WO2016012586A1 - Sunscreen formulations optimized for the formation of vitamin d - Google Patents
Sunscreen formulations optimized for the formation of vitamin d Download PDFInfo
- Publication number
- WO2016012586A1 WO2016012586A1 PCT/EP2015/066985 EP2015066985W WO2016012586A1 WO 2016012586 A1 WO2016012586 A1 WO 2016012586A1 EP 2015066985 W EP2015066985 W EP 2015066985W WO 2016012586 A1 WO2016012586 A1 WO 2016012586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- derivatives
- filters
- bis
- sunscreen formulation
- formulation according
- Prior art date
Links
- STNWSDBETBECQL-UHFFFAOYSA-N CC(C)C(CCC(C)C1)C1NO Chemical compound CC(C)C(CCC(C)C1)C1NO STNWSDBETBECQL-UHFFFAOYSA-N 0.000 description 1
- PAFZNILMFXTMIY-UHFFFAOYSA-N NC1CCCCC1 Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 1
- NZTWOIMQWMZIRE-UHFFFAOYSA-N c(cc1)ccc1-c1c(-c2ccccc2)nnc(-c(cc2)ccc2-c2nc(-c3ccccc3)c(-c3ccccc3)nn2)n1 Chemical compound c(cc1)ccc1-c1c(-c2ccccc2)nnc(-c(cc2)ccc2-c2nc(-c3ccccc3)c(-c3ccccc3)nn2)n1 NZTWOIMQWMZIRE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/44—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
- A61K8/445—Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof aromatic, i.e. the carboxylic acid directly linked to the aromatic ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/29—Titanium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/494—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
- A61K8/4966—Triazines or their condensed derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/35—Ketones, e.g. benzophenone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/40—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
- A61K8/41—Amines
- A61K8/415—Aminophenols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/4906—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom
- A61K8/4926—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with one nitrogen as the only hetero atom having six membered rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/494—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
- A61K8/4946—Imidazoles or their condensed derivatives, e.g. benzimidazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/49—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
- A61K8/494—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
- A61K8/496—Triazoles or their condensed derivatives, e.g. benzotriazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
Definitions
- the present invention relates to a method for increasing the transmittance of UV radiation for the production of cholecalciferol (vitamin D 3 ) on the human skin and simultaneously protecting the human skin against said UV radiation when exposed to the sun.
- UV-B radiation (about 290 to about 320 nm) is responsible for sunburn and can cause skin cancer.
- UV-A radiation (about 320 to about 400 nm) while producing tanning of the skin contributes also to sunburn and the induction of skin cancers.
- adequate sun protection should include broadband protection, that means, i.e. sunscreen should protect against both UVA and UVB radiation. Since 2006 the European Recommendation, requires a minimum UVA protection related to the level of UVB protection which implies that the UVA-PF (UVA protection factor) is at least 1/3 of the SPF (sun protection factor).
- UVB radiation Apart from the known damaging effects of UV radiation a certain amount of UVB radiation is necessary for the formation of vitamin D 3 and its precursors in the skin.
- sunscreens can reduce or even prevent the vitamin D 3 production in skin. This is not surprising, because the radiation which is responsible for causing sunburn (erythema) and skin damage is in the same of radiation range which is also responsible for epidermal vitamin D 3 synthesis. It has been shown that topical application of a sunscreen with a sun protection factor of 8 prevented any increase in circulating concentrations of vitamin D 3 after a whole-body exposure to simulated sunlight that would have caused mild sunburn. Hence, the use of sunscreen can diminish the body's own production of vitamin D 3 and chronic sunscreen use can lead to unwanted lower vitamin D 3 levels in blood.
- the problem underlying the present invention is to find sunscreens which counteract the inhibition of vitamin Deformation during sun exposure. Surprisingly it was found that sunscreens comprising at least one specific UV filter will comply with these requirements.
- the present invention refers to a sunscreen formulation comprising at least one of the UV filters (A) selected from
- UV filters (B) optionally comprising at least one of the UV filters (B) selected from
- the ratio R of the effective irradiance for vitamin D 3 formation E pvd to the effective irradiance for erythema formation E er on the skin is at least 1.8
- UV filter classes as defined in claim 1 comprise different kinds of UV filters, i.e. UV-B filters (290 - 320 nm), UV-AII filters (320 - 340 nm), and broad spectrum and UV-AI filters (340 - 400 nm).
- Suitable triazine derivatives (a) are selected from
- Suitable cinnamic acid derivatives (b) are selected from
- Suitable Bis-resorcinyl triazines (c) are selected from
- Suitable aminobenzophenone derivatives (d) are selected from (di) Diethylamino Hydroxybenzoyl Hexyl Benzoate.
- Suitable dibenzoylmethane derivatives (e) are selected from
- Suitable benzimidazole derivatives (f) are selected from
- Suitable ⁇ , ⁇ -Diphenylacrylate derivatives (g) are selected from
- Suitable camphor derivatives (i) are selected from
- Suitable benzoxazole derivatives (j) are selected from
- Suitable diarylbutadiene derivatives (k) are selected from
- Suitable phenyl benzotriazole derivatives (I) are selected from
- WO 201 1097555 e.g. a polymer prepd. from a dimer diol (C 36 H 7 2O), ditrimethylolpropane, di-methyl adipate, methyl adipate, and methyl 3-(2H-benzotriazol-2-yl)-5-(1 , 1 - dimethylethyl)-4-hydroxybenzenepropanoate; and
- Suitable malonic acid derivatives (n) are selected from
- Ri is methyl; ethyl; propyl; or n-butyl;
- R 2 and R 3 independently from each other are hydrogen; or methyl;
- R 4 is methyl; ethyl; or n-propyl; R 5 and R 6 independently from each other are hydrogen; or CrC 3 alkyl; if R- ⁇ is ethyl; propyl; or n-butyl, then
- R is isopropyl.
- R-i is methyl. Most preferred is the compound of formula
- Suitable salicylate derivatives are selected from
- Suitable imidazoline derivatives (r) are selected from
- Suitable benzamalonate derivatives are selected from
- Suitable inorganic UV filters (u) are selected from
- Suitable naphthalates (v) are selected from
- the sunscreen formulation according to the present invention has an SPF of at least 2.
- the sunscreen formulation according to the present invention has an SPF of at least 6.
- the sunscreen formulation according to the present invention comprises 1 , or more than 1 UV filter.
- the sunscreen formulation according to the present invention may comprise 1 , 2, 3, 4, 5 or 6 UV filters selected from the UV filter classes as defined in claim 1 .
- the sun screen formulation according to the present invention comprises the UV filters selected from
- the sun screen formulation according to the present invention comprises the UV filters selected from
- this sun screen formulation has an SPF of at least 6.
- the sun screen formulation according to the present comprises the UV filters selected from
- this sun screen formulation has an SPF of at least 6.
- the sun screen formulation according to the present preferably comprises the UV filters selected from
- this sun screen formulation has an SPF of at least 6.
