WO2016011028A1 - In situ solidifying complex coacervates and methods of making and using thereof - Google Patents
In situ solidifying complex coacervates and methods of making and using thereof Download PDFInfo
- Publication number
- WO2016011028A1 WO2016011028A1 PCT/US2015/040377 US2015040377W WO2016011028A1 WO 2016011028 A1 WO2016011028 A1 WO 2016011028A1 US 2015040377 W US2015040377 W US 2015040377W WO 2016011028 A1 WO2016011028 A1 WO 2016011028A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- complex coacervate
- polycation
- coacervate
- subject
- fluid
- Prior art date
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 114
- 238000000034 method Methods 0.000 title claims description 95
- 239000012530 fluid Substances 0.000 claims abstract description 80
- 239000000853 adhesive Substances 0.000 claims abstract description 75
- 230000001070 adhesive effect Effects 0.000 claims abstract description 75
- 239000007787 solid Substances 0.000 claims abstract description 56
- 150000003839 salts Chemical class 0.000 claims abstract description 47
- -1 guanidinyl group Chemical group 0.000 claims description 78
- 229920000447 polyanionic polymer Polymers 0.000 claims description 76
- 239000000499 gel Substances 0.000 claims description 63
- 229920000642 polymer Polymers 0.000 claims description 54
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 49
- 239000000178 monomer Substances 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 35
- 108010007568 Protamines Proteins 0.000 claims description 33
- 102000007327 Protamines Human genes 0.000 claims description 33
- 125000003277 amino group Chemical group 0.000 claims description 30
- 210000000988 bone and bone Anatomy 0.000 claims description 29
- 125000003118 aryl group Chemical group 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 25
- 239000011780 sodium chloride Substances 0.000 claims description 25
- 229920000768 polyamine Polymers 0.000 claims description 24
- 210000001519 tissue Anatomy 0.000 claims description 24
- 239000002872 contrast media Substances 0.000 claims description 22
- 239000000945 filler Substances 0.000 claims description 22
- 229920000388 Polyphosphate Polymers 0.000 claims description 20
- 239000003795 chemical substances by application Substances 0.000 claims description 20
- 239000000693 micelle Substances 0.000 claims description 20
- 239000001205 polyphosphate Substances 0.000 claims description 20
- 235000011176 polyphosphates Nutrition 0.000 claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 230000003014 reinforcing effect Effects 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 17
- 239000012867 bioactive agent Substances 0.000 claims description 15
- 210000004204 blood vessel Anatomy 0.000 claims description 15
- 108090000623 proteins and genes Proteins 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 15
- 230000003073 embolic effect Effects 0.000 claims description 14
- 208000027418 Wounds and injury Diseases 0.000 claims description 13
- 102000039446 nucleic acids Human genes 0.000 claims description 13
- 108020004707 nucleic acids Proteins 0.000 claims description 13
- 150000007523 nucleic acids Chemical class 0.000 claims description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 12
- 208000010392 Bone Fractures Diseases 0.000 claims description 12
- 108010070346 Salmine Proteins 0.000 claims description 12
- 229920005615 natural polymer Polymers 0.000 claims description 12
- 229940048914 protamine Drugs 0.000 claims description 12
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 claims description 11
- 206010052428 Wound Diseases 0.000 claims description 11
- 102000004169 proteins and genes Human genes 0.000 claims description 11
- 238000001356 surgical procedure Methods 0.000 claims description 11
- 229910052715 tantalum Inorganic materials 0.000 claims description 11
- 239000000412 dendrimer Substances 0.000 claims description 10
- 229920000736 dendritic polymer Polymers 0.000 claims description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate group Chemical group C(C(=C)C)(=O)[O-] CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 10
- 210000004872 soft tissue Anatomy 0.000 claims description 10
- 206010016717 Fistula Diseases 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 9
- 230000003890 fistula Effects 0.000 claims description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 9
- 239000004005 microsphere Substances 0.000 claims description 9
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 9
- 239000002502 liposome Substances 0.000 claims description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 8
- 150000007942 carboxylates Chemical class 0.000 claims description 7
- 235000000346 sugar Nutrition 0.000 claims description 7
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 7
- 229920001059 synthetic polymer Polymers 0.000 claims description 7
- 108010010803 Gelatin Proteins 0.000 claims description 6
- 125000003282 alkyl amino group Chemical group 0.000 claims description 6
- 229920000159 gelatin Polymers 0.000 claims description 6
- 239000008273 gelatin Substances 0.000 claims description 6
- 235000019322 gelatine Nutrition 0.000 claims description 6
- 235000011852 gelatine desserts Nutrition 0.000 claims description 6
- 150000004676 glycans Chemical class 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229920001282 polysaccharide Polymers 0.000 claims description 6
- 239000005017 polysaccharide Substances 0.000 claims description 6
- 206010002329 Aneurysm Diseases 0.000 claims description 5
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 claims description 5
- 238000001574 biopsy Methods 0.000 claims description 5
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 claims description 5
- 238000011049 filling Methods 0.000 claims description 5
- 125000001072 heteroaryl group Chemical group 0.000 claims description 5
- 239000003973 paint Substances 0.000 claims description 5
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 5
- 208000005189 Embolism Diseases 0.000 claims description 4
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 4
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 239000003242 anti bacterial agent Substances 0.000 claims description 4
- 230000017531 blood circulation Effects 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 239000002086 nanomaterial Substances 0.000 claims description 4
- 229940068041 phytic acid Drugs 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 238000012800 visualization Methods 0.000 claims description 4
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 claims description 3
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 claims description 3
- 208000034693 Laceration Diseases 0.000 claims description 3
- 229940088710 antibiotic agent Drugs 0.000 claims description 3
- 229940112869 bone morphogenetic protein Drugs 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 239000003102 growth factor Substances 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229940124641 pain reliever Drugs 0.000 claims description 3
- 230000035755 proliferation Effects 0.000 claims description 3
- 210000004881 tumor cell Anatomy 0.000 claims description 3
- VALXVSHDOMUUIC-UHFFFAOYSA-N 2-methylprop-2-enoic acid;phosphoric acid Chemical compound OP(O)(O)=O.CC(=C)C(O)=O VALXVSHDOMUUIC-UHFFFAOYSA-N 0.000 claims description 2
- 208000022211 Arteriovenous Malformations Diseases 0.000 claims description 2
- 208000010412 Glaucoma Diseases 0.000 claims description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims description 2
- 206010046996 Varicose vein Diseases 0.000 claims description 2
- 230000001028 anti-proliverative effect Effects 0.000 claims description 2
- 230000005744 arteriovenous malformation Effects 0.000 claims description 2
- 230000000740 bleeding effect Effects 0.000 claims description 2
- 230000005754 cellular signaling Effects 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000007334 copolymerization reaction Methods 0.000 claims description 2
- 239000002532 enzyme inhibitor Substances 0.000 claims description 2
- 239000013505 freshwater Substances 0.000 claims description 2
- 239000005556 hormone Substances 0.000 claims description 2
- 229940088597 hormone Drugs 0.000 claims description 2
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 2
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 claims description 2
- WDHYRUBXLGOLKR-UHFFFAOYSA-N phosphoric acid;prop-2-enoic acid Chemical compound OC(=O)C=C.OP(O)(O)=O WDHYRUBXLGOLKR-UHFFFAOYSA-N 0.000 claims description 2
- 150000003180 prostaglandins Chemical class 0.000 claims description 2
- 239000000018 receptor agonist Substances 0.000 claims description 2
- 229940044601 receptor agonist Drugs 0.000 claims description 2
- 239000002464 receptor antagonist Substances 0.000 claims description 2
- 229940044551 receptor antagonist Drugs 0.000 claims description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 claims description 2
- 229920002994 synthetic fiber Polymers 0.000 claims description 2
- 239000012209 synthetic fiber Substances 0.000 claims description 2
- 125000001302 tertiary amino group Chemical group 0.000 claims description 2
- 239000002407 tissue scaffold Substances 0.000 claims 9
- 238000007789 sealing Methods 0.000 claims 3
- 239000011800 void material Substances 0.000 claims 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims 1
- 206010051425 Enterocutaneous fistula Diseases 0.000 claims 1
- 208000008081 Intestinal Fistula Diseases 0.000 claims 1
- 208000002847 Surgical Wound Diseases 0.000 claims 1
- 230000003115 biocidal effect Effects 0.000 claims 1
- 230000003898 enterocutaneous fistula Effects 0.000 claims 1
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 229910052740 iodine Inorganic materials 0.000 claims 1
- 239000011630 iodine Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 229920000867 polyelectrolyte Polymers 0.000 abstract description 26
- 239000000243 solution Substances 0.000 description 36
- 239000003999 initiator Substances 0.000 description 34
- 125000000217 alkyl group Chemical group 0.000 description 26
- 239000004094 surface-active agent Substances 0.000 description 26
- 238000004132 cross linking Methods 0.000 description 24
- 239000012071 phase Substances 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 19
- 229950008679 protamine sulfate Drugs 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 12
- 125000000129 anionic group Chemical group 0.000 description 12
- 150000001768 cations Chemical class 0.000 description 12
- 125000002091 cationic group Chemical group 0.000 description 11
- 210000003734 kidney Anatomy 0.000 description 11
- 238000010587 phase diagram Methods 0.000 description 11
- 229920001223 polyethylene glycol Polymers 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 206010017076 Fracture Diseases 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 239000002736 nonionic surfactant Substances 0.000 description 10
- 230000000269 nucleophilic effect Effects 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 229910019142 PO4 Inorganic materials 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 235000021317 phosphate Nutrition 0.000 description 9
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- 102000053602 DNA Human genes 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 210000001367 artery Anatomy 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 8
- 239000007800 oxidant agent Substances 0.000 description 8
- 230000001590 oxidative effect Effects 0.000 description 8
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical group [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 8
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical class OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000004971 Cross linker Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 230000010102 embolization Effects 0.000 description 7
- 125000004185 ester group Chemical group 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 6
- 239000003093 cationic surfactant Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 6
- 230000002209 hydrophobic effect Effects 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000004475 Arginine Substances 0.000 description 5
- 229920001651 Cyanoacrylate Polymers 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- FENRSEGZMITUEF-ATTCVCFYSA-E [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].OP(=O)([O-])O[C@@H]1[C@@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H]1OP(=O)([O-])[O-] Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].OP(=O)([O-])O[C@@H]1[C@@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H](OP(=O)([O-])[O-])[C@H](OP(=O)(O)[O-])[C@H]1OP(=O)([O-])[O-] FENRSEGZMITUEF-ATTCVCFYSA-E 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 5
- 239000001506 calcium phosphate Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 210000001105 femoral artery Anatomy 0.000 description 5
- 239000000017 hydrogel Substances 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000004962 physiological condition Effects 0.000 description 5
- 230000008439 repair process Effects 0.000 description 5
- 229940083982 sodium phytate Drugs 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 125000003396 thiol group Chemical class [H]S* 0.000 description 5
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 5
- 229910001428 transition metal ion Inorganic materials 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229920001214 Polysorbate 60 Polymers 0.000 description 4
- 150000003926 acrylamides Chemical class 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000003945 anionic surfactant Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005354 coacervation Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 229940005740 hexametaphosphate Drugs 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 229940038597 peroxide anti-acne preparations for topical use Drugs 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 4
- 235000002949 phytic acid Nutrition 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 229940070353 protamines Drugs 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000003871 sulfonates Chemical class 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 230000029663 wound healing Effects 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 229920005682 EO-PO block copolymer Polymers 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006845 Michael addition reaction Methods 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 210000002565 arteriole Anatomy 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- PUUNVKFUGNVKMX-UHFFFAOYSA-N carbamimidoyl-[3-(2-methylprop-2-enoylamino)propyl]azanium chloride Chemical compound Cl.CC(=C)C(=O)NCCCNC(N)=N PUUNVKFUGNVKMX-UHFFFAOYSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- MHUWZNTUIIFHAS-CLFAGFIQSA-N dioleoyl phosphatidic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COP(O)(O)=O)OC(=O)CCCCCCC\C=C/CCCCCCCC MHUWZNTUIIFHAS-CLFAGFIQSA-N 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 3
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000007943 implant Substances 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- NTHXOOBQLCIOLC-UHFFFAOYSA-N iohexol Chemical compound OCC(O)CN(C(=O)C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NTHXOOBQLCIOLC-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 239000011859 microparticle Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 230000000865 phosphorylative effect Effects 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 3
- 210000002254 renal artery Anatomy 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229920002477 rna polymer Polymers 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 2
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical group O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical group CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 2
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 2
- YNKQCPNHMVAWHN-UHFFFAOYSA-N 4-(benzenecarbonothioylsulfanyl)-4-cyanopentanoic acid Chemical compound OC(=O)CCC(C)(C#N)SC(=S)C1=CC=CC=C1 YNKQCPNHMVAWHN-UHFFFAOYSA-N 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 208000024779 Comminuted Fractures Diseases 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- AHMIDUVKSGCHAU-UHFFFAOYSA-N Dopaquinone Natural products OC(=O)C(N)CC1=CC(=O)C(=O)C=C1 AHMIDUVKSGCHAU-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 108060003393 Granulin Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 208000002658 Intra-Articular Fractures Diseases 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 2
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 2
- AHMIDUVKSGCHAU-LURJTMIESA-N L-dopaquinone Chemical compound [O-]C(=O)[C@@H]([NH3+])CC1=CC(=O)C(=O)C=C1 AHMIDUVKSGCHAU-LURJTMIESA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 108091093037 Peptide nucleic acid Proteins 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 2
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 2
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- LWMFAFLIWMPZSX-UHFFFAOYSA-N bis[2-(4,5-dihydro-1h-imidazol-2-yl)propan-2-yl]diazene Chemical compound N=1CCNC=1C(C)(C)N=NC(C)(C)C1=NCCN1 LWMFAFLIWMPZSX-UHFFFAOYSA-N 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000002805 bone matrix Anatomy 0.000 description 2
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 125000004386 diacrylate group Chemical group 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229940052303 ethers for general anesthesia Drugs 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 2
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 210000000936 intestine Anatomy 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 229960002725 isoflurane Drugs 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 229960004502 levodopa Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 239000012038 nucleophile Substances 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 2
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 210000004623 platelet-rich plasma Anatomy 0.000 description 2
- 229920000962 poly(amidoamine) Polymers 0.000 description 2
- 229920000671 polyethylene glycol diacrylate Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 238000010526 radical polymerization reaction Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229950006451 sorbitan laurate Drugs 0.000 description 2
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 2
- 229950004959 sorbitan oleate Drugs 0.000 description 2
- 229950011392 sorbitan stearate Drugs 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 230000003075 superhydrophobic effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- BGGCXQKYCBBHAH-OZRXBMAMSA-N (1r)-1-[(3ar,5r,6s,6ar)-6-hydroxy-2,2-dimethyl-3a,5,6,6a-tetrahydrofuro[2,3-d][1,3]dioxol-5-yl]ethane-1,2-diol Chemical group O1[C@H]([C@H](O)CO)[C@H](O)[C@H]2OC(C)(C)O[C@H]21 BGGCXQKYCBBHAH-OZRXBMAMSA-N 0.000 description 1
- FVQMJJQUGGVLEP-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOOC(C)(C)C FVQMJJQUGGVLEP-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ARAKJJDEQPDESK-CVBJKYQLSA-N (Z)-octadec-9-enoic acid propane-1,2-diamine Chemical compound CC(N)CN.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O ARAKJJDEQPDESK-CVBJKYQLSA-N 0.000 description 1
- VMJIDDGLSSJEFK-UHFFFAOYSA-N 1,1,5-trimethyl-3,3-bis(2-methylbutan-2-ylperoxy)cyclohexane Chemical compound CCC(C)(C)OOC1(OOC(C)(C)CC)CC(C)CC(C)(C)C1 VMJIDDGLSSJEFK-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 1
- PCGDBWLKAYKBTN-UHFFFAOYSA-N 1,2-dithiole Chemical group C1SSC=C1 PCGDBWLKAYKBTN-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- FKKAGFLIPSSCHT-UHFFFAOYSA-N 1-dodecoxydodecane;sulfuric acid Chemical compound OS(O)(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC FKKAGFLIPSSCHT-UHFFFAOYSA-N 0.000 description 1
- FDCJDKXCCYFOCV-UHFFFAOYSA-N 1-hexadecoxyhexadecane Chemical compound CCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCC FDCJDKXCCYFOCV-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- AFXKUUDFKHVAGI-UHFFFAOYSA-N 1-methyl-3-methylidenepyrrolidin-2-one Chemical compound CN1CCC(=C)C1=O AFXKUUDFKHVAGI-UHFFFAOYSA-N 0.000 description 1
