WO2016006609A1 - Water sampling device-cum-viscosity coefficient measurement device and viscosity coefficient measurement method - Google Patents

Water sampling device-cum-viscosity coefficient measurement device and viscosity coefficient measurement method Download PDF

Info

Publication number
WO2016006609A1
WO2016006609A1 PCT/JP2015/069535 JP2015069535W WO2016006609A1 WO 2016006609 A1 WO2016006609 A1 WO 2016006609A1 JP 2015069535 W JP2015069535 W JP 2015069535W WO 2016006609 A1 WO2016006609 A1 WO 2016006609A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
water sampling
suction port
water
pump
Prior art date
Application number
PCT/JP2015/069535
Other languages
French (fr)
Japanese (ja)
Inventor
龍郎 秋葉
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2016532944A priority Critical patent/JP6345779B2/en
Publication of WO2016006609A1 publication Critical patent/WO2016006609A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/12Dippers; Dredgers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/02Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material
    • G01N11/04Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by measuring flow of the material through a restricted passage, e.g. tube, aperture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present invention relates to a water collection device for collecting water from seawater, land water, a liquid sample in a plant, etc., and is associated with marine surveys, lake surveys, well water surveys, environmental surveys, liquid analysis surveys in plants, and marine construction. It can be used for investigation of turbidity components, investigation of the effects of hot effluent from power plants, investigation of diffusion of factory effluent, etc., and measurement of viscosity coefficient.
  • a water sampling container having a certain volume is submerged to a specific depth, and a water sampling port is opened there (for example, refer to Non-Patent Documents 1 and 2).
  • the surrounding water tank may be disturbed by the cover.
  • organisms when investigating the abundance of living organisms, organisms often detect and escape turbulence generated by lid movement, which affects the accuracy of existing abundance measurements. It had been.
  • the objects to be measured are distributed in the depth direction.
  • 10 water collection chambers are required if 10 layers of water are to be measured.
  • the number density of the target plankton is n [pieces / ml]
  • the number density can be discussed as n / 10> 1. That's fine.
  • the cell number density is usually 10 [cells / ml] or more, so water collection of about 1 [ml] is sufficient.
  • the viscosity of seawater and water is highly temperature dependent, and it is desirable to measure while maintaining the temperature.
  • the viscosity coefficient is measured using a rheometer as described in Non-Patent Document 3 or the like, or is measured using a capillary viscometer. For this reason, it was necessary to take the seawater to the laboratory and measure it. Therefore, there is a possibility that the viscosity of the sea area is changing, and in order to measure the viscosity coefficient by depth, location, and time, it was necessary to sample that number of samples.
  • a water sampling device that does not disturb the surrounding water tank during water sampling and does not disturb the layer as much as possible, and can be continuously sampled at different depths, different points, and at different times, and is small and inexpensive.
  • An object is to provide a water sampling device. Furthermore, it aims at providing the apparatus which measures the viscosity coefficient of the ocean and land water on-site.
  • the present invention provides a narrow tube for storing a sucked sample, a vacuum chamber, a solenoid valve provided in the middle of a pipe line connecting one end of the thin tube and the vacuum chamber,
  • a water sampling apparatus comprising a suction port for sucking a sample, and a fluid insertion means provided in the middle of a conduit connecting the other end of the thin tube and the suction port, wherein the solenoid valve is a solenoid valve.
  • the present invention is characterized in that, in the water sampling apparatus, the thin tube is wound around and accommodated in a water sampling bobbin that is detachable from the water sampling apparatus. Further, the present invention is the above-described water sampling apparatus, wherein a sample arrival sensor is provided on the upstream side of the electromagnetic valve in a pipe line connecting one end of the thin tube and the vacuum chamber, and is sucked and held in the thin tube. The electromagnetic valve is closed upon detecting that the sample has reached the sensor position.
  • Viscosity coefficient measuring means for obtaining the viscosity coefficient ⁇ of the sample using Hagen-Poiseuille's law is provided. If the flow rate is in a state that can be regarded as steady, the time after a certain amount may be the time when the sample reaches the arrival sensor. In the water sampling apparatus according to the present invention, the suction port pressure p 1 is calculated from a depth of the suction port.
  • the present invention also provides a capillary tube for storing the aspirated sample, a pump provided in the pressure vessel, a pipe line connecting one end of the capillary tube and the suction side of the pump, and aspirating the sample.
  • a water sampling apparatus comprising a suction port and a fluid insertion means provided in the middle of a conduit connecting the other end of the narrow tube and the suction port, and connected to the suction side of the pump by turning on the pump
  • the sample is sucked from the suction port by sucking from one end of the thin tube, and the exhaust of the pump is exhausted into the pressure vessel, and the fluid insertion provided in the pressure vessel
  • the means separates the sample held in the capillary by inserting a fluid different from the sample in the middle of the sample to be aspirated, the one end of the capillary and the end Above the pipe connected to the intake side of the pump
  • a sample arrival sensor on the side and an electromagnetic valve on the downstream side detecting that the sample sucked and held in the narrow tube has reached the
  • the present invention is characterized in that, in the water sampling apparatus, the thin tube is wound around and accommodated in a water sampling bobbin that is detachable from the water sampling apparatus.
  • the present invention is a water sampling method in which an electromagnetic valve is opened so that one end of a thin tube communicates with a vacuum chamber, a sample is vacuum sucked from a suction port, and the sucked sample is stored in the thin tube.
  • the present invention provides the above-described water sampling method, wherein the entire water sampling device including the narrow tube and the vacuum chamber is adjusted to adjust the buoyancy while free-floating or free-floating or between a specific depth or a specific depth (here, a specific depth) “Between” means that water is collected from a depth of “XX” to “XX” meters), and water is collected.
  • the present invention measures the suction time t from the time when the sample reaches one point from the suction port to another point by opening the solenoid valve so that one end of the thin tube communicates with the vacuum chamber.
  • a is the radius of the capillary
  • L is the distance from one point to another (eg, the length of the capillary)
  • p 2 0 (vacuum)
  • Q ⁇ a 2 L / t
  • the viscosity coefficient is obtained while free settling or free floating or just having a specific depth by adjusting the buoyancy of the whole water sampling apparatus including the narrow tube and the vacuum chamber. It is characterized by that. Further, the present invention sucks a sample from one end of a thin tube connected to the suction side of the pump by turning on a pump provided in the pressure vessel and sucks a sample from a suction port.
  • the sample held in the narrow tube is divided by the separate fluid, and one end of the narrow tube is connected to the suction side of the pump
  • a sample arrival sensor is provided on the upstream side in the pipeline, and an electromagnetic valve is provided on the downstream side. When it is detected that the sample has reached the position of the sample arrival sensor, the electromagnetic valve is closed and the pump is turned off. .
  • the present invention provides the above-described water sampling method, wherein the entire water sampling device including the narrow tube and the vacuum chamber is adjusted to adjust the buoyancy while free-floating or free-floating or between a specific depth or a specific depth (here, a specific depth) “Between” means that water is collected from a depth of “XX” to “XX” meters), and water is collected.
  • the vertical resolution can be freely set by controlling the interval at which another fluid is inserted.
  • the horizontal resolution and time series resolution can be set freely.
  • a water sampling apparatus can be manufactured at low cost.
  • water is collected in the tube, analysis after water collection is easy.
  • a turbidimeter is often used in the ocean as a device for measuring turbidity on the spot, and a chlorophyll meter is used for measuring a vertical profile. You can verify what you were measuring.
  • the sample is sucked into the narrow tube, so that the sample is stored in the narrow tube in a series corresponding to the sucked time, and the position information is maintained even when the sample is taken out from the thin tube. Further, the maintenance of the positional information is ensured by inserting another fluid such as oil or gas (for example, bubbles) into the narrow tube at the time of water sampling or after the fact. Also, water is collected by vacuum suction without using a pump. Therefore, in the water sampling device in which the water sampling chamber is filled with air in advance, a mechanism for escaping the air to the outside is necessary. However, the vacuum suction of the present invention makes such a mechanism unnecessary.
  • the suction force is remarkably reduced in a shallow layer having a depth of 1 [m] or less, but the vacuum method of the present invention does not have such a concern.
  • a conventional method of sucking using a syringe but in this case, a syringe drive mechanism and drive energy are required, and it is necessary to prepare as many syringes and containers as the number of samples to be collected.
  • the timing of inserting the isolating fluid is made high, high-definition vertical decomposition water sampling becomes possible.
  • the vertical distribution can be measured only by flowing the sample collected by this device.
  • it is isolate
  • the flow rate of the fluid in the capillary follows Hagen-Poiseuille's law.
  • the flow rate Q is determined by the fourth power of the pressure difference p 1 -p 2 between the narrow tube inlet and outlet and the radius a of the narrow tube, and can be calculated by the following equation (1).
  • Q ⁇ a 4 (p 1 ⁇ p 2 ) / (8 ⁇ L) (1)
  • is the viscosity coefficient
  • L is the length of the thin tube.
