熱交換を行う室外熱交換器と、冷媒と空調風との熱交換を行う室内熱交換器と、を備える。制御装置は、燃焼器と圧縮機とに接続され、燃焼器と圧縮機を制御する。暖房運転時に暖房の為に消費する燃料のエネルギ量に対する空調風に与えられるエネルギ量の割合を、燃料効率と定義する。制御装置は、ヒートポンプの燃料効率と燃焼器の燃料効率を夫々算出する算出部と、ヒートポンプと燃焼器とのうち、算出された燃料効率が高い方を優先的に作動させる効率選択部と、を備える。 According to one aspect of the present disclosure, the vehicle air conditioner has a cooling water circuit that flows cooling water that cools a heat source provided in the vehicle and that heats the conditioned air blown into the vehicle interior with the heat of the cooling water during heating operation. And a refrigerant compressed by the compressor flows, and a refrigeration cycle circuit that operates as a heat pump that heats the conditioned air with the heat of the refrigerant during heating operation, and a control device. The cooling water circuit includes a water pump that flows cooling water to a heat source, a combustor that generates heat by burning fuel to heat the cooling water, a radiator that dissipates heat from the cooling water to the outside air, and cooling water and air conditioning. A heater core that performs heat exchange with the wind. The refrigeration cycle circuit is driven by power from an engine driven by consuming fuel or by electric power generated by power from the engine, and outdoor heat that exchanges heat between the compressor that pressurizes the refrigerant and the outside air and the refrigerant. And an indoor heat exchanger that performs heat exchange between the refrigerant and the conditioned air. The control device is connected to the combustor and the compressor, and controls the combustor and the compressor. The ratio of the amount of energy given to the conditioned air to the amount of energy of fuel consumed for heating during heating operation is defined as fuel efficiency. The control device includes: a calculation unit that calculates the fuel efficiency of the heat pump and the fuel efficiency of the combustor; and an efficiency selection unit that preferentially operates the heat pump and the combustor that have the higher calculated fuel efficiency. Prepare.
 この開示によれば、その時の外気温度を含む運転条件からヒートポンプと燃焼器との燃料効率を夫々求め、ヒートポンプと燃焼器とのうち求められた燃料効率が高い方を優先的に作動させる。よって、燃料消費量ベースで考えた際に、燃焼器の方がヒートポンプよりも高効率となる場合が発生するという事実を活用できる。そして、燃料効率に合わせて燃焼器の運転とヒートポンプとの運転状態とを組み合わせることができる。その結果として、燃料消費量が少ない車両用空調装置を提供でき、車両全体の燃費を向上させることができる。 According to this disclosure, the fuel efficiency of the heat pump and the combustor is obtained from the operating conditions including the outside air temperature at that time, and the higher one of the obtained fuel efficiency of the heat pump and the combustor is preferentially operated. Thus, the fact that the combustor may be more efficient than the heat pump when considered on a fuel consumption basis can be utilized. The operation of the combustor and the operation state of the heat pump can be combined in accordance with the fuel efficiency. As a result, it is possible to provide a vehicle air conditioner that consumes less fuel and improve the fuel efficiency of the entire vehicle.
 本開示の他の態様によると、車両用空調装置は、車両に設けられた熱源を冷却する冷却水が流れ、暖房運転時に冷却水の熱で車室内に送風される空調風を加熱する冷却水回路と、圧縮機で圧縮された冷媒が流れ、暖房運転時に冷媒の熱で空調風を加熱するヒートポンプとして作動する冷凍サイクル回路と、制御装置と、を備える。冷却水回路は、熱源に冷却水を流すウォータポンプと、冷却水を加熱することができる燃焼器と、冷却水の熱を外気に放熱させるラジエータと、冷却水と空調風との熱交換を行うヒータコアと、を備える。冷凍サイクル回路は、燃料を消費して駆動されるエンジンからの動力又はエンジンからの動力で発電された電力で駆動され、冷媒を加圧する圧縮機と、外気と冷媒との熱交換を行う室外熱交換器と、冷媒と空調風との熱交換を行う室内熱交換器と、を備える。制御装置は、所定の温度条件から求められる必要暖房能力と燃料消費量ベースのヒートポンプ運転状態に基づき、冷凍サイクル回路と燃焼器の少なくともいずれか一方を選択して作動させる選択部を備える。 According to another aspect of the present disclosure, in the vehicle air conditioner, the cooling water that cools the heat source provided in the vehicle flows, and the cooling water that heats the conditioned air blown into the vehicle interior by the heat of the cooling water during the heating operation. A circuit, a refrigerant compressed by a compressor flows, and includes a refrigeration cycle circuit that operates as a heat pump that heats conditioned air with the heat of the refrigerant during heating operation, and a control device. The cooling water circuit exchanges heat between the cooling water and the conditioned air, a water pump that flows cooling water to the heat source, a combustor that can heat the cooling water, a radiator that radiates the heat of the cooling water to the outside air, and A heater core. The refrigeration cycle circuit is driven by power from an engine driven by consuming fuel or by electric power generated by power from the engine, and outdoor heat that exchanges heat between the compressor that pressurizes the refrigerant and the outside air and the refrigerant. And an indoor heat exchanger that performs heat exchange between the refrigerant and the conditioned air. The control device includes a selection unit that selects and operates at least one of the refrigeration cycle circuit and the combustor based on the required heating capacity obtained from a predetermined temperature condition and a fuel consumption-based heat pump operation state.
本開示の第1実施形態における車両用空調装置の概略図である。It is a schematic diagram of an air-conditioner for vehicles in a 1st embodiment of this indication. 第1実施形態における車両用空調装置の制御装置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the control apparatus of the vehicle air conditioner in 1st Embodiment. 第1実施形態における制御装置のウォームアップ制御の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the warm-up control of the control apparatus in 1st Embodiment. 第1実施形態における制御装置の電力優先制御の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the electric power priority control of the control apparatus in 1st Embodiment. 第1実施形態における制御装置の電力優先処置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the electric power priority treatment of the control apparatus in 1st Embodiment. 本開示の第1実施形態における制御装置の燃料優先制御の制御処理を示すフローチャートである。6 is a flowchart illustrating a control process of fuel priority control of the control device according to the first embodiment of the present disclosure. 第1実施形態における制御装置の燃料優先処置の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the fuel priority treatment of the control apparatus in 1st Embodiment. 第1実施形態における車両用空調装置のバス車両内での配置を示す概略図である。It is the schematic which shows arrangement | positioning in the bus vehicle of the vehicle air conditioner in 1st Embodiment. 第1実施形態におけるメイン燃料タンクおよび計測器を示す図である。It is a figure which shows the main fuel tank and measuring instrument in 1st Embodiment. 本開示の第2実施形態における車両用空調装置の概略図である。It is the schematic of the vehicle air conditioner in 2nd Embodiment of this indication. 第2実施形態におけるバイパス回路に設けられたバイパス弁の制御処理を示すフローチャートである。It is a flowchart which shows the control processing of the bypass valve provided in the bypass circuit in 2nd Embodiment. 第2実施形態における車両用空調装置のバス車両内での配置を示す概略図である。It is the schematic which shows arrangement | positioning in the bus vehicle of the vehicle air conditioner in 2nd Embodiment. 本開示の第3実施形態における車両用空調装置の概略図である。It is the schematic of the vehicle air conditioner in 3rd Embodiment of this indication. 第3実施形態における冷凍サイクル回路の概略平面図である。It is a schematic plan view of the refrigerating cycle circuit in 3rd Embodiment. 本開示の第4実施形態における車両用空調装置の概略図である。It is the schematic of the vehicle air conditioner in 4th Embodiment of this indication.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部を説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. In the case where a part of the configuration is described in each form, the other forms described above can be applied to the other parts of the configuration.
 各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組合せることも可能である。
(第1実施形態)
 以下、本開示の第1実施形態について図1ないし図9を用いて詳細に説明する。この第1実施形態にかかわる車両は、車両の駆動系にバッテリの電力で回転する電動機を使用している。エンジン動力によっても駆動力を発生することができる。温水回路の温水を加熱する熱源は、水冷内燃機関からなるエンジンである。またエンジン動力で発電しバッテリを充電できる。
Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also the embodiments are partially combined even if they are not clearly specified unless there is a problem with the combination. It is also possible.
(First embodiment)
Hereinafter, the first embodiment of the present disclosure will be described in detail with reference to FIGS. 1 to 9. The vehicle according to the first embodiment uses an electric motor that rotates with battery power in the drive system of the vehicle. Driving force can also be generated by engine power. The heat source for heating the hot water in the hot water circuit is an engine composed of a water-cooled internal combustion engine. The battery can be charged by generating power with engine power.
 図1は、本開示の第1実施形態にかかわる車両用空調装置を示す概略図である。この第1実施形態の車両用空調装置は、冷凍サイクル回路3からなるヒートポンプ(H/P)と燃焼器6とを持つ。 FIG. 1 is a schematic diagram illustrating a vehicle air conditioner according to a first embodiment of the present disclosure. The vehicle air conditioner according to the first embodiment includes a heat pump (H / P) including a refrigeration cycle circuit 3 and a combustor 6.
 ここで、機器に入力されたエネルギによって、どれだけのエネルギを出力できるかを数値で示した成績係数を考える。理論上ヒートポンプの成績係数(COP)は1.0以上となり、成績係数が0.8程度の燃焼器よりも入力エネルギ効率が良い。 Here, let us consider a coefficient of performance that shows numerically how much energy can be output by the energy input to the device. Theoretically, the coefficient of performance (COP) of the heat pump is 1.0 or more, and the input energy efficiency is better than a combustor having a coefficient of performance of about 0.8.
 また、送風系のファンやブロワなどの入力電気エネルギを考慮しても、車両用空調装置では、外気温度がマイナス10℃程度以上の温度帯である一般的温度条件下においては、ヒートポンプの方が燃焼器より入力エネルギ効率が良い。「入力エネルギ効率」とは、暖房のために入力されたエネルギ量に対しての空調風に与えられるエネルギ量の割合で定義される。 In addition, even in consideration of input electric energy such as a blower fan or blower, in a vehicle air conditioner, the heat pump is better in a general temperature condition where the outside air temperature is in a temperature range of about minus 10 ° C. or more. Input energy efficiency is better than combustor. “Input energy efficiency” is defined as the ratio of the amount of energy applied to the conditioned air to the amount of energy input for heating.
 しかし、ヒートポンプは、外気が低下することによって能力及び効率が低下する場合がある。また、ヒートポンプ内の送風系であるファンやブロワは電気で作動するため、ヒートポンプの燃料消費量ベースでの効率は、ヒートポンプの入力エネルギ効率よりも更に低下する場合がある。「燃料消費量ベースでの効率」すなわち「燃料効率」とは、暖房のために消費した燃料のエネルギ量に対しての空調風に与えられるエネルギ量の割合で定義される。 However, the capacity and efficiency of a heat pump may decrease due to a decrease in outside air. Moreover, since the fan and blower which are the ventilation system in a heat pump operate | move electrically, the efficiency on the fuel consumption base of a heat pump may fall further from the input energy efficiency of a heat pump. “Efficiency on the basis of fuel consumption”, that is, “fuel efficiency” is defined as the ratio of the amount of energy given to the conditioned air to the amount of fuel consumed for heating.
 エンジンの出力をエンジンに投入した燃料のエネルギ量で割った効率は0.3程度である。エンジン動力で発電される発電機(オルタネータ)の効率は0.6である。従って、エンジンにより駆動される発電機の燃料消費量ベースでの発電効率、つまり、発電機の出力を発電するために消費した燃料のエネルギ量で割った燃料消費量ベースの発電効率は、約0.18(0.6×0.3=0.18)である。従って、ヒートポンプが電動圧縮機で駆動されるものであれば、ヒートポンプがエンジンにより直接駆動される場合よりも、燃料効率は低下する。 The efficiency obtained by dividing the engine output by the amount of energy of the fuel input to the engine is about 0.3. The efficiency of a generator (alternator) that generates power with engine power is 0.6. Therefore, the power generation efficiency based on the fuel consumption of the generator driven by the engine, that is, the power generation efficiency based on the fuel consumption divided by the amount of fuel consumed to generate the output of the generator is about 0. .18 (0.6 × 0.3 = 0.18). Therefore, if the heat pump is driven by an electric compressor, the fuel efficiency is lower than when the heat pump is directly driven by the engine.
 エンジンから軸動力を得て駆動される圧縮機でヒートポンプが駆動されるエンジン駆動のヒートポンプであっても、前述の通り、ヒートポンプ内の送風系は電動であり電力を消費する。そのため、運転条件によっては、燃焼器の燃料効率の方がヒートポンプの燃料効率よりも高くなる場合が発生する。 Even in an engine-driven heat pump in which a heat pump is driven by a compressor driven by obtaining shaft power from the engine, as described above, the blower system in the heat pump is electric and consumes power. For this reason, depending on the operating conditions, the fuel efficiency of the combustor may be higher than the fuel efficiency of the heat pump.
 したがって、本実施形態の車両用空調装置は、車両内を暖房する際に、ヒートポンプを成す冷凍サイクル回路3と燃焼器6との内、燃料消費が少ない方から優先して作動させるものである。つまり、冷凍サイクル回路3と燃焼器6との内、燃料効率が高い方から優先して作動させるものである。ヒートポンプを構成する冷凍サイクル回路3は燃焼器6にて加熱される温水回路1(冷却水回路)を、水冷媒熱交換器15(冷却水冷媒熱交換器)を介して加熱するように構成されている。本開示において水冷媒熱交換器15は必須ではないが、第1実施形態は水冷媒熱交換器15を有効に利用している。 Therefore, the vehicle air conditioner according to the present embodiment is operated preferentially from the refrigeration cycle circuit 3 and the combustor 6 that form a heat pump when the inside of the vehicle is heated, from the side with the lower fuel consumption. That is, the refrigeration cycle circuit 3 and the combustor 6 are preferentially operated from the one with higher fuel efficiency. The refrigeration cycle circuit 3 constituting the heat pump is configured to heat the hot water circuit 1 (cooling water circuit) heated by the combustor 6 via the water refrigerant heat exchanger 15 (cooling water refrigerant heat exchanger). ing. In the present disclosure, the water refrigerant heat exchanger 15 is not essential, but the first embodiment effectively uses the water refrigerant heat exchanger 15.
 図1において、車両用空調装置は、車両内の熱源4を冷却する温水(冷却水)が流れる温水回路1と、圧縮機2で圧縮された冷媒が流れるヒートポンプを構成する冷凍サイクル回路3とを備えている。車両内の熱源4は、車両の駆動力を生み出す内燃機関からなるエンジンである。温水回路1はこのエンジンを水冷する水(不凍液からなる)を流す回路である。 In FIG. 1, a vehicle air conditioner includes a hot water circuit 1 through which hot water (cooling water) for cooling a heat source 4 in the vehicle flows, and a refrigeration cycle circuit 3 that constitutes a heat pump through which refrigerant compressed by the compressor 2 flows. I have. The heat source 4 in the vehicle is an engine composed of an internal combustion engine that generates driving force for the vehicle. The hot water circuit 1 is a circuit through which water for cooling the engine (made of antifreeze) flows.
 温水回路1は、熱源4に温水を流すウォータポンプ5と、温水を加熱する燃焼器6と、温水の熱を外気に放熱させるラジエータ7と、温水と車両内に送風される空調風との熱交換を行うヒータコア8とを備える。 The hot water circuit 1 includes a water pump 5 for flowing hot water to the heat source 4, a combustor 6 for heating the hot water, a radiator 7 for radiating the heat of the hot water to the outside air, and heat of the hot water and the conditioned air blown into the vehicle. And a heater core 8 for replacement.
 ウォータポンプ5は電動機でインペラを回転させエンジン冷却用の温水を循環させる。燃焼器6は燃料を燃焼させるバーナを持ち、温水回路1を流れる温水を加熱する。燃焼器6は、熱源4となるエンジンとは別の燃料タンクから成る燃焼器用燃料タンク6tから燃料の供給を受ける。 The water pump 5 rotates an impeller with an electric motor to circulate hot water for engine cooling. The combustor 6 has a burner for burning fuel, and heats hot water flowing through the hot water circuit 1. The combustor 6 is supplied with fuel from a combustor fuel tank 6t formed of a fuel tank different from the engine serving as the heat source 4.
 ラジエータ7は周知のように高温となった温水回路1の温水の温度を下げるために車両外部の空気である外気と熱交換する。ラジエータ7には図示しないが、ラジエータ電動ファンが付属しておりラジエータ7のフィンに外気が流れる。 As is well known, the radiator 7 exchanges heat with the outside air, which is air outside the vehicle, in order to lower the temperature of the hot water in the hot water circuit 1 that has become hot. Although not shown in the figure, a radiator electric fan is attached to the radiator 7 so that outside air flows through the fins of the radiator 7.
 ヒータコア8は、空調用ダクト内を塞ぐように設けられ、空調用ブロワにより送風されてきた外気又は車両内の循環風である内気を加熱する熱交換器である。なお温水回路1のラジエータ7への流量を制御するサーモスタット等は図示が省略されている。 The heater core 8 is a heat exchanger that is provided so as to close the inside of the air conditioning duct, and heats the outside air blown by the air conditioning blower or the inside air that is the circulating air in the vehicle. In addition, the thermostat etc. which control the flow volume to the radiator 7 of the hot water circuit 1 are abbreviate | omitting illustration.
 冷凍サイクル回路3は、冷媒を加圧する圧縮機2と、車両外部の空気と熱交換を行う室外熱交換器13と、空調風を温度調節する室内熱交換器14と、余剰の冷媒を蓄えるアキュムレータ9等とを備える。圧縮機2は、本実施形態ではエンジンからの動力で発電された電力で駆動される電動圧縮機であるが、燃料を消費して駆動されるエンジンからの動力によって駆動されてもよい。 The refrigeration cycle circuit 3 includes a compressor 2 that pressurizes the refrigerant, an outdoor heat exchanger 13 that exchanges heat with air outside the vehicle, an indoor heat exchanger 14 that adjusts the temperature of the conditioned air, and an accumulator that stores excess refrigerant. 9 etc. In this embodiment, the compressor 2 is an electric compressor that is driven by electric power generated by power from the engine, but may be driven by power from an engine that is driven by consuming fuel.
 車両には、車輪を駆動する電動機32に電力を供給するバッテリ25が搭載されている。このバッテリ25の状態であるバッテリ電圧と、バッテリ温度と、バッテリ残量等を管理するバッテリマネジメントユニット26が車両内に搭載されている。従って、制御装置10は、バッテリマネジメントユニット26を介してバッテリ25のバッテリ残量を把握することができる。電動機32は、電動機制御回路31を介してバッテリ25から給電される。 The vehicle is equipped with a battery 25 that supplies electric power to an electric motor 32 that drives wheels. A battery management unit 26 that manages the battery voltage, the battery temperature, the battery remaining amount, and the like, which is the state of the battery 25, is mounted in the vehicle. Therefore, the control device 10 can grasp the remaining battery level of the battery 25 via the battery management unit 26. The electric motor 32 is supplied with power from the battery 25 via the electric motor control circuit 31.
