WO2016008257A1 - 一种新型绿色三氟氯乙烯的制备方法 - Google Patents

一种新型绿色三氟氯乙烯的制备方法 Download PDF

Info

Publication number
WO2016008257A1
WO2016008257A1 PCT/CN2014/093346 CN2014093346W WO2016008257A1 WO 2016008257 A1 WO2016008257 A1 WO 2016008257A1 CN 2014093346 W CN2014093346 W CN 2014093346W WO 2016008257 A1 WO2016008257 A1 WO 2016008257A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
chlorotrifluoroethylene
catalyst
zinc
trifluorochloroethylene
Prior art date
Application number
PCT/CN2014/093346
Other languages
English (en)
French (fr)
Inventor
司林旭
张平忠
顾和祥
Original Assignee
常熟三爱富氟化工有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟三爱富氟化工有限责任公司 filed Critical 常熟三爱富氟化工有限责任公司
Priority to US15/325,895 priority Critical patent/US9682907B1/en
Publication of WO2016008257A1 publication Critical patent/WO2016008257A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/121Metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides

Definitions

  • the invention relates to a preparation method of a compound, in particular to a preparation method of chlorotrifluoroethylene.
  • Chlorotrifluoroethylene is a special monomer for the main fluorine-containing high performance materials.
  • polychlorotrifluoroethylene has excellent oxygen barrier properties and excellent low temperature resistance, and is widely used in pharmaceutical packaging films, electronic packaging, and conveying pipes for low temperature materials.
  • fluorine-containing coatings containing chlorotrifluoroethylene as a main monomer have excellent weather resistance and corrosion resistance and have been widely used in bridges and construction industries.
  • the global annual production of chlorotrifluoroethylene is about 10,000 tons.
  • the main route is to remove chlorine from trifluorotrichloroethane under the action of zinc powder or hydrogen to obtain chlorotrifluoroethylene.
  • CTFE chlorotrifluoroethylene
  • the technical problem to be solved by the present invention is to provide a preparation method of chlorotrifluoroethylene, which has low green cost and high yield.
  • a novel green chlorotrifluoroethylene preparation method in a tubular reactor, direct hydrogenation reaction of 1,1,2-trifluoro-1,2,2-trichloroethane with a catalyst of zinc hydride It is chlorotrifluoroethylene and its reaction formula is as follows:
  • the above catalytic reaction temperature is 250 to 350 ° C
  • the reaction pressure is 0.7 to 1.0 Mpa
  • the residence time is 10 to 20 seconds.
  • the above catalyst can be repeatedly used by hydrogenation activation.
  • the catalyst is activated by the catalyst being activated by hydrogen gas, and the reaction formula of the catalyst activation is as follows:
  • the activation reaction temperature is 200 to 300 ° C
  • the activation reaction pressure is 0.9 to 1.0 Mpa
  • the hydrogenation reaction residence time is 5 to 10 seconds.
  • a potassium chloride solution is obtained by dissolving potassium chloride in deionized water, zinc chloride is dissolved in deionized water to obtain a zinc chloride solution, and a zinc chloride solution is dropped into a potassium chloride solution to prepare a reaction.
  • Zinc trichloride potassium solution the reaction temperature is 50-80 ° C, the pressure is normal pressure, the reaction time is 5-10 hours; the zinc trichloride potassium solution is evaporated to obtain zinc trichloride potassium;
  • the zinc and potassium are subjected to a hydrogenation reaction, and the molar ratio of zinc trichloride to hydrogen is 1:3 to 4, and the hydrogenation reaction temperature is 200 to 300 °C.
  • the reaction pressure is 0.9 to 1.0 MPa, and the residence time of the reaction is 5 to 10 seconds.
  • the potassium chloride solution has a concentration by weight of 20% to 32%, and the concentration of zinc chloride is 50% to 82% by weight.
  • the deionized water has an electrical conductivity of 0.01 to 0.02 ⁇ .
  • the whole process of the invention avoids the traditional process of dechlorination of zinc powder or hydrogenation and dechlorination of hydrogen by noble metal catalyst, so the process greatly reduces the production cost of chlorotrifluoroethylene and greatly improves the yield of the product.
  • the yield is over 99%.
