WO2016009922A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2016009922A1
WO2016009922A1 PCT/JP2015/069673 JP2015069673W WO2016009922A1 WO 2016009922 A1 WO2016009922 A1 WO 2016009922A1 JP 2015069673 W JP2015069673 W JP 2015069673W WO 2016009922 A1 WO2016009922 A1 WO 2016009922A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
frame
lower frame
main body
Prior art date
Application number
PCT/JP2015/069673
Other languages
French (fr)
Japanese (ja)
Inventor
吉之介 森
伸裕 野中
守孝 中村
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201590000815.8U priority Critical patent/CN207251538U/en
Publication of WO2016009922A1 publication Critical patent/WO2016009922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module.
  • the solar cell element is manufactured using, for example, a single crystal silicon substrate or a polycrystalline silicon substrate. Since one solar cell element generates a small electric output, a plurality of solar cell elements are electrically connected to obtain a practical electric output.
  • the solar cell module body has a structure in which a plurality of solar cell elements connected in series or in parallel are arranged side by side on a back cover, and a transparent substrate (glass) is further arranged on the light receiving surface side of the solar cell element. .
  • the solar cell element is sealed with a sealing resin such as EVA (ethylene vinyl acetate resin).
  • a solar cell module having a structure in which a frame having a fitting portion having a U-shaped cross section is attached to the outer peripheral portion of the solar cell module body via an elastic body, an adhesive layer, or the like.
  • the solar cell module is usually installed on a roof or a base with an inclination with respect to a horizontal plane, and rainfall flows along the inclination of the solar cell module.
  • the solar cell module described above has a structure in which a frame is fitted to the outer periphery of the solar cell module main body, there is a step between the light receiving surface of the solar cell module main body and the frame. Due to this level difference, there is a problem that rainwater accumulates on the light receiving surface of the solar cell module at the time of rain, and the power generation amount of the solar cell module is reduced. This is because dirt such as dust, dust, soot, sand, pollen, and volcanic ash adheres to the light receiving surface of the solar cell module after the rainwater evaporates, and the amount of light reaching the solar cell element is reduced. .
  • Patent Document 1 Japanese Utility Model Publication No. 58-147260 discloses a solar cell module in which a step between the frame and the light receiving surface of the solar cell module body is eliminated. Has been proposed.
  • FIG. 23 is a diagram showing the solar cell module disclosed in Patent Document 1.
  • the solar cell module main body 101 is fixed to a frame 102, and the frame 102 includes left and right side walls 102a and 102b and upper and lower side walls 102c and 102d.
  • the left and right side walls 102a and 102b hold the light receiving surface of the solar cell module main body 101, but the upper and lower side walls 102c and 102d are formed to be substantially flush with the light receiving surface of the solar cell module main body.
  • a pair of side portions of a solar cell panel is covered with a first frame portion in a substantially U shape from a part of the surface to a part of the back surface, and the other pair of side portions are covered with the surface.
  • a solar cell module having a structure that is substantially L-shaped and covered with a second frame portion from the side portion to a part of the back surface is disclosed.
  • Patent Document 2 a sealing / protecting material made of butyl tape, rubber-based or resin-based packing, or silicone resin is inserted between the frame portion and the solar cell panel (solar cell module body in the present application).
  • the second frame portion that does not cover the surface of the light receiving surface of the solar cell panel has an auxiliary support portion that extends toward the center of the solar cell panel on the back surface of the solar cell panel. This is because the solar cell panel is supplementarily supported, and the decrease in load bearing performance due to the second frame portion not covering the light receiving surface of the solar cell panel is compensated.
  • the second frame portion and the solar cell panel are bonded by an adhesive member made of a silicone resin or an adhesive.
  • a solar cell module according to the present invention is a solar cell module having a solar cell module main body and a frame, the frame having a horizontal frame having a fitting portion and a lower frame adjacent to the horizontal frame, The frame has a support portion having a horizontal piece and a vertical piece, an elastic body is arranged between the horizontal frame and the solar cell module main body, and an adhesive layer is arranged between the lower frame and the solar cell module main body. The elastic body is in contact with the vertical piece of the lower frame.
  • FIG. 1 shows the first embodiment of the present invention and is an enlarged view of a portion A of the solar cell module shown in FIG. 1.
  • FIG. FIG. 2 is a cross-sectional view taken along the line B-B ′ of the solar cell module shown in FIG. 1, showing the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line C-C ′ of the solar cell module shown in FIG. 1 according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line D-D ′ of the solar cell module shown in FIG. 1, showing the first embodiment of the present invention.
  • FIG. 7 shows the first embodiment of the present invention and is a partially enlarged view of the elastic body shown in FIG. 6. It is a figure which shows the 1st Embodiment of this invention and shows a part of manufacturing process of a solar cell module.
  • the 2nd Embodiment of this invention is shown, Comprising: It is another example of an elastic body.
  • the 2nd Embodiment of this invention is shown, Comprising: It is another example of an elastic body.
  • the 4th Embodiment of this invention is shown, Comprising: It is a perspective view which shows a solar cell module.
  • the 4th Embodiment of this invention is shown, Comprising: It is the elements on larger scale of a solar cell module. It is a figure which shows the 4th Embodiment of this invention, Comprising: The corner member of a solar cell module. It is a perspective view which shows the 5th Embodiment of this invention and shows a solar cell module.
  • the 5th Embodiment of this invention is shown, Comprising: It is a figure which shows the installation structure of a solar cell module.
  • FIG. 20 shows a sixth embodiment of the present invention and is a cross-sectional view taken along line GG ′ of the solar cell module shown in FIG. 19. It is a figure which shows the 7th Embodiment of this invention, Comprising: The lower frame periphery of a solar cell module.
  • FIG. 22 shows a seventh embodiment of the present invention and is a cross-sectional view taken along line HH ′ of the solar cell module shown in FIG. 21. It is a figure which shows the conventional solar cell module.
  • FIG. 1 is a perspective view schematically showing a state in which the solar cell module of this embodiment is viewed from the light receiving surface side.
  • the solar cell module main body 1 is composed of a translucent base material, a sealing resin, a solar battery cell, a sealing resin, and a back surface side protective material from the light receiving surface side.
  • a glass substrate was used as the translucent substrate, and EVA (ethylene vinyl acetate resin) was used as the sealing resin.
  • a solar battery cell using a polycrystalline silicon wafer was used as the solar battery cell, and a multilayer sheet in which PET sheets were laminated as the back surface side protective material.
  • the several photovoltaic cell is electrically connected in series using internal wiring.
  • the solar cell module has two extraction electrodes on the positive electrode side and the negative electrode side, one end of each extraction electrode is electrically connected to the solar cell, and the other end of the extraction electrode is connected to the terminal box. Electrically connected.
  • the solar cell module 1 is formed by fitting a frame into a side portion of a substantially rectangular solar cell module body 10.
  • the four sides constituting the light receiving surface of the solar cell module body are defined as a pair of side sides, lower side, and upper side.
  • the horizontal frames 20 and 21 are fitted in the pair of opposing side portions 11 and 12 of the solar cell module body 10 into which the horizontal frames 20 and 21 are fitted, respectively.
  • the horizontal frames 20 and 21 are close to the side edges 11 and 12.
  • a lower frame 30 and an upper frame 31 are fitted into another pair of opposing side portions of the solar cell module body 10.
  • the lower frame 30 is close to the lower side 13, and the upper frame 31 is close to the upper side 14.
  • the horizontal frames 20 and 21 are close to the side edges 11 and 12 of the solar cell module body 10 and cover the light receiving surface and the back surface of the side portion.
  • the back surface is a surface on the opposite side of the light receiving surface.
  • the lower frame 30 is close to the lower side of the solar cell module main body 10 but does not cover the light receiving surface of the solar cell module main body 10.
  • the upper frame 31 is close to the upper side 14 of the solar cell module body 10 but does not cover the light receiving surface of the solar cell module body 10. Since the upper frame and the lower frame do not cover the light receiving surfaces of the pair of side portions of the solar cell module main body, the volume of the frame can be reduced, and the solar cell module can be reduced in weight.
  • the solar cell module 1 is attached to the gantry inclining along the longitudinal direction of the horizontal frames 20 and 21 so that the upper side is high and the lower side is low.
  • the lower frame and the upper frame do not cover the light receiving surface of the solar cell module body, so that water flows smoothly on the light receiving surface of the solar cell module. Therefore, it is possible to prevent rainwater containing dust and dust from staying on the light receiving surface and evaporating, and depositing dust and dust on the light receiving surface to reduce the amount of power generation.
  • the upper frame has the same structure as the lower frame, even if the solar cell modules are continuously installed in the vertical direction, the flow of water and the falling snow are not hindered.
  • a single solar cell module may be installed, or a plurality of solar cell modules may be installed along the longitudinal direction of the horizontal frame. Further, it may be installed along a direction substantially perpendicular to the longitudinal direction of the horizontal frame, or may be installed in a matrix.
  • a solar cell module in which the length in the longitudinal direction of the upper and lower frames is smaller than the length in the longitudinal direction of the horizontal frame is illustrated, but the length of the upper and lower frames is longer than the length in the longitudinal direction of the horizontal frame. It goes without saying that the same applies to the case where the length of the direction is longer.
  • FIG. 2 is an enlarged view of a portion A of the solar cell module shown in FIG. 1, and is a perspective view of one of corners where the side and lower sides of the solar cell module intersect from the light receiving surface side.
  • the lower frame 30 is fitted close to the lower side of the solar cell module body 10.
  • the lower frame 30 does not cover the light receiving surface of the peripheral edge of the lower side 13 of the solar cell module body 10, and the upper end surface of the lower frame 30 is substantially flush with the light receiving surface of the solar cell module body 10.
  • An adhesive layer 40 is disposed between the solar cell module body 10 and the lower frame 30, and the light receiving surface of the adhesive layer 40 is substantially flush with the light receiving surface of the solar cell module body 10.
  • a silicone resin was used as the adhesive layer 40. By using a silicone resin, it became possible to maintain high adhesive strength between the lower frame and the solar cell module body. Moreover, since the silicone resin has high weather resistance and can maintain high adhesive strength, the long-term reliability of the solar cell module can be ensured.
  • the horizontal frame 21 was attached close to the side of the solar cell module body 10.
  • the horizontal frame 21 covers the light receiving surface including the side 12 of the solar cell module body 10.
  • An elastic body was disposed between the solar cell module main body 10 and the horizontal frame 21.
  • An elastomer resin was used as the elastic body.
  • the elastomer resin is in close contact with the solar cell module body 10 and the lateral frame 21.
  • butyl rubber, silicone resin, synthetic rubber, or the like may be used.
  • FIG. 3 is a cross-sectional view taken along the line B-B ′ of the solar cell module 1 shown in FIG. 1, and shows the relationship between the solar cell module body and the lower frame.
  • the lower frame 30 is attached close to the solar cell module body 10.
  • the lower frame 30 does not cover the light receiving surface of the solar cell module body 10, and the upper end surface of the lower frame 30 is substantially flush with the light receiving surface of the solar cell module body 10.
  • the support portion 301 of the lower frame 30 of this embodiment includes a horizontal piece 301a and a vertical piece 301b.
  • the front end of the vertical piece 301b of the support portion 301 is substantially on the same surface as the light receiving surface of the solar cell module body.
  • the adhesive layer 40 made of silicone resin is disposed between the back surface on the lower end side of the solar cell module body 10 and the upper surface of the horizontal piece 301a of the support portion 301 of the lower frame 30. Furthermore, an adhesive layer 40 made of silicone resin is also disposed between the end surface including the lower side 13 of the solar cell module main body and the vertical piece 301b of the support portion 301.
  • the upper end surface of the lower frame is substantially flush with the light receiving surface of the solar cell module body has been described, but the upper end surface may be below the light receiving surface.
  • the lower frame has been described as being arranged close to the lower side of the solar cell module body, but the same applies to the upper side and the upper frame.
  • FIG. 4 is a cross-sectional view taken along the line C-C ′ of the solar cell module 1 shown in FIG. 1, and shows the relationship between the solar cell module body and the horizontal frame.
  • the horizontal frame 20 is formed by extrusion of aluminum in the same manner as the lower frame and the upper frame.
  • the horizontal frame 20 includes a fitting portion 22, a box portion 23, and a flange portion 24.
  • the fitting portion 22 is located above the box portion 23 and is formed in a C shape in which an upper piece, a side piece, and a lower piece are connected.
  • the box portion 23 has a shape in which an upper piece, an inner piece, a lower piece, and an outer piece are connected in a box shape.
  • a partition piece is formed on the inner side, and connects the inner piece and the outer piece. Further, screw hole portions 23a and 23b are formed in a part of the inner piece.
  • the lower piece of the fitting portion 22 is shared with the upper piece of the box portion.
  • the flange portion 24 is formed by extending the lower piece of the box portion 23 toward the inside of the solar cell module body 10. The front end of the flange portion 24 is formed to be bent slightly upward.
  • the partition piece can be omitted depending on
  • the elastic body 50 made of elastomer resin is in close contact with the inner wall of the fitting portion 22.
  • the elastic body 50 whose cross section is formed in a substantially C shape according to the shape of the inner wall of the fitting portion 22 is used.
  • the horizontal frame 20 is attached to the solar cell module body 10 by inserting the solar cell module body 10 into the fitting portion 22 of the horizontal frame 20.
  • the elastic body 50 sandwiched between the fitting portion 22 and the solar cell module main body 10 is compressed and comes into contact with the fitting portion and the solar cell module main body, thereby making it difficult to transmit the impact applied to the frame to the solar cell module main body. have.
  • it has the function which seals the end surface containing the side of a solar cell module main body more reliably, and prevents the penetration
  • FIG. 5 is a DD ′ cross-sectional view including the fitting portion of the horizontal frame 20 of the solar cell module 1 shown in FIG. 1, and is one of the corners where the side and the lower side of the solar cell module body intersect.
  • FIG. 5 is a DD ′ cross-sectional view including the fitting portion of the horizontal frame 20 of the solar cell module 1 shown in FIG. 1, and is one of the corners where the side and the lower side of the solar cell module body intersect.
  • the upper and lower pieces of the fitting portion 22 of the horizontal frame 20 are arranged on the light receiving surface side and the back surface side of the solar cell module body 10. Between the light receiving surface of the solar cell module body 10 and the upper piece constituting the fitting portion 22 of the horizontal frame 202, and the lower piece constituting the fitting portion 22 of the back surface and the horizontal frame of the solar cell module body 10 An elastic body 50 is disposed between the two.
  • the elastic body was arranged so as to contact the vertical piece of the lower frame.
  • the elastic body 50 is also disposed between the end of the end surface 131 constituting the solar cell module main body and the vertical piece 301b of the lower frame 30.
  • the end surface 131 is a surface substantially perpendicular to the light receiving surface including the lower side 13 of the solar cell module body.
  • the vertical piece 301 b of the lower frame 30 is a part constituting the support portion 301 of the lower frame 30 and has an inner wall that is a surface substantially parallel to the end surface 131.
  • the elastic body 50 By arranging the elastic body 50 between the end of the end face 131 and the vertical piece 301b in this way, the distance between the inner wall of the vertical piece 301b of the lower frame 30 and the end face 131 is set to the length direction of the lower frame 30. It can be kept constant throughout. Therefore, the thickness of the adhesive layer 40 between the inner wall of the vertical piece 301b of the lower frame 30 and the end surface 131 can be made constant throughout. That is, a high adhesion strength between the solar cell module main body and the frame body was ensured, and the solar cell module stably having a high load resistance was obtained.
  • FIG. 6 is a schematic view showing the fitting of the side portion of the solar cell module body 10 and the horizontal frame 20 constituting the solar cell module of the present embodiment. Although the fitting of the side 11 and the horizontal frame 20 constituting the light receiving surface of the solar cell module body will be described, the same applies to the side 12 and the horizontal frame 21.
  • an elastomer resin is fitted as the elastic body 50 into the side 11 of the solar cell module body 10, and the solar cell module body 10 side is fitted into the fitting portion of the horizontal frame 20.
  • the side 11 and the elastic body 50 were fitted.
  • the elastic body 50 is bent in a U shape so that the end surface including the side of the solar cell module main body is accommodated, and protects the end surface so as to wrap. Since the elastic body has a structure covering the entire side, the number of steps in the manufacturing process of the solar cell module can be reduced, and the manufacturing cost can be reduced.
  • the solar cell module main body in which the elastic body 50 was arranged in the horizontal frame arranging step was fitted into the fitting portion of the horizontal frame.
  • FIG. 7 shows a partially enlarged view of the elastic body 50. It is the figure which looked at the edge part E of the elastic body 50 in Fig.6 (a) from the solar cell module main body side.
  • the elastic body 50 has an end surface contact portion 501 in addition to the light receiving surface contact portion 502 and the back surface contact portion 503.
  • the light receiving surface contact portion 502 is a portion that contacts the light receiving surface including the side 11 of the solar cell module body
  • the back surface contact portion 503 is a portion that contacts the back surface of the solar cell module body.
  • the end surface contact part 501 is a part which contacts the end surface 131 including the lower side of a solar cell module main body.
  • the elastic body has a structure having the end surface contact portion 501 that contacts not only the end surface including the side 11 but also the end surface 131 including the lower side. In other words, the elastic body 50 has a structure protruding to the lower frame side.
  • interval was formed between the solar cell module main body and the inner wall face of the vertical piece 301b of a lower frame. That is, the thickness t of the end surface contact portion 501 shown in FIG. 7 is the thickness of the adhesive layer 40.
  • the portion in contact with the lower frame of the elastic body 50 has been described, the portion in contact with the upper frame has a similar structure. Therefore, since the side of the solar cell module main body is fitted into the cavity of the elastic body 50, the position of the elastic body 50 with respect to the solar cell module main body is determined almost uniquely.
  • FIG. 8 is a schematic diagram showing a process of attaching the lower frame 30 to the solar cell module body 10 constituting the solar cell module of the present embodiment.
  • the horizontal frame is omitted in the figure.
  • the adhesive layer 40 is arranged on the horizontal piece 301a of the support portion 301 of the lower frame 30 in the adhesive layer arranging step.
  • the adhesive layer 40 is made of a silicone resin, and is disposed over the entire longitudinal direction of the lower frame 30.
  • the adhesive layer 40 may also be disposed on the inner wall surface that is the surface of the vertical piece 301b of the support portion 301 on the solar cell module main body side. Further, the adhesive layer may be disposed on the side of the solar cell module body.
  • the solar cell is placed on the light receiving surface side of the support portion 32 of the lower frame 30 on which the adhesive layer 40 is placed.
  • the module was placed.
  • the elastic body 50 and the horizontal frames 20 and 21 are attached to the sides of the solar cell module body. Since the elastic body 50 has the end surface contact portion 501, when the solar cell module body is placed, the elastic body 50 is constant between the vertical piece 301 b of the support portion 301 of the lower frame 30 and the end surface of the solar cell module body 10. A gap of width is formed.