 次に、第1実施形態の逆止弁35と電磁弁36、37等の作用について述べる。この冷凍サイクル回路3では以下の4つのモードがある。 Next, the operation of the check valve 35 and the electromagnetic valves 36 and 37 of the first embodiment will be described. The refrigeration cycle circuit 3 has the following four modes.
 冷房及び冷房除湿モードでは、冷媒は水冷媒熱交換器15及び室外熱交換器13で放熱し、室内熱交換器14で吸熱する。そのために電子膨張弁11は全開、電子膨張弁12は流量調整し、エバポレータとして機能する室内熱交換器14の温度を制御する。電磁弁37は閉、電磁弁36は閉とする。 In the cooling and cooling / dehumidifying modes, the refrigerant dissipates heat in the water / refrigerant heat exchanger 15 and the outdoor heat exchanger 13 and absorbs heat in the indoor heat exchanger 14. For this purpose, the electronic expansion valve 11 is fully opened, the flow rate of the electronic expansion valve 12 is adjusted, and the temperature of the indoor heat exchanger 14 that functions as an evaporator is controlled. The solenoid valve 37 is closed and the solenoid valve 36 is closed.
 暖房モードでは、冷媒は水冷媒熱交換器15で放熱し、室外熱交換器13で吸熱する。そのために電子膨張弁11は流量調整し、エバポレータとして機能する室外熱交換器13の温度を制御する。電子膨張弁12は閉とする。なお、ブロワが止まっていても、室内熱交換器14において自然対流で若干熱交換してしまう。電子膨張弁12が開であると室内熱交換器14に冷媒の流れができてしまうため、熱交換量が増えてしまい悪化の方向に作用する。すなわち、暖房能力が低下してしまう。そのため、電子膨張弁12は閉とする。また、電磁弁37は閉、電磁弁36は開とする。 In the heating mode, the refrigerant radiates heat with the water refrigerant heat exchanger 15 and absorbs heat with the outdoor heat exchanger 13. For this purpose, the electronic expansion valve 11 adjusts the flow rate and controls the temperature of the outdoor heat exchanger 13 that functions as an evaporator. The electronic expansion valve 12 is closed. Even if the blower is stopped, the indoor heat exchanger 14 slightly exchanges heat by natural convection. When the electronic expansion valve 12 is open, a refrigerant flows in the indoor heat exchanger 14, so that the amount of heat exchange increases and acts in a worsening direction. That is, the heating capacity is reduced. Therefore, the electronic expansion valve 12 is closed. The electromagnetic valve 37 is closed and the electromagnetic valve 36 is open.
 暖房時に室内熱交換器14で温度調節は行えない。室内熱交換器14は、冷房時にはエバポレータとして温度調節し、暖房時には除湿用のエバポレータとして作用する。冷凍サイクル回路3では、室内熱交換器14がコンデンサとしては使用できない。 The temperature cannot be adjusted by the indoor heat exchanger 14 during heating. The indoor heat exchanger 14 adjusts the temperature as an evaporator during cooling, and acts as a dehumidifying evaporator during heating. In the refrigeration cycle circuit 3, the indoor heat exchanger 14 cannot be used as a condenser.
 暖房時、水冷媒熱交換器15で冷媒は冷却水に放熱し、ヒータコア8で冷却水が車室内に送風される空調風を加熱する。つまり、水加熱式として、冷凍サイクル回路3から成るヒートポンプと燃焼器6とは、ともに冷却水を温め、1つのヒータコアから空調風に放熱する。 During heating, the refrigerant radiates heat to the cooling water in the water / refrigerant heat exchanger 15, and the heater core 8 heats the conditioned air sent to the passenger compartment. That is, as a water heating type, both the heat pump composed of the refrigeration cycle circuit 3 and the combustor 6 warm the cooling water and radiate heat from one heater core to the conditioned air.
 暖房除湿モードでは、水冷媒熱交換器15で放熱し、室外熱交換器13及び室内熱交換器14で吸熱する。そのために電子膨張弁11は流量調整し、エバポレータとして機能する室外熱交換器13の温度を制御する。電子膨張弁12も流量調整する。電磁弁37は開とする。電磁弁36も開とする。 In the heating / dehumidifying mode, heat is radiated by the water / refrigerant heat exchanger 15 and absorbed by the outdoor heat exchanger 13 and the indoor heat exchanger 14. For this purpose, the electronic expansion valve 11 adjusts the flow rate and controls the temperature of the outdoor heat exchanger 13 that functions as an evaporator. The flow rate of the electronic expansion valve 12 is also adjusted. The electromagnetic valve 37 is opened. The electromagnetic valve 36 is also opened.
 なお、除湿する場合は、エバポレータとして機能する室内熱交換器14で冷却した空気を温水が流れるヒータコア8で加熱する周知のリヒート作用が必要になる。図1は、基本的にヒータコア8と同じ温水リヒート用の熱交換器、及びヒータコアを通る空気量を制御するエアミックスダンパは省略してある。 In addition, when dehumidifying, the well-known reheat action which heats the air cooled with the indoor heat exchanger 14 which functions as an evaporator with the heater core 8 into which warm water flows is needed. In FIG. 1, the heat exchanger for hot water reheating that is basically the same as that of the heater core 8 and the air mix damper that controls the amount of air passing through the heater core are omitted.
 除霜モードでは、水冷媒熱交換器15で吸熱又は何もせず、室外熱交換器13で放熱する。そのために電子膨張弁11は全開とする。電子膨張弁12は閉とする。電磁弁37は閉とする。電磁弁36は開とする。 In the defrost mode, the water refrigerant heat exchanger 15 absorbs heat or does nothing, and the outdoor heat exchanger 13 radiates heat. Therefore, the electronic expansion valve 11 is fully opened. The electronic expansion valve 12 is closed. The solenoid valve 37 is closed. The solenoid valve 36 is opened.
 このうち暖房除湿モードにおいて、逆止弁35がないと、圧縮機2→水冷媒熱交換器15→電磁弁37→(逆止弁部)→電磁弁36→アキュムレータ9→圧縮機2という回路が形成されてしまうことから、この部位に逆止弁35を設けている。 Of these, in the heating and dehumidifying mode, if there is no check valve 35, the circuit of compressor 2 → water refrigerant heat exchanger 15 → electromagnetic valve 37 → (check valve portion) → electromagnetic valve 36 → accumulator 9 → compressor 2 Since it is formed, a check valve 35 is provided at this portion.
 図2のように、制御装置10は、車両外部の外気温度を含む運転条件から、ヒートポンプを構成する冷凍サイクル回路3と燃焼器6との燃料効率を夫々算出する算出部(S205)を有する。冷凍サイクル回路3は圧縮機2で加圧され高温になった冷媒の熱で水冷媒熱交換器を介して温水回路1の温水を加熱し、温水を流れるヒータコア8を介して空調風を加熱する。なお、第1実施形態の構成では室内熱交換器14はコンデンサにならず、エバポレータとしてのみ機能する。第1実施形態は水加熱式なので、温水回路を加熱している。後述する図15のような空気加熱式の場合は、室内熱交換器14はコンデンサになり、空調風を加熱する機能を持つ。 As shown in FIG. 2, the control device 10 includes a calculation unit (S205) that calculates the fuel efficiencies of the refrigeration cycle circuit 3 and the combustor 6 constituting the heat pump from operating conditions including the outside air temperature outside the vehicle. The refrigeration cycle circuit 3 heats the hot water in the hot water circuit 1 through the water-refrigerant heat exchanger with the heat of the refrigerant pressurized to the high temperature by the compressor 2 and heats the conditioned air through the heater core 8 that flows through the hot water. . In the configuration of the first embodiment, the indoor heat exchanger 14 does not function as a condenser but functions only as an evaporator. Since the first embodiment is a water heating type, the hot water circuit is heated. In the case of an air heating type as shown in FIG. 15 described later, the indoor heat exchanger 14 serves as a condenser and has a function of heating the conditioned air.
 燃焼器6は、まず温水回路1の温水を加熱し、温水が流れるヒータコア8を介して空調風を加熱する。このような暖房機器となる冷凍サイクル回路3からなるヒートポンプと燃焼器6とのうち、算出された燃料効率が高い方を優先的に作動させる図2の効率選択部(S208~S214)を制御装置10内に備える。 The combustor 6 first heats the hot water in the hot water circuit 1 and heats the conditioned air through the heater core 8 through which the hot water flows. The efficiency selection unit (S208 to S214) of FIG. 2 that preferentially operates the one having the higher calculated fuel efficiency out of the heat pump and the combustor 6 including the refrigeration cycle circuit 3 serving as such a heating device is a control device. 10 within.
 図1において、冷凍サイクル回路3と燃焼器6とがある場合に、効率がよいものから優先的に作動させる。なお、暖房機器が冷凍サイクル回路3と燃焼器6のように2組でなく、たとえば電気ヒータを含めた3組以上存在する場合も同様に効率がよいものから優先的に作動させればよい。この場合、電気ヒータは燃料効率が冷凍サイクル回路3よりも圧倒的に悪いため、常に冷凍サイクル回路3の効率>電気ヒータの効率となると考えられる。 In FIG. 1, when there are the refrigeration cycle circuit 3 and the combustor 6, the one with the highest efficiency is operated preferentially. In addition, when there are not two sets of heating devices such as the refrigeration cycle circuit 3 and the combustor 6 but three or more sets including, for example, an electric heater, the heating devices may be preferentially operated in the same manner from those having high efficiency. In this case, the fuel efficiency of the electric heater is overwhelmingly worse than that of the refrigeration cycle circuit 3. Therefore, it is considered that the efficiency of the refrigeration cycle circuit 3 always exceeds the efficiency of the electric heater.
 制御装置10は、エアコンECUとして周知であり、内部に記憶装置としてのメモリと、演算装置としてのCPUとを備える。そして、操作パネルによって設定された車室内の設定温度等の情報と外気温度、内気温度、日射量等のセンサ情報を基に、圧縮機2の制御や第1電子膨張弁11、第2電子膨張弁12等の制御を行う。制御装置10は、図1の点線で示すように、圧縮機2および燃焼器6に電気的に接続されている。 The control device 10 is known as an air conditioner ECU, and includes a memory as a storage device and a CPU as an arithmetic device. Then, based on the information such as the set temperature in the passenger compartment set by the operation panel and the sensor information such as the outside air temperature, the inside air temperature, and the amount of solar radiation, the control of the compressor 2, the first electronic expansion valve 11, and the second electronic expansion are performed. Control the valve 12 and the like. The control device 10 is electrically connected to the compressor 2 and the combustor 6 as indicated by a dotted line in FIG.
 なお、前述の通り、室内熱交換器14は、第1実施形態の回路構成ではコンデンサになりえない。 As described above, the indoor heat exchanger 14 cannot be a capacitor in the circuit configuration of the first embodiment.
 この第1実施形態によれば、制御装置10は、その時の外気温度を含む運転条件から冷凍サイクル回路3と燃焼器6との燃料効率を夫々算出する。制御装置10は、圧縮機2および燃焼器6からの信号に基づいて燃料効率をそれぞれ算出してもよい。そして、冷凍サイクル回路3と燃焼器6とのうち算出された効率が高い方を優先的に作動させる。そのため、燃料消費量ベースで考えた際に、燃焼器6の方が高効率となる場合が発生するという事実を活用できる。そして、そのような場合において、燃料効率に合わせて、燃焼器6の運転と、冷凍サイクル回路3との運転とを組み合わせることで、燃料消費量が少ない車両用空調装置を提供できる。 According to the first embodiment, the control device 10 calculates the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 from the operating conditions including the outside air temperature at that time. The control device 10 may calculate the fuel efficiency based on signals from the compressor 2 and the combustor 6. And the one where the calculated efficiency is higher among the refrigeration cycle circuit 3 and the combustor 6 is operated preferentially. Therefore, the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized. In such a case, a vehicle air conditioner with low fuel consumption can be provided by combining the operation of the combustor 6 and the operation of the refrigeration cycle circuit 3 in accordance with the fuel efficiency.
 なお、室内熱交換器14はコンデンサにならないので、室内熱交換器14で暖房はできない。なお、この第1実施形態では温水回路1と、冷凍サイクル回路3との間に設けられ、冷媒と温水との間で熱交換を行う水冷媒熱交換器15を備える。このように水冷媒熱交換器15を備えることにより、冷凍サイクル回路3の熱で温水回路1を加熱して暖房を行う方式を水加熱式と呼ぶ。この方式は、水冷媒熱交換器15を持たない空気加熱式(後述の図13又は図15)と対比される。水冷媒熱交換器をもたない場合は、図13か図15の構成(空気加熱式)として構成しないと暖房できない。 In addition, since the indoor heat exchanger 14 does not become a condenser, the indoor heat exchanger 14 cannot be heated. In the first embodiment, a water / refrigerant heat exchanger 15 is provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performs heat exchange between the refrigerant and the hot water. Thus, the system which heats the hot water circuit 1 with the heat | fever of the refrigerating cycle circuit 3 by providing the water refrigerant heat exchanger 15 is called a water heating type. This method is contrasted with an air heating type that does not have the water-refrigerant heat exchanger 15 (FIG. 13 or FIG. 15 described later). If there is no water-refrigerant heat exchanger, heating is not possible unless it is configured as the configuration of FIG. 13 or FIG. 15 (air heating type).
 空気加熱式のメリットは、直接空気を暖めるため暖房の効率が良い点にある。また、水加熱式と比べ、水を温める必要がないので即効性がある。更に、車両側の回路と切り離せるので、車両への架装が容易である。 The advantage of the air heating type is that the heating efficiency is high because the air is directly heated. Compared to the water heating type, there is no need to warm water, so there is immediate effect. Furthermore, since it can be separated from the circuit on the vehicle side, it can be easily mounted on the vehicle.
 逆に、デメリットは、バス車両のレイアウトの場合、空気加熱式だと暖房用の熱交換器が天井配置になるため、暖房風の吹き出しが天井になり、頭寒足熱とはならず、快適性に難がある。また暖かい空気は上方へ集まるため、天井吹出しの場合、サーキュレーターなどが別途必要になる。 On the other hand, in the case of a bus vehicle layout, the disadvantage is that if it is an air heating type, the heat exchanger for heating will be placed on the ceiling, so the blowout of the heating air will be on the ceiling, and it will not be a head cold foot heat, making it difficult to comfort There is. Moreover, since warm air gathers upward, a circulator or the like is separately required for ceiling blowing.
 一方、第1実施形態のような水加熱式のメリットは、車両下方からヒータコア8で温められた暖房風を吹出すため快適性が良好である。また、冷凍サイクル回路3による冷房運転時に、冷媒側から温水回路1の温水へ熱を一部渡すことで、温水回路1のラジエータ7を室外コンデンサの一部として使用可能である。そのため、冷房時の効率が向上する。 On the other hand, the merit of the water heating type as in the first embodiment is excellent in comfort because the heating air heated by the heater core 8 is blown from the lower side of the vehicle. Moreover, the radiator 7 of the hot water circuit 1 can be used as a part of the outdoor condenser by passing a part of heat from the refrigerant side to the hot water of the hot water circuit 1 during the cooling operation by the refrigeration cycle circuit 3. Therefore, the efficiency during cooling is improved.
 更に、今後の熱マネジメントへの展開が容易である。たとえば走行用バッテリを搭載した車両におけるバッテリの温度調整装置などの温水回路を介した排熱回収に対応しやすい。加えてエンジンのプレヒートに冷凍サイクル回路3による温水加熱が利用可能である。 Furthermore, it is easy to expand to future thermal management. For example, it is easy to cope with exhaust heat recovery via a hot water circuit such as a battery temperature control device in a vehicle equipped with a traveling battery. In addition, warm water heating by the refrigeration cycle circuit 3 can be used for preheating the engine.
 一方、水加熱式のデメリットとして、即効性や冷凍サイクルとしての効率が空気加熱式に比べて劣る点があげられる。 On the other hand, the disadvantage of the water heating type is that the immediate effect and efficiency as a refrigeration cycle are inferior to the air heating type.
 なお、水加熱式の場合において、暖房時にエバポレータを構成する室外熱交換器13はバス車両の天井搭載となる。また、除湿用エバポレータとして作動する室内熱交換器14も、天井搭載となる。また圧縮機2は、電動式の場合は天井搭載であるが、熱源4となるエンジンからベルトを介して圧縮機2が駆動される場合には、圧縮機2はエンジンルームへの搭載となる。 In the case of the water heating type, the outdoor heat exchanger 13 constituting the evaporator during heating is mounted on the ceiling of the bus vehicle. The indoor heat exchanger 14 that operates as a dehumidifying evaporator is also mounted on the ceiling. The compressor 2 is mounted on the ceiling in the case of an electric type, but when the compressor 2 is driven via a belt from an engine serving as the heat source 4, the compressor 2 is mounted in an engine room.
 次に、図2において制御を説明する。制御がスタートすると、ステップS201で制御装置10は内気センサからの室内温度Trと、設定温度Tsetから所定温度差Tpを減算した値とを比較する。室内温度Trが、設定温度Tsetから所定温度差Tpを減算した値よりも大きいときは、制御装置10は暖房不要と判定し、ステップS202に進み、燃焼器6とヒートポンプを成す冷凍サイクル回路3は共にOFFとして圧縮機2を停止する。 Next, the control will be described with reference to FIG. When the control starts, the control device 10 compares the room temperature Tr from the inside air sensor with a value obtained by subtracting the predetermined temperature difference Tp from the set temperature Tset in step S201. When the room temperature Tr is larger than the value obtained by subtracting the predetermined temperature difference Tp from the set temperature Tset, the control device 10 determines that heating is not necessary, and proceeds to step S202, where the refrigeration cycle circuit 3 that forms a heat pump with the combustor 6 Both are turned OFF and the compressor 2 is stopped.
 一方、室内温度Trが設定温度Tsetから所定温度差Tpを減算した値よりも大きくないときは、制御装置10は暖房が必要と判定する。この場合は、ステップS203に進み、制御装置10は、車室内温度を急激に立ち上げるウォームアップが必要か否かのウォームアップ制御を行う。ウォームアップが必要な場合は,後述するウォームアップ処置を実行する。ステップS203の制御操作を行う制御装置10の一部は、冷凍サイクル回路3と燃焼器6との両方を作動させることにより、暖房性能を向上させるウォームアップ制御部の一例として用いてもよい。ステップS203におけるウォームアップ制御についての詳細フローチャートは後述する。 On the other hand, when the room temperature Tr is not larger than the value obtained by subtracting the predetermined temperature difference Tp from the set temperature Tset, the control device 10 determines that heating is necessary. In this case, the process proceeds to step S203, and the control device 10 performs warm-up control as to whether or not warm-up is required to rapidly raise the passenger compartment temperature. If warm-up is necessary, the warm-up procedure described later is executed. A part of the control device 10 that performs the control operation in step S203 may be used as an example of a warm-up control unit that improves the heating performance by operating both the refrigeration cycle circuit 3 and the combustor 6. A detailed flowchart of the warm-up control in step S203 will be described later.