  • the detection tool for the products of the following examples of the invention employs an Agilent 6890N/5937 (GC/MS) gas chromatography/mass spectrometer.
  • GC/MS Agilent 6890N/5937
  • potassium zinc hydride Prepare potassium zinc hydride according to the following method: prepare potassium chloride solution by dissolving deionized water (electrical conductivity of deionized water: 0.01-0.02 ⁇ ) in potassium chloride (the concentration of potassium chloride solution is 20% by weight) 32%), zinc chloride dissolved in deionized water (deionized water conductivity of 0.01 ⁇ 0.02 ⁇ ) to obtain zinc chloride solution (zinc chloride concentration by weight of 50% ⁇ 82%), zinc chloride The solution is dropped into a potassium chloride solution to prepare a potassium zinc chloride solution, the reaction temperature is 50-80 ° C, the pressure is normal pressure, the reaction time is 5-10 hours, and the zinc trichloride potassium solution is evaporated to obtain trichlorination.
  • the hydrogenation reaction temperature is 200 to 300 °C.
  • the reaction pressure is 0.9 to 1.0 MPa, and the residence time of the reaction is 5 to 10 seconds.
  • the nickel alloy tube reactor was filled with 21.4 kg of potassium zinc hydride, and the catalyst loading volume was 30 L.
  • the tube reactor jacket was heated with a heat transfer oil, the reactor was heated to 250 ° C, and the catalyst was further dried by passing N 2 at a rate of 10 L/min. After 5 hours, the temperature was raised to 300 ° C.
  • 1,1,2-trifluoro-1,2,2-trichloroethane was preheated and charged from the top of the tube reactor.
  • the feed rate was 180 L/min under standard conditions, and the pressure of the column reactor was maintained at 0.8 Mpa.
  • the reaction material was removed from the bottom of the tube reactor, directly washed with water, and dried by molecular sieve, condensed, rectified, collected and sampled and analyzed. After 1 hour, 56 kg of purity of 99.5% chlorotrifluoroethylene was collected.
  • the conversion of 1,1,2-trifluoro-1,2,2-trichloroethane was 99.0%, and the yield was 99.20%
  • the nickel alloy tube reactor was filled with 21.4 kg of potassium zinc hydride, and the catalyst loading volume was 30 L.
  • the tube reactor jacket was heated with a heat transfer oil, the reactor was heated to 250 ° C, and the catalyst was further dried by passing N 2 at a rate of 10 L/min. After 5 hours, the temperature was raised to 280 ° C.
  • 1,1,2-trifluoro-1,2,2-trichloroethane was preheated and charged from the top of the column reactor.
  • the feed rate was 120 L/min under standard conditions, and the pressure of the column reactor was maintained at 0.9 Mpa.
  • the reaction material was removed from the bottom of the tube reactor, directly washed with water, and dried by molecular sieve, condensed, rectified, collected and sampled and analyzed. After 1 hour, the purity was 99.60% chlorotrifluoroethylene (37.25 kg).
  • the conversion of 1,1,2-trifluoro-1,2,2-trichloroethane was 99.2%, and the yield was 99
  • the nickel alloy tube reactor was filled with 21.4 kg of potassium zinc hydride, and the catalyst loading volume was 30 L.
  • the tube reactor jacket was heated with a heat transfer oil, the reactor was heated to 250 ° C, and the catalyst was further dried by passing N 2 at a rate of 10 L/min. After 5 hours, the temperature was raised to 320 ° C. 1,1,2-trifluoro-1,2,2-trichloroethane was preheated and charged from the top of the tube reactor.
  • the feed rate was 90 L/min under standard conditions, and the pressure of the column reactor was maintained at 1.0 Mpa.
  • the reaction material was removed from the bottom of the tube reactor, directly washed with water, and dried by molecular sieve, condensed, rectified, collected and sampled and analyzed. After 1 hour, the purity was 99.9% chlorotrifluoroethylene 27.90 kg.
  • the conversion of 1,1,2-trifluoro-1,2,2-trichloroethane was 99.5%, and the yield was 99.22%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种新型绿色三氟氯乙烯的制备方法,该方法:在列管反应器中,由1,1,2-三氟-1,2,2-三氯乙烷与催化剂三氢化锌钾直接发生氢化反应生成三氟氯乙烯,上述催化反应温度为250~350℃,反应压力为0.7~1.0Mpa,停留时间为10~20秒;本发明整个工艺过程避免了传统的采用锌粉脱氯或氢气在贵金属催化剂作用下氢化脱氯的工艺。本工艺大幅降低了三氟氯乙烯生产成本,且大幅提高了产品的收率,产品的收率可以达到99%以上。