  • the amount of water collected in the thin tube for example, if the thin tube diameter is 4 [mm ⁇ ] and the thin tube length is 40 [m], it is possible to collect approximately 500 [cc].
  • FIG. 1 shows a first embodiment which is an embodiment of the water sampling apparatus of the present invention.
  • the thin tube employs a tube having an outer diameter of 6 [mm ⁇ ], an inner diameter of 4 [mm ⁇ ], and a length of 40 [m], and is wound around and attached to a water sampling bobbin.
  • the water sampling bobbin is fitted on the outside of a vacuum chamber having an outer diameter of 76 [mm ⁇ ] and an internal volume of 900 [cc] and attached with a water sampling bobbin removing screw.
  • a pressure vessel PVC tube, outer diameter 140 [mm ⁇ ]
  • batteries two single
  • vapor separator for water separation
  • landing sensor (2) water arrival sensor
  • solenoid valve water absorption
  • a vacuum regulator for speed adjustment, a piping system, and the like are accommodated.
  • the pressure vessel is provided with a suction port communicating with the internal conduit and two couplers with a water sampling bobbin disconnecting valve, and a water landing sensor (1) is provided on the outside.
  • the water-separating vapor injector has a push-type solenoid, a piston, a piston biasing spring, a compression chamber (volume 0.1 to 1 [cc]), and a check valve.
  • a water landing sensor (2) is provided in the middle of the pipeline connected to the suction port, and a compression chamber is connected to the middle of the following pipeline via a check valve. Separator air is injected, and the subsequent pipe line is connected to a coupler with a water sampling bobbin disconnection valve. One end of a tube wound around the water sampling bobbin is connected to the coupler with the water sampling bobbin disconnection valve by the coupler. The other end of the tube is connected to another coupler with a water sampling bobbin disconnect valve.
  • a water arrival sensor, a solenoid valve, and a vacuum regulator for adjusting the water absorption speed are provided in the middle of the pipe connected to the coupler with the water sampling bobbin disconnect valve, and then the pipe is connected to the vacuum chamber. Yes.
  • This coupler with a water sampling bobbin disconnect valve is connected to a vacuum pump and a coupler when the vacuum chamber is evacuated.
  • the total length of the illustrated water sampling apparatus is 700 [mm], and the maximum diameter portion is 180 [mm ⁇ ]. It should be noted that the dimensions and the like shown in the drawings are shown for illustrative purposes and are not limited thereto.
  • the usage method which samples water using the water sampling apparatus of FIG. 1 is demonstrated below.
  • the water absorption sensor (1) and the water arrival sensor (2) are connected to the vacuum chamber by the opening of the solenoid valve, and vacuum absorption starts.
  • 1 [cc] separator air is injected, and then vacuum water absorption and separator air injection are repeated.
  • the landing sensor may be one that starts operating at a predetermined depth in conjunction with a depth gauge, or one that pulls on a rope and switches on.
  • the water absorption speed is adjusted with the restriction (conductance) of a vacuum regulator (for adjusting the water absorption speed).
  • a vacuum regulator can be omitted for cost reduction if adjustment is possible with narrow tube connection and length.
  • Example 2 In the apparatus of the first embodiment, a method of collecting water into the tube by vacuum suction using a vacuum chamber was used, but water can also be collected into the tube by using a pump instead of the vacuum chamber. That is, in the second embodiment using a pump, the tip of the pipe connected from the water arrival sensor shown in FIG. 1 to the solenoid valve is connected to the intake side of the pump, and the exhaust side of the pump is placed in the pressure vessel. If the exhaust is performed, the exhaust is not discharged into the seawater, and the water tank around the water sampling apparatus is not disturbed as in the vacuum chamber system of the first embodiment.
  • the pump exhaust side is opened in the pressure-resistant container through the buffer container filled with the water-absorbing material, when the solenoid valve is closed according to the output detected by the water arrival sensor, Even if one water is about to be discharged into the pressure vessel through the pump, the water is not absorbed by the water-absorbing material in the buffer vessel, so that the water does not overflow. Furthermore, if a three-way valve is connected between the pump exhaust side and the buffer container, and a pipe line is provided through which the water in the buffer container can be discharged from the outside of the pressure vessel, water is collected through the pipe line. After completion, the water in the buffer container can be drained.
  • the chamber wall of the vacuum chamber in FIG. 1 also serves as a support tube for the water sampling bobbin.
  • Example 2 a pump is used instead of the vacuum chamber. Since the support cylinder is constituted by a part of the pressure vessel, the support cylinder space can be used as a space for storing components such as a pump, a battery, and a control device. Other configurations are the same as those of the first embodiment.
  • the electromagnetic valve opens by the conduction of the landing sensor (1) and the landing sensor (2), and the pump is turned ON to start the water absorption.
  • the injector injects 0.1 [cc] separator air, and then repeats water absorption and separator air injection.
  • the landing sensor may be one that starts operating at a predetermined depth in conjunction with a depth gauge, or one that pulls on a rope and switches on.
  • the water absorption speed is adjusted by pump current control or voltage control. It is also possible to temporarily stop water absorption by primarily turning off the pump halfway.
  • the power source is laid out with two dry batteries in the embodiment shown in the figure, but various power sources according to the power consumption can be used without being limited to a single battery.
  • the sampling rate can be actively controlled by the current control or voltage control of the pump, and the air in the tube sucked by the pump is exhausted into the pressure vessel, so that the exhausted air is separated from the separator. It can be reused as air.
  • this apparatus of Example 1 and 2 is arrange
  • various uses are possible by attaching a depth meter and a time recording device to the device (for example, water sampling from a depth of “OO” to “OO” meters).
  • Positive buoyancy or negative buoyancy can be obtained by slightly changing the density of the entire device with the surrounding medium. That is, it becomes free floating or free fall. In this way, the buoyancy is adjusted, for example, water is collected while allowing free sedimentation.
  • fine water sampling is possible between the set depths by sampling with this device at a depth that is impossible with conventional boat or mooring sampling. Even if it moves up and down as shown in the figure, it is possible to know the depth of water sampled from the number of separators or the volume of water, the record of foam injection, and the data of the recording depth meter built into the device. it can.
  • the water sampling device is equipped with a depth meter and a clock. As shown in FIG. 2, it sinks while moving up and down in the depth direction under the influence of flow and waves (although it sinks when the mass is heavy, it moves up and down when it sinks slowly (or floats)).
  • This depth and time are recorded, and by referring to the timing at which the liquid separation bubbles are injected, the depth at which the water is sampled is analyzed later. Moreover, if the buoyancy of this apparatus is adjusted to increase the buoyancy according to the amount of water sampled, it can be set to a constant depth that does not sink or rise. By setting the apparatus in this way, water at a depth determined by buoyancy can be collected. Can sample water or measure viscosity coefficient while moving with water tank.
  • a three-dimensional distribution can be measured by arranging a plurality of water sampling devices in the depth direction, a plurality in the horizontal direction, a matrix, or a cubic lattice.
  • another piston can be provided before and after injecting the foam, and a fixative such as formalin can be poured. This is to prevent plankton and bacterial organisms from increasing or decreasing the number of cells (eaten or die) due to their activity. Even when time elapses between sampling and analysis, the state at the time of sampling can be maintained.
  • the viscosity coefficient of seawater is an important parameter governing ocean flow. Changes in the global environment are also closely related to ocean viscosity. However, it is often calculated from temperature and density. However, the viscosity of the actual sea varies greatly due to phytoplankton secretions, jellyfish mucus, or air bubbles. It is known that the viscosity of seawater varies greatly with temperature and salinity.
  • a method using a thin tube for a steady-state flow is conventionally known, and the viscosity coefficient of water is measured by measuring the intake start time of the water sampling device and the arrival time of the water arrival sensor. Can be measured.
  • ⁇ a 4 (p 1 ⁇ p 2 ) / (8QL) (2)
  • a the radius of the capillary
  • (p 1 -p 2 ) the pressure difference between the inlet and outlet of the capillary
  • Q the flow rate
  • L the length of the capillary.
  • the pressure at the suction port can be calculated from the depth of the suction port, but it can also be directly measured by providing a pressure gauge.
  • a viscosity coefficient can be obtained by flowing a fluid having a constant viscosity, measuring the flow velocity thereof, and obtaining a calibration equation. Since the pressure difference is important, it is desirable to have a mechanism that keeps the depth constant by adjusting the buoyancy of the water sampling device, but it can be attached to an offshore structure even if it is suspended from a ship or fixed to the bottom of the sea. Also good. At that time, if the depth of the suction port of the water sampling apparatus can be accurately measured with a depth meter, the viscosity coefficient can be measured more accurately.
  • the present invention relates to seawater, land water, plant for marine surveys, lake surveys, well water surveys, environmental surveys, plant liquid analysis surveys, turbidity component surveys associated with offshore construction, surveys associated with sea sand collection, etc. It can be used as a water collection device for collecting water from an internal liquid sample or the like, and even other devices can be used in general for collecting liquid. If this apparatus is arranged in a plurality of horizontal directions or vertical directions, it is possible to measure the time change of the water tank structure in the depth direction or the horizontal direction, and this apparatus can be used as a viscosity coefficient measuring apparatus.