 次に、制御装置10は、暖房に必要な必要能力を図2のステップS204で計算する。これは現時点でのセンサが検出した内気温度と設定温度との偏差、日射量等から必要な暖房能力を演算する。 Next, the control device 10 calculates the necessary capacity required for heating in step S204 of FIG. This calculates the required heating capacity from the deviation between the inside air temperature detected by the current sensor and the set temperature, the amount of solar radiation, and the like.
 次にステップS205において、制御装置10は、その時の冷凍サイクル回路3と燃焼器6の暖房能力及びその能力を出すための燃料効率を演算する。この効率は、単位時間あたりに消費される燃料がもつエネルギ当たりの暖房能力を表す。 Next, in step S205, the control device 10 calculates the heating capacity of the refrigeration cycle circuit 3 and the combustor 6 at that time and the fuel efficiency for obtaining the capacity. This efficiency represents the heating capacity per energy of the fuel consumed per unit time.
 電動機で圧縮機が回転する場合、電動機の回転出力となるまでに使用される燃料のエネルギを1とすると電動機の回転出力は前述の例では0.18(0.3×0.6=0.18)である。最終的にその時の冷凍サイクル回路の圧縮機の回転数は周知の圧縮機の回転数制御により導かれる。 When the compressor is rotated by an electric motor, if the energy of the fuel used before reaching the rotational output of the motor is 1, the rotational output of the motor is 0.18 (0.3 × 0.6 = 0. 18). Finally, the rotation speed of the compressor of the refrigeration cycle circuit at that time is derived by well-known compressor rotation speed control.
 またその回転数により、冷凍サイクル回路3から発生する熱が水冷媒熱交換器15を介して温水へ伝えられる際に、水冷媒熱交換器15の効率を考慮する必要がある。加えて、冷凍サイクルの運転にはブロワ、ファンの回転が必要でありこれらの送風機器の電力の使用でもエンジンに供給される燃料が消費されることを考慮しなければならない。その上で全体として、燃料の消費量に対してどれだけの暖房能力が得られるかの計算を行うか、あらかじめ実験で求めたマップを用いて燃料効率を求めても良い。なおマップ作成のパラメータとしては外気温度、内気温度、エンジン回転数が適している。 Further, when the heat generated from the refrigeration cycle circuit 3 is transmitted to the hot water via the water refrigerant heat exchanger 15 due to the rotation speed, it is necessary to consider the efficiency of the water refrigerant heat exchanger 15. In addition, it is necessary to consider that the operation of the refrigeration cycle requires the rotation of a blower and a fan, and the fuel supplied to the engine is consumed even when the electric power of these blower devices is used. Then, as a whole, calculation of how much heating capacity can be obtained with respect to fuel consumption may be performed, or fuel efficiency may be obtained using a map obtained in advance through experiments. As map creation parameters, outside temperature, inside temperature, and engine speed are suitable.
 この、エンジン回転数とプーリ比から圧縮機回転数が算出できる。これらのパラメータで冷凍サイクル回路の状態が決まるので冷凍サイクルの効率が算出できる。 The compressor speed can be calculated from the engine speed and pulley ratio. Since the state of the refrigeration cycle circuit is determined by these parameters, the efficiency of the refrigeration cycle can be calculated.
 なお、燃焼器6の暖房能力及びその能力を出すための燃料効率は、計算によらずデータを読み込むことで対応しやすい。ただし、燃焼器のメーカのデータと、燃焼器が発生した熱を空調風の熱に変換するヒータコアの熱交換器としての効率とを考慮しなければならない。また温水を流動させ、温風を吹出すためにウォータポンプとファンを回転させる必要がありこれのために必要な電力、その電力を得るためにエンジンが消費する燃料量を考慮する必要がある。 In addition, the heating efficiency of the combustor 6 and the fuel efficiency for obtaining the capacity can be easily handled by reading data regardless of the calculation. However, it is necessary to consider the data of the manufacturer of the combustor and the efficiency as a heat exchanger of the heater core that converts the heat generated by the combustor into the heat of the conditioned air. Further, it is necessary to rotate the water pump and the fan in order to flow the hot water and blow out the hot air, and it is necessary to consider the electric power necessary for this and the amount of fuel consumed by the engine to obtain the electric power.
 そして最終的に、合計の燃料量で燃焼器の運転によって、暖房風に与えられた単位時間あたりのエネルギを求め、このエネルギ量を合計の燃料量で除算して燃料効率を求める。 Finally, the energy per unit time given to the heating air is obtained by operating the combustor with the total fuel amount, and the fuel efficiency is obtained by dividing this energy amount by the total fuel amount.
 例えば、外気温度-10度、車内温度20度の条件において、ある車両の熱負荷は15KWとなる。この時、エンジン回転数と外気温度、車内温度からヒートポンプの冷凍サイクル効率(成績係数)が例えば2.5と算出される。 For example, under a condition where the outside air temperature is −10 degrees and the inside temperature is 20 degrees, the heat load of a certain vehicle is 15 kW. At this time, the refrigeration cycle efficiency (coefficient of performance) of the heat pump is calculated as 2.5, for example, from the engine speed, the outside air temperature, and the vehicle interior temperature.
 すなわち、圧縮機の動力として、6.0KW要する。単位時間当たりにエンジンに投入される燃料がもつエネルギのうち30%が軸動力として出力されるという仮定の下では、単位時間当たりに消費される燃料エネルギ量として20KW必要となる。他にもファン動力を0.6KW、ブロワ動力を0.4KWとし、オルタネータの効率を0.6とすると、合わせて1.7KWの軸動力を要する。この軸動力は約5.6KWの燃料エネルギ量に対応し、圧縮機の燃料エネルギ量と合わせて25.6KWが必要である。結果、ヒートポンプの燃料効率は、約0.59(15KW/25.6KW≒0.59)となる。 That is, 6.0 KW is required for the power of the compressor. Under the assumption that 30% of the energy of the fuel input to the engine per unit time is output as shaft power, 20 KW is required as the amount of fuel energy consumed per unit time. In addition, if the fan power is 0.6 kW, the blower power is 0.4 kW, and the alternator efficiency is 0.6, a total shaft power of 1.7 kW is required. This shaft power corresponds to a fuel energy amount of about 5.6 KW, and 25.6 KW is required together with the fuel energy amount of the compressor. As a result, the fuel efficiency of the heat pump is about 0.59 (15 kW / 25.6 kW≈0.59).
 また、燃焼器では、15KWの能力を出すためには入力エネルギ効率(成績係数)を0.8として約18.8KWの燃料エネルギ量を要する。また、燃焼器の作動に付随するウォータポンプやブロワの電力を合わせ約0.9KWとなる。これはオルタネータの軸動力では1.5KWであり、燃料エネルギ量としては5.0KWとなる。合計すると燃焼器では15KWの暖房能力を出すために約23.8KWの燃料のエネルギ量が必要となる。結果、燃焼器の燃料効率は、約0.63(15KW/23.8KW≒0.63)となる。すなわち、燃焼器の方がヒートポンプよりも燃料効率が良い。 Also, the combustor requires a fuel energy amount of about 18.8 KW with an input energy efficiency (coefficient of performance) of 0.8 in order to produce a capacity of 15 KW. In addition, the combined power of the water pump and blower accompanying the operation of the combustor is about 0.9 KW. This is 1.5 kW in the shaft power of the alternator, and the fuel energy amount is 5.0 kW. In total, the combustor requires an amount of fuel energy of about 23.8 KW to provide a heating capacity of 15 KW. As a result, the fuel efficiency of the combustor is about 0.63 (15 kW / 23.8 kW≈0.63). That is, the combustor has better fuel efficiency than the heat pump.
 なお計算は概算でよく、細かいデータ、たとえば熱交換器の風速分布等は省略することができる。また燃焼器の場合は、その都度計算せず、燃焼器の燃料効率は固定値として0.8と決定しておいても良い。 Note that the calculation may be approximate, and detailed data, such as the wind speed distribution of the heat exchanger, can be omitted. In the case of a combustor, the fuel efficiency of the combustor may be determined as a fixed value of 0.8 without calculating each time.
 図2におけるステップS203のウォームアップ処置は、効率に係らず冷凍サイクル回路3と燃焼器6との両方を起動する。このため、これら冷凍サイクル回路3と燃焼器6とは同時にONする。実際のシーケンス制御の場合、必ず順番ができてしまうが、どういう順番で行ってもよい。 The warm-up process in step S203 in FIG. 2 starts both the refrigeration cycle circuit 3 and the combustor 6 regardless of the efficiency. Therefore, the refrigeration cycle circuit 3 and the combustor 6 are turned on simultaneously. In the actual sequence control, the order is always made, but any order may be used.
 次に、図2のステップS206において、制御装置10は、電力消費を少なくすることが優先される電力優先制御を行う。この第1実施形態の車両は、走行用電動機がバッテリの電気エネルギを使用して駆動される。従って、バッテリの残量を検出して制御される。この電力優先制御については後述する。 Next, in step S206 of FIG. 2, the control device 10 performs power priority control in which priority is given to reducing power consumption. In the vehicle according to the first embodiment, the traveling electric motor is driven using the electric energy of the battery. Accordingly, the remaining battery level is detected and controlled. This power priority control will be described later.
 次にステップS207において、制御装置10は、メイン燃料タンクの燃料を優先するメイン燃料タンク燃料優先モードか否かの判定を行う。ここでは、エンジンに燃料を供給するメイン燃料タンク内の燃料残量に余裕があるか否かの判定を行う。メイン燃料タンク内の燃料残量に余裕がないときはステップS210のメイン燃料優先処置が実行される。メイン燃料タンク内の燃料残量に余裕があるか無いかの判定及びメイン燃料優先処置については後述する。 Next, in step S207, the control device 10 determines whether or not the main fuel tank fuel priority mode prioritizes the fuel in the main fuel tank. Here, it is determined whether there is a surplus in the remaining amount of fuel in the main fuel tank that supplies fuel to the engine. When the remaining amount of fuel in the main fuel tank is not sufficient, the main fuel priority treatment in step S210 is executed. The determination of whether or not the remaining amount of fuel in the main fuel tank has a margin and the main fuel priority treatment will be described later.
 更にステップS208において、制御装置10は、冷凍サイクル回路3の燃料効率と燃焼器6の燃料効率との比較を行う。 Further, in step S208, the control device 10 compares the fuel efficiency of the refrigeration cycle circuit 3 with the fuel efficiency of the combustor 6.
 なお、エンジンに投入される燃料のエネルギから室内へ吹出す温風として投入されるエネルギの効率を算出するには、次の事項を考慮して演算する。 In addition, in order to calculate the efficiency of the energy input as warm air blown into the room from the energy of the fuel input to the engine, the calculation is performed in consideration of the following matters.
 冷凍サイクル回路3から温水回路1の温水に熱を伝達する場合においては、まず外気温度とエンジン冷却水温度(温水温度)を検出する。また温水流量をエンジン回転数、又はウォータポンプ5の仕様から判定する。 In the case of transferring heat from the refrigeration cycle circuit 3 to the hot water in the hot water circuit 1, first the outside air temperature and the engine coolant temperature (hot water temperature) are detected. The hot water flow rate is determined from the engine speed or the specifications of the water pump 5.
 それらと合わせ、室外熱交換器13と水冷媒熱交換器15の仕様及び圧縮機2の仕様、及び圧縮機2の回転数から、冷凍サイクル回路3がバランスして安定した運転状態になった状態を求める。 Together with them, the refrigeration cycle circuit 3 is in a stable operating state in balance from the specifications of the outdoor heat exchanger 13 and the water refrigerant heat exchanger 15, the specifications of the compressor 2, and the rotational speed of the compressor 2. Ask for.
 これにより、圧縮機2の入力に対する温水回路1への放熱効率を算出できる。これは、その都度計算しても良いし、前もって実施した試験結果から効率マップを作成しておき、マップを参照する形で演算しても良い。 Thereby, the heat radiation efficiency to the hot water circuit 1 with respect to the input of the compressor 2 can be calculated. This may be calculated each time, or may be calculated by creating an efficiency map from the test results performed in advance and referring to the map.
 圧縮機2が電動の場合は、電動圧縮機の回転数は可変である。つまり制御装置10から回転数の指示が可能であり、エンジン回転数によらない。しかし、室内温度、設定温度、外気温度から車両室内を暖房する必要能力が決まるため、この必要能力から電動圧縮機の必要回転数が決まる。 When the compressor 2 is electric, the rotation speed of the electric compressor is variable. That is, the rotational speed can be instructed from the control device 10 and does not depend on the engine rotational speed. However, since the required capacity for heating the vehicle interior is determined from the room temperature, the set temperature, and the outside air temperature, the required rotational speed of the electric compressor is determined from this required capacity.
 温水回路1の熱を室内に吹き出す空調風に伝える場合は、ヒータコア8の仕様と温水流量と、検知された室内温度と、ヒータコア8の風量とから室内へ輸送される熱量を算出する。 When the heat of the hot water circuit 1 is transmitted to the conditioned air blown into the room, the amount of heat transported into the room is calculated from the specifications of the heater core 8, the flow rate of hot water, the detected room temperature, and the air volume of the heater core 8.
 エンジンの動力を用いて冷凍サイクル回路3を作動させる場合で、かつ、圧縮機2がエンジンからのベルト駆動の場合には、冷凍サイクル回路3の入力エネルギは、エンジンの効率を考慮して、エンジンへ投入される燃料エネルギの約30%程度となる。 When the refrigeration cycle circuit 3 is operated using the power of the engine and the compressor 2 is driven by a belt from the engine, the input energy of the refrigeration cycle circuit 3 is determined by considering the engine efficiency. This is about 30% of the fuel energy input to the.
 エンジンの動力を用いて発電機となるオルタネータを作動させる場合で、かつ圧縮機2が電動式の場合がある。この場合においては、燃料エネルギの約30%の軸動力を用いてオルタネータを作動させ、発電効率約60%でオルタネータから電気エネルギを得るとして燃料効率を計算する。 In some cases, the alternator serving as a generator is operated using the power of the engine, and the compressor 2 may be electric. In this case, the fuel efficiency is calculated on the assumption that the alternator is operated using the shaft power of about 30% of the fuel energy and electric energy is obtained from the alternator with the power generation efficiency of about 60%.
 その他の電動機能品、主に、室外熱交換器用電動ファン、エバポレータに送風する電動ブロワの場合、まず、入力エネルギを計算し、夫々の電動機能品の消費電力は事前に測定したデータを使用するのが良い。この場合、例えば電動ファン送風時のハイモードでは何ワット消費などのデータをマップとしてメモリに記憶しておくと良い。 For other electric functional products, mainly electric fans for outdoor heat exchangers and electric blowers that blow to the evaporator, first calculate the input energy, and use the data measured in advance for the power consumption of each electric functional product Is good. In this case, for example, in the high mode when the electric fan is blowing, data such as how many watts should be stored in the memory as a map.
 また、燃焼器6の効率(成績係数)は、外気温度等によらず、約0.8程度としてもよい。以上より、エンジンに投入される燃料のエネルギから冷凍サイクル回路3の運転によってバス車両の室内に必要な暖房を実現すべく吹出す温風として投入されるエネルギを算出することができ、その結果、燃料効率を算出することができる。 Further, the efficiency (coefficient of performance) of the combustor 6 may be about 0.8 regardless of the outside air temperature or the like. From the above, it is possible to calculate the energy that is input as the warm air that is blown out to realize the heating required in the passenger compartment of the bus vehicle by the operation of the refrigeration cycle circuit 3 from the energy of the fuel that is input to the engine. Fuel efficiency can be calculated.
 またエンジンに投入される燃料のエネルギから燃焼器6の運転によってバス車両の室内に必要な暖房を実現すべく温水回路1のヒータコア8から吹出す温風として投入されるエネルギを算出することができ、その結果、燃料効率を算出することができる。 Further, the energy input as the warm air blown from the heater core 8 of the hot water circuit 1 can be calculated from the energy of the fuel input to the engine so as to realize the heating required in the interior of the bus vehicle by the operation of the combustor 6. As a result, the fuel efficiency can be calculated.
 冷凍サイクル回路3の燃料効率の方が燃焼器6の燃料効率よりも良く、冷凍サイクル回路3で車室内を暖房した方が燃焼器6で車室内を暖房するよりも燃料消費量が少ないと判定される場合がある。 It is determined that the fuel efficiency of the refrigeration cycle circuit 3 is better than the fuel efficiency of the combustor 6, and that heating the vehicle interior with the refrigeration cycle circuit 3 consumes less fuel than heating the vehicle interior with the combustor 6. May be.
 この場合は、図2のステップS209に進む。このステップS209では、制御装置10は、ステップS204で演算された必要暖房能力に対して冷凍サイクル回路3の暖房能力が大きいか否かを判定する。ステップS209において必要暖房能力に対して冷凍サイクル回路3の暖房能力が大きい場合は、制御装置10はステップS210において冷凍サイクル回路3をONして運転し、燃焼器6の運転はOFFする。 In this case, the process proceeds to step S209 in FIG. In step S209, the control device 10 determines whether the heating capacity of the refrigeration cycle circuit 3 is greater than the required heating capacity calculated in step S204. When the heating capacity of the refrigeration cycle circuit 3 is larger than the required heating capacity in step S209, the control device 10 operates by turning on the refrigeration cycle circuit 3 in step S210, and the operation of the combustor 6 is turned off.
 一方、ステップS209において、必要暖房能力に対して冷凍サイクル回路3の暖房能力が大きくない場合は、制御装置10は、冷凍サイクル回路3だけだと能力不足と判定し、ステップS211において冷凍サイクル回路3をONして運転し、かつ燃焼器6の運転もONとする。 On the other hand, when the heating capacity of the refrigeration cycle circuit 3 is not large with respect to the required heating capacity in step S209, the control device 10 determines that the capacity is insufficient if only the refrigeration cycle circuit 3 is present, and in step S211 the refrigeration cycle circuit 3 Is turned on, and the operation of the combustor 6 is also turned on.
 なお、ステップS208において、たとえば外気温が低く冷凍サイクル回路3の効率が悪くて、冷凍サイクル回路3の燃料効率の方が燃焼器6の燃料効率よりも良いとは言えない場合がある。 In step S208, for example, the outside air temperature is low and the efficiency of the refrigeration cycle circuit 3 is low, so the fuel efficiency of the refrigeration cycle circuit 3 may not be better than the fuel efficiency of the combustor 6.