Description

一种新型绿色三氟氯乙烯的制备方法 技术领域
本发明涉及一种化合物的制备方法,具体是一种三氟氯乙烯的制备方法。
背景技术
三氟氯乙烯(CTFE)是主要的含氟高性能材料的特殊单体。其中聚三氟氯乙烯具有优异的隔氧性和优异抗低温性,被广泛应用于医药的包装膜、电子封装以及低温物料的输送管道。另外以三氟氯乙烯为主要单体的含氟涂料具有优异的耐候性和耐腐蚀性在桥梁以及建筑行业中得到了广泛的应用。目前三氟氯乙烯全球年产量为1万吨左右,主要的工艺路线是由三氟三氯乙烷在锌粉或氢的作用下脱除氯得到三氟氯乙烯。
由于传统的工艺锌粉脱除氯时,将消耗大量的锌粉,同时产生大量的氯化锌废渣,在锌粉的消耗和处理废渣过程都大幅增加三氟氯乙烯的生产成本。同时采用直接加氢脱除氯时,需要采用昂贵的铂、铑、钌等稀有金属作为催化剂,生产成本偏高,同时氢气直接氢化,容易产生深度氢化现象,生成三氟乙烯等杂质,导致产品的收率降低,产品的纯度受到影响。专利文献US2685606、US2704777、EP0416015、US3333011等公开的工艺路线的缺点如上所述,三氟氯乙烯(CTFE)的制造成本偏高,整个过程产品的收率只有85%左右,明显偏低。
发明内容
本发明所要解决的技术问题是提供一种三氟氯乙烯的制备方法,该制备方法绿色成本低,收率高。
为解决上述技术问题本发明所采用的技术方案如下:
一种新型绿色三氟氯乙烯的制备方法:在列管反应器中,由1,1,2-三氟-1,2,2-三氯乙烷与催化剂三氢化锌钾直接发生氢化反应生 成三氟氯乙烯,反应式如下:
3CF2ClCCl2F+KZnH3→3ClFC=CF2+KZnCl3+3HCl
上述催化反应温度为250~350℃,反应压力为0.7~1.0Mpa,停留时间为10~20秒。
上述催化剂可通过加氢活化重复使用,催化剂活化的方法为:所述催化剂在氢气的作用下活化,催化剂活化的反应式如下:
KZnCl3+3H2→KZnH3+3HCl
上述活化的反应温度为200~300℃,活化反应的压力为0.9~1.0Mpa,氢化反应的停留时间为5~10秒。
上述催化剂三氢化锌钾制备方法:由氯化钾溶解去离子水中获得氯化钾溶液,氯化锌溶解去离子水中获得氯化锌溶液,将氯化锌溶液滴入氯化钾溶液,反应制备三氯化锌钾溶液,反应温度为50~80℃,压力为常压,反应时间为5~10小时;三氯化锌钾溶液通过蒸发得到三氯化锌钾;用氢气直接对上述三氯化锌钾进行氢化反应处理,三氯化锌钾与氢气的摩尔比为1:3~4,氢化的反应温度为200~300℃。反应压力为0.9~1.0Mpa,反应的停留时间为5~10秒。所述氯化钾溶液的重量百分比浓度为20%~32%,氯化锌的重量百分比浓度为50%~82%。所述去离子水的电导率为0.01~0.02μ。
本发明整个工艺过程避免了传统的采用锌粉脱氯或氢气在贵金属催化剂作用下氢化脱氯的工艺,因此本工艺大幅降低了三氟氯乙烯生产成本,且大幅提高了产品的收率,产品的收率达到99%以上。
具体实施方式
本发明以下实施例产物的检测工具采用安捷伦6890N/5937(GC/MS)气相色谱/质谱联用仪。
按照以下方法制备三氢化锌钾备用:由氯化钾溶解去离子水(去离子水的电导率为0.01~0.02μ)中获得氯化钾溶液(氯化钾溶液的重量百分比浓度为20%~32%),氯化锌溶解去离子水(去离子水的电导率为0.01~0.02μ)中获得氯化锌溶液(氯化锌的重量百分比浓度为50%~82%),将氯化锌溶液滴入氯化钾溶液,反应制备三氯化锌钾溶液,反应温度为50~80℃,压力为常压,反应时间为5~10小时;三氯化锌钾溶液通过蒸发得到三氯化锌钾;用氢气直接对上述三氯化锌钾进行氢化反应处理,三氯化锌钾与氢气的摩尔比为1:3~ 4,氢化的反应温度为200~300℃。反应压力为0.9~1.0Mpa,反应的停留时间为5~10秒。
实施例1
在6根
Figure PCTCN2014093346-appb-000001