Abstract

Provided is a small and inexpensive water sampling device which is capable of continuously sampling water a plurality of times at different depths, different locations, different times, and the like, and with minimal disturbance to a surrounding water mass or layer during water sampling. The water sampling device comprises: a narrow pipe in which suctioned samples are stored; a vacuum chamber; an electromagnetic valve which is provided partway along a pipeline and connects the vacuum chamber and one end part of the narrow pipe; a suction port which suctions the samples; and a fluid introduction means which is provided partway along the pipeline and connects the suction port and the other end part of the narrow pipe. By opening the electromagnetic valve, the one end part of the narrow pipe communicates with the vacuum chamber, and a sample is suctioned from the suction port by vacuum suction. The fluid introduction means is characterised in that a fluid that is different from the samples is introduced partway along the suctioned samples such that the samples held inside the narrow tube are partitioned by the different fluid.

Description

採水装置兼粘性係数測定装置および粘性係数測定方法Water sampling apparatus / viscosity coefficient measuring apparatus and viscosity coefficient measuring method
 本発明は、海水、陸水、プラント内液体試料等から採水する採水装置に関するものであって、海洋調査、湖沼調査、井戸水調査、環境調査、プラント内の液体分析調査、海洋工事にともなう濁度成分調査、海砂の採取にともなう調査発電所の温排水の影響調査、工場排水の拡散調査等に利用できるものであり、さらに粘性係数の測定にも利用できるものである。 The present invention relates to a water collection device for collecting water from seawater, land water, a liquid sample in a plant, etc., and is associated with marine surveys, lake surveys, well water surveys, environmental surveys, liquid analysis surveys in plants, and marine construction. It can be used for investigation of turbidity components, investigation of the effects of hot effluent from power plants, investigation of diffusion of factory effluent, etc., and measurement of viscosity coefficient.
 従来の採水装置は、ある程度容積のある採水容器を特定の深度に沈め、そこで採水口を開口することで採水していた(例えば非特許文献1、2参照)。この方法では蓋があくことにより周りの水隗を乱すことがあった。非生物を対象とする場合はそれでもよかったが、生物の現存量を調査する場合、生物は蓋の動作により生成された乱流を検知し逃避することが多く、現存量測定の精度に影響が及ぼされていた。
 また湖沼や海洋では深度方向に測定対象が深度方向に分布しているが、深度別試料採取による分布調査をする際には採水時にできるだけ本来の分布構造を乱さない配慮が必要である。
 また深度分布を測定するためには例えば10層の水を測定しようと思えば10の採水チャンバーが必要であった。
 一方プランクトン現存量を測定するためには、その対象とするプランクトンの個体数密度をn[個/ml]とすると約10個体あれば個体数密度が議論できる量とするとn/10>1とすればよい。例えば沿岸域の植物プランクトンの場合細胞数密度が10[細胞/ml]以上であることがほとんどなので1[ml]程度の採水で十分である。
 一方、これまでの測定から海洋や湖沼、河川には化学物質濃度や生物量は微細な鉛直分布や空間分布があることが知られている。そこでこれら分布を調べるためには連続的に異なる深度や異なる地点、異なる時間で採水する必要がある。ところが海は広大でまた状況は時々刻々変化する事が多いので、多くの地点や多くの深度で採水する必要がある。そのため採水器は安価でかつ採水は短時間で終了することが望ましい。
 海水や水の粘度は温度依存性が大きく、温度を維持しながら測定することが望ましい。粘性係数は非特許文献3等にあるようにレオメータを用いて測定するかあるいは細管粘度計を用いて測定される。そのため現場海水を実験室に持ち帰り測定する必要があった。そのため現場海域の粘性が変化している恐れがあり、また深度別、あるいは場所別、時刻別の粘性係数を測定するためにはその数の試料を採水する必要があった。
In the conventional water sampling device, a water sampling container having a certain volume is submerged to a specific depth, and a water sampling port is opened there (for example, refer to Non-Patent Documents 1 and 2). In this method, the surrounding water tank may be disturbed by the cover. However, when investigating the abundance of living organisms, organisms often detect and escape turbulence generated by lid movement, which affects the accuracy of existing abundance measurements. It had been.
In lakes and oceans, the objects to be measured are distributed in the depth direction. However, when conducting distribution surveys by sampling by depth, it is necessary to consider that the original distribution structure is not disturbed as much as possible.
Further, in order to measure the depth distribution, for example, 10 water collection chambers are required if 10 layers of water are to be measured.
On the other hand, in order to measure the plankton existing amount, if the population density of the target plankton is n [pieces / ml], if the population density is about 10 individuals, the number density can be discussed as n / 10> 1. That's fine. For example, in the case of phytoplankton in the coastal area, the cell number density is usually 10 [cells / ml] or more, so water collection of about 1 [ml] is sufficient.
On the other hand, it is known from the measurements so far that there are fine vertical distributions and spatial distributions of chemical concentrations and biomass in oceans, lakes and rivers. Therefore, in order to examine these distributions, it is necessary to continuously collect water at different depths, different points, and different times. However, since the sea is vast and the situation changes frequently from time to time, it is necessary to collect water at many points and at many depths. Therefore, it is desirable that the water sampling device is inexpensive and the water sampling is completed in a short time.
The viscosity of seawater and water is highly temperature dependent, and it is desirable to measure while maintaining the temperature. The viscosity coefficient is measured using a rheometer as described in Non-Patent Document 3 or the like, or is measured using a capillary viscometer. For this reason, it was necessary to take the seawater to the laboratory and measure it. Therefore, there is a possibility that the viscosity of the sea area is changing, and in order to measure the viscosity coefficient by depth, location, and time, it was necessary to sample that number of samples.
 採水に際して周りの水隗を乱すことがなく、層をできるだけ乱さない採水装置であって、連続的に異なる深度や異なる地点、異なる時間で数多く採水することが可能な、小型で安価な採水装置を提供することを目的とする。
 さらに、海洋および陸水の粘性係数を現場で測定する装置を提供することを目的とする。
A water sampling device that does not disturb the surrounding water tank during water sampling and does not disturb the layer as much as possible, and can be continuously sampled at different depths, different points, and at different times, and is small and inexpensive. An object is to provide a water sampling device.
Furthermore, it aims at providing the apparatus which measures the viscosity coefficient of the ocean and land water on-site.
 上記課題を解決するために、本発明は、吸引した試料を保存する細管と、真空チャンバーと、前記細管の一方の端部と前記真空チャンバーとを接続した管路途中に設けた電磁弁と、試料を吸引する吸引口と、前記細管の他方の端部と前記吸引口とを接続する管路途中に設けた流体挿入手段を備えた採水装置であって、前記電磁弁は、電磁弁を開くことにより、前記細管の一方の端部が前記真空チャンバーに連通し真空吸引により試料を前記吸引口から吸引するものであり、前記流体挿入手段は、吸引される試料の途中に試料とは別の流体を挿入することにより細管内に保持される試料を前記別の流体で区分けするものであることを特徴とする。
 また、本発明は、上記採水装置において、前記細管は、採水装置に着脱自在な採水ボビンに巻き付け収容されていることを特徴とする。
 また、本発明は、上記採水装置において、前記細管の一方の端部と前記真空チャンバーとを接続した管路の前記電磁弁の上流側に試料到達センサーを設け、前記細管内に吸引保持された試料が当該センサー位置まで到達したことを検知して前記電磁バルブを閉じることを特徴とする。
 また、本発明は、上記採水装置において、前記試料を吸引口から細管内に吸引を開始したあとの、ある時刻からある程度後の時刻との差tと、前記吸引口の圧力pから、ハーゲンポワズイユの法則を用いて試料の粘性係数ηを求める粘性係数測定手段を有することを特徴とする。流速が定常とみなせる状態にあればある程度後の時刻は試料が到達センサーに到達する時刻でもよい。
 また、本発明は、上記採水装置において、前記吸引口の圧力pは、吸引口の深度から算出することを特徴とする。
 また、本発明は、吸引した試料を保存する細管と、耐圧容器内に設けられたポンプと、前記細管の一方の端部と前記ポンプの吸気側とを接続した管路と、試料を吸引する吸引口と、前記細管の他方の端部と前記吸引口とを接続する管路途中に設けた流体挿入手段を備えた採水装置であって、前記ポンプのONにより前記ポンプの吸気側に接続した前記細管の一方の端部から吸引することにより試料を前記吸引口から吸引し、前記ポンプの排気は前記耐圧容器内に排気されるものであり、前記耐圧容器内に設けられた前記流体挿入手段は、吸引される試料の途中に試料とは別の流体を挿入することにより前記細管内に保持される試料を前記別の流体で区分けするものであり、前記細管の一方の端部と前記ポンプの吸気側とを接続した管路内の上流側に試料到達センサーを設け下流側に電磁弁を設け、前記細管内に吸引保持された試料が前記試料到達センサー位置まで到達したことを検知して前記電磁バルブを閉じるとともに前記ポンプをOFFすることを特徴とする。
 また、本発明は、上記採水装置において、前記細管は、採水装置に着脱自在な採水ボビンに巻き付け収容されていることを特徴とする。
 また、本発明は、電磁弁を開いて細管の一方の端部と真空チャンバーを連通させて試料を吸引口から真空吸引し、吸引された前記試料を前記細管内に保存する採水方法であって、前記吸引口と前記細管の他方の端部とを接続する管路の途中に設けた流体挿入手段により、吸引される試料の途中に試料とは別の流体を挿入することにより前記細管内に保持される試料を前記別の流体で区分けすることを特徴とする。
 また、本発明は、上記採水方法において、前記細管および前記真空チャンバーを備えた採水装置全体の浮力調整により、自由沈降あるいは自由浮上しながらあるいは特定深度あるいは特定深度間(ここで、特定深度間とは深度「○○」から「○○」メートルまでを採水することを意味する)をただよいながら、採水を行うことを特徴とする。
 また、本発明は、電磁弁を開いて細管の一方の端部と真空チャンバーを連通させて試料を吸引口からある地点から別の地点に到達する時刻までの吸引時間tを測定し、当該吸引時間tそのときの吸引口の圧力pから試料の粘性係数ηをハーゲンポワズイユの法則
   η=πa(p-p)/(8QL)
を用いて、ただしaは細管の半径、Lはある地点から別の地点までの距離(例えば細管の長さ)、p=0(真空)、Q=πaL/tである、を求める粘性係数測定方法である。この法則は定常流を過程しているため、流速は吸引管内の定常流とみなせるところで測定するものとする。
 また、本発明は、上記粘性係数測定方法において、前記細管および前記真空チャンバーを備えた採水装置全体の浮力調整により、自由沈降あるいは自由浮上しながらあるいは特定深度をただよいながら、粘性係数を求めることを特徴とする。
 また、本発明は、耐圧容器内に設けられたポンプのONにより前記ポンプの吸気側に接続した細管の一方の端部から吸引して試料を吸引口から吸引するとともに、前記ポンプの排気は前記耐圧容器内に排気し前記細管内に試料を保存する採水方法であって、前記吸引口と前記細管の他方の端部とを接続する管路の途中に設けた流体挿入手段により、吸引される試料の途中に試料とは別の流体を挿入することにより前記細管内に保持される試料を前記別の流体で区分けし、前記細管の一方の端部と前記ポンプの吸気側とを接続した管路内の上流側に試料到達センサーを設け下流側に電磁弁を設け、試料が前記試料到達センサー位置まで到達したことを検知したら前記電磁バルブを閉じるとともに前記ポンプをOFFすることを特徴とする。
 また、本発明は、上記採水方法において、前記細管および前記真空チャンバーを備えた採水装置全体の浮力調整により、自由沈降あるいは自由浮上しながらあるいは特定深度あるいは特定深度間(ここで、特定深度間とは深度「○○」から「○○」メートルまでを採水することを意味する)をただよいながら、採水を行うことを特徴とする。
In order to solve the above problems, the present invention provides a narrow tube for storing a sucked sample, a vacuum chamber, a solenoid valve provided in the middle of a pipe line connecting one end of the thin tube and the vacuum chamber, A water sampling apparatus comprising a suction port for sucking a sample, and a fluid insertion means provided in the middle of a conduit connecting the other end of the thin tube and the suction port, wherein the solenoid valve is a solenoid valve. When opened, one end of the thin tube communicates with the vacuum chamber and sucks the sample from the suction port by vacuum suction. The fluid insertion means separates the sample from the sample in the middle of the sucked sample. The sample held in the narrow tube by inserting the fluid is separated by the other fluid.
Moreover, the present invention is characterized in that, in the water sampling apparatus, the thin tube is wound around and accommodated in a water sampling bobbin that is detachable from the water sampling apparatus.
Further, the present invention is the above-described water sampling apparatus, wherein a sample arrival sensor is provided on the upstream side of the electromagnetic valve in a pipe line connecting one end of the thin tube and the vacuum chamber, and is sucked and held in the thin tube. The electromagnetic valve is closed upon detecting that the sample has reached the sensor position.
Further, in the water sampling apparatus according to the present invention, from the difference t between a certain time after starting the suction of the sample from the suction port into the thin tube and the pressure p 1 of the suction port, Viscosity coefficient measuring means for obtaining the viscosity coefficient η of the sample using Hagen-Poiseuille's law is provided. If the flow rate is in a state that can be regarded as steady, the time after a certain amount may be the time when the sample reaches the arrival sensor.