  • the thickness t of the end surface contact portion 501 is designed to be 2 mm so that a gap of about 2 mm is formed. Therefore, even if the adhesive layer 40 is uncured and has fluidity, it is possible to prevent the width of the adhesive layer from being locally reduced when the solar cell module body is placed.
  • the solar cell module main body can be arranged at the approximate center between the upper frame and the lower frame.
  • the adhesive strength could be obtained without heating.
  • the horizontal frame and the lower frame, and the horizontal frame and the upper frame are screwed.
  • a solar cell module having a strong adhesive strength between the solar cell module body and the frame can be manufactured.
  • Embodiment 2 A solar cell module according to Embodiment 2 will be described with reference to the drawings. The difference from Embodiment 1 is the shape of the elastic body. A description of the same parts as those in the first embodiment will be omitted.
  • FIG. 9 is an example of an elastic body used in the solar cell module of this embodiment.
  • the end surface contact portion may have an uneven shape.
  • the difference can be absorbed. This is because it has an uneven shape, so that the width of the end surface contact portion can be changed with a relatively small force such as suppressing the lower frame.
  • An elastic body divided into a plurality of parts as shown in FIG. 9B may be used. By using such an elastic body, it is possible to easily absorb the tolerance of the side of the solar cell module close to the horizontal frame.
  • FIG. 10 shows still another example of the elastic body of the present embodiment.
  • the end of an object having a substantially U-shaped cross section as shown in FIG. 10A may be crimped to obtain an elastic body as shown in FIG. It is possible to manufacture a wide variety of solar cell modules at a reduced manufacturing cost. This is because the length of the elastic body in the long side direction can be freely changed, so that it is not necessary to form a mold for molding the elastic body even when the size of the solar cell module main body is changed.
  • Embodiment 3 A solar cell module and a method for manufacturing the solar cell module according to Embodiment 3 will be described with reference to the drawings. The difference from the first embodiment is that a spacer is arranged on a lateral piece of the support portion of the lower frame.
  • FIG. 11 is a perspective view of the periphery of the lower frame of the solar cell module according to the present embodiment as viewed from the light receiving surface side.
  • the horizontal frame is omitted.
  • the solar cell module of the present embodiment includes a spacer 61 and an adhesive layer 41 between the solar cell module main body 15 and the upper surface of the support piece horizontal piece of the lower frame.
  • Five spacers 61 are arranged at substantially equal intervals in the longitudinal direction of the lower frame, and a portion of the lower piece of the horizontal piece without the spacer is covered with the adhesive layer 41.
  • the spacer 61 was formed using a material mainly composed of EPDM (ethylene propylene rubber). The material is not necessarily limited to EPDM, and any material can be used as long as it is heat resistant and does not greatly deform even when the solar cell module body 15 is placed.
  • the internal wiring or the extraction electrode of the solar cell module is disposed at a position close to the spacer. When heat is generated in the internal wiring or the extraction electrode, heat is transmitted to the spacer and the spacer does not thermally deform, so heat resistance is required.
  • the width of the adhesive layer 41 was about 2 cm.
  • the width of the adhesive layer 41 is a length in a direction substantially perpendicular to the longitudinal direction of the lower frame 33.
  • EPDM which is the main component of the spacer 61
  • silicone resin used as the adhesive layer 41 it is possible to prevent the solar cell module body 15 from being bent due to its own weight.
  • the spacer 41 is disposed at least approximately in the center of the lower frame 33 in the longitudinal direction.
  • a laminated film having a structure in which an aluminum layer is inserted between PET films may be used.
  • FIG. 12 is a cross-sectional view of the periphery of the lower frame of the solar cell module of the present embodiment, taken along the line FF ′ of the solar cell module in FIG. 11.
  • Spacers are formed on the horizontal pieces 34 a of the support portion 34 of the lower frame 33.
  • 61 and the adhesive layer 41 are arranged, and the solar cell module main body 15 is placed on the spacer 61 and the adhesive layer 41.
  • the end surface on the lower side of the solar cell module main body 15 and the end surface of the vertical piece 34b of the support portion 34 of the lower frame 33 are substantially the same surface.
  • the spacers 61 were arranged at five locations on the horizontal piece 34a of the support portion 34 of the lower frame 33. A spacer 61 having adhesiveness was used. Therefore, since the relative position of the support part 34 and the spacer 61 does not change even in the subsequent steps, the solar cell module can be stably produced.
  • the spacers are arranged at five locations, but the number is not limited to this. It is desirable to dispose spacers at at least three locations in the longitudinal direction of the horizontal piece 34a of the support portion 34 and at substantially the central portion in the longitudinal direction.
  • the adhesive layer 41 was arranged on the horizontal piece 34a of the support portion 34 of the lower frame 33. Silicone resin was used as the adhesive layer, and the spacer 61 was disposed away. At that time, the height of the adhesive layer 41 was set to be substantially the same as the height of the spacer 61. When the height of the adhesive layer 41 is lower than the height of the spacer 61, a sufficient contact area between the adhesive layer 41 and the support portion 34 of the lower frame 33 or between the adhesive 41 and the back surface of the solar cell module body 15 cannot be secured. This is because the adhesive strength may not be obtained.
  • the contact bonding layer 41 when the height of the contact bonding layer 41 is higher than the height of the spacer 61, the contact bonding layer 41 protrudes from an end surface, and the design property of a solar cell module is impaired. Therefore, it is desirable to arrange the adhesive layer so that the height of the adhesive layer is substantially the same as the height of the spacer.
  • the spacers 61 are disposed at least at three positions, at least both ends in the longitudinal direction of the support portion 34 and approximately the central portion in the longitudinal direction, the center portion of the glass substrate is bent due to the weight of the solar cell module body, and the adhesive layer It became possible to prevent 51 from becoming thin locally, and it became possible to obtain high adhesive strength stably.
  • Embodiment 4 A solar cell module and a method for manufacturing the solar cell module according to Embodiment 4 will be described with reference to the drawings. The difference from the first embodiment is that a corner member is used. A description of the same parts as those in the first embodiment will be omitted.
  • FIG. 13 is a perspective view schematically showing the solar cell module of the present embodiment as viewed from the light receiving surface side.
  • Two horizontal frames, an upper frame, and a lower frame are fitted into the solar cell module body 16, and corner members 70 are installed at four corners of the solar cell module body 16.
  • the corner members 70 cover the corners of the solar cell module main body 16 and are connected to frame bodies fitted in two adjacent sides of the solar cell module main body 17.
  • the corner member 70 shown in FIG. 13 connects the horizontal frame 22 and the lower frame 34.
  • FIG. 14 is a partially enlarged view of the solar cell module of the present embodiment, and is a view of a corner portion of the solar cell module as viewed from the light receiving surface side.
  • the corner member 70 has the same width as the width of the horizontal frame 22 on the upper side where the upper piece 71a, which is a portion close to the upper side of the solar cell module main body 16, abuts on the horizontal frame 22, The lower side sandwiching the lower side 18 is wider than the upper side and wider than the horizontal frame 22. Since the corner member 70 can support the lower side 18 over a length larger than the width of the horizontal frame, the attachment strength between the solar cell module main body 16 and the frame can be increased.
  • the light receiving surface of the fitting portion 71 of the corner member 70 has a gentle curve, and the width is continuously increased from the upper side to the lower side of the solar cell module body 17.
  • rainwater is hard to collect, and snow is also likely to slide down. Since rainwater does not collect easily, dust and dust contained in rainwater are less likely to evaporate and adhere to the light receiving surface, exhibiting an antifouling effect, and preventing power generation efficiency from being lowered. In addition, since the snow is likely to slide down, the power generation function of the solar cell module can be quickly recovered.
  • FIG. 15 is a perspective view showing a corner member of the solar cell module of the present embodiment.
  • FIG. 15A and FIG. 15B show the corner member 70 as seen from different directions.
  • the corner member 70 includes a fitting portion 71, a box portion 72, and a convex portion 75.
  • the fitting portion 71 the groove formed by the upper piece 71 a and the lower piece 71 b is fitted to the side 17 and the lower side 18 of the solar cell module body 16.
  • the upper piece 71 a is formed so that the portion closer to the lower side 18 is wider than the portion that contacts the horizontal frame 22.
  • the edge of the upper piece 71a is tapered and thinned, and the step with the light receiving surface of the solar cell module body 16 is reduced to reduce the accumulation of snow, dust and dust.
  • the fitting portion 71 is provided with a notch 74.
  • the box part 72 has a structure in which an upper piece, an outer piece, a lower piece, and an inner piece are sequentially connected, and a partition piece is provided between the upper piece and the lower piece. A part of the upper piece is shared with the lower piece of the fitting portion 71. Moreover, the through-holes 72a and 72b are provided in the frame body connection piece which is a surface connected to the frame body, and the engaging claw 73 is provided between the through holes.
  • the convex portion 75 is formed below the box portion 72, and a hole is formed as an engaging means for engaging with an engaging member for attaching to the gantry. In addition, it also serves as a guide when the solar cell modules are stacked and stored. That is, when the solar cell modules are stacked, the convex portion 75 is positioned in the notch 74 of the solar cell module one level below. In the corner members 70 at the four corners, the convex portions 75 are positioned in the notches 74, and the solar cell module can be prevented from being displaced when stacked.
  • the horizontal frame 22, the lower frame 34, and the corner member 70 are fastened by screwing two screws into the hollow portion of the box portion 72 of the corner member 70.
  • a tapping screw is used.
  • the screw hole portion is formed with a screw thread at the same time as the screw is inserted.
  • the corner member 70 sandwiches the side 17 and the lower 18 of the solar cell module body 16. Since the corner member can hold both the side and lower sides of the solar cell module body with one member, the mounting strength can be increased. That is, it is possible to provide a solar cell module with higher attachment strength between the solar cell module main body and the frame without preventing snowfall from sliding down.
  • Embodiment 5 A solar cell module and a method for installing the solar cell module according to Embodiment 5 will be described with reference to the drawings. The difference from the solar cell module described in Embodiment 1 is that it has an auxiliary frame. A description of the same parts as those in the first embodiment will be omitted.
  • a pair of horizontal frames are fitted into the sides of a substantially rectangular solar cell module body, a lower frame 35 is attached in the vicinity of the lower side, and the upper side is in the vicinity.
  • the upper frame 36 is attached.
  • the horizontal frame 23 covers the light receiving surface and the back surface of the side portion of the solar cell module main body.
  • the lower frame 35 is attached close to the lower side of the solar cell module body, but does not cover the light receiving surface of the solar cell module body.
  • the upper frame 36 is attached close to the upper side of the solar cell module main body, but does not cover the light receiving surface of the solar cell module main body.
  • the auxiliary frame 80 is further disposed on the back surface of the solar cell module main body substantially parallel to the horizontal frame.
  • One end of the auxiliary frame 80 was fitted to the upper frame 36, and the other end was fitted to the lower frame 35.
  • a part of the auxiliary frame was bonded to the back surface of the solar cell module body with an adhesive resin.
  • the entire auxiliary frame may be bonded, or may not be bonded at all.
  • the solar cell module is installed inclined along the longitudinal direction of the horizontal frame.
  • the gantry was arranged substantially parallel to the longitudinal direction of the horizontal frame, and a plurality of solar cell modules were arranged on the gantry.
  • the auxiliary frame and the mount were installed so as not to overlap each other.
  • auxiliary frame a plurality of auxiliary frames may be arranged substantially parallel to the horizontal frame.
  • a plurality it becomes possible to maintain high adhesive strength between the solar cell module body and the frame more stably.
  • auxiliary frame may be arranged substantially parallel to the upper and lower frames.
  • a plurality of solar cell modules having auxiliary frames 80 were installed inclined along the longitudinal direction of the horizontal frame.
  • the upper frame and the lower frame do not cover the light receiving surface of the solar cell module body, snow and dirt flow down in the longitudinal direction of the horizontal frame of the solar cell module.
  • a plurality of crosspieces 90 were installed along the longitudinal direction of the horizontal frame of the solar cell module.
  • the upper and lower frames of the solar cell module were fixed to the crosspiece 90.
  • the auxiliary frame and the crosspiece were installed so as to be in a positional relationship so as not to overlap each other.
  • FIG. 18 shows another installation example of a plurality of solar cell modules having the auxiliary frame 81.
  • a difference from the installation structure shown in FIG. 18 is that the crosspieces are installed along the longitudinal direction of the upper frame and the lower frame. Since the solar cell module has a structure having the auxiliary frame 81 substantially parallel to the horizontal frame, the crosspiece and the auxiliary frame are orthogonal to each other.
  • a plurality of crosspieces 91 are arranged immediately below the upper and lower frames of the solar cell module. Since the crosspieces are arranged directly below the upper frame and the lower frame, there is no problem in any fixing location, but it is preferable to be in the middle of the side instead of the four corners of the solar cell module. By fixing the midpoint, the load applied to the solar cell module is dispersed and can be stably fixed.
  • the fitting part of the auxiliary frame and the lower frame and the auxiliary frame and the upper frame was designed so that the auxiliary frame 81 and the crosspiece 91 do not overlap. Even when a load is applied to the solar cell module, the auxiliary frame does not contact the crosspiece.
  • the crosspiece suppresses the deflection of the auxiliary frame when a load is applied to the solar cell module.
  • stress concentrates directly on the auxiliary frame of the solar cell module, and there is a possibility that the solar cell is cracked.
  • Embodiment 6 A solar cell module according to Embodiment 6 will be described with reference to the drawings. The difference from the first embodiment is that a double-sided adhesive tape is arranged on the horizontal piece of the support portion of the lower frame.
  • FIG. 19 is a perspective view of the periphery of the lower frame of the solar cell module according to the present embodiment as viewed from the light receiving surface side.
  • the horizontal frame is omitted.
  • FIG. 20 is a cross-sectional view of the periphery of the lower frame of the solar cell module of the present embodiment, corresponding to the GG ′ cross section of the solar cell module in FIG.
  • the double-sided adhesive tape 62 is disposed between the back surface of the solar cell module main body 151 and the upper surface of the horizontal piece 371a of the support portion 371 of the lower frame 37.
  • the double-sided adhesive tape 62 was arranged over almost the entire surface in the longitudinal direction of the lower frame 37. With the double-sided adhesive tape 62, it is possible to obtain a joint between the supporting portion lateral piece of the lower frame 37 and the solar cell module main body.
  • the double-sided adhesive tape 62 was formed using a material mainly composed of polyethylene. The material is not necessarily limited to polyethylene, and any material can be used as long as it is heat resistant and does not deform greatly even when the solar cell module main body 151 is placed. This is because when the internal wiring and the extraction electrode of the solar cell module are arranged at a position close to the double-sided adhesive tape and heat is generated, heat is transferred to the double-sided adhesive tape and is prevented from being thermally deformed.
  • an adhesive layer 42 was disposed between the solar cell module main body 151 and the vertical piece 371 b of the support portion 371 of the lower frame 37.
  • a silicone resin was used as the adhesive layer 42.
  • the end surface on the lower side of the solar cell module main body 151 and the end surface of the vertical piece 371b of the support portion 371 of the lower frame 37 are substantially the same surface.
  • silicone resin sometimes protrudes between the solar cell module body and the frame body during transportation, packing, and transportation in the process of the solar cell module.
  • the silicone resin protrudes, there is a possibility that sufficient adhesive strength cannot be obtained due to insufficient thickness of the adhesive layer.
  • the design of the solar cell module may be impaired.
  • the protrusion of the silicone resin occurs when a local load is applied during transportation, packing, and transportation in the process of the solar cell module. This is because only the surface of the adhesive layer is cured and the inside is not yet cured, so when a load is applied, the internal pressure of the adhesive layer increases and the uncured adhesive layer protrudes from the surface of the adhesive layer. It is done.
  • the double-sided adhesive tape 62 is disposed over almost the entire surface between the horizontal piece 371a of the support portion 371 of the lower frame 37 and the solar cell module main body 151, even if a load is applied to the light receiving surface of the solar cell module, The adhesive layer 42 no longer protrudes. This is probably because the pressure is not transmitted to the adhesive layer and the internal pressure does not increase. Another reason is considered to be that the amount of the silicone resin used as the adhesive layer is reduced, the time required for curing is shortened, and the silicone resin is completely cured to the inside.
  • the double-sided adhesive tape 62 may be disposed between the vertical piece 371b of the support portion 371 of the lower frame 37 and the solar cell module main body 151. In this case, it is desirable to arrange the adhesive layer 42 on the light receiving surface side. This is because when the double-sided tape is used, it is possible to prevent the double-sided backing tape from being seen from the light-receiving surface side and the feeling of being lost.
  • Embodiment 7 A solar cell module according to Embodiment 7 will be described with reference to the drawings. The difference from Embodiment 1 is that two types of adhesive layers are used.
  • FIG. 21 is a perspective view of the periphery of the lower frame of the solar cell module of the present embodiment as viewed from the light receiving surface side. The horizontal frame is omitted.
  • FIG. 22 is a cross-sectional view of the periphery of the lower frame of the solar cell module of the present embodiment, corresponding to the HH ′ cross section of the solar cell module in FIG.
  • the solar cell module of this embodiment includes a spacer 63 and an adhesive layer 43 between the solar cell module main body 152 and the upper surface of the horizontal piece 381a of the support portion 381 of the lower frame 38. Seven spacers 63 are arranged at substantially equal intervals in the longitudinal direction of the lower frame, and a portion of the lower piece of the horizontal piece without the spacer is covered with an adhesive layer 43.
  • the spacer 63 was formed using a material mainly composed of EPDM (ethylene propylene rubber). A silicone resin was used as the adhesive layer 43. Since EPDM, which is the main component of the spacer 63, has a higher hardness at room temperature than the silicone resin used as the adhesive layer 43, it is possible to prevent the solar cell module main body 152 from being bent due to its own weight.
  • the adhesive layer 44 was disposed between the solar cell module main body 152 and the vertical piece 381b of the support portion 381 of the lower frame 38.
  • the adhesive layer 44 is characterized by being cured in a shorter time than the adhesive layer 43.
  • a foamed silicone resin obtained by mixing a gas into the adhesive layer 43 can be used.
  • the adhesive layer 44 is completely cured, even if the adhesive layer 43 is not sufficiently cured and the internal pressure of the adhesive layer 43 increases due to the load, the adhesive layer 44 is formed on the light receiving surface side of the solar cell module. This is because it does not protrude.
  • a two-component silicone resin is used as the adhesive layer 43 and the adhesive layer 44, but a one-component silicone resin may be used.
  • the adhesive layer is not limited to the silicone resin, and may be made of other materials.
  • the solar cell module in which the length in the longitudinal direction of the upper and lower frames is smaller than the length in the longitudinal direction of the horizontal frame is illustrated. It goes without saying that the same applies to the case where the length of the frame in the longitudinal direction is longer.
  • Embodiment 1 to Embodiment 5 were specifically described, the present invention is not limited to them. Embodiments obtained by appropriately combining the technical means disclosed in the seven embodiments described above are also included in the technical scope of the present invention.