镍合金列管反应器内装填21.4公斤三氢化锌钾,催化剂装填体积为30L。列管反应器夹套采用导热油加热,反应器升温至250℃,用10L/min的速率通入N2进一步干燥催化剂,5小时后,然后升温至300℃。1,1,2-三氟-1,2,2-三氯乙烷预热后从列管反应器顶部投入,投料速率为标准状态下180L/min,保持列管反应器的压力为0.8Mpa,反应物料从列管反应器底部移出,直接经过水碱洗后,经分子筛干燥后,冷凝、精馏收集并取样分析,1小时后收集到纯度为99.5%三氟氯乙烯56公斤。其中1,1,2-三氟-1,2,2-三氯乙烷转化率99.0%,收率为99.20%。
当三氟三氯乙烷的转化率和收率下降时,停止投料,切换为氢气投料,保持列管反应器的温度为300℃,氢气的投料速率为标准状态下360L/min,列管反应器的压力保持在0.9Mpa,30min后,活化结束,可以准备切换投料。1,1,2-三氟-1,2,2-三氯乙烷投料速率为标准状态下180L/min,保持列管反应器的压力为0.8Mpa,反应物料从列管反应器底部移出,直接经过水碱洗后,经分子筛干燥后,冷凝、精馏收集并取样分析,1小时后收集到纯度为99.5%三氟氯乙烯55.9公斤。其中1,1,2-三氟-1,2,2-三氯乙烷转化率99.1%,收率为99.02%。
实施例2
在6根
Figure PCTCN2014093346-appb-000002
镍合金列管反应器内装填21.4公斤三氢化锌钾,催化剂装填体积为30L。列管反应器夹套采用导热油加热,反应器升温至250℃,用10L/min的速率通入N2进一步干燥催化剂,5小时后,然后升温至280℃。1,1,2-三氟-1,2,2-三氯乙烷预热后从列管反应器顶部投入,投料速率为标准状态下120L/min,保持列管反应器的压力为0.9Mpa,反应物料从列管反应器底部移出,直接经过水碱洗后,经分子筛干燥后,冷凝、精馏收集并取样分析,1小时后收集到纯度为99.60%三氟氯乙烯37.25公斤。其中1,1,2-三氟-1,2,2-三氯乙烷转化率99.2%,收率为99.07%。
当三氟三氯乙烷的转化率和收率下降时,停止投料,切换为氢气投料,保持列管反应器的温度为280℃,氢气的投料速率为标准状态下240L/min,列管反应器的压力保持在1.0Mpa,30min后,活化结 束,可以准备切换投料。1,1,2-三氟-1,2,2-三氯乙烷投料速率为标准状态下120L/min,保持列管反应器的压力为0.9Mpa,反应物料从列管反应器底部移出,直接经过水碱洗后,经分子筛干燥后,冷凝、精馏收集并取样分析,1小时后收集到纯度为99.70%三氟氯乙烯37.22公斤。其中1,1,2-三氟-1,2,2-三氯乙烷转化率99.2%,收率为99.09%。
实施例3
在6根
Figure PCTCN2014093346-appb-000003
镍合金列管反应器内装填21.4公斤三氢化锌钾,催化剂装填体积为30L。列管反应器夹套采用导热油加热,反应器升温至250℃,用10L/min的速率通入N2进一步干燥催化剂,5小时后,然后升温至320℃。1,1,2-三氟-1,2,2-三氯乙烷预热后从列管反应器顶部投入,投料速率为标准状态下90L/min,保持列管反应器的压力为1.0Mpa,反应物料从列管反应器底部移出,直接经过水碱洗后,经分子筛干燥后,冷凝、精馏收集并取样分析,1小时后收集到纯度为99.9%三氟氯乙烯27.90公斤。其中1,1,2-三氟-1,2,2-三氯乙烷转化率99.5%,收率为99.22%。
当三氟三氯乙烷的转化率和收率下降时,停止投料,切换为氢气投料,列管反应器的温度下降至300℃,氢气的投料速率为标准状态下180L/min,列管反应器的压力保持在0.9Mpa,30min后,活化结束,可以准备切换投料。1,1,2-三氟-1,2,2-三氯乙烷投料速率为标准状态下90L/min,保持列管反应器的压力为1.0Mpa,反应物料从列管反应器底部移出,直接经过水碱洗后,经分子筛干燥后,冷凝、精馏收集并取样分析,1小时后收集到纯度为99.91%三氟氯乙烯27.85公斤。其中1,1,2-三氟-1,2,2-三氯乙烷转化率99.1%,收率为99.06%。
上述实施例不以任何方式限制本发明,凡是采用等同替换或等效变换的方式获得的技术方案均落在本发明的保护范围内。

