WO2016010344A1 - Optical fiber transfer link and light collecting device using same - Google Patents

Optical fiber transfer link and light collecting device using same Download PDF

Info

Publication number
WO2016010344A1
WO2016010344A1 PCT/KR2015/007305 KR2015007305W WO2016010344A1 WO 2016010344 A1 WO2016010344 A1 WO 2016010344A1 KR 2015007305 W KR2015007305 W KR 2015007305W WO 2016010344 A1 WO2016010344 A1 WO 2016010344A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
transmission link
fiber transmission
collecting device
Prior art date
Application number
PCT/KR2015/007305
Other languages
French (fr)
Korean (ko)
Inventor
조규만
윤승현
박준규
Original Assignee
서강대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교 산학협력단 filed Critical 서강대학교 산학협력단
Publication of WO2016010344A1 publication Critical patent/WO2016010344A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type

Definitions

  • the present invention relates to an optical fiber transmission link and a light collecting device, and more particularly, to minimize the loss of incident light by combining a composite parabolic light collector on the incident surface of the optical fiber, and the range of the emission angle of the output light on the exit surface of the optical fiber.
  • the present invention relates to an optical fiber transmission link and a light concentrating device having a reduced structure to improve condensing performance.
  • Compound parabolic concentrators (C C npound Parabol IC Concentrators; 'CPC') are used to collect light from a single focal point using multiple parabolic surfaces and are widely used as solar concentrators.
  • Such a compound parabolic collector has the advantage of having a wide angle of incidence for receiving light.
  • BES Bem Emission Spectroscopy
  • an optical fiber is bundled and used in an array form.
  • the present invention for solving the above-described problems by increasing the light receiving area as much as possible, eliminating the loss of incident light and maximizing the reception efficiency
  • An object of the present invention is to provide a transmission link and a light collecting device using the same.
  • Another area of the present invention comprises a structure that can reduce the range of the emission angle of the light output from the end of the optical fiber, provides an optical fiber transmission link and a light concentrating device using the same easy to apply to the optical system of the next step for analysis It is.
  • the optical fiber is preferably a claddingless fiber (Cl addingless f iber) formed only of a core layer through which light is totally reflected and without a cladding layer and a buffer layer.
  • a claddingless fiber (Cl addingless f iber) formed only of a core layer through which light is totally reflected and without a cladding layer and a buffer layer.
  • the other end of the optical fiber is formed in a tapered form, the lens is coupled, or the composite parabolic light collector is coupled to reduce the spread angle of light emitted from the other end of the optical fiber.
  • the light collecting apparatus is characterized in that a plurality of optical fiber transmission links having the above-described configuration are arranged in an array form.
  • the optical fiber of the optical fiber transmission link is composed of claddingless fibers
  • the optical fiber ' transmission link according to the present invention can reduce the loss of incident light by mounting the CPC on the incident surface of the optical fiber, thereby allowing all incident light to be transmitted through the optical fiber.
  • the optical fiber transmission link according to the present invention can extend the acceptance angle of the optical fiber by using a claddingless fiber.
  • the optical fiber transmission link according to the present invention can reduce the spreading angle of the emitted light by configuring the output surface of the optical fiber in the tapered form or by connecting a lens or a compound parabolic condenser. This may facilitate signal transmission of the optical fiber transmission link to the next stage of the system.
  • FIG. 1 is a perspective view and a cross-sectional view showing a light collecting device of a pan-radiation spectrometer using a conventional general optical fiber.
  • FIG. 2 is a perspective view and a cross-sectional view showing an optical fiber transmission link according to a preferred embodiment of the present invention.
  • Figure 3 shows a cross section of a typical optical fiber, (b) shows a cross section of a claddingless fiber according to the present invention.
  • FIG. 4 illustrates a result of simulating a spreading angle at which light emitted from an end of the optical fiber is spread when the end of the optical fiber is formed in a plane.
  • FIG. 5 is a view illustrating a result of simulating light emitted from an end of an optical fiber and (b) an end of the optical fiber in a tapered form in an optical fiber transmission link according to a preferred embodiment of the present invention.
  • FIG. 6 illustrates a result of simulating light emitted from an end of an optical fiber and (b) an end of the optical fiber in the optical fiber transmission link according to a preferred embodiment of the present invention.
  • FIG. 7 illustrates a state in which a CPC is coupled to an end of an optical fiber in an optical fiber transmission link according to a preferred embodiment of the present invention.
  • FIG. 8 is a perspective view and a front view illustrating an example of a light converging or image transmitting device configured by arranging a plurality of optical fiber transmission links in an array form according to a preferred embodiment of the present invention. [Best form for implementation of the invention]
  • the optical fiber transmission link according to the present invention can increase the light receiving area by using a compound parabolic condenser, thereby minimizing incident light loss.
  • the optical fiber transmission link 3 according to the present embodiment has a first end 302 and a second end 304 disposed opposite each other on a single central axis passing through the body 300.
  • the body of the compound parabolic condenser 30 is composed of a plurality of parabolic surfaces connected to each other, and in particular, it is preferable that four parabolic surfaces having the same shape are connected to each other.
  • the crab first end of the compound parabolic concentrator 30 is characterized by being formed in a rectangular cross section larger than the cross-sectional area of the second end.
  • the complex parabolic collector may be configured to focus light incident at an effective incident angle on an incident surface of a first end to an exit surface of a second end.
  • the transmission link according to the present invention mounts the composite parabolic collector at the front of the single optical fiber, thereby providing all the light incident to the front of the composite parabolic collector to the optical fiber without loss.
  • the optical fiber is preferably formed of a claddingless fiber (Cl addingl ess f iber) without the cladding layer and the buffer layer formed of only the core layer through which light propagates.
  • Degree 3 (a) shows a cross section of a general optical fiber, and (b) shows a cross section of a claddingless fiber according to the present invention.
  • a general optical fiber can transmit only light that satisfies the total reflection condition by the cladding layer surrounding the outer circumferential surface of the core layer, and thus has a problem in that the acceptance angle is very limited.
  • the 'light-receiving angle' refers to the maximum receiving angle that allows the light incident on the optical fiber to transmit and cause total reflection inside the core, and corresponds to twice the maximum incident angle. Therefore, in order for the light to be transmitted inside the core of the optical fiber, the light must be scattered within the maximum angle of incidence. When light is incident on the optical fiber at a large angle out of the light receiving angle, the light is refracted by the cladding and leaks without being totally reflected at the interface between the core and the cladding. Nor will it reach far.
  • the general optical fiber has a problem that the light receiving angle is very limited.
  • the optical fiber according to the present invention according to the present invention of FIG. 3 (b) has no cladding worm and only the core layer can be used to extend the acceptance angle.
  • FIG. 4 illustrates a result of simulating a spreading angle at which light emitted from an end of the optical fiber is spread when the end of the optical fiber is formed in a plane.
  • the spread angle at the end of the optical fiber is about 90? Because it is formed so wide that it is difficult to transfer to another optical system for analyzing the light from the optical fiber.
  • the end of the optical fiber of the optical fiber transmission link according to the present invention has a structure that can reduce the range of the emission angle.
  • a structure capable of reducing the range of the exit angle may be configured in the tapered form of the optical fiber, the lens may be coupled to the optical fiber end, or the compound parabolic condenser may be coupled to the optical fiber end. .
  • Figure 5 shows the results of simulating the light emitted from the end of (a) the optical fiber transmission link according to an embodiment of the present invention (a) the end of the optical fiber in the tapered form and (b) the optical fiber.
  • the tapered shape is such that the end of the optical fiber so that the center protrudes sharply, such as conical It is composed.
  • the spreading angle of the emitted light is reduced than in (b) of FIG. 4.
  • Figure 6 shows the results of simulating the light emitted from the end of the optical fiber and the optical fiber transmission link according to an embodiment of the present invention, (a) the lens coupled to the end of the optical fiber (b).
  • the hemispherical lens may be coupled to the end of the optical fiber, and in this case, the spread angle of the emitted light may be reduced than in FIG. 4 (b).
  • FIG. 7 illustrates a state in which a CPC is coupled to an end of an optical fiber in an optical fiber transmission link according to a preferred embodiment of the present invention, and there is no simulation result, but the spreading angle of light output when considering that the optical characteristics of the CPC are reversible It can be seen that this is reduced.
  • the optical fiber transmission link having the above-described configuration can be used as a light collecting device of a beam emission spectrometer (Beam emission spectroscopy).
  • FIG. 8 is a perspective view and a front view exemplarily illustrating a light collecting device configured by arranging a plurality of optical fiber transmission links in an array form according to a preferred embodiment of the present invention. As shown in Figure 8, by configuring the optical fiber transmission link in the form of an array of 3 to 3, it is possible to transmit the light without losing the incident light, it can be transferred to the next optical system.
  • the optical fiber of the optical fiber transmission link is composed of claddingless fibers
  • the above-mentioned light collecting device is for monitoring the plasma state of the fusion device. It can be easily used as a beam emission spectrometer (Beam Emiss ion Spect roscopy) or as a light concentrator of the rimson scattering device.
  • the above-described light collecting device can be used to efficiently collect sunlight and transmit it to the room, and can also be installed outdoors to be used as indoor lighting.
  • the optical fiber transmission link and the light collecting device according to the present invention can be easily used to observe the plasma state of the fusion device, or can be used as a solar light collecting device.