- the sun screen formulation according to the present comprises the UV filter concentrations selected from
- UV filters (B) optionally comprising at least one of the UV filters (B) selected from
- the sun screen formulation according to the present comprises the UV filter concentrations selected from
- the sunscreen formulations according to the present invention achieve an SPF of > 15 by the use of the UV filter combinations of
- the sunscreen formulations according to the present invention achieve an SPF of > 30 by the use of the UV filter combinations of
- sunscreen formulation according to the present invention are used, wherein the UV filters are selected from the broadband (spectrum of 340 to 400 nm) UV filters
- the present invention refers to sunscreen formulations comprising a UV filter se- lected from
- sunscreen formulation contains only one of the selected UV filters.
- sunscreen formulations are used, wherein the UV filters are selected from broadband
- sunscreen formulation contains only one of the selected UV filters.
- sunscreen formulations are preferred, which comprise particulate UV filters selected from
- sunscreen formulations are preferred, which comprise non-particulate UV filters selected from
- the preferred ratio of the effective irradiance for vitamin D 3 formation E pvd to the effective irradi- ance for erythema formation E er on the skin of the sunscreen formulations according to the pre- sent invention wherein is at least 1 .8, preferably at least 1 ,85, more preferably at least 1 ,90 even more preferably > 1 ,95, most preferably at least 2,0 and upmost preferably at least 2,1 .
- sunscreen formulations according to the present invention wherein the ratio of the effective irradiance for vitamin D 3 formation E pvd to the effective irradiance for erythema formation E er on the skin is at least 1.8; and which contain the UV filter combinations CSF 1 - CSF 32 of Table 1 are preferred.
- sunscreen compositions with optimized transparency for improved vitamin D 3 production in a huge range of SPFs up to > SPF60 can be provided, which include but are not limited to the sun protection factors (abbreviated as SPF) proposed by the European Commission Recommendation: SPF 6, 15, 30, 50 and 50+ (>60).
- SPF sun protection factors
- SPF 6 the European Commission Recommendation
- SPF 6 the sun protection factors proposed by the European Commission Recommendation: SPF 6, 15, 30, 50 and 50+ (>60).
- SPF 6 the sun protection factors proposed by the European Commission Recommendation: SPF 6, 15, 30, 50 and 50+ (>60).
- SPF 6 the sun protection factors proposed by the European Commission Recommendation: SPF 6, 15, 30, 50 and 50+ (>60).
- SPF 6 the sun protection factors proposed by the European Commission Recommendation: SPF 6, 15, 30, 50 and 50+ (>60).
- SPF 6 the European Commission Recommendation
- SPF 6 the European Commission Recommendation
- the EC recommendation says that the ratio of UVA-PF/SPF should at least be 1/3, and the critical wavelength (CW) at least 370 nm.
- the UVA-PF/SPF ratio is significantly lower, for high UVA-protection, it is far higher than 1/3.
- Sunscreens necessarily reduce both E er and E pvd on the skin.
- the ratio R E pvd /E e r can be optimized by choosing an adequate UV filter combination. The higher the said ratio R , the better the sunscreen will perform concerning the vitamin D 3 production for a given protection against
- the sun screen formulation according to the present invention is especially useful for the protection of organic materials that are sensitive to ultraviolet light, especially human and animal skin and hair, against the action of UV radiation and simultaneously for increasing the transmit- tance of UV radiation for the production of vitamin D 3 on the human ski.
- Such UV filter combinations are therefore suitable as light-protective agents in cosmetic and pharmaceutical prepa- rations.
- the sun screen formulations according to the present invention contain from 1 to 50 % by weight, preferably 1 - 20 % by weight, preferably from 3 to 15 % by weight, based on the total weight of the formulation, the combination of UV filters as defined in claim 1 and a cosmetically tolerable adjuvant
- the sun screen formulations according to the present invention can be prepared by physically mixing the UV filters as defined in claim 1 with the adjuvant using customary methods, for example by simply stirring together the individual components, especially by making use of the dissolution properties of already known cosmetic UV absorbers, for example Ethylhexyl Meth- oxycinnamate (UV filter component (bi)).
- the UV filters as defined in claim 1 can be used in the sunscreen formulation, for example, without further treatment.
- UV filters used in the sunscreen of the present invention for example ( ) Methylene Bis-Benzotriazolyl Tetramethylbutylphenol, (a 2 ) Tris-Biphenyl Triazine or (h- ⁇ ) 1 ,4-(2-(4- diethylamino-2-hydroxybenzoyl)benzoyl)piperazine cane used in their micronized state (na- noscalar organic filters, particulate organic filters, UV-absorber pigments).
- any known process suitable for the preparation of microparticles can be used for the preparation of the micronised UV filters, for example wet-milling (low viscous micronization process for pumpable dispersions), with a hard grinding medium, for example zirconium silicate balls in a ball mill and a protective surfactant or a protective polymer in water or in a suitable organic solvent, wet-kneading (high viscous micronization process non pump-able pastes) using a continuous or discontinuous (batch) kneader, spray-drying from a suitable solvent, by the expansion according to the RESS process (Rapid Expansion of Supercritical Solutions) of supercritical fluids (e.g. C0 2 ), or by precipitation from suitable solvents, including supercritical fluids.
- wet-milling low viscous micronization process for pumpable dispersions
- a hard grinding medium for example zirconium silicate balls in a ball mill and a protective surfactant or a protective polymer in water
- Suitable milling apparatus for the preparation of the micronized organic UV filters are for example, a jet mill, ball mill, vibratory mill or hammer mill, preferably a high-speed mixing mill or ball mills.
- the grinding is preferably carried out with a grinding aid.
- the micronized UV filters so obtained usually have an average particle size from 0.02 to 2 micrometer, preferably from 0.05 to 1.5 micrometer and more especially from 0.1 to 1 .0 micrometer.
- the micronized UV filters used in the present invention are preferably present as aqueous dispersions.
- the grinding of the sparingly soluble organic compounds used in the present invention is preferably carried out with a grinding aid.
- the dispersing agent is used as a low molecular weight grinding aid for all the above micronisation processes.
- Preferred useful grinding aids for an aqueous dispersion are anionic surfactants with a HLB value higher than 8, more preferably higher than 10. Any conventionally usable anionic, non-ionic or amphoteric surfactants can be used as
- Such surfactant systems may comprise for example: car- boxylic acids and their salts: alkaline soap of sodium, potassium and ammonium, metallic soap of calcium or magnesium, organic basis soap such as Why, myristic, palmitic, stearic and oleic acid etc ... Alkyl phosphates or phosphoric acid esters, acid phosphate, diethanolamine phosphate, potassium cetyl phosphate. Ethoxylated carboxylic acids or polyethyleneglycol esters, PEG-n acylates. Fatty alcohol polyglycolether such as laureth-n, myreth-n, ceteareth-n, stea- reth-n, oleth-n.
- Fatty acid polyglycolether such as PEG-n-stearate, PEG-n oleate, PEG-n co- coate.
- Monoglycerides and polyol esters C12-C22 fatty acid mono- and di-esters of addition products of from 1 to 100 mol of ethylene oxide with polyols.
- Fatty acid and polyglycerol ester such as monostearate glycerol, diisostearoyl polyglyceryl-3-diisostearates, polyglyceryl-3- diisostearates, triglyceryl diisostearates, polyglyceryl-2-sesquiisostearates or polyglyceryl di- merates.