- HBXWUCXDUUJDRB-UHFFFAOYSA-N 1-octadecoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOCCCCCCCCCCCCCCCCCC HBXWUCXDUUJDRB-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical group CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- KJSGODDTWRXQRH-UHFFFAOYSA-N 2-(dimethylamino)ethyl benzoate Chemical compound CN(C)CCOC(=O)C1=CC=CC=C1 KJSGODDTWRXQRH-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- AIHDNLMBKLUVCV-UHFFFAOYSA-N 2-(prop-2-enoylamino)hexanoic acid Chemical compound CCCCC(C(O)=O)NC(=O)C=C AIHDNLMBKLUVCV-UHFFFAOYSA-N 0.000 description 1
- XKBHBVFIWWDGQX-UHFFFAOYSA-N 2-bromo-3,3,4,4,5,5,5-heptafluoropent-1-ene Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(Br)=C XKBHBVFIWWDGQX-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- AISZNMCRXZWVAT-UHFFFAOYSA-N 2-ethylsulfanylcarbothioylsulfanyl-2-methylpropanenitrile Chemical compound CCSC(=S)SC(C)(C)C#N AISZNMCRXZWVAT-UHFFFAOYSA-N 0.000 description 1
- MUHFRORXWCGZGE-KTKRTIGZSA-N 2-hydroxyethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCO MUHFRORXWCGZGE-KTKRTIGZSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- DVFNBWLOQWGDSH-UHFFFAOYSA-N 2-methyl-1-pyrrolidin-1-ylbutan-1-imine Chemical compound CCC(C)C(=N)N1CCCC1 DVFNBWLOQWGDSH-UHFFFAOYSA-N 0.000 description 1
- SEILKFZTLVMHRR-UHFFFAOYSA-N 2-phosphonooxyethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOP(O)(O)=O SEILKFZTLVMHRR-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- VKERWIBXKLNXCY-UHFFFAOYSA-N 3,5,5-trimethyl-2-(2-methylbutan-2-ylperoxy)hexanoic acid Chemical compound CCC(C)(C)OOC(C(O)=O)C(C)CC(C)(C)C VKERWIBXKLNXCY-UHFFFAOYSA-N 0.000 description 1
- UFQHFMGRRVQFNA-UHFFFAOYSA-N 3-(dimethylamino)propyl prop-2-enoate Chemical compound CN(C)CCCOC(=O)C=C UFQHFMGRRVQFNA-UHFFFAOYSA-N 0.000 description 1
- SNCMCDMEYCLVBO-UHFFFAOYSA-N 3-aminopropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCN SNCMCDMEYCLVBO-UHFFFAOYSA-N 0.000 description 1
- IICCLYANAQEHCI-UHFFFAOYSA-N 4,5,6,7-tetrachloro-3',6'-dihydroxy-2',4',5',7'-tetraiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 IICCLYANAQEHCI-UHFFFAOYSA-N 0.000 description 1
- AGGCEDYMGLPKNS-UHFFFAOYSA-N 5,5,6-trimethylundec-3-yne-2,2-diol Chemical class CCCCCC(C)C(C)(C)C#CC(C)(O)O AGGCEDYMGLPKNS-UHFFFAOYSA-N 0.000 description 1
- WIYVVIUBKNTNKG-UHFFFAOYSA-N 6,7-dimethoxy-3,4-dihydronaphthalene-2-carboxylic acid Chemical compound C1CC(C(O)=O)=CC2=C1C=C(OC)C(OC)=C2 WIYVVIUBKNTNKG-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 101800000263 Acidic protein Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 102100030762 Apolipoprotein L1 Human genes 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910015845 BBr3 Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 101100237637 Bos taurus APOL gene Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 102100027992 Casein kinase II subunit beta Human genes 0.000 description 1
- 101710158100 Casein kinase II subunit beta Proteins 0.000 description 1
- 102000030523 Catechol oxidase Human genes 0.000 description 1
- 108010031396 Catechol oxidase Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 206010010214 Compression fracture Diseases 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101100323521 Homo sapiens APOL1 gene Proteins 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 229910025794 LaB6 Inorganic materials 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 102100021833 Mesencephalic astrocyte-derived neurotrophic factor Human genes 0.000 description 1
- 101710155665 Mesencephalic astrocyte-derived neurotrophic factor Proteins 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 208000002565 Open Fractures Diseases 0.000 description 1
- 102000004264 Osteopontin Human genes 0.000 description 1
- 108010081689 Osteopontin Proteins 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- WYWZRNAHINYAEF-UHFFFAOYSA-N Padimate O Chemical compound CCCCC(CC)COC(=O)C1=CC=C(N(C)C)C=C1 WYWZRNAHINYAEF-UHFFFAOYSA-N 0.000 description 1
- 241000003766 Paranemertes californica Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- 239000012987 RAFT agent Substances 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- 101710131114 Threonine-rich protein Proteins 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 206010048873 Traumatic arthritis Diseases 0.000 description 1
- 235000012545 Vaccinium macrocarpon Nutrition 0.000 description 1
- 244000291414 Vaccinium oxycoccus Species 0.000 description 1
- 235000002118 Vaccinium oxycoccus Nutrition 0.000 description 1
- 206010047163 Vasospasm Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PZQBWGFCGIRLBB-NJYHNNHUSA-N [(2r)-2-[(2s,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1O PZQBWGFCGIRLBB-NJYHNNHUSA-N 0.000 description 1
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 1
- JNGWKQJZIUZUPR-UHFFFAOYSA-N [3-(dodecanoylamino)propyl](hydroxy)dimethylammonium Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)[O-] JNGWKQJZIUZUPR-UHFFFAOYSA-N 0.000 description 1
- IDLJKTNBZKSHIY-UHFFFAOYSA-N [4-(diethylamino)phenyl]-phenylmethanone Chemical compound C1=CC(N(CC)CC)=CC=C1C(=O)C1=CC=CC=C1 IDLJKTNBZKSHIY-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 239000003994 anesthetic gas Substances 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 229960003328 benzoyl peroxide Drugs 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- NBXSIUSZCHNKCZ-UHFFFAOYSA-N bis[2-(1,4,5,6-tetrahydropyrimidin-2-yl)propan-2-yl]diazene;dihydrochloride Chemical compound Cl.Cl.N=1CCCNC=1C(C)(C)N=NC(C)(C)C1=NCCCN1 NBXSIUSZCHNKCZ-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- PZXSLFQJOZPCJG-UHFFFAOYSA-N bis[2-(5-methyl-4,5-dihydro-1h-imidazol-2-yl)propan-2-yl]diazene;dihydrochloride Chemical compound Cl.Cl.N1C(C)CN=C1C(C)(C)N=NC(C)(C)C1=NCC(C)N1 PZXSLFQJOZPCJG-UHFFFAOYSA-N 0.000 description 1
- VYHBFRJRBHMIQZ-UHFFFAOYSA-N bis[4-(diethylamino)phenyl]methanone Chemical compound C1=CC(N(CC)CC)=CC=C1C(=O)C1=CC=C(N(CC)CC)C=C1 VYHBFRJRBHMIQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- ZBZJARSYCHAEND-UHFFFAOYSA-L calcium;dihydrogen phosphate;hydrate Chemical compound O.[Ca+2].OP(O)([O-])=O.OP(O)([O-])=O ZBZJARSYCHAEND-UHFFFAOYSA-L 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000002717 carbon nanostructure Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000012829 chemotherapy agent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003624 condensation of chromatin Effects 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000013267 controlled drug release Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 235000004634 cranberry Nutrition 0.000 description 1
- 239000011557 critical solution Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 210000004268 dentin Anatomy 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 239000012933 diacyl peroxide Substances 0.000 description 1
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 1
- RBLGLDWTCZMLRW-UHFFFAOYSA-K dicalcium phosphate dihydrate Substances O.O.[Ca+2].[Ca+2].[O-]P([O-])([O-])=O RBLGLDWTCZMLRW-UHFFFAOYSA-K 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 229960004132 diethyl ether Drugs 0.000 description 1
- SPCNPOWOBZQWJK-UHFFFAOYSA-N dimethoxy-(2-propan-2-ylsulfanylethylsulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical class COP(=S)(OC)SCCSC(C)C SPCNPOWOBZQWJK-UHFFFAOYSA-N 0.000 description 1
- 229940079868 disodium laureth sulfosuccinate Drugs 0.000 description 1
- YGAXLGGEEQLLKV-UHFFFAOYSA-L disodium;4-dodecoxy-4-oxo-2-sulfonatobutanoate Chemical compound [Na+].[Na+].CCCCCCCCCCCCOC(=O)CC(C([O-])=O)S([O-])(=O)=O YGAXLGGEEQLLKV-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-L disulfate(2-) Chemical compound [O-]S(=O)(=O)OS([O-])(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-L 0.000 description 1
- CIKJANOSDPPCAU-UHFFFAOYSA-N ditert-butyl cyclohexane-1,4-dicarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1CCC(C(=O)OOC(C)(C)C)CC1 CIKJANOSDPPCAU-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- KETSPIPODMGOEJ-UHFFFAOYSA-B dodecasodium;(2,3,4,5,6-pentaphosphonatooxycyclohexyl) phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OC1C(OP([O-])([O-])=O)C(OP([O-])([O-])=O)C(OP([O-])([O-])=O)C(OP([O-])([O-])=O)C1OP([O-])([O-])=O KETSPIPODMGOEJ-UHFFFAOYSA-B 0.000 description 1
- BKRJTJJQPXVRRY-UHFFFAOYSA-M dodecyl-(2-hydroxyethyl)-dimethylazanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CCO BKRJTJJQPXVRRY-UHFFFAOYSA-M 0.000 description 1
- HBRNMIYLJIXXEE-UHFFFAOYSA-N dodecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCN HBRNMIYLJIXXEE-UHFFFAOYSA-N 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- SYELZBGXAIXKHU-UHFFFAOYSA-N dodecyldimethylamine N-oxide Chemical compound CCCCCCCCCCCC[N+](C)(C)[O-] SYELZBGXAIXKHU-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910003440 dysprosium oxide Inorganic materials 0.000 description 1
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(iii) oxide Chemical compound O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 230000001700 effect on tissue Effects 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000003916 ethylene diamine group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000003099 femoral nerve Anatomy 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 238000004401 flow injection analysis Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229940100608 glycol distearate Drugs 0.000 description 1
- 229940095098 glycol oleate Drugs 0.000 description 1
- 229940100242 glycol stearate Drugs 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N guanidine group Chemical group NC(=N)N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical group CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 150000002402 hexoses Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000000076 hypertonic saline solution Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- ZMFWDTJZHRDHNW-UHFFFAOYSA-N indium;trihydrate Chemical compound O.O.O.[In] ZMFWDTJZHRDHNW-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002496 iodine Chemical class 0.000 description 1
- 229960001025 iohexol Drugs 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 229910000462 iron(III) oxide hydroxide Inorganic materials 0.000 description 1
- 229910021519 iron(III) oxide-hydroxide Inorganic materials 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 210000000231 kidney cortex Anatomy 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 125000002463 lignoceryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001288 lysyl group Chemical group 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 1
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 description 1
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 235000019691 monocalcium phosphate Nutrition 0.000 description 1
- 229910000150 monocalcium phosphate Inorganic materials 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XHIRWEVPYCTARV-UHFFFAOYSA-N n-(3-aminopropyl)-2-methylprop-2-enamide;hydrochloride Chemical compound Cl.CC(=C)C(=O)NCCCN XHIRWEVPYCTARV-UHFFFAOYSA-N 0.000 description 1
- NQIMONOHVBBZKE-UHFFFAOYSA-N n-[2-(3,4-dihydroxyphenyl)ethyl]-2-methylprop-2-enamide Chemical compound CC(=C)C(=O)NCCC1=CC=C(O)C(O)=C1 NQIMONOHVBBZKE-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229910000392 octacalcium phosphate Inorganic materials 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000000174 oncolytic effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000012285 osmium tetroxide Substances 0.000 description 1
- 229910000489 osmium tetroxide Inorganic materials 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 150000002924 oxiranes Chemical group 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 150000004965 peroxy acids Chemical class 0.000 description 1
- 125000005634 peroxydicarbonate group Chemical group 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- 108091005981 phosphorylated proteins Proteins 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- LQAZPMXASFNKCD-UHFFFAOYSA-M potassium;dodecane-1-sulfonate Chemical compound [K+].CCCCCCCCCCCCS([O-])(=O)=O LQAZPMXASFNKCD-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012048 reactive intermediate Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 229940081623 rose bengal Drugs 0.000 description 1
- 229930187593 rose bengal Natural products 0.000 description 1
- STRXNPAVPKGJQR-UHFFFAOYSA-N rose bengal A Natural products O1C(=O)C(C(=CC=C2Cl)Cl)=C2C21C1=CC(I)=C(O)C(I)=C1OC1=C(I)C(O)=C(I)C=C21 STRXNPAVPKGJQR-UHFFFAOYSA-N 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940075560 sodium lauryl sulfoacetate Drugs 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- AXZYGIPYNXQTON-UHFFFAOYSA-M sodium;(2,3,4,5,6-pentaphosphonooxycyclohexyl) hydrogen phosphate Chemical compound [Na+].OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)([O-])=O)C(OP(O)(O)=O)C1OP(O)(O)=O AXZYGIPYNXQTON-UHFFFAOYSA-M 0.000 description 1
- KKDONKAYVYTWGY-UHFFFAOYSA-M sodium;2-(methylamino)ethanesulfonate Chemical compound [Na+].CNCCS([O-])(=O)=O KKDONKAYVYTWGY-UHFFFAOYSA-M 0.000 description 1
- AUPJTDWZPFFCCP-GMFCBQQYSA-M sodium;2-[methyl-[(z)-octadec-9-enyl]amino]ethanesulfonate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCCN(C)CCS([O-])(=O)=O AUPJTDWZPFFCCP-GMFCBQQYSA-M 0.000 description 1
- UAJTZZNRJCKXJN-UHFFFAOYSA-M sodium;2-dodecoxy-2-oxoethanesulfonate Chemical compound [Na+].CCCCCCCCCCCCOC(=O)CS([O-])(=O)=O UAJTZZNRJCKXJN-UHFFFAOYSA-M 0.000 description 1
- DGSDBJMBHCQYGN-UHFFFAOYSA-M sodium;2-ethylhexyl sulfate Chemical compound [Na+].CCCCC(CC)COS([O-])(=O)=O DGSDBJMBHCQYGN-UHFFFAOYSA-M 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-N sodium;dodecyl sulfate;hydron Chemical compound [H+].[Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-N 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 230000021595 spermatogenesis Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- DLSMLZRPNPCXGY-UHFFFAOYSA-N tert-butylperoxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOOC(C)(C)C DLSMLZRPNPCXGY-UHFFFAOYSA-N 0.000 description 1
- YEAUATLBSVJFOY-UHFFFAOYSA-N tetraantimony hexaoxide Chemical compound O1[Sb](O2)O[Sb]3O[Sb]1O[Sb]2O3 YEAUATLBSVJFOY-UHFFFAOYSA-N 0.000 description 1
- YIGWVOWKHUSYER-UHFFFAOYSA-F tetracalcium;hydrogen phosphate;diphosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].OP([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YIGWVOWKHUSYER-UHFFFAOYSA-F 0.000 description 1
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229940072029 trilaureth-4 phosphate Drugs 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical class OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 230000007556 vascular defect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 210000000264 venule Anatomy 0.000 description 1
- 229940114727 vet one Drugs 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000003260 vortexing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/046—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/0019—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
- A61K49/0021—Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
- A61K49/0041—Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
- A61K49/0043—Fluorescein, used in vivo
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0013—Luminescence
- A61K49/0017—Fluorescence in vivo
- A61K49/005—Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
- A61K49/0054—Macromolecular compounds, i.e. oligomers, polymers, dendrimers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/001—Preparation for luminescence or biological staining
- A61K49/0063—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
- A61K49/0069—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
- A61K49/0073—Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form semi-solid, gel, hydrogel, ointment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0015—Medicaments; Biocides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0031—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0042—Materials resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/02—Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/043—Mixtures of macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/10—Polypeptides; Proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/10—Polypeptides; Proteins
- A61L24/104—Gelatin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1656—Antifouling paints; Underwater paints characterised by the film-forming substance
- C09D5/1662—Synthetic film-forming substance
- C09D5/1668—Vinyl-type polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/44—Radioisotopes, radionuclides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/36—Materials or treatment for tissue regeneration for embolization or occlusion, e.g. vaso-occlusive compositions or devices
Definitions
- SEQ ID NO corresponds numerically to the sequence identifiers
- Reactive monomers or macromers can be chemically polymerized into hydrogels after placement in tissue.
- An example of this is the photoinitiated in situ polymerization of polyethyleneglycol-diacrylate (PEG-dA) macromers.
- Polymers with chemically reactive moieties can be chemically crosslinked in situ upon mixing with a second reactive component during or just prior to placement.
- An example of this approach is multi-armed PEG macromers terminated with activated ester groups.
- Thermosetting in situ hydrogels exploit temperature dependent transitions from viscous injectable polymer solutions to solid hydrogels.
- the solutions are injectable below the LCST but solidify in situ as the temperature equilibrates to the physiological temperature above the LCST.
- Additional in situ gelling systems depend on specific interactions between receptors and ligands, such as antibodies and antigens, on separated polymers.
- in situ gelling systems include drug delivery depots to control the release kinetics of therapeutics entrapped within the gel.
- Other uses include tissue augmentation for cosmetic purposes and to fill tissue voids resulting from accidental trauma or surgical resection.
- Systems that gel or solidify in situ are also used to block the flow of blood in blood vessels by controlled creation of localized emboli.
- Cyanoacrylate (CA) adhesives are used in some cases as embolization agents.
- the cyanoacrylate monomers rapidly polymerize into a hard resin when they contact water in the blood vessel.
- CA is difficult to control, polymerizes rapidly, and can glue the end of the catheter to the blood vessels making catheter removal difficult.
- Onyx® is an injectable dimethylsulfoxide (DMSO) solution of ethylenevinyl alcohol. When it is injected into a watery physiological environment, the DMSO solvent diffuses out of the material causing the ethylenevinyl alcohol, which is insoluble in water, to precipitate.
- DMSO dimethylsulfoxide
- fluid complex coacervates that produce solid adhesives in situ. Oppositely charged polyelectrolytes were designed to form fluid adhesive complex coacervates at ionic strengths higher than the ionic strength of the application site, but an insoluble adhesive solid or gel at the application site. When the fluid, high ionic strength adhesive complex coacervates are introduced into the lower ionic strength application site, the fluid adhesive complex coacervate is converted to an adhesive solid or gel as the salt concentration in the complex coacervate equilibrates to the application site salt concentration.
- the fluid complex coacervates are designed to solidify in situ at physiological ionic strength and have numerous medical applications. In other aspects, the fluid complex coacervates can be used in aqueous environment for non-medical applications.
- Figure 2 shows viscosity versus ionic strength of a synthetic polyphosphate and protamine mixed at a 1 : 1 macroion charge ratio.
- Figure 3 shows an in vitro vascular model with a bifurcated flow path.
- a narrow catheter was inserted into one side of the flow path for in flow injection of an adhesive complex coacervate. By closing the opposite side, the pressure maintained by the embolism can be determined.
- the boxed area is shown in Figure 4.
- Figure 4 shows the embolization of a silicon tube model of a bifurcated blood vessel. The low viscosity complex coacervate in high salt when injected into the flow of physiological saline adheres to the silicon tubing and immediately solidified, blocking flow through the channel.