Abstract

The present invention relates to an optical fiber transfer link having good light receiving efficiency, and a light collecting device. The optical fiber transfer link is provided with: a compound parabolic concentrator having a first end portion and a second end portion that are disposed to face one another on a single central axis passing through a body of the concentrator; and a single optical fiber having one end connected to the second end portion. The body of the compound parabolic concentrator is configured of a plurality of paraboloids, and the cross-sectional area of the first end portion is preferably formed to be greater than the cross-sectional area of the second end portion. The light collecting device is characterized by being configured of a plurality of the optical fiber transfer link of the above-described structure arranged in an array configuration.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
광섬유 전달 링크 및 이를 이용한 집광 장치  Optical fiber transmission link and condensing device using same
【기술분야】 Technical Field
본 발명은 광섬유 전달 링크 및 집광 장치에 관한 것으로서, 더욱 구체적으로는, 광섬유의 입사면에는 복합 포물면 집광기를 결합시켜 입사된 광의 손실을 최소화시키고, 광섬유의 출사면에는 출력되는 광의 출사각의 범위를 감소시키는 구조로 구현하여 집광 성능을 향상시킨 광섬유 전달링크 및 집광 장치에 관한 것이다.  The present invention relates to an optical fiber transmission link and a light collecting device, and more particularly, to minimize the loss of incident light by combining a composite parabolic light collector on the incident surface of the optical fiber, and the range of the emission angle of the output light on the exit surface of the optical fiber. The present invention relates to an optical fiber transmission link and a light concentrating device having a reduced structure to improve condensing performance.
【배경기술】 Background Art
복합 포물면 집광기 (C이 npound Parabol i c Concent rator ; ' CPC ' )는 여러 개의 포물면을 이용하여 하나의 촛점이 아닌 일정 지역으로 빛을 모으는 역할을 하는 것으로서, 태양광 집광 장치로 널리 사용되고 있다. 이러한 복합 포물면 집광기는 빛을 받아들일 수 있는 입사 허용 각도가 넓은 장점을 갖는다.  Compound parabolic concentrators (C C npound Parabol IC Concentrators; 'CPC') are used to collect light from a single focal point using multiple parabolic surfaces and are widely used as solar concentrators. Such a compound parabolic collector has the advantage of having a wide angle of incidence for receiving light.
한편, 핵융합 장치의 플라즈마 상태를 관찰하기 위하여, 광 수집 장치를 이용한 범 방사 분광 (Beam Emi ssion Spectroscopy; ' BES ' ) 시스템이 사용된다. 도 1은 종래의 일반적인 광섬유를 이용한 광 수집 장치를 도시한 사시도 및 단면도이다.  On the other hand, in order to observe the plasma state of the fusion device, a Bem Emission Spectroscopy (BES) system using a light collection device is used. 1 is a perspective view and a cross-sectional view showing a light collecting device using a conventional general optical fiber.
도 1을 참조하면, 종래의 광 수집 장치는 광섬유를 어레이 형태로 묶어서 사용하였는데, 이 경우 입사면에서 dead space가 많이 생겨 수신된 광의 손실이 발생되는 문제점이 있다.  Referring to FIG. 1, in the conventional light collecting device, an optical fiber is bundled and used in an array form. In this case, there is a problem in that a lot of dead space is generated at an incident surface to cause loss of received light.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
*5전술한 문제점을 해결하기 위한 본 발명은 수광 면적을 최대한 넓힘으로써, 입사된 광의 손실을 없애고 수신 효율을 극대화시킬 수 있는 광섬유 전달 링크 및 이를 이용한 집광 장치를 제공하는 것을 목적으로 한다. 본 발명의 다른 면적은 광섬유의 끝단에서 출력되는 광의 출사각의 범위를 감소시킬 수 있는 구조로 구성하여, 분석을 위한 다음 단계의 광학계로의 적용이 용이한 광섬유 전달 링크 및 이를 이용한 집광 장치를 제공하는 것이다. * 5 The present invention for solving the above-described problems by increasing the light receiving area as much as possible, eliminating the loss of incident light and maximizing the reception efficiency An object of the present invention is to provide a transmission link and a light collecting device using the same. Another area of the present invention comprises a structure that can reduce the range of the emission angle of the light output from the end of the optical fiber, provides an optical fiber transmission link and a light concentrating device using the same easy to apply to the optical system of the next step for analysis It is.
【기술적 해결방법】 Technical Solution