- Fatty acid polyglycolesters such as monostearate diethylene glycol, fatty acid and polyethylene glycol esters, fatty acid and saccharose esters such as At esters, glycerol and saccharose esters such as
- sorbitan esters such as sesquiisostearate, sorbitan, PEG- (6)isostearate sorbitan, PEG-(10)-sorbitan laurate, PEG-17- dioleate sorbitan.
- 0/W emulsifiers such as methyl gluceth-sesquistearate, sor- bitan stearate/sucrose cocoate, methyl glucose sesquistearate, cetearyl alcohol/cetearyl gluco- side.
- W/0 emulsifiers such as methyl glucose dioleate/ methyl glucose isostearate.
- Sulfates and sulfonated derivatives dialkylsulfosuccinat.es, dioctyl succinate, alkyllauryl sulfonate, linear sulfonated parafins, sulfonated tetraproplyne sulfonate, sodium lauryl sulfates, amonium and etha- nolamine lauryl sulfates, lauyl ether sulfates, sodium laureth sulfates or sodium myreth sulfates, sulfosuccinates, aceyl isothionates, alkanolamide sulfates, taurines, methyl taurines, imidazole sulfates.
- Zwitterionic or amphoteric surfactants that carry at least one quaternary ammonium group and at least one carboxylate and/or sulfonate group in the molecule.
- Zwitterionic surfactants that are especially suitable are betaines, such as N-alkyi-N,N-dimethylammonium glyci- nates, cocoalkyldimethylammonium glycinate, N-acylaminopropyi-N,N-dimethylammonium glycinates, cocoacylaminopropyldimethylammonium glycinate and 2-alkyl-3-carboxymethyl-3- hydroxyethylimidazolines each having from 8 to 18 carbon atoms in the alkyl or acyl group and also cocoacylaminoethylhydroxyethylcarboxymethylglycinate, N-alkylbetaine, Nalkylaminobeta- ines.
- Suitable mild surfactants as dispersing agents include fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and/or di-alkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, a. -olefin sulfonates, ethercarboxylic acids, alkyl oli- goglucosides, fatty acid glucamides, alkylamidobetaines and/or protein fatty acid condensation products, the latter preferably being based on wheat proteins.
- Non ionic surfactants such as PEG-6 beeswax (and) PEG-6 stearate (and) polyglyceryl-2-isostearate [Apifac], glyceryl stearate (and) PEG-1 00 stearate. [Arlacel 165], PEG-5 glyceryl stearate (arlatone 983 S], sorbitan oleate (and) polyglyceryl-3 ricinoleate.
- cetearyl alcohol and PEG-40 castor oil [Emulgade F Special], cetearyl alcohol and PEG-40 castor oil and sodi- urn cetearyl sulfate [Emulgade F], stearyl alcohol and steareth-7 and steareth-10 [Emulgator E 2155], cetearyl alcohol and szeareth-7 and steareth-10 [Emulsifying wax U.S.N.F], glyceryl stearate and PEG-75 stearate [Gelot 64], propylene glycol ceteth-3 acetate .[Hetester PCS), propylene glycol - 8- isoceth-3 acetate [Hetester PHA], cetearyl alcohol and ceteth-12 and oleth- 12 [Lanbritol Wax N 21 ], PEG -6 stearate and PEG-32 stearate [Tefose 1500], PEG-6 stearate and ceteth-20 and ste
- Anionic emulsifiers such as PEG-2 stearate SE, glyceryl stearate SE [Monelgine, Cutina KD], propylene glycol stearate [Tegin P], cetearyl Alcohol and Sodium cetearyl sulfate [Lanette N, Cutina LE, Crodacol GP], cetearyl alcohol and sodium lauryl sulfate [Lanette W], trilaneth-4 phopshate and glycol stearate and PEG-2 stearate [Sedefos 75], glyceryl stearate and sodium lauryl Sulfate [Teginacid Special].
- Cationic acid bases such as cetearyl alcohol and cetrimonium bromide.
- Most preferred dispersing agents (b) are sodium alkyl sulfates or sodium alkyl ether sulfates, such as sodium laureth sulfate [Texapon N70 from Cognis] or sodium myreth sulfate [Texapon K14 S from Cognis].
- the specific dispersing agents may be used in an amount of, for example, from 1 to 30 % by weight, especially from 2 to 20 % by weight and preferably from 3 to 10 % by weight, based on the total weight of the composition.
- Useful solvents are water, brine, (polyethylene glycol, glycerol or cosmetically acceptable oils.
- W/O, O/W, 0/W/O and W/O/W emulsions or microemulsions they contain, for example, from 0.1 to 30 % by weight, preferably from 0.1 to 15 % by weight and especially from 0.5 to 10 % by weight, based on the total weight of the composition, of the UV filters selected from (a) - (x), from 1 to 60 % by weight, especially from 5 to 50 % by weight and preferably from 10 to 35 % by weight, based on the total weight of the composition, of at least one oil component, from 0 to 30 % by weight, especially from 1 to 30 % by weight and preferably from 4 to 20 % by weight, based on the total weight of the composition, of at least one emulsifier, from 10 to 90 % by weight, especially from 30 to 90 % by weight, based on the total weight of the composi- tion, of water, and from 0 to 88.9 % by weight, especially from 1 to 50 % by weight, of
- Suitable oil components of oil-containing compositions are for example Guerbet alcohols based on fatty alcohols having from 6 to 18, preferably from 8 to 10, carbon atoms, esters of linear C 6 -C 2 4 fatty acids with linear C3-C24 alcohols, esters of branched C 6 -Ci 3 carboxylic acids with linear C 6 -C 2 4 fatty alcohols, esters of linear C 6 -C 2 4 fatty acids with branched alcohols, especially 2-ethylhexanol, esters of hy- droxycarboxylic acids with linear or branched C 6 -C 2 2 fatty alcohols, especially dioctyl malates, esters of linear and/or branched fatty acids with polyhydric alcohols (for example propylene gly- col, dimer diol or trimer triol)
- polyhydric alcohols for example propylene gly- col, dimer diol or trimer triol
- That group of substances comprises the esterification products of fatty acids having from 8 to 24 carbon atoms, for example caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotride- canoic acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and technical-grade mixtures thereof (obtained, for example, in the pressure removal of natural fats and oils, in the reduction of aldehydes from Roelen's oxosynthesis or in the dimerisation of unsaturated fatty acids) with alcohols, for example is
- dicarboxylic acid esters such as di-n-butyl adipate, di(2-ethylhexyl) adipate, di(2-ethylhexyl) succinate and diisotridecyl acetate
- diol esters such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di(2-ethylhexanoate), propylene glycol diisostearate, propyl- ene glycol dipelargonate, butanediol diisostearate and neopentyl glycol dicaprylate.
- Preferred mono- or poly-ols are ethanol, isopropanol, propylene glycol, hexylene glycol, glycerol and sorbitol. It is also possible to use di- and/or trivalent metal salts (alkaline earth metal, Al 3+ inter alia) of one or more alkyl carboxylic acids.
- the oil components can be used in an amount of, for example, from 1 to 60 % by weight, especially from 5 to 50 % by weight and preferably from 10 to 35 % by weight, based on the total weight of the composition
- Any conventionally usable emulsifier can be used for the cosmetic compositions according to the present invention.