In the water sampling apparatus according to the present invention, the suction port pressure p 1 is calculated from a depth of the suction port.
The present invention also provides a capillary tube for storing the aspirated sample, a pump provided in the pressure vessel, a pipe line connecting one end of the capillary tube and the suction side of the pump, and aspirating the sample. A water sampling apparatus comprising a suction port and a fluid insertion means provided in the middle of a conduit connecting the other end of the narrow tube and the suction port, and connected to the suction side of the pump by turning on the pump The sample is sucked from the suction port by sucking from one end of the thin tube, and the exhaust of the pump is exhausted into the pressure vessel, and the fluid insertion provided in the pressure vessel The means separates the sample held in the capillary by inserting a fluid different from the sample in the middle of the sample to be aspirated, the one end of the capillary and the end Above the pipe connected to the intake side of the pump A sample arrival sensor on the side and an electromagnetic valve on the downstream side, detecting that the sample sucked and held in the narrow tube has reached the position of the sample arrival sensor, closing the electromagnetic valve and turning off the pump It is characterized by.
Moreover, the present invention is characterized in that, in the water sampling apparatus, the thin tube is wound around and accommodated in a water sampling bobbin that is detachable from the water sampling apparatus.
Further, the present invention is a water sampling method in which an electromagnetic valve is opened so that one end of a thin tube communicates with a vacuum chamber, a sample is vacuum sucked from a suction port, and the sucked sample is stored in the thin tube. By inserting a fluid different from the sample into the middle of the sample to be sucked by the fluid inserting means provided in the middle of the pipe line connecting the suction port and the other end of the thin tube. The sample held in the container is divided by the another fluid.
Further, the present invention provides the above-described water sampling method, wherein the entire water sampling device including the narrow tube and the vacuum chamber is adjusted to adjust the buoyancy while free-floating or free-floating or between a specific depth or a specific depth (here, a specific depth) “Between” means that water is collected from a depth of “XX” to “XX” meters), and water is collected.
In addition, the present invention measures the suction time t from the time when the sample reaches one point from the suction port to another point by opening the solenoid valve so that one end of the thin tube communicates with the vacuum chamber. At time t, the viscosity coefficient η of the sample from the suction port pressure p 1 is expressed by Hagen-Poiseuille's law η = πa 4 (p 1 -p 2 ) / (8QL)
Where a is the radius of the capillary, L is the distance from one point to another (eg, the length of the capillary), p 2 = 0 (vacuum), and Q = πa 2 L / t This is a viscosity coefficient measurement method. Since this law is a steady flow process, the flow velocity shall be measured where it can be regarded as a steady flow in the suction pipe.
Further, according to the present invention, in the above viscosity coefficient measuring method, the viscosity coefficient is obtained while free settling or free floating or just having a specific depth by adjusting the buoyancy of the whole water sampling apparatus including the narrow tube and the vacuum chamber. It is characterized by that.
Further, the present invention sucks a sample from one end of a thin tube connected to the suction side of the pump by turning on a pump provided in the pressure vessel and sucks a sample from a suction port. A water collection method for evacuating a pressure vessel and storing the sample in the narrow tube, wherein the sample is sucked by a fluid insertion means provided in the middle of a conduit connecting the suction port and the other end of the narrow tube. By inserting a fluid different from the sample in the middle of the sample, the sample held in the narrow tube is divided by the separate fluid, and one end of the narrow tube is connected to the suction side of the pump A sample arrival sensor is provided on the upstream side in the pipeline, and an electromagnetic valve is provided on the downstream side. When it is detected that the sample has reached the position of the sample arrival sensor, the electromagnetic valve is closed and the pump is turned off. .
Further, the present invention provides the above-described water sampling method, wherein the entire water sampling device including the narrow tube and the vacuum chamber is adjusted to adjust the buoyancy while free-floating or free-floating or between a specific depth or a specific depth (here, a specific depth) “Between” means that water is collected from a depth of “XX” to “XX” meters), and water is collected.
 本発明では、連続して吸引するので、別の流体を挿入する間隔を制御することで、鉛直分解能を自由に設定できる。同様に、水平分解能、時系列分解能も自由に設定できる。
 また、簡単な構造なので安価に採水装置を製作することができる。
 また、チューブ内に採水されているので採水後の分析も容易である。
 また、従来例えば濁度計は現場で濁度を、クロロフィル計などは鉛直プロファイルを測定する機器として海洋でよく使われるが、本発明では、測定対象の水柱を採集するので、採集後分析することで何を測定していたのか検証することができる。
In the present invention, since continuous suction is performed, the vertical resolution can be freely set by controlling the interval at which another fluid is inserted. Similarly, the horizontal resolution and time series resolution can be set freely.
In addition, since the structure is simple, a water sampling apparatus can be manufactured at low cost.
Moreover, since water is collected in the tube, analysis after water collection is easy.
Conventionally, for example, a turbidimeter is often used in the ocean as a device for measuring turbidity on the spot, and a chlorophyll meter is used for measuring a vertical profile. You can verify what you were measuring.
本発明の採水装置の一実施例を示した図である。It is the figure which showed one Example of the water sampling apparatus of this invention. 本発明の採水装置を用いて深度方向に上下動しながらゆっくり沈降する場合を示した図である。図は下向きに深度が増加する方向であり、時間の経過にともなって上下の矢印で示したように、上下動しながらゆっくり沈降していく。It is the figure which showed the case where it sinks slowly, moving up and down in the depth direction using the water sampling apparatus of this invention. In the figure, the depth increases in the downward direction, and as the time passes, as shown by the up and down arrows, it slowly sinks while moving up and down.
 本発明の採水装置では、細管に試料を吸引することで、吸引した時刻に対応した系列で細管中に試料が保存され、また細管から取り出すときもその位置情報が維持される。
 また、採水時あるいは事後に細管中に油、気体(例えば泡)、などの別の流体を挿入して上記位置情報の維持を確保する。
 また、真空吸引により、ポンプなどを使わないで採水する。したがって、あらかじめ空気で採水室が満たされている採水装置では空気を外部に逃がす機構が必要であったが、本発明の真空吸引だとそのような機構が不要となる。さらに、空気吸引式だと、深度が1[m]以下などの浅い層では著しく吸引力が落ちるが、本発明の真空方式ではその心配もない。またシリンジを利用して吸引する従来方式もあるが、この場合だとシリンジの駆動機構や駆動エネルギーが必要になり、また採取する数だけのシリンジおよび容器を用意する必要があった。しかしながら、本発明では、隔離用流体を挿入するタイミングを高頻度にすれば高精細の鉛直分解採水が可能となり、同様に高精細な水平分解採水、高精細な時系列分解採水なども可能となる。
 さらに、本発明では細管に試料を吸引し保存しているので、流水式の分析装置を用いるときは本装置で採水された試料を流すだけで、鉛直分布の測定が可能である。また、止水分析装置のためには泡等で分離されているので泡ごとの試料を容器に集め分析すればよい。また、同様に、泡分離の利用により時系列変化の測定にも利用できる。
In the water sampling apparatus of the present invention, the sample is sucked into the narrow tube, so that the sample is stored in the narrow tube in a series corresponding to the sucked time, and the position information is maintained even when the sample is taken out from the thin tube.
Further, the maintenance of the positional information is ensured by inserting another fluid such as oil or gas (for example, bubbles) into the narrow tube at the time of water sampling or after the fact.
Also, water is collected by vacuum suction without using a pump. Therefore, in the water sampling device in which the water sampling chamber is filled with air in advance, a mechanism for escaping the air to the outside is necessary. However, the vacuum suction of the present invention makes such a mechanism unnecessary. Furthermore, in the case of the air suction method, the suction force is remarkably reduced in a shallow layer having a depth of 1 [m] or less, but the vacuum method of the present invention does not have such a concern. In addition, there is a conventional method of sucking using a syringe, but in this case, a syringe drive mechanism and drive energy are required, and it is necessary to prepare as many syringes and containers as the number of samples to be collected. However, in the present invention, if the timing of inserting the isolating fluid is made high, high-definition vertical decomposition water sampling becomes possible. Similarly, high-definition horizontal decomposition water sampling, high-definition time series decomposition water sampling, etc. It becomes possible.
Furthermore, in the present invention, since the sample is sucked into the thin tube and stored, when a flowing water type analyzer is used, the vertical distribution can be measured only by flowing the sample collected by this device. Moreover, since it is isolate | separated with the foam etc. for the water stop analyzer, what is necessary is just to collect and analyze the sample for every foam in a container. Similarly, it can be used for measuring time-series changes by using bubble separation.
 細管を真空に吸引するとき、細管内の流体の流速はハーゲンポワズイユの法則に従うことが知られている。細管内に試料が満たされているとした場合、流量Qは細管の入口と出口の圧力差p-pと細管の半径aの四乗で決まり、次式(1)で計算できる。
  Q=πa(p-p)/(8ηL)           (1)
ここで、ηは粘性係数、Lは細管の長さである。
 細管での採水量については、例えば、細管径4[mmφ]、細管長さ40[m]であれば、約500[cc]の採水が可能である。
It is known that when a capillary is sucked into a vacuum, the flow rate of the fluid in the capillary follows Hagen-Poiseuille's law. Assuming that the sample is filled in the narrow tube, the flow rate Q is determined by the fourth power of the pressure difference p 1 -p 2 between the narrow tube inlet and outlet and the radius a of the narrow tube, and can be calculated by the following equation (1).
Q = πa 4 (p 1 −p 2 ) / (8ηL) (1)
Here, η is the viscosity coefficient, and L is the length of the thin tube.
With regard to the amount of water collected in the thin tube, for example, if the thin tube diameter is 4 [mmφ] and the thin tube length is 40 [m], it is possible to collect approximately 500 [cc].
(実施例1)
 図1に本発明の採水装置の一実施例である実施例1を示す。