전술한 기술적 과제를 달성하기 위한 본 발명의 제 1 특징에 따른 광섬유 전달 링크는, 몸체를 관통하는 단일의 중심축상에 서로 대향되도록 배치되는 제 1 단부와 제 2 단부를 갖는 복합 포물면 집광기; 일단이 상기 제 2 단부에 연결된 단일의 광섬유;를 구비하고, 상기 복합 포물면 집광기의 몸체는 다수 개의 포물면으로 구성되며, 상기 게 1 단부의 단면적은 제 2 단부의 단면적보다 크게 형성된 것이 바람직하다.  An optical fiber transmission link according to a first aspect of the present invention for achieving the above technical problem comprises: a compound parabolic condenser having a first end and a second end disposed to face each other on a single central axis passing through a body; One end has a single optical fiber connected to the second end; wherein the body of the composite parabolic collector is composed of a plurality of parabolic surfaces, wherein the cross-sectional area of the first end of the crab is formed to be larger than that of the second end.
전술한 제 1 특징에 따른 광섬유 전달 링크에 있어서, 상기 광섬유는 빛이 전반사되는 코어층만으로 형성되고 크래딩층 및 버퍼층이 없는 클래딩리스 파이버 (Cl addingless f iber )인 것이 바람직하며,  In the optical fiber transmission link according to the first aspect described above, the optical fiber is preferably a claddingless fiber (Cl addingless f iber) formed only of a core layer through which light is totally reflected and without a cladding layer and a buffer layer.
상기 광섬유의 타단은 테이퍼드 (Tapered) 형태로 구성되거나 렌즈가 결합되거나 복합 포물면 집광기가 결합되어, 광섬유의 타단으로부터 출사되는 광의 퍼짐각을 감소시키는 것이 더욱 바람직하다.  It is more preferable that the other end of the optical fiber is formed in a tapered form, the lens is coupled, or the composite parabolic light collector is coupled to reduce the spread angle of light emitted from the other end of the optical fiber.
본 발명의 제 2 특징에 따른 집광 장치는, 전술한 구성의 광섬유 전달 링크의 다수 개가 어레이 형태로 배열되어 구성된 것을 특징으로 한다.  The light collecting apparatus according to the second aspect of the present invention is characterized in that a plurality of optical fiber transmission links having the above-described configuration are arranged in an array form.
전술한 제 2 특징에 따른 집광 장치에 있어서, 상기 광섬유 전달 링크의 광섬유가 클래딩리스 파이버로 구성되면, 인접한 광섬유들 간의 이격거리를 일정하게 유지시키는 스페이서를 더 구비하는 것이 바람직하다.  In the light collecting device according to the second aspect described above, when the optical fiber of the optical fiber transmission link is composed of claddingless fibers, it is preferable to further include a spacer for maintaining a constant distance between adjacent optical fibers.
【발명의 효과】 【Effects of the Invention】
본 발명에 따른 광섬유 '전달 링크는 광섬유의 입사면에 CPC를 장착시킴으로쎄 입사되는 광의 손실을 감소시킬 수 있게 되어 입사되는 빛을 모두 광섬유를 통해 전달할 수 있게 된다. 또한, 본 발명에 따른 광섬유 전달 링크는 클래딩리스 파이버를 사용함으로써, 광섬유의 수광각 (Acceptance angle)을 확장시킬 수 있다. The optical fiber ' transmission link according to the present invention can reduce the loss of incident light by mounting the CPC on the incident surface of the optical fiber, thereby allowing all incident light to be transmitted through the optical fiber. In addition, the optical fiber transmission link according to the present invention can extend the acceptance angle of the optical fiber by using a claddingless fiber.
또한, 본 발명에 따른 광섬유 전달 링크는 광섬유의 출사면을 테이퍼드 형태로 구성하거나 렌즈 또는 복합 포물면 집광기를 연결시킴으로써, 출사광의 퍼짐각을 감소시킬 수 있게 된다. 이로써, 광섬유 전달 링크를 다음 단계의 시스템으로의 신호 전달이 용이하게 될 수 있다.  In addition, the optical fiber transmission link according to the present invention can reduce the spreading angle of the emitted light by configuring the output surface of the optical fiber in the tapered form or by connecting a lens or a compound parabolic condenser. This may facilitate signal transmission of the optical fiber transmission link to the next stage of the system.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 종래의 일반적인 광섬유를 이용한 범 방사 분광계의 광 수집 장치를 도시한 사시도 및 그 단면도이다.  1 is a perspective view and a cross-sectional view showing a light collecting device of a pan-radiation spectrometer using a conventional general optical fiber.
도 2는 본 발명의 바람직한 실시예에 따른 광섬유 전달 링크를 도시한 사시도 및 단면도이다.  2 is a perspective view and a cross-sectional view showing an optical fiber transmission link according to a preferred embodiment of the present invention.
도 3의 (a)는 일반적인 광섬유의 단면을 도시한 것이며, (b)는 본 발명에 따른 클래딩리스 파이버 (Claddingless f iber )의 단면을 도시한 것이다.  Figure 3 (a) shows a cross section of a typical optical fiber, (b) shows a cross section of a claddingless fiber according to the present invention.
도 4는 광섬유의 끝단이 평면으로 구성된 경우, 광섬유의 끝단으로부터 출사되는 빛이 퍼져나가는 퍼짐각을 시뮬레이션한 결과를 도시한 것이다.  4 illustrates a result of simulating a spreading angle at which light emitted from an end of the optical fiber is spread when the end of the optical fiber is formed in a plane.
도 5은 본 발명의 바람직한 실시예에 따른 광섬유 전달링크에 있어서, (a) 광섬유의 끝단을 테이퍼드 형태로 구성한 상태 및 (b) 이러한 광섬유의 끝단에서 출사되는 빛을 시물레이션한 결과를 도시한 것이다.  5 is a view illustrating a result of simulating light emitted from an end of an optical fiber and (b) an end of the optical fiber in a tapered form in an optical fiber transmission link according to a preferred embodiment of the present invention. .