 この場合は、燃焼器6の方が、効率が良いと判定される。このときは、ステップS212に進み、制御装置10はステップS204で演算された必要暖房能力に対して燃焼器6の暖房能力が大きいか否かを判定する。 In this case, it is determined that the combustor 6 is more efficient. At this time, it progresses to step S212 and the control apparatus 10 determines whether the heating capability of the combustor 6 is large with respect to the required heating capability calculated by step S204.
 ステップS212において必要暖房能力に対して燃焼器6の暖房能力が大きい場合は、制御装置10はステップS216において冷凍サイクル回路3をOFFして運転せず、燃焼器6の運転はONにする。 When the heating capacity of the combustor 6 is larger than the required heating capacity in step S212, the control device 10 does not operate by turning off the refrigeration cycle circuit 3 in step S216, and the operation of the combustor 6 is turned on.
 一方、ステップS212において、必要暖房能力に対して燃焼器6の暖房能力が大きくない場合は、制御装置10は燃焼器6だけだと能力不足と判定し、ステップS214において冷凍サイクル回路3をONして運転し、かつ燃焼器6の運転もONして運転する。 On the other hand, if the heating capacity of the combustor 6 is not large with respect to the required heating capacity in step S212, the control device 10 determines that only the combustor 6 is insufficient, and turns on the refrigeration cycle circuit 3 in step S214. And the combustor 6 is also turned on.
 以上のように、制御装置10は、車両外部の外気温度を含む運転条件から、冷凍サイクル回路3と燃焼器6との燃料効率を夫々求める算出部(S205)を有する。このステップS205における制御操作を行う制御装置10の一部は、冷凍サイクル回路3と燃焼器6との、暖房のために消費する燃料のエネルギ量に対する暖房用空調風に与えられるエネルギ量の割合である、燃料効率を夫々算出する算出部の一例として用いても良い。 As described above, the control device 10 includes a calculation unit (S205) that determines the fuel efficiencies of the refrigeration cycle circuit 3 and the combustor 6 from the operating conditions including the outside air temperature outside the vehicle. A part of the control device 10 that performs the control operation in step S205 is a ratio of the amount of energy given to the heating conditioned air to the amount of fuel consumed by the refrigeration cycle circuit 3 and the combustor 6 for heating. You may use as an example of the calculation part which calculates a certain fuel efficiency, respectively.
 また、ステップS208~S214の制御操作を行う制御装置10の一部は、冷凍サイクル回路3と燃焼器6とのうち、算出された燃料効率が高い方を優先的に作動させる効率選択部の一例として用いられても良い。制御装置10は、所定の温度条件から求められる必要暖房能力と燃料消費量ベースのヒートポンプ運転状態に基づき、冷凍サイクル回路3と燃焼器6の少なくともいずれか一方を選択して作動させる選択部を有している。燃料消費量ベースのヒートポンプ運転状態は、ヒートポンプの燃料効率を含んでよい。 Also, a part of the control device 10 that performs the control operations of steps S208 to S214 is an example of an efficiency selection unit that preferentially operates the one having the higher calculated fuel efficiency out of the refrigeration cycle circuit 3 and the combustor 6. May be used. The control device 10 has a selection unit that selects and operates at least one of the refrigeration cycle circuit 3 and the combustor 6 based on the required heating capacity obtained from a predetermined temperature condition and the fuel consumption-based heat pump operation state. is doing. The fuel consumption based heat pump operating state may include the fuel efficiency of the heat pump.
 この第1実施形態の冷凍サイクル回路3は、水冷媒熱交換器15を持ち、温水回路1と熱的に接続されている。つまり冷凍サイクル回路3は、水加熱式である。換言すれば、第1実施形態の車両用空調装置は、車両内の熱源を冷却する温水が流れる温水回路1と、圧縮機2で圧縮された冷媒が流れるヒートポンプを構成する冷凍サイクル回路3とを備える。 The refrigeration cycle circuit 3 of the first embodiment has a water refrigerant heat exchanger 15 and is thermally connected to the hot water circuit 1. That is, the refrigeration cycle circuit 3 is a water heating type. In other words, the vehicle air conditioner of the first embodiment includes a hot water circuit 1 through which hot water that cools a heat source in the vehicle flows, and a refrigeration cycle circuit 3 that forms a heat pump through which refrigerant compressed by the compressor 2 flows. Prepare.
 本実施形態の車両用空調装置は、温水回路1と、冷凍サイクル回路3との間に設けられ、冷媒と温水との間で熱交換を行う水冷媒熱交換器15を備える。 The vehicle air conditioner of the present embodiment includes a water-refrigerant heat exchanger 15 that is provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performs heat exchange between the refrigerant and the hot water.
 よって、上記ステップS214、ステップS217のように冷凍サイクル回路3と温水回路1の両方を用いて車室内を暖房できる。また、温水温度が低いとき、温水温度を冷凍サイクル回路3の働きで上昇させて、温水回路1のヒータコア8による暖房効率を高めてから冷凍サイクル回路3と温水回路1との両方で効率の良い車室内の暖房が可能となる。なお、第1実施形態の水冷媒熱交換器15は、車両の床下に設置される。 Therefore, the vehicle interior can be heated using both the refrigeration cycle circuit 3 and the hot water circuit 1 as in steps S214 and S217. Further, when the hot water temperature is low, the hot water temperature is raised by the action of the refrigeration cycle circuit 3 and the heating efficiency by the heater core 8 of the hot water circuit 1 is increased, so that both the refrigeration cycle circuit 3 and the hot water circuit 1 are efficient. The vehicle interior can be heated. In addition, the water-refrigerant heat exchanger 15 of 1st Embodiment is installed under the floor of a vehicle.
 次に、図2のステップS203のように、制御装置10において、温水の温度を早急に立ち上げ、早急な暖房性能の向上を図るウォームアップを要求される場合がある。この場合には、冷凍サイクル回路3と燃焼器6との両方を作動させることにより、暖房性能を早急に向上させる。 Next, as in step S203 of FIG. 2, the control device 10 may be required to warm up the temperature of the hot water as soon as possible so as to quickly improve the heating performance. In this case, the heating performance is quickly improved by operating both the refrigeration cycle circuit 3 and the combustor 6.
 これによれば、ウォームアップを要求された場合、たとえば、温度が低い熱源4の始動時等の場合において、必要とされる能力にかかわらず、冷凍サイクル回路3と燃焼器6との両方を作動させることにより、温水の温度を急速に立ち上げることができる。言い換えれば、温水の昇温速度を加速させることができる。 According to this, when the warm-up is requested, for example, when the heat source 4 having a low temperature is started, the refrigeration cycle circuit 3 and the combustor 6 are operated regardless of the required capacity. By doing so, the temperature of the hot water can be raised rapidly. In other words, the temperature rise rate of hot water can be accelerated.
 なおウォームアップを要求される場合とは、例えば暖房要求時に温水温度が所定温度よりも低い場合などに発生する。これが発生するのは、温水温度、温水熱容量、冷凍サイクル回路3の能力、燃焼器6の能力等から通常の運転モードでは所定の時間内に所定の吹出温度に到達しないと判断された場合である。このような場合は、自動でウォームアップモードに変更する。 Note that the case where warm-up is required occurs, for example, when the warm water temperature is lower than a predetermined temperature when heating is requested. This occurs when it is determined from the hot water temperature, the hot water heat capacity, the capacity of the refrigeration cycle circuit 3, the capacity of the combustor 6 and the like that the predetermined blowing temperature is not reached within a predetermined time in the normal operation mode. . In such a case, the warm-up mode is automatically changed.
 すなわち、図3において図2のステップS203の処理がスタートすると、制御装置10は、メモリ内の必要な温水温度等のパラメータを参照する。そしてステップS2031にて、制御装置10は、所定の空調風の吹出温度となるまでの必要時間T2を算出する。 That is, in FIG. 3, when the process of step S203 of FIG. 2 is started, the control device 10 refers to parameters such as required hot water temperature in the memory. In step S2031, the control device 10 calculates a necessary time T2 until a predetermined temperature of the conditioned air is reached.
 次に、ステップS2032において、制御装置10は、必要時間T2と所定時間T1とを比較し、必要時間T2が所定時間T1より長ければウォームアップが必要と判断し、ステップS2033のウォームアップ処置を実行する。ウォームアップ処理では、冷凍サイクル回路3と燃焼器6との両方をON作動させることにより、温水の温度を急速に立ち上げる。 Next, in step S2032, the control device 10 compares the required time T2 with the predetermined time T1, determines that the warm-up is necessary if the required time T2 is longer than the predetermined time T1, and executes the warm-up treatment in step S2033. To do. In the warm-up process, both the refrigeration cycle circuit 3 and the combustor 6 are turned on to rapidly raise the temperature of the hot water.
 次に、図2のステップS206について説明する。第1実施形態の車両はハイブリッド車両であり、車両の駆動系にバッテリ25の電力で回転する電動機32を使用しており、エンジン動力によっても駆動力を発生することができる。またエンジン動力で発電し、バッテリ25を充電できる。 Next, step S206 in FIG. 2 will be described. The vehicle according to the first embodiment is a hybrid vehicle, and uses an electric motor 32 that rotates with the electric power of the battery 25 in the drive system of the vehicle, and can also generate a driving force by engine power. In addition, the battery 25 can be charged by generating electricity with engine power.
 制御装置10は、バッテリ25の充電状態を確認し電力が不足しているか否かを判定する図4の残電力量判定部(S2061)を有する。また、制御装置10は、燃焼器6と冷凍サイクル回路3との消費電力を演算又は検出する消費電力取得部(S20621)を有する。制御装置10は、電力量が不足していると判定された場合に、優先的に電力使用量が小さくなる燃焼器6と冷凍サイクル回路3とのいずれか一方を選択して作動させる図5の電力選択部(S20622~S20628)を備える。以下これについて詳述する。 The control apparatus 10 has the remaining power amount determination part (S2061) of FIG. 4 which confirms the charge state of the battery 25 and determines whether electric power is insufficient. In addition, the control device 10 includes a power consumption acquisition unit (S20621) that calculates or detects power consumption of the combustor 6 and the refrigeration cycle circuit 3. When it is determined that the amount of power is insufficient, the control device 10 selects and operates either the combustor 6 or the refrigeration cycle circuit 3 that preferentially reduces the amount of power used in FIG. A power selection unit (S20622 to S20628) is provided. This will be described in detail below.
 図2及び図4において、ステップS206の電力優先制御が開始されると、まず、図4のステップS2061において、制御装置10は、バッテリ残量AH2と所定残量AH1とを比較する。その結果、バッテリ残量AH2が所定残量AH1よりも多くなく、バッテリに余裕がないと判断されたときは、制御装置10は、ステップS2062の電力優先処置を実行する。ステップS2061の制御操作を行う制御装置10の一部は、バッテリ25の充電状態を確認し電力が不足しているか否かを判定する残電力量判定部の一例として用いてもよい。 2 and 4, when the power priority control in step S206 is started, first, in step S2061 in FIG. 4, the control device 10 compares the battery remaining amount AH2 with the predetermined remaining amount AH1. As a result, when it is determined that the battery remaining amount AH2 is not greater than the predetermined remaining amount AH1 and the battery has no room, the control device 10 executes the power priority process of step S2062. A part of the control device 10 that performs the control operation in step S2061 may be used as an example of a remaining power amount determination unit that checks the charge state of the battery 25 and determines whether or not the power is insufficient.
 図5は電力優先処置の詳細を示す。まずステップS20621において、制御装置10は、冷凍サイクル回路3の消費電力を算出する。なお、冷凍サイクル回路3の消費電力の算出のために、ファン、ブロワといった電動機能品の消費電力はデータとしてメモリに格納しておく。たとえば、ファンの送風モードがハイモードでは何ワット消費という多数のデータを含むマップをメモリに格納している。また、電動圧縮機の消費電力は、冷凍サイクルの状態に左右される。よって、その時の外気温度等の環境条件から算出するか、実験であらかじめ求めた値をマップから参照する。ステップS20621の制御操作を行う制御装置10の一部は、燃焼器6と冷凍サイクル回路3との消費電力を演算又は測定する消費電力取得部の一例として用いてもよい。 Fig. 5 shows details of the power priority treatment. First, in step S20621, the control device 10 calculates the power consumption of the refrigeration cycle circuit 3. In order to calculate the power consumption of the refrigeration cycle circuit 3, the power consumption of an electric functional product such as a fan or a blower is stored in a memory as data. For example, when the fan blowing mode is the high mode, a map including a large amount of data indicating how many watts is consumed is stored in the memory. In addition, the power consumption of the electric compressor depends on the state of the refrigeration cycle. Therefore, it is calculated from the environmental conditions such as the outside air temperature at that time, or a value obtained in advance through an experiment is referred to from the map. A part of the control device 10 that performs the control operation in step S20621 may be used as an example of a power consumption acquisition unit that calculates or measures the power consumption of the combustor 6 and the refrigeration cycle circuit 3.
 なお、この第1実施形態では、圧縮機2に電動圧縮機を使用しているが、ベルト駆動の圧縮機2であれば、圧縮機2の消費電力はゼロになる。ただしベルト駆動の圧縮機2を動かすということはエンジンを動かしエンジンで燃料を消費することになる。また、燃焼器6の消費電力は、最初からデータとして持っておく。燃焼器6の消費電力は、ウォータポンプ5とヒータコア8のブロワ消費電力をも加算して算出する。 In the first embodiment, an electric compressor is used as the compressor 2, but if the compressor 2 is driven by a belt, the power consumption of the compressor 2 becomes zero. However, moving the belt-driven compressor 2 moves the engine and consumes fuel in the engine. The power consumption of the combustor 6 is stored as data from the beginning. The power consumption of the combustor 6 is calculated by adding the blower power consumption of the water pump 5 and the heater core 8 as well.
 次に、図5のステップS20622において、制御装置10は、メモリにあらかじめ記憶している燃焼器6の消費電力と、算出した冷凍サイクル回路3の消費電力とを比較する。燃焼器6の方が、消費電力が小さい場合、ステップS20623に進み、制御装置10は、燃焼器6による暖房能力が必要暖房能力より大きいか否かを判定する。燃焼器6による暖房能力が必要暖房能力より大きい場合は、ステップS20624において、制御装置10は、冷凍サイクル回路3をOFFし、燃焼器6だけがONされる。 Next, in step S20622 of FIG. 5, the control device 10 compares the power consumption of the combustor 6 stored in advance in the memory with the calculated power consumption of the refrigeration cycle circuit 3. When the combustor 6 has lower power consumption, the process proceeds to step S20623, and the control device 10 determines whether or not the heating capacity of the combustor 6 is greater than the required heating capacity. If the heating capacity of the combustor 6 is greater than the required heating capacity, the control device 10 turns off the refrigeration cycle circuit 3 and turns on only the combustor 6 in step S20624.
 ステップS20623において、燃焼器6による暖房能力が必要暖房能力より大きくない場合は、燃焼器6だけでは暖房能力が不足しているため、制御装置10は、ステップS20625において冷凍サイクル回路3と燃焼器6の両方を運転状態にする。 If the heating capacity of the combustor 6 is not greater than the required heating capacity in step S20623, the heating capacity is insufficient for the combustor 6 alone, and thus the control device 10 performs the refrigeration cycle circuit 3 and the combustor 6 in step S20625. Put both of them into operation.
 なお、ステップS20622において、冷凍サイクル回路3の方が、燃焼器6より消費電力が大きくない場合、ステップS20626に進み、制御装置10は、冷凍サイクル回路3による暖房能力が必要暖房能力より大きいか否かを判定する。冷凍サイクル回路3による暖房能力が必要暖房能力より大きい場合は、制御装置10は、ステップS20627において冷凍サイクル回路3をONし、燃焼器6をOFFする。 In step S20622, if the refrigeration cycle circuit 3 does not consume more power than the combustor 6, the process proceeds to step S20626, and the control device 10 determines whether the heating capacity of the refrigeration cycle circuit 3 is greater than the required heating capacity. Determine whether. If the heating capacity of the refrigeration cycle circuit 3 is greater than the required heating capacity, the control device 10 turns on the refrigeration cycle circuit 3 and turns off the combustor 6 in step S20627.
 一方、図6のステップS20626において、冷凍サイクル回路3による暖房能力が必要暖房能力より大きくない場合は、冷凍サイクル回路3だけでは暖房能力が不足する。そのため、ステップS20628において、制御装置10は、冷凍サイクル回路3と燃焼器6との両方をONにする。ステップS20622~S20628の制御操作を行う制御装置10の一部は、電力量が不足していると判定された場合に、優先的に電力使用量が小さい方の燃焼器6と冷凍サイクル回路3のうち、消費電力が小さい方を優先的に作動させる電力選択部の一例として用いても良い。 On the other hand, if the heating capacity of the refrigeration cycle circuit 3 is not greater than the required heating capacity in step S20626 of FIG. 6, the refrigeration cycle circuit 3 alone is insufficient in heating capacity. Therefore, in step S20628, the control device 10 turns on both the refrigeration cycle circuit 3 and the combustor 6. A part of the control device 10 that performs the control operations of steps S20622 to S20628 determines that the combustor 6 and the refrigeration cycle circuit 3 that preferentially use the smaller amount of power when it is determined that the amount of power is insufficient. Of these, an electric power selection unit that preferentially operates the one with lower power consumption may be used.
 この図6の制御によれば、バッテリの残電力量が比較的少ない場合に、燃焼器6と冷凍サイクル回路3のうち、消費電力が小さい方を優先的に選択して作動させるから、バッテリの残電力消耗を抑制できる。また、バッテリの残電力量が比較的少ない場合に、優先的に電力使用量が小さくなる燃焼器6と冷凍サイクル回路3とのいずれか一方を選択して作動させてもよい。 According to the control of FIG. 6, when the remaining power amount of the battery is relatively small, the one with the smaller power consumption is selected and operated among the combustor 6 and the refrigeration cycle circuit 3, so that the battery Residual power consumption can be suppressed. Further, when the remaining power amount of the battery is relatively small, either the combustor 6 or the refrigeration cycle circuit 3 that preferentially reduces the power consumption amount may be selected and operated.
 次に、図2のステップS207におけるメイン燃料タンクの燃料を優先して残存させる燃料優先制御について詳述する。まず、図6のステップS2071において、制御装置10は、メイン燃料タンク内の燃料残量L2とあらかじめ設定している所定残量L1とを比較し、メイン燃料タンク内の燃料残量に余裕があるか無いかの判定を行う。メイン燃料タンク内の燃料残量に余裕がないときは、制御装置10は、ステップS2072のメイン燃料優先処置を実行する。 Next, the fuel priority control for preferentially leaving the fuel in the main fuel tank in step S207 in FIG. 2 will be described in detail. First, in step S2071 of FIG. 6, the control device 10 compares the remaining fuel amount L2 in the main fuel tank with a predetermined remaining amount L1 set in advance, and there is a margin in the remaining fuel amount in the main fuel tank. Judgment of whether or not. When there is no margin in the remaining amount of fuel in the main fuel tank, the control device 10 executes the main fuel priority procedure in step S2072.
