WO2016004968A1 - Resolving competing handover conditions in wireless networks - Google Patents
Resolving competing handover conditions in wireless networks Download PDFInfo
- Publication number
- WO2016004968A1 WO2016004968A1 PCT/EP2014/064415 EP2014064415W WO2016004968A1 WO 2016004968 A1 WO2016004968 A1 WO 2016004968A1 EP 2014064415 W EP2014064415 W EP 2014064415W WO 2016004968 A1 WO2016004968 A1 WO 2016004968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- access
- network
- receiving
- message
- user terminal
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 48
- 238000005516 engineering process Methods 0.000 claims abstract description 12
- 230000007774 longterm Effects 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims description 10
- 230000000977 initiatory effect Effects 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 8
- 230000011664 signaling Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 102000018059 CS domains Human genes 0.000 description 2
- 108050007176 CS domains Proteins 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000012092 media component Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1101—Session protocols
- H04L65/1104—Session initiation protocol [SIP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1069—Session establishment or de-establishment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/1066—Session management
- H04L65/1101—Session protocols
- H04L65/1106—Call signalling protocols; H.323 and related
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0011—Control or signalling for completing the hand-off for data sessions of end-to-end connection
- H04W36/0022—Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
- H04W36/00224—Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB]
- H04W36/00226—Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB] wherein the core network technologies comprise IP multimedia system [IMS], e.g. single radio voice call continuity [SRVCC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0066—Transmission or use of information for re-establishing the radio link of control information between different types of networks in order to establish a new radio link in the target network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0077—Transmission or use of information for re-establishing the radio link of access information of target access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/08—Reselecting an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/14—Reselecting a network or an air interface
- H04W36/144—Reselecting a network or an air interface over a different radio air interface technology
- H04W36/1446—Reselecting a network or an air interface over a different radio air interface technology wherein at least one of the networks is unlicensed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/16—Performing reselection for specific purposes
- H04W36/18—Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation
- H04W80/04—Network layer protocols, e.g. mobile IP [Internet Protocol]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L65/00—Network arrangements, protocols or services for supporting real-time applications in data packet communication
- H04L65/10—Architectures or entities
- H04L65/1016—IP multimedia subsystem [IMS]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/34—Reselection control
- H04W36/36—Reselection control by user or terminal equipment
- H04W36/362—Conditional handover
Definitions
- the present invention relates to methods and apparatus in a telecommunications network for resolving conflicts that can arise when handing over calls between different wireless networks.
- solutions are presented for resolving a competing Single Radio Voice Call Continuity handover and a handover to a WiFi access.
- IMS IP Multimedia Subsystem
- 3GPP Third Generation Partnership Project
- IMS IP Multimedia Subsystem
- 3GPP Third Generation Partnership Project
- IMS provides key features to enrich the end-user person-to- person communication experience through the integration and interaction of services.
- IMS allows person-to-person (client-to-client) as well as person-to-content (client-to- server) communications over an IP-based network.
- the IMS makes use of the Session Initiation Protocol (SIP) and Session Description Protocol (SDP) to set up and control calls or sessions between user terminals (or user terminals and application servers). Whilst SIP was created as a user-to-user protocol, IMS allows operators and service providers to control user access to services and to charge users accordingly.
- SIP Session Initiation Protocol
- SDP Session Description Protocol
- a User Equipment can access the IMS by attaching to an access network.
- the access network is a Packet Switched (PS) network, such as an Evolved Packet Core (EPC)/Long Term Evolution (LTE) access network
- PS Packet Switched
- EPC Evolved Packet Core
- LTE Long Term Evolution
- SIP Session Initiation Protocol
- CS Circuit Switched
- Single Radio Voice Call Continuity is described in 3GPP TS 23.237 and 3GPP TS 23.216, which specify procedures for handover of a voice call from a PS access to a CS access (e.g. transfer of a VoIP IMS session from an evolved UMTS Radio Access Network - E- UTRAN - to a UTRAN or GSM Edge RAN - GERAN).
- VoIP Voice over LTE
- VoIP Voice over LTE
- 3GPP TS 24.402 specifies procedures for non-3GPP access with the introduction of EPC integrated WLAN. This integrates WLAN as an additionally supported access technology to LTE and CS for a voice service (VoWiFi).
- VoIP voice service
- SRVCC LTE to CS
- WLAN handover LTE to WiFi
- a user device that supports VoLTE, VoWiFi and CS voice communications as well as SRVCC is attached to a LTE access and has an ongoing call that experiences a drop of signal quality, the device may decide to initiate a voice call handover to WiFi (if available).
- the serving eNodeB may decide to initiate a SRVCC handover based on measurement reports received from the device. If these competing handover procedures are allowed to continue unchecked a potential call failure may occur.
- One aspect includes a method of operating a user terminal adapted for wireless telecommunications using any of a plurality of different radio access technologies including a Circuit Switched, CS, access and a Packet Switched, PS access.
- the PS access includes access via a Long Term Evolution, LTE, network and WiFi access via a Wireless Local Area Network, WLAN.