도 6은 본 발명의 바람직한 실시예에 따른 광섬유 전달링크에 있어서, (a) 광섬유의 끝단에 렌즈를 결합시킨 상태 및 (b) 이러한 광섬유의 끝단에서 출사되는 빛을 시물레이션한 결과를 도시한 것이다.  6 illustrates a result of simulating light emitted from an end of an optical fiber and (b) an end of the optical fiber in the optical fiber transmission link according to a preferred embodiment of the present invention.
도 7은 본 발명의 바람직한 실시예에 따른 광섬유 전달링크에 있어서, 광섬유의 끝단에 CPC를 결합한 상태를 도시한 것이다.  7 illustrates a state in which a CPC is coupled to an end of an optical fiber in an optical fiber transmission link according to a preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 실시예에 따른 광섬유 전달 링크들을 다수 개를 어레이 형태로 배열시켜 구성한 집광 또는 이미지 전달 장치를 예시적으로 도시한 사시도 및 정면도이다. 【발명의 실시를 위한 최선의 형태】 8 is a perspective view and a front view illustrating an example of a light converging or image transmitting device configured by arranging a plurality of optical fiber transmission links in an array form according to a preferred embodiment of the present invention. [Best form for implementation of the invention]
본 발명에 따른 광섬유 전달 링크는 복합 포물면 집광기 (Compound Parabol i c Concentrator )를 사용함으로써, 수광 면적을 증대시킬 수 있게 되어 입사되는 빛 손실을 최소화시키는 것을 특징으로 한다.  The optical fiber transmission link according to the present invention can increase the light receiving area by using a compound parabolic condenser, thereby minimizing incident light loss.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 광섬유 전달 링크의 구조 및 동작에 대하여 구체적으로 설명한다.  Hereinafter, with reference to the accompanying drawings will be described in detail the structure and operation of the optical fiber transmission link according to an embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 광섬유 전달 링크를 도시한 사시도 및 단면도이다. 도 2를 참조하면, 본 실시예에 따른 광섬유 전달 링크 (3)는 몸체 (300)를 관통하는 단일의 중심축상에 서로 대향되도록 배치되는 제 1 단부 (302)와 제 2 단부 (304)를 갖는 복합 포물면 집광기 (30), 및 상기 제 2 단부 (304)에 연결된 단일의 광섬유 (35)를 구비한다.  2 is a perspective view and a cross-sectional view showing an optical fiber transmission link according to a preferred embodiment of the present invention. Referring to FIG. 2, the optical fiber transmission link 3 according to the present embodiment has a first end 302 and a second end 304 disposed opposite each other on a single central axis passing through the body 300. A composite parabolic collector 30 and a single optical fiber 35 connected to the second end 304.
상기 복합 포물면 집광기 (30)의 몸체는 서로 연결된 다수 개의 포물면들로 구성되며, 특히 동일한 형태의 포물면이 4개가 연결되어 구성된 것이 바람직하다. 상기 복합 포물면 집광기 (30)의 상기 게 1 단부는 제 2 단부의 단면적보다 큰 사각형의 단면으로 형성된 것을 특징으로 한다. 상기 복합 포물면 집광기는 제 1 단부인 입사면으로 유효입사각으로 입사되는 광을 제 2 단부인 출사면으로 집광시키는 것을 특징으로 한다.  The body of the compound parabolic condenser 30 is composed of a plurality of parabolic surfaces connected to each other, and in particular, it is preferable that four parabolic surfaces having the same shape are connected to each other. The crab first end of the compound parabolic concentrator 30 is characterized by being formed in a rectangular cross section larger than the cross-sectional area of the second end. The complex parabolic collector may be configured to focus light incident at an effective incident angle on an incident surface of a first end to an exit surface of a second end.
전술한 복합 포물면 집광기의 제 2 단부를 광섬유의 일단에 연결시켜, 복합 포물면 집광기로 입사되는 광을 광섬유로 집광시킴으로쩌 수광 효율을 향상시킬 수 있게 된다.  By connecting the second end of the above-mentioned compound parabolic light collector to one end of the optical fiber, it is possible to improve the light receiving efficiency by condensing the light incident to the compound parabolic light collector.
종래에는 9개의 광섬유를 다발 (bundle) 형태로 묶어서 수광하였는데, 도 1에 도시된 바와 같이, 이 경우 Dead zone이 발생되어 입사된 광의 손실이 발생하게 된다. 하지만, 본 발명에 따른 전달 링크는 단일의 광섬유의 앞단에 복합 포물면 집광기를 장착시킴으로쎄 복합 포물면 집광기의 전면으로 입사되는 모든 광을 손실 없이 광섬유로 제공할 수 있게 된다. 한편, 상기 광섬유는 빛이 진행하는 코어층만으로 형성되고 클래딩층 및 버퍼층이 없는 클래딩리스 파이버 (Cl addingl ess f iber )인 것이 바람직하다. 도 3의 (a)는 일반적인 광섬유의 단면을 도시한 것이며, (b)는 본 발명에 따른 클래딩리스 파이버 (Claddingless f iber )의 단면을 도시한 것이다. 도 3의 (a)를 참조하면, 일반적인 광섬유는 코어층의 외주면을 감싸는 클래딩층에 의해 전반사 조건을 만족하는 빛만이 전송가능하였으며, 이 때문에 수광각 (Acceptance Angle)이 매우 제한적이 되는 문제점이 있었다. 여기서, 상기 '수광각'은 광섬유로 입사된 빛이 코어 내부에서 전반사를 일으키며 전송할 수 있도록 하는 최대 수용 각도를 말하는 것으로서 최대 입사각의 2배에 해당한다. 