 この第1実施形態の燃焼器6は、自身が消費する燃料を蓄える第1実施形態の燃焼器用燃料タンク6tから燃料の供給を受けるものである。メイン燃料タンク20とは、熱源4を成すエンジンを駆動させるための燃料を蓄える図9の燃料タンクのことである。このメイン燃料タンク20の燃料残量を計測する計測器21を備える。この計測器21は周知の燃料計の一部で構成される。 The combustor 6 of the first embodiment is supplied with fuel from the combustor fuel tank 6t of the first embodiment that stores fuel consumed by the combustor 6 itself. The main fuel tank 20 is the fuel tank of FIG. 9 that stores fuel for driving the engine that constitutes the heat source 4. A measuring device 21 for measuring the remaining amount of fuel in the main fuel tank 20 is provided. This measuring instrument 21 is constituted by a part of a known fuel gauge.
 このメイン燃料タンク20の燃料残量を計測する計測器21は、たとえば図9のようにメイン燃料タンク20に取り付けられた燃料計の一部からの信号線からの信号を直接制御装置10で受信してもよい。あるいは、ダッシュボードのメータ内の燃料計を駆動するメータECUから多重信号線を介して燃料残量を示す信号を受信してもよい。 The measuring device 21 that measures the remaining amount of fuel in the main fuel tank 20 directly receives a signal from a signal line from a part of a fuel gauge attached to the main fuel tank 20 as shown in FIG. May be. Alternatively, a signal indicating the remaining fuel amount may be received via a multiple signal line from a meter ECU that drives a fuel gauge in a dashboard meter.
 制御装置10は、エンジンを駆動させる燃料が減少していると判定した場合(図6のステップS2071でNOの場合)、ステップS2072に進む。このステップS2072にて、暖房機器の内、燃焼器用燃料タンク6tから燃料の供給を受ける燃焼器6による暖房を冷凍サイクル回路3による暖房よりも優先させる。このことは、効率の良し悪しにかかわらず行われる。つまり、制御装置10は、エンジンを駆動させる燃料を蓄えるメイン燃料タンク20からの燃料の消費よりも、燃焼器用燃料タンク6tから燃料を優先して消費させる。ステップS2072の制御操作を行う制御装置10の一部は、計測器21により計測されたメイン燃料タンク20内の燃料残量が所定残量よりも少ない場合、燃料効率にかかわらず燃焼器6による暖房を冷凍サイクル回路3による暖房よりも優先させ、メイン燃料タンクからの燃料よりも、燃焼器用燃料タンク6tから燃料を優先して消費させる燃焼器優先制御部の一例として用いても良い。 When it is determined that the fuel for driving the engine has decreased (NO in step S2071 in FIG. 6), the control device 10 proceeds to step S2072. In step S2072, heating by the combustor 6 that receives the supply of fuel from the combustor fuel tank 6t is given priority over heating by the refrigeration cycle circuit 3 in the heating device. This is done regardless of efficiency. That is, the control device 10 consumes fuel from the combustor fuel tank 6t with priority over fuel consumption from the main fuel tank 20 that stores fuel for driving the engine. A part of the control device 10 that performs the control operation in step S2072 performs heating by the combustor 6 when the fuel remaining amount in the main fuel tank 20 measured by the measuring device 21 is smaller than the predetermined remaining amount. May be used as an example of a combustor priority control unit that prioritizes heating by the refrigeration cycle circuit 3 and prioritizes consumption of fuel from the combustor fuel tank 6t over fuel from the main fuel tank.
 このステップS2072は図7に示すように、まず、制御装置10は、ステップS20721において、燃焼器6の暖房能力が必要暖房能力より大きいか否か、つまり燃焼器6だけで暖房をまかなえるか否かを判定する。燃焼器6の暖房能力が必要暖房能力より大きい場合は、制御装置10は、ステップS20722において冷凍サイクル回路3のヒートポンプをOFFし、燃焼器6だけを優先的にONする。燃焼器6の暖房能力が必要暖房能力より大きくない場合は、制御装置10は、ステップS20723において、冷凍サイクル回路3と燃焼器6との両方をONする。 In step S2072, as shown in FIG. 7, first, in step S20721, the control device 10 determines whether or not the heating capacity of the combustor 6 is greater than the required heating capacity, that is, whether or not the combustor 6 alone can provide heating. Determine. If the heating capacity of the combustor 6 is greater than the required heating capacity, the control device 10 turns off the heat pump of the refrigeration cycle circuit 3 in step S20722 and turns on only the combustor 6 with priority. When the heating capacity of the combustor 6 is not greater than the required heating capacity, the control device 10 turns on both the refrigeration cycle circuit 3 and the combustor 6 in step S20723.
 このように外気温度、室内温度、設定温度から必要暖房能力、燃料消費量ベースのヒートポンプ運転効率を算出する。その上で、効率が良いものを優先的に作動させ、必要暖房能力を満たせない場合、もう一方の優先しなかった方も作動させる。この実施形態は、車両全体での効率という観点から、作動条件を元に燃料消費量ベースの効率を概算し、機器の効率の良いもの、つまり燃料消費量の少ない方を優先して作動させ、車両全体の燃費を向上させることができる。 Thus, the required heating capacity and fuel consumption-based heat pump operating efficiency are calculated from the outside air temperature, the room temperature, and the set temperature. On top of that, the one with higher efficiency is activated preferentially, and when the required heating capacity cannot be satisfied, the other non-prioritized one is also activated. In this embodiment, from the viewpoint of the efficiency of the entire vehicle, the efficiency of the fuel consumption base is estimated based on the operating conditions, and the one with the higher efficiency of the device, that is, the one with the lower fuel consumption is operated with priority. The fuel consumption of the entire vehicle can be improved.
 これによれば、熱源4となるエンジンを駆動させる燃料が減少している場合に、第1実施形態の燃焼器用燃料タンク6tの燃料を優先的に消費させることができる。その結果、熱源4となるエンジンにて消費される図9のメイン燃料タンク20内の燃料の減少を抑制することができ、車両の走行可能距離を伸ばすことができる。 According to this, when the fuel which drives the engine used as the heat source 4 is reduced, the fuel in the combustor fuel tank 6t of the first embodiment can be preferentially consumed. As a result, a decrease in the fuel in the main fuel tank 20 of FIG. 9 consumed by the engine serving as the heat source 4 can be suppressed, and the travelable distance of the vehicle can be extended.
 次に、図2の上記ステップS204、S209、S212に関係する必要能力(必要暖房能力)の算出について述べる。必要暖房能力は、必要な車両熱負荷とバランスする冷凍サイクル回路3の能力であり、必要な車両熱負荷は、外気温度、室内温度、日射量、車両の断熱特性、設定温度、乗客数などから決まる。 Next, calculation of necessary capacity (necessary heating capacity) related to steps S204, S209, and S212 in FIG. 2 will be described. The required heating capacity is the capacity of the refrigeration cycle circuit 3 that balances with the required vehicle heat load. The required vehicle heat load is determined from the outside air temperature, the room temperature, the amount of solar radiation, the heat insulation characteristics of the vehicle, the set temperature, the number of passengers, etc. Determined.
 ただし全てのパラメータを正確に知ることは困難なため、簡易的に、車両の断熱性能は車両のサイズから概算する。なお、その都度計算するわけではなく最初からデータとして制御装置10内のメモリに格納しておいても良い。そして、車両の内外温度から必要な車両熱負荷を算出する。 However, since it is difficult to know all parameters accurately, the heat insulation performance of the vehicle is simply estimated from the size of the vehicle. In addition, it does not necessarily calculate each time, but may be stored in the memory in the control device 10 as data from the beginning. Then, a necessary vehicle heat load is calculated from the internal and external temperatures of the vehicle.
 図8は、第1実施形態における車両用空調装置のバス車両内での高さ方向の配置を説明する説明図である。冷凍サイクル回路3はバス車両の天井部に設置される。一方、温水回路1はバス車両の下部に熱源4を成すエンジンと共に配置される。温水が流れるヒータコア8によって、車室内の乗員の足元に温風を吹出すことができる。 FIG. 8 is an explanatory diagram for explaining the arrangement of the vehicle air conditioner in the height direction in the bus vehicle according to the first embodiment. The refrigeration cycle circuit 3 is installed on the ceiling of the bus vehicle. On the other hand, the hot water circuit 1 is arranged together with an engine forming a heat source 4 at the lower part of the bus vehicle. With the heater core 8 through which hot water flows, hot air can be blown out to the feet of the passengers in the passenger compartment.
 重量のある水冷媒熱交換器15は、車両下部に配置される。よって冷凍サイクル回路3からの冷媒配管3hが、天井部から下部に延在している。 The heavy water refrigerant heat exchanger 15 is arranged at the lower part of the vehicle. Therefore, the refrigerant pipe 3h from the refrigeration cycle circuit 3 extends from the ceiling to the lower part.
 なお、第1実施形態では、冷凍サイクル回路3からなるヒートポンプと燃焼器6の組み合わせになっている。ヒートポンプシステム自体は、電気ヒータなどと比べ、コストがかかるが、これは従来の冷房用バスエアコンをヒートポンプとして使用できるように構成を変更させたもので、従来からのコスト変化という意味では大きなコスト増加にはならない。 In the first embodiment, the heat pump including the refrigeration cycle circuit 3 and the combustor 6 are combined. The heat pump system itself is more expensive than an electric heater, etc., but this is a configuration that has been changed so that a conventional air conditioner for cooling air conditioning can be used as a heat pump. It will not be.
 また、ヒートポンプは、空気から熱をくみ上げるという特性上、入力動力での成績係数は1.0を超え、燃焼器6や電気ヒータよりも入力エネルギ効率が良い。燃焼器6は、バスエンジンの冷却水回路である温水回路1に設置される。燃焼器6は、エンジン始動時の昇温や冬場の暖房に幅広く使用されている。このためコストや効率を考えると燃焼器6とヒートポンプの組み合わせが、能力及び効率といった点から最適だと考えられる。 Also, the heat pump has a characteristic that the heat pumps up heat from the air, so that the coefficient of performance in input power exceeds 1.0, and the input energy efficiency is better than that of the combustor 6 or the electric heater. The combustor 6 is installed in a hot water circuit 1 that is a cooling water circuit of a bus engine. The combustor 6 is widely used for temperature rise at engine start and for heating in winter. For this reason, when cost and efficiency are considered, it is considered that the combination of the combustor 6 and the heat pump is optimal in terms of capacity and efficiency.
 上記第1実施形態の作用効果を以下説明する。その時の外気温度を含む運転条件からヒートポンプと燃焼器6との燃料効率を夫々算出する。そして、ヒートポンプと燃焼器6とのうち算出された燃料効率が良い方を優先的に作動させる。 The operational effects of the first embodiment will be described below. The fuel efficiency of the heat pump and the combustor 6 is calculated from the operating conditions including the outside air temperature at that time. Then, the heat pump and the combustor 6 that has the calculated fuel efficiency is preferentially operated.
 よって、燃料消費量ベースで考えた際に、燃焼器6の方が高効率となる場合が発生するという事実を活用できる。そして、燃料効率に合わせて燃焼器6の運転とヒートポンプの運転状態とを組み合わせ、燃料消費量が少ない車両用空調装置を提供できる。 Therefore, the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized. And the operation of the combustor 6 and the operation state of the heat pump can be combined in accordance with the fuel efficiency to provide a vehicle air conditioner that consumes less fuel.
 またヒートポンプを構成する冷凍サイクル回路3は、空調風を温度調節する室内熱交換器14を備える。温水回路1は温水と空調風との熱交換を行うヒータコア8を備える。そのため、ヒートポンプと温水回路1の両方で車室内を暖房できる。なお、この場合では、温水回路1と、冷凍サイクル回路3との間に設けられ、冷媒と温水との間で熱交換を行う水冷媒熱交換器15は必須ではない。 Further, the refrigeration cycle circuit 3 constituting the heat pump includes an indoor heat exchanger 14 for adjusting the temperature of the conditioned air. The hot water circuit 1 includes a heater core 8 that performs heat exchange between the hot water and the conditioned air. Therefore, the vehicle interior can be heated by both the heat pump and the hot water circuit 1. In this case, the water-refrigerant heat exchanger 15 provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performing heat exchange between the refrigerant and the hot water is not essential.
 更に、この第1実施形態によれば、その時の外気温度を含む運転条件から冷凍サイクル回路3と燃焼器6との燃料効率を夫々算出し、ヒートポンプをなす冷凍サイクル回路3と燃焼器6とのうち算出された燃料効率が高い方を優先的に作動させる。 Furthermore, according to the first embodiment, the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 is calculated from the operating conditions including the outside air temperature at that time, and the refrigeration cycle circuit 3 and the combustor 6 that form a heat pump are calculated. Of these, the one with the higher calculated fuel efficiency is preferentially operated.
 そのため、燃料消費量ベースで考えた際に、燃焼器6の方が高効率となる場合が発生するという事実を活用できる。また、燃料効率に合わせて燃焼器6の運転とヒートポンプとの運転状態とを組み合わせ、燃料消費量が少ない車両用空調装置を提供できる。これに加え、冷媒と温水との間で熱交換を行う水冷媒熱交換器15を備えることにより、ヒートポンプと温水回路1との間で熱交換しながら、ヒートポンプと温水回路1との両方で効率の良い車室内の暖房が可能となる。 Therefore, the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized. Further, a vehicle air conditioner with low fuel consumption can be provided by combining the operation of the combustor 6 and the operation state of the heat pump in accordance with the fuel efficiency. In addition to this, by providing the water-refrigerant heat exchanger 15 that performs heat exchange between the refrigerant and the hot water, the heat pump and the hot water circuit 1 can exchange heat while the heat pump and the hot water circuit 1 are efficient. It is possible to heat the interior of the vehicle.
 この第1実施形態によれば、水冷媒熱交換器は、車両の床下に設置される。従って、重量の大きい熱交換器を床下に設置するので車両の安定性が増し、搭載しやすく、かつ温水回路1搭載位置の上下変化を少なくして、温水を流すウォータポンプ5の消費動力を少なくすることができる。 According to the first embodiment, the water-refrigerant heat exchanger is installed under the floor of the vehicle. Therefore, since a heavy heat exchanger is installed under the floor, the stability of the vehicle is increased, it is easy to mount, the vertical change of the mounting position of the hot water circuit 1 is reduced, and the power consumption of the water pump 5 for flowing hot water is reduced. can do.
 また、冷媒側の圧損に比べ、温水側の圧損の方が車両燃費への影響が大きい。このため、水冷媒熱交換器15を床下の温水回路1に近い側に設置し、温水回路1を短くする方が、圧縮機2の動力は上がるが、ウォータポンプ5と圧縮機2の動力の合計は小さくすることができる。また、天井側に配置する場合と比べ、冷媒側はガス、温水回路1は液体が流れるので、密度の差から温水側の配管を短くした方が車両の重量を軽くすることができる。 Also, compared with the pressure loss on the refrigerant side, the pressure loss on the hot water side has a greater effect on the vehicle fuel consumption. For this reason, if the water refrigerant heat exchanger 15 is installed near the hot water circuit 1 under the floor and the hot water circuit 1 is shortened, the power of the compressor 2 increases, but the power of the water pump 5 and the compressor 2 increases. The sum can be small. In addition, compared to the case where it is arranged on the ceiling side, gas flows on the refrigerant side and liquid flows in the hot water circuit 1, so that the weight of the vehicle can be reduced by shortening the piping on the hot water side due to the difference in density.
 この第1実施形態によれば、ウォームアップ能力を要求された場合、たとえば、温水の温度が低い熱源4の始動時等の場合において、必要とされる暖房能力にかかわらず、ヒートポンプと燃焼器6との両方を作動させる。このことにより、温水の温度を急速に立ち上げることができる。 According to the first embodiment, when the warm-up capability is required, for example, at the time of starting the heat source 4 where the temperature of the hot water is low, the heat pump and the combustor 6 regardless of the required heating capability. And actuate both. As a result, the temperature of the hot water can be raised rapidly.
 更に、この第1実施形態によれば、バッテリの残電力量が少ない場合に、優先的に電力使用量が小さい方の燃焼器6とヒートポンプとのいずれか一方を選択して作動させるから、電力使用量をセーブして走行可能距離をできるだけ確保することができる。 Furthermore, according to the first embodiment, when the remaining power amount of the battery is small, either the combustor 6 or the heat pump with the smaller power usage amount is selected and operated. You can save the usage amount and secure the possible driving distance.
 また、この第1実施形態によれば、エンジンを駆動させる燃料が減少している場合に、燃焼器用燃料タンク6tの燃料を優先的に消費させ、エンジンを駆動させる燃料の減少を抑制することができる。
(第2実施形態)
 次に、本開示の第2実施形態について説明する。なお、以降の各実施形態においては、上記した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成について説明する。なお、第2実施形態以下については、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。この第2実施形態は水冷媒熱交換器による温水と冷媒との熱交換を選択的に無効とするためのバイパス回路を持つものである。
Further, according to the first embodiment, when the fuel for driving the engine is reduced, the fuel in the combustor fuel tank 6t is preferentially consumed, and the reduction of the fuel for driving the engine is suppressed. it can.
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described. In the following embodiments, the same components as those in the first embodiment described above are denoted by the same reference numerals, description thereof is omitted, and different configurations will be described. In addition, about 2nd Embodiment or less, the same code | symbol as 1st Embodiment shows the same structure, Comprising: The description which precedes is used. This second embodiment has a bypass circuit for selectively disabling heat exchange between hot water and refrigerant by the water-refrigerant heat exchanger.
 図10において、第2実施形態においては、水冷媒熱交換器15をバイパスして冷媒を流すバイパス回路15b及びバイパス弁15vを有する。これによれば、水冷媒熱交換器15を介した冷凍サイクル回路3と温水回路1との間の熱の伝達が不要又は好ましくない場合に、バイパス回路15bを通過して水冷媒熱交換器15を冷媒がバイパスして流れる。そのため、水冷媒熱交換器15を介した冷凍サイクル回路3と温水回路1との間の熱交換を阻止することができる。バイパス弁15vは制御装置10に接続されており、制御装置10はバイパス弁15vを開閉する。 In FIG. 10, in 2nd Embodiment, it has the bypass circuit 15b and the bypass valve 15v which bypass the water refrigerant | coolant heat exchanger 15 and flow a refrigerant | coolant. According to this, when the transfer of heat between the refrigeration cycle circuit 3 and the hot water circuit 1 via the water refrigerant heat exchanger 15 is unnecessary or undesirable, the water refrigerant heat exchanger 15 passes through the bypass circuit 15b. The refrigerant flows by bypassing. Therefore, heat exchange between the refrigeration cycle circuit 3 and the hot water circuit 1 through the water refrigerant heat exchanger 15 can be prevented. The bypass valve 15v is connected to the control device 10, and the control device 10 opens and closes the bypass valve 15v.