- Suitable emulsifiers are for example, non-ionic surfactants from the following groups:
- polyol esters and especially polyglycerol esters for example diisostearoyl polyglyceryl-3- diisostearates, polyglyceryl-3-diisostearates, triglyceryl diisostearates, polyglyceryl-2- sesquiisostearates or polyglyceryl dimerates.
- polyglycerol esters for example diisostearoyl polyglyceryl-3- diisostearates, polyglyceryl-3-diisostearates, triglyceryl diisostearates, polyglyceryl-2- sesquiisostearates or polyglyceryl dimerates.
- ethoxylated esters of natural derivatives for example polyethoxylated esters of hydrogenated castor oil
- silicone oil emulsifiers for example silicone polyol
- mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol see DE-A-1 165 574 and/or mixed esters of fatty acids having from 6 to 22 carbon atoms, methylglucose and polyols, preferably glycerol or polyglycerol, for example polyglyceryl-3-glucose dis- tearates, polyglyceryl-3-glucose dioleates, methyl glucose dioleates or dicocoyl pentae- rythryl distearyl citrates; and also
- the addition products of ethylene oxide and/or of propylene oxide with fatty alcohols, fatty ac- ids, alkylphenols, glycerol mono- and di-esters and also sorbitan mono- and di-esters of fatty acids, or with castor oil, are known, commercially available products. They are usually homo- logue mixtures, the average degree of alkoxylation of which corresponds to the ratio of the amounts of ethylene oxide and/or propylene oxide and substrate with which the addition reaction is carried out.
- Ci 2 -Ci 8 fatty acid mono- and di-esters of addition products of ethylene oxide with glycerol are known, for example, from DE-A-2 024 051 as fat-restoring substances for cosmetic preparations.
- Cs-C-isAlkyl-mono- and -oligo-glycosides their preparation and their use are known from the prior art. They are prepared especially by reacting glucose or oligosaccharides with primary alcohols having from 8 to 18 carbon atoms.
- Suitable glycoside radicals include monoglycosides in which a cyclic sugar radical is glycosidically bonded to the fatty alcohol and also oligomeric glycosides having a degree of oligomerisation of up to preferably about 8. The degree of oligo- merisation is a statistical average value based on a homologue distribution customary for such technical-grade products.
- zwitterionic surfactants denotes especially surface-active compounds that carry at least one quaternary ammonium group and at least one carboxylate and/or sulfonate group in the molecule.
- Zwitterionic surfactants that are especially suitable are the so-called betaines, such as N-alkyl-N,N-dimethyl- ammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylamino- propyl-N,N-dimethylammonium glycinates, for example cocoacylaminopropyldimethyl- ammonium glycinate, and 2-alkyl-3-carboxymethyl-3-hydroxyethylimidazolines each having from 8 to 18 carbon atoms in the alkyl or acyl group and also cocoacylaminoethylhydroxyethylcar- boxymethylglycinate.
- betaines such as N-alkyl-N,N-dimethyl- ammonium glycinates, for example cocoalkyldimethylammonium glycinate, N-acylamino- propyl-N,N-dimethylammonium glycina
- ampholytic surfactants are to be understood as meaning especially those which, in addition to containing a C 8 -Ci 8 -alkyl or -acyl group, contain at least one free amino group and at least one -COOH or -S0 3 H group in the molecule and are capable of forming internal salts.
- ampholytic surfactants include N-alkylglycines, N-alkylpropionic acids, N-al- kylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropyl- glycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids, each having approximately from 8 to 18 carbon atoms in the alkyl group.
- Ampholytic surfactants to which special preference is given are N-cocoalkylamino-propionate, cocoacylaminoethylaminopropionate and Ci 2 -Ci 8 acylsarcosine.
- ampholytic emulsifiers there also come into consideration quaternary emulsifiers, special preference is giv- en to those of the esterquat type, preferably methyl-quaternised di-fatty acid triethanolamine ester salts.
- Non-ionic emulsifiers are preferred, preferably ethoxylated fatty alcohols having from 8 to 22 carbon atoms and from 4 to 30 EO units.
- the emulsifiers may be used in an amount of, for example, from 1 to 30 % by weight, especially from 4 to 20 % by weight and preferably from 5 to 10 % by weight, based on the total weight of the composition. It is, however, also possible in principle to dispense with the use of emulsifiers.
- compositions according to the invention may in addition contain, as further adjuvants and additives, mild surfactants, super- fatting agents, pearlescent waxes, consistency regulators, thickeners, polymers, silicone compounds, fats, waxes, stabilisers, biogenic active ingredients, deodorising active ingredients, anti- dandruff agents, film formers, swelling agents, antioxidants, hydrotropic agents, preservatives, insect repellents, self-tanning agents, solubilizers, perfume oils, colorants, bacteria-inhibiting agents and the like.
- Substances suitable for use as super-fatting agents are, for example, lanolin and lecithin and also polyethoxylated or acrylated lanolin and lecithin derivatives, polyol fatty acid esters, mono- glycerides and fatty acid alkanolamides, the latter simultaneously acting as foam stabilisers.
- Suitable mild surfactants include fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and/or di- alkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, ether carboxylic acids, alkyl oligoglucosides, fatty acid glu- camides, alkylamidobetaines and/or protein fatty acid condensation products, the latter preferably being based on wheat proteins.
- Suitable pearlescent are for example: alkylene glycol esters, especially ethylene glycol dis- tearate; fatty acid alkanolamides, especially coco fatty acid diethanolamide; partial glycerides, especially stearic acid monoglyceride; esters of polyvalent, unsubstituted or hydroxy-substituted carboxylic acids with fatty alcohols having from 6 to 22 carbon atoms, especially long-chained esters of tartaric acid; fatty substances, for example fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially laurone and distearyl ether; fatty acids, such as stearic acid, hydroxystearic acid or behenic ac- id, ring-opening products of olefin epoxides having from 12 to 22 carbon atoms with fatty alcohols having from 12 to 22 carbon atoms and/or polyol
- Suitable consistency regulators are especially fatty alcohols or hydroxy fatty alcohols having from 12 to 22 carbon atoms and preferably from 16 to 18 carbon atoms, and in addition partial glycerides, fatty acids and hydroxy fatty acids. Preference is given to a combination of such substances with alkyl-oligoglucosides and/or fatty acid N-methylglucamides of identical chain length and/or polyglycerol poly-12-hydroxystearates.
- Suitable thickeners include, for example, Aerosil types (hydrophilic silicic acids), polysaccharides, especially xanthan gum, guar-guar, agar-agar, alginates and Tyloses, carboxymethyl cellulose and hydroxymethyl cellulose, also relatively high molecular weight polyethylene glycol mono- and di-esters of fatty acids, polyacry- lates (e.g.
- surfactants for example ethoxylated fatty acid glycerides, esters of fatty acids with polyols, for example pentaerythritol or trimethylolpropane
- fatty alcohol ethox- ylates with restricted homologue distribution and alkyl-oligoglucosides as well as electrolytes, such as sodium chloride or ammonium chloride.