- Figure 5 shows the synthesis of iV-(3-methacrylamidopropyl) guanidinium chloride.
- Figure 6A shows the structure of co-polyguinidium copolymerized with a small amount of fluorescein methacrylate for visualization.
- Figure 6B shows the structure of co- polyguinidium with methacrylamide sidechains for crosslinking.
- Figures 7A and 7B show fluoroscopic images of embolized kidney.
- Figures 7C and 7D show the three dimensional CT images of embolized kidney post mortem.
- Figure 8A shows low magnification of cross-sectioned occluded arterioles in the cortex of an embolized kidney.
- Figure 8B shows higher magnification of glomerulus with occluded arterioles and capillaries of an embolized kidney.
- Figure 8C shows low magnification of longitudinal-sectioned occluded arterioles in the cortex of an embolized kidney.
- Figure 8D shows higher magnification of occluded arteries of an embolized kidney.
- Figure 9 shows the flow behavior of PRT/IP6 complex coacervates with and without 30 wt tantalum contrast agent.
- Figure 10A shows the phase diagram of PRT/IP6 polyelectrolyte mixtures over a range of NaCl concentrations at 37 °C.
- Figure 10B shows the phase diagram of PRT/IP6 polyelectrolyte mixtures over a range of NaCl concentrations at 21 °C.
- Ranges may be expressed herein as from “about” one particular value, and/or to "about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
- X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
- a weight percent of a component is based on the total weight of the formulation or composition in which the component is included.
- alkyl group as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 25 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, i-butyl, pentyl, hexyl, heptyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl and the like.
- longer chain alkyl groups include, but are not limited to, a palmitate group.
- a "lower alkyl” group is an alkyl group containing from one to six carbon atoms.
- cycloalkyl group is a non-aromatic carbon-based ring composed of at least three carbon atoms.
- examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
- heterocycloalkyl group is a cycloalkyl group as defined above where at least one of the carbon atoms of the ring is substituted with a heteroatom such as, but not limited to, nitrogen, oxygen, sulphur, or phosphorus.
- aryl group as used herein is any carbon-based aromatic group including, but not limited to, benzene, naphthalene, etc.
- aryl group also includes "heteroaryl group,” which is defined as an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. In one aspect, the heteroaryl group is imidazole. The aryl group can be substituted or unsubstituted.
- the aryl group can be substituted with one or more groups including, but not limited to, alkyl, alkynyl, alkenyl, aryl, halide, nitro, amino, ester, ketone, aldehyde, hydroxy, carboxylic acid, or alkoxy.
- nucleophilic group includes any groups capable of reacting with an activated ester. Examples include amino groups, thiols groups, hydroxyl groups, and their corresponding anions.
- carboxyl group includes a carboxylic acid and the corresponding salt thereof.
- amino group as used herein is represented as the formula -NHRR', where R and R' can be any organic group including alkyl, aryl, carbonyl,
- heterocycloalkyl and the like, where R and R' can be separate groups or be part of a ring.
- pyridine is a heteroaryl group where R and R' are part of the aromatic ring.
- treat as used herein is defined as maintaining or reducing the symptoms of a pre-existing condition.
- prevent as used herein is defined as eliminating or reducing the likelihood of the occurrence of one or more symptoms of a disease or disorder.
- reduce as used herein is the ability of the in situ solidifying complex coacervate described herein to completely eliminate the activity or reduce the activity when compared to the same activity in the absence of the complex coacervate.
- Subject refers to mammals including, but not limited to, humans, non- human primates, sheep, dogs, rodents (e.g., mouse, rat, etc.), guinea pigs, cats, rabbits, cows, and non-mammals including chickens, amphibians, and reptiles.
- rodents e.g., mouse, rat, etc.
- guinea pigs cats, rabbits, cows, and non-mammals including chickens, amphibians, and reptiles.
- physiological conditions refers to condition such as pH, temperature, etc. within the subject.
- physiological pH and temperature of a human is 7.2 and 37 °C, respectively.
- Polyelectrolytes with opposite net charges in aqueous solution can associate into several higher order morphologies depending on the solution conditions and charge ratios. They can form stable colloidal suspensions of polyelectrolyte complexes with net surface charges. Repulsion between like surface charges stabilize the suspension from further association.
- the initial complexes When the polyelectrolyte charge ratios are balanced, or near balance, the initial complexes can further coalesce and settle out into a dense fluid phase in which the opposite macroion charges are approximately equal. This process is referred to as complex coacervation, and the dense fluid morphology as a complex coacervate.
- the process is an associative macrophase separation of an aqueous solution of two oppositely charged polyelectrolytes into two liquid phases, a dense concentrated polyelectrolyte phase in equilibrium with a polyelectrolyte depleted phase.
- the aqueous coacervate phase can be dispersed into the aqueous depleted phase but quickly settles back out, like oil droplets in water.
- the spontaneous demixing of paired polyelectrolytes into complex coacervates occurs when attractive forces between polyelectrolyte pairs are stronger than repulsive forces.
- thermodynamic terms the net negative change in free energy that drives complex coacervation derives primarily from the gain in entropy of the small counterions released when macroions associate, which overcomes the loss of configurational entropy of the fully solvated polyelectrolytes.
- FIG. 1 A non-limiting example of the different morphologies that can be produced from polyelectrolytes with opposite net charges is provided in Figures 1 and 10.
- varying parameters such as charge ratio of the polyelectrolytes, temperature, salt concentration, and pH can result in the formation of a gel, a complex coacervate, or a clear homogeneous solution, i.e., no phase separation ( Figure 1).
- the in situ solidifying complex coacervates described herein can be prepared in a fluid form.
- gel is defined herein as non- fluid colloidal network or polymer network that is expanded throughout its whole volume by a fluid. IUPAC. Compendium of Chemical
- the fluid complex coacervates described herein are liquids.
- the fluid complex coacervates described herein have a completely different morphology compared to corresponding gels produced in situ despite the fact that the polycation and polyanion in the fluid complex coacervate and the gel are identical.
- the polycation is generally composed of a polymer backbone with a plurality of cationic groups at a particular pH.
- the cationic groups can be pendant to the polymer backbone and/or incorporated within the polymer backbone.
- the polycation is any biocompatible polymer possessing cationic groups or groups that can be readily converted to cationic groups by adjusting the pH.
- the polycation is a polyamine compound.
- the amino groups of the polyamine can be branched or part of the polymer backbone.
- the amino group can be a primary, secondary, or tertiary amino group that can be protonated to produce a cationic ammonium group at a selected pH.
- the polyamine is a polymer with a large excess of positive charges relative to negative charges at the relevant pH, as reflected in its isoelectric point (pi), which is the pH at which the polymer has a net neutral charge.
- the number of amino groups present on the polycation ultimately determines the charge density of the polycation at a particular pH.
- the polycation can have from 10 to 90 mole , 10 to 80 mole , 10 to 70 mole , 10 to 60 mole , 10 to 50 mole , 10 to 40 mole , 10 to 30 mole , or 10 to 20 mole % amino groups.
- the polyamine has excess positive charges at a pH of about 7, with a pi significantly greater than 7.
- additional amino groups can be incorporated into the polymer in order to increase the pi value.
- the amino group can be derived from a residue of lysine, histidine, or arginine attached to the polycation.
- arginine has a guanidinyl group, where the guanidinyl group is a suitable amino group useful herein.
- Any anionic counterions can be used in association with the cationic polymers.
- the counterions should be physically and chemically compatible with the essential components of the composition and do not otherwise unduly impair product performance, stability or aesthetics.
- Non-limiting examples of such counterions include halides (e.g., chloride, fluoride, bromide, iodide), sulfate, methylsulfate, acetate and other monovalent carboxylic acids.
- the polycation can be a positively-charged protein produced from a natural organism.
- a recombinant P. californica protein can be used as the polycation.
- Pel, Pc2, Pc4-Pcl8 (SEQ ID NOS 1-17) can be used as the polycation.
- the type and number of amino acids present in the protein can vary in order to achieve the desired solution properties. For example, Pel is enriched with lysine (13.5 mole ) while Pc4 and Pc5 are enriched with histidine (12.6 and 11.3 mole , respectively).
- the polycation is a recombinant protein produced by artificial expression of a gene or a modified gene or a composite gene containing parts from several genes in a heterologous host such as, for example, bacteria, yeast, cows, goats, tobacco, and the like.
- the polycation can be a biodegradable polyamine.
- the biodegradable polyamine can be a synthetic polymer or naturally-occurring polymer.
- the mechanism by which the polyamine can degrade will vary depending upon the polyamine that is used. In the case of natural polymers, they are biodegradable because there are enzymes that can hydrolyze the polymer chain. For example, proteases can hydrolyze natural proteins like gelatin. In the case of synthetic biodegradable polyamines, they also possess chemically labile bonds. For example, ⁇ -aminoesters have hydrolyzable ester groups.
- other considerations such as the molecular weight of the polyamine and crosslink density of the adhesive can be varied in order to modify the rate of biodegradability.
- the biodegradable polyamine includes a polysaccharide, a protein, or a synthetic polyamine.
- Polysaccharides bearing one or more amino groups can be used herein.
- the polysaccharide is a natural polysaccharide such as chitosan or chemically modified chitosan.
- the protein can be a synthetic or naturally-occurring compound.
- the biodegradable polyamine is a synthetic polyamine such as poly(P-aminoesters), polyester amines, poly(disulfide amines), mixed poly(ester and amide amines), and peptide crosslinked polyamines.
- the polycation is a synthetic polymer
- a variety of different polymers can be used; however, in certain applications such as, for example, biomedical applications, it is desirable that the polymer be biocompatible and nontoxic to cells and tissue.
- the biodegradable polyamine can be an amine- modified natural polymer.
- the amine-modified natural polymer can be gelatin modified with one or more alkylamino groups, heteroaryl groups, or an aromatic group substituted with one or more amino groups. Examples of alkylamino groups are depicted in Formulae IV- VI
- R -R are, independently, hydrogen, an alkyl group, or a nitrogen containing substituent
- s, t, u, v, w, and x are an integer from 1 to 10;
- A is an integer from 1 to 50
- the alkylamino group is covalently attached to the natural polymer.
- the natural polymer has a carboxyl group (e.g., acid or ester)
- the carboxyl group can be reacted with an alkyldiamino compound to produce an amide bond and incorporate the alkylamino group into the polymer.
- the amino group NR 13 is covalently attached to the carbonyl group of the natural polymer.
- the number of amino groups can vary.
- the alkylamino group is -NHCH 2 NH 2 , -NHCH 2 CH 2 NH 2 ,
- the amine-modified natural polymer can include an aryl group having one or more amino groups directly or indirectly attached to the aromatic group.
- the amino group can be incorporated in the aromatic ring.
- the aromatic amino group is a pyrrole, an isopyrrole, a pyrazole, imidazole, a triazole, or an indole.
- the aromatic amino group includes the isoimidazole group present in histidine.
- the biodegradable polyamine can be gelatin modified with ethylenediamine.
- the polycation can be a polycationic micelle or mixed micelle formed with cationic surfactants.
- the cationic surfactant can be mixed with nonionic surfactants to create micelles with variable charge densities.
- the micelles are polycationic by virtue of the hydrophobic interactions that form a polyvalent micelle.
- the micelles have a plurality of amino groups capable of reacting with the activated ester groups present on the polyanion.
- nonionic surfactants include the condensation products of a higher aliphatic alcohol, such as a fatty alcohol, containing about 8 to about 20 carbon atoms, in a straight or branched chain configuration, condensed with about 3 to about 100 moles, preferably about 5 to about 40 moles, most preferably about 5 to about 20 moles of ethylene oxide.
- a higher aliphatic alcohol such as a fatty alcohol
- fatty alcohol containing about 8 to about 20 carbon atoms, in a straight or branched chain configuration
- Examples of such nonionic ethoxylated fatty alcohol surfactants are the TergitolTM 15-S series from Union Carbide and BrijTM surfactants from ICI.
- TergitolTM 15-S Surfactants include C11-C15 secondary alcohol polyethyleneglycol ethers.
- BrijTM97 surfactant is polyoxyethylene(lO) oleyl ether
- BrijTM58 surfactant is polyoxyethylene(20) cetyl ether
- BrijTM 76 surfactant is polyoxyethylene(lO) stearyl ether.
- nonionic surfactants include the polyethylene oxide condensates of one mole of alkyl phenol containing from about 6 to 12 carbon atoms in a straight or branched chain configuration, with ethylene oxide.
- nonreactive nonionic surfactants are the IgepalTM CO and CA series from Rhone- Poulenc.
- IgepalTMCO surfactants include nonylphenoxy poly(ethyleneoxy)ethanols.
- IgepalTM CA surfactants include octylphenoxy poly(ethyleneoxy)ethanols.
- hydrocarbon nonionic surfactants include block copolymers of ethylene oxide and propylene oxide or butylene oxide.
- nonionic block copolymer surfactants are the PluronicTM and TetronicTM series of surfactants from BASF.
- PluronicTM surfactants include ethylene oxide-propylene oxide block copolymers.
- TetronicTM surfactants include ethylene oxide-propylene oxide block copolymers.
- nonionic surfactants include sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters and polyoxyethylene stearates.
- fatty acid ester nonionic surfactants are the SpanTM, TweenTM, and MyjTM surfactants from ICI.
- SpanTM surfactants include C 12 -C 18 sorbitan monoesters.
- TweenTM surfactants include poly(ethylene oxide) C 12 -C 18 sorbitan monoesters.
- MyjTM surfactants include poly(ethylene oxide) stearates.
- the nonionic surfactant can include polyoxyethylene alkyl ethers, polyoxyethylene alkyl-phenyl ethers, polyoxyethylene acyl esters, sorbitan fatty acid esters, polyoxyethylene alkylamines, polyoxyethylene alkylamides, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether,
- polyoxyethylene nonylphenyl ether polyethylene glycol laurate, polyethylene glycol stearate, polyethylene glycol distearate, polyethylene glycol oleate, oxyethylene- oxypropylene block copolymer, sorbitan laurate, sorbitan stearate, sorbitan distearate, sorbitan oleate, sorbitan sesquioleate, sorbitan trioleate, polyoxyethylene sorbitan laurate, polyoxyethylene sorbitan stearate, polyoxyethylene sorbitan oleate, polyoxyethylene laurylamine, polyoxyethylene laurylamide, laurylamine acetate, hard beef tallow propylenediamine dioleate, ethoxylated tetramethyldecynediol, fluoroaliphatic polymeric ester, polyether-polysiloxane copolymer, and the like.
- cationic surfactants useful for making cationic micelles include alkylamine salts and quaternary ammonium salts.
- Non-limiting examples of cationic surfactants include: the quaternary ammonium surfactants, which can have up to 26 carbon atoms include: alkoxylate quaternary ammonium (AQA) surfactants as discussed in U.S. Pat. No. 6,136,769; dimethyl hydroxyethyl quaternary ammonium as discussed in U.S. Pat. No.
- the polycation includes a polyacrylate having one or more pendant amino groups.
- the backbone of the polycation can be derived from the polymerization of acrylate monomers including, but not limited to, acrylates, methacrylates, acrylamides, and the like.
- the polycation backbone is derived from polyacrylamide.
- the polycation is a block co-polymer, where segments or portions of the co-polymer possess cationic groups or neutral groups depending upon the selection of the monomers used to produce the copolymer.
- the polycation can be a dendrimer.
- the dendrimer can be a branched polymer, a multi-armed polymer, a star polymer, and the like.
- the dendrimer is a polyalkylimine dendrimer, a mixed amino/ether dendrimer, a mixed amino/amide dendrimer, or an amino acid dendrimer.
- the dendrimer is poly(amidoamine), or PAMAM.
- the dendrimer has 3 to 20 arms, wherein each arm comprises an amino group.
- the polycation is a polyamino compound.
- the polyamino compound has 10 to 90 mole % primary amino groups.
- the polycation polymer has at least one fragment of the formula I wherein R 1 , R 2 , and R 3 are, independently, hydrogen or an alkyl group, X is oxygen or NR 5 , where R 5 is hydrogen or an alkyl group, and m is from 1 to 10, or the pharmaceutically-acceptable salt thereof.
- R 1 , R 2 , and R 3 are methyl and m is 2.
- the polymer backbone is composed of CH 2 -CR 1 units with pendant -C(0)X(CH 2 ) m NR 2 R 3 units.
- the polycation is the free radical polymerization product of a cationic primary amine monomer (3 -amino- propyl methacrylate) and acrylamide, where the molecular weight is from 10 to 200 kd and possesses primary monomer concentrations from 5 to 90 mol .
- the polycation is a protamine.
- Protamines are polycationic, arginine-rich proteins that play a role in condensation of chromatin into the sperm head during spermatogenesis.
- commercially available protamines purified from fish sperm, are readily available in large quantity and are relatively inexpensive.
- a non-limiting example of a protamine useful herein is salmine.
- the amino acid sequence of salmine, a protamine isolated from salmon sperm, is SEQ ID NO 18. Of the 32 amino acids, 21 are arginine (R).
- the guanidinyl group on the sidechain of R has a pK a of -12.5, making salmine a densely charged polycation at physiologically relevant pH. It has a molecular mass of -4,500 g/mol and a single negative charge at the carboxy terminus.
- the protamine is clupein.
- the protamine can be derivatized with one or more crosslinkable groups described herein.
- salmine can be derivatized to include one or more acrylate or methacrylate groups.
- An exemplary, non-limiting procedure for this embodiment is provided in the Examples.
- salmine has been derivatized on the C-terminal carboxylate with a single methacrylamide group to create a crosslinkable polycation.
- the polycation is a natural polymer wherein one or more amine present on the natural polymer have been modified with a guanidine group.
- the polycation is a synthetic polymer containing one or more guanidinyl sidechains.
- the polycation can be a synthetic polyguanidinyl polymer having an acrylate or methacrylate backbone and one or more guanidinyl sidechains.
- the polycation polymer has at least one fragment of the formula VIII
- R 1 is hydrogen or an alkyl group
- X is oxygen or NR 5 , where R 5 is hydrogen or an alkyl group
- m is from 1 to 10, or the pharmaceutically-acceptable salt thereof.