Abstract

Provided is a solar cell module structured by including a lower frame having a support portion attached to the lower side peripheral edge of a solar cell module main body and having a spacer and a bonding layer between the lower side rear surface and the upper surface of the support portion of the lower frame, thereby having an improved attachment strength of the solar cell module main body and a power generation amount hardly decreasing due to dirt and snow. A frame body has side frames having a fitting portion and a lower frame having a support portion comprising a horizontal piece and a vertical piece. An elastic body is disposed between a solar cell module main body and the side frames, and a bonding layer is disposed between the solar cell module main body and the lower frame. Further, being structured so that the elastic body also makes contact with the vertical piece of the lower frame makes it possible to obtain a solar cell module having a sufficient load bearing performance.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関するものである。 The present invention relates to a solar cell module.
 近年、地球環境問題への関心が高まりつつある中、自然エネルギーを利用した新しいエネルギー技術が大いに注目されている。そのひとつとして、太陽エネルギーを利用したシステムの関心が高く、特に光電変換効果を利用して光エネルギーを電気エネルギーに変換する太陽光発電は、クリーンなエネルギーを得る手段として広く行われている。 In recent years, interest in global environmental issues is increasing, and new energy technologies using natural energy are attracting a great deal of attention. As one of them, a system using solar energy is highly interested. In particular, solar power generation that converts light energy into electric energy using a photoelectric conversion effect is widely performed as a means for obtaining clean energy.
 太陽電池素子は、たとえば単結晶シリコン基板や、多結晶シリコン基板を用いて作製されている。太陽電池素子1枚では発生する電気出力が小さいため、複数の太陽電池素子を電気的に接続して実用的な電気出力が得られるようにしている。 The solar cell element is manufactured using, for example, a single crystal silicon substrate or a polycrystalline silicon substrate. Since one solar cell element generates a small electric output, a plurality of solar cell elements are electrically connected to obtain a practical electric output.
 太陽電池モジュール本体は、バックカバー上に直列あるいは並列に接続された複数の太陽電池素子を並べて配置し、さらに、太陽電池素子の受光面側に透明基板(ガラス)を配置した構造となっている。尚、太陽電池素子はEVA(エチレンビニルアセテート樹脂)などの封止樹脂にて封止されている。 The solar cell module body has a structure in which a plurality of solar cell elements connected in series or in parallel are arranged side by side on a back cover, and a transparent substrate (glass) is further arranged on the light receiving surface side of the solar cell element. . The solar cell element is sealed with a sealing resin such as EVA (ethylene vinyl acetate resin).
 さらに、この太陽電池モジュール本体の外周部に、弾性体や接着層等を介して、断面がコの字状の嵌合部を有する枠体を取り付けた構造の太陽電池モジュールが多用されている。 Further, a solar cell module having a structure in which a frame having a fitting portion having a U-shaped cross section is attached to the outer peripheral portion of the solar cell module body via an elastic body, an adhesive layer, or the like.
 太陽電池モジュールは、通常、屋根や架台に水平面に対して傾斜して設置され、降雨は太陽電池モジュールの傾斜に沿って流れる。しかしながら、上述の太陽電池モジュールは太陽電池モジュール本体の外周部に枠体を嵌めた構造であるため、太陽電池モジュール本体の受光面と枠体との間に段差が存在する。この段差のために降雨時に太陽電池モジュールの受光面に雨水が溜まり、太陽電池モジュールの発電量が低下するという問題があった。これは、雨水が蒸発した後に塵や埃、煤煙、砂、花粉、火山灰などの汚れが太陽電池モジュールの受光面に付着してしまい、太陽電池素子へ到達する光の量が減少するためである。 The solar cell module is usually installed on a roof or a base with an inclination with respect to a horizontal plane, and rainfall flows along the inclination of the solar cell module. However, since the solar cell module described above has a structure in which a frame is fitted to the outer periphery of the solar cell module main body, there is a step between the light receiving surface of the solar cell module main body and the frame. Due to this level difference, there is a problem that rainwater accumulates on the light receiving surface of the solar cell module at the time of rain, and the power generation amount of the solar cell module is reduced. This is because dirt such as dust, dust, soot, sand, pollen, and volcanic ash adheres to the light receiving surface of the solar cell module after the rainwater evaporates, and the amount of light reaching the solar cell element is reduced. .
 また、太陽電池モジュール上に積雪すると、雪が太陽電池モジュール本体の受光面と枠体との間の段差に引っかかるために、落雪しにくくなり、太陽電池モジュール本体の受光面上に雪がとどまって、積雪によって低下した発電量が回復しにくいという問題があった。 In addition, when snow accumulates on the solar cell module, the snow catches on the step between the light receiving surface of the solar cell module body and the frame, making it difficult for snow to fall. There was a problem that it was difficult to recover the amount of power generation that was reduced by this.
 このような問題を低減できる太陽電池として、例えば特許文献1(実開昭58-147260号公報)には、枠体と、太陽電池モジュール本体の受光面との間の段差をなくした太陽電池モジュールが提案されている。 As a solar cell that can reduce such a problem, for example, Patent Document 1 (Japanese Utility Model Publication No. 58-147260) discloses a solar cell module in which a step between the frame and the light receiving surface of the solar cell module body is eliminated. Has been proposed.
 図23は特許文献1で開示された太陽電池モジュールを示す図である。太陽電池モジュール100において、太陽電池モジュール本体101は、フレーム102に固定されてなり、フレーム102は、左右の側壁102aおよび102bと、上下の側壁102cおよび102dからなる。左右の側壁102a,102bは太陽電池モジュール本体101の受光面を押さえているが、上下の側壁102cおよび102dは、太陽電池モジュール本体の受光面と略面一になるように形成されている。 FIG. 23 is a diagram showing the solar cell module disclosed in Patent Document 1. In FIG. In the solar cell module 100, the solar cell module main body 101 is fixed to a frame 102, and the frame 102 includes left and right side walls 102a and 102b and upper and lower side walls 102c and 102d. The left and right side walls 102a and 102b hold the light receiving surface of the solar cell module main body 101, but the upper and lower side walls 102c and 102d are formed to be substantially flush with the light receiving surface of the solar cell module main body.
 また、特許文献2にも、太陽電池パネルの一対の側部を表面の一部から裏面の一部にかけて略コの字型に第1枠部により覆い、他の一対の側部を表面を覆わずに側部から裏面の一部にかけて略L字型に第2枠部により覆う構造の太陽電池モジュールが開示されている。 Also in Patent Document 2, a pair of side portions of a solar cell panel is covered with a first frame portion in a substantially U shape from a part of the surface to a part of the back surface, and the other pair of side portions are covered with the surface. A solar cell module having a structure that is substantially L-shaped and covered with a second frame portion from the side portion to a part of the back surface is disclosed.
 特許文献2には枠部と太陽電池パネル(本願における太陽電池モジュール本体)との間に、ブチルテープ、ゴム系あるいは樹脂系のパッキン、又は、シリコーン樹脂などよりなる封止・保護材が挿入されている旨が開示されている。さらに、太陽電池パネルの受光面の表面を覆わない第2枠部は、太陽電池パネルの裏面において太陽電池パネルの中央部に向かって伸長された補助支持部を有することが開示されている。太陽電池パネルを補助的に支え、太陽電池パネルの受光面を第2枠部が覆わないことによる耐荷重性能の低下を補うためである。さらに、耐荷重性能をより向上させるために、第2枠部と太陽電池パネルとは、シリコーン樹脂又は接着剤などよりなる接着部材により接着することが好ましいことが開示されている。 In Patent Document 2, a sealing / protecting material made of butyl tape, rubber-based or resin-based packing, or silicone resin is inserted between the frame portion and the solar cell panel (solar cell module body in the present application). Is disclosed. Furthermore, it is disclosed that the second frame portion that does not cover the surface of the light receiving surface of the solar cell panel has an auxiliary support portion that extends toward the center of the solar cell panel on the back surface of the solar cell panel. This is because the solar cell panel is supplementarily supported, and the decrease in load bearing performance due to the second frame portion not covering the light receiving surface of the solar cell panel is compensated. Furthermore, it is disclosed that in order to further improve the load bearing performance, it is preferable that the second frame portion and the solar cell panel are bonded by an adhesive member made of a silicone resin or an adhesive.
実開昭58-147260号公報Japanese Utility Model Publication No. 58-147260 特開2014-68002号公報JP 2014-68002 A
 しかしながら、特許文献2に開示されたように太陽電池モジュール本体と受光面側とを覆わない枠体との間を接着部材により接着する構造とした場合でも、十分な耐荷重性能が得られない可能性があった。 However, even when a structure in which the solar cell module main body and the frame that does not cover the light receiving surface side are bonded by an adhesive member as disclosed in Patent Document 2, sufficient load bearing performance may not be obtained. There was sex.
 本発明に係る太陽電池モジュールは、太陽電池モジュール本体と枠体とを有する太陽電池モジュールであって、枠体は嵌合部を有する横枠と横枠に隣接する下枠とを有し、下枠は横片と縦片を有する支持部を有し、横枠と太陽電池モジュール本体との間には弾性体が配置され、下枠と前記太陽電池モジュール本体との間には接着層が配置されており、弾性体は下枠の縦片に接していることを特徴とする。 A solar cell module according to the present invention is a solar cell module having a solar cell module main body and a frame, the frame having a horizontal frame having a fitting portion and a lower frame adjacent to the horizontal frame, The frame has a support portion having a horizontal piece and a vertical piece, an elastic body is arranged between the horizontal frame and the solar cell module main body, and an adhesive layer is arranged between the lower frame and the solar cell module main body. The elastic body is in contact with the vertical piece of the lower frame.
 本発明によれば、耐荷重性能の高い太陽電池モジュールを得ることが可能となる。 According to the present invention, it is possible to obtain a solar cell module with high load bearing performance.
本発明の第1の実施形態を示すものであって、太陽電池モジュールを示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the perspective view which shows the 1st Embodiment of this invention and shows a solar cell module. 本発明の第1の実施形態を示すものであって、図1に示す太陽電池モジュールのAの部分の拡大図である。1 shows the first embodiment of the present invention and is an enlarged view of a portion A of the solar cell module shown in FIG. 1. FIG. 本発明の第1の実施形態を示すものであって、図1に示す太陽電池モジュールのB-B’の断面図である。FIG. 2 is a cross-sectional view taken along the line B-B ′ of the solar cell module shown in FIG. 1, showing the first embodiment of the present invention. 本発明の第1の実施形態を示すものであって、図1に示す太陽電池モジュールのC-C’の断面図である。FIG. 2 is a cross-sectional view taken along the line C-C ′ of the solar cell module shown in FIG. 1 according to the first embodiment of the present invention. 本発明の第1の実施形態を示すものであって、図1に示す太陽電池モジュールのD-D’の断面図である。FIG. 2 is a cross-sectional view taken along the line D-D ′ of the solar cell module shown in FIG. 1, showing the first embodiment of the present invention. 本発明の第1の実施形態を示すものであって、太陽電池モジュールの製造工程の一部を示す図である。It is a figure which shows the 1st Embodiment of this invention and shows a part of manufacturing process of a solar cell module. 本発明の第1の実施形態を示すものであって、図6に示す弾性体の部分拡大図である。FIG. 7 shows the first embodiment of the present invention and is a partially enlarged view of the elastic body shown in FIG. 6. 本発明の第1の実施形態を示すものであって、太陽電池モジュールの製造工程の一部を示す図である。It is a figure which shows the 1st Embodiment of this invention and shows a part of manufacturing process of a solar cell module. 本発明の第2の実施形態を示すものであって、弾性体の別の例である。The 2nd Embodiment of this invention is shown, Comprising: It is another example of an elastic body. 本発明の第2の実施形態を示すものであって、弾性体の別の例である。The 2nd Embodiment of this invention is shown, Comprising: It is another example of an elastic body. 本発明の第3の実施形態を示すものであって、太陽電池モジュールの下枠周辺を示す図である。It is a figure which shows the 3rd Embodiment of this invention, Comprising: The lower frame periphery of a solar cell module. 本発明の第3の実施形態を示すものであって、図11に示す太陽電池モジュールのF-F´の断面図である。FIG. 12 shows a third embodiment of the present invention and is a cross-sectional view taken along line FF ′ of the solar cell module shown in FIG. 11. 本発明の第4の実施形態を示すものであって、太陽電池モジュールを示す斜視図である。The 4th Embodiment of this invention is shown, Comprising: It is a perspective view which shows a solar cell module. 本発明の第4の実施形態を示すものであって、太陽電池モジュールの部分拡大図である。The 4th Embodiment of this invention is shown, Comprising: It is the elements on larger scale of a solar cell module. 本発明の第4の実施形態を示すものであって、太陽電池モジュールのコーナ部材を示す図である。It is a figure which shows the 4th Embodiment of this invention, Comprising: The corner member of a solar cell module. 本発明の第5の実施形態を示すものであって、太陽電池モジュールを示す斜視図である。It is a perspective view which shows the 5th Embodiment of this invention and shows a solar cell module. 本発明の第5の実施形態を示すものであって、太陽電池モジュールの設置構造を示す図である。The 5th Embodiment of this invention is shown, Comprising: It is a figure which shows the installation structure of a solar cell module. 本発明の第5の実施形態を示すものであって、別の太陽電池モジュールの設置構造を示す図である。It is a figure which shows the 5th Embodiment of this invention, Comprising: Another solar cell module installation structure. 本発明の第6の実施形態を示すものであって、太陽電池モジュールの下枠周辺を示す図である。It is a figure which shows the 6th Embodiment of this invention, Comprising: The lower frame periphery of a solar cell module. 本発明の第6の実施形態を示すものであって、図19に示す太陽電池モジュールのG-G´の断面図である。FIG. 20 shows a sixth embodiment of the present invention and is a cross-sectional view taken along line GG ′ of the solar cell module shown in FIG. 19. 本発明の第7の実施形態を示すものであって、太陽電池モジュールの下枠周辺を示す図である。It is a figure which shows the 7th Embodiment of this invention, Comprising: The lower frame periphery of a solar cell module. 本発明の第7の実施形態を示すものであって、図21に示す太陽電池モジュールのH-H´の断面図である。FIG. 22 shows a seventh embodiment of the present invention and is a cross-sectional view taken along line HH ′ of the solar cell module shown in FIG. 21. 従来の太陽電池モジュールを示す図である。It is a figure which shows the conventional solar cell module.
 以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
  [実施形態1]
 実施形態1に係る太陽電池モジュール及び太陽電池モジュールの製造方法について、図面を参照し説明すれば以下のとおりである。
[Embodiment 1]
The solar cell module and the method for manufacturing the solar cell module according to Embodiment 1 will be described below with reference to the drawings.
 図1は本実施形態の太陽電池モジュールを受光面側からみた様子を模式的に示す斜視図である。 FIG. 1 is a perspective view schematically showing a state in which the solar cell module of this embodiment is viewed from the light receiving surface side.
 太陽電池モジュール本体1は、受光面側から透光性基材、封止樹脂、太陽電池セル、封止樹脂、裏面側保護材からなる。透光性基材としてガラス基板を用い、封止樹脂としてEVA(エチレンビニルアセテート樹脂)を用いた。太陽電池セルとして多結晶シリコンウエハを用いた太陽電池セルを用い、裏面側保護材としてPETシートを積層した多層シートを用いた。また、図1では記載を省略しているが、太陽電池モジュールとして十分な出力電力を得るために、複数の太陽電池セルは、内部配線を用いて電気的に直列に接続されている。さらに太陽電池モジュールは正極側と負極側の2個の引出し電極を有しており、それぞれの引出し電極の一端は太陽電池セルと電気的に接続され、引出し電極の逆側の一端は端子ボックスに電気的に接続されている。 The solar cell module main body 1 is composed of a translucent base material, a sealing resin, a solar battery cell, a sealing resin, and a back surface side protective material from the light receiving surface side. A glass substrate was used as the translucent substrate, and EVA (ethylene vinyl acetate resin) was used as the sealing resin. A solar battery cell using a polycrystalline silicon wafer was used as the solar battery cell, and a multilayer sheet in which PET sheets were laminated as the back surface side protective material. Moreover, although description is abbreviate | omitted in FIG. 1, in order to obtain output power sufficient as a solar cell module, the several photovoltaic cell is electrically connected in series using internal wiring. Furthermore, the solar cell module has two extraction electrodes on the positive electrode side and the negative electrode side, one end of each extraction electrode is electrically connected to the solar cell, and the other end of the extraction electrode is connected to the terminal box. Electrically connected.
 太陽電池モジュール1は、略矩形の太陽電池モジュール本体10の側部に枠体を嵌めこむことで形成されている。太陽電池モジュール本体の受光面を構成する4辺を、一対の側辺、下辺、上辺とする。本実施形態の太陽電池モジュールは、横枠20、21が嵌め込まれる太陽電池モジュール本体10の対向する一対の側部11、12に、横枠20、21がそれぞれ嵌めこまれている。横枠20、21は側辺11、12と近接する。また、太陽電池モジュール本体10の別の一対の対向する側部には、下枠30および上枠31が嵌め込まれている。下枠30は下辺13と近接し、上枠31は上辺14と近接する。 The solar cell module 1 is formed by fitting a frame into a side portion of a substantially rectangular solar cell module body 10. The four sides constituting the light receiving surface of the solar cell module body are defined as a pair of side sides, lower side, and upper side. In the solar cell module according to the present embodiment, the horizontal frames 20 and 21 are fitted in the pair of opposing side portions 11 and 12 of the solar cell module body 10 into which the horizontal frames 20 and 21 are fitted, respectively. The horizontal frames 20 and 21 are close to the side edges 11 and 12. A lower frame 30 and an upper frame 31 are fitted into another pair of opposing side portions of the solar cell module body 10. The lower frame 30 is close to the lower side 13, and the upper frame 31 is close to the upper side 14.
 横枠20,21は、太陽電池モジュール本体10の側辺11、12に近接し、側部の受光面および裏面を覆っている。ここで裏面とは受光面の逆側にある面である。一方、下枠30は、太陽電池モジュール本体10の下辺と近接しているが、太陽電池モジュール本体10の受光面を覆ってはいない。また、上枠31は、太陽電池モジュール本体10の上辺14と近接しているが、太陽電池モジュール本体10の受光面を覆ってはいない。上枠及び下枠が太陽電池モジュール本体の一対の側部の受光面を覆わない構造としているため、枠体の体積を減らすことが可能となり、太陽電池モジュールが軽量化できる。 The horizontal frames 20 and 21 are close to the side edges 11 and 12 of the solar cell module body 10 and cover the light receiving surface and the back surface of the side portion. Here, the back surface is a surface on the opposite side of the light receiving surface. On the other hand, the lower frame 30 is close to the lower side of the solar cell module main body 10 but does not cover the light receiving surface of the solar cell module main body 10. The upper frame 31 is close to the upper side 14 of the solar cell module body 10 but does not cover the light receiving surface of the solar cell module body 10. Since the upper frame and the lower frame do not cover the light receiving surfaces of the pair of side portions of the solar cell module main body, the volume of the frame can be reduced, and the solar cell module can be reduced in weight.
 太陽電池モジュール1は上辺が高く下辺が低くなるように、横枠20、21の長手方向に沿って傾斜して架台に取り付けられる。太陽電池モジュール1上に雨が降った場合には、下枠及び上枠が太陽電池モジュール本体の受光面を覆っていないため、水が太陽電池モジュールの受光面をスムーズに流れる。よって、塵やほこりを含む雨水が受光面上に留まって蒸発し、受光面に塵やほこりが堆積して発電量が低下することを防ぐことができる。 The solar cell module 1 is attached to the gantry inclining along the longitudinal direction of the horizontal frames 20 and 21 so that the upper side is high and the lower side is low. When it rains on the solar cell module 1, the lower frame and the upper frame do not cover the light receiving surface of the solar cell module body, so that water flows smoothly on the light receiving surface of the solar cell module. Therefore, it is possible to prevent rainwater containing dust and dust from staying on the light receiving surface and evaporating, and depositing dust and dust on the light receiving surface to reduce the amount of power generation.
 また、積雪した際も、受光面上の雪がスムーズに滑落するので、長時間受光面に雪が留まって発電量が回復しないといった事象を回避することができる。なお、上枠も下枠と同様の構造であるので、太陽電池モジュールを縦方向に連続して設置しても、水の流れや積雪の滑落を妨げることがない。 In addition, even when snow falls, the snow on the light receiving surface slides smoothly, so that it is possible to avoid the phenomenon that the power generation amount does not recover due to snow remaining on the light receiving surface for a long time. In addition, since the upper frame has the same structure as the lower frame, even if the solar cell modules are continuously installed in the vertical direction, the flow of water and the falling snow are not hindered.
 太陽電池モジュールは1枚で設置しても良く、複数枚を横枠の長手方向に沿って設置しても良い。また、横枠の長手方向に略垂直の方向に沿って設置しても良く、マトリクス状に設置しても良い。 A single solar cell module may be installed, or a plurality of solar cell modules may be installed along the longitudinal direction of the horizontal frame. Further, it may be installed along a direction substantially perpendicular to the longitudinal direction of the horizontal frame, or may be installed in a matrix.