Claims (3)

  1. 一种新型绿色三氟氯乙烯的制备方法,其特征在于:在列管反应器中,由1,1,2-三氟-1,2,2-三氯乙烷与催化剂三氢化锌钾直接发生氢化反应生成三氟氯乙烯,上述催化反应温度为250~350℃,反应压力为0.7~1.0Mpa,停留时间为10~20秒。
  2. 根据权利要求1所述的新型绿色三氟氯乙烯的制备方法,其特征在于:所述催化剂可通过加氢活化重复使用。
  3. 根据权利要求2所述的新型绿色三氟氯乙烯的制备方法,其特征在于所述催化剂活化的方法为:所述催化剂在氢气的作用下活化,活化的反应温度为200~300℃,活化反应的压力为0.9~1.0Mpa,活化反应的停留时间为5~10秒。
PCT/CN2014/093346 2014-07-16 2014-12-09 一种新型绿色三氟氯乙烯的制备方法 WO2016008257A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/325,895 US9682907B1 (en) 2014-07-16 2014-12-09 Green preparation method for trifluorochloroethylene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410339377.XA CN104140356B (zh) 2014-07-16 2014-07-16 一种新型绿色三氟氯乙烯的制备方法
CN201410339377.X 2014-07-16

Publications (1)

Publication Number Publication Date
WO2016008257A1 true WO2016008257A1 (zh) 2016-01-21

Family

ID=51849709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093346 WO2016008257A1 (zh) 2014-07-16 2014-12-09 一种新型绿色三氟氯乙烯的制备方法

Country Status (3)