- R 1 , R 2 , and R 3 are methyl and m is 2.
- the polymer backbone is composed of CH 2 -CR 1 units with pendant -C(0)X(CH 2 ) m NC(NH)NH 2 units.
- the synthetic polyguanidinyl polymer can be derivatized with one or more crosslinkable groups described herein.
- one or more acrylate or methacrylate groups can be grafted onto the synthetic polyguanidinyl polymer.
- Figure 6B depicts a synthetic polyguanidinyl polymer with a methacrylate sidechain. An exemplary, non- limiting procedure for this embodiment is provided in the Examples.
- the polyanion can be a synthetic polymer or naturally-occurring.
- naturally-occurring polyanions include glycosaminoglycans such as condroitin sulfate, heparin, heparin sulfate, dermatan sulfate, keratin sulfate, and hyaluronic acid.
- acidic proteins having a net negative charge at neutral pH or proteins with a low pi can be used as naturally- occurring polyanions described herein.
- the anionic groups can be pendant to the polymer backbone and/or incorporated in the polymer backbone.
- the polyanion is a synthetic polymer, it is generally any polymer possessing anionic groups or groups that can be readily converted to anionic groups by adjusting the pH.
- groups that can be converted to anionic groups include, but are not limited to, carboxylate, sulfonate, boronate, sulfate, borate, phosphonate, or phosphate. Any cationic counterions can be used in association with the anionic polymers if the considerations discussed above are met.
- the polyanion is a polyphosphate.
- the polyanion is a polyphosphate compound having from 5 to 90 mole % phosphate groups.
- the polyphosphate can be a naturally-occurring compound such as, for example, DNA, RNA, or highly phosphorylated proteins like phosvitin (an egg protein), dentin (a natural tooth phosphoprotein), casein (a phosphorylated milk protein), or bone proteins (e.g. osteopontin).
- the polyphosphoserine can be a synthetic polypeptide made by polymerizing the amino acid serine and then chemically phosphorylating the polypeptide.
- the polyphosphoserine can be produced by the polymerization of phosphoserine.
- the polyphosphate can be produced by chemically or enzymatically phosphorylating a protein (e.g., natural serine- or threonine-rich proteins).
- the polyphosphate can be produced by chemically phosphorylating a polyalcohol including, but not limited to,
- polysaccharides such as cellulose or dextran.
- the polyphosphate can be a synthetic compound.
- the polyphosphate can be a polymer with pendant phosphate groups attached to the polymer backbone and/or present in the polymer backbone, (e.g., a
- the polyanion can be a micelle or mixed micelle formed with anionic surfactants.
- the anionic surfactant can be mixed with any of the nonionic surfactants described above to create micelles with variable charge densitites.
- the micelles are poly anionic by virtue of the hydrophobic interactions that form a polyvalent micelle.
- anionic sulfonate surfactants include, for example, sodium lauryl sulfate, available as TEXAPON L-100 from Henkel Inc., Wilmington, Del., or as POLYSTEPTM B-3 from Stepan Chemical Co, Northfield, 111.; sodium 25 lauryl ether sulfate, available as POLYSTEPTM B-12 from Stepan Chemical Co., Northfield, 111.; ammonium lauryl sulfate, available as
- STAND APOL.TM A from Henkel Inc., Wilmington, Del.; and sodium dodecyl benzene sulfonate, available as SIPONATETM DS-10 from Rhone-Poulenc, Inc., Cranberry, N.J., dialkyl sulfosuccinates, having the tradename AEROSOLTM OT, commercially available from Cytec Industries, West Paterson, N.J.; sodium methyl taurate (available under the trade designation NIKKOLTM CMT30 from Nikko Chemicals Co., Tokyo, Japan); secondary alkane sulfonates such as HostapurTM SAS which is a Sodium (C14-C17) secondary alkane sulfonates (alpha-olefin sulfonates) available from Clariant Corp., Charlotte, N.C.; methyl-2-sulfoalkyl esters such as sodium methyl-2-sulfo(C12-16)ester and disodium 2-sulfo(C
- disodiumlaurethsulfosuccinate STEPANMILDTM SL3
- alkylsulfates such as ammoniumlauryl sulfate commercially available under the trade designation STEPANOLTM AM from Stepan Company, and or
- the surfactant can be a disodium alpha olefin sulfonate, which contains a mixture of C12 to Ci 6 sulfonates.
- CALSOFTTM AOS-40 manufactured by Pilot Corp. can be used herein as the surfactant.
- the surfactant is DOWFAX 2A1 or 2G manufactured by Dow Chemical, which are alkyl diphenyl oxide disulfonates.
- anionic phosphate surfactants include a mixture of mono-, di- and tri-(alkyltetraglycolether)-o-phosphoric acid esters generally referred to as trilaureth-4-phosphate commercially available under the trade designation HOSTAPHATTM 340KL from Clariant Corp., as well as PPG-5 cetyl 10 phosphate available under the trade designation CRODAPHOSTM SG from Croda Inc., Parsipanny, N.J.
- Suitable anionic amine oxide surfactants those commercially available under the trade designations AMMONYX LO, LMDO, and CO, which are lauryldimethylamine oxide,
- laurylamidopropyldimethylamine oxide and cetyl amine oxide, all from Stepan Company.
- the polyanion includes a polyacrylate having one or more pendant phosphate groups.
- the polyanion can be derived from the polymerization of acrylate monomers including, but not limited to, acrylates, methacrylates, and the like.
- the polyanion is a block co-polymer, where segments or portions of the co-polymer possess anionic groups and neutral groups depending upon the selection of the monomers used to produce the copolymer.
- the polyanion includes two or more carboxylate, sulfate, sulfonate, borate, boronate, phosphonate, or phosphate groups.
- the polyanion is a polymer having at least one fragment having the formula XI
- R 4 is hydrogen or an alkyl group
- n is from 1 to 10;
- Y is oxygen, sulfur, or NR , wherein R is hydrogen, an alkyl group, or an aryl group;
- Z' is an anionic group or a group that can be converted to an anionic group, or the pharmaceutically-acceptable salt thereof.
- Z' in formula XI is carboxylate, sulfate, sulfonate, borate, boronate, a substituted or unsubstituted phosphate, or a phosphonate.
- Z' in formula XI is sulfate, sulfonate, borate, boronate, a substituted or unsubstituted phosphate, or a phosphonate, and n in formulae XI is 2.
- the polyanion is an inorganic polyphosphate possessing a plurality of phosphate groups (e.g., (NaPC ⁇ ),, , where n is 3 to 10).
- inorganic phosphates include, but are not limited to, Graham salts,
- hexametaphosphate salts and triphosphate salts.
- the counterion of these salts can be monovalent cations such as, for example, Na + , K + , and NH 4 + .
- the polyanion is phosphorylated sugar.
- the sugar can be a hexose or pentose sugar. Additionally, the sugar can be partially or fully
- the phosphorylated sugar is inositol hexaphosphate.
- the polycations and polyanions can contain groups that permit crosslinking between the two polymers upon curing to produce new covalent bonds.
- the mechanism of crosslinking can vary depending upon the selection of the crosslinking groups.
- the crosslinking groups can be electrophiles and nucleophiles.
- the polyanion can have one or more electrophilic groups
- the polycations can have one or more nucleophilic groups capable of reacting with the electrophilic groups to produce new covalent bonds.
- electrophilic groups include, but are not limited to, anhydride groups, esters, ketones, lactams (e.g., maleimides and succinimides), lactones, epoxide groups, isocyanate groups, and aldehydes.
- lactams e.g., maleimides and succinimides
- lactones e.g., lactones
- epoxide groups epoxide groups
- isocyanate groups aldehydes.
- nucleophilic groups are presented below.
- the polycation and polyanion can crosslink with one another via a Michael addition.
- the polycation can have one or more nucleophilic groups such as, for example, a hydroxyl or thiol group that can react with an olefinic group present on the polyanion.
- the crosslinking group on the polyanion comprises an olefinic group and the crosslinking group on the polycation comprises a nucleophilic group that reacts with the olefinic group to produce a new covalent bond.
- the crosslinking group on the polycation comprises an olefinic group and the crosslinking group on the polyanion comprises a nucleophilic group that reacts with the olefinic group to produce a new covalent bond.
- the polycation and polyanion each have an actinically crosslinkable group.
- actinically crosslinkable group in reference to curing or polymerizing means that the crosslinking between the polycation and polyanion is performed by actinic irradiation, such as, for example, UV irradiation, visible light irradiation, ionizing radiation (e.g. gamma ray or X-ray irradiation), microwave irradiation, and the like.
- actinic irradiation such as, for example, UV irradiation, visible light irradiation, ionizing radiation (e.g. gamma ray or X-ray irradiation), microwave irradiation, and the like.
- Actinic curing methods are well-known to a person skilled in the art.
- the actinically crosslinkable group can be an unsaturated organic group such as, for example, an olefinic group.
- olefinic groups useful herein include, but are not limited to, an acrylate group, a methacrylate group, an acrylamide group, a methacrylamide group, an allyl group, a vinyl group, a vinylester group, or a styrenyl group.
- the actinically crosslinkable group can be an azido group.
- crosslinking can occur between the polycation and polyanion via light activated crosslinking through azido groups.
- any of the polymers described above that can be used as the polycation and polyanion can be modified to include the actinically crosslinkable group.
- the crosslinkable group includes a dihydroxy-substituted aromatic group capable of undergoing oxidation in the presence of an oxidant.
- the dihydroxy-substituted aromatic group is an ortho-dihydroxy aromatic group capable of being oxidized to the corresponding quinone.
- the dihydroxyl-substituted aromatic group is a dihydroxyphenol or halogenated dihydroxyphenol group such as, for example, DOPA and catechol (3,4
- DOPA dihydroxyphenol
- it can be oxidized to dopaquinone.
- Dopaquinone is capable of either reacting with a neighboring DOPA group or another nucleophilic group.
- an oxidant such as oxygen or other additives including, but not limited to, peroxides, periodates (e.g., NaI0 4 ), persulfates, permanganates, dichromates, transition metal oxidants (e.g., a Fe +3 compound, osmium tetroxide), or enzymes (e.g., catechol oxidase)
- the dihydroxyl- substituted aromatic group can be oxidized.
- the polyanion is the polymerization product between two or more monomers, where one of the monomers has a dihydroxy aromatic group covalently attached to the monomer.
- the polyanion can be the polymerization product between (1) a phosphate acrylate and/or phosphate methacrylate and (2) a second acrylate and/or second methacrylate having a dihydroxy aromatic group covalently bonded to the second acrylate or second methacrylate.
- the polyanion is the polymerization product between methacryloxyethyl phosphate and dopamine methacrylamide.
- an acrylate containing the pendant ortho-dihydroxyphenyl residue is polymerized with the appropriate monomers to produce the polyanion with pendant ortho-dihydroxyphenyl residues.
- Oxidation of ortho-dihydroxyphenyl groups results in orthoquinone groups, a reactive intermediate and can crosslink (i. e., react) with nucleophiles such as, for example, amino, hydroxyl, or thiol groups via a Michael- type addition to form a new covalent bond.
- nucleophiles such as, for example, amino, hydroxyl, or thiol groups via a Michael- type addition to form a new covalent bond.
- a lysyl group on the polycation can react with the orthoquinone residue on the polyanion to produce new covalent bonds.
- Alkyl phenol groups can be crosslinked with peroxidase enzymes, e.g. horse radish peroxidase in the presence of H2O2.
- peroxidase enzymes e.g. horse radish peroxidase in the presence of H2O2.
- peroxidase enzymes e.g. horse radish peroxidase in the presence of H2O2.
- H2O2O2 horse radish peroxidase in the presence of H2O2.
- the oxidant used above can be stabilized.
- a compound that forms a complex with periodate that is not redox active can result in a stabilized oxidant.
- the periodate is stabilized in a non-oxidative form and cannot oxidize the ortho-dihydroxy-substituted aromatic group while in the complex.
- the complex is reversible and even if it has a very high stability constant there is a small amount of uncomplexed periodate formed.
- the ortho-dihydroxyl- substituted aromatic group competes with the compound for the small amount of free periodate. As the free periodate is oxidized more is released from the equilibrium complex.
- sugars possessing a cis,cis-l,2,3-triol grouping on a six- membered ring can form competitive periodate complexes.
- An example of a specific compound that forms stable periodate complex is 1,2-O-isopropylidene-alpha-D- glucofuranose (A. S. Perlin and E. voN Rudloff, Canadian Journal of Chemistry. Volume 43 (1965)).
- the stabilized oxidant can control the rate of crosslinking. Not wishing to be bound by theory, the stabilized oxidant slows the rate of oxidation providing time to add the oxidant and position the substrate before the adhesive hardens irreversibly.
- the crosslinkers present on the polycation and/or polyanion can form coordination complexes with transition metal ions.
- the polycation and/or polyanion can include groups capable of coordinating transition metal ions. Examples of coordinating sidechains are catechols, imidazoles, phosphates, carboxylic acids, and combinations. The rate of coordination and dissociation can be controlled by the selection of the coordination group, the transition metal ion, and the pH.
- crosslinking can occur through electrostatic, ionic, coordinative, or other non-covalent bonding.
- Transition metal ions such as, for example, iron, copper, vanadium, zinc, and nickel can be used herein.
- the transition metal is present in an aqueous environment at the application site.
- the in situ solidifying complex coacervate can also include a multivalent crosslinker.
- the multivalent crosslinker has two or more nucleophilic groups (e.g., hydroxyl, thiol, etc.) that react with crosslinkable groups (e.g., olefinic groups) present on the polycation and polyanion via a Michael addition reaction to produce a new covalent bond.
- the multivalent crosslinker is a di-thiol or tri-thiol compound.
- the in situ solidifying complex coacervates described herein can optionally include a reinforcing component.
- a reinforcing component is defined herein as any component that enhances or modifies one or more properties of the fluid complex coacervates described herein (e.g., cohesiveness, fracture toughness, elastic modulus, dimensional stability after curing, viscosity, etc.) of the in situ solidifying complex coacervate prior to or after the curing of the coacervate when compared to the same coacervate that does not include the reinforcing component.
- the mode in which the reinforcing component can enhance the mechanical properties of the coacervate can vary, and will depend upon the intended application of the coacervates as well as the selection of the polycation, polyanion, and reinforcing component.
- the polycations and/or polyanions present in the coacervate can covalently crosslink with the reinforcing component.
- the reinforcing component can occupy a space or "phase" in the coacervate, which ultimately increases the mechanical properties of the coacervate. Examples of reinforcing components useful herein are provided below.
- the reinforcing component is a polymerizable monomer.
- the polymerizable monomer entrapped in the complex coacervate can be any water soluble monomer capable of undergoing polymerization in order to produce an interpenetrating polymer network.
- the interpenetrating network can possess nucleophilic groups (e.g., amino groups) that can react (i.e., crosslink) with the activated ester groups present on the polyanion.
- polymerizable monomer can vary depending upon the application. Factors such as molecular weight can be altered to modify the solubility properties of the polymerizable monomer in water as well as the mechanical properties of the resulting coacervate,
- the selection of the functional group on the polymerizable monomer determines the mode of polymerization.
- the polymerizable monomer can be a polymerizable olefinic monomer that can undergo polymerization through mechanisms such as, for example, free radical polymerization and Michael addition reactions.
- the polymerizable monomer has two or more olefinic groups.
- the monomer comprises one or two actinically crosslinkable groups as defined above.
- water-soluble polymerizable monomers include, but are not limited to, hydroxyalkyl methacrylate (HEMA), hydroxyalkyl acrylate, N-vinyl pyrrolidone, N-methyl-3-methylidene-pyrrolidone, allyl alcohol, N-vinyl alkylamide, N-vinyl-N-alkylamide, acrylamides, methacrylamide, (lower alkyl)acrylamides and methacrylamides, and hydroxyl-substituted (lower alkyl)acrylamides and - methacrylamides.
- the polymerizable monomer is a diacrylate compound or dimethacrylate compound.
- the polymerizable monomer is a polyalkylene oxide glycol diacrylate or dimethacrylate.
- the polyalkylene can be a polymer of ethylene glycol, propylene glycol, or block copolymers thereof.
- the polymerizable monomer is polyethylene glycol diacrylate or polyethylene glycol dimethacrylate.
- the polyethylene glycol diacrylate or polyethylene glycol dimethacrylate has a M n of 200 to 2,000, 400 to 1,500, 500 to 1,000, 500 to 750, or 500 to 600.
- the interpenetrating polymer network is biodegradable and biocompatible for medical applications.
- the polymerizable monomer is selected such that a biodegradable and biocompatible interpenetrating polymer network is produced upon polymerization.
- the polymerizable monomer can possess cleavable ester linkages.
- the polymerizable monomer is hydroxypropyl methacrylate (HPMA), which will produce a biocompatible interpenetrating network.
- HPMA hydroxypropyl methacrylate
- biodegradable crosslinkers can be used to polymerize biocompatible water soluble monomers such as, for example, alkyl methacrylamides.
- the crosslinker could be enzymatically degradable, like a peptide, or chemically degradable by having an ester or disulfide linkage.
- the reinforcing component can be a natural or synthetic fiber.
- the reinforcing component can be a water-insoluble filler.
- the filler can have a variety of different sizes and shapes, ranging from particles (micro and nano) to fibrous materials.
- the selection of the filler can vary depending upon the application of the in situ solidifying complex coacervate.
- the fillers useful herein can be composed of organic and/or inorganic materials.
- the nanostructures can be composed of organic materials like carbon or inorganic materials including, but not limited to, boron, molybdenum, tungsten, silicon, titanium, copper, bismuth, tungsten carbide, aluminum oxide, titanium dioxide, molybdenum disulphide, silicon carbide, titanium diboride, boron nitride, dysprosium oxide, iron (III) oxide -hydroxide, iron oxide, manganese oxide, titanium dioxide, boron carbide, aluminum nitride, or any combination thereof.
- the fillers can be functionalized in order to react (i.e., crosslink) with the polycation and/or polyanion.
- the filler can be functionalized with amino groups or activated ester groups.