- Suitable cationic polymers are, for example, cationic cellulose derivatives, for example a quar- ternised hydroxymethyl cellulose obtainable under the name Polymer JR 400 ® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternised vinylpyrroli- done/vinyl imidazole polymers, for example Luviquat ® (BASF), condensation products of poly- glycols and amines, quaternised collagen polypeptides, for example lauryldimonium hydroxy- propyl hydrolyzed collagen (Lamequat ® L/Grijnau), quaternised wheat polypeptides, polyeth- yleneimine, cationic silicone polymers, for example amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretin ® /Sandoz), copolymers of acrylic acid with dimethyldially
- Suitable anionic, zwitterionic, amphoteric and non-ionic polymers are for example, vinyl ace- tate/crotonic acid copolymers, vinylpyrrolidone/vinyl acrylate copolymers, vinyl acetate/butyl maleate/isobornyl acrylate copolymers, methyl vinyl ether/maleic anhydride copolymers and esters thereof, uncrosslinked polyacrylic acids and polyacrylic acids crosslinked with polyols, acrylamidopropyltrimethylammonium chloride/acrylate copolymers, octyl acrylamide/methyl methacrylate/tert-butylaminoethyl methacrylate/2-hydroxypropyl methacrylate copolymers, poly- vinylpyrrolidone, vinylpyrrolidone/vinyl acetate copolymers, vinylpyrrolidone/dimethylaminoethyl methacrylate/vinyl caprolactam terpoly
- Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpoly- siloxanes, cyclic silicones, and also amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and/or alkyl-modified silicone compounds, which at room temperature may be in either liquid or resinous form.
- simethicones which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units with hydrogenated silicates.
- Typical examples of fats are glycerides, and as waxes there come into consideration, inter alia, beeswax, carnauba wax, candelilla wax, montan wax, paraffin wax, hydrogenated castor oils and fatty acid esters or microwaxes solid at room temperature optionally in combination with hydrophilic waxes, e.g. cetyl stearyl alcohol or partial glycerides.
- hydrophilic waxes e.g. cetyl stearyl alcohol or partial glycerides.
- Metal salts of fatty acids for example magnesium, aluminum and/or zinc stearate or ricinoleate, may be used as stabilizers.
- Biogenic active ingredients are to be understood as meaning, for example, tocopherol, tocoph- erol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allan- toin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
- Suitable deodorizing active ingredients are for example, antiperspirants like aluminum chloro- hydrates (see J. Soc. Cosm. Chem. 24, 281 (1973)).
- Beside the chlorohydrates it is also possible to use aluminium hydroxy-acetates and acidic aluminium/zirconium salts. Esterase inhibitors may be added as further deodorising ac- tive ingredients.
- Such inhibitors are preferably trialkyi citrates, such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and especially triethyl citrate (Hydagen ® CAT, Henkel KGaA, Dijsseldorf/FRG), which inhibit enzyme activity and hence reduce odor formation.
- trialkyi citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and especially triethyl citrate (Hydagen ® CAT, Henkel KGaA, Dijsseldorf/FRG), which inhibit enzyme activity and hence reduce odor formation.
- esterase inhibitors are sterol sulfates or phosphates, for example lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and esters thereof, for example glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester and hydroxycarboxylic acids and esters thereof, for example citric acid, malic acid, tartaric acid or tartaric acid diethyl ester.
- dicarboxylic acids and esters thereof for example glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic
- Antibacterial active ingredients that influence the microbial flora and kill, or inhibit the growth of, sweat-decomposing bacteria can likewise be present in the preparations (especially in stick preparations). Examples include chitosan, phe- noxyethanol and chlorhexidine gluconate. 5-Chloro-2-(2,4-dichlorophenoxy)-phenol (Irgasan ® , BASF has also proved especially effective.
- Customary film formers include, for example, chitosan, microcrystalline chitosan, quaternised chitosan, polyvinylpyrrolidone, vinylpyrrolidone/vinyl acetate copolymers, polymers of quaternary cellulose derivatives containing a high proportion of acrylic acid, collagen, hyaluronic acid and salts thereof and similar compounds.
- Suitable swelling agents for aqueous phases are montmorillonites, clay mineral substances, Pemulen and also alkyl-modified types of Carbopol (Goodrich). Further suitable polymers and swelling agents can be found in the review by R. Lochhead in Cosm. Toil. 108, 95 (1993).
- hydrotropic agents for exam- pie ethanol, isopropyl alcohol or polyols.
- Suitable polyols for that purpose comprise preferably from 2 to 15 carbon atoms and at least two hydroxy groups.
- the polyols may also contain further functional groups, especially amino groups, and/or may be modified with nitrogen. Typical examples are as follows:
- alkylene glycols for example ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and also polyethylene glycols having an average molecular weight of from 100 to 1000 Dalton;
- technical oligoglycerol mixtures having an intrinsic degree of condensation of from 1 .5 to 10, for example technical diglycerol mixtures having a diglycerol content of from 40 to 50 % by weight;
- methylol compounds such as, especially, trimethylolethane, trimethylolpropane, tri- methylolbutane, pentaerythritol and dipentaerythritol;
- lower alkyl-glucosides especially those having from 1 to 8 carbon atoms in the alkyl radical, for example methyl and butyl glucoside;
- sugar alcohols having from 5 to 12 carbon atoms, for example sorbitol or mannitol;
- sugars having from 5 to 12 carbon atoms, for example glucose or saccharose;
- amino sugars for example glucamine
- dialcohol amines such as diethanolamine or 2-amino-1 ,3-propanediol.
- Suitable preservatives include, for example, phenoxyethanol, formaldehyde solution, Parabens, pentanediol or sorbic acid and the further substance classes listed in Schedule 6, Parts A and B of the Cosmetics Regulations.
- Suitable perfume oils are mixtures of natural and/or synthetic aromatic substances.
- Natural aromatic substances are, for example, extracts from blossom (lilies, lavender, roses, jasmine, neroli, ylang-ylang), from stems and leaves (geranium, patchouli, petitgrain), from fruit (aniseed, coriander, carraway, juniper), from fruit peel (bergamot, lemons, oranges), from roots (mace, angelica, celery, cardamom, costus, iris, calmus), from wood (pinewood, san- dalwood, guaiacum wood, cedarwood, rosewood), from herbs and grasses (tarragon, lemon grass, sage, thyme), from needles and twigs (spruce, pine, Scots pine, mountain pine), from resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
- Animal raw materials also come into consideration, for example civet and castoreum. Typical
- Aromatic substance compounds of the ester type are, for example, benzyl acetate, phenoxy- ethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethyl-benzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allyl- cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
- the ethers include, for example, benzyl ethyl ether;
- the aldehydes include, for example, the linear alkanals having from 8 to 18 hydrocarbon atoms, citral, citronellal, citronellyl oxyacetaldehyde, cyclamen aldehyde, hy- droxycitronellal, lilial and bourgeonal;
- the ketones include, for example, the ionones, a- isomethylionone and methyl cedryl ketone;
- the alcohols include, for example, anethol, citronel- lol, eugenol, isoeugenol, geraniol, linalool, phenyl ethyl alcohol and terpinol; and
- the hydrocarbons include mainly the terpenes and balsams.