 尚、本実施形態においては、横枠の長手方向の長さよりも上下枠の長手方向の長さが小さい太陽電池モジュールを図示しているが、横枠の長手方向の長さよりも上下枠の長手方向の長さの方が長い場合についても同様であることはいうまでもない。 In the present embodiment, a solar cell module in which the length in the longitudinal direction of the upper and lower frames is smaller than the length in the longitudinal direction of the horizontal frame is illustrated, but the length of the upper and lower frames is longer than the length in the longitudinal direction of the horizontal frame. It goes without saying that the same applies to the case where the length of the direction is longer.
 図2は、図1で示した太陽電池モジュールのAの部分の拡大図であり、太陽電池モジュールの側辺と下辺の交差する角部の1つを受光面側からみた斜視図である。 FIG. 2 is an enlarged view of a portion A of the solar cell module shown in FIG. 1, and is a perspective view of one of corners where the side and lower sides of the solar cell module intersect from the light receiving surface side.
 下枠30は、太陽電池モジュール本体10の下辺に近接して嵌め付けられている。また下枠30は、太陽電池モジュール本体10の下辺13の周縁部の受光面を覆っておらず、下枠30の上端面は、太陽電池モジュール本体10の受光面と略同一面にある。太陽電池モジュール本体10と下枠30の間には接着層40が配置されており、接着層40の受光面は、太陽電池モジュール本体10の受光面と略同一面にある。接着層40としてシリコーン樹脂を用いた。シリコーン樹脂を用いることにより、下枠と太陽電池モジュール本体との高い接着強度を維持することが可能となった。また、シリコーン樹脂は耐候性が高く、高い接着強度を維持することが可能であるため、太陽電池モジュールの長期信頼性も確保することができる。 The lower frame 30 is fitted close to the lower side of the solar cell module body 10. The lower frame 30 does not cover the light receiving surface of the peripheral edge of the lower side 13 of the solar cell module body 10, and the upper end surface of the lower frame 30 is substantially flush with the light receiving surface of the solar cell module body 10. An adhesive layer 40 is disposed between the solar cell module body 10 and the lower frame 30, and the light receiving surface of the adhesive layer 40 is substantially flush with the light receiving surface of the solar cell module body 10. A silicone resin was used as the adhesive layer 40. By using a silicone resin, it became possible to maintain high adhesive strength between the lower frame and the solar cell module body. Moreover, since the silicone resin has high weather resistance and can maintain high adhesive strength, the long-term reliability of the solar cell module can be ensured.
 太陽電池モジュール本体10の側辺に近接して横枠21を取り付けた。横枠21は、太陽電池モジュール本体10の側辺12を含む受光面を覆っている。太陽電池モジュール本体10と横枠21の間には弾性体を配置した。弾性体としてエラストマー樹脂を用いた。エラストマー樹脂は太陽電池モジュール本体10及び横枠21に密着している。エラストマー樹脂の他にブチルゴム、シリコーン樹脂や合成ゴム等を用いても良い。 The horizontal frame 21 was attached close to the side of the solar cell module body 10. The horizontal frame 21 covers the light receiving surface including the side 12 of the solar cell module body 10. An elastic body was disposed between the solar cell module main body 10 and the horizontal frame 21. An elastomer resin was used as the elastic body. The elastomer resin is in close contact with the solar cell module body 10 and the lateral frame 21. In addition to the elastomer resin, butyl rubber, silicone resin, synthetic rubber, or the like may be used.
 図3は、図1で示した太陽電池モジュール1のB-B’の断面図であり、太陽電池モジュール本体と下枠との関係を示す図である。 FIG. 3 is a cross-sectional view taken along the line B-B ′ of the solar cell module 1 shown in FIG. 1, and shows the relationship between the solar cell module body and the lower frame.
 下枠30は、太陽電池モジュール本体10に近接して取り付けられている。下枠30は、太陽電池モジュール本体10の受光面を覆ってはおらず、下枠30の上端面は、太陽電池モジュール本体10の受光面と略同一面にある。 The lower frame 30 is attached close to the solar cell module body 10. The lower frame 30 does not cover the light receiving surface of the solar cell module body 10, and the upper end surface of the lower frame 30 is substantially flush with the light receiving surface of the solar cell module body 10.
 より詳しく説明すると、本実施形態の下枠30の支持部301は、横片301aと縦片301bからなる。支持部301の縦片301bの先端は、太陽電池モジュール本体の受光面とほぼ同じ面上にある。 More specifically, the support portion 301 of the lower frame 30 of this embodiment includes a horizontal piece 301a and a vertical piece 301b. The front end of the vertical piece 301b of the support portion 301 is substantially on the same surface as the light receiving surface of the solar cell module body.
 太陽電池モジュール本体10の下端側の裏面と下枠30の支持部301の横片301aの上面との間に、シリコーン樹脂からなる接着層40を配置している。さらに、太陽電池モジュール本体の下辺13を含む端面と支持部301の縦片301bとの間にも、シリコーン樹脂からなる接着層40を配置している。このような構造とすることで、太陽電池モジュール本体10と下枠30の接着面積が広くなるため、本体と下枠との間の接着強度を上げることが可能となる。 The adhesive layer 40 made of silicone resin is disposed between the back surface on the lower end side of the solar cell module body 10 and the upper surface of the horizontal piece 301a of the support portion 301 of the lower frame 30. Furthermore, an adhesive layer 40 made of silicone resin is also disposed between the end surface including the lower side 13 of the solar cell module main body and the vertical piece 301b of the support portion 301. By setting it as such a structure, since the adhesion area of the solar cell module main body 10 and the lower frame 30 becomes large, it becomes possible to raise the adhesive strength between a main body and a lower frame.
 本実施形態においては、下枠の上端面が太陽電池モジュール本体の受光面と略同一面にある場合について述べたが、上端面が受光面より下にあってもよい。 In the present embodiment, the case where the upper end surface of the lower frame is substantially flush with the light receiving surface of the solar cell module body has been described, but the upper end surface may be below the light receiving surface.
 ここまで、太陽電池モジュール本体の下辺に近接して配置すると下枠について説明したが、上辺と上枠についても同様である。 So far, the lower frame has been described as being arranged close to the lower side of the solar cell module body, but the same applies to the upper side and the upper frame.
 図4は、図1で示した太陽電池モジュール1のC-C’断面図であり、太陽電池モジュール本体と横枠との関係を示す図である。 FIG. 4 is a cross-sectional view taken along the line C-C ′ of the solar cell module 1 shown in FIG. 1, and shows the relationship between the solar cell module body and the horizontal frame.
 横枠20は、下枠、上枠と同様にアルミニウムの押出加工により形成されてなる。横枠20は、嵌合部22とボックス部23とフランジ部24とからなる。嵌合部22は、ボックス部23の上方にあり、上片と側片と下片とを連結したC字状に形成されている。ボックス部23は、上片と内側片と下片と外側片が箱状に連結された形状であり、内側には仕切片が形成され、内側片と外側片を連結している。また、内側片の一部にねじ穴部23a、23bが形成されている。嵌合部22の下片はボックス部の上片と共有している。フランジ部24は、ボックス部23の下片を太陽電池モジュール本体10の内側に向かって延設されたものである。フランジ部24の先端は少し上方に折り曲げられて形成されている。尚、枠体の構造によっては、仕切片は省略することができる。 The horizontal frame 20 is formed by extrusion of aluminum in the same manner as the lower frame and the upper frame. The horizontal frame 20 includes a fitting portion 22, a box portion 23, and a flange portion 24. The fitting portion 22 is located above the box portion 23 and is formed in a C shape in which an upper piece, a side piece, and a lower piece are connected. The box portion 23 has a shape in which an upper piece, an inner piece, a lower piece, and an outer piece are connected in a box shape. A partition piece is formed on the inner side, and connects the inner piece and the outer piece. Further, screw hole portions 23a and 23b are formed in a part of the inner piece. The lower piece of the fitting portion 22 is shared with the upper piece of the box portion. The flange portion 24 is formed by extending the lower piece of the box portion 23 toward the inside of the solar cell module body 10. The front end of the flange portion 24 is formed to be bent slightly upward. The partition piece can be omitted depending on the structure of the frame.
 エラストマー樹脂からなる弾性体50は、嵌合部22の内壁に密着している。本実施形態においては、断面が嵌合部22の内壁の形状に合わせて略C字状に形成されている弾性体50を用いた。太陽電池モジュール本体10を横枠20の嵌合部22に挿入することにより、横枠20が太陽電池モジュール本体10に取り付けられている。嵌合部22と太陽電池モジュール本体10に挟まれた弾性体50は、圧縮されて嵌合部と太陽電池モジュール本体に接触し、枠体にかかった衝撃を太陽電池モジュール本体に伝えにくくする機能を有している。また、太陽電池モジュール本体の側辺を含む端面をより確実に封止し、水分等の侵入を防ぐ機能も有している。 The elastic body 50 made of elastomer resin is in close contact with the inner wall of the fitting portion 22. In the present embodiment, the elastic body 50 whose cross section is formed in a substantially C shape according to the shape of the inner wall of the fitting portion 22 is used. The horizontal frame 20 is attached to the solar cell module body 10 by inserting the solar cell module body 10 into the fitting portion 22 of the horizontal frame 20. The elastic body 50 sandwiched between the fitting portion 22 and the solar cell module main body 10 is compressed and comes into contact with the fitting portion and the solar cell module main body, thereby making it difficult to transmit the impact applied to the frame to the solar cell module main body. have. Moreover, it has the function which seals the end surface containing the side of a solar cell module main body more reliably, and prevents the penetration | invasion of a water | moisture content.
 図5は、図1で示した太陽電池モジュール1の横枠20の嵌合部を含むD-D´断面図であり、太陽電池モジュール本体の側辺と下辺との交差する角部の1つを示す断面である。 FIG. 5 is a DD ′ cross-sectional view including the fitting portion of the horizontal frame 20 of the solar cell module 1 shown in FIG. 1, and is one of the corners where the side and the lower side of the solar cell module body intersect. FIG.
 太陽電池モジュール本体10の受光面側及び裏面側に、横枠20の嵌合部22の上片と下片とが配置される構造となっている。太陽電池モジュール本体10の受光面と横枠202の嵌合部22を構成する上片との間、及び太陽電池モジュール本体10の裏面と横枠を20の嵌合部22を構成する下片との間に弾性体50が配置されている。 The upper and lower pieces of the fitting portion 22 of the horizontal frame 20 are arranged on the light receiving surface side and the back surface side of the solar cell module body 10. Between the light receiving surface of the solar cell module body 10 and the upper piece constituting the fitting portion 22 of the horizontal frame 202, and the lower piece constituting the fitting portion 22 of the back surface and the horizontal frame of the solar cell module body 10 An elastic body 50 is disposed between the two.
 弾性体は下枠の縦片にも接するように配置した。言い換えると、太陽電池モジュール本体を構成する端面131の端と、下枠30の縦片301bとの間にも弾性体50を配置した。端面131とは、太陽電池モジュール本体の下辺13を含む受光面と略垂直な面である。また、下枠30の縦片301bとは、下枠30の支持部301を構成する部分であり、端面131と略平行な面である内壁を有する。 The elastic body was arranged so as to contact the vertical piece of the lower frame. In other words, the elastic body 50 is also disposed between the end of the end surface 131 constituting the solar cell module main body and the vertical piece 301b of the lower frame 30. The end surface 131 is a surface substantially perpendicular to the light receiving surface including the lower side 13 of the solar cell module body. The vertical piece 301 b of the lower frame 30 is a part constituting the support portion 301 of the lower frame 30 and has an inner wall that is a surface substantially parallel to the end surface 131.
 このように端面131の端と縦片301bとの間に弾性体50を配置することにより、下枠30の縦片301bの内壁と端面131との間の距離を、下枠30の長さ方向全体にわたって一定に保つことが可能となる。よって、下枠30の縦片301bの内壁と端面131との間の接着層40の厚さを全体にわたって一定にすることが可能となった。すなわち、太陽電池モジュール本体と枠体との間の高い接着強度を確保し、安定して高い耐荷重を有する太陽電池モジュールとなった。 By arranging the elastic body 50 between the end of the end face 131 and the vertical piece 301b in this way, the distance between the inner wall of the vertical piece 301b of the lower frame 30 and the end face 131 is set to the length direction of the lower frame 30. It can be kept constant throughout. Therefore, the thickness of the adhesive layer 40 between the inner wall of the vertical piece 301b of the lower frame 30 and the end surface 131 can be made constant throughout. That is, a high adhesion strength between the solar cell module main body and the frame body was ensured, and the solar cell module stably having a high load resistance was obtained.
 次に、本実施形態の太陽電池モジュールの製造方法について説明する。 Next, a method for manufacturing the solar cell module of this embodiment will be described.
 図6は、本実施形態の太陽電池モジュールを構成する太陽電池モジュール本体10の側部と横枠20の嵌合を示す概略図である。太陽電池モジュール本体の受光面を構成する側辺11と横枠20との嵌合について説明するが、側辺12と横枠21についても同様である。 FIG. 6 is a schematic view showing the fitting of the side portion of the solar cell module body 10 and the horizontal frame 20 constituting the solar cell module of the present embodiment. Although the fitting of the side 11 and the horizontal frame 20 constituting the light receiving surface of the solar cell module body will be described, the same applies to the side 12 and the horizontal frame 21.
 図6(a)に示すように、弾性体配置工程において、太陽電池モジュール本体10の側辺11に弾性体50としてエラストマー樹脂を嵌め込み、横枠20の嵌合部に太陽電池モジュール本体10の側辺11と弾性体50を嵌め込んだ。弾性体50は太陽電池モジュール本体の側辺を含む端面が収まるようにコ字状に曲がっており、端面を包み込むように保護している。弾性体が側辺全体を覆う構造であるので、太陽電池モジュールの製造工程における工程数を減らすことが可能となり、製造コストを下げることができる。 As shown in FIG. 6A, in the elastic body arranging step, an elastomer resin is fitted as the elastic body 50 into the side 11 of the solar cell module body 10, and the solar cell module body 10 side is fitted into the fitting portion of the horizontal frame 20. The side 11 and the elastic body 50 were fitted. The elastic body 50 is bent in a U shape so that the end surface including the side of the solar cell module main body is accommodated, and protects the end surface so as to wrap. Since the elastic body has a structure covering the entire side, the number of steps in the manufacturing process of the solar cell module can be reduced, and the manufacturing cost can be reduced.
 次に図6(b)に示すように、横枠配置工程において弾性体50を配置した太陽電池モジュール本体を横枠の嵌合部に嵌め込んだ。 Next, as shown in FIG. 6 (b), the solar cell module main body in which the elastic body 50 was arranged in the horizontal frame arranging step was fitted into the fitting portion of the horizontal frame.
 図7に、弾性体50の部分拡大図を示す。図6(a)における弾性体50の端部Eを太陽電池モジュール本体の側から見た図である。 FIG. 7 shows a partially enlarged view of the elastic body 50. It is the figure which looked at the edge part E of the elastic body 50 in Fig.6 (a) from the solar cell module main body side.
 弾性体50は受光面接触部502と裏面接触部503に加えてさらに、端面接触部501を有している。受光面接触部502とは、太陽電池モジュール本体の側辺11を含む受光面と接触する部分であり、裏面接触部503とは、太陽電池モジュール本体の裏面と接触する部分である。また、端面接触部501とは、太陽電池モジュール本体の下辺を含む端面131と接触する部分である。このように、弾性体は側辺11を含む端面だけでなく下辺を含む端面131と接触する端面接触部501を有する構造となっている。言い換えると、弾性体50は下枠側へ突出する構造を有している。このような構造とすることで、太陽電池モジュール本体と下枠の縦片301bの内壁面との間に一定間隔の隙間が形成されることとなった。すなわち、図7中に示した端面接触部501の厚さtは、接着層40の厚さとなる。 The elastic body 50 has an end surface contact portion 501 in addition to the light receiving surface contact portion 502 and the back surface contact portion 503. The light receiving surface contact portion 502 is a portion that contacts the light receiving surface including the side 11 of the solar cell module body, and the back surface contact portion 503 is a portion that contacts the back surface of the solar cell module body. Moreover, the end surface contact part 501 is a part which contacts the end surface 131 including the lower side of a solar cell module main body. Thus, the elastic body has a structure having the end surface contact portion 501 that contacts not only the end surface including the side 11 but also the end surface 131 including the lower side. In other words, the elastic body 50 has a structure protruding to the lower frame side. By setting it as such a structure, the space | interval of a fixed space | interval was formed between the solar cell module main body and the inner wall face of the vertical piece 301b of a lower frame. That is, the thickness t of the end surface contact portion 501 shown in FIG. 7 is the thickness of the adhesive layer 40.
 弾性体50の下枠と接触する部分について説明したが、上枠と接触する部分についても同様の構造を有している。よって、太陽電池モジュール本体の側辺は弾性体50の空洞に嵌り込むことになるため、弾性体50は太陽電池モジュール本体に対する位置がほぼ一義的に決まることとなる。 Although the portion in contact with the lower frame of the elastic body 50 has been described, the portion in contact with the upper frame has a similar structure. Therefore, since the side of the solar cell module main body is fitted into the cavity of the elastic body 50, the position of the elastic body 50 with respect to the solar cell module main body is determined almost uniquely.
 図8は、本実施形態の太陽電池モジュールを構成する太陽電池モジュール本体10に下枠30を取り付ける工程を示す概略図である。横枠については図中の記載を省略している。 FIG. 8 is a schematic diagram showing a process of attaching the lower frame 30 to the solar cell module body 10 constituting the solar cell module of the present embodiment. The horizontal frame is omitted in the figure.
 図8(a)に示すように、接着層配置工程において下枠30の支持部301の横片301aに接着層40を配置した。接着層40はシリコーン樹脂からなり、下枠30の長手方向全体にわたって配置した。接着層40は支持部301の縦片301bの太陽電池モジュール本体側の面である内壁面にも配置してもよい。また、接着層は太陽電池モジュール本体の側に配置しても良い。 As shown in FIG. 8A, the adhesive layer 40 is arranged on the horizontal piece 301a of the support portion 301 of the lower frame 30 in the adhesive layer arranging step. The adhesive layer 40 is made of a silicone resin, and is disposed over the entire longitudinal direction of the lower frame 30. The adhesive layer 40 may also be disposed on the inner wall surface that is the surface of the vertical piece 301b of the support portion 301 on the solar cell module main body side. Further, the adhesive layer may be disposed on the side of the solar cell module body.
 次に、図8(b)に示すように、太陽電池モジュール本体に下枠を配置する下枠配置工程において、接着層40を載置した下枠30の支持部32の受光面側に太陽電池モジュールを載置した。太陽電池モジュール本体の側部には、弾性体50及び横枠20、21がつけられた状態である。弾性体50は端面接触部501を有しているため、太陽電池モジュール本体を載置した際に、下枠30の支持部301の縦片301bと太陽電池モジュール本体10の端面との間に一定幅の隙間が形成される。本実施形態においては、2mm程度の隙間が形成されるように、端面接触部501の厚さtが2mmとなるように設計した。よって、接着層40が未硬化で流動性を有していても、太陽電池モジュール本体を載置した際に接着層の幅が局所的に薄くなることを防ぐことが可能となる。 Next, as shown in FIG. 8B, in the lower frame arranging step of arranging the lower frame on the solar cell module body, the solar cell is placed on the light receiving surface side of the support portion 32 of the lower frame 30 on which the adhesive layer 40 is placed. The module was placed. The elastic body 50 and the horizontal frames 20 and 21 are attached to the sides of the solar cell module body. Since the elastic body 50 has the end surface contact portion 501, when the solar cell module body is placed, the elastic body 50 is constant between the vertical piece 301 b of the support portion 301 of the lower frame 30 and the end surface of the solar cell module body 10. A gap of width is formed. In the present embodiment, the thickness t of the end surface contact portion 501 is designed to be 2 mm so that a gap of about 2 mm is formed. Therefore, even if the adhesive layer 40 is uncured and has fluidity, it is possible to prevent the width of the adhesive layer from being locally reduced when the solar cell module body is placed.
 さらに、下枠側だけでなく上枠側にも突出した弾性体50を用いることで、上枠と下枠のほぼ中央に太陽電池モジュール本体を配置することが可能となった。 Furthermore, by using the elastic body 50 that protrudes not only on the lower frame side but also on the upper frame side, the solar cell module main body can be arranged at the approximate center between the upper frame and the lower frame.
 本実施形態においては、接着層40として常温硬化型のシリコーン樹脂を用いたため、加熱を行うことなく接着強度を得ることができた。 In this embodiment, since a room temperature curing type silicone resin was used as the adhesive layer 40, the adhesive strength could be obtained without heating.
 本実施形態においては、さらに太陽電池モジュール本体と枠体との間の接着強度を上げるために、横枠と下枠、横枠と上枠のねじ止めを行った。 In this embodiment, in order to further increase the adhesive strength between the solar cell module body and the frame, the horizontal frame and the lower frame, and the horizontal frame and the upper frame are screwed.
 このような方法で太陽電池モジュールを製造することにより、太陽電池モジュール本体と枠体との接着強度が強い太陽電池モジュールを製造することができる。 太陽 By manufacturing the solar cell module by such a method, a solar cell module having a strong adhesive strength between the solar cell module body and the frame can be manufactured.