- a carbon nanostructure can be used in combination with one or more inorganic nanostructures.
- the filler comprises a metal oxide, a ceramic particle, or a water insoluble inorganic salt.
- fillers useful herein include those manufactured by SkySpring Nanomaterials, Inc., which is listed below.
- Ni coated with carbon 99.9%, 20 nm
- AI2O 3 alpha 99.99%, 0.3-0.8 ⁇
- AI2O 3 gamma 99.99%, 20 nm
- AI2O 3 gamma 99.99%, 0.4-1.5 ⁇ A1 2 0 3 gamma, 99.99%, 3-10 ⁇
- the filler is nanosilica.
- Nanosilica is commercially available from multiple sources in a broad size range.
- aqueous Nexsil colloidal silica is available in diameters from 6-85 nm from Nyacol Nano technologies, Inc.
- Amino-modified nanosilica is also commercially available, from Sigma Aldrich for example, but in a narrower range of diameters than unmodified silica.
- Nanosilica does not contribute to the opacity of the coacervate, which is an important attribute of the adhesives and glues produced therefrom.
- the filler can be composed of calcium phosphate.
- the filler can be hydroxyapatite, which has the formula Ca 5 (P0 4 ) 3 0H.
- the filler can be a substituted hydroxyapatite.
- a substituted hydroxyapatite is hydroxyapatite with one or more atoms substituted with another atom.
- the substituted hydroxyapatite is depicted by the formula M 5 X 3 Y, where M is Ca, Mg, Na; X is P0 4 or C0 3 ; and Y is OH, F, CI, or C0 3 .
- the calcium phosphate comprises a calcium orthophosphate.
- Examples of calcium orthophosphates include, but are not limited to, monocalcium phosphate anhydrate, monocalcium phosphate monohydrate, dicalcium phosphate dihydrate, dicalcium phosphate anhydrous, octacalcium phosphate, beta tricalcium phosphate, alpha tricalcium phosphate, super alpha tricalcium phosphate, tetracalcium phosphate, amorphous tricalcium phosphate, or any combination thereof.
- the calcium phosphate can also include calcium-deficient hydroxyapatite, which can preferentially adsorb bone matrix proteins.
- the filler can be functionalized with one or more amino or activated ester groups.
- the filler can be covalently attached to the polycation or polyanion.
- aminated silica can be reacted with the polyanion possessing activated ester groups to form new covalent bonds.
- the filler can be modified to produce charged groups such that the filler can form electrostatic bonds with the coacervates.
- aminated silica can be added to a solution and the pH adjusted so that the amino groups are protonated and available for electrostatic bonding.
- the reinforcing component can be micelles or liposomes.
- the micelles and liposomes used in this aspect are different from the micelles or liposomes used as polycations and polyanions for preparing the coacervate.
- the micelles and liposomes can be prepared from the nonionic, cationic, or anionic surfactants described above.
- the charge of the micelles and liposomes can vary depending upon the selection of the polycation or polyanion as well as the intended use of the coacervate.
- the micelles and liposomes can be used to solubilize hydrophobic compounds such pharmaceutical compounds.
- the adhesive complex coacervates described herein can be effective as a bioactive delivery device.
- the in situ solidifying complex coacervate also includes one or more initiators entrapped in the coacervate.
- initiators useful herein include a thermal initiator, a chemical initiator, or a photoinitiator to promote crosslinking amongst the different components in the complex coacervate
- photoinitiators include, but are not limited to a phosphine oxide, peroxides, peracids, azide compounds, a-hydroxyketones, or a-aminoketones.
- the photoinitiator includes, but is not limited to, camphorquinone, benzoin methyl ether, 1-hydroxycyclohexylphenyl ketone, or Darocure® or Irgacure® types, for example Darocure® 1173 or Irgacure® 2959.
- the photoinitiators disclosed in European Patent No. 0632329, which are incorporated by reference, can be used herein.
- the photoinitiator is a water-soluble photoinitiator including, but not limited to, riboflavin, eosin, eosin y, and rose Bengal.
- the initiator has a positively charged functional group.
- Examples include 2,2'-azobis[2-(5-methyl-2-imidazolin-2-yl)propane]- dihydrochloride; 2,2'-azobis[2-(2-imidazolin-2-yl) propanejdihydrochloride; 2,2'- azobis[2-(2-imidazo-lin-2-yl)propane]disulfate dehydrate; 2,2'-azobis(2- methylpropionamidine)dihydrochloride; 2,2'-azobis[2-(3,4,5,6-tetrahydropyrimidin-2- yl)propane] dihydrochloride; azobis ⁇ 2-[ 1 -(2-hydroxyethyl)-2-imidazolin-2- yljpropane ⁇ dihydrochloride; 2,2'-azobis( 1-imino- 1 -pyrrolidino-2- ethylpropane)dihydrochloride and combinations thereof.
- the initiator is an oil soluble initiator.
- the oil soluble initiator includes organic peroxides or azo compounds.
- organic peroxides examples include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyesters, and the like.
- Some specific non-limiting examples of organic peroxides that can be used as the oil soluble initiator include: lauroyl peroxide, l, l-bis(t- hexylperoxy)- 3 ,3 ,5 -trimethylcyclohexane, 1 , 1 -bis(t-butylperoxy)-3 ,3 ,5 - trimethylcyclohexane, t-butylperoxylaurate, t-butylperoxyisopropylmonocarbonate, t- butylperoxy-2-ethylhexylcarbonate, di-t-butylperoxyhexahydro-terephthalate, dicumyl peroxide, 2,5-dimethyl-2,5-d
- 2,2'-azobis-isobutyronitrile 2,2'-azobis-2,4- dimethylvaleronitrile
- 1 l'-azobis- 1-cyclohexane-carbonitrile
- dimethyl-2,2'- azobisisobutyrate dimethyl-2,2'- azobisisobutyrate
- l l'-azobis-(l-acetoxy
- the initiator is a water-soluble initiator including, but not limited to, potassium persulfate, ammonium persulfate, sodium persulfate, and mixtures thereof.
- the initiator is an oxidation-reduction initiator such as the reaction product of the above-mentioned persulfates and reducing agents such as sodium metabisulfite and sodium bisulfite; and 4,4'-azobis(4-cyanopentanoic acid) and its soluble salts (e.g., sodium, potassium).
- multiple initiators can be used to broaden the absorption profile of the initiator system in order to increase the initiation rate.
- two different photoinitiators can be employed that are activated by different wavelengths of light.
- a co-initiator can be used in combination with any of the initiators described herein.
- the co-initiator is 2-(diethylamino)ethyl acrylate, 2-(dimethylamino)ethyl acrylate, 2-(dimethylamino)ethyl benzoate, 2- (dimethylamino)ethyl methacrylate, 2-ethylhexyl 4-(dimethylamino)benzoate, 3- (dimethylamino)propyl acrylate, 4,4'-bis(diethylamino)benzophenone, or 4- (diethylamino)benzophenone.
- the initiator and/or co-initiator are covalently attached to the polycation and/or polyanion.
- the initiator and/or co-initiator can be copolymerized with monomers used to make the polycation and/or polyanion.
- the initiators and co-initiators possess polymerizable olefinic groups such as acrylate and methacrylate groups (e.g., see examples of co-initiators above) that can be copolymerized with monomers described above used to make the polycation and polyanion.
- the initiators can be chemically grafted onto the backbone of the polycation and polyanion.
- the photoinitiator and/or co-initiator are covalently attached to the polymer and pendant to the polymer backbone. This approach will simply formulation and possibly enhance storage and stability.
- the initiator and/or co-initiator are electrostatically associated into the fluid complex coacervate.
- the in situ solidifying complex coacervates can optionally contain one or more multivalent cations (i.e., cations having a charge of +2 or greater).
- the multivalent cation can be a divalent cation composed of one or more alkaline earth metals.
- the divalent cation can be a mixture of Ca +2 and Mg +2 .
- transition metal ions with a charge of +2 or greater can be used as the multivalent cation.
- the concentration of the multivalent cations can determine the rate and extent of coacervate formation. Not wishing to be bound by theory, weak cohesive forces between particles in the fluid may be mediated by multivalent cations bridging excess negative surface charges.
- the amount of multivalent cation used herein can vary. In one aspect, the amount is based upon the number of anionic groups and cationic groups present in the polyanion and polycation.
- the synthesis of the in situ solidifying complex coacervates described herein can be performed using a number of techniques and procedures. Exemplary techniques for producing the coacervates are provided in the Examples.
- the polycation and polyanion are mixed as dilute solutions. Upon mixing, when the polycation and polyanion associate they condense into a fluid/liquid phase at the bottom of a mixing chamber (e.g., a tube) to produce a condensed phase.
- the condensed phase i.e., fluid complex coacervate
- an aqueous solution of polycation is mixed with an aqueous solution of polyanion such that the positive/negative charge ratio of the polycation to the polyanion is from 4 to 0.25, 3 to 0.25, 2 to 0.25, 1.5 to 0.5, 1.10 to 0.95, 1 to 1.
- the amount of polycation and polyanion can be varied in order to achieve specific positive/negative charge ratios.
- the in situ solidifying complex coacervate contains water, wherein the amount of water is from 20% to 80% by weight of the
- the pH of the solution containing the polycation, polyanion, and the monovalent salt can vary in order to optimize complex coacervate formation.
- the pH of the composition containing the in situ solidifying complex coacervate is from 6 to 9, 6.5 to 8.5, 7 to 8, or 7 to 7.5.
- the pH of the composition is 7.2 (i.e., physiological pH).
- the amount of the monovalent salt that is present in the in situ solidifying complex coacervate can vary depending upon the concentration of the monovalent salt in the environment at which the in situ solidifying complex coacervate is introduced. This is demonstrated in the Examples and Figure 10A and 10B. In general, the concentration of the monovalent salt in the complex coacervate is greater than the concentration of the monovalent salt in the environment. For example, the concentration of Na and KC1 under physiological conditions is about 150 mM.
- the concentration of the monovalent salt present in the in situ solidifying complex coacervate would be greater than 150 mM.
- the monovalent salt that is present in the in situ solidifying complex coacervate is at a concentration from 0.5 M to 2.0 M.
- the concentration of the monovalent salt is 0.5 to 1.8, 0.5 to 1.6, 0.5 to 1.4, or 0.5 to 1.2.
- the concentration of the monovalent salt in the complex coacervate is 1.5 to 2, 1.5 to 3, 1.5 to 4, 1.5 to 5, 1.5 to 6, 1.5 to 7, 1.5 to 8, 1.5 to 9 or 1.5 to 10 times greater than the concentration of the monovalent salt in the aqueous environment.
- the monovalent salt can be sodium chloride or potassium chloride or a mixture.
- the in situ solidifying complex coacervate can be formulated in hypertonic saline solutions that can be used for parenteral or intravenous administration or by injection to a subject.
- the in situ solidifying complex coacervate can be formulated in Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or other buffered saline solutions that can be safely administered to a subject, wherein the saline concentration has been adjusted so that it is greater than saline concentration at physiological conditions.
- kits for making the in situ solidifying complex coacervates and adhesives described herein comprising (1) at least one polyanion, (2) at least one polycation, wherein the positive/negative charge ratio of the polycation to the polyanion is from 0.25 to 4, and (3) an aqueous solution comprising a monovalent salt at a concentration from 0.5 M to 2.0 M.
- the kits can also include additional components as described herein ⁇ e.g., reinforcing components, initiators, bioactive agents, contrast agents, etc.).
- water can be added to the polycation and/or polyanion to produce the coacervate.
- the pH of the polycation and polyanion prior to lyophilizing the polycation and polyanion in order to produce a dry powder, can be adjusted such that when they are admixed in water the desired pH is produced without the addition of acid or base. For example, excess base can be present in the polycation powder which upon addition of water adjusts the pH accordingly.
- the in situ solidifying complex coacervate can be loaded in a syringe for future. Due to the stability of the in situ solidifying complex coacervate, a sterilized solution of the complex coacervate can be stored in the syringe for extended periods of time and used as needed.
- the in situ solidifying complex coacervates and adhesives described herein have numerous benefits and applications where it is desirable to produce adhesives and coatings in an aqueous environment.
- the in situ solidifying complex coacervates are fluids with low viscosity and are readily injectable via a narrow gauge device, syringe, catheter, needle, cannula, or tubing.
- the in situ solidifying complex coacervates are water-borne eliminating the need for potentially toxic solvents.
- the in situ solidifying complex coacervates described herein are fluids at ionic strengths higher than the ionic strength of the application site, but insoluble ionic hydrogels at the ionic strength of the application site.
- the complex coacervates forms a solid or gel in situ at the application site as the salt concentration in the complex coacervate equilibrates to the application site salt concentration.
- the solid or gel that is subsequently produced is a non-fluid, water insoluble material.
- the ionic concentration at the application site can vary depending upon the ionic concentration of the in situ solidifying complex coacervate.
- the application site has one or more monovalent salts, where the concentration of the monovalent salts is less than 500 mM, or from 150 mM to less than 500 mM.
- the ionic concentration of the monovalent salt at the application site is from 150 mM to 600 mM and the concentration of the monovalent salt of the complex coacervate composition is greater than 600 mM to 2 M.
- the in situ solidifying complex coacervates can form solids or gels in situ under physiological conditions.
- the physiological ionic strength is approximately 300 mOsm/L.
- in situ solidifying complex coacervates having an ionic strength greater than 300 mOsm/L are introduced to a subject (e.g., injected into a mammal), the fluid complex coacervate is converted to an adhesive solid or gel at the site of application.
- the in situ solidifying complex coacervates described herein have numerous medical and biological applications, which are described in detail below.
- the in situ solidifying complex coacervates can include one or more contrast agents.
- the physician can monitor precisely the position of the adhesive gel or solid that is produced in situ.
- Contrast agents known in the art can be used herein.
- the contrast agent can be admixed with the polycation and polyanion.
- metal particles such as tantalum powder or gold can be used.
- soluble iodine complexes can be used as the contrast agent.
- the contrast agent can be detected using techniques known in the art including X-ray, NMR imaging, ultrasound, and fluoroscopes.
- a visualization agent can be used to visibly detect the position of the complex coacervate.
- An example of this is depicted in Figure 6B, where fluorescein is covalently bonded to a synthetic polyguanidinyl polymer (i.e., a polycation).
- polymerizable monomers with a contrast or visualization agent covalently bonded to it can be polymerized with other monomers to produce polycations and polyanions useful herein medical and biological applications.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to reduce or inhibit blood flow in a blood vessel of a subject.
- the adhesive solid or gel produced from the fluid complex coacervate creates an artificial embolus within the vessel.
- the fluid complex coacervates described herein can be used as synthetic embolic agents.
- the in situ solidifying complex coacervate is injected into the vessel followed by formation of the adhesive solid or gel in order to partially or completely block the vessel. This method has numerous applications including hemostasis or the creation of an artificial embolism to inhibit blood flow to a tumor, aneurysm, varicose vein, an arteriovenous malformation, an open or bleeding wound, or other vascular defects.
- the fluid complex coacervates can be used as synthetic embolic agents.
- the fluid complex coacervate described herein can include one or more additional embolic agents.
- Embolic agents commercially-available are microparticles used for embolization of blood vessels. The size and shape of the microparticles can vary.
- the microparticles can be composed of polymeric materials. An example of this is BearinTM nsPVA particles manufactured by Merit Medical Systems, Inc., which are composed of polyvinyl alcohol ranging is size from 45 ⁇ to 1,180 ⁇ .
- the embolic agent can be a microsphere composed of a polymeric material. Examples of such embolic agents include Embosphere ® Microspheres, which are made from trisacryl cross linked with gelatin ranging is size from 40 ⁇ to 1,200 ⁇ ;
- HepaSphereTM Microspheres (spherical, hydrophilic microspheres made from vinyl acetate and methyl acrylate) ranging is size from 30 ⁇ to 200 ⁇ ;
- QuadraSphere ® Microspheres (spherical, hydrophilic microspheres made from vinyl acetate and methyl acrylate) ranging is size from 30 ⁇ to 200 ⁇ , all of which are manufactured by Merit Medical Systems, Inc.
- the microsphere can be impregnated with one or more metals that can be used as a contrast agent.
- An example of this is EmboGold ® Microspheres manufactured by Merit Medical Systems, Inc., which are made from trisacryl cross linked with gelatin impregnated with 2% elemental gold ranging is size from 40 ⁇ to 1 ,200 ⁇ .
- the fluid complex coacervate includes a contrast agent for visualizing the location of the solid or gel that is produced in the subject from the fluid complex coacervate.
- the contrast agents and methods for visualizing discussed above can be used in this embodiment.
- the contrast agent can be tantalum particles having a particle size from 0.5 ⁇ to 50 ⁇ , 1 ⁇ to 25 ⁇ , 1 ⁇ to 10 ⁇ , or 1 ⁇ to 5 ⁇ .
- contrast agent is tantalum particles in the amount of 10% to 60%, 20% to 50%, or 20% to 40%.
- the addition of components such as contrast agents or embolic agents can affect the viscosity of the fluid complex coacervate and administration to a subject.
- a fluid complex coacervate containing a contrast agent such as titanium particles will be more viscous at low shear rates than the same fluid complex coacervate that does not include the titanium particles (see for example Figure 9).
- the viscosity of the fluid complex coacervate can recover at low shear rates.
- Reversible shear thinning allows the viscous fluid complex coacervates described herein to be injected through a long narrow catheter with low force, and as the shear rate decreases to zero at the catheter exit, the viscosity of the complex coacervate increases to prevent it from flowing away from the application site. This allows precise control while injecting the composition.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to reinforce the inner wall of a blood vessel in the subject.
- the in situ solidifying complex coacervate can be introduced into the vessel at a sufficient amount to coat the inner lining of the vessel so that the vessel is not blocked.
- the in situ solidifying complex coacervate can be injected into a vessel where there is an aneurysm.
- the in situ solidifying complex coacervate reduce or prevents the rupture of an aneurysm.
- the fluid complex coacervate can include a contrast agent. The contrast agents and methods for visualizing discussed above can be used in this embodiment.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to close or seal a puncture in a blood vessel in the subject.