Country Link
US (1) US9682907B1 (zh)
CN (1) CN104140356B (zh)
WO (1) WO2016008257A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105944734B (zh) * 2016-05-17 2019-08-06 常熟三爱富氟化工有限责任公司 一种用于三氟三氯乙烷催化加氢脱氯制备三氟氯乙烯的催化剂及其制备方法
CN107540518B (zh) * 2016-06-27 2021-02-23 浙江蓝天环保高科技股份有限公司 一种三氟氯乙烯生产过程中的氢气回用方法
US10696613B1 (en) * 2019-07-09 2020-06-30 Honeywell International Inc. Gas phase process for chlorotrifluoroethylene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980874A (zh) * 2004-05-01 2007-06-13 霍尼韦尔国际公司 卤代烯烃的制备
CN102395547A (zh) * 2009-04-17 2012-03-28 纳幕尔杜邦公司 改进的制备卤代烯烃的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2590433A (en) * 1949-05-13 1952-03-25 Kellogg M W Co Dechlorination of a halocarbon containing chlorine
US2685606A (en) 1953-02-25 1954-08-03 Union Carbide & Carbon Corp Preparation of halogenated olefines
US2704777A (en) 1955-01-25 1955-03-22 Union Carbide & Carbon Corp Preparation of halogenated olefines
US3333011A (en) 1963-10-01 1967-07-25 Allied Chem Production of chlorotrifluoroethylene
US4226812A (en) * 1977-11-25 1980-10-07 Allied Chemical Corporation Process for producing chlorotrifluoroethylene
US5204083A (en) 1988-05-23 1993-04-20 Kerr-Mcgee Chemical Corporation Process for preparing titanium dioxide
CN1202913C (zh) * 2003-07-07 2005-05-25 大连振邦氟涂料股份有限公司 Cfc-113催化加氢脱氯制取三氟氯乙烯的催化剂及其制备方法
US20050038302A1 (en) * 2003-08-13 2005-02-17 Hedrick Vicki E. Systems and methods for producing fluorocarbons
US20050238618A1 (en) 2004-04-23 2005-10-27 Yujin Huang Low molecular weight polymers
CN102617276B (zh) * 2012-03-05 2014-04-02 常熟三爱富氟化工有限责任公司 三氟乙烷制备三氟氯乙烯的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1980874A (zh) * 2004-05-01 2007-06-13 霍尼韦尔国际公司 卤代烯烃的制备
CN102395547A (zh) * 2009-04-17 2012-03-28 纳幕尔杜邦公司 改进的制备卤代烯烃的方法

Also Published As

Publication number Publication date
US20170166501A1 (en) 2017-06-15
US9682907B1 (en) 2017-06-20
CN104140356B (zh) 2016-04-27
CN104140356A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
JP4947240B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP6673413B2 (ja) フルオロオレフィンの製造方法
CN102282115B (zh) 1,1-二氯-2,2,3,3,3-五氟丙烷的制造方法
WO2016008257A1 (zh) 一种新型绿色三氟氯乙烯的制备方法
CN106517328B (zh) 一种一步法制备高纯低金属杂质五氯化钽的方法和装置
CN104529695B (zh) 一种制备1,1,1,4,4,4-六氟-2-丁烯的方法
EP2937326A1 (en) 1, 3, 3, 3-tetrafluoropropene preparation process
CN104310487B (zh) 一种无水反应条件下制备无水氯化锰的方法
CN105399599A (zh) 一种制备六氟丁二烯的方法
CN107759440B (zh) 一种将含氟烯烃双键上的氟置换成氢的方法
CN103131859B (zh) 高温合金废料金属综合回收的方法
JP2016504326A (ja) HFO−1234ze及びHFC−245faの共同製造方法
CN105753635B (zh) 一种六氟乙烷的生产方法
CN106179426A (zh) 一种合成2,3,3,3‑四氟丙烯的催化剂及其制备方法和用途
JP6835060B2 (ja) シクロブテンの製造方法
CN111116386A (zh) 一种羟乙基乙二胺的合成方法
CN113527038B (zh) 制备顺式-1,3,3,3-四氟丙烯的方法
CN110950735B (zh) 一种气相法制备1,1,1,4,4,4-六氟-2-丁炔的方法
CN103613482A (zh) 一种选择性制备邻氯甲苯的方法
CN107915659B (zh) 一种3,4-二氯苯腈的合成方法
CN101863735B (zh) 一种1,1,2,2-四氢全氟烷基碘化物的制备方法
CN105899482B (zh) 六氯丙酮的制造方法
CN111170835B (zh) 一种催化脱除全氟正丙基乙烯基醚中全氟异丙基乙烯基醚的方法
CN106883130B (zh) 一种制备卤代联苯胺的方法
CN102617276B (zh) 三氟乙烷制备三氟氯乙烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15325895

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897520

Country of ref document: EP

Kind code of ref document: A1