따라서, 빛이 광섬유의 코어 내부에서 전송되기 위해서는 최대 입사각 내에서 입산되어야 하며, 빛이 수광각을 벗어난 큰 각도로 광섬유에 입사되는 경우, 코어와 클래딩의 경계면에서 전반사하지 않고 클래딩으로 굴절하여 누설되므로, 멀리까지 도달할 수 없게 된다. Conventionally, nine optical fibers are bundled and received in bundles, and as shown in FIG. 1, in this case, dead zones are generated and loss of incident light is generated. However, the transmission link according to the present invention mounts the composite parabolic collector at the front of the single optical fiber, thereby providing all the light incident to the front of the composite parabolic collector to the optical fiber without loss. On the other hand, the optical fiber is preferably formed of a claddingless fiber (Cl addingl ess f iber) without the cladding layer and the buffer layer formed of only the core layer through which light propagates. Degree 3 (a) shows a cross section of a general optical fiber, and (b) shows a cross section of a claddingless fiber according to the present invention. Referring to (a) of FIG. 3, a general optical fiber can transmit only light that satisfies the total reflection condition by the cladding layer surrounding the outer circumferential surface of the core layer, and thus has a problem in that the acceptance angle is very limited. . Here, the 'light-receiving angle' refers to the maximum receiving angle that allows the light incident on the optical fiber to transmit and cause total reflection inside the core, and corresponds to twice the maximum incident angle. Therefore, in order for the light to be transmitted inside the core of the optical fiber, the light must be scattered within the maximum angle of incidence. When light is incident on the optical fiber at a large angle out of the light receiving angle, the light is refracted by the cladding and leaks without being totally reflected at the interface between the core and the cladding. Nor will it reach far.
그런데, 일반적인 광섬유는 수광각이 매우 한정되는 문제가 있다. 하지만, 도 3의 (b)에 따른 본 발명에 따른 광섬유는 클래딩충이 없고 코어층만으로 구성함으로써, Acceptance Angle을 확장시킬 수 있게 된다.  By the way, the general optical fiber has a problem that the light receiving angle is very limited. However, the optical fiber according to the present invention according to the present invention of FIG. 3 (b) has no cladding worm and only the core layer can be used to extend the acceptance angle.
도 4는 광섬유의 끝단이 평면으로 구성된 경우, 광섬유의 끝단으로부터 출사되는 빛이 퍼져나가는 퍼짐각을 시뮬레이션한 결과를 도시한 것이다. 도 4에 도시된 바와 같이, 광섬유의 끝단이 평면인 경우 광섬유 끝단에서의 퍼짐각이 약 90? 정도로 매우 넓게 형성되므로, 광섬유에서 나온 빛을 분석하기 위한 또 다른 광학계로의 전달이 어려워지는 문제가 발생된다.  4 illustrates a result of simulating a spreading angle at which light emitted from an end of the optical fiber is spread when the end of the optical fiber is formed in a plane. As shown in Fig. 4, when the end of the optical fiber is flat, the spread angle at the end of the optical fiber is about 90? Because it is formed so wide that it is difficult to transfer to another optical system for analyzing the light from the optical fiber.
이러한 문제를 해결하기 위하여, 본 발명에 따른 광섬유 전달링크의 광섬유의 끝단은 출사각의 범위를 감소시킬 수 있는 구조로 구성되는 것이 바람직하다. 출사각의 범위를 감소시킬 수 있는 구조는 광섬유의 끝단을 테이퍼드 (Tapered) 형태로 구성하거나, 광섬유의 끝단에 렌즈를 결합시키거나, 광섬유의 끝단에 복합 포물면 집광기 (CPC)를 결합시킬 수도 있다.  In order to solve this problem, it is preferable that the end of the optical fiber of the optical fiber transmission link according to the present invention has a structure that can reduce the range of the emission angle. A structure capable of reducing the range of the exit angle may be configured in the tapered form of the optical fiber, the lens may be coupled to the optical fiber end, or the compound parabolic condenser may be coupled to the optical fiber end. .
도 5은 본 발명의 바람직한 실시예에 따른 광섬유 전달링크에 있어서 (a) 광섬유의 끝단을 테이퍼드 형태로 구성한 상태 및 (b) 이러한 광섬유의 끝단에서 출사되는 빛을 시뮬레이션한 결과를 도시한 것이다. 도 5에 도시된 바와 같이, 테이퍼드 형태는 광섬유의 끝단을 원추형과 같이 중심이 뾰족하게 돌출되도록 구성한 형태이다. 도 5의 (b)에 도시돤 바와 같이, 출사광의 퍼짐각이 도 4의 (b)보다 감소됨을 알 수 있다. Figure 5 shows the results of simulating the light emitted from the end of (a) the optical fiber transmission link according to an embodiment of the present invention (a) the end of the optical fiber in the tapered form and (b) the optical fiber. As shown in Figure 5, the tapered shape is such that the end of the optical fiber so that the center protrudes sharply, such as conical It is composed. As shown in (b) of FIG. 5, it can be seen that the spreading angle of the emitted light is reduced than in (b) of FIG. 4.