- the in situ solidifying complex coacervate can be injected into a vessel at a sufficient amount to close or seal the puncture from within the vessel so that the vessel is not blocked.
- the in situ solidifying complex coacervate can be applied to puncture on the exterior surface of the vessel to seal the puncture.
- the fluid complex coacervate can include a contrast agent. The contrast agents and methods for visualizing discussed above can be used in this embodiment.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to repair a number of different bone fractures and breaks.
- the adhesive solids and gels upon formation adhere to bone (and other minerals) through several mechanisms.
- the surface of the bone's hydroxyapatite mineral phase (Cas(P04)3(OH)) is an array of both positive and negative charges.
- the negative groups present on the polyanion e.g., phosphate groups
- direct interaction of the polycation with the negative surface charges would contribute to adhesion.
- oxidized crosslinkers can couple to nucleophilic sidechains of bone matrix proteins.
- the fracture is an intra-articular fracture or a craniofacial bone fracture.
- Fractures such as intra-articular fractures are bony injuries that extend into and fragment the cartilage surface.
- the adhesive solids and gels produced from the in situ solidifying complex coacervates may aid in the maintenance of the reduction of such fractures, allow less invasive surgery, reduce operating room time, reduce costs, and provide a better outcome by reducing the risk of post-traumatic arthritis.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to join small fragments of highly comminuted fractures.
- small pieces of fractured bone can be adhered to an existing bone. It is especially challenging to maintain reduction of the small fragments by drilling them with mechanical fixators. The smaller and greater the number of fragments the greater the problem.
- the in situ solidifying complex coacervates may be injected in small volumes to create spot welds as described above in order to fix the fracture rather than filling the entire crack.
- the small biocompatible spot welds would minimize interference with healing of the surrounding tissue and would not necessarily have to be biodegradable. In this respect it would be similar to permanently implanted hardware.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom have numerous dental applications.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to seal breaks or cracks in teeth, for securing crowns, or allografts, or seating implants and dentures.
- the in situ solidifying complex coacervate can be applied to a specific points in the mouth (e.g., jaw, sections of a tooth) followed by attaching the implant to the substrate and subsequent curing.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can adhere a substrate to bone other tissues such as, for example, cartilage, ligaments, tendons, soft tissues, organs, and synthetic derivatives of these materials.
- bone such as, for example, cartilage, ligaments, tendons, soft tissues, organs, and synthetic derivatives of these materials.
- implants made from titanium oxide, stainless steel, or other metals are commonly used to repair fractured bones.
- the in situ solidifying complex coacervate can be applied to the metal substrate, the bone, or both prior to adhering the substrate to the bone.
- the substrate can be a fabric (e.g., an internal bandage), a tissue graft, a patch, or a wound healing material.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can facilitate the bonding of substrates to bone, which can facilitate bone repair and recovery.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to position biological scaffolds in a subject. Small adhesive tacks composed of the adhesive complex coacervates described herein would not interfere with migration of cells or transport of small molecules into or out of the scaffold.
- the scaffold can contain one or more drugs that facilitate growth or repair of the bone and tissue.
- the scaffold can include drugs that prevent infection such as, for example, antibiotics.
- the scaffold can be coated with the drug or, in the alternative, the drug can be incorporated within the scaffold so that the drug elutes from the scaffold over time.
- the adhesive gels and solids produced from the in situ solidifying complex coacervates described herein can encapsulate, scaffold, seal, or hold one or more bioactive agents.
- the bioactive agents can be any drug including, but not limited to, antibiotics, pain relievers, immune modulators, growth factors, enzyme inhibitors, hormones, mediators, messenger molecules, cell signaling molecules, receptor agonists, oncolytics, chemotherapy agents, or receptor antagonists.
- the agent may also be autologous or homologous (allogeneic) cells, platelet rich plasma (PRP), or other like tissue.
- the bioactive agent can be a nucleic acid.
- the nucleic acid can be an oligonucleotide, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or peptide nucleic acid (PNA).
- the nucleic acid of interest can be nucleic acid from any source, such as a nucleic acid obtained from cells in which it occurs in nature, recombinantly produced nucleic acid, or chemically synthesized nucleic acid.
- the nucleic acid can be cDNA or genomic DNA or DNA synthesized to have the nucleotide sequence corresponding to that of naturally-occurring DNA.
- the nucleic acid can also be a mutated or altered form of nucleic acid (e.g., DNA that differs from a naturally occurring DNA by an alteration, deletion, substitution or addition of at least one nucleic acid residue) or nucleic acid that does not occur in nature.
- a mutated or altered form of nucleic acid e.g., DNA that differs from a naturally occurring DNA by an alteration, deletion, substitution or addition of at least one nucleic acid residue
- nucleic acid that does not occur in nature e.g., DNA that differs from a naturally occurring DNA by an alteration, deletion, substitution or addition of at least one nucleic acid residue
- the bioactive agent is used in bone treatment applications.
- the bioactive agent can be bone morphogenetic proteins (BMPs) and prostaglandins.
- BMPs bone morphogenetic proteins
- prostaglandins prostaglandins.
- bioactive agents known in the art such as, for example, bisphonates, can be delivered locally to the subject by the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom.
- the filler used to produce the in situ solidifying complex coacervate can also possess bioactive properties.
- the particle can also behave as an anti-microbial agent.
- the rate of release can be controlled by the selection of the materials used to prepare the complex, as well as the charge of the bioactive agent if the agent has ionizable groups.
- the adhesive solid or gel produced from the in situ solidifying complex coacervate can perform as a localized controlled drug release depot. It may be possible to simultaneously fix tissue and bones as well as deliver bioactive agents to provide greater patient comfort, accelerate bone healing, and/or prevent infections.
- the adhesive complex coacervates and adhesives produced therefrom can be used in a variety of other surgical procedures.
- the in situ solidifying complex coacervates can be applied as a covering to a wound created by the surgical procedure to promote wound healing and prevent infection.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to treat ocular wounds caused by trauma or by the surgical procedures.
- the in situ solidifying complex coacervates and adhesives produced therefrom can be used to repair a corneal or schleral laceration in a subject.
- the in situ solidifying complex coacervates can be used to facilitate healing of ocular tissue damaged from a surgical procedure (e.g., glaucoma surgery or a corneal transplant). The methods disclosed in U.S. Published Application No.
- 2007/0196454 which are incorporated by reference, can be used to apply the coacervates described herein to different regions of the eye.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to seal the junction between skin and an inserted medical device such as catheters, electrode leads, needles, cannulae, osseo-integrated prosthetics, and the like.
- an inserted medical device such as catheters, electrode leads, needles, cannulae, osseo-integrated prosthetics, and the like.
- the fluid complex coacervate upon insertion and/or removal of the medical device the fluid complex coacervate is applied to the junction between the skin of the subject and the inserted medical device in order to seal the junction.
- the fluid complex coacervate prevent infection at the entry site when the device is inserted in the subject and subsequently forms a solid or gel.
- the in situ solidifying complex coacervates can be applied to the entry site of the skin after the device has been removed in order to expedite wound healing and prevent further infection.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to prevent or reduce the proliferation of tumor cells during tumor biopsy.
- the method involves back-filling the track produced by the biopsy needle with the in situ solidifying complex coacervates upon removal of the biopsy needle.
- the in situ solidifying complex coacervates includes an anti-proliferative agent that will prevent or reduce the potential proliferation of malignant tumor cells to other parts of the subject during the biopsy.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to close or seal a puncture in an internal tissue or membrane.
- internal tissues or membranes are punctured, which subsequently have to be sealed in order to avoid additional complications.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to adhere a scaffold or patch to the tissue or membrane in order to seal the tissue, prevent further damage and facilitate wound healing.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can be used to seal a fistula in a subject.
- a fistula is an abnormal connection between an organ, vessel, or intestine and another structure such as, for example, skin.
- Fistulas are usually caused by injury or surgery, but they can also result from an infection or inflammation.
- Fistulas are generally a disease condition, but they may be surgically created for therapeutic reasons.
- the in situ solidifying complex coacervates and adhesive solids and gels produced therefrom can prevent or reduce undesirable adhesion between two tissues in a subject, where the method involves contacting at least one surface of the tissue with the in situ solidifying complex coacervate.
- the fistula is an enterocuianeous fistula (ECF).
- ECF is an abnormal connection that develops between the intestinal tract or stomach and the skin. As a result, contents of the stomach or intestines leak through to the skin. Most ECFs occur after bowel surgery.
- the adhesive solid or gel after the adhesive solid or gel has been produced from the in situ solidifying complex coacervates, the adhesive solid or gel can be subsequently cured by covalently crosslinking the polycation and/or polyanion having crosslinkable groups in the solid or gel. Depending upon the selection of starting materials, varying degrees of crosslinking can occur throughout the coacervate during curing.
- the adhesive gel can be exposed to heat or light in order to facilitate crosslinking. Any of the initiators described herein can be included in the in situ solidifying complex coacervates to facilitate covalent crosslinking.
- the in situ complex coacervates can be incorporated in a number of other articles and compositions that contain water or that will be exposed to an aqueous environment.
- the in situ solidifying complex coacervates can be used as underwater coating or paint.
- the in situ solidifying complex coacervate can be applied to a submerged surface in a freshwater or marine environment and would rapidly solidify to form a protective coating on the surface.
- the in situ solidifying complex coacervates can be used in marine applications, where the monovalent salt concentration can be very high.
- the monovalent salt concentration in the in situ solidifying complex coacervate can be adjusted so that the in situ solidifying complex coacervate will form an insoluble gel or solid when it comes into contact with seawater.
- the adhesive gel or solid can be covalently crosslinked by natural ambient light or by applying a light source. Crosslinking groups on the polycation and/or polyanion would allow the coating to be covalently crosslinked after application and gelation to increase hardness and improve strength and stability.
- the other articles can include a cured adhesive complex coacervate described herein.
- the in situ solidifying complex coacervate can be applied to a film substrate to create an adhesive tape.
- the application of the complex coacervate and ultimately the adhesive solid or gel is performed in an aqueous environment and does not require the removal of organic solvents typically used to prepare adhesive backings.
- reaction conditions e.g., component concentrations, desired solvents, solvent mixtures, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.
- Protamine sulfate from salmon sperm was dissolved in 150 mM NaCl solution at 50 mg/ml. The pH was adjusted to 6.5 with NaOH. A ten-fold molar excess of glycidyl methacrylate was added dropwise while stirring at 20 °C. The pH was adjusted to 6.5 every 12 hrs. After 48 hrs the salmine was precipitated with 10-fold excess volume of acetone. The precipitate was rinsed with acetone, dried, and re-dissolved in water. After dialysis for 48 hr the pH was adjusted to 7 and the solution was lyophilized. Methacrylation on the C-terminal carboxylate was verified by NMR spectroscopy.
- Analogs of arginine-rich protamines were synthesized by free radical co- polymerization of N-(3-methacrylamidopropyl) guanidinium chloride with acrylamide.
- the major advantages of synthetic polyguanidinium over natural protamines are (1) the guanidinyl sidechain density, and thereby the polymer charge density, can be varied over a wide range to adjust gelation conditions, (2) the MW can be controlled and varied, (3) the guanidinyl monomer can be copolymerized with other monomers with sidechains that add additional functionality to the polymers, such as crosslinking groups or fluorescent labels, and (4) synthetic acrylate protamine analogs are non-degradable or slowly degradable for applications in which biodegradability is not desirable.
- Figure 5 shows the reaction scheme for preparing an exemplary synthetic guanidinyl monomer.
- N-(3-methacrylamidopropyl)guanidinium chloride was synthesized following published procedures. iH-pyrazole-l-carboxamidine monohydrochloride ( 12.3g, 84mmol) was added under Ar to a stirred solution of N- (3-aminopropyl)methacrylamide hydrochloride(15g, 84 mmol), 4-methoxyphenol (150 mg) and N,N-diisopropylethylamine (38mL, 209 mmol) in DMF (85mL, keeping the final concentration of the reactants 2M).
- Polyguanidine ( Figure 6A) was synthesized by dissolving N-(3- methacrylamidopropyl)guanidinium chloride, acrylamide, fluorescein 0-methacrylate and 4-cyano-4-(thiobenzoylthio)pentanoic acid in DMSO. After degassing for 30 min, the initiator azobisisobutyronitrile was added and the solution heated to 70 ° C under Ar. After 40 h, the solution was cooled, precipitated with acetone, and dissolved in water.
- Methacrylamide sidechains were grafted onto polyguanidine ( Figure 6B) to facilitate crosslinking of the polymers.
- Polyguanidium was dissolved in methanol. Triethylamine and the inhibitor phenothiazine were added. The solution was cooled to 0°C before addition of methacryloyl chloride. The reaction was removed from the ice bath and stirred at room temperature overnight. The polymer was precipitated with acetone, filtered, and dried.
- polyphosphates were used to form complex coacervates with protamine or polyguanidine. Negatively charged phosphate and phosphonate groups form strong electrostatic bonds with guanidium groups.
- polyphosphates are commercially available and are used as additives to food and consumer health care products.
- Sodium hexametaphosphate (CAS# 68915-31-1) was used to form the salmine complex coacervates.
- Other suitable polyphosphates include sodium triphosphate (CAS# 7758-29-4) and sodium inositol hexaphosphate (CAS# 14306-25-3), which is also known as phytic acid. These polyphosphates are biodegradable and non-toxic. Inositol hexaphosphate occurs naturally in plants and is sold and consumed as a neutriceutical.
- Salmine sulfate MP Biomedicals
- Complex coacervates were formed by adding an appropriate volume of the salmine solution at a given NaCl concentration drop wise to an appropriate volume of the poly(acrylamide-co-acrylamidohexanoic acid) such that the final charge ratio was 1 : 1 carboxylate to arginine.
- the mixed solution turned immediately cloudy and within a few minutes the complex coacervate began to settle out on the bottom of the tube.
- the complex coacervate phase was allowed to equilibrate for 24 hr, after which the polymer-depleted upper aqueous phase is removed.
- the dense lower phase is used as the in situ solidifying complex coacervate.
- 150 micro liters of the dense complex coacervate phase was pipetted onto the deck of the rheometer with a positive displacement pipette.
- Example 1 Using the procedure of Example 1 , aqueous solutions of salmine and hexametaphosphate were mixed in various concentrations of NaCl at room temperature, 22 °C. Between 1100 and 1200 mM NaCl a critical ionic strength (I) exists at which the complex coacervate becomes a solid non-flowing gel. The viscosity of the coacervate decreases with increasing I above I cr it- The stiffness of the gels increases below I cr it- The forms are interconvertible by changing the ionic strength. The results are depicted in Figure 1. Evaluation of In Situ Solidifying Complex Coacervates as Embolic Agents
- FIGs 3 and 4 The use of the in situ solidifying complex coacervates (salmine and hexametaphosphate) as embolic agent in an in vitro model is demonstrated in Figures 3 and 4.
- a model of a bifurcated vascular system was created with silicone tubing and a peristaltic pump.
- the system includes a pressure gauge, valves for flow control, and an inlet for small diameter catheters (Figure 3). While circulating physiological saline, a narrow gauge catheter (blue) was inserted into one side of the bifurcated channel ( Figure 4A).
- the rabbit was first anesthetized with Isoflurane in an induction chamber, then intubated with an endotracheal tube (3.5 mm, Hudson/Sheridan). Once intubated, the rabbit was connected to an anesthetic machine (Drager Narkomed 2B) equipped for non-invasive monitoring, including an anesthetic gas analyzer, respiratory monitor (Ohmeda 5250 RGM), oximeter, thermometer, and Isoflurane vaporizer. An intravenous infusion of 0.9% saline solution (Baxter) was administered during the procedure.
- Protamine sulfate (PRT) and sodium phytate (IP6) were dissolved in 1200 mM NaCl at 62.5 mg/mL and 115.1 mg/mL, respectively, and adjusted to pH 7.2.
- the solutions were filter sterilized into sterile 50 mL conical tubes through a 0.22 ⁇ syringe filter (Millex-GS, Millipore).
- the solutions, 8 mL of IP6 and 32 mL PRT, were mixed at a 1: 1 positive to negative charge ratio at 60 °C, above the coacervation phase separation temperature.
- Tantalum metal powder (1,114.3 mg, 1-5 micron particle size, Atlantic Equipment Engineers) was also added so that the condensed coacervate phase was 30 wt tantalum.
- the solution was mixed continuously as it cooled to room temperature.
- the dense coacervated settled to the bottom on the tube. After 24 hr, the supernatant and removed and the dense coacervate phase was aseptically loaded into 1 mL syringes.
- the right femoral artery was chosen as the site of arterial catheterization.
- the inner side of the leg was shaved, and the incision site and surrounding skin was cleaned with 70% isopropyl alcohol.
- the disinfected area was covered with sterile drapes, exposing only the area overlying the right femoral artery.
- the artery was exposed with a 3-5 cm longitudinal incision. The location of the incision was determined by palpating the artery.
- the artery was isolated from the femoral nerve and vein by blunt dissection. Two 4.0 silk sutures were positioned under the artery and used to gently elevate the artery for access.
- Topical Lidocain (2%, Hospira) was administered to decrease the vasospasm of the femoral artery during handling.
- the femoral artery was accessed using a 4F access kit (Access Point Technology, Inc).
- the micro-catheter (2.8 F, 135 cm/Biomerics) was maneuvered from the femoral artery into the renal artery under fluoroscopy (C-arm 9800 series OEC MEdical/ GE medical).
- Omnipaque (Iohexol 240 mg/ml) was used as the X-ray contrast agent to visualize organs and blood vessels.
- Omnipaque diluted 1: 1 with normal saline was injected to visualize the blood vessels.
- the catheter was flushed with saline, then 0.2 mL of hypersaline (1.2M) was injected into the catether.
- the in situ solidifying adhesive coacervate was loaded into a 1 mL syringe (Medallion, Merit Medical).
- the coacervate contained 30 wt% tantalum metal (1-5 micron particle size) as a contrast agent.
- the syringe was attached to the catheter and the sample was injected into the renal artery. No changes in breathing or heart rate occurred during or after the embolization.