 たとえば、冷房運転時には、温水回路1の温水温度が冷凍サイクル回路3側の冷媒温度よりも高くなることがあり、その場合は、温水回路1から冷凍サイクル回路3へ熱が移動する状況ができてしまう。この時、バイパス回路15bのバイパス弁15vを開いて、バイパス回路15bの方に冷媒を流す。それにより、水冷媒熱交換器15での熱交換を防止することで、温水回路1から冷凍サイクル回路3への熱の移動を阻止する。これにより、図10における冷房時において、室外コンデンサとなる室外熱交換器13の放熱負荷が大きくなることを防ぐことができる。 For example, during the cooling operation, the hot water temperature of the hot water circuit 1 may be higher than the refrigerant temperature on the refrigeration cycle circuit 3 side, and in this case, heat can be transferred from the hot water circuit 1 to the refrigeration cycle circuit 3. End up. At this time, the bypass valve 15v of the bypass circuit 15b is opened, and the refrigerant flows toward the bypass circuit 15b. Accordingly, heat transfer from the hot water circuit 1 to the refrigeration cycle circuit 3 is prevented by preventing heat exchange in the water refrigerant heat exchanger 15. Thereby, at the time of cooling in FIG. 10, it can prevent that the thermal radiation load of the outdoor heat exchanger 13 used as an outdoor condenser becomes large.
 また、水冷媒熱交換器15を介した冷凍サイクル回路3と温水回路1との間の熱交換を阻止するために、水冷媒熱交換器15をバイパスして温水回路1の温水が流れるようにすることも考えられるが、冷媒がバイパスするようにする方が小型化の点で効果がある。たとえば、配管径は温水回路1よりも冷媒側の圧縮機吐出配管の方が一般的に小さい。そのため、バイパス回路15bを制御するバイパス弁15vは、冷媒側に設けた方が弁径を小さくすることができる。 Further, in order to prevent heat exchange between the refrigeration cycle circuit 3 and the hot water circuit 1 via the water refrigerant heat exchanger 15, the hot water in the hot water circuit 1 flows by bypassing the water refrigerant heat exchanger 15. Although it is conceivable, it is more effective in reducing the size to bypass the refrigerant. For example, the compressor discharge pipe on the refrigerant side is generally smaller in pipe diameter than the hot water circuit 1. Therefore, the bypass valve 15v that controls the bypass circuit 15b can be reduced in diameter when provided on the refrigerant side.
 なお、冷房運転時は、常にバイパス回路15bを通過させ水冷媒熱交換器15を介した冷凍サイクル回路3と温水回路1との間の熱交換を阻止するようにしても車両用空調装置を構成することができる。しかし、冷凍サイクル回路3から温水回路1に熱を渡せる条件では、渡しておいた方が、効率が良い。この理由は、冷凍サイクル回路3からの放熱のために室外コンデンサとして作用するラジエータ7が活用できるためである。 In the cooling operation, the vehicle air conditioner may be configured so that heat exchange between the refrigeration cycle circuit 3 and the hot water circuit 1 through the bypass circuit 15b is always allowed to pass through the water refrigerant heat exchanger 15. can do. However, under conditions where heat can be transferred from the refrigeration cycle circuit 3 to the hot water circuit 1, it is more efficient if it is transferred. This is because the radiator 7 acting as an outdoor capacitor can be utilized for heat radiation from the refrigeration cycle circuit 3.
 また、図12のように、水冷媒熱交換器15は車両床下に設置される。水冷媒熱交換器15が温水回路1に近い側である床下にあるため、水冷媒熱交換器15への冷媒配管3hが車両の天井部から下部に至る長い構成となる。 Further, as shown in FIG. 12, the water-refrigerant heat exchanger 15 is installed under the vehicle floor. Since the water-refrigerant heat exchanger 15 is under the floor on the side close to the hot water circuit 1, the refrigerant pipe 3h to the water-refrigerant heat exchanger 15 has a long structure extending from the ceiling to the lower part of the vehicle.
 そのため、冷媒側にバイパス回路15bを設けることで、冷媒の流れる経路を大幅に短くすることができ、不要な圧力損失を低減し、冷凍サイクル効率を向上することができる。つまり、冷媒側でバイパスすることで冷媒が流れる経路を大幅に短くすることができ、不要な圧力損失を低減し、冷凍サイクル効率を向上することができる。 Therefore, by providing the bypass circuit 15b on the refrigerant side, the path through which the refrigerant flows can be significantly shortened, unnecessary pressure loss can be reduced, and the refrigeration cycle efficiency can be improved. In other words, bypassing on the refrigerant side can significantly shorten the path through which the refrigerant flows, reduce unnecessary pressure loss, and improve refrigeration cycle efficiency.
 この場合、水冷媒熱交換器15の冷媒側入口に図10のように温度センサ15cを設ける。温度センサ15cは制御装置10に接続され、制御装置10は温度センサ15cから水冷媒熱交換器15の冷媒側入口温度に関する信号を受信する。制御装置10は、温水回路1の温水温度と冷媒側入口温度とを比較し、冷媒側入口温度が温水温度よりも高い場合にバイパス弁15vを開き、冷媒をバイパス回路15bにバイパスさせる。車両用空調装置は、水冷媒熱交換器15の温水入口側に設けられて、温水温度を検出する水温検出器をさらに備えてもよい。 In this case, a temperature sensor 15c is provided at the refrigerant side inlet of the water refrigerant heat exchanger 15 as shown in FIG. The temperature sensor 15 c is connected to the control device 10, and the control device 10 receives a signal related to the refrigerant side inlet temperature of the water refrigerant heat exchanger 15 from the temperature sensor 15 c. The control device 10 compares the hot water temperature of the hot water circuit 1 with the refrigerant side inlet temperature, and when the refrigerant side inlet temperature is higher than the hot water temperature, opens the bypass valve 15v and causes the bypass circuit 15b to bypass the refrigerant. The vehicle air conditioner may further include a water temperature detector that is provided on the hot water inlet side of the water refrigerant heat exchanger 15 and detects the hot water temperature.
 次に、図11に基づいて、バイパス回路15bに設けられたバイパス弁15vの制御を説明する。図11において、バイパス弁15vの制御がスタートすると、ステップS111において、制御装置10は、冷房運転モードか否かを判定する。冷房モードの場合は、ステップS112において、制御装置10は、温水回路1の水温と圧縮機2が吐出した吐出冷媒温度である圧縮機吐出温度とを比較する。温水温度の方が高い場合は、ステップS113で制御装置10は、バイパス弁15vを開け、バイパス回路15bに冷媒を迂回させる。 Next, control of the bypass valve 15v provided in the bypass circuit 15b will be described with reference to FIG. In FIG. 11, when the control of the bypass valve 15v is started, in step S111, the control device 10 determines whether or not the cooling operation mode is set. In the case of the cooling mode, in step S112, the control device 10 compares the water temperature of the hot water circuit 1 with the compressor discharge temperature that is the discharge refrigerant temperature discharged by the compressor 2. If the hot water temperature is higher, in step S113, the control device 10 opens the bypass valve 15v and causes the bypass circuit 15b to bypass the refrigerant.
 ステップS112において、温水回路1の水温と圧縮機2が吐出した吐出冷媒温度とを比較した結果、冷媒温度が高く、温水温度の方が高くない場合がある。この場合は、制御装置10は、ステップS114でバイパス弁15vを閉じる。そして、バイパス回路15bに冷媒を流さないで水冷媒熱交換器15の方に流れるようにする。また、ステップS111において、冷房運転モードか否かを判定した結果、冷房モードでない場合は、ステップS115において制御装置10は、バイパス弁15vを閉じ、バイパス回路15bに冷媒を流さないで水冷媒熱交換器15の方に常に流れるようにする。 In step S112, as a result of comparing the water temperature of the hot water circuit 1 and the discharged refrigerant temperature discharged by the compressor 2, the refrigerant temperature is high and the hot water temperature may not be higher. In this case, the control device 10 closes the bypass valve 15v in step S114. And it is made to flow toward the water-refrigerant heat exchanger 15 without flowing a refrigerant into the bypass circuit 15b. If it is determined in step S111 that the cooling mode is not in the cooling mode, the control device 10 closes the bypass valve 15v in step S115 and does not allow the refrigerant to flow through the bypass circuit 15b. It always flows toward the container 15.
 図12に基づいて、第2実施形態における車両用空調装置のバス車両内での高さ方向の配置を説明する。冷凍サイクル回路3は、バス車両の天井部に設置される。一方、温水回路1はバス車両の下部に熱源4を成すエンジンと共に配置される。温水が流れるヒータコア8によって車室内の乗員の足元に温風を吹出すことができる。 Based on FIG. 12, the arrangement in the height direction of the vehicle air conditioner in the bus vehicle in the second embodiment will be described. The refrigeration cycle circuit 3 is installed on the ceiling of the bus vehicle. On the other hand, the hot water circuit 1 is arranged together with an engine forming a heat source 4 at the lower part of the bus vehicle. Hot air can be blown out to the feet of passengers in the passenger compartment by the heater core 8 through which hot water flows.
 水冷媒熱交換器15は、車両下部に配置される。よって冷凍サイクル回路3からの冷媒配管3hが天井部から下部に延在している。バイパス弁15vは車上部の天井部付近において冷媒配管3h同士を橋絡して冷媒がバイパスする方式のバイパス回路15bを形成するように設けられる。 The water refrigerant heat exchanger 15 is disposed at the lower part of the vehicle. Therefore, the refrigerant pipe 3h from the refrigeration cycle circuit 3 extends from the ceiling to the lower part. The bypass valve 15v is provided so as to form a bypass circuit 15b in which the refrigerant is bypassed by bridging the refrigerant pipes 3h in the vicinity of the ceiling at the top of the vehicle.
 第2実施形態の作用効果を以下説明する。この第2実施形態によれば、水冷媒熱交換器15を介した温水回路1からの冷凍サイクル回路3への熱の伝達が不要又は好ましくない場合に、バイパス回路15bを通過して水冷媒熱交換器15を冷媒がバイパスして流れる。そのため、水冷媒熱交換器15を介した冷凍サイクル回路3と温水回路1との間の熱交換を阻止することができる。 The operational effects of the second embodiment will be described below. According to the second embodiment, when the transfer of heat from the hot water circuit 1 to the refrigeration cycle circuit 3 through the water refrigerant heat exchanger 15 is unnecessary or undesirable, the heat of the water refrigerant passes through the bypass circuit 15b. The refrigerant flows through the exchanger 15 by bypass. Therefore, heat exchange between the refrigeration cycle circuit 3 and the hot water circuit 1 through the water refrigerant heat exchanger 15 can be prevented.
 たとえば、冷房運転時には、温水温度が冷凍サイクル側の温度よりも高くなることがあり、その場合は温水回路1から冷凍サイクル回路3へ熱が移動することになる。しかし、バイパス回路15bを経由して、熱交換を防止することで、冷房時はコンデンサとなる室外熱交換器13の負荷が大きくなることを防ぐことができる。 For example, during the cooling operation, the hot water temperature may be higher than the temperature on the refrigeration cycle side, and in this case, heat is transferred from the hot water circuit 1 to the refrigeration cycle circuit 3. However, by preventing heat exchange via the bypass circuit 15b, it is possible to prevent an increase in the load on the outdoor heat exchanger 13 that serves as a condenser during cooling.
 また、この第2実施形態によれば、冷房運転時は常に冷凍サイクル回路3側の熱を温水回路1に伝達しないケースと比較して冷房時の室外コンデンサとしてラジエータ7を活用できるため効率が良くなる。 Further, according to the second embodiment, since the radiator 7 can be used as an outdoor condenser during cooling compared to a case where the heat on the refrigeration cycle circuit 3 side is not always transmitted to the hot water circuit 1 during cooling operation, the efficiency is improved. Become.
 この第2実施形態によれば、冷房運転時でも冷凍サイクル側から温水側へ熱を渡すことが可能な条件であれば、渡す方が効率がよくなる。従って、温度センサで検出した冷媒側入口温度と温水温度を比較し、温水側へ熱を渡すことが可能な条件ではバイパス回路15bを開かず、水冷媒熱交換器15を介した冷媒と温水との熱交換を実施する。これによりラジエータ7をコンデンサの一部として確実に使用することができ、冷凍サイクルの効率を的確に向上することができる。
(第3実施形態)
 次に、本開示の第3実施形態について説明する。上記した実施形態と異なる部分を説明する。図13に基づいて、本開示の第3実施形態を示す全体構成を説明する。第1実施形態では温水回路1と、冷凍サイクル回路3との間に設けられ、冷媒と温水との間で熱交換を行う水冷媒熱交換器15を備える。このように水冷媒熱交換器15を備えることにより冷凍サイクル回路3の熱で温水回路1を加熱する方式を水加熱式と呼ぶことにする。この方式は、水冷媒熱交換器15を持たず冷凍サイクル回路3と温水回路1とで個別に空調風となる空気を加熱する方式である空気加熱式と対比される。この図13にて示す第3実施形態は空気加熱式を示すものである。
According to the second embodiment, it is more efficient to pass heat as long as heat can be passed from the refrigeration cycle side to the hot water side even during cooling operation. Therefore, the refrigerant side inlet temperature detected by the temperature sensor is compared with the hot water temperature, and the bypass circuit 15b is not opened under the condition that heat can be passed to the hot water side, and the refrigerant and hot water via the water refrigerant heat exchanger 15 Heat exchange. Thereby, the radiator 7 can be reliably used as a part of the condenser, and the efficiency of the refrigeration cycle can be improved accurately.
(Third embodiment)
Next, a third embodiment of the present disclosure will be described. A different part from above-described embodiment is demonstrated. Based on FIG. 13, an overall configuration showing a third embodiment of the present disclosure will be described. In the first embodiment, a water / refrigerant heat exchanger 15 is provided between the hot water circuit 1 and the refrigeration cycle circuit 3 and performs heat exchange between the refrigerant and the hot water. Thus, the system which heats the hot water circuit 1 with the heat | fever of the refrigerating cycle circuit 3 by providing the water refrigerant heat exchanger 15 will be called a water heating type. This method is contrasted with an air heating method that does not have the water-refrigerant heat exchanger 15 and heats the air that is conditioned air separately in the refrigeration cycle circuit 3 and the hot water circuit 1. The third embodiment shown in FIG. 13 shows an air heating type.
 図14に基づいて、図13に示した第4実施形態の空気加熱式における冷凍サイクル回路3の天井部平面配置を説明する。図13及び図14のように、車両用空調装置は、車両内の熱源4を冷却する温水が流れる温水回路1と、圧縮機2で圧縮された冷媒が流れるヒートポンプを構成する冷凍サイクル回路3とを備えている。車両内の熱源4は、車両の駆動力を生み出す内燃機関からなるエンジンである。温水回路1はこのエンジンを水冷する不凍液からなる温水を流す回路である。 Referring to FIG. 14, the planar arrangement of the ceiling portion of the refrigeration cycle circuit 3 in the air heating type of the fourth embodiment shown in FIG. 13 will be described. As shown in FIGS. 13 and 14, the vehicle air conditioner includes a hot water circuit 1 through which hot water that cools a heat source 4 in the vehicle flows, and a refrigeration cycle circuit 3 that constitutes a heat pump through which refrigerant compressed by the compressor 2 flows. It has. The heat source 4 in the vehicle is an engine composed of an internal combustion engine that generates driving force for the vehicle. The hot water circuit 1 is a circuit for flowing hot water made of an antifreeze that cools the engine.
 温水回路1は、熱源4に温水を流すウォータポンプ5と、温水を加熱する燃焼器6と、温水の熱を外気に放熱させるラジエータ7と、温水と車両内に送風される空調風との熱交換を行うヒータコア8とを備える。 The hot water circuit 1 includes a water pump 5 for flowing hot water to the heat source 4, a combustor 6 for heating the hot water, a radiator 7 for radiating the heat of the hot water to the outside air, and heat of the hot water and the conditioned air blown into the vehicle. And a heater core 8 for replacement.
 ウォータポンプ5はモータでインペラを回転させエンジン冷却用の水を循環させる。燃焼器6は燃料を燃焼させるバーナを持ち、温水回路1を流れる水を加熱する。燃焼器6は、熱源4となるエンジンとは別の燃料タンクから成る専用の燃焼器用燃料タンク6tから燃料の供給を受ける。ラジエータ7は周知のように高温となった温水回路1の温水の温度を下げるために、車両外部の空気である外気と熱交換する。ラジエータ7には図示しないが、ラジエータファンが付属しており、ラジエータフィンに外気が流される。 The water pump 5 rotates the impeller with a motor to circulate water for cooling the engine. The combustor 6 has a burner for burning fuel, and heats water flowing through the hot water circuit 1. The combustor 6 is supplied with fuel from a dedicated combustor fuel tank 6t formed of a fuel tank different from the engine serving as the heat source 4. As is well known, the radiator 7 exchanges heat with the outside air, which is the air outside the vehicle, in order to lower the temperature of the hot water in the hot water circuit 1 that has become hot. Although not shown in the figure, a radiator fan is attached to the radiator 7 so that outside air flows through the radiator fins.
 ヒータコア8は、空調用ダクト内を塞ぐように設けられ空調用ブロワにより送風されてきた外気又は車両内の循環風である内気からなる空調風を加熱する熱交換器である。なお温水回路1のラジエータ7への流量を制御するサーモスタット等は図示が省略されている。 The heater core 8 is a heat exchanger that is provided so as to close the inside of the air-conditioning duct and heats the air-conditioned air composed of the outside air blown by the air-conditioning blower or the inside air that is the circulating air in the vehicle. In addition, the thermostat etc. which control the flow volume to the radiator 7 of the hot water circuit 1 are abbreviate | omitting illustration.
 図13及び図14では、2組の第1冷凍サイクル回路3aと、第2冷凍サイクル回路3bを持っている。なお、第1冷凍サイクル回路3aと、第2冷凍サイクル回路3bとを総称するときは、単に冷凍サイクル回路3という。図14において、2つのエバポレータを成す室内熱交換器14a1、14a2の間に吸込口がある。この吸込口から室内空気を取り込んで室内熱交換器14a1、14a2と室内コンデンサを成す室内熱交換器14b1、14b2を空気が矢印Y141、Y142のように通過する。そして、ブロワ14b1b、14b2bから空調ダクトへ送風される。 13 and FIG. 14 have two sets of first refrigeration cycle circuits 3a and second refrigeration cycle circuits 3b. The first refrigeration cycle circuit 3a and the second refrigeration cycle circuit 3b are collectively referred to simply as the refrigeration cycle circuit 3. In FIG. 14, there is a suction port between the indoor heat exchangers 14a1 and 14a2 forming two evaporators. The indoor air is taken in through the suction port, and the air passes through the indoor heat exchangers 14b1 and 14b2 that form an indoor condenser with the indoor heat exchangers 14a1 and 14a2, as indicated by arrows Y141 and Y142. Then, the air is blown from the blowers 14b1b and 14b2b to the air conditioning duct.