도 6은 본 발명의 바람직한 실시예에 따른 광섬유 전달링크에 있어서, (a) 광섬유의 끝단에 렌즈를 결합시킨 상태 및 (b) 이러한 광섬유의 끝단에서 출사되는 빛을 시뮬레이션한 결과를 도시한 것이다. 도 6에 도시된 바와 같이, 광섬유의 끝단에 반구의 렌즈를 결합시킬 수 있으며, 이 경우에도 출사광의 퍼짐각이 도 4의 (b)보다 감소됨을 알 수 있다.  Figure 6 shows the results of simulating the light emitted from the end of the optical fiber and the optical fiber transmission link according to an embodiment of the present invention, (a) the lens coupled to the end of the optical fiber (b). As shown in FIG. 6, the hemispherical lens may be coupled to the end of the optical fiber, and in this case, the spread angle of the emitted light may be reduced than in FIG. 4 (b).
도 .7은 본 발명의 바람직한 실시예에 따른 광섬유 전달링크에 있어서, 광섬유의 끝단에 CPC를 결합한 상태를 도시한 것이며, 시뮬레이션 결과는 없으나 CPC의 광학적 특성이 가역적임을 고려할 때 출력되는 빛의 퍼짐각이 감소됨을 알 수 있다.  FIG. 7 illustrates a state in which a CPC is coupled to an end of an optical fiber in an optical fiber transmission link according to a preferred embodiment of the present invention, and there is no simulation result, but the spreading angle of light output when considering that the optical characteristics of the CPC are reversible It can be seen that this is reduced.
도 5 내지 도 7을 참조하면, 도 5 내지 도 7에 도시된 광섬유들의 출사각의 범위가 도 4에 도시된 끝단이 평면으로 형성된 광섬유보다 훨씬 감소되었음을 알 수 있다. 이와 같이, 본 발명에 따른 광섬유 전달 링크의 광섬유에서의 출사각의 범위를 감소시킴에 따라, 분석을 위한 다음 광학계로의 적용이 용이해진다. 전술한 구성을 갖는 광섬유 전달 링크는 빔 방사 분광계 (Beam Emi ss ion Spectroscopy)의 집광 장치로 사용될 수 있다.  5 to 7, it can be seen that the range of the emission angle of the optical fibers shown in FIGS. 5 to 7 is much reduced than the optical fiber in which the end shown in FIG. 4 is formed in a plane. As such, as the range of the exit angle in the optical fiber of the optical fiber transmission link according to the present invention is reduced, the application to the next optical system for analysis becomes easy. The optical fiber transmission link having the above-described configuration can be used as a light collecting device of a beam emission spectrometer (Beam emission spectroscopy).
도 8은 본 발명의 바람직한 실시예에 따른 광섬유 전달 링크들을 다수 개를 어레이 형태로 배열시켜 구성한 집광 장치를 예시적으로 도시한 사시도 및 정면도이다. 도 8에 도시된 바와 같이, 광섬유 전달 링크를 3?3 의 어레이 형태로 구성함으로써, 입사광의 손실없이 광을 전송할 수 있으며, 이를 다음 광학계로 전달할 수 있게 된다.  FIG. 8 is a perspective view and a front view exemplarily illustrating a light collecting device configured by arranging a plurality of optical fiber transmission links in an array form according to a preferred embodiment of the present invention. As shown in Figure 8, by configuring the optical fiber transmission link in the form of an array of 3 to 3, it is possible to transmit the light without losing the incident light, it can be transferred to the next optical system.
상기 광섬유 전달 링크의 광섬유가 클래딩리스 파이버로 구성되면, 인접한 광섬유들 간의 이격거리를 일정하게 유지시키는 스페이서를 더 구비하는 것이 바람직하다. 특히, 전술한 집광 장치는 핵융합장치의 플라즈마 상태를 관찰하기 위한 범 방사 분광계 (Beam Emiss ion Spect roscopy) 또는 름슨 산란 장치 둥의 집광 장치로 용이하게 사용할 수 있다. 또한, 전술한 광 수집 장치는 효율적으로 태양광을 수집하여 실내로 전달하는데 사용될 수 있으며, 또한 옥외에 설치되어 실내 조명으로도 사용될 수 있다. When the optical fiber of the optical fiber transmission link is composed of claddingless fibers, it is preferable to further include a spacer for maintaining a constant distance between adjacent optical fibers. In particular, the above-mentioned light collecting device is for monitoring the plasma state of the fusion device. It can be easily used as a beam emission spectrometer (Beam Emiss ion Spect roscopy) or as a light concentrator of the rimson scattering device. In addition, the above-described light collecting device can be used to efficiently collect sunlight and transmit it to the room, and can also be installed outdoors to be used as indoor lighting.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나, 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 웅용이 가능함을 알 수 있을 것이다. 그리고, 이러한 변형과 웅용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.  Although the present invention has been described above with reference to preferred embodiments thereof, it is merely an example, which is not intended to limit the present invention, and those skilled in the art do not depart from the essential characteristics of the present invention. It will be appreciated that various modifications and alterations are not possible in the scope. And differences relating to these modifications and uses will be construed as being included in the scope of the invention defined in the appended claims.
【산업상 이용가능성】 Industrial Applicability
본 발명에 따른 광섬유 전달링크 및 집광 장치는 핵융합장치의 플라즈마 상태를 관찰하는데 용이하게 사용되거나, 태양광 집광 장치로 사용될 수 있다.  The optical fiber transmission link and the light collecting device according to the present invention can be easily used to observe the plasma state of the fusion device, or can be used as a solar light collecting device.