- Injection of the adhesive was visualized using a C-arm 9800 series fluoroscope (OEC Medical/ GE Medical Inc.). Complete occlusion of the left kidney was observed as a result of injecting the adhesive ( Figure 7 A and 7B). It was apparent the coacervate evenly penetrated into the fine branching blood vessels of the entire kidney cortex.
- the animal was euthanized 90 min after embolization with Euthanasia solution (Vet One). No changes were observed by fluoroscopy in the position or opaqueness of the in situ solidifying coacervate during the 90 minutes post injection. Post mortem, the animal was scanned on an Axiom Artist dBA biplane angiography system (Siemens Inc.) to obtain a 3D image of the embolized kidney ( Figure 7C and 7D). Complete and uniform embolization was apparent in the 3D images.
- the embolized kidney was isolated and fixed in 10% buffered formalin. After 2 days, the renal capsule was removed and the tissue was fixed for another 4 days. The tissue was embedded in paraffin, sectioned and stained with Hematoxylin & Eosin ( Figures 8A-8D). From histology, it was observed that arteries and small arteries were fully occluded. Occlusion occurred uniformly throughout the kidney, penetrating into the capillaries of glomeruli. Importantly, no embolic agent was visible in veins or venules. The adhesive coacervate appeared to adhere to the wall of the blood vessels. The adhesive coacervate did not mix with blood, and there was no evidence of lysis of red blood cells in direct contact with the adhesive. There was no visible effect on cells or tissues immediate adjacent to the emboli.
- Protamine sulfate (PRT) and sodium phytate (IP6) were dissolved in 1,200 mM NaCl at concentrations of 62.5 mg/mL and 115.1 mg/mL, respectively, and adjusted to pH 7.2. The solutions were mixed at a ratio of 1 part IP6 to 4 parts PRT to give a 1 : 1 positive to negative charge ratio. The solutions were mixed at 60 °C, above the coacervation phase separation temperature. An amount of tantalum metal powder (1-5 micron particle size, Atlantic Equipment Engineers) was added so that the condensed coacervate phase contained 30 wt tantalum. The solution was mixed continuously as it cooled to room temperature. The dense coacervate phase settled to the bottom on the tube. After 24 hr, the supernatant phase was removed from the coacervate phase.
- PRT Protamine sulfate
- IP6 sodium phytate
- the flow behavior of PRT/IP6 coacervates was characterized on a temperature controlled rheometer (AR 2000ex Rheometer, TA Instruments). Viscosity was measured as a function of applied shear rate using a 20 mm, 4° cone geometry. A solvent trap was used to prevent the sample from drying out during the experiment. Shear rate was stepped from 0.01 s "1 to 1000 s "1 at 10 points per decade. The tantalum containing coacervates were 5-6 times more viscous at low shear rates than the non- tantalum containing coacervates.
- Aqueous mixtures of oppositely charged polyelectrolytes can exist in several material states, or forms. The form depends on solution conditions like pH, ionic strength, and temperature.
- the form of the electrostatically associated oppositely charged PEs is dependent on the NaCl concentration. Higher salt concentrations shield electrostatic interactions and decrease the strength of the PE association, resulting in a fluid coacervate form. At low salt, the interactions are stronger, resulting in strongly associated solid gel forms. At very high salt concentrations the PE charges are fully shielded and the PEs do not associate. In this case the PEs are fully solvated and suspended in the aqueous solution; no phase separation occurs. Temperature also affects the strength of the PE association. At higher temperatures the electrostatic interactions are weaker and hence the PEs condense into a liquid coacervate form at lower NaCl concentrations. The strength of the association between PEs is highest when the maximum number of charge interactions occurs, which is when the charge ratio is 1:1.
- the phase diagrams illustrate the principle of the invention.
- the adhesive By mixing PEs in a region of the phase diagram in which fluid complex coacervates condense, the adhesive can be prepared in an injectable fluid form. If the fluid form is injected into an environment corresponding to a gel region of the phase diagram, the fluid form will harden into a solid gel as the adhesive equilibrates to the new solution conditions. From the phase diagrams in Figure 10, it can be observed that a fluid coacervate form of the adhesive can be prepared at NaCl concentrations ranging from 600 mM to 1,500 mM. When the fluid coacervate is injected into an environment with less than 300 mM NaCl at 37 °C, i.e., human physiological conditions, the fluid form will spontaneously transition to a solid gel form in situ.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Materials For Medical Uses (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15821619.2A EP3169374B1 (en) | 2014-07-14 | 2015-07-14 | In situ solidifying complex coacervates and methods of making and using thereof |
CA2955048A CA2955048C (en) | 2014-07-14 | 2015-07-14 | In situ solidifying compositions and methods of making and using therof |
EP19210212.7A EP3632478B1 (en) | 2014-07-14 | 2015-07-14 | In situ solidifying solution and methods of making and using thereof |
JP2017501675A JP6742297B2 (en) | 2014-07-14 | 2015-07-14 | In-situ coagulated composite coacervate and method of making and using same |
AU2015289798A AU2015289798B2 (en) | 2014-07-14 | 2015-07-14 | In situ solidifying complex coacervates and methods of making and using thereof |
US15/325,885 US9913927B2 (en) | 2014-07-14 | 2015-07-14 | In situ solidifying complex coacervates and methods of making and using thereof |
US15/880,650 US10369249B2 (en) | 2014-07-14 | 2018-01-26 | In situ solidifying complex coacervates and methods of making and using thereof |
US16/450,338 US10729807B2 (en) | 2014-07-14 | 2019-06-24 | In situ solidifying solutions and methods of making and using thereof |
AU2019264567A AU2019264567B2 (en) | 2014-07-14 | 2019-11-12 | In situ solidifying complex coacervates and methods of making and using thereof |
US16/912,830 US11471557B2 (en) | 2014-07-14 | 2020-06-26 | In situ solidifying solutions and methods of making and using thereof |
US17/931,242 US20230056283A1 (en) | 2014-07-14 | 2022-09-12 | In situ solidifying solutions and methods of making and using thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462024128P | 2014-07-14 | 2014-07-14 | |
US62/024,128 | 2014-07-14 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/325,885 A-371-Of-International US9913927B2 (en) | 2014-07-14 | 2015-07-14 | In situ solidifying complex coacervates and methods of making and using thereof |
US15/880,650 Continuation US10369249B2 (en) | 2014-07-14 | 2018-01-26 | In situ solidifying complex coacervates and methods of making and using thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016011028A1 true WO2016011028A1 (en) | 2016-01-21 |
Family
ID=55078983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2015/040377 WO2016011028A1 (en) | 2014-07-14 | 2015-07-14 | In situ solidifying complex coacervates and methods of making and using thereof |
Country Status (6)
Country | Link |
---|---|
US (5) | US9913927B2 (en) |
EP (2) | EP3169374B1 (en) |
JP (2) | JP6742297B2 (en) |
AU (2) | AU2015289798B2 (en) |
CA (1) | CA2955048C (en) |
WO (1) | WO2016011028A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105924468A (en) * | 2016-05-03 | 2016-09-07 | 首都师范大学 | Novel hydrogel prepared from phytic acid and soluble metal salt and preparing method thereof |
WO2019084548A1 (en) * | 2017-10-27 | 2019-05-02 | University Of Utah Research Foundation | In situ solidifying liquid complex coacervates for the local delivery of anti-angiogenic agents or chemotherapeutic agents |
EP3514213A1 (en) | 2018-01-18 | 2019-07-24 | Basf Se | Pressure-sensitive adhesive solution comprising polymers with cationic and anionic groups |
WO2019172764A1 (en) | 2018-03-09 | 2019-09-12 | Rijksuniversiteit Groningen | Adhesive composition |
US20190321510A1 (en) * | 2014-07-14 | 2019-10-24 | University Of Utah Research Foundation | In situ solidifying homogeneous solutions and methods of making and using thereof |
WO2019236932A1 (en) * | 2018-06-07 | 2019-12-12 | University Of Utah Research Foundation | Flowable hemostatic complex coacervates |
WO2020169681A1 (en) * | 2019-02-21 | 2020-08-27 | Centre National De La Recherche Scientifique | Surgical glues based on monomers comprising a phosphate function |
WO2023217827A1 (en) | 2022-05-12 | 2023-11-16 | Saint-Gobain Adfors | Prepasted wall covering with a water-activated latent adhesive composition |
EP4299680A1 (en) | 2022-06-29 | 2024-01-03 | Saint-Gobain Weber France | Quick setting aqueous composition comprising polyelectrolyte coacervates and polyphenols |
US11896234B2 (en) | 2018-01-26 | 2024-02-13 | Fluidx Medical Technology, Llc | Apparatus and method of using in situ solidifying complex coacervates for vascular occlusion |
WO2024126702A1 (en) | 2022-12-16 | 2024-06-20 | Saint-Gobain Adfors | Textile bonded by a binder based on polyelectrolytes having opposite charge polarities |
FR3145939A1 (en) | 2023-02-21 | 2024-08-23 | Saint-Gobain Isover | Improving adhesion between insulation and coating in external thermal insulation systems for buildings |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8283384B2 (en) | 2008-01-24 | 2012-10-09 | University Of Utah Research Foundation | Adhesive complex coacervates and methods of making and using thereof |
CN115386055A (en) * | 2016-10-04 | 2022-11-25 | 康奈尔大学 | Lubricating block copolymers and their use as biomimetic interfacial lubricants |
US10767060B2 (en) * | 2017-05-22 | 2020-09-08 | University Of Massachusetts | Ultra-stable printing and coatings using aqueous complex coacervates, and compositions and methods thereof |
CN109337556A (en) * | 2018-09-28 | 2019-02-15 | 安徽环科泵阀有限公司 | A kind of production technology of pump valve antirust paint |
WO2022140513A1 (en) * | 2020-12-22 | 2022-06-30 | Fluidx Medical Technology, Llc | In situ solidifying injectable compositions with transient contrast agents and methods of making and using thereof |
CN114877158B (en) * | 2022-04-15 | 2023-06-23 | 四川轻化工大学 | Lining pipe surface modification method for non-excavation in-situ repair pipeline |
CN116496492B (en) * | 2023-04-04 | 2024-09-06 | 兰州大学 | Polyamide-amine dendritic polymer double-modified by phytic acid and polypeptide, and preparation method and application thereof |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4228042A (en) | 1978-06-26 | 1980-10-14 | The Procter & Gamble Company | Biodegradable cationic surface-active agents containing ester or amide and polyalkoxy group |
US4239660A (en) | 1978-12-13 | 1980-12-16 | The Procter & Gamble Company | Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source |
US4260529A (en) | 1978-06-26 | 1981-04-07 | The Procter & Gamble Company | Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide |
EP0632329A1 (en) | 1993-07-02 | 1995-01-04 | Ciba-Geigy Ag | Functionalised photoinitiator, macromeres and their use |
WO1998035005A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | A cleaning composition |
WO1998035003A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Detergent compound |
WO1998035006A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Liquid cleaning composition |
WO1998035002A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Cleaning compositions |
WO1998035004A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Solid detergent compositions |
US6004922A (en) | 1996-05-03 | 1999-12-21 | The Procter & Gamble Company | Laundry detergent compositions comprising cationic surfactants and modified polyamine soil dispersents |
US6022844A (en) | 1996-03-05 | 2000-02-08 | The Procter & Gamble Company | Cationic detergent compounds |
WO2000047708A1 (en) | 1999-02-10 | 2000-08-17 | The Procter & Gamble Company | Low density particulate solids useful in laundry detergents |
US6136769A (en) | 1996-05-17 | 2000-10-24 | The Procter & Gamble Company | Alkoxylated cationic detergency ingredients |
US6221825B1 (en) | 1996-12-31 | 2001-04-24 | The Procter & Gamble Company | Thickened, highly aqueous liquid detergent compositions |
US20010016577A1 (en) * | 1998-08-24 | 2001-08-23 | Douglas Joseph Dobrozsi | Oral mucoadhesive compositions containing gastrointestinal actives |
US20040208845A1 (en) * | 2003-04-15 | 2004-10-21 | Michal Eugene T. | Methods and compositions to treat myocardial conditions |
US20050019262A1 (en) * | 2003-07-25 | 2005-01-27 | Rubicor Medical, Inc. | Post-biopsy cavity treatment implants and methods |
US20060073207A1 (en) * | 2003-08-26 | 2006-04-06 | Masters David B | Protein biomaterials and biocoacervates and methods of making and using thereof |
US20090054927A1 (en) * | 2007-08-23 | 2009-02-26 | Agnew Charles W | Fistula plugs and apparatuses and methods for fistula plug delivery |
US20090214660A1 (en) * | 2005-10-21 | 2009-08-27 | Living Cell Products Pty Limited | Encapsulation system |
US20100040688A1 (en) * | 2008-08-15 | 2010-02-18 | Washington University | Hydrogel microparticle formation in aqueous solvent for biomedical applications |
US20100120923A1 (en) | 2008-01-24 | 2010-05-13 | University Of Utah Research Foundation | Adhesive complex coacervates and methods of making and using thereof |
WO2013003400A1 (en) * | 2011-06-28 | 2013-01-03 | University Of Utah Research Foundation | Adhesive complex coacervates and methods of making and using thereof |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458460A (en) | 1967-11-27 | 1969-07-29 | Hooker Chemical Corp | Unsaturated polyesters cross-linked by diels-alder reaction |
US3950296A (en) | 1972-04-28 | 1976-04-13 | The Dow Chemical Company | Reversible coacervation of anion-containing aqueous disperse systems with amphoteric polyelectrolytes |
US3947396A (en) | 1972-04-28 | 1976-03-30 | The Dow Chemical Company | Coacervation of anion-containing aqueous disperse systems with amphoteric polyelectrolytes |
US4767463A (en) | 1987-04-15 | 1988-08-30 | Union Carbide Corporation | Glycosaminoglycan and cationic polymer combinations |
US4913743A (en) | 1987-04-15 | 1990-04-03 | Biomatrix, Inc. | Processes for managing keratinous material using glycosaminoglycan and cationic polymer combinations |
DE4020500A1 (en) * | 1990-06-27 | 1992-01-02 | Benckiser Gmbh Joh A | EXTRA MILDE SHOWER AND HAIR CHAMPOO FORMULATION WITH LOW TENSION CONCENTRATION |
US5529914A (en) | 1990-10-15 | 1996-06-25 | The Board Of Regents The Univeristy Of Texas System | Gels for encapsulation of biological materials |
WO1995006056A1 (en) | 1993-08-20 | 1995-03-02 | University Of Medicine & Dentistry Of New Jersey | Bridged polycationic polymer-oligonucleotide conjugates and methods for preparing same |
DE19610965B4 (en) | 1996-03-20 | 2006-07-06 | Stimpfl & Gieseler Gmbh | Device for the further transport of sausages arriving on a conveyor belt |
ES2353840T3 (en) | 1997-04-21 | 2011-03-07 | California Institute Of Technology | MULTIFUNCTIONAL POLYMER TISSULAR COATINGS. |
DE19810965A1 (en) | 1998-03-13 | 1999-09-16 | Aventis Res & Tech Gmbh & Co | Nanoparticles comprising polyelectrolyte complex of polycation, polyanion and biologically active agent, especially useful for controlled drug release on oral administration |
US6428978B1 (en) | 1998-05-08 | 2002-08-06 | Cohesion Technologies, Inc. | Methods for the production of gelatin and full-length triple helical collagen in recombinant cells |
US6818018B1 (en) * | 1998-08-14 | 2004-11-16 | Incept Llc | In situ polymerizable hydrogels |
EP1131114B1 (en) | 1998-11-20 | 2004-06-16 | The University of Connecticut | Apparatus and method for control of tissue/implant interactions |
WO2000043050A1 (en) | 1999-01-22 | 2000-07-27 | St. Jude Medical, Inc. | Medical adhesives |
US6312725B1 (en) | 1999-04-16 | 2001-11-06 | Cohesion Technologies, Inc. | Rapid gelling biocompatible polymer composition |
US6916488B1 (en) | 1999-11-05 | 2005-07-12 | Biocure, Inc. | Amphiphilic polymeric vesicles |
US20020006886A1 (en) | 1999-11-19 | 2002-01-17 | Peter William Beerse | Personal care articles comprising cationic polymer coacervate compositions |
JP5025873B2 (en) | 2000-03-13 | 2012-09-12 | バイオコンパティブルズ ユーケー リミテッド | Tissue weight gain and coating composition |
GB0012061D0 (en) * | 2000-05-18 | 2000-07-12 | Unilever Plc | Hair treatment compositions |
US20040013738A1 (en) | 2000-08-02 | 2004-01-22 | Andreas Voigt | Encapsulation of liquid template particles |
US6488870B1 (en) | 2000-11-27 | 2002-12-03 | Xerox Corporation | Encapsulation process |
JP2004523624A (en) | 2001-02-26 | 2004-08-05 | デューク ユニバーシティ | Novel dendritic polymer and its biomedical use |
US20020172655A1 (en) * | 2001-03-01 | 2002-11-21 | Mitsubishi Chemical Corporation | Cosmetic-use polymer, cosmetic employing same, and method of preparing same |
US6568398B2 (en) | 2001-03-07 | 2003-05-27 | Edgar C. Cohen | Method for hemostasis |
US6562361B2 (en) | 2001-05-02 | 2003-05-13 | 3M Innovative Properties Company | Pheromone immobilized in stable hydrogel microbeads |