 第1冷凍サイクル回路3aと第2冷凍サイクル回路3bとは、冷媒を加圧する圧縮機2と、車両外部の空気と熱交換を行う室外熱交換器13と、空調風を温度調節する室内熱交換器14a、14bと、余剰の冷媒を蓄えるアキュムレータ9とを夫々備える。室内熱交換器14a、14bは、空調ダクト150内に収納され、エバポレータと室内コンデンサとしての役割を果たす。 The first refrigeration cycle circuit 3a and the second refrigeration cycle circuit 3b include a compressor 2 that pressurizes the refrigerant, an outdoor heat exchanger 13 that performs heat exchange with air outside the vehicle, and an indoor heat exchange that adjusts the temperature of the conditioned air. 14a and 14b, and an accumulator 9 for storing excess refrigerant. The indoor heat exchangers 14a and 14b are housed in the air conditioning duct 150 and serve as an evaporator and an indoor condenser.
 空調ダクト150内を通過する空調風が、室内熱交換器14bと熱交換する程度はエアミックスドア16の開度によって制御される。図15ではエアミックスドア16が室内コンデンサを流れる風を遮り、空調風が室内熱交換器14bを迂回して流れる冷房運転時の状態を図示している。なお、図15では第1冷凍サイクル回路3aと第2冷凍サイクル回路3bの内、一方を詳細に図示したが、他方の第2冷凍サイクル回路3bの構成も同様である。なお、図15では、室内熱交換器14は、コンデンサとして機能するので、温度調節する機能を有する。 The degree to which the conditioned air passing through the air conditioning duct 150 exchanges heat with the indoor heat exchanger 14 b is controlled by the opening degree of the air mix door 16. FIG. 15 illustrates a state during a cooling operation in which the air mix door 16 blocks air flowing through the indoor condenser and the conditioned air flows while bypassing the indoor heat exchanger 14b. In FIG. 15, one of the first refrigeration cycle circuit 3a and the second refrigeration cycle circuit 3b is shown in detail, but the configuration of the other second refrigeration cycle circuit 3b is the same. In FIG. 15, the indoor heat exchanger 14 functions as a condenser and thus has a function of adjusting the temperature.
 制御装置10は、車両外部の外気温度を含む運転条件から、冷凍サイクル回路3と燃焼器6との燃料効率を夫々算出する算出部を有する。冷凍サイクル回路3は圧縮機2で加圧され高温になった冷媒の熱で、室内熱交換器14bを介して、空調風を加熱する。 The control device 10 has a calculation unit that calculates the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 from operating conditions including the outside air temperature outside the vehicle. The refrigeration cycle circuit 3 heats the conditioned air through the indoor heat exchanger 14b with the heat of the refrigerant that has been pressurized by the compressor 2 and has reached a high temperature.
 燃焼器6は、まず温水回路1の温水を加熱し、温水が流れるヒータコア8を介して空調風を加熱する。このような暖房機器となる冷凍サイクル回路3と燃焼器6とのうち、算出された効率が良い方を優先的に作動させる図2と同様の効率選択部(S208~S214)、を制御装置10内に備える。暖房時において、図13の室内熱交換器14bは室内コンデンサとして空調風を加熱し、室外熱交換器13は、エバポレータとして作用する。 The combustor 6 first heats the hot water in the hot water circuit 1 and heats the conditioned air through the heater core 8 through which the hot water flows. Of the refrigeration cycle circuit 3 and the combustor 6 serving as such a heating device, an efficiency selection unit (S208 to S214) similar to that in FIG. Prepare in. During heating, the indoor heat exchanger 14b in FIG. 13 heats the conditioned air as an indoor condenser, and the outdoor heat exchanger 13 functions as an evaporator.
 この開示によれば、その時の外気温度を含む運転条件から冷凍サイクル回路3と燃焼器6との燃料効率を夫々算出し、冷凍サイクル回路3と燃焼器6とのうち算出された効率が高い方を優先的に作動させることができる。よって、燃料消費量ベースで考えた際に、燃焼器6の方が高効率となる場合が発生するという事実を活用できる。そして、燃料効率に合わせて燃焼器6の運転とヒートポンプとの運転状態とを組み合わせ、燃料消費量が少ない車両用空調装置を提供できる。 According to this disclosure, the fuel efficiency of the refrigeration cycle circuit 3 and the combustor 6 is calculated from the operating conditions including the outside air temperature at that time, and the calculated efficiency of the refrigeration cycle circuit 3 and the combustor 6 is higher. Can be preferentially activated. Thus, the fact that the combustor 6 may be more efficient when considered on a fuel consumption basis can be utilized. And the operation | movement state of the combustor 6 and the driving | running state of a heat pump are combined according to fuel efficiency, and the vehicle air conditioner with little fuel consumption can be provided.
 またヒートポンプを構成する冷凍サイクル回路3は、空調風を温度調節する室内熱交換器14a、14bを備え、温水回路1は温水と空調風との熱交換を行うヒータコア8を備えるため、冷凍サイクル回路3と温水回路1の両方で個別に車室内を暖房できる。なおこの第4実施形態では温水回路1と、冷凍サイクル回路3との間に設けられ、冷媒と温水との間で熱交換を行う水冷媒熱交換器15を備えていない。 The refrigeration cycle circuit 3 constituting the heat pump includes indoor heat exchangers 14a and 14b for adjusting the temperature of the conditioned air, and the hot water circuit 1 includes a heater core 8 for exchanging heat between the hot water and the conditioned air. 3 and the hot water circuit 1 can individually heat the passenger compartment. In the fourth embodiment, the water / refrigerant heat exchanger 15 provided between the hot water circuit 1 and the refrigeration cycle circuit 3 for exchanging heat between the refrigerant and the hot water is not provided.
 図14は、バス車両の天井面における平面配置図である。この図14では、室内エバポレータとして空調風を冷却する室内熱交換器14a1、14a2と室内コンデンサとして空調風を加熱する室内熱交換器14b1、14b2と、暖房時にエバポレータとして作用する室外熱交換器13a、13bとが示される。 FIG. 14 is a plan layout view on the ceiling surface of the bus vehicle. In FIG. 14, indoor heat exchangers 14a1, 14a2 that cool the conditioned air as an indoor evaporator, indoor heat exchangers 14b1, 14b2 that heat the conditioned air as an indoor condenser, and an outdoor heat exchanger 13a that acts as an evaporator during heating, 13b.
 図14に示すように、これらの室内熱交換器14a1、14a2と室内熱交換器14b1、14b2と、室外熱交換器13a、13bは、夫々2組設けられ、圧縮機2も2組設けられ、2つの冷凍サイクル回路3a、3bで車両室内を空調している。 As shown in FIG. 14, two sets of these indoor heat exchangers 14a1, 14a2, indoor heat exchangers 14b1, 14b2, and outdoor heat exchangers 13a, 13b are provided, and two sets of compressors 2 are provided. The vehicle compartment is air-conditioned by the two refrigeration cycle circuits 3a and 3b.
 また、2組の室外熱交換器13a、13bには夫々室外熱交換器用ファン13ab、13bbが付属し、外気と室外熱交換器13a、13bとを熱交換している。更に室内熱交換器14a1、14a2と室内熱交換器14b1、14b2を通過する空調風を流すための夫々3個の空調用ブロワ14b1b、14b2bが夫々設けられている。
(第4実施形態)
 次に、本発明の第4実施形態について説明する。上記した実施形態と異なる部分を説明する。図15に基づいて、本開示の第4実施形態における全体構成を説明する。この第4実施形態の冷凍サイクル回路3は家庭用ヒートポンプにて用いられる形式のものである。室外熱交換器13と室内熱交換器14とは暖房時と冷房時で夫々エバポレータとコンデンサの役割を交換するものである。
The two sets of outdoor heat exchangers 13a and 13b are each provided with outdoor heat exchanger fans 13ab and 13bb to exchange heat between the outside air and the outdoor heat exchangers 13a and 13b. Furthermore, three air-conditioning blowers 14b1b and 14b2b for flowing the conditioned air passing through the indoor heat exchangers 14a1 and 14a2 and the indoor heat exchangers 14b1 and 14b2, respectively, are provided.
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. A different part from above-described embodiment is demonstrated. Based on FIG. 15, an overall configuration in the fourth embodiment of the present disclosure will be described. The refrigeration cycle circuit 3 of the fourth embodiment is of the type used in household heat pumps. The outdoor heat exchanger 13 and the indoor heat exchanger 14 exchange the roles of an evaporator and a condenser during heating and cooling, respectively.
 (他の実施形態)
 上記の実施形態では、本開示の好ましい実施形態について説明したが、本開示は上記の各実施形態に何ら制限されることなく、本開示の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、本開示の範囲はこれらの記載の範囲に限定されるものではない。
(Other embodiments)
In the above embodiments, the preferred embodiments of the present disclosure have been described. However, the present disclosure is not limited to the above embodiments, and various modifications may be made without departing from the spirit of the present disclosure. Is possible. The structure of the said embodiment is an illustration to the last, Comprising: The range of this indication is not limited to the range of these description.
 燃焼器6の代わりに電気ヒータを用いてもよいし、燃焼器6と電気ヒータを併用してもよい。熱源は、エンジンに限らず、車両内の他の発熱体でもよい。温水回路1の流体となる温水は、熱源を冷却する液体であればよい。圧縮機は、電動式でもエンジン駆動式でもよい。 Instead of the combustor 6, an electric heater may be used, or the combustor 6 and an electric heater may be used in combination. The heat source is not limited to the engine but may be another heating element in the vehicle. The hot water used as the fluid of the hot water circuit 1 may be a liquid that cools the heat source. The compressor may be electric or engine driven.
 圧縮機がエンジン駆動式である場合は、エンジンの燃費特性をデータとして持っておき、冷凍サイクル回路3の効率を算出するのにエンジンのその時の燃費特性を考慮してもよい。制御装置10は、エアコンECUに限らず、一部の機能がエンジンECUの中に設けられていてもよい。車両外部の外気温度を含む運転条件から、冷凍サイクル回路3の燃料効率を夫々算出したが、上記実施形態では燃焼器6の入力エネルギ効率は固定した。しかし車両外部の外気温度を含む運転条件から燃焼器6の入力エネルギ効率を算出してもよい。 When the compressor is an engine driven type, the fuel consumption characteristics of the engine may be stored as data, and the fuel efficiency characteristics of the engine at that time may be taken into account for calculating the efficiency of the refrigeration cycle circuit 3. The control device 10 is not limited to the air conditioner ECU, and some functions may be provided in the engine ECU. Although the fuel efficiency of the refrigeration cycle circuit 3 was calculated from the operating conditions including the outside air temperature outside the vehicle, the input energy efficiency of the combustor 6 was fixed in the above embodiment. However, the input energy efficiency of the combustor 6 may be calculated from operating conditions including the outside air temperature outside the vehicle.
 また、上記実施形態では燃料効率同士を比較したが、要はどちらの機器を活用した方が車両の燃料消費量が少なくできるかを比較できればよい。そのため、その時の燃料消費量同士を比較して効率の比較としてもよい。つまり本開示の燃料効率は、燃料消費量が少ないことを表すパラメータであればよい。 In the above embodiment, the fuel efficiencies are compared with each other. In short, it is only necessary to compare which device can reduce the fuel consumption of the vehicle. Therefore, the fuel consumptions at that time may be compared to compare the efficiency. That is, the fuel efficiency of this indication should just be a parameter showing that fuel consumption is small.
 また、本開示は水冷媒熱交換器及びバイパス回路は必須ではないがこれらを設けることによって個別の効果を発揮する。更に、車両は、バスに限らず列車や乗用車であってもよい。なお、水冷媒熱交換器は、車両の床下に設置されるものに限らない。 In addition, although the present disclosure does not require a water-refrigerant heat exchanger and a bypass circuit, individual effects are exhibited by providing these. Furthermore, the vehicle is not limited to a bus but may be a train or a passenger car. In addition, a water refrigerant heat exchanger is not restricted to what is installed under the floor of a vehicle.
 水冷媒熱交換器をバイパスして冷媒を流すバイパス回路を開閉するバイパス弁は、三方弁を使用してもよい。またバイパス回路は、冷媒側と温水側のいずれか又は両方に設けてもよい。 A three-way valve may be used as a bypass valve that opens and closes a bypass circuit that flows the refrigerant by bypassing the water refrigerant heat exchanger. Further, the bypass circuit may be provided on either or both of the refrigerant side and the hot water side.
 図12において、冷房モードでないときはバイパス弁を常に閉じたが、温水温度が十分に高い等の条件に応じてバイパス弁を開き冷媒の圧損を少なくしてもよい。 In FIG. 12, the bypass valve is always closed when not in the cooling mode, but the bypass valve may be opened to reduce the pressure loss of the refrigerant according to conditions such as a sufficiently high temperature of hot water.
 冷房運転時において、冷凍サイクル回路3から温水回路1に熱を渡せる条件は、温度の比較以外の方法でも特定することができる。たとえばエンジン起動時からの経過時間や圧縮機起動後の経過時間や冷媒圧力から条件を特定してもよい。 The conditions under which heat can be transferred from the refrigeration cycle circuit 3 to the hot water circuit 1 during cooling operation can be specified by methods other than temperature comparison. For example, the condition may be specified from the elapsed time since the engine was started, the elapsed time after the compressor was started, or the refrigerant pressure.
 図13のように、水冷媒熱交換器を持たない方式においてもウォームアップ能力を要求された場合には、ヒートポンプと燃焼器6との両方を作動させ、車室内の温度を急速に立ち上げることができる。なお、図13は、空気加熱式であるが室内熱交換器14aは、エバポレータとして除湿のみ行い、ヒータコアを成す室内熱交換器14bで加熱する。 As shown in FIG. 13, when a warm-up capability is required even in a system that does not have a water-refrigerant heat exchanger, both the heat pump and the combustor 6 are operated to quickly raise the temperature in the passenger compartment. Can do. Although FIG. 13 shows an air heating type, the indoor heat exchanger 14a performs only dehumidification as an evaporator and heats it with the indoor heat exchanger 14b that forms a heater core.
 また車両はハイブリッド車両でなくエンジン単体で走行する車両であってもよい。また熱源は燃料電池であってもよい。この場合の車両は燃料電池車になる。また、エンジンの出力を直接駆動輪に導かず、エンジンはもっぱら発電機を駆動し、発電機で走行用のバッテリを充電する電気自動車であってもよい。 Further, the vehicle may be a vehicle that runs on a single engine instead of a hybrid vehicle. The heat source may be a fuel cell. The vehicle in this case is a fuel cell vehicle. Further, the engine may be an electric vehicle that does not directly guide the output of the engine to the drive wheels, but drives the generator exclusively and charges the battery for traveling with the generator.
 上記実施形態では、車両の駆動系にバッテリの電力で回転する電動機を使用している場合、制御装置は、バッテリの充電状態を確認し残存電力量が不足しているか否かを判定する。そして、電力量が不足していると判定された場合に、優先的に電力使用量が小さい方の燃焼器6とヒートポンプとのいずれか一方を選択して作動させる。この場合燃料消費量だけのことを考えればヒートポンプの方を使用した方がよい場合であっても、電力使用量が小さい燃焼器6を優先させる。しかし、燃料消費量の少ないことを優先させるか電力消費が少ないことを優先させるかはあらかじめ車両ごと又はユーザごとに選択できるようにしてもよい。 In the above embodiment, when an electric motor that rotates with battery power is used in the drive system of the vehicle, the control device checks the state of charge of the battery and determines whether or not the remaining power amount is insufficient. When it is determined that the amount of electric power is insufficient, either the combustor 6 or the heat pump with the smaller electric power consumption is preferentially operated. In this case, even if it is better to use the heat pump in consideration of only the fuel consumption, the combustor 6 with a small power consumption is prioritized. However, it may be possible to select in advance for each vehicle or each user whether priority is given to low fuel consumption or low power consumption.
 また、燃料消費量や電力消費量を優先せずに常に効率が良い機器を優先に作動させるようにも、あらかじめ車両ごと又はユーザごとに選択できるようにしてもよい。 Also, it may be possible to select in advance for each vehicle or for each user so that a device with high efficiency is always preferentially operated without giving priority to fuel consumption and power consumption.
 更に、燃焼器は、自身が消費する燃料を蓄える燃焼器用燃料タンクから燃料の供給を受けるものを示したが、エンジンと共用のメイン燃料タンクから燃料供給を受けるものであってもよい。 Furthermore, although the combustor has shown what receives fuel supply from the fuel tank for combustors which stores the fuel which self consumes, you may receive fuel supply from the main fuel tank shared with an engine.
 また燃料消費量ベースの効率を算出する際に、エンジンに投入されるエネルギのうち、冷却水に受熱される約40%の熱エネルギは、水加熱式のヒートポンプでは暖房に使用できるため、そのエネルギ量を勘案して算出しても良い。 In addition, when calculating the fuel consumption-based efficiency, about 40% of the energy input to the engine that is received by the cooling water can be used for heating in the water heating type heat pump. It may be calculated in consideration of the amount.