Claims

【청구의 범위】 - [Claims]-
【청구항 1】 [Claim 1]
몸체를 관통하는 단일의 중심축상에 서로 대향되도록 배치되는 제 1 단부와 제 2 단부를 갖는 복합 포물면 집광기 ;  A compound parabolic condenser having a first end and a second end disposed to face each other on a single central axis passing through the body;
일단이 상기 제 2 단부에 연결된 단일의 광섬유;  A single optical fiber having one end connected to the second end;
를 구비하고, 상기 복합 포물면 집광기의 몸체는 다수 개의 포물면으로 구성되며, 상기 제 1 단부의 단면적은 제 2 단부의 단면적보다 크게 형성되어, 제 1 단부로 입사되는 광을 제 2 단부로 집광시켜 제공하는 것을 특징으로 하는 광섬유 전달 링크.  The body of the composite parabolic collector is composed of a plurality of parabolic surface, the cross-sectional area of the first end is formed larger than the cross-sectional area of the second end, to collect the light incident on the first end to the second end provided Optical fiber transmission link, characterized in that.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 광섬유는 빛이 전반사되는 코어층만으로 형성되고 크래딩층 및 버퍼층이 없는 클래딩리스 파이버 (Claddingless f iber)인 것을 특징으로 하는 광섬유 전달 링크.  The optical fiber transmission link according to claim 1, wherein the optical fiber is a claddingless fiber formed only of a core layer through which light is totally reflected and without a cladding layer and a buffer layer.
【청구항 3] [Claim 3]
제 1항에 있어세 상기 광섬유의 타단은 테이퍼드 (Tapered) 형태로 구성되거나 렌즈가 결합되거나 복합 포물면 집광기가 결합되어, 광섬유의 타단으로부터 출사되는 광의 퍼짐각을 감소시키는 것을 특징으로 하는 광섬유 전달 링크.  The optical fiber transmission link of claim 1, wherein the other end of the optical fiber has a tapered shape, a lens is coupled, or a compound parabolic condenser is coupled to reduce the spread angle of light emitted from the other end of the optical fiber. .
【청구항 4】 [Claim 4]
제 1항 내지 제 3항 중 어느 한 항에 따른 광섬유 전달 링크는 집광 장치로 사용되는 것을 특징으로 하는 광섬유 전달링크.  The optical fiber transmission link according to any one of claims 1 to 3, wherein the optical fiber transmission link is used as a light collecting device.
【청구항 5】 [Claim 5]
제 1항 내지 제 3항 증 어느 한 항에 따른 광섬유 전달 링크의 다수 개가 어레이 형태로 배열되어 구성된 것을 특징으로 하는 집광 장치. A condensing device, characterized in that a plurality of optical fiber transmission links according to any one of claims 1 to 3 are arranged in an array form.
【청구항 6】 [Claim 6]
저) 5항에 있어서, 상기 광섬유 전달 링크의 광섬유가 클래딩리스 파이버로 구성되면, 인접한 광섬유들 간의 이격거리를 일정하게 유지시키는 스페이서를 더 구비하는 것을 특징으로 하는 집광 장치 .  (F) The condenser of claim 5, further comprising a spacer for maintaining a constant distance between adjacent optical fibers when the optical fiber of the optical fiber transmission link is made of claddingless fiber.
【청구항 7] [Claim 7]
제 5항에 있어서, 상기 집광 장치는 빔 방사 분광계 (Beam Emi ssion The method of claim 5, wherein the light collecting device is a beam emission spectrometer (Beam Emi ssion
Spect roscopy) 또는 롬슨 산란 (Thomson Scat ter ing) 분광 장치의 광 수집 장치로 사용되는 것을 특징으로 하는 집광 장치. A light collecting device, characterized in that it is used as a light collection device of Spect roscopy or Thomson Scattering spectroscopy.
PCT/KR2015/007305 2014-07-14 2015-07-14 Optical fiber transfer link and light collecting device using same WO2016010344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0088227 2014-07-14
KR1020140088227A KR20160008673A (en) 2014-07-14 2014-07-14 Optical fiber link and apparatus for collecting and trasnferring light using the link