 また、副次的な効果として複数枚の太陽電池モジュールを載置した際の意匠性を向上させることが可能となった。太陽電池モジュールを、規則性を持って配置した場合、太陽電池モジュール本体と枠体との間の平行性を保つことができないため、全体としての統一感が得にくいという問題があった。太陽電池モジュール本体と枠体との間の平行性を保つことで、複数枚の太陽電池モジュールを載置した際の意匠性を向上させることができた。全体としての統一感が得られたためである。 Also, as a secondary effect, it has become possible to improve the design when a plurality of solar cell modules are placed. When the solar cell modules are arranged with regularity, the parallelism between the solar cell module main body and the frame cannot be maintained, and there is a problem that it is difficult to obtain a sense of unity as a whole. By maintaining the parallelism between the solar cell module main body and the frame, it was possible to improve the design when a plurality of solar cell modules were placed. This is because a sense of unity as a whole was obtained.
  [実施形態2]
 実施形態2に係る太陽電池モジュールについて、図面を参照し説明する。実施形態1と異なる点は、弾性体の形状である。実施形態1と重複する箇所については説明を省略する。
[Embodiment 2]
A solar cell module according to Embodiment 2 will be described with reference to the drawings. The difference from Embodiment 1 is the shape of the elastic body. A description of the same parts as those in the first embodiment will be omitted.
 図9は、本実施形態の太陽電池モジュールで用いた弾性体の例である。 FIG. 9 is an example of an elastic body used in the solar cell module of this embodiment.
 図9(a)に示すように、端面接触部を凹凸形状としてもよい。このような構造とすることにより、上枠と下枠とで横片301aの幅に差があった場合でも、差を吸収することが可能となる。凹凸形状であるので、下枠を抑える等の比較的小さな力で端面接触部の幅を変えることができるからである。 As shown in FIG. 9 (a), the end surface contact portion may have an uneven shape. By adopting such a structure, even when there is a difference in the width of the horizontal piece 301a between the upper frame and the lower frame, the difference can be absorbed. This is because it has an uneven shape, so that the width of the end surface contact portion can be changed with a relatively small force such as suppressing the lower frame.
 図9(b)に示すような複数の部位にわかれた弾性体を用いても良い。このような弾性体を用いることで、横枠に近接する太陽電池モジュールの側辺の公差を容易に吸収することが可能となる。 An elastic body divided into a plurality of parts as shown in FIG. 9B may be used. By using such an elastic body, it is possible to easily absorb the tolerance of the side of the solar cell module close to the horizontal frame.
 図10は、本実施形態の弾性体のさらに別の例である。 FIG. 10 shows still another example of the elastic body of the present embodiment.
 図10(a)に示すような断面が略コ字状の構造を有する物の端部を圧着して、図10(b)に示すような弾性体としても良い。製造コストを抑えて多品種の太陽電池モジュールを製造することが可能となる。弾性体の長辺方向の長さを自由に変えることができるため、太陽電池モジュール本体の大きさが変わった場合でも、弾性体を成型するための型をおこす必要がないためである。 The end of an object having a substantially U-shaped cross section as shown in FIG. 10A may be crimped to obtain an elastic body as shown in FIG. It is possible to manufacture a wide variety of solar cell modules at a reduced manufacturing cost. This is because the length of the elastic body in the long side direction can be freely changed, so that it is not necessary to form a mold for molding the elastic body even when the size of the solar cell module main body is changed.
  [実施形態3]
 実施形態3に係る太陽電池モジュール及び太陽電池モジュールの製造方法について、図面を参照し説明する。実施形態1と異なる点は、下枠の支持部の横片にスペーサを配置した点である。
[Embodiment 3]
A solar cell module and a method for manufacturing the solar cell module according to Embodiment 3 will be described with reference to the drawings. The difference from the first embodiment is that a spacer is arranged on a lateral piece of the support portion of the lower frame.
 図11は、本実施形態の太陽電池モジュールの下枠の周辺部を受光面側からみた斜視図である。横枠は記載を省略している。 FIG. 11 is a perspective view of the periphery of the lower frame of the solar cell module according to the present embodiment as viewed from the light receiving surface side. The horizontal frame is omitted.
 本実施形態の太陽電池モジュールは、太陽電池モジュール本体15と下枠の支持部横片の上面との間に、スペーサ61と接着層41を有している。スペーサ61は下枠の長手方向にほぼ等間隔に5個配置しており、下枠の横片のスペーサのない部分は接着層41で覆われている。スペーサ61はEPDM(エチレンプロピレンゴム)を主成分とする材料を用いて形成した。材料はEPDMに限る必然性はなく、太陽電池モジュール本体15を載せても大きく変形せず、耐熱性のある材料であれば良い。太陽電池モジュールの内部配線や引出し電極が、スペーサと近い位置に配置される場合がある。内部配線や引出し電極で発熱がおこった場合に、熱がスペーサに伝わりスペーサが熱変形しないため、耐熱性が必要とされる。 The solar cell module of the present embodiment includes a spacer 61 and an adhesive layer 41 between the solar cell module main body 15 and the upper surface of the support piece horizontal piece of the lower frame. Five spacers 61 are arranged at substantially equal intervals in the longitudinal direction of the lower frame, and a portion of the lower piece of the horizontal piece without the spacer is covered with the adhesive layer 41. The spacer 61 was formed using a material mainly composed of EPDM (ethylene propylene rubber). The material is not necessarily limited to EPDM, and any material can be used as long as it is heat resistant and does not greatly deform even when the solar cell module body 15 is placed. In some cases, the internal wiring or the extraction electrode of the solar cell module is disposed at a position close to the spacer. When heat is generated in the internal wiring or the extraction electrode, heat is transmitted to the spacer and the spacer does not thermally deform, so heat resistance is required.
 また接着層41としてシリコーン樹脂を用いた。接着層41の幅は約2cmとした。ここで、接着層41の幅とは、下枠33の長手方向に略垂直となる方向の長さである。 Further, a silicone resin was used as the adhesive layer 41. The width of the adhesive layer 41 was about 2 cm. Here, the width of the adhesive layer 41 is a length in a direction substantially perpendicular to the longitudinal direction of the lower frame 33.
 スペーサ61の主成分であるEPDMは、接着層41として用いたシリコーン樹脂よりも常温における硬度が高いため、太陽電池モジュール本体15の自重でたわみが生じることを防ぐことが可能となる。たわみを確実に防止するためには、スペーサ41は、少なくとも下枠33の長手方向のほぼ中央部に配置することが望ましい。裏面保護部材として防湿性を向上させるため、PETフィルムの間にアルミニウム層をいれた構造の積層フィルムを用いる場合がある。太陽電池モジュール本体15の自重でたわみが生じると、裏面側保護材の中にあるAl層と下枠との距離が短くなり、落雷等により太陽電池モジュールに高電圧がかかった際に、絶縁破壊が発生する恐れがあった。スペーサ61を配置することで、たわみを防ぎ、太陽電池モジュールの信頼性をより高めることが可能となった。 Since EPDM, which is the main component of the spacer 61, has a higher hardness at room temperature than the silicone resin used as the adhesive layer 41, it is possible to prevent the solar cell module body 15 from being bent due to its own weight. In order to surely prevent the deflection, it is desirable that the spacer 41 is disposed at least approximately in the center of the lower frame 33 in the longitudinal direction. In order to improve moisture resistance as a back surface protection member, a laminated film having a structure in which an aluminum layer is inserted between PET films may be used. When deflection occurs due to the weight of the solar cell module body 15, the distance between the Al layer in the back surface protective material and the lower frame is shortened, and when a high voltage is applied to the solar cell module due to a lightning strike, etc., dielectric breakdown occurs. There was a risk of occurrence. By disposing the spacer 61, it is possible to prevent the deflection and further improve the reliability of the solar cell module.
 図12は、図11における太陽電池モジュールのF-F´断面にあたり、本実施形態の太陽電池モジュールの下枠の周辺部の断面図である
 下枠33の支持部34の横片34a上にスペーサ61と接着層41が配置されており、スペーサ61と接着層41上に太陽電池モジュール本体15が載置されている。太陽電池モジュール本体15の下辺側の端面と下枠33の支持部34の縦片34bの端面は、ほぼ同一面としている。
12 is a cross-sectional view of the periphery of the lower frame of the solar cell module of the present embodiment, taken along the line FF ′ of the solar cell module in FIG. 11. Spacers are formed on the horizontal pieces 34 a of the support portion 34 of the lower frame 33. 61 and the adhesive layer 41 are arranged, and the solar cell module main body 15 is placed on the spacer 61 and the adhesive layer 41. The end surface on the lower side of the solar cell module main body 15 and the end surface of the vertical piece 34b of the support portion 34 of the lower frame 33 are substantially the same surface.
 本実施形態の太陽電池モジュールの製造方法について説明する。実施形態1と重複する箇所については記載を省略する。 A method for manufacturing the solar cell module of this embodiment will be described. The description of the same parts as those in Embodiment 1 is omitted.
 スペーサ載置工程において、下枠33の支持部34の横片34a上にスペーサ61を5箇所に配置した。スペーサ61として粘着性を有するものを用いた。よって、この後の工程においても支持部34とスペーサ61の相対的な位置が変わることはないため、太陽電池モジュールを安定して生産することが可能となった。本実施形態においては、スペーサは5箇所に配置したがこの数に限るものではない。支持部34の横片34aの長手方向における両端と、長手方向のほぼ中央部の少なくとも3箇所にスペーサを配置することが望ましい。 In the spacer placing step, the spacers 61 were arranged at five locations on the horizontal piece 34a of the support portion 34 of the lower frame 33. A spacer 61 having adhesiveness was used. Therefore, since the relative position of the support part 34 and the spacer 61 does not change even in the subsequent steps, the solar cell module can be stably produced. In this embodiment, the spacers are arranged at five locations, but the number is not limited to this. It is desirable to dispose spacers at at least three locations in the longitudinal direction of the horizontal piece 34a of the support portion 34 and at substantially the central portion in the longitudinal direction.
 次に、接着層配置工程において下枠33の支持部34の横片34aに接着層41を配置した。接着層としてシリコーン樹脂を用い、スペーサ61を避けて配置した。その際に、接着層41の高さがスペーサ61の高さとほぼ同じになるようにした。接着層41の高さがスペーサ61の高さよりも低い場合、接着層41と下枠33の支持部34、あるいは接着性41と太陽電池モジュール本体15の裏面との十分な接触面積が確保できなくなり、接着強度が得られなくなる可能性があるためである。また、接着層41の高さがスペーサ61の高さよりも高い場合、接着層41が端面からはみ出し、太陽電池モジュールの意匠性を損ねることになる。よって、接着層の高さがスペーサの高さとほぼ同じになるように配置することが望ましい。 Next, in the adhesive layer arranging step, the adhesive layer 41 was arranged on the horizontal piece 34a of the support portion 34 of the lower frame 33. Silicone resin was used as the adhesive layer, and the spacer 61 was disposed away. At that time, the height of the adhesive layer 41 was set to be substantially the same as the height of the spacer 61. When the height of the adhesive layer 41 is lower than the height of the spacer 61, a sufficient contact area between the adhesive layer 41 and the support portion 34 of the lower frame 33 or between the adhesive 41 and the back surface of the solar cell module body 15 cannot be secured. This is because the adhesive strength may not be obtained. Moreover, when the height of the contact bonding layer 41 is higher than the height of the spacer 61, the contact bonding layer 41 protrudes from an end surface, and the design property of a solar cell module is impaired. Therefore, it is desirable to arrange the adhesive layer so that the height of the adhesive layer is substantially the same as the height of the spacer.
 少なくとも支持部34の長手方向における両端と、長手方向のほぼ中央部の少なくとも3箇所にスペーサ61を配置しているので、太陽電池モジュール本体の自重でガラス基板の中央部にたわみが生じ、接着層51が局所的に薄くなることを防ぐことが可能となり、高い接着強度を安定して得ることができるようになった。 Since the spacers 61 are disposed at least at three positions, at least both ends in the longitudinal direction of the support portion 34 and approximately the central portion in the longitudinal direction, the center portion of the glass substrate is bent due to the weight of the solar cell module body, and the adhesive layer It became possible to prevent 51 from becoming thin locally, and it became possible to obtain high adhesive strength stably.
  [実施形態4]
 実施形態4に係る太陽電池モジュール及び太陽電池モジュールの製造方法について、図面を参照し説明する。実施形態1と異なる点は、コーナ部材を用いた点である。実施形態1と重複する箇所については説明を省略する。
[Embodiment 4]
A solar cell module and a method for manufacturing the solar cell module according to Embodiment 4 will be described with reference to the drawings. The difference from the first embodiment is that a corner member is used. A description of the same parts as those in the first embodiment will be omitted.
 図13に、本実施形態の太陽電池モジュールを受光面側からみた様子を模式的に示す斜視図を示す。太陽電池モジュール本体16に2つの横枠、上枠及び下枠が嵌め込まれており、さらに太陽電池モジュール本体16の4つの角部にコーナ部材70が設置されている。コーナ部材70は太陽電池モジュール本体16の角部を覆うと共に、太陽電池モジュール本体17の隣り合う2辺に嵌めこんだ枠体とそれぞれ連結している。例えば、図13で示すコーナ部材70は横枠22と下枠34とを連結している。コーナ部材を取り付けることで、太陽電池モジュールを傾斜して設置した際に、太陽電池モジュールの自重によって太陽電池モジュール本体が枠体からはずれることを長期間にわたりより確実に防ぐことができる。 FIG. 13 is a perspective view schematically showing the solar cell module of the present embodiment as viewed from the light receiving surface side. Two horizontal frames, an upper frame, and a lower frame are fitted into the solar cell module body 16, and corner members 70 are installed at four corners of the solar cell module body 16. The corner members 70 cover the corners of the solar cell module main body 16 and are connected to frame bodies fitted in two adjacent sides of the solar cell module main body 17. For example, the corner member 70 shown in FIG. 13 connects the horizontal frame 22 and the lower frame 34. By attaching the corner member, it is possible to more reliably prevent the solar cell module body from being detached from the frame body due to its own weight when the solar cell module is installed at an inclination.
 図14は、本実施形態の太陽電池モジュールの部分拡大図であり、太陽電池モジュールの角部を受光面側から見た図である。コーナ部材70は、太陽電池モジュール本体16の上辺に近い部分である上片71aが横枠22に当接する上辺側においては、横枠22の幅と同じ幅であるが、太陽電池モジュール本体17の下辺18を挟持する下辺側は上辺側よりも幅広であり、横枠22よりも幅広である。コーナ部材70がより横枠の幅よりも大きい長さにわたって、下辺18を支えることができるので、太陽電池モジュール本体16と枠体との取り付け強度を増大させることができる。 FIG. 14 is a partially enlarged view of the solar cell module of the present embodiment, and is a view of a corner portion of the solar cell module as viewed from the light receiving surface side. The corner member 70 has the same width as the width of the horizontal frame 22 on the upper side where the upper piece 71a, which is a portion close to the upper side of the solar cell module main body 16, abuts on the horizontal frame 22, The lower side sandwiching the lower side 18 is wider than the upper side and wider than the horizontal frame 22. Since the corner member 70 can support the lower side 18 over a length larger than the width of the horizontal frame, the attachment strength between the solar cell module main body 16 and the frame can be increased.
 また、コーナ部材70の嵌合部71の受光面は、緩やかなカーブを有しており、太陽電池モジュール本体17の上辺側から下辺側に向かって連続的に幅を広くしている。すなわち、雨水が溜まりにくく、また、積雪も滑落しやすい形状としている。雨水が溜まりにくい構造であるので、雨水に含まれる塵やほこりが受光面上で蒸発して付着することが少なくなり、防汚効果を発揮して、発電効率の低下を防ぐことができる。また、積雪が滑落しやすいので、太陽電池モジュールの発電機能を速やかに回復することができる。 Further, the light receiving surface of the fitting portion 71 of the corner member 70 has a gentle curve, and the width is continuously increased from the upper side to the lower side of the solar cell module body 17. In other words, rainwater is hard to collect, and snow is also likely to slide down. Since rainwater does not collect easily, dust and dust contained in rainwater are less likely to evaporate and adhere to the light receiving surface, exhibiting an antifouling effect, and preventing power generation efficiency from being lowered. In addition, since the snow is likely to slide down, the power generation function of the solar cell module can be quickly recovered.
 図15は、本実施形態の太陽電池モジュールのコーナ部材を示す斜視図である。図15(a)、図15(b)は、コーナ部材70をそれぞれ別方向から見たものである。
コーナ部材70は、嵌合部71とボックス部72と凸部75からなる。嵌合部71において、上片71aと下片71bで形成される溝部は、太陽電池モジュール本体16の側辺17および下辺18と嵌合する。上片71aは、横枠22に当接する部分よりも、下辺18に近い部分が幅広になるように形成されている。
FIG. 15 is a perspective view showing a corner member of the solar cell module of the present embodiment. FIG. 15A and FIG. 15B show the corner member 70 as seen from different directions.
The corner member 70 includes a fitting portion 71, a box portion 72, and a convex portion 75. In the fitting portion 71, the groove formed by the upper piece 71 a and the lower piece 71 b is fitted to the side 17 and the lower side 18 of the solar cell module body 16. The upper piece 71 a is formed so that the portion closer to the lower side 18 is wider than the portion that contacts the horizontal frame 22.
 また、上片71aの縁部は、テーパが付けられて薄くなっており、太陽電池モジュール本体16の受光面との段差を小さくして、雪や塵やほこりの滞留を軽減している。また、嵌合部71には切欠き74が設けられている。 Also, the edge of the upper piece 71a is tapered and thinned, and the step with the light receiving surface of the solar cell module body 16 is reduced to reduce the accumulation of snow, dust and dust. The fitting portion 71 is provided with a notch 74.
 ボックス部72は、上片と、外側片と、下片と、内側片が順に連結した構造を有し、仕切片が、上片と下片の間に設けられている。上片の一部は、嵌合部71の下片と共有している。また、枠体に接続する面である枠体接続片には、貫通孔72a、72bが設けられ、貫通孔の間に係合爪73が設けられている。 The box part 72 has a structure in which an upper piece, an outer piece, a lower piece, and an inner piece are sequentially connected, and a partition piece is provided between the upper piece and the lower piece. A part of the upper piece is shared with the lower piece of the fitting portion 71. Moreover, the through- holes 72a and 72b are provided in the frame body connection piece which is a surface connected to the frame body, and the engaging claw 73 is provided between the through holes.
 凸部75は、ボックス部72の下方に形成されており、架台に取り付けるための係合部材と係合するための係合手段として、穴が形成されている。また、太陽電池モジュールを重ねて保管するときのガイドの役割も果たしている。すなわち、太陽電池モジュールを積み重ねたとき、凸部75が一段下の太陽電池モジュールの切欠き74に位置する。四隅のコーナ部材70において、凸部75が切欠き74に位置することになり、積み重ねたときに太陽電池モジュールの位置ずれを防ぐことができる。 The convex portion 75 is formed below the box portion 72, and a hole is formed as an engaging means for engaging with an engaging member for attaching to the gantry. In addition, it also serves as a guide when the solar cell modules are stacked and stored. That is, when the solar cell modules are stacked, the convex portion 75 is positioned in the notch 74 of the solar cell module one level below. In the corner members 70 at the four corners, the convex portions 75 are positioned in the notches 74, and the solar cell module can be prevented from being displaced when stacked.
 コーナ部材70のボックス部72の空洞部に2本のねじをねじこむことで横枠22と下枠34とコーナ部材70を締結する。本実施形態においては、タッピンねじを用いた。このようにねじ穴部はねじ挿入と同時にねじ山が形成されて嵌合する。このようにすることで、太陽電池モジュール本体の角部を太陽電池モジュール本体16の受光面と、受光面と反対の面の両側から挟持することができる。特に、太陽電池モジュール本体16の下辺の端を挟持するので、太陽電池モジュール本体16と枠体の取り付け強度が増し、信頼性が増加する。また、コーナ部材70は、太陽電池モジュール本体16の側辺17と下辺18とを挟持する。コーナ部材によって、太陽電池モジュール本体の側辺と下辺の両方を1つの部材で挟持することができるので取り付け強度を増大させることができる。すなわち、降雪の滑落を妨げることがなく、太陽電池モジュール本体と枠体との間の取り付け強度がより高い太陽電池モジュールを提供することができる。 The horizontal frame 22, the lower frame 34, and the corner member 70 are fastened by screwing two screws into the hollow portion of the box portion 72 of the corner member 70. In this embodiment, a tapping screw is used. In this way, the screw hole portion is formed with a screw thread at the same time as the screw is inserted. By doing in this way, the corner | angular part of a solar cell module main body can be clamped from the both sides of the light-receiving surface of the solar cell module main body 16, and the surface opposite to a light-receiving surface. In particular, since the end of the lower side of the solar cell module body 16 is sandwiched, the attachment strength between the solar cell module body 16 and the frame increases, and the reliability increases. Further, the corner member 70 sandwiches the side 17 and the lower 18 of the solar cell module body 16. Since the corner member can hold both the side and lower sides of the solar cell module body with one member, the mounting strength can be increased. That is, it is possible to provide a solar cell module with higher attachment strength between the solar cell module main body and the frame without preventing snowfall from sliding down.
  [実施形態5]
 実施形態5に係る太陽電池モジュール及び太陽電池モジュールの設置方法について図面を参照し説明する。実施形態1で説明した太陽電池モジュールと異なる点は、補助枠を有することである。実施形態1と重複する箇所については説明を省略する。
[Embodiment 5]
A solar cell module and a method for installing the solar cell module according to Embodiment 5 will be described with reference to the drawings. The difference from the solar cell module described in Embodiment 1 is that it has an auxiliary frame. A description of the same parts as those in the first embodiment will be omitted.