- Ethereal oils of relatively low volatility which are chiefly used as aroma components, are also suitable as perfume oils, e.g. sage oil, camomile oil, clove oil, melissa oil, oil of cinnamon leaves, lime blossom oil, juni- per berry oil, vetiver oil, olibanum oil, galbanum oil, labolanum oil and lavandin oil.
- bacteria-inhibiting agents are preservatives that have a specific action against gram-positive bacteria, such as 2,4,4'-trichloro-2'-hydroxydiphenyl ether, chlorhexidine (1 ,6-di(4-chlorophenyl-biguanido)hexane) or TCC (3,4,4'-trichlorocarbanilide).
- a large number of aromatic substances and ethereal oils also have antimicrobial properties. Typical examples are the active ingredients eugenol, menthol and thymol in clove oil, mint oil and thyme oil.
- a natural deodorizing agent of interest is the terpene alcohol farnesol (3,7,1 1 -trime- thyl-2,6,10-dodecatrien-1 -ol), which is present in lime blossom oil.
- Glycerol monolaurate has also proved to be a bacteriostatic agent.
- the amount of the additional bacteria-inhibiting agents present is usually from 0.1 to 2 % by weight, based on the solids content of the cosmetic composition according to the present invention.
- the cosmetic compositions according to the present invention may furthermore contain as adjuvants anti-foams, such as silicones, structurants, such as maleic acid, solubilizers, such as ethylene glycol, propylene glycol, glycerol or diethylene glycol, opacifiers, such as latex, sty- rene/PVP or styrene/acrylamide copolymers, complexing agents, such as EDTA, NTA, ⁇ -ala- ninediacetic acid or phosphonic acids, propellants, such as propane/butane mixtures, N 2 0, di- methyl ether, C0 2 , N 2 or air, so-called coupler and developer components as oxidation dye precursors, thioglycolic acid and derivatives thereof , thiolactic acid, cysteamine, thiomalic acid or a-mercaptoethanesulfonic acid as reducing agents or hydrogen peroxide, potassium bromate or sodium bromate as oxid
- Suitable self-tanning agents are dihydroxyacetone, erythrulose or mixtures of dihydroxyacetone and erythrulose.
- Cosmetic formulations according to the invention are contained in a wide variety of cosmetic preparations, especially the following preparations:
- skin-care preparations e.g. skin emulsions, multi-emulsions or skin oils
- cosmetic personal care preparations e.g. facial make-up in the form of day creams or pow- der creams, face powder (loose or pressed), rouge or cream make-up, eye-care preparations, e.g. eye shadow preparations, mascara, eyeliner, eye creams or eye-fix creams; lip- care preparations, e.g. lipsticks, lip gloss, lip contour pencils, nail-care preparations, such as nail varnish, nail varnish removers, nail hardeners or cuticle removers;
- light-protective preparations such as sun milks, lotions, creams or oils, sunblocks or tropi- cals, pre-tanning preparations or after-sun preparations;
- skin-tanning preparations e.g. self-tanning creams
- depigmenting preparations e.g. preparations for bleaching the skin or skin-lightening preparations
- insect-repellents e.g. insect-repellent oils, lotions, sprays or sticks;
- the final formulations may exist in a wide variety of presentation forms, for example:
- liquid preparations as a W/O, O/W, 0/W/O, W/O/W or PIT emulsion and all kinds of microemulsions,
- Important cosmetic compositions for the skin are light-protective preparations, such as sun milks, lotions, creams, oils, sunblocks or tropicals, pretanning preparations or after-sun preparations, also skin-tanning preparations, for example self-tanning creams.
- light-protective preparations such as sun milks, lotions, creams, oils, sunblocks or tropicals
- pretanning preparations or after-sun preparations also skin-tanning preparations, for example self-tanning creams.
- sun protection creams, sun protection lotions, sun protection oils, sun protection milks and sun protection preparations in the form of a spray are particularly interested.
- a simulation tool For calculation of the spectral transmittance ⁇ ( ⁇ ) of sunscreens with given filter compositions, a simulation tool is used.
- the tool is based on the following elements: a database with UV spectra of the relevant UV filters (given as decade molar extinction coefficients), a mathematical description of the irregularity profile of the sunscreen film on the skin, consideration of changes in UV filter concentration due to photo-instabilities, and consideration of formulation influences like the distribution of the UV filters in the oil and water phase of an emulsion.
- the SPF is calculated according to the following formula
- the exposure time t PVD for producing the equivalent amount of the recommended vitamin D 3 intake of 2,000 IU with or without a sunscreen is
- filter compositions are chosen to achieve sun protection factors (abbreviated as SPF) of 6, 15, and 30.
- SPF sun protection factors
- Example A1 SPF 6 sunscreens
- Table 1 shows the compositions as well as the calculated values of SPF, E pV d/E e r ratio, UVA-PF, UVA-PF/SPF-ratio and critical wavelength CW for four SPF 6 sunscreens as explained above.
- Figure 3 shows the spectral transmittances of sunscreen films referring to the four different types of UV filter compositions leading to SPF 6.
- Table 2 shows the compositions as well as the calculated values of SPF, E PVd /E er ratio, UVA-PF, UVA-PF/SPF-ratio and critical wavelength CW for four SPF 15 sunscreens.
- Table 2 UV filter compositions for SPF 15 with different levels of E P vd/E e r ratio and UVA protection
- Table 3 shows the compositions and the calculated values of SPF, E pvc i/Eer ratio, UVA-PF, UVA- PF/SPF-ratio and critical wavelength CW for four SPF 30 sunscreens
- Figure 5 shows the simulated spectral transmittances of sunscreen films referring to the four different types of UV filter compositions leading to SPF 30.
- the examples A3.3 and A3.4 demonstrate that the transmittance of sunscreens for vitamin D 3 - effective radiation can be optimized even if the SPF is the same.
- the attenuation factors AF PV D and the exposure times t PV D for the 4 examples of sunscreens are given in table 4.
- the formulation is prepared as follows: Parts A and B are prepared and separately heated to 80°C. Then part A is added to part B under stirring. After short homogenization part C is added under stirring. After cooling down to room temperature the ingredients of part D are added in the listed order. P A t a r
- the formulation is prepared as follows: Part A is heated to 80°C, cooled down to room temperature and incorporated into part B under stirring. After homogenization (with an ultra-turrax type device) part C is added, again followed by homogenization. Finally the ingredients of part D are added and the formulation is homogenized again.
- the formulation is prepared as follows: Parts A and B are prepared and separately heated to 80°C. Then part A is added to part B under stirring. After short homogenization part C is added under stirring. After cooling down to room temperature the ingredients of part D are added in the listed order.
- the formulation is prepared as follows: Parts A and B are prepared and separately heated to 80°C. Then part A is added to part B under stirring. After short homogenization part C is added under stirring. After cooling down to room temperature the ingredients of part D are added in the listed order.
- the formulation is prepared as follows: Parts A and B are prepared and separately heated to 80°C. Then part A is added to part B under stirring. After short homogenization part C is added under stirring. After cooling down to room temperature the ingredients of part D are added in the listed order.