Publications (1)

Publication Number Publication Date
WO2016010344A1 true WO2016010344A1 (en) 2016-01-21

Family

ID=55078763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007305 WO2016010344A1 (en) 2014-07-14 2015-07-14 Optical fiber transfer link and light collecting device using same

Country Status (2)

Country Link
KR (1) KR20160008673A (en)
WO (1) WO2016010344A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669913U (en) * 1993-03-12 1994-09-30 川崎重工業株式会社 Optical fiber for laser
US5727108A (en) * 1996-09-30 1998-03-10 Troy Investments, Inc. High efficiency compound parabolic concentrators and optical fiber powered spot luminaire
KR20110088255A (en) * 2010-01-28 2011-08-03 한국과학기술연구원 Single-polarization single-mode photonic crystal fiber and optical transmission method using the same
KR20120026367A (en) * 2010-09-09 2012-03-19 부산대학교 산학협력단 Nanoparticle imbedded low-crosstalk optical waveguide array devices
KR20130030710A (en) * 2011-09-17 2013-03-27 박찬식 Optical transmission apparatus using optical fiberfor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783250B2 (en) 2002-09-25 2004-08-31 Koninklijke Philips Electronics N.V. Efficient light collector for projection display system
US7403680B2 (en) 2003-12-02 2008-07-22 3M Innovative Properties Company Reflective light coupler
KR101324807B1 (en) 2005-06-30 2013-11-01 웨이비엔, 인코포레이티드 Dual paraboloid reflector and dual ellipsoid reflector systems with optimized magnification
JP4738134B2 (en) 2005-10-26 2011-08-03 株式会社東芝 Analysis equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669913U (en) * 1993-03-12 1994-09-30 川崎重工業株式会社 Optical fiber for laser
US5727108A (en) * 1996-09-30 1998-03-10 Troy Investments, Inc. High efficiency compound parabolic concentrators and optical fiber powered spot luminaire
KR20110088255A (en) * 2010-01-28 2011-08-03 한국과학기술연구원 Single-polarization single-mode photonic crystal fiber and optical transmission method using the same
KR20120026367A (en) * 2010-09-09 2012-03-19 부산대학교 산학협력단 Nanoparticle imbedded low-crosstalk optical waveguide array devices
KR20130030710A (en) * 2011-09-17 2013-03-27 박찬식 Optical transmission apparatus using optical fiberfor

Also Published As

Publication number Publication date
KR20160008673A (en) 2016-01-25

Similar Documents

Publication Publication Date Title
US10228524B2 (en) Optical device and optical module
KR101313723B1 (en) structure for condensing sunlight and Apparatus for transmitting sunlight
CN102608740A (en) Lens array type light energy collecting and transmitting system
CN207850923U (en) Light scattering confocal excitation collection system
KR100986252B1 (en) Sun light concentrating device for natural lighting
DE59705793D1 (en) LIGHT TRANSMISSION DEVICE
WO2013008665A1 (en) Condenser, light condensing system, solar power generation device, and solar system
CN1687840A (en) Apparatus for aligning and focusing high-power semiconductor laser array light beam
WO2016010344A1 (en) Optical fiber transfer link and light collecting device using same
US9310593B2 (en) Holographic solar coupler
CN103378764A (en) Solar light-collecting device
JP2009122146A (en) Beam converter and light-receiving device
CN203553607U (en) Laser module group
WO2006039156A2 (en) Method and apparatus for illuminating a solar cell with indirect sunrays
WO2012026572A1 (en) Light-condensing device, light power generation device, and photothermal conversion device
CN102608741A (en) Sunlight energy collection and transmission system equipped with fly eye lenses
CN102590998A (en) Condenser lens and lens group
CN107831142A (en) Light scattering confocal excitation collection system
KR101249474B1 (en) Light signal transmitting module used to diagnosing plasma
CN107912080B (en) Light-concentrating system for a solar module and solar module
CN103697411A (en) Solar grading building lighting illumination device
CN102437220A (en) Light-concentrating device and solar cell device
TWI572915B (en) Solar concentrator system
CN213715525U (en) Reflection-type filter device and filter system thereof
CN117028894A (en) Large-view-field sunlight receiving and conducting system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821670

Country of ref document: EP

Kind code of ref document: A1