 図1において、細管は、外径6[mmφ]、内径4[mmφ]、長さ40[m]のチューブを採用し、採水ボビンに巻きつけ装着する。採水ボビンは、外径76[mmφ]、内容積900[cc]の真空チャンバーの外側に嵌挿し採水ボビン取り外しねじで取り付けられる。真空チャンバーに連接した耐圧容器(PVC管、外径140[mmφ])内に、電池(単一2本)、水セパレート用ベーパーインジェクター、着水センサー(2)、水到達センサー、電磁弁、吸水速度調整用真空レギュレータ、配管系等が収容されている。耐圧容器には、内部管路に連通する吸引口と、2つの採水ボビン切り離し弁付カプラを備えており、外側には着水センサー(1)が設けられている。水セパレート用ベーパーインジェクターは、プッシュ型ソレノイド、ピストン、ピストン付勢用スプリング、圧縮室(容積0.1~1[cc])、逆止弁を有している。
 吸引口に接続された管路途中に着水センサー(2)が設けられ、続く管路途中には逆止弁を介して圧縮室が接続されており、ピストンの駆動により逆止弁を通ってセパレータエアが注入されるものであり、続く管路は採水ボビン切り離し弁付カプラに接続されている。この採水ボビン切り離し弁付カプラには、採水ボビンに巻きつけられたチューブの一方の端部がカプラで接続される。チューブの他方の端部は、もう一方の採水ボビン切り離し弁付カプラに接続される。こちらの採水ボビン切り離し弁付きカプラに接続された管路に途中には順に、水到達センサー、電磁弁、吸水速度調整用真空レギュレータが設けられており、その後管路は真空チャンバーに接続されている。また、こちらの採水ボビン切り離し弁付カプラには、真空チャンバー内を真空にするときに真空ポンプとカプラ接続されるものである。
 図示した採水装置の全長は700[mm]、最大径部180[mmφ]である。なお、図中に示した寸法等は例示のために示したものであって、これに限定されるものではない。
(Example 1)
FIG. 1 shows a first embodiment which is an embodiment of the water sampling apparatus of the present invention.
In FIG. 1, the thin tube employs a tube having an outer diameter of 6 [mmφ], an inner diameter of 4 [mmφ], and a length of 40 [m], and is wound around and attached to a water sampling bobbin. The water sampling bobbin is fitted on the outside of a vacuum chamber having an outer diameter of 76 [mmφ] and an internal volume of 900 [cc] and attached with a water sampling bobbin removing screw. In a pressure vessel (PVC tube, outer diameter 140 [mmφ]) connected to the vacuum chamber, batteries (two single), vapor separator for water separation, landing sensor (2), water arrival sensor, solenoid valve, water absorption A vacuum regulator for speed adjustment, a piping system, and the like are accommodated. The pressure vessel is provided with a suction port communicating with the internal conduit and two couplers with a water sampling bobbin disconnecting valve, and a water landing sensor (1) is provided on the outside. The water-separating vapor injector has a push-type solenoid, a piston, a piston biasing spring, a compression chamber (volume 0.1 to 1 [cc]), and a check valve.
A water landing sensor (2) is provided in the middle of the pipeline connected to the suction port, and a compression chamber is connected to the middle of the following pipeline via a check valve. Separator air is injected, and the subsequent pipe line is connected to a coupler with a water sampling bobbin disconnection valve. One end of a tube wound around the water sampling bobbin is connected to the coupler with the water sampling bobbin disconnection valve by the coupler. The other end of the tube is connected to another coupler with a water sampling bobbin disconnect valve. A water arrival sensor, a solenoid valve, and a vacuum regulator for adjusting the water absorption speed are provided in the middle of the pipe connected to the coupler with the water sampling bobbin disconnect valve, and then the pipe is connected to the vacuum chamber. Yes. This coupler with a water sampling bobbin disconnect valve is connected to a vacuum pump and a coupler when the vacuum chamber is evacuated.
The total length of the illustrated water sampling apparatus is 700 [mm], and the maximum diameter portion is 180 [mmφ]. It should be noted that the dimensions and the like shown in the drawings are shown for illustrative purposes and are not limited thereto.
 次に、図1の採水装置を用いて採水する使用方法を以下に説明する。
(1)採水装置を投入後、着水センサー(1)及び着水センサー(2)の導通により電磁弁が開き真空チャンバーに連通することにより真空吸水が始まり、1秒後にベーパーインジェクターが0.1[cc]のセパレータエアを注入し、その後真空吸水、セパレータエア注入を繰り返す。着水センサーは深度計と連動して所定の深度で動作を開始するものや、ロープを牽引してスイッチを入れるものでもよい。
(2)吸水速度は真空レギュレータ(吸水速度調整用)の絞り加減(コンダクタンス)で調整する。ただし、細管接続、細管長さで調整が可能ならコストダウンのため真空レギュレータを省くことができる。例えば、図中の記載「真空レギュレータが不要の場合接続はφ1.8×φ1チューブ(すなわち外径1.8[mmφ]、内径1[mmφ])で接続」参照。
(3)水到達センサー(試料到達センサー)まで吸水が進むと電磁弁を閉じ、ベーパーインジェクター用ソレノイドを停止し採水を完了し機器を引き上げる。
(4)採水ボビンの交換は採水ボビン切り離し弁付カプラを2カ所切り離し、採水ボビン取り外しねじを外して交換する。
(5)真空ポンプを、真空チャンバーに連通している方の採水ボビン切り離し弁付カプラに接続し、着水センサーを利用して電磁弁を開き、真空ポンプで真空チャンバー内の真空度を元に戻す(このとき、水到達センサーの水分を確実に抜き取ることが必要である。)。
(6)新しい採水ボビンを組み込み、採水ボビン切り離し弁付カプラを2カ所接続後次回採水を行う。
(7)電源は図の実施例では乾電池2本でレイアウトしているが、単一電池に限ることなく消費電力に応じた各種電源を用いることができる。
Next, the usage method which samples water using the water sampling apparatus of FIG. 1 is demonstrated below.
(1) After introducing the water sampling device, the water absorption sensor (1) and the water arrival sensor (2) are connected to the vacuum chamber by the opening of the solenoid valve, and vacuum absorption starts. 1 [cc] separator air is injected, and then vacuum water absorption and separator air injection are repeated. The landing sensor may be one that starts operating at a predetermined depth in conjunction with a depth gauge, or one that pulls on a rope and switches on.
(2) The water absorption speed is adjusted with the restriction (conductance) of a vacuum regulator (for adjusting the water absorption speed). However, a vacuum regulator can be omitted for cost reduction if adjustment is possible with narrow tube connection and length. For example, see the description in the figure “When a vacuum regulator is not required, connection is made with a φ1.8 × φ1 tube (that is, an outer diameter of 1.8 [mmφ] and an inner diameter of 1 [mmφ])”.
(3) When water absorption proceeds to the water arrival sensor (sample arrival sensor), the solenoid valve is closed, the vapor injector solenoid is stopped, the water sampling is completed, and the device is pulled up.
(4) To replace the water sampling bobbin, disconnect the two couplers with water sampling bobbin disconnect valves and remove the water sampling bobbin removal screws to replace them.
(5) Connect the vacuum pump to the coupler with the water sampling bobbin disconnect valve that communicates with the vacuum chamber, open the solenoid valve using the landing sensor, and restore the degree of vacuum in the vacuum chamber using the vacuum pump. (At this time, it is necessary to surely remove the water from the water arrival sensor).
(6) Install a new water sampling bobbin, connect the water sampling bobbin disconnect valve couplers at two locations, and perform the next water sampling.
(7) The power source is laid out with two dry batteries in the embodiment shown in the figure, but various power sources according to the power consumption can be used without being limited to a single battery.
(実施例2)
 上記実施例1の装置では真空チャンバーを用いて真空吸引によりチューブ内に採水する方式であったが、真空チャンバーに代えてポンプを用いて吸引する方式でもチューブ内に採水することができる。
 すなわち、ポンプを用いた本実施例2では、図1に示された水到達センサーから電磁弁に接続された管路の先をポンプの吸気側に接続し、ポンプの排気側は耐圧容器内に排気するようにすれば、排気が海水中に排出されることはなく、実施例1の真空チャンバー方式と同様に採水装置の周りの水隗を乱すことがない。なお、ポンプの排気側は、吸水材を充填したバッファ容器内を通って耐圧容器内に開放しておけば、水到達センサーにより水到達を検知した出力に応じて電磁弁を閉じるときに、万一水がポンプ内を通って圧力容器内に排出されようとしても、バッファ容器内の吸水材に吸水されるので圧力容器内に水が溢れ出ることがない。さらに、ポンプ排気側とバッファ容器の間に三方弁を接続し、三方弁を介してバッファ容器内の水を耐圧容器の外部から排出可能な管路を設けておけば、当該管路を通じて採水終了後にバッファ容器内の水を排水することができる。
 また、実施例1では、図1の真空チャンバーのチャンバー壁が採水ボビンの支持筒を兼ねた構造であったが、本実施例2では、真空チャンバーの代わりにポンプを用いるので採水ボビンの支持筒は耐圧容器の一部で構成するので、支持筒空間内はポンプや電池や制御装置などの部品を収納する空間として利用できる。
 その他の構成は、実施例1と同様の構成である。
(Example 2)
In the apparatus of the first embodiment, a method of collecting water into the tube by vacuum suction using a vacuum chamber was used, but water can also be collected into the tube by using a pump instead of the vacuum chamber.
That is, in the second embodiment using a pump, the tip of the pipe connected from the water arrival sensor shown in FIG. 1 to the solenoid valve is connected to the intake side of the pump, and the exhaust side of the pump is placed in the pressure vessel. If the exhaust is performed, the exhaust is not discharged into the seawater, and the water tank around the water sampling apparatus is not disturbed as in the vacuum chamber system of the first embodiment. If the pump exhaust side is opened in the pressure-resistant container through the buffer container filled with the water-absorbing material, when the solenoid valve is closed according to the output detected by the water arrival sensor, Even if one water is about to be discharged into the pressure vessel through the pump, the water is not absorbed by the water-absorbing material in the buffer vessel, so that the water does not overflow. Furthermore, if a three-way valve is connected between the pump exhaust side and the buffer container, and a pipe line is provided through which the water in the buffer container can be discharged from the outside of the pressure vessel, water is collected through the pipe line. After completion, the water in the buffer container can be drained.
In Example 1, the chamber wall of the vacuum chamber in FIG. 1 also serves as a support tube for the water sampling bobbin. However, in Example 2, a pump is used instead of the vacuum chamber. Since the support cylinder is constituted by a part of the pressure vessel, the support cylinder space can be used as a space for storing components such as a pump, a battery, and a control device.
Other configurations are the same as those of the first embodiment.
 以上のように構成された実施例2の採水装置を用いて採水する使用方法を、以下に説明する。
(1)実施例2の採水装置を投入後、着水センサー(1)及び着水センサー(2)の導通により電磁弁が開きポンプがONとなり吸引することにより吸水が始まり、1秒後にベーパーインジェクターが0.1[cc]のセパレータエアを注入し、その後吸水、セパレータエア注入を繰り返す。着水センサーは深度計と連動して所定の深度で動作を開始するものや、ロープを牽引してスイッチを入れるものでもよい。
(2)吸水速度はポンプの電流制御あるいは電圧制御によって調整する。なお、ポンプを途中で一次OFFすることにより吸水を一次停止することも可能である。
(3)水到達センサー(試料到達センサー)まで吸水が進むと電磁弁を閉じ、ポンプをOFFするとともにベーパーインジェクター用ソレノイドを停止し採水を完了し機器を引き上げる。
(4)採水ボビンの交換は採水ボビン切り離し弁付カプラを2カ所切り離し、採水ボビン取り外しねじを外して交換する。
(5)採水ボビン切り離し弁付カプラ側から、水到達センサーの水分を確実に抜き取る。また、バッファ容器内の水分も抜き取る。
(6)新しい採水ボビンを組み込み、採水ボビン切り離し弁付カプラを2カ所接続後次回採水を行う。
(7)電源は図の実施例では乾電池2本でレイアウトしているが、単一電池に限ることなく消費電力に応じた各種電源を用いることができる。
 本実施例2では、採水速度等がポンプの電流制御あるいは電圧制御によってアクティブに制御でき、また、ポンプで吸引したチューブ内のエアは耐圧容器内に排気されるので、排気されたエアはセパレータエアとして再利用することができる。
A method for using the water sampling apparatus of the second embodiment configured as described above will be described below.
(1) After introducing the water sampling apparatus of Example 2, the electromagnetic valve opens by the conduction of the landing sensor (1) and the landing sensor (2), and the pump is turned ON to start the water absorption. The injector injects 0.1 [cc] separator air, and then repeats water absorption and separator air injection. The landing sensor may be one that starts operating at a predetermined depth in conjunction with a depth gauge, or one that pulls on a rope and switches on.
(2) The water absorption speed is adjusted by pump current control or voltage control. It is also possible to temporarily stop water absorption by primarily turning off the pump halfway.