- the formulation is prepared as follows: Parts A and B are prepared and separately heated to 80°C. Then part A is added to part B under stirring. After short homogenization part C is added under stirring. After cooling down to room temperature the ingredients of part D are added in the listed order.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Emergency Medicine (AREA)
- Inorganic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/327,071 US11419804B2 (en) | 2014-07-25 | 2015-07-24 | Sunscreen formulations optimized for the formation of vitamin D |
EP15738952.9A EP3171945A1 (en) | 2014-07-25 | 2015-07-24 | Sunscreen formulations optimized for the formation of vitamin d |
CN201580041053.0A CN106659653B (en) | 2014-07-25 | 2015-07-24 | Sunscreen formulations optimized for vitamin D formation |
JP2017503845A JP2017521463A (en) | 2014-07-25 | 2015-07-24 | Sunscreen formulations optimized for vitamin D formation |
KR1020177001802A KR102483132B1 (en) | 2014-07-25 | 2015-07-24 | Sunscreen formulations optimized for the formation of vitamin d |
BR112017001490-4A BR112017001490B1 (en) | 2014-07-25 | 2015-07-24 | sunscreen formulation |
CN202210350723.9A CN115227593A (en) | 2014-07-25 | 2015-07-24 | Sunscreen formulations optimized for vitamin D formation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14178458 | 2014-07-25 | ||
EP14178458.7 | 2014-07-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016012586A1 true WO2016012586A1 (en) | 2016-01-28 |
Family
ID=51292800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2015/066985 WO2016012586A1 (en) | 2014-07-25 | 2015-07-24 | Sunscreen formulations optimized for the formation of vitamin d |
Country Status (7)
Country | Link |
---|---|
US (1) | US11419804B2 (en) |
EP (1) | EP3171945A1 (en) |
JP (3) | JP2017521463A (en) |
KR (1) | KR102483132B1 (en) |
CN (2) | CN106659653B (en) |
BR (1) | BR112017001490B1 (en) |
WO (1) | WO2016012586A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3191075A1 (en) * | 2014-09-09 | 2017-07-19 | Basf Se | Mixtures of cosmetic uv absorbers |
WO2017198806A1 (en) * | 2016-05-19 | 2017-11-23 | Basf Se | Micro-particulate organic uv absorber composition |
EP3437626A1 (en) * | 2017-08-01 | 2019-02-06 | Beiersdorf AG | Sunscreen with low eye irritation potential |
WO2020070194A1 (en) * | 2018-10-05 | 2020-04-09 | Basf Se | Methylene bis-benzotriazolyl tetramethylbutylphenol for fabric staining reduction |
WO2020187779A1 (en) * | 2019-03-15 | 2020-09-24 | Basf Se | Efficient sunscreen compositions with diethylamino hydroxybenzoyl hexyl benzoate and organic particulate uv filter |
WO2021102113A1 (en) * | 2019-11-20 | 2021-05-27 | Coty Inc. | Sunscreen compositions with multiple photoprotecting uv filters |
CN113288827A (en) * | 2020-02-21 | 2021-08-24 | 诺力昂化学品国际有限公司 | Biodegradable polyesters for water-resistant anhydrous sunscreen formulations |
CN113288826A (en) * | 2020-02-21 | 2021-08-24 | 诺力昂化学品国际有限公司 | Biodegradable polyesters for water-resistant oil-in-water sunscreen formulations |
FR3115986A1 (en) * | 2020-11-12 | 2022-05-13 | Pierre Fabre Dermo-Cosmetique | NEW SOLUBILIZING SYSTEM OF FAT-SOLUBLE ORGANIC SUN FILTERS |
US12090220B2 (en) | 2019-03-15 | 2024-09-17 | Basf Se | Efficient sunscreen compositions with diethylamino hydroxybenzoyl hexyl benzoate, butyl methoxydibenzoylmethane and organic particulate UV filter |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108186389A (en) * | 2018-03-01 | 2018-06-22 | 花安堂生物科技集团有限公司 | A kind of compound sun-screening agent and the sunscreen composition that is made from it and preparation method thereof |
WO2020187762A1 (en) * | 2019-03-15 | 2020-09-24 | Basf Se | Efficient sunscreen compositions with diethylamino hydroxybenzoyl hexyl benzoate and butyl methoxydibenzoylmethane |
JP2023517999A (en) * | 2020-03-13 | 2023-04-27 | ビーエーエスエフ ソシエタス・ヨーロピア | Anti-aging care composition containing perfume |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010076731A2 (en) * | 2009-01-05 | 2010-07-08 | Armstrong Ernest T | Vitamin d promoting sunscreen |
WO2010125541A1 (en) * | 2009-04-30 | 2010-11-04 | Giuliani S.P.A. | A pharmaceutical, dermatological, nutritional or cosmetic composition for combating the immunosuppressive action of aggressive agents on the skin |
WO2011003774A2 (en) * | 2009-07-07 | 2011-01-13 | Basf Se | Uv filter combinations comprising benzylidene malonates |
EP2407163A1 (en) * | 2010-07-16 | 2012-01-18 | Giuliani S.p.A. | Compounds with a skin pigmenting activity and pharmaceutical or cosmetic compositions containing them |
WO2012168275A2 (en) * | 2011-06-08 | 2012-12-13 | Dsm Ip Assets B.V. | Sunscreens |
EP2710996A2 (en) | 2007-12-14 | 2014-03-26 | Basf Se | Sunscreen compositions comprising colour pigments |
WO2014070266A1 (en) * | 2012-11-05 | 2014-05-08 | Global Life Science Partners Limited | Compositions for administering a specific wavelength phototherapy |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1165574B (en) | 1960-08-08 | 1964-03-19 | Dehydag Gmbh | Process for the production of mixed esters used as emulsifiers for ointment bases |
DE2024051C3 (en) | 1970-05-16 | 1986-05-07 | Henkel KGaA, 4000 Düsseldorf | Use of the esterification products of glycerol-ethylene oxide adducts with fatty acids as refatting agents in cosmetic preparations |
LU68901A1 (en) | 1973-11-30 | 1975-08-20 | ||
US4189468A (en) | 1973-11-30 | 1980-02-19 | L'oreal | Crosslinked polyamino-polyamide in hair conditioning compositions |
KR20110135916A (en) | 2009-03-26 | 2011-12-20 | 가부시키가이샤 시세이도 | Sunscreen cosmetic |
US8475774B2 (en) | 2010-02-08 | 2013-07-02 | Johnson & Johnson Consumer Companies, Inc. | Sunscreen compositions comprising an ultraviolet radiation-absorbing polymer |
KR102239036B1 (en) | 2013-05-10 | 2021-04-13 | 바스프 에스이 | Agent containing large quantities of uv stabilizers |
-
2015
- 2015-07-24 US US15/327,071 patent/US11419804B2/en active Active
- 2015-07-24 CN CN201580041053.0A patent/CN106659653B/en active Active
- 2015-07-24 KR KR1020177001802A patent/KR102483132B1/en active IP Right Grant
- 2015-07-24 JP JP2017503845A patent/JP2017521463A/en active Pending
- 2015-07-24 BR BR112017001490-4A patent/BR112017001490B1/en active IP Right Grant
- 2015-07-24 WO PCT/EP2015/066985 patent/WO2016012586A1/en active Application Filing