 図16に示すように、本実施形態の太陽電池モジュールは、略矩形の太陽電池モジュール本体の側部に一対の横枠をそれぞれ嵌めこみ、下辺に近接して下枠35を取り付け、上辺に近接して上枠36を取り付けた構造を有している。横枠23は、太陽電池モジュール本体側部の受光面および裏面を覆っている。一方、下枠35は、太陽電池モジュール本体の下辺に近接して取り付けているが、太陽電池モジュール本体の受光面を覆ってはいない。また、上枠36は太陽電池モジュール本体の上辺に近接して取付けているが、太陽電池モジュール本体の受光面を覆ってはいない。 As shown in FIG. 16, in the solar cell module of this embodiment, a pair of horizontal frames are fitted into the sides of a substantially rectangular solar cell module body, a lower frame 35 is attached in the vicinity of the lower side, and the upper side is in the vicinity. Thus, the upper frame 36 is attached. The horizontal frame 23 covers the light receiving surface and the back surface of the side portion of the solar cell module main body. On the other hand, the lower frame 35 is attached close to the lower side of the solar cell module body, but does not cover the light receiving surface of the solar cell module body. The upper frame 36 is attached close to the upper side of the solar cell module main body, but does not cover the light receiving surface of the solar cell module main body.
 本実施形態においては、さらに、太陽電池モジュール本体の裏面に、横枠に略平行に補助枠80を配置した。補助枠80の一端を上枠36に嵌合し、反対側の一端を下枠35に嵌合した。さらに、補助枠の一部を太陽電池モジュール本体の裏面に接着樹脂で接着した。補助枠の全体を接着してもよく、全く接着しなくても良い。このように補助枠を配置することにより、太陽電池モジュールに荷重がかかった場合でも、太陽電池モジュール本体と枠体との間で高い接着強度を維持することができる。また、太陽電池モジュール本体のたわみを軽減することができるため、設置した際の意匠性を維持することが可能である。 In the present embodiment, the auxiliary frame 80 is further disposed on the back surface of the solar cell module main body substantially parallel to the horizontal frame. One end of the auxiliary frame 80 was fitted to the upper frame 36, and the other end was fitted to the lower frame 35. Furthermore, a part of the auxiliary frame was bonded to the back surface of the solar cell module body with an adhesive resin. The entire auxiliary frame may be bonded, or may not be bonded at all. By arranging the auxiliary frame in this way, high adhesive strength can be maintained between the solar cell module main body and the frame body even when a load is applied to the solar cell module. Moreover, since the deflection of the solar cell module body can be reduced, it is possible to maintain the design properties when installed.
 太陽電池モジュールは、横枠の長手方向に沿って傾斜して設置している。設置に際しては架台を横枠の長手方向に略平行に配置し、それらの架台の上に複数の太陽電池モジュールを配置した。受光面側から見た際に、補助枠と架台とは互いに重ならないように設置した。補助枠と架台が重なることを前提とした配置設計としないことで、架台設計・架台部材配置の自由度が確保することができる。 The solar cell module is installed inclined along the longitudinal direction of the horizontal frame. During installation, the gantry was arranged substantially parallel to the longitudinal direction of the horizontal frame, and a plurality of solar cell modules were arranged on the gantry. When viewed from the light receiving surface side, the auxiliary frame and the mount were installed so as not to overlap each other. By not using the layout design based on the assumption that the auxiliary frame and the mount overlap, the degree of freedom in mount design and mount member placement can be ensured.
 ここまで、補助枠を1本配置した場合について示したが、横枠に略平行に複数本配置してもよい。複数本配置することにより、より安定して太陽電池モジュール本体と枠体との間の高い接着強度を維持することが可能となる。 So far, the case where one auxiliary frame is arranged has been shown, but a plurality of auxiliary frames may be arranged substantially parallel to the horizontal frame. By arranging a plurality, it becomes possible to maintain high adhesive strength between the solar cell module body and the frame more stably.
 また、補助枠は上下枠に略平行に配置しても良い。 Further, the auxiliary frame may be arranged substantially parallel to the upper and lower frames.
 図17に示すように、補助枠80を有する複数枚の太陽電池モジュールを横枠の長手方向に沿って傾斜して設置した。いずれの太陽電池モジュールも上枠及び下枠が太陽電池モジュール本体の受光面を覆ってはいないので、雪や汚れは、太陽電池モジュールの横枠の長手方向に流れ落ちる。 As shown in FIG. 17, a plurality of solar cell modules having auxiliary frames 80 were installed inclined along the longitudinal direction of the horizontal frame. In any of the solar cell modules, since the upper frame and the lower frame do not cover the light receiving surface of the solar cell module body, snow and dirt flow down in the longitudinal direction of the horizontal frame of the solar cell module.
 太陽電池モジュールの設置に際しては、複数の桟90を太陽電池モジュールの横枠の長手方向に沿って設置した。太陽電池モジュールの上枠及び下枠を桟90に固定した。受光面側から見た際に、補助枠と桟とは互いに重ならないような位置関係となるように設置した。補助枠と桟が重なることを前提とした配置設計を行わないことで、架台設計・架台部材配置の自由度を確保することができる。 When installing the solar cell module, a plurality of crosspieces 90 were installed along the longitudinal direction of the horizontal frame of the solar cell module. The upper and lower frames of the solar cell module were fixed to the crosspiece 90. When viewed from the light-receiving surface side, the auxiliary frame and the crosspiece were installed so as to be in a positional relationship so as not to overlap each other. By not performing the layout design on the premise that the auxiliary frame and the crossing overlap, it is possible to ensure the flexibility of the frame design and the frame member arrangement.
 図18に、補助枠81を有する複数枚の太陽電池モジュールの別の設置例を示す。図18で示した設置構造と異なる点は、桟を上枠及び下枠の長手方向に沿って設置した点である。太陽電池モジュールは横枠に略平行に補助枠81を有する構造であるので、桟と補助枠は直交することとなる。 FIG. 18 shows another installation example of a plurality of solar cell modules having the auxiliary frame 81. A difference from the installation structure shown in FIG. 18 is that the crosspieces are installed along the longitudinal direction of the upper frame and the lower frame. Since the solar cell module has a structure having the auxiliary frame 81 substantially parallel to the horizontal frame, the crosspiece and the auxiliary frame are orthogonal to each other.
 複数の桟91を太陽電池モジュールの上枠及び下枠の直下に配置している。上枠及び下枠の直下に桟が配置されているので、固定箇所としてはどの場所にしても問題はないが、太陽電池モジュールの4つの角部ではなく辺の途中箇所とすることが望ましい。途中箇所を固定することで、太陽電池モジュールにかかる荷重が分散され、安定して固定することが可能となる。補助枠81と桟91とは重ならないように補助枠と下枠、補助枠と上枠との嵌合部の設計を行った。太陽電池モジュールに荷重がかかった場合でも、補助枠と桟とは接することはない。補助枠と桟が接すると、太陽電池モジュールに荷重が加わった場合に、桟が補助枠のたわみを抑制する。その結果、太陽電池モジュールの補助枠直上に応力が集中し、太陽電池セルの割れを引き起こす恐れがあった。補助枠と桟とが接することのない構造とすることで、太陽電池モジュールの一部に局所的に応力が集中することを防ぐことができる。 A plurality of crosspieces 91 are arranged immediately below the upper and lower frames of the solar cell module. Since the crosspieces are arranged directly below the upper frame and the lower frame, there is no problem in any fixing location, but it is preferable to be in the middle of the side instead of the four corners of the solar cell module. By fixing the midpoint, the load applied to the solar cell module is dispersed and can be stably fixed. The fitting part of the auxiliary frame and the lower frame and the auxiliary frame and the upper frame was designed so that the auxiliary frame 81 and the crosspiece 91 do not overlap. Even when a load is applied to the solar cell module, the auxiliary frame does not contact the crosspiece. When the auxiliary frame contacts the crosspiece, the crosspiece suppresses the deflection of the auxiliary frame when a load is applied to the solar cell module. As a result, stress concentrates directly on the auxiliary frame of the solar cell module, and there is a possibility that the solar cell is cracked. By adopting a structure in which the auxiliary frame and the crosspiece do not contact each other, it is possible to prevent local concentration of stress on a part of the solar cell module.
  [実施形態6]
 実施形態6に係る太陽電池モジュールについて、図面を参照し説明する。実施形態1と異なる点は、下枠の支持部の横片に両面接着テープを配置した点である。
[Embodiment 6]
A solar cell module according to Embodiment 6 will be described with reference to the drawings. The difference from the first embodiment is that a double-sided adhesive tape is arranged on the horizontal piece of the support portion of the lower frame.
 図19は、本実施形態の太陽電池モジュールの下枠の周辺部を受光面側からみた斜視図である。横枠は記載を省略している。図20は、図19における太陽電池モジュールのG-G´断面にあたり、本実施形態の太陽電池モジュールの下枠の周辺部の断面図である。 FIG. 19 is a perspective view of the periphery of the lower frame of the solar cell module according to the present embodiment as viewed from the light receiving surface side. The horizontal frame is omitted. FIG. 20 is a cross-sectional view of the periphery of the lower frame of the solar cell module of the present embodiment, corresponding to the GG ′ cross section of the solar cell module in FIG.
 本実施形態の太陽電池モジュールは、太陽電池モジュール本体151の裏面と下枠37の支持部371の横片371aの上面との間に、両面接着テープ62を配置した。 In the solar cell module of the present embodiment, the double-sided adhesive tape 62 is disposed between the back surface of the solar cell module main body 151 and the upper surface of the horizontal piece 371a of the support portion 371 of the lower frame 37.
 両面接着テープ62は下枠37の長手方向にほぼ全面にわたって配置した。両面接着テープ62によって、下枠37の支持部横片と太陽電池モジュール本体との間の接合を得ることができる。両面接着テープ62はポリエチレンを主成分とする材料を用いて形成した。材料はポリエチレンに限る必然性はなく、太陽電池モジュール本体151を載せても大きく変形せず、耐熱性のある材料であれば良い。太陽電池モジュールの内部配線や引出し電極が、両面接着テープと近い位置に配置され、発熱がおこった場合に、熱が両面接着テープに伝わり熱変形することを防ぐためである。 The double-sided adhesive tape 62 was arranged over almost the entire surface in the longitudinal direction of the lower frame 37. With the double-sided adhesive tape 62, it is possible to obtain a joint between the supporting portion lateral piece of the lower frame 37 and the solar cell module main body. The double-sided adhesive tape 62 was formed using a material mainly composed of polyethylene. The material is not necessarily limited to polyethylene, and any material can be used as long as it is heat resistant and does not deform greatly even when the solar cell module main body 151 is placed. This is because when the internal wiring and the extraction electrode of the solar cell module are arranged at a position close to the double-sided adhesive tape and heat is generated, heat is transferred to the double-sided adhesive tape and is prevented from being thermally deformed.
 さらに、太陽電池モジュール本体151と下枠37の支持部371の縦片371bとの間に、接着層42を配置した。接着層42としてシリコーン樹脂を用いた。また、太陽電池モジュール本体151の下辺側の端面と下枠37の支持部371の縦片371bの端面は、ほぼ同一面としている。 Furthermore, an adhesive layer 42 was disposed between the solar cell module main body 151 and the vertical piece 371 b of the support portion 371 of the lower frame 37. A silicone resin was used as the adhesive layer 42. The end surface on the lower side of the solar cell module main body 151 and the end surface of the vertical piece 371b of the support portion 371 of the lower frame 37 are substantially the same surface.
 これまで、太陽電池モジュールの工程内の搬送や梱包、輸送の際に、太陽電池モジュール本体と枠体との間から、シリコーン樹脂がはみだす場合があった。シリコーン樹脂のはみ出しがおこると、接着層の厚さ不足により十分な接着強度がとれなくなる可能性があった。さらに、太陽電池モジュールの意匠性を損なう可能性もあった。検討を行ったところ、シリコーン樹脂のはみ出しは、太陽電池モジュールの工程内の搬送や梱包、輸送の際に局所的な荷重がかかった場合におこることがわかった。これは、接着層の表面のみ硬化し内部が未だ硬化していない状態であるため、荷重がかかった際に、接着層の内圧が高まり接着層表面から未硬化の接着層がはみだしたものと考えられる。 So far, silicone resin sometimes protrudes between the solar cell module body and the frame body during transportation, packing, and transportation in the process of the solar cell module. When the silicone resin protrudes, there is a possibility that sufficient adhesive strength cannot be obtained due to insufficient thickness of the adhesive layer. Furthermore, the design of the solar cell module may be impaired. As a result of the examination, it was found that the protrusion of the silicone resin occurs when a local load is applied during transportation, packing, and transportation in the process of the solar cell module. This is because only the surface of the adhesive layer is cured and the inside is not yet cured, so when a load is applied, the internal pressure of the adhesive layer increases and the uncured adhesive layer protrudes from the surface of the adhesive layer. It is done.
 下枠37の支持部371の横片371aと太陽電池モジュール本体151との間は、ほぼ全面にわたって両面接着テープを配置したため、受光面に荷重が掛っても、シリコーン樹脂に圧力が伝わらず、内圧が高まらないため、はみ出しが起こらない。言い換えると、接着層の硬化に要する時間を長くしたり、硬化を促進するために太陽電池モジュールを加熱することなく、耐荷重性能が高い太陽電池モジュールを生産することが可能となった。 Between the horizontal piece 371a of the support portion 371 of the lower frame 37 and the solar cell module main body 151, since the double-sided adhesive tape is disposed over almost the entire surface, even if a load is applied to the light receiving surface, pressure is not transmitted to the silicone resin, Since the height does not rise, no protrusion occurs. In other words, it has become possible to produce a solar cell module with high load bearing performance without increasing the time required for curing the adhesive layer or heating the solar cell module to promote curing.
 下枠37の支持部371の横片371aと太陽電池モジュール本体151との間は、ほぼ全面にわたって両面接着テープ62を配置したため、太陽電池モジュールの受光面に荷重がかかっても、受光面側に接着層42のはみ出しがおこらなくなった。理由として、接着層に圧力が伝わらず、内圧が高まらないためと考えられる。また別の理由として、接着層であるシリコーン樹脂の使用量が減ったため、硬化にかかる時間が短縮され、シリコーン樹脂が内部まで完全に硬化したためと考えられる。 Since the double-sided adhesive tape 62 is disposed over almost the entire surface between the horizontal piece 371a of the support portion 371 of the lower frame 37 and the solar cell module main body 151, even if a load is applied to the light receiving surface of the solar cell module, The adhesive layer 42 no longer protrudes. This is probably because the pressure is not transmitted to the adhesive layer and the internal pressure does not increase. Another reason is considered to be that the amount of the silicone resin used as the adhesive layer is reduced, the time required for curing is shortened, and the silicone resin is completely cured to the inside.
 すなわち、本実施形態に開示の太陽電池モジュールの構造とすることにより、接着層の硬化時間を長くしたり、硬化を促進するために太陽電池モジュールを加熱することなく、耐荷重性能が高い太陽電池モジュールを生産することが可能となった。 That is, by adopting the structure of the solar cell module disclosed in the present embodiment, a solar cell having high load bearing performance without increasing the curing time of the adhesive layer or heating the solar cell module to promote curing. It became possible to produce modules.
 尚、両面接着テープ62を、下枠37の支持部371の縦片371bと太陽電池モジュール本体151との間に配置しても良い。この場合、受光面側については接着層42を配置することが望ましい。両面テープを用いた場合、受光面側から両面背着テープがみえて、一感がなくなることを防ぐことができるためである。 The double-sided adhesive tape 62 may be disposed between the vertical piece 371b of the support portion 371 of the lower frame 37 and the solar cell module main body 151. In this case, it is desirable to arrange the adhesive layer 42 on the light receiving surface side. This is because when the double-sided tape is used, it is possible to prevent the double-sided backing tape from being seen from the light-receiving surface side and the feeling of being lost.
  [実施形態7]
 実施形態7に係る太陽電池モジュールについて、図面を参照し説明する。実施形態1と異なる点は、2種類の接着層を用いた点である。
[Embodiment 7]
A solar cell module according to Embodiment 7 will be described with reference to the drawings. The difference from Embodiment 1 is that two types of adhesive layers are used.
 図21は、本実施形態の太陽電池モジュールの下枠の周辺部を受光面側からみた斜視図である。横枠は記載を省略している。図22は、図21における太陽電池モジュールのH―H´断面にあたり、本実施形態の太陽電池モジュールの下枠の周辺部の断面図である。 FIG. 21 is a perspective view of the periphery of the lower frame of the solar cell module of the present embodiment as viewed from the light receiving surface side. The horizontal frame is omitted. FIG. 22 is a cross-sectional view of the periphery of the lower frame of the solar cell module of the present embodiment, corresponding to the HH ′ cross section of the solar cell module in FIG.
 本実施形態の太陽電池モジュールは、太陽電池モジュール本体152と下枠38の支持部381の横片381aの上面との間に、スペーサ63と接着層43とを有している。スペーサ63は下枠の長手方向にほぼ等間隔に7個配置しており、下枠の横片のスペーサのない部分は接着層43で覆われている。スペーサ63はEPDM(エチレンプロピレンゴム)を主成分とする材料を用いて形成した。また接着層43としてシリコーン樹脂を用いた。スペーサ63の主成分であるEPDMは、接着層43として用いたシリコーン樹脂よりも常温における硬度が高いため、太陽電池モジュール本体152の自重でたわみが生じることを防ぐことが可能となる。 The solar cell module of this embodiment includes a spacer 63 and an adhesive layer 43 between the solar cell module main body 152 and the upper surface of the horizontal piece 381a of the support portion 381 of the lower frame 38. Seven spacers 63 are arranged at substantially equal intervals in the longitudinal direction of the lower frame, and a portion of the lower piece of the horizontal piece without the spacer is covered with an adhesive layer 43. The spacer 63 was formed using a material mainly composed of EPDM (ethylene propylene rubber). A silicone resin was used as the adhesive layer 43. Since EPDM, which is the main component of the spacer 63, has a higher hardness at room temperature than the silicone resin used as the adhesive layer 43, it is possible to prevent the solar cell module main body 152 from being bent due to its own weight.
 太陽電池モジュール本体152と下枠38の支持部381の縦片381bとの間に、接着層44を配置した。接着層44は、接着層43と比較して短い時間で硬化することを特徴としている。接着層44としては、例えば、接着層43に気体を混ぜ込んだ発泡シリコーン樹脂を用いることができる。硬化にかかる時間が短い接着層を、下枠の支持部の縦片と太陽電池モジュール本体との間に配置することで、太陽電池モジュールの受光面側への接着層のはみだしを防止することが可能となった。 The adhesive layer 44 was disposed between the solar cell module main body 152 and the vertical piece 381b of the support portion 381 of the lower frame 38. The adhesive layer 44 is characterized by being cured in a shorter time than the adhesive layer 43. As the adhesive layer 44, for example, a foamed silicone resin obtained by mixing a gas into the adhesive layer 43 can be used. By arranging an adhesive layer that takes a short time to cure between the vertical piece of the support part of the lower frame and the solar cell module body, it is possible to prevent the adhesive layer from protruding to the light receiving surface side of the solar cell module It has become possible.
 接着層44が完全に硬化していれば、例え接着層43が十分に硬化しておらず、荷重によって接着層43の内圧が高まった場合でも、太陽電池モジュールの受光面側に接着層44がはみ出してくることはないためである。 If the adhesive layer 44 is completely cured, even if the adhesive layer 43 is not sufficiently cured and the internal pressure of the adhesive layer 43 increases due to the load, the adhesive layer 44 is formed on the light receiving surface side of the solar cell module. This is because it does not protrude.
 本実施形態においては、接着層43、接着層44として、2液性のシリコーン樹脂を使用したが、1液性のシリコーン樹脂を使用しても良い。シリコーン樹脂に限定されるものではなく、その他の材料からなる接着層としても良いことはいうまでもない。 In this embodiment, a two-component silicone resin is used as the adhesive layer 43 and the adhesive layer 44, but a one-component silicone resin may be used. Needless to say, the adhesive layer is not limited to the silicone resin, and may be made of other materials.
 尚、ここまでいずれの実施形態においても、横枠の長手方向の長さよりも上下枠の長手方向の長さが小さい太陽電池モジュールを図示しているが、横枠の長手方向の長さよりも上下枠の長手方向の長さの方が長い場合についても同様であることはいうまでもない。 In any of the embodiments so far, the solar cell module in which the length in the longitudinal direction of the upper and lower frames is smaller than the length in the longitudinal direction of the horizontal frame is illustrated. It goes without saying that the same applies to the case where the length of the frame in the longitudinal direction is longer.
 以上、実施形態1から実施形態5について具体的に説明を行ったが、本発明はそれらに限定されるものではない。上述した7つの実施形態それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 As mentioned above, although Embodiment 1 to Embodiment 5 were specifically described, the present invention is not limited to them. Embodiments obtained by appropriately combining the technical means disclosed in the seven embodiments described above are also included in the technical scope of the present invention.
 なお、今回開示した実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 It should be noted that the embodiment disclosed this time is an example in all respects and does not serve as a basis for limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. Moreover, all the changes within the meaning and range equivalent to a claim are included.
1 太陽電池モジュール
10、15、151、152、16 太陽電池モジュール本体
11、12、17 側辺
13、18 下辺
14 上辺
20、22 横枠
30、32、34、35、37、38 下枠
31、36 上枠
40、41、42、43、44 接着層
50 弾性体
61、63 スペーサ
62 両面接着テープ
70 コーナ部材
80、81 補助枠
90、91 桟
DESCRIPTION OF SYMBOLS 1 Solar cell module 10, 15, 151, 152, 16 Solar cell module main body 11, 12, 17 Side 13 and 18 Lower side 14 Upper side 20, 22 Horizontal frame 30, 32, 34, 35, 37, 38 Lower frame 31, 36 Upper frame 40, 41, 42, 43, 44 Adhesive layer 50 Elastic body 61, 63 Spacer 62 Double-sided adhesive tape 70 Corner member 80, 81 Auxiliary frame 90, 91 Crosspiece