(3) When water absorption proceeds to the water arrival sensor (sample arrival sensor), the solenoid valve is closed, the pump is turned off, the vapor injector solenoid is stopped, the water sampling is completed, and the device is pulled up.
(4) To replace the water sampling bobbin, disconnect the two couplers with water sampling bobbin disconnect valves and remove the water sampling bobbin removal screws to replace them.
(5) Water from the water arrival sensor is surely removed from the coupler side with the water sampling bobbin disconnection valve. Also, the water in the buffer container is drained.
(6) Install a new water sampling bobbin, connect the water sampling bobbin disconnect valve couplers at two locations, and perform the next water sampling.
(7) The power source is laid out with two dry batteries in the embodiment shown in the figure, but various power sources according to the power consumption can be used without being limited to a single battery.
In the second embodiment, the sampling rate can be actively controlled by the current control or voltage control of the pump, and the air in the tube sucked by the pump is exhausted into the pressure vessel, so that the exhausted air is separated from the separator. It can be reused as air.
 実施例1及び2の本装置を複数水平方向や垂直方向に配置すれば深度方向や水平方向の水隗構造の時間変化を測定することができる。
 また深度計と時刻記録装置を装置に付帯させることで、様々な利用が可能である(例えば深度「○○」から「○○」メートルまで採水など)。
 本装置全体の密度を周りの媒質と若干変えることで、正の浮力、あるいは、負の浮力をえることができる。すなわち、自由浮上、あるいは、自由落下となる。この様に浮力調整しておいて、例えば自由沈降させながら採水する。図2に示す様に、従来の船や係留系の採水では不可能であった深度で、本装置で採水すれば設定した深度間で細かい採水が可能である。図のように仮に上下動をしたとしても、セパレーターの数あるいは水の容量と泡注入の記録と装置に組み込まれた記録式深度計のデータからどの深度で採水された水かを知ることができる。
If this apparatus of Example 1 and 2 is arrange | positioned in two or more horizontal directions or vertical directions, the time change of the water tank structure of a depth direction or a horizontal direction can be measured.
In addition, various uses are possible by attaching a depth meter and a time recording device to the device (for example, water sampling from a depth of “OO” to “OO” meters).
Positive buoyancy or negative buoyancy can be obtained by slightly changing the density of the entire device with the surrounding medium. That is, it becomes free floating or free fall. In this way, the buoyancy is adjusted, for example, water is collected while allowing free sedimentation. As shown in FIG. 2, fine water sampling is possible between the set depths by sampling with this device at a depth that is impossible with conventional boat or mooring sampling. Even if it moves up and down as shown in the figure, it is possible to know the depth of water sampled from the number of separators or the volume of water, the record of foam injection, and the data of the recording depth meter built into the device. it can.
 従来、水中の薄い層から水を採取する方法にフィルターやガラス板を水に浸すという方法がある。その後、表面についた、水をワイパーのようなもので集めるという方法である。この方法では例えば1[cm]や5[mm]の層からの採取が可能であるが、連続する多くの層から採取することが難しい。
 また、深度「○○」[m]から採取するときに、例えば従来のニスキンボトルではすでに書かれているように乱流も問題であるが、採水している間の深度の不確かさも問題となる。例えば船から採水器をつっても船は水面に対して0.5~数[m]の振幅で振動しており、どの深度か不確かになる。そのため、採水による鉛直分布測定の分解能は1[m]が限界となっていた。
 そこで、本発明の採水装置であるが、自由沈降で用いるとする。また採水装置に深度計と時計を装備させる。図2のように流れや波の影響を受けて深度方向に上下動しながら沈降する(質量が重いと沈む一方であるが、ゆっくり沈ませる(あるいは浮かせる)と上下動を行う)。この深度と時間を記録しておき、また、液分離用の泡を注入したタイミングを参照することで、どの深度で採水したものかを後から解析するものである。
 また本装置の浮力を調節して、採水量に応じて浮力を増すようにすれば、沈降も浮上もしない一定の深度となるよう設定することができる。このように装置を設定すれば、浮力で定まる深度の水を採水することができる。水隗とともに移動しながら採水あるいは粘性係数を測定できる。
Conventionally, there is a method of immersing a filter or a glass plate in water as a method of collecting water from a thin layer in water. Then, it is a method of collecting the water on the surface with something like a wiper. In this method, for example, sampling from a layer of 1 [cm] or 5 [mm] is possible, but it is difficult to sample from many continuous layers.
Also, when sampling from a depth of “XX” [m], for example, turbulence is a problem as already written in the conventional Niskin bottle, but the uncertainty of depth during sampling is also a problem. It becomes. For example, even if a water sampler is taken from a ship, the ship vibrates with an amplitude of 0.5 to several [m] with respect to the water surface, and it becomes uncertain which depth. Therefore, the resolution of the vertical distribution measurement by water sampling is limited to 1 [m].
Then, although it is the water sampling apparatus of this invention, it shall be used by free settling. The water sampling device is equipped with a depth meter and a clock. As shown in FIG. 2, it sinks while moving up and down in the depth direction under the influence of flow and waves (although it sinks when the mass is heavy, it moves up and down when it sinks slowly (or floats)). This depth and time are recorded, and by referring to the timing at which the liquid separation bubbles are injected, the depth at which the water is sampled is analyzed later.
Moreover, if the buoyancy of this apparatus is adjusted to increase the buoyancy according to the amount of water sampled, it can be set to a constant depth that does not sink or rise. By setting the apparatus in this way, water at a depth determined by buoyancy can be collected. Can sample water or measure viscosity coefficient while moving with water tank.
 次に採水装置を多数同時に展開する可能性について説明する。採水装置を深度方向に複数個あるいは水平方向に複数個、あるいは行列上に、あるいは立方格子状に配置することで、3次元分布の測定が可能となる。
 また、泡を注入する前後にもう一つピストンを設け、ホルマリンなどの固定液をいれることが可能である。これはプランクトンやバクテリアの生物がそれらの活動により細胞数が増減したり(食べられたり、枯死するなど)するのを避けるためのものである。採水と分析の間に時間が経過しても採水したときの状態を保つことできる。
Next, the possibility of simultaneously deploying a large number of water sampling devices will be described. A three-dimensional distribution can be measured by arranging a plurality of water sampling devices in the depth direction, a plurality in the horizontal direction, a matrix, or a cubic lattice.
In addition, another piston can be provided before and after injecting the foam, and a fixative such as formalin can be poured. This is to prevent plankton and bacterial organisms from increasing or decreasing the number of cells (eaten or die) due to their activity. Even when time elapses between sampling and analysis, the state at the time of sampling can be maintained.
(実施例1の採水装置を粘性係数測定装置として使用する場合)
 海水の粘性係数は海洋の流れを支配する重要なパラメーターである。地球環境の変化も海洋の粘性と密接に関係している。しかるに温度と密度から計算して求めることが多い。ところが現実の海は植物プランクトンの分泌物やクラゲの粘液あるいは気泡の混入などにより、粘性は大きく変動する。また海水の粘性は温度と塩分で大きく変化することが知られている。
 粘性係数の測定には定常状態の流れに対して細管を用いる方法が従来より知られており、本採水装置の吸入開始時刻と水到達センサーまで到着する時刻を測定することにより水の粘性係数を測定することができる。すなわち、段落0009記載の式(1)のハーゲンポワズイユの法則から、粘性係数ηは次式(2)で表される。
   η=πa(p-p)/(8QL)          (2)
ここで、aは細管の半径、(p-p)は細管の入口と出口の圧力差、Qは流量、Lは細管の長さである。したがって、採水開始から水到達センサー(試料到達センサー)が作動するまでの吸引時間tを測定すれば、そのときのQ=πaL/tであるから、式(2)はη={a(p-p)/(8L)}tとなる。さらに細管の入口と出口の圧力差(p-p)については、出口の圧力pは真空であるからp=0となり、結局入口(吸引口)の圧力pがわかれば、η={a/(8L)}tより算出できる。なお、吸引口の圧力は吸引口の深度から算出可能であるが、圧力計を設けて直接測定することもできる。
 また非定常流の場合も一定粘度の流体を流してその流速を測定し、較正式を得ることで粘性係数を求めることができる。
 圧力差が重要なので、深度を採水装置の浮力を調整することにより一定にする機構があれば望ましいが、船からの懸架や海底に固定されたところから浮上固定でも、海洋構造物に取り付けてもよい。その際別に深度計で採水装置の吸引口の深度を正確に測定できれば、より粘性係数の測定が正確になる。
(When using the water sampling device of Example 1 as a viscosity coefficient measuring device)
The viscosity coefficient of seawater is an important parameter governing ocean flow. Changes in the global environment are also closely related to ocean viscosity. However, it is often calculated from temperature and density. However, the viscosity of the actual sea varies greatly due to phytoplankton secretions, jellyfish mucus, or air bubbles. It is known that the viscosity of seawater varies greatly with temperature and salinity.
For measuring the viscosity coefficient, a method using a thin tube for a steady-state flow is conventionally known, and the viscosity coefficient of water is measured by measuring the intake start time of the water sampling device and the arrival time of the water arrival sensor. Can be measured. That is, from Hagen-Poiseuille's law of equation (1) described in paragraph 0009, the viscosity coefficient η is expressed by the following equation (2).
η = πa 4 (p 1 −p 2 ) / (8QL) (2)
Here, a is the radius of the capillary, (p 1 -p 2 ) is the pressure difference between the inlet and outlet of the capillary, Q is the flow rate, and L is the length of the capillary. Therefore, if the suction time t from the start of sampling to the operation of the water arrival sensor (sample arrival sensor) is measured, then Q = πa 2 L / t at that time, and therefore, equation (2) is expressed as η = {a 2 (p 1 −p 2 ) / (8L 2 )} t. Further, regarding the pressure difference (p 1 -p 2 ) between the inlet and outlet of the narrow tube, since the outlet pressure p 2 is vacuum, p 2 = 0, and if the inlet pressure (suction port) pressure p 1 is known, η = {A 2 p 1 / (8L 2 )} t. The pressure at the suction port can be calculated from the depth of the suction port, but it can also be directly measured by providing a pressure gauge.
In the case of an unsteady flow, a viscosity coefficient can be obtained by flowing a fluid having a constant viscosity, measuring the flow velocity thereof, and obtaining a calibration equation.
Since the pressure difference is important, it is desirable to have a mechanism that keeps the depth constant by adjusting the buoyancy of the water sampling device, but it can be attached to an offshore structure even if it is suspended from a ship or fixed to the bottom of the sea. Also good. At that time, if the depth of the suction port of the water sampling apparatus can be accurately measured with a depth meter, the viscosity coefficient can be measured more accurately.
 本発明は、海洋調査、湖沼調査、井戸水調査、環境調査、プラント内の液体分析調査、海洋工事にともなう濁度成分調査、海砂の採取にともなう調査等のために、海水、陸水、プラント内液体試料等から採水する採水装置として利用でき、それ以外であっても、液体を採取する装置一般に利用することができる。
 本装置を複数水平方向や垂直方向に配置すれば深度方向や水平方向の水隗構造の時間変化を測定することができ、また、本装置は粘性係数測定装置として用いることができる。
The present invention relates to seawater, land water, plant for marine surveys, lake surveys, well water surveys, environmental surveys, plant liquid analysis surveys, turbidity component surveys associated with offshore construction, surveys associated with sea sand collection, etc. It can be used as a water collection device for collecting water from an internal liquid sample or the like, and even other devices can be used in general for collecting liquid.
If this apparatus is arranged in a plurality of horizontal directions or vertical directions, it is possible to measure the time change of the water tank structure in the depth direction or the horizontal direction, and this apparatus can be used as a viscosity coefficient measuring apparatus.