- 2015-07-24 EP EP15738952.9A patent/EP3171945A1/en active Pending
- 2015-07-24 CN CN202210350723.9A patent/CN115227593A/en active Pending
-
2020
- 2020-09-24 JP JP2020159309A patent/JP7204715B2/en active Active
-
2022
- 2022-09-21 JP JP2022149638A patent/JP2022180512A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2710996A2 (en) | 2007-12-14 | 2014-03-26 | Basf Se | Sunscreen compositions comprising colour pigments |
WO2010076731A2 (en) * | 2009-01-05 | 2010-07-08 | Armstrong Ernest T | Vitamin d promoting sunscreen |
WO2010125541A1 (en) * | 2009-04-30 | 2010-11-04 | Giuliani S.P.A. | A pharmaceutical, dermatological, nutritional or cosmetic composition for combating the immunosuppressive action of aggressive agents on the skin |
WO2011003774A2 (en) * | 2009-07-07 | 2011-01-13 | Basf Se | Uv filter combinations comprising benzylidene malonates |
EP2407163A1 (en) * | 2010-07-16 | 2012-01-18 | Giuliani S.p.A. | Compounds with a skin pigmenting activity and pharmaceutical or cosmetic compositions containing them |
WO2012168275A2 (en) * | 2011-06-08 | 2012-12-13 | Dsm Ip Assets B.V. | Sunscreens |
WO2014070266A1 (en) * | 2012-11-05 | 2014-05-08 | Global Life Science Partners Limited | Compositions for administering a specific wavelength phototherapy |
Non-Patent Citations (2)
Title |
---|
HERZOG B ET AL: "In silico Determination of Topical Sun Protection", 1 January 2011 (2011-01-01), pages 62 - 71, XP009186882, ISSN: 2050-2893, Retrieved from the Internet <URL:www.cosmeticsciencetechnology.com/articles/samples/2471.pdf> [retrieved on 20151026] * |
JOSEPH STANFIELD ET AL: "In vitro measurements of sunscreen protection", PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, vol. 9, no. 4, 1 January 2010 (2010-01-01), pages 489, XP055126453, ISSN: 1474-905X, DOI: 10.1039/b9pp00181f * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3191075A1 (en) * | 2014-09-09 | 2017-07-19 | Basf Se | Mixtures of cosmetic uv absorbers |
EP3191075B1 (en) * | 2014-09-09 | 2023-02-15 | Basf Se | Mixtures of cosmetic uv absorbers |
WO2017198806A1 (en) * | 2016-05-19 | 2017-11-23 | Basf Se | Micro-particulate organic uv absorber composition |
JP2019519510A (en) * | 2016-05-19 | 2019-07-11 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Particulate organic UV absorber composition |
JP7389536B2 (en) | 2016-05-19 | 2023-11-30 | ベーアーエスエフ・エスエー | Particulate organic UV absorber composition |
JP2022033859A (en) * | 2016-05-19 | 2022-03-02 | ビーエーエスエフ ソシエタス・ヨーロピア | Micro-particulate organic uv absorber composition |
EP3437626A1 (en) * | 2017-08-01 | 2019-02-06 | Beiersdorf AG | Sunscreen with low eye irritation potential |
CN112789025A (en) * | 2018-10-05 | 2021-05-11 | 巴斯夫欧洲公司 | Methylene bis-benzotriazolyl tetramethylbutylphenol for reducing fabric staining |
WO2020070194A1 (en) * | 2018-10-05 | 2020-04-09 | Basf Se | Methylene bis-benzotriazolyl tetramethylbutylphenol for fabric staining reduction |
US11617709B2 (en) | 2018-10-05 | 2023-04-04 | Basf Se | Methylene bis-benzotriazolyl tetramethylbutylphenol for fabric staining reduction |
US12090220B2 (en) | 2019-03-15 | 2024-09-17 | Basf Se | Efficient sunscreen compositions with diethylamino hydroxybenzoyl hexyl benzoate, butyl methoxydibenzoylmethane and organic particulate UV filter |
CN113573694A (en) * | 2019-03-15 | 2021-10-29 | 巴斯夫欧洲公司 | Effective sunscreen compositions with diethylamino hydroxybenzoyl hexyl benzoate and organic particulate UV filters |
WO2020187779A1 (en) * | 2019-03-15 | 2020-09-24 | Basf Se | Efficient sunscreen compositions with diethylamino hydroxybenzoyl hexyl benzoate and organic particulate uv filter |
WO2021102113A1 (en) * | 2019-11-20 | 2021-05-27 | Coty Inc. | Sunscreen compositions with multiple photoprotecting uv filters |
CN113288827A (en) * | 2020-02-21 | 2021-08-24 | 诺力昂化学品国际有限公司 | Biodegradable polyesters for water-resistant anhydrous sunscreen formulations |
CN113288826A (en) * | 2020-02-21 | 2021-08-24 | 诺力昂化学品国际有限公司 | Biodegradable polyesters for water-resistant oil-in-water sunscreen formulations |
WO2022101584A1 (en) | 2020-11-12 | 2022-05-19 | Pierre Fabre Dermo-Cosmetique | Novel system for solubilising fat-soluble organic sun filters |
EP4162923A1 (en) | 2020-11-12 | 2023-04-12 | Pierre Fabre Dermo-Cosmétique | Novel system for solubilizing fat-soluble organic solar filters |
FR3115986A1 (en) * | 2020-11-12 | 2022-05-13 | Pierre Fabre Dermo-Cosmetique | NEW SOLUBILIZING SYSTEM OF FAT-SOLUBLE ORGANIC SUN FILTERS |
Also Published As
Publication number | Publication date |
---|---|
KR102483132B1 (en) | 2022-12-30 |
CN106659653B (en) | 2022-04-05 |
JP7204715B2 (en) | 2023-01-16 |
KR20170034891A (en) | 2017-03-29 |
JP2022180512A (en) | 2022-12-06 |
CN115227593A (en) | 2022-10-25 |
US11419804B2 (en) | 2022-08-23 |
BR112017001490A2 (en) | 2017-12-05 |
JP2017521463A (en) | 2017-08-03 |
JP2021001211A (en) | 2021-01-07 |
EP3171945A1 (en) | 2017-05-31 |
CN106659653A (en) | 2017-05-10 |
US20180200170A1 (en) | 2018-07-19 |
BR112017001490B1 (en) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11419804B2 (en) | Sunscreen formulations optimized for the formation of vitamin D | |
KR102434710B1 (en) | Mixtures of cosmetic uv absorbers | |
JP5107900B2 (en) | Use of benzotriazole derivatives for light stabilization | |
CN107530256B (en) | Topical sunscreen emulsions | |
EP2391334B1 (en) | Stabilization of cosmetic compositions | |
KR102345271B1 (en) | Stabilization of cosmetic compositions | |
AU2003205656A1 (en) | Micropigment mixtures | |
EP1469819A1 (en) | Micropigment mixtures | |
JP2020203888A (en) | Solubilizer for uv filter in cosmetic preparation | |
US20170290756A1 (en) | Mixtures of cosmetic uv absorbers | |
EP3556748A1 (en) | Hydroxyphenyl-triazine uv absorbers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15738952 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15327071 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177001802 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017503845 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015738952 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015738952 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017001490 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017001490 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170124 |