 図13の本開示の第4実施形態を示す車両用空調装置においては、冷凍サイクル回路を2組設けたが、1組の冷凍サイクル回路としても良い。なお、優先的に機器を作動させるとは、燃料消費量ベースの効率の良いものから順に作動させていくことをいい、機器が3台以上あっても良い。 In the vehicle air conditioner showing the fourth embodiment of the present disclosure in FIG. 13, two sets of refrigeration cycle circuits are provided, but one set of refrigeration cycle circuits may be used. It should be noted that “operating a device preferentially” means that the device is operated in order from the fuel consumption-based efficient one, and there may be three or more devices.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (10)

  1.  車両に設けられた熱源(4)を冷却する冷却水が流れ、暖房運転時に冷却水の熱で車室内に送風される空調風を加熱する冷却水回路(1)と、
     圧縮機(2)で圧縮された冷媒が流れ、暖房運転時に冷媒の熱で前記空調風を加熱するヒートポンプとして作動する冷凍サイクル回路(3)と、
     制御装置(10)と、を備え、
     前記冷却水回路(1)は、
      前記熱源(4)に前記冷却水を流すウォータポンプ(5)と、
      燃料を燃やすことで熱を発生させて前記冷却水を加熱する燃焼器(6)と、
      前記冷却水の熱を外気に放熱させるラジエータ(7)と、
      前記冷却水と前記空調風との熱交換を行うヒータコア(8)と、を備え、
     前記冷凍サイクル回路(3)は、
      燃料を消費して駆動されるエンジンからの動力又は前記エンジンからの動力で発電された電力で駆動され、前記冷媒を加圧する前記圧縮機(2)と、
      外気と前記冷媒との熱交換を行う室外熱交換器(13)と、
      前記冷媒と前記空調風との熱交換を行う室内熱交換器(14)と、を備え、
     前記制御装置(10)は、前記燃焼器(6)と前記圧縮機(2)とに接続され、前記燃焼器(6)と前記圧縮機(2)を制御し、
     暖房運転時に暖房の為に消費する前記燃料のエネルギ量に対する前記空調風に与えられるエネルギ量の割合を、燃料効率と定義したとき、
     前記制御装置(10)は、前記ヒートポンプの燃料効率と前記燃焼器(6)の燃料効率を夫々算出する算出部(S205)と、前記ヒートポンプと前記燃焼器(6)とのうち、算出された前記燃料効率が高い方を優先的に作動させる効率選択部(S208~S214)と、を備える車両用空調装置。
    A cooling water circuit (1) for cooling air flowing through the vehicle interior with the heat of the cooling water during heating operation, and cooling water for cooling the heat source (4) provided in the vehicle;
    The refrigerant compressed by the compressor (2) flows, and a refrigeration cycle circuit (3) that operates as a heat pump that heats the conditioned air with the heat of the refrigerant during heating operation;
    A control device (10),
    The cooling water circuit (1)
    A water pump (5) for flowing the cooling water to the heat source (4);
    A combustor (6) for generating heat by burning fuel to heat the cooling water;
    A radiator (7) for radiating heat of the cooling water to the outside air;
    A heater core (8) for performing heat exchange between the cooling water and the conditioned air,
    The refrigeration cycle circuit (3)
    The compressor (2) that is driven by power from an engine driven by consuming fuel or power generated by power from the engine and pressurizing the refrigerant;
    An outdoor heat exchanger (13) for exchanging heat between the outside air and the refrigerant;
    An indoor heat exchanger (14) for performing heat exchange between the refrigerant and the conditioned air,
    The control device (10) is connected to the combustor (6) and the compressor (2), and controls the combustor (6) and the compressor (2).
    When the ratio of the amount of energy given to the conditioned air to the amount of energy of the fuel consumed for heating during heating operation is defined as fuel efficiency,
    The control device (10) is calculated among a calculation unit (S205) for calculating the fuel efficiency of the heat pump and the fuel efficiency of the combustor (6), and the heat pump and the combustor (6). An air conditioner for a vehicle, comprising: an efficiency selection unit (S208 to S214) that preferentially operates the one having the higher fuel efficiency.
  2.  更に、前記冷却水回路(1)の前記冷却水と前記冷凍サイクル回路(3)の前記冷媒との間で熱交換を行う冷却水冷媒熱交換器(15)を備える請求項1に記載の車両用空調装置。 The vehicle according to claim 1, further comprising a cooling water refrigerant heat exchanger (15) for exchanging heat between the cooling water of the cooling water circuit (1) and the refrigerant of the refrigeration cycle circuit (3). Air conditioner.
  3.  前記冷却水冷媒熱交換器(15)は、前記車両の床下に設置される請求項2に記載の車両用空調装置。 The vehicle air conditioner according to claim 2, wherein the cooling water refrigerant heat exchanger (15) is installed under the floor of the vehicle.
  4.  更に、前記冷媒が前記冷却水冷媒熱交換器(15)をバイパスするバイパス回路(15b)及びこのバイパス回路(15b)を開閉するバイパス弁(15v)を有する請求項2又は3に記載の車両用空調装置。 The vehicle according to claim 2 or 3, further comprising a bypass circuit (15b) for bypassing the coolant coolant heat exchanger (15) and a bypass valve (15v) for opening and closing the bypass circuit (15b). Air conditioner.
  5.  冷房運転時において、前記冷凍サイクル回路(3)から前記冷却水回路(1)に熱を渡せる条件では、前記制御装置(10)は、前記バイパス弁(15v)を閉じて、前記冷却水冷媒熱交換器(15)を介して前記冷凍サイクル回路(3)と前記冷却水回路(1)との熱交換を行い、前記ラジエータ(7)を放熱のための室外コンデンサとして作用させる請求項4に記載の車両用空調装置。 In the cooling operation, under the condition that heat can be transferred from the refrigeration cycle circuit (3) to the cooling water circuit (1), the control device (10) closes the bypass valve (15v), and the cooling water refrigerant heat The heat exchange between the refrigeration cycle circuit (3) and the cooling water circuit (1) is performed via an exchanger (15), and the radiator (7) acts as an outdoor capacitor for heat dissipation. Vehicle air conditioner.
  6.  更に、前記冷却水冷媒熱交換器(15)の冷媒側入口に冷媒側入口温度を検出する温度センサ(15c)を有し、
     前記制御装置(10)は、前記冷却水回路(1)を流れる冷却水の温度と冷媒側入口温度とを比較し、冷却水の温度より前記冷媒側入口温度が高い場合に、前記バイパス弁(15v)を閉じ、冷媒を前記バイパス回路(15b)にバイパスさせずに前記冷却水冷媒熱交換器(15)に流す請求項5に記載の車両用空調装置。
    Furthermore, it has a temperature sensor (15c) for detecting the refrigerant side inlet temperature at the refrigerant side inlet of the cooling water refrigerant heat exchanger (15),
    The control device (10) compares the temperature of the cooling water flowing through the cooling water circuit (1) with the refrigerant side inlet temperature, and when the refrigerant side inlet temperature is higher than the temperature of the cooling water, the bypass valve ( The vehicular air conditioner according to claim 5, wherein 15v) is closed and the refrigerant is allowed to flow to the cooling water refrigerant heat exchanger (15) without being bypassed to the bypass circuit (15b).
  7.  冷却水の昇温速度を加速させ、暖房性能の向上を図るウォームアップを要求された場合には、前記制御装置(10)は、前記冷凍サイクル回路(3)と前記燃焼器(6)との両方を作動させることにより、暖房性能を向上させるウォームアップ制御部(S203)を有する請求項1から6のいずれか一項に記載の車両用空調装置。 When the warm-up to improve the heating performance by accelerating the heating rate of the cooling water is requested, the control device (10) connects the refrigeration cycle circuit (3) and the combustor (6). The vehicle air conditioner according to any one of claims 1 to 6, further comprising a warm-up control unit (S203) that improves heating performance by operating both.
  8.  前記車両は、該車両の駆動系にバッテリ(25)の電力で回転する電動機(32)を使用しており、
     前記制御装置(10)は、
      前記バッテリ(25)の充電状態を確認し電力が不足しているか否かを判定する残電力量判定部(S2061)と、
      前記燃焼器(6)と前記冷凍サイクル回路(3)との消費電力を演算又は測定する消費電力取得部(S20621)と、
      電力量が不足していると判定された場合に、前記燃焼器(6)と前記冷凍サイクル回路(3)のうち、前記消費電力が小さい方を優先的に作動させる電力選択部(S20622~S20628)と、を備える請求項1から7のいずれか一項に記載の車両用空調装置。
    The vehicle uses an electric motor (32) that rotates with electric power of a battery (25) in a drive system of the vehicle,
    The control device (10)
    A remaining power amount determination unit (S2061) for checking the state of charge of the battery (25) and determining whether power is insufficient;
    A power consumption acquisition unit (S20621) for calculating or measuring power consumption of the combustor (6) and the refrigeration cycle circuit (3);
    When it is determined that the amount of electric power is insufficient, an electric power selection unit (S20622 to S20628) that preferentially activates one of the combustor (6) and the refrigeration cycle circuit (3) that consumes less power. The vehicle air conditioner according to any one of claims 1 to 7, further comprising:
  9.  更に、前記エンジンを駆動させる燃料を蓄えるメイン燃料タンク(20)内の燃料残量を計測する計測器(21)を備え、
     前記燃焼器(6)は自身が消費する燃料を蓄える燃焼器用燃料タンク(6t)から燃料の供給を受けており、
     前記制御装置(10)は、前記計測器(21)により計測された前記メイン燃料タンク(20)内の燃料残量が所定残量よりも少ない場合、前記燃料効率にかかわらず前記燃焼器(6)による暖房を前記冷凍サイクル回路(3)による暖房よりも優先させ、メイン燃料タンク(20)からの燃料よりも、前記燃焼器用燃料タンク(6t)から燃料を優先して消費させる燃焼器優先制御部(S2072)を備える請求項1から8のいずれか一項に記載の車両用空調装置。
    Furthermore, a measuring instrument (21) for measuring the remaining amount of fuel in the main fuel tank (20) for storing fuel for driving the engine is provided,
    The combustor (6) receives fuel from a combustor fuel tank (6t) that stores fuel consumed by the combustor (6),
    When the remaining amount of fuel in the main fuel tank (20) measured by the measuring instrument (21) is less than a predetermined remaining amount, the control device (10) is configured to move the combustor (6) regardless of the fuel efficiency. ) Gives priority to heating by the refrigeration cycle circuit (3), and prioritizes the consumption of fuel from the combustor fuel tank (6t) over the fuel from the main fuel tank (20). A vehicle air conditioner as described in any one of Claim 1 to 8 provided with a part (S2072).
  10.  車両に設けられた熱源(4)を冷却する冷却水が流れ、暖房運転時に冷却水の熱で車室内に送風される空調風を加熱する冷却水回路(1)と、
     圧縮機(2)で圧縮された冷媒が流れ、暖房運転時に冷媒の熱で前記空調風を加熱するヒートポンプとして作動する冷凍サイクル回路(3)と、
     制御装置(10)と、を備え、
     前記冷却水回路(1)は、
      前記熱源(4)に前記冷却水を流すウォータポンプ(5)と、
      前記冷却水を加熱することができる燃焼器(6)と、
      前記冷却水の熱を外気に放熱させるラジエータ(7)と、
      前記冷却水と前記空調風との熱交換を行うヒータコア(8)と、を備え、
     前記冷凍サイクル回路(3)は、
      燃料を消費して駆動されるエンジンからの動力又は前記エンジンからの動力で発電された電力で駆動され、前記冷媒を加圧する前記圧縮機(2)と、
      外気と前記冷媒との熱交換を行う室外熱交換器(13)と、
      前記冷媒と前記空調風との熱交換を行う室内熱交換器(14)と、を備え、
     前記制御装置(10)は、所定の温度条件から求められる必要暖房能力と燃料消費量ベースのヒートポンプ運転状態に基づき、前記冷凍サイクル回路(3)と前記燃焼器(6)の少なくともいずれか一方を選択して作動させる選択部を備える車両用空調装置。
    A cooling water circuit (1) for cooling air flowing through the vehicle interior with the heat of the cooling water during heating operation, and cooling water for cooling the heat source (4) provided in the vehicle;
    The refrigerant compressed by the compressor (2) flows, and a refrigeration cycle circuit (3) that operates as a heat pump that heats the conditioned air with the heat of the refrigerant during heating operation;
    A control device (10),
    The cooling water circuit (1)
    A water pump (5) for flowing the cooling water to the heat source (4);
    A combustor (6) capable of heating the cooling water;
    A radiator (7) for radiating heat of the cooling water to the outside air;
    A heater core (8) for performing heat exchange between the cooling water and the conditioned air,
    The refrigeration cycle circuit (3)
    The compressor (2) that is driven by power from an engine driven by consuming fuel or power generated by power from the engine and pressurizing the refrigerant;
    An outdoor heat exchanger (13) for exchanging heat between the outside air and the refrigerant;
    An indoor heat exchanger (14) for performing heat exchange between the refrigerant and the conditioned air,
    The control device (10) controls at least one of the refrigeration cycle circuit (3) and the combustor (6) based on a required heating capacity obtained from a predetermined temperature condition and a fuel consumption based heat pump operation state. A vehicle air conditioner including a selection unit to be selected and operated.
PCT/JP2015/003616 2014-07-23 2015-07-17 Vehicular air conditioning device WO2016013193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015003371.8T DE112015003371B4 (en) 2014-07-23 2015-07-17 Vehicle Air Conditioning Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-150102 2014-07-23
JP2014150102A JP6327038B2 (en) 2014-07-23 2014-07-23 Air conditioner for vehicles

Publications (1)

Publication Number Publication Date
WO2016013193A1 true WO2016013193A1 (en) 2016-01-28

Family

ID=55162738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003616 WO2016013193A1 (en) 2014-07-23 2015-07-17 Vehicular air conditioning device

Country Status (3)

Country Link
JP (1) JP6327038B2 (en)
DE (1) DE112015003371B4 (en)
WO (1) WO2016013193A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107284185A (en) * 2016-04-11 2017-10-24 丰田自动车株式会社 Heat extraction and recovery device
US20180297445A1 (en) * 2017-04-12 2018-10-18 Toyota Jidosha Kabushiki Kaisha Vehicle heat management device
WO2019146326A1 (en) * 2018-01-29 2019-08-01 サンデンホールディングス株式会社 Vehicle air-conditioning device
CN110228351A (en) * 2019-06-19 2019-09-13 株洲麦格米特电气有限责任公司 A kind of car heat supplier and method
CN111251807A (en) * 2018-11-30 2020-06-09 比亚迪股份有限公司 Whole car thermal management system and have its vehicle
CN114368324A (en) * 2022-01-18 2022-04-19 三一电动车科技有限公司 Fuel cell thermal management system, control method thereof and vehicle
US11453269B2 (en) * 2017-04-07 2022-09-27 Carrier Corporation Power managing method and system for transportation refrigeration unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169501A1 (en) 2016-03-31 2017-10-05 株式会社デンソー Heat exchange unit
DE102017206628A1 (en) * 2017-04-20 2018-10-25 Audi Ag Refrigeration system of a vehicle
JP2019166972A (en) * 2018-03-23 2019-10-03 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP7152340B2 (en) * 2019-03-25 2022-10-12 トヨタ自動車株式会社 Calorie control device and calorie control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952508A (en) * 1995-06-07 1997-02-25 Denso Corp Vehicular air conditioner
JPH09220924A (en) * 1996-02-16 1997-08-26 Denso Corp Air conditioner for vehicle
JPH1134640A (en) * 1997-07-24 1999-02-09 Denso Corp Vehicle air conditioner
JP2009107548A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Air conditioner for vehicle
JP2012111251A (en) * 2010-11-19 2012-06-14 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2012201295A (en) * 2011-03-28 2012-10-22 Denso Corp Air conditioner for vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116614B2 (en) 1992-12-22 2000-12-11 株式会社デンソー Vehicle air conditioner
JP3290031B2 (en) 1994-07-06 2002-06-10 サンデン株式会社 Vehicle air conditioner
FR2775221B1 (en) 1998-02-20 2000-05-26 Renault VENTILATION, HEATING AND AIR CONDITIONING DEVICE FOR A PASSENGER COMPARTMENT OF A MOTOR VEHICLE
JP5772334B2 (en) 2011-07-20 2015-09-02 スズキ株式会社 Air conditioner for vehicles
JP6027905B2 (en) 2013-01-31 2016-11-16 新光電気工業株式会社 Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0952508A (en) * 1995-06-07 1997-02-25 Denso Corp Vehicular air conditioner
JPH09220924A (en) * 1996-02-16 1997-08-26 Denso Corp Air conditioner for vehicle
JPH1134640A (en) * 1997-07-24 1999-02-09 Denso Corp Vehicle air conditioner
JP2009107548A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Air conditioner for vehicle
JP2012111251A (en) * 2010-11-19 2012-06-14 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2012201295A (en) * 2011-03-28 2012-10-22 Denso Corp Air conditioner for vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107284185A (en) * 2016-04-11 2017-10-24 丰田自动车株式会社 Heat extraction and recovery device
US11453269B2 (en) * 2017-04-07 2022-09-27 Carrier Corporation Power managing method and system for transportation refrigeration unit
US20180297445A1 (en) * 2017-04-12 2018-10-18 Toyota Jidosha Kabushiki Kaisha Vehicle heat management device
CN108688445A (en) * 2017-04-12 2018-10-23 丰田自动车株式会社 Vehicle heat management device
JP2018177219A (en) * 2017-04-12 2018-11-15 トヨタ自動車株式会社 Vehicular heat management device
JP6992659B2 (en) 2017-04-12 2022-01-13 トヨタ自動車株式会社 Vehicle heat management device
WO2019146326A1 (en) * 2018-01-29 2019-08-01 サンデンホールディングス株式会社 Vehicle air-conditioning device
JP2019130945A (en) * 2018-01-29 2019-08-08 サンデンホールディングス株式会社 Air conditioner for vehicle
CN111251807A (en) * 2018-11-30 2020-06-09 比亚迪股份有限公司 Whole car thermal management system and have its vehicle
CN111251807B (en) * 2018-11-30 2022-09-09 比亚迪股份有限公司 Whole car thermal management system and have its vehicle
CN110228351A (en) * 2019-06-19 2019-09-13 株洲麦格米特电气有限责任公司 A kind of car heat supplier and method
CN114368324A (en) * 2022-01-18 2022-04-19 三一电动车科技有限公司 Fuel cell thermal management system, control method thereof and vehicle

Also Published As

Publication number Publication date
DE112015003371T5 (en) 2017-04-06
JP2016022899A (en) 2016-02-08
JP6327038B2 (en) 2018-05-23
DE112015003371B4 (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2016013193A1 (en) Vehicular air conditioning device
JP7185469B2 (en) vehicle thermal management system
JP5860361B2 (en) Thermal management system for electric vehicles
CN105216584B (en) The electric automobile heat recovery heat pump type integrated thermal management system of flashed cold-patch gas
US9252621B2 (en) Battery temperature adjusting system and battery charging system
JP5417123B2 (en) Electric vehicle cooling system
US20150202986A1 (en) Thermal management system for electric vehicle and its control method
JP2008308080A (en) Heat absorption and radiation system for automobile, and control method thereof
CN109849616A (en) Thermal management system of electric automobile
KR102474341B1 (en) Heat pump system for a vehicle
JP2011068348A (en) Vehicle inside temperature control method of electric motor vehicle and air-conditioning system
JP2013212829A (en) Temperature adjustment device
US20180345757A1 (en) Heating, ventilation, and air conditioning system for vehicle
US20190315194A1 (en) Vehicular heat management system
CN111129663B (en) Vehicle-mounted thermal management system and vehicle
JP2016022899A5 (en)
WO2017104254A1 (en) Vehicle air conditioning device
JP2009291008A (en) Heat management system of electric drive vehicle
JP2014037182A (en) Thermal management system for electric vehicle
JP5957233B2 (en) Air conditioner for vehicles
US10315493B2 (en) HVAC system for a vehicle and method of use
KR101753004B1 (en) A air-conditioning system for vehicle
JP4677960B2 (en) Air conditioner for vehicles
JP2004142596A (en) Air conditioning device for vehicle
KR101693964B1 (en) Heating system for hybrid vehicle and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003371

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15823979

Country of ref document: EP

Kind code of ref document: A1