Claims (5)

  1.  太陽電池モジュール本体と枠体とを有する太陽電池モジュールであって、
     前記枠体は嵌合部を有する横枠と前記横枠に隣接する下枠とを有し、
     前記下枠は横片と縦片を有する支持部を有し、
     前記横枠と前記太陽電池モジュール本体との間には弾性体が配置され、
     前記下枠と前記太陽電池モジュール本体との間には接着層が配置されており、
     前記弾性体は前記下枠の前記縦片に接している太陽電池モジュール。
    A solar cell module having a solar cell module body and a frame,
    The frame body has a horizontal frame having a fitting portion and a lower frame adjacent to the horizontal frame,
    The lower frame has a support portion having a horizontal piece and a vertical piece,
    An elastic body is disposed between the horizontal frame and the solar cell module body,
    An adhesive layer is disposed between the lower frame and the solar cell module body,
    The elastic body is a solar cell module in contact with the vertical piece of the lower frame.
  2.  前記弾性体は、前記横枠に近接する前記太陽電池モジュール本体の受光面を構成する側辺全体を覆うものである請求項1に記載の太陽電池モジュール The solar cell module according to claim 1, wherein the elastic body covers the entire side of the light receiving surface of the solar cell module main body adjacent to the horizontal frame.
  3.  前記下枠の前記横片と前記太陽電池モジュール本体との間に前記接着層とスペーサを有する請求項1又は2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the adhesive layer and a spacer are provided between the horizontal piece of the lower frame and the solar cell module main body.
  4.  前記下枠の前記横片と前記太陽電池モジュール本体との間に両面接着テープを配置する請求項1又は2に記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein a double-sided adhesive tape is disposed between the horizontal piece of the lower frame and the solar cell module main body.
  5.  前記下枠の前記横片と前記太陽電池モジュール本体との間に配置した前記接着層よりも、
    前記下枠の前記縦片と前記太陽電池モジュール本体との間に配置した前記接着層の方が、硬化に必要な時間が短い請求項1から3のいずれかに記載の太陽電池モジュール。
    Than the adhesive layer disposed between the horizontal piece of the lower frame and the solar cell module body,
    The solar cell module according to any one of claims 1 to 3, wherein the adhesive layer disposed between the vertical piece of the lower frame and the solar cell module body has a shorter time required for curing.
PCT/JP2015/069673 2014-07-17 2015-07-08 Solar cell module WO2016009922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201590000815.8U CN207251538U (en) 2014-07-17 2015-07-08 Solar battery module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-146460 2014-07-17
JP2014146460 2014-07-17
JP2015120961A JP2016029879A (en) 2014-07-17 2015-06-16 Solar battery module, and method for manufacturing solar battery module
JP2015-120961 2015-06-16