Claims (12)

  1.  吸引した試料を保存する細管と、真空チャンバーと、前記細管の一方の端部と前記真空チャンバーとを接続した管路途中に設けた電磁弁と、試料を吸引する吸引口と、前記細管の他方の端部と前記吸引口とを接続する管路途中に設けた流体挿入手段を備えた採水装置であって、
     前記電磁弁は、電磁弁を開くことにより、前記細管の一方の端部が前記真空チャンバーに連通し真空吸引により試料を前記吸引口から吸引するものであり、
     前記流体挿入手段は、吸引される試料の途中に試料とは別の流体を挿入することにより前記細管内に保持される試料を前記別の流体で区分けするものであることを特徴とする採水装置。
    A thin tube for storing the sucked sample, a vacuum chamber, an electromagnetic valve provided in the middle of a pipe line connecting one end of the thin tube and the vacuum chamber, a suction port for sucking the sample, and the other of the thin tube A water sampling device provided with fluid insertion means provided in the middle of a pipe line connecting the end of the suction port and the suction port,
    The electromagnetic valve opens the electromagnetic valve so that one end of the thin tube communicates with the vacuum chamber and sucks the sample from the suction port by vacuum suction.
    The fluid insertion means is configured to classify the sample held in the narrow tube by the different fluid by inserting a fluid different from the sample in the middle of the aspirated sample. apparatus.
  2.  前記細管は、採水装置に着脱自在な採水ボビンに巻き付け収容されていることを特徴とする請求項1記載の採水装置。 2. The water sampling apparatus according to claim 1, wherein the narrow tube is wound around and stored in a water sampling bobbin that is detachable from the water sampling apparatus.
  3.  前記細管の一方の端部と前記真空チャンバーとを接続した管路の前記電磁弁の上流側に試料到達センサーを設け、前記細管内に吸引保持された試料が当該センサー位置まで到達したことを検知して前記電磁バルブを閉じることを特徴とする請求項1または2記載の採水装置。 A sample arrival sensor is provided on the upstream side of the solenoid valve in the pipe line connecting one end of the narrow tube and the vacuum chamber, and detects that the sample sucked and held in the narrow tube has reached the sensor position. The water sampling device according to claim 1, wherein the electromagnetic valve is closed.
  4.  前記試料を吸引口から細管内に吸引を開始した時刻から試料が試料到達センサーに到達する時刻までの吸引時間tと、前記吸引口の圧力pから、ハーゲンポワズイユの法則を用いて試料の粘性係数ηを求める粘性係数測定手段を有することを特徴とする請求項3記載の採水装置。 Using the Hagen-Poiseuille law from the suction time t from the time when the sample is sucked into the narrow tube through the suction port until the time when the sample reaches the sample arrival sensor and the pressure p 1 of the suction port 4. A water sampling apparatus according to claim 3, further comprising a viscosity coefficient measuring means for determining the viscosity coefficient η of the water.
  5.  前記吸引口の圧力pは、吸引口の深度から算出することを特徴とする請求項4記載の採水装置。 The water sampling apparatus according to claim 4, wherein the suction port pressure p 1 is calculated from a depth of the suction port.
  6.  吸引した試料を保存する細管と、耐圧容器内に設けられたポンプと、前記細管の一方の端部と前記ポンプの吸気側とを接続した管路と、試料を吸引する吸引口と、前記細管の他方の端部と前記吸引口とを接続する管路途中に設けた流体挿入手段を備えた採水装置であって、
     前記ポンプのONにより前記ポンプの吸気側に接続した前記細管の一方の端部から吸引することにより試料を前記吸引口から吸引し、前記ポンプの排気は前記耐圧容器内に排気されるものであり、
     前記耐圧容器内に設けられた前記流体挿入手段は、吸引される試料の途中に試料とは別の流体を挿入することにより前記細管内に保持される試料を前記別の流体で区分けするものであり、
     前記細管の一方の端部と前記ポンプの吸気側とを接続した管路内の上流側に試料到達センサーを設け下流側に電磁弁を設け、前記細管内に吸引保持された試料が前記試料到達センサー位置まで到達したことを検知して前記電磁バルブを閉じるとともに前記ポンプをOFFすることを特徴とする採水装置。
    A narrow tube for storing the sucked sample, a pump provided in the pressure vessel, a pipe line connecting one end of the thin tube and the suction side of the pump, a suction port for sucking the sample, and the thin tube A water sampling device provided with fluid insertion means provided in the middle of a pipe line connecting the other end of the suction port and the suction port,
    The sample is sucked from the suction port by sucking from one end of the narrow tube connected to the suction side of the pump when the pump is turned on, and the exhaust of the pump is exhausted into the pressure vessel. ,
    The fluid insertion means provided in the pressure vessel is configured to classify a sample held in the narrow tube by the another fluid by inserting a fluid different from the sample in the middle of the aspirated sample. Yes,
    A sample arrival sensor is provided on the upstream side in the pipe line connecting one end of the narrow tube and the suction side of the pump, and an electromagnetic valve is provided on the downstream side, so that the sample sucked and held in the narrow tube reaches the sample. A water sampling apparatus which detects that the sensor position has been reached, closes the electromagnetic valve, and turns off the pump.
  7.  前記細管は、採水装置に着脱自在な採水ボビンに巻き付け収容されていることを特徴とする請求項6記載の採水装置。 The water sampling apparatus according to claim 6, wherein the thin tube is wound around and stored in a water sampling bobbin that is detachable from the water sampling apparatus.
  8.  電磁弁を開いて細管の一方の端部と真空チャンバーを連通させて試料を吸引口から真空吸引し、吸引された前記試料を前記細管内に保存する採水方法であって、
     前記吸引口と前記細管の他方の端部とを接続する管路の途中に設けた流体挿入手段により、吸引される試料の途中に試料とは別の流体を挿入することにより前記細管内に保持される試料を前記別の流体で区分けすることを特徴とする採水方法。
    A water collection method for opening a solenoid valve, communicating one end of a thin tube with a vacuum chamber, vacuuming a sample from a suction port, and storing the sucked sample in the thin tube,
    The fluid is inserted in the middle of the pipe to be connected to the suction port and the other end of the thin tube, and is held in the thin tube by inserting a fluid different from the sample in the middle of the sample to be sucked. The water sampling method is characterized in that the sample to be processed is divided by the another fluid.
  9.  前記細管および前記真空チャンバーを備えた採水装置全体の浮力調整により、自由沈降あるいは自由浮上しながらあるいは特定深度あるいは特定深度間をただよいながら、採水を行うことを特徴とする請求項8記載の採水方法。 9. The water sampling is performed while adjusting the buoyancy of the entire water sampling apparatus including the narrow tube and the vacuum chamber, while free sinking or free floating, or while just passing a specific depth or a specific depth. Water sampling method.
  10.  電磁弁を開いて細管の一方の端部と真空チャンバーを連通させて試料を吸引口から真空吸引を開始した時刻から、前記試料が試料到達センサーに到達する時刻までの吸引時間tを測定し、当該吸引時間tそのときの吸引口の圧力pから試料の粘性係数ηをハーゲンポワズイユの法則
       η=πa(p-p)/(8QL)
    を用いて、ただしaは細管の半径、Lは細管の長さ、p=0(真空)、Q=πaL/tである、を求める粘性係数測定方法。
    Measuring the suction time t from the time when the vacuum valve is opened and the vacuum chamber is communicated by opening the electromagnetic valve to start vacuum suction of the sample from the suction port until the sample reaches the sample arrival sensor; From the suction port pressure p 1 at that time, the viscosity coefficient η of the sample is expressed by Hagen-Poiseuille's law η = πa 4 (p 1 -p 2 ) / (8QL)
    Where V is the radius of the narrow tube, L is the length of the narrow tube, p 2 = 0 (vacuum), and Q = πa 2 L / t.
  11.  耐圧容器内に設けられたポンプのONにより前記ポンプの吸気側に接続した細管の一方の端部から吸引して試料を吸引口から吸引するとともに、前記ポンプの排気は前記耐圧容器内に排気し前記細管内に試料を保存する採水方法であって、前記吸引口と前記細管の他方の端部とを接続する管路の途中に設けた流体挿入手段により、吸引される試料の途中に試料とは別の流体を挿入することにより前記細管内に保持される試料を前記別の流体で区分けし、前記細管の一方の端部と前記ポンプの吸気側とを接続した管路内の上流側に試料到達センサーを設け下流側に電磁弁を設け、試料が前記試料到達センサー位置まで到達したことを検知したら前記電磁バルブを閉じるとともに前記ポンプをOFFすることを特徴とする採水方法。 When the pump provided in the pressure vessel is turned on, the sample is sucked from one end of a thin tube connected to the suction side of the pump and sucked from the suction port, and the exhaust of the pump is exhausted into the pressure vessel. A water sampling method for storing a sample in the narrow tube, wherein the sample is inserted in the middle of the sample to be sucked by a fluid insertion means provided in the middle of a conduit connecting the suction port and the other end of the narrow tube. An upstream side in a pipe line in which one end of the thin tube and the suction side of the pump are connected to each other by separating a sample held in the thin tube by inserting another fluid. A sample collection sensor is provided, and a solenoid valve is provided on the downstream side. When it is detected that the sample has reached the sample arrival sensor position, the electromagnetic valve is closed and the pump is turned off.
  12.  前記細管および前記ポンプを備えた採水装置全体の浮力調整により、自由沈降あるいは自由浮上しながらあるいは特定深度あるいは特定深度間をただよいながら、採水を行うことを特徴とする請求項11記載の採水方法。 12. The water sampling is performed while adjusting the buoyancy of the entire water sampling apparatus including the narrow tube and the pump, while free settling or free floating, or while only having a specific depth or a specific depth. Water sampling method.
PCT/JP2015/069535 2014-07-08 2015-07-07 Water sampling device-cum-viscosity coefficient measurement device and viscosity coefficient measurement method WO2016006609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016532944A JP6345779B2 (en) 2014-07-08 2015-07-07 Water sampling apparatus and water sampling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-140752 2014-07-08
JP2014140752 2014-07-08