FR2824756B1 (en) | 2001-05-16 | 2005-07-08 | Mainelab | MICROCAPSULES BASED ON PLANT PROTEINS |
WO2002100453A1 (en) | 2001-06-07 | 2002-12-19 | Surmodics, Inc. | Crosslinkable macromers |
US6559233B2 (en) | 2001-07-13 | 2003-05-06 | Rhodia Chimie | Composition comprising a copolymer at least two charged blocks and type of opposite charge |
US7204997B2 (en) | 2002-01-29 | 2007-04-17 | Supratek Pharma Inc. | Responsive microgel and methods related thereto |
JP2005526879A (en) | 2002-03-11 | 2005-09-08 | ファースト ウォーター リミテッド | Absorbable hydrogel |
JP4058283B2 (en) | 2002-03-22 | 2008-03-05 | 株式会社リコー | Vibration detector |
US7060798B2 (en) | 2002-05-13 | 2006-06-13 | State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University | Modified protein adhesives and lignocellulosic composites made from the adhesives |
US6958848B2 (en) | 2002-05-23 | 2005-10-25 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US6800663B2 (en) | 2002-10-18 | 2004-10-05 | Alkermes Controlled Therapeutics Inc. Ii, | Crosslinked hydrogel copolymers |
US8105652B2 (en) | 2002-10-24 | 2012-01-31 | Massachusetts Institute Of Technology | Methods of making decomposable thin films of polyelectrolytes and uses thereof |
CN1446590A (en) | 2003-01-21 | 2003-10-08 | 华东理工大学 | New type cement with composite polypeptide/calcium phosphate being as framework |
DE10334753A1 (en) | 2003-07-30 | 2005-03-10 | Constr Res & Tech Gmbh | Self-crosslinking high molecular weight polyurethane dispersion |
WO2005019421A2 (en) | 2003-08-11 | 2005-03-03 | University Of Utah Research Foundation | Crosslinking within coordination complexes |
US7544770B2 (en) | 2003-08-29 | 2009-06-09 | Louisiana Tech Foundation, Inc. | Multilayer films, coatings, and microcapsules comprising polypeptides |
ATE432095T1 (en) | 2003-09-25 | 2009-06-15 | Wageningen Universiteit Agrote | MICELLARS WITH A COMPLEX COAZER VATE CORE AS ANTIPUTTLE AGENTS |
US7608674B2 (en) | 2003-11-03 | 2009-10-27 | Ilypsa, Inc. | Pharmaceutical compositions comprising cross-linked small molecule amine polymers |
EP1691852A2 (en) | 2003-11-10 | 2006-08-23 | Angiotech International AG | Medical implants and fibrosis-inducing agents |
US7780873B2 (en) | 2004-02-23 | 2010-08-24 | Texas A&M University System | Bioactive complexes compositions and methods of use thereof |
WO2007024972A2 (en) | 2005-08-22 | 2007-03-01 | Quick-Med Technologies, Inc. | Non-leaching absorbent wound dressing |
US7854924B2 (en) | 2004-03-30 | 2010-12-21 | Relypsa, Inc. | Methods and compositions for treatment of ion imbalances |
KR101148445B1 (en) | 2004-04-28 | 2012-07-05 | 안지오디바이스 인터내셔널 게엠베하 | Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use |
WO2006023207A2 (en) | 2004-08-19 | 2006-03-02 | The United States Of America As Represented By The Secretary Of Health And Human Services, Nih | Coacervate of anionic and cationic polymer forming microparticles for the sustained release of therapeutic agents |
US20060039950A1 (en) | 2004-08-23 | 2006-02-23 | Zhengrong Zhou | Multi-functional biocompatible coatings for intravascular devices |
US20060116682A1 (en) | 2004-11-18 | 2006-06-01 | Longo Marc N | Surgical implant and methods of making and using the same |
US7795359B2 (en) | 2005-03-04 | 2010-09-14 | Novartis Ag | Continuous process for production of polymeric materials |
HUP0500379A2 (en) | 2005-04-12 | 2007-01-29 | Tibor Dr Forster | Phase separation of micellar colloidal solutions |
US20080193448A1 (en) | 2005-05-12 | 2008-08-14 | Pfizer Inc. | Combinations and Methods of Using an Indolinone Compound |
EP1888729A4 (en) | 2005-06-01 | 2009-07-08 | Rhodia | Coacervate systems having soil anti-adhesion and anti-deposition properties on hydrophilic surfaces |
EP2796544B1 (en) | 2005-09-09 | 2019-04-03 | Duke University | Tissue engineering methods and compositions |
EP1931802A2 (en) | 2005-09-09 | 2008-06-18 | The Board of Regents of The University of Texas System | A calculated index of genomic expression of estrogen receptor (er) and er related genes |
EP1996243B1 (en) | 2006-01-11 | 2014-04-23 | HyperBranch Medical Technology, Inc. | Crosslinked gels comprising polyalkyleneimines, and their uses as medical devices |
US9198981B2 (en) | 2006-02-01 | 2015-12-01 | The University Of Kentucky | Modulation of angiogenesis |
CN101405037A (en) | 2006-02-27 | 2009-04-08 | 新加坡科技研究局 | Curable bone cement |
AU2007283772B2 (en) | 2006-08-04 | 2013-03-07 | Kensey Nash Corporation | Biomimetic compounds and synthetic methods therefor |
DE102007015698B4 (en) | 2007-03-27 | 2009-05-14 | Innotere Gmbh | Implant material based on a polymer system and its use as well as application set |
JP2009084224A (en) | 2007-09-28 | 2009-04-23 | Fujifilm Corp | Microcapsule and method for producing the same |
US8728528B2 (en) | 2007-12-20 | 2014-05-20 | Evonik Corporation | Process for preparing microparticles having a low residual solvent volume |
EP2599508B1 (en) | 2008-01-24 | 2016-05-25 | University of Utah Research Foundation | Adhesive complex coacervates and methods of making and using thereof |
CA2731072C (en) | 2008-07-18 | 2016-11-08 | Quick-Med Technologies, Inc. | Polyelectrolyte complex for imparting antimicrobial properties to a substrate |
WO2010021930A1 (en) | 2008-08-16 | 2010-02-25 | Synedgen, Inc. | Prevention and treatment of mrsa infections with chitosan-derivatives |
JP2009084292A (en) | 2008-11-14 | 2009-04-23 | Cell-Medicine Inc | Immunoadjuvant |
AU2009316409A1 (en) | 2008-11-22 | 2010-05-27 | Genentech, Inc. | Use of anti-VEGF antibody in combination with chemotherapy for treating breast cancer |
WO2011008303A2 (en) | 2009-07-17 | 2011-01-20 | The Texas A & M University System | Designer collagens and uses thereof |
CA3004707C (en) | 2009-09-02 | 2022-05-31 | Synedgen Inc. | Methods and compositions for disrupting biofilm utilizing chitosan-derivative compounds |
CN102811740A (en) | 2010-02-26 | 2012-12-05 | 犹他大学研究基金会 | Adhesive complex coacervates produced from electrostatically associated block copolymers and methods for making and using the same |
CA2799818A1 (en) | 2010-05-24 | 2011-12-01 | University Of Utah Research Foundation | Reinforced adhesive complex coacervates and methods of making and using thereof |
US9173971B2 (en) * | 2010-11-12 | 2015-11-03 | University Of Utah Research Foundation | Simple adhesive coacervates and methods of making and using thereof |
RU2640084C2 (en) | 2011-11-13 | 2017-12-26 | Крезилон, Инк. | In situ crosslinked polymeric compositions and methods for them |
EP2861257B1 (en) * | 2012-06-14 | 2021-12-08 | Microvention, Inc. | Polymeric treatment compositions |
EP3169374B1 (en) | 2014-07-14 | 2022-01-05 | University of Utah Research Foundation | In situ solidifying complex coacervates and methods of making and using thereof |
CN106474530A (en) | 2015-08-24 | 2017-03-08 | 中国科学院金属研究所 | A kind of preparation method of the polyelectrolyte sponge bleeding-stopping dressing based on chitosan oligosaccharide |
WO2017152039A1 (en) | 2016-03-04 | 2017-09-08 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Protection and delivery of multiple therapeutic proteins |
-
2015
- 2015-07-14 EP EP15821619.2A patent/EP3169374B1/en active Active
- 2015-07-14 WO PCT/US2015/040377 patent/WO2016011028A1/en active Application Filing
- 2015-07-14 EP EP19210212.7A patent/EP3632478B1/en active Active
- 2015-07-14 CA CA2955048A patent/CA2955048C/en active Active
- 2015-07-14 US US15/325,885 patent/US9913927B2/en active Active
- 2015-07-14 JP JP2017501675A patent/JP6742297B2/en active Active
- 2015-07-14 AU AU2015289798A patent/AU2015289798B2/en active Active
-
2018
- 2018-01-26 US US15/880,650 patent/US10369249B2/en active Active
-
2019
- 2019-06-24 US US16/450,338 patent/US10729807B2/en active Active
- 2019-11-12 AU AU2019264567A patent/AU2019264567B2/en active Active
-
2020
- 2020-06-26 US US16/912,830 patent/US11471557B2/en active Active
- 2020-07-02 JP JP2020114813A patent/JP7041718B2/en active Active
-
2022
- 2022-09-12 US US17/931,242 patent/US20230056283A1/en active Pending
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4260529A (en) | 1978-06-26 | 1981-04-07 | The Procter & Gamble Company | Detergent composition consisting essentially of biodegradable nonionic surfactant and cationic surfactant containing ester or amide |
US4228042A (en) | 1978-06-26 | 1980-10-14 | The Procter & Gamble Company | Biodegradable cationic surface-active agents containing ester or amide and polyalkoxy group |
US4239660A (en) | 1978-12-13 | 1980-12-16 | The Procter & Gamble Company | Detergent composition comprising a hydrolyzable cationic surfactant and specific alkalinity source |
EP0632329A1 (en) | 1993-07-02 | 1995-01-04 | Ciba-Geigy Ag | Functionalised photoinitiator, macromeres and their use |
US6022844A (en) | 1996-03-05 | 2000-02-08 | The Procter & Gamble Company | Cationic detergent compounds |
US6004922A (en) | 1996-05-03 | 1999-12-21 | The Procter & Gamble Company | Laundry detergent compositions comprising cationic surfactants and modified polyamine soil dispersents |
US6136769A (en) | 1996-05-17 | 2000-10-24 | The Procter & Gamble Company | Alkoxylated cationic detergency ingredients |
US6221825B1 (en) | 1996-12-31 | 2001-04-24 | The Procter & Gamble Company | Thickened, highly aqueous liquid detergent compositions |
WO1998035003A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Detergent compound |
WO1998035004A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Solid detergent compositions |
WO1998035002A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Cleaning compositions |
WO1998035006A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | Liquid cleaning composition |
WO1998035005A1 (en) | 1997-02-11 | 1998-08-13 | The Procter & Gamble Company | A cleaning composition |
US20010016577A1 (en) * | 1998-08-24 | 2001-08-23 | Douglas Joseph Dobrozsi | Oral mucoadhesive compositions containing gastrointestinal actives |
WO2000047708A1 (en) | 1999-02-10 | 2000-08-17 | The Procter & Gamble Company | Low density particulate solids useful in laundry detergents |
US20040208845A1 (en) * | 2003-04-15 | 2004-10-21 | Michal Eugene T. | Methods and compositions to treat myocardial conditions |
US20050019262A1 (en) * | 2003-07-25 | 2005-01-27 | Rubicor Medical, Inc. | Post-biopsy cavity treatment implants and methods |
US20060073207A1 (en) * | 2003-08-26 | 2006-04-06 | Masters David B | Protein biomaterials and biocoacervates and methods of making and using thereof |
US20090214660A1 (en) * | 2005-10-21 | 2009-08-27 | Living Cell Products Pty Limited | Encapsulation system |
US20090054927A1 (en) * | 2007-08-23 | 2009-02-26 | Agnew Charles W | Fistula plugs and apparatuses and methods for fistula plug delivery |
US20100120923A1 (en) | 2008-01-24 | 2010-05-13 | University Of Utah Research Foundation | Adhesive complex coacervates and methods of making and using thereof |
US20100040688A1 (en) * | 2008-08-15 | 2010-02-18 | Washington University | Hydrogel microparticle formation in aqueous solvent for biomedical applications |
WO2013003400A1 (en) * | 2011-06-28 | 2013-01-03 | University Of Utah Research Foundation | Adhesive complex coacervates and methods of making and using thereof |
Non-Patent Citations (6)
Title |
---|
"UPAC. Compendium of Chemical Terminology", 1997, BLACKWELL SCIENTIFIC PUBLICATIONS |
A. S. PERLINE. VO RUDLOFF, CANADIAN JOURNAL OF CHEMISTRY, vol. 43, 1965 |
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 14306-25-3 |
See also references of EP3169374A4 |
TREAT ET AL.: "Guanidine-Containing Methacrylamide (Co)polymers via aRAFT: Toward a Cell Penetrating Peptide Mimic", ACS MACRO LETTERS, vol. 1, no. 1, 17 January 2012 (2012-01-17), pages 100 - 104, XP055385470 * |
WANG ET AL.: "Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes", THE JOURNAL OF EXPERIMENTAL BIOLOGY, vol. 215, 15 January 2012 (2012-01-15), pages 351 - 361, XP055385479 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11471557B2 (en) | 2014-07-14 | 2022-10-18 | University Of Utah Research Foundation | In situ solidifying solutions and methods of making and using thereof |
US20190321510A1 (en) * | 2014-07-14 | 2019-10-24 | University Of Utah Research Foundation | In situ solidifying homogeneous solutions and methods of making and using thereof |
US10729807B2 (en) | 2014-07-14 | 2020-08-04 | University Of Utah Research Foundation | In situ solidifying solutions and methods of making and using thereof |
CN105924468A (en) * | 2016-05-03 | 2016-09-07 | 首都师范大学 | Novel hydrogel prepared from phytic acid and soluble metal salt and preparing method thereof |
WO2019084548A1 (en) * | 2017-10-27 | 2019-05-02 | University Of Utah Research Foundation | In situ solidifying liquid complex coacervates for the local delivery of anti-angiogenic agents or chemotherapeutic agents |
EP3514213A1 (en) | 2018-01-18 | 2019-07-24 | Basf Se | Pressure-sensitive adhesive solution comprising polymers with cationic and anionic groups |
US11896234B2 (en) | 2018-01-26 | 2024-02-13 | Fluidx Medical Technology, Llc | Apparatus and method of using in situ solidifying complex coacervates for vascular occlusion |
WO2019172764A1 (en) | 2018-03-09 | 2019-09-12 | Rijksuniversiteit Groningen | Adhesive composition |
WO2019236932A1 (en) * | 2018-06-07 | 2019-12-12 | University Of Utah Research Foundation | Flowable hemostatic complex coacervates |
FR3093000A1 (en) * | 2019-02-21 | 2020-08-28 | Bertrand Perrin | surgical adhesives based on monomers comprising a phosphate function |
WO2020169681A1 (en) * | 2019-02-21 | 2020-08-27 | Centre National De La Recherche Scientifique | Surgical glues based on monomers comprising a phosphate function |
WO2023217827A1 (en) | 2022-05-12 | 2023-11-16 | Saint-Gobain Adfors | Prepasted wall covering with a water-activated latent adhesive composition |
FR3135475A1 (en) | 2022-05-12 | 2023-11-17 | Saint-Gobain Adfors | Pre-pasted wall covering with a water-activated latent adhesive composition |
EP4299680A1 (en) | 2022-06-29 | 2024-01-03 | Saint-Gobain Weber France | Quick setting aqueous composition comprising polyelectrolyte coacervates and polyphenols |
WO2024003041A1 (en) | 2022-06-29 | 2024-01-04 | Saint-Gobain Weber France | Quick setting aqueous composition comprising polyelectrolyte coacervates and polyphenols |
WO2024126702A1 (en) | 2022-12-16 | 2024-06-20 | Saint-Gobain Adfors | Textile bonded by a binder based on polyelectrolytes having opposite charge polarities |
FR3145939A1 (en) | 2023-02-21 | 2024-08-23 | Saint-Gobain Isover | Improving adhesion between insulation and coating in external thermal insulation systems for buildings |
WO2024175508A1 (en) | 2023-02-21 | 2024-08-29 | Saint-Gobain Isover | Improvement of the adhesion between the insulation and the rendering in systems for the thermal insulation of buildings from the outside |
Also Published As
Publication number | Publication date |
---|---|
US20190321510A1 (en) | 2019-10-24 |
AU2015289798A1 (en) | 2017-02-02 |
CA2955048A1 (en) | 2016-01-21 |
JP2017529118A (en) | 2017-10-05 |
AU2019264567B2 (en) | 2020-05-14 |
JP6742297B2 (en) | 2020-08-19 |
US20180256776A1 (en) | 2018-09-13 |
US20230056283A1 (en) | 2023-02-23 |
AU2015289798B2 (en) | 2019-09-12 |
EP3169374A4 (en) | 2018-03-14 |
EP3169374B1 (en) | 2022-01-05 |
JP2020182862A (en) | 2020-11-12 |
US11471557B2 (en) | 2022-10-18 |
US9913927B2 (en) | 2018-03-13 |
AU2019264567A1 (en) | 2019-12-05 |
US20170157285A1 (en) | 2017-06-08 |
CA2955048C (en) | 2020-11-03 |
EP3169374A1 (en) | 2017-05-24 |
US10369249B2 (en) | 2019-08-06 |
US10729807B2 (en) | 2020-08-04 |
US20200324017A1 (en) | 2020-10-15 |
JP7041718B2 (en) | 2022-03-24 |
EP3632478A1 (en) | 2020-04-08 |
EP3632478B1 (en) | 2022-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11471557B2 (en) | In situ solidifying solutions and methods of making and using thereof | |
US9867899B2 (en) | Reinforced adhesive complex coacervates and methods of making and using thereof | |
EP2817013B1 (en) | Antimicrobial compositions, the preparation and use thereof | |
US20150038400A1 (en) | Compositions, the Preparation and Use Thereof | |
JP2014523314A (en) | Adhesive composite coacervate and methods of making and using the same | |
US20240042093A1 (en) | In situ solidifying injectable compositions with transient contrast agents and methods of making and using thereof | |
US11896234B2 (en) | Apparatus and method of using in situ solidifying complex coacervates for vascular occlusion | |
AU2019212513B2 (en) | Apparatus and method of using in situ solidifying complex coacervates for vascular occlusion | |
AU2011258511A1 (en) | Reinforced adhesive complex coacervates and methods of making and using thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15821619 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017501675 Country of ref document: JP Kind code of ref document: A Ref document number: 2955048 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15325885 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015821619 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015821619 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015289798 Country of ref document: AU Date of ref document: 20150714 Kind code of ref document: A |