Publications (1)

Publication Number Publication Date
WO2016009922A1 true WO2016009922A1 (en) 2016-01-21

Family

ID=55078418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069673 WO2016009922A1 (en) 2014-07-17 2015-07-08 Solar cell module

Country Status (3)

Country Link
JP (1) JP2016029879A (en)
CN (1) CN207251538U (en)
WO (1) WO2016009922A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057757A (en) * 2007-08-31 2009-03-19 Sharp Corp Solar-cell module
WO2010061878A1 (en) * 2008-11-27 2010-06-03 シャープ株式会社 Solar battery module
WO2011039863A1 (en) * 2009-09-30 2011-04-07 三菱重工業株式会社 Solar cell panel
JP2013258265A (en) * 2012-06-12 2013-12-26 Sharp Corp Solar cell module and solar cell system
JP2014068002A (en) * 2012-09-04 2014-04-17 Towada Solar Co Ltd Solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057757A (en) * 2007-08-31 2009-03-19 Sharp Corp Solar-cell module
WO2010061878A1 (en) * 2008-11-27 2010-06-03 シャープ株式会社 Solar battery module
WO2011039863A1 (en) * 2009-09-30 2011-04-07 三菱重工業株式会社 Solar cell panel
JP2013258265A (en) * 2012-06-12 2013-12-26 Sharp Corp Solar cell module and solar cell system
JP2014068002A (en) * 2012-09-04 2014-04-17 Towada Solar Co Ltd Solar cell module

Also Published As

Publication number Publication date
CN207251538U (en) 2018-04-17
JP2016029879A (en) 2016-03-03

Similar Documents

Publication Publication Date Title
KR101275651B1 (en) CIS-type thin-film solar battery module and process for producing the same
US20040084078A1 (en) Solar cell module and edge face sealing member for same
WO2011089954A1 (en) Photoelectric conversion device
JP5465343B2 (en) Solar cell module
JP4515514B2 (en) Solar cell module
US9350288B2 (en) Photovoltaic module support clamp assembly
WO2008041298A1 (en) Solar cell panel
US9239173B2 (en) Photovoltaic module support with interface strips
JPH10294485A (en) Module for large size solar cell
US20120080074A1 (en) Photovoltaic module support with elastomer
JP2010165750A (en) Solar cell module
WO2009093355A1 (en) Solar battery panel and method for manufacturing solar battery panel
JP2011231477A (en) Installation structure of solar cell module
KR102196928B1 (en) Solar cell module and frame for the same
JP2007180314A (en) Solar battery module
JP2011238761A (en) Solar cell module
TW201347208A (en) Solar module
WO2012043131A1 (en) Solar cell module and method for manufacturing same
JP6391929B2 (en) Solar cell module
WO2016009922A1 (en) Solar cell module
JP2015126071A (en) Method of manufacturing solar cell module
WO2015076083A1 (en) Solar cell module
JP6042977B2 (en) Solar cell module
JP2016025755A (en) Solar cell module, installation structure of the same, and installation method of the same
JP2013157477A (en) Solar cell module, manufacturing method of solar cell module, and auxiliary member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821883

Country of ref document: EP

Kind code of ref document: A1