Publications (1)

Publication Number Publication Date
WO2016006609A1 true WO2016006609A1 (en) 2016-01-14

Family

ID=55064238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069535 WO2016006609A1 (en) 2014-07-08 2015-07-07 Water sampling device-cum-viscosity coefficient measurement device and viscosity coefficient measurement method

Country Status (2)

Country Link
JP (1) JP6345779B2 (en)
WO (1) WO2016006609A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271328A (en) * 2017-06-13 2017-10-20 大港油田集团有限责任公司 A kind of polymer solution anti-shear performance evaluating apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540602A (en) * 2019-01-04 2019-03-29 安徽辰控智能科技有限公司 A kind of city rain sewage network deep water water quality sampling device with automatic sink-float function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255137A (en) * 2006-03-24 2007-10-04 National Agriculture & Food Research Organization Water sampling device and water sampling method
JP2008538176A (en) * 2005-03-15 2008-10-16 ヴェレニウム コーポレイション Cellulases, nucleic acids encoding them, and methods of making and using them
JP2009525420A (en) * 2006-01-31 2009-07-09 ベン−グリオン ユニバーシティー オブ ザ ネゲヴ,リサーチ アンド ディベロップメント オーソリティー Method and system for monitoring soil quality
JP2009293224A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Water sampling device and water sampling method
JP2014119400A (en) * 2012-12-19 2014-06-30 Hitachi High-Technologies Corp Sample introduction device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462265A (en) * 1983-02-28 1984-07-31 The United States Of America As Represented By The Secretary Of The Navy Multiple depth water sampling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538176A (en) * 2005-03-15 2008-10-16 ヴェレニウム コーポレイション Cellulases, nucleic acids encoding them, and methods of making and using them
JP2009525420A (en) * 2006-01-31 2009-07-09 ベン−グリオン ユニバーシティー オブ ザ ネゲヴ,リサーチ アンド ディベロップメント オーソリティー Method and system for monitoring soil quality
JP2007255137A (en) * 2006-03-24 2007-10-04 National Agriculture & Food Research Organization Water sampling device and water sampling method
JP2009293224A (en) * 2008-06-03 2009-12-17 Ohbayashi Corp Water sampling device and water sampling method
JP2014119400A (en) * 2012-12-19 2014-06-30 Hitachi High-Technologies Corp Sample introduction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271328A (en) * 2017-06-13 2017-10-20 大港油田集团有限责任公司 A kind of polymer solution anti-shear performance evaluating apparatus and method
CN107271328B (en) * 2017-06-13 2019-11-22 大港油田集团有限责任公司 A kind of polymer solution anti-shear performance evaluating apparatus and method

Also Published As

Publication number Publication date
JP6345779B2 (en) 2018-06-20
JPWO2016006609A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US11618870B2 (en) Field-deployable multiplexed sampling and monitoring device and bacterial contamination measurement method
CN102012246B (en) Device for measuring in-situ flow rate change of marine cold seep gas seepage
Amos et al. Sea carousel—a benthic, annular flume
JP2020085883A (en) In situ testing device and method for detecting emission amount of internal contaminant in sea bottom sediment by simulating wave effect
CN105158023B (en) A kind of autocontrol classified filtering water body recovery technology harvester
CN103954736A (en) Underwater real-time micro-fluidic chip biochemical detection device and detection method thereof
JP6345779B2 (en) Water sampling apparatus and water sampling method
CN103901177A (en) Measuring box and method for measuring exhausting flux of greenhouse gas on water surface
CN104567993B (en) Vessel-mounted water detection system
CN110389053A (en) The long-term in-situ sampling of the big depth section pore water of bottom sediment and analytical equipment
CN102680279B (en) Device and method for sampling water body buoy section
CN107621431B (en) Device and method for rapidly measuring hydrate saturation in hydrate sediment suitable for various coring devices
CN115753310A (en) System and method for collecting, filtering, fixing and culturing deep sea pressure-maintaining and heat-preserving microorganisms
CN103808284A (en) Device and method for in-situ detection of internal spatial structure of wastewater treatment biological membrane
CN204269640U (en) A kind of seawater detects and collecting device
JP2023024285A (en) Fluid flux monitoring, and device and method for collecting fluid sample
JP2023024285A5 (en)
CN205898499U (en) Lake storehouse depthkeeping sampling device
CN104360014B (en) Mimic water-depth changes the device to sediment nitrogen phosphorus and heavy metal release venture influence
CN202770666U (en) Profile sampling device for water buoy
CN105259090A (en) Soil infiltrometer
CN204314284U (en) A kind of marine environment data pick-up unit
CN107340234B (en) Device and method for measuring soil binding force
AU2009206170A1 (en) Sampling apparatus and method
CN206038467U (en) Automatic control experimental apparatus that sediment accumulation thing dry bulk density changes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818644

Country of ref document: EP

Kind code of ref document: A1