- the method includes: (i) making a determination to switch from a PS LTE access to a WiFi access, (ii) switching to WiFi access, and (iii) ignoring or rejecting a command received to hand over to a CS access.
- Another aspect includes a method of operating a telecommunications network entity to control which of a plurality of different radio access technologies is used to support a session of a user terminal.
- the radio access technologies include a Circuit Switched, CS, access and a Packet Switched, PS access.
- the PS access includes access via a Long Term Evolution, LTE, network and WiFi access.
- the method comprises: receiving a Session Initiation Protocol, SIP, re-INVITE message from a user terminal, the message indicating that the user terminal is attached to the network via a WiFi access; and sending instructions to other network entities to ensure that the terminal continues with the WiFi access and is not handed over to a CS access.
- Another aspect includes a user terminal adapted for wireless telecommunications using any of a plurality of different radio access methods including a Circuit Switched, CS, access and a Packet Switched, PS access.
- the PS access includes access via a Long Term Evolution, LTE, network and WiFi access.
- the user terminal is capable of switching between the different radio access methods.
- the user terminal is configured (i) to make a determination to switch from a PS LTE access to a WiFi access, and (ii) after switching to WiFi access to ignore or interrupt a command received to hand over to a CS access.
- a telecommunications network entity configured as an Access Transfer Control Function, ATCF.
- the entity includes an interface for sending and receiving communications to/from other entities in the network, a processor, and memory having instructions implemented by the processor.
- SIP Session Initiation Protocol
- re-INVITE message from a user terminal indicating that the user terminal is attached to the network via a WiFi access
- the processor causes the entity to send instructions to other network entities to ensure that the terminal continues with the WiFi access and is not handed over to a Circuit Switched, CS, access.
- IP IP
- Figure 1 illustrates schematically an IMS network in association with a cellular network architecture of a Packet Service access network
- Figure 2 illustrates schematically the principal network components involved in a SRVCC handover of a call from a PS access to a CS access.
- Figure 3 is a signal diagram for a normal SRVCC handover of a call.
- Figure 4 is a signal diagram of an embodiment of a procedure for avoiding a handover race condition in one set of circumstances.
- Figure 5 is a signal diagram is a signal diagram of an embodiment of a procedure for avoiding a handover race condition in another set of circumstances.
- FIG. 6 is a schematic block diagram of a User Equipment (UE).
- UE User Equipment
- Figure 7 is a schematic block diagram of a network entity.
- Figure 1 illustrates schematically how the IMS fits into the 3GPP cellular network architecture in the case of a Packet Service access network.
- control of communications occurs at three layers (or planes).
- the lowest layer is the Connectivity Layer 1 , also referred to as the bearer plane and through which signals are directed to/from user equipment (UE) accessing the network.
- the entities within the connectivity layer 1 that connect an IMS subscriber to IMS services form a network that is generally referred to as the IP-Connectivity Access Network, IP-CAN (which in this case is the 3GPP Packet Service access network).
- IP-Connectivity Access Network IP-CAN
- the middle layer is the Control Layer 4, and at the top is the Application Layer 6.
- the IMS 3 includes a core network 3a, which operates over the middle, Control Layer 4 and the Connectivity Layer 1 , and a Service Network 3b.
- the IMS core network 3a includes nodes that send/receive signals to/from the 3GPP Packet Service access network at the Connectivity Layer 1 and network nodes that include Call/Session Control Functions (CSCFs) 5, which operate as SIP proxies within the IMS in the middle, Control Layer 4.
- CSCFs Call/Session Control Functions
- the top, Application Layer 6 includes the IMS service network 3b.
- Application Servers (ASs) 7 are provided for implementing IMS service functionality.
- a User Equipment can access the IMS by attaching to an access network and then over the Connectivity Layer 1 , which is part of a Packet Switched (PS) domain.
- PS Packet Switched
- the UE may attach via an Evolved Packet Core (EPC)/Long Term Evolution (LTE) access.
- EPC Evolved Packet Core
- LTE Long Term Evolution
- an IMS session can be set up by the UE using SIP signalling.
- EPC Evolved Packet Core
- LTE Long Term Evolution
- SIP Packet Switched
- many existing access networks operate only using Circuit Switched (CS) technology, but a UE may also access IMS services via a CS domain 8.
- CS domain will not handle SIP, procedures are well established for dealing with the provision of media and services between the IMS and a UE using a CS access.
- the access network determines, based on the cells for which the UE reports measurements, when the conditions arise that require a request to be made to the core network for the call to be handed over.
- FIG 2 illustrates schematically the principal network components involved in a Single Radio Voice Call Continuity (SRVCC) handover of an emergency call from a PS access network (which in the illustration is a LTE access network as exemplified by the eNodeB 21 base station) to a CS access network (which in the illustration is a GSM/WCDMA access network containing a NodeB 26 base station).
- a UE 20 accesses an IMS network over the PS access network.
- the UE 20 is capable of accessing both the CS and the PS access network and has corresponding interfaces for each type of access.
- Figure 2 shows the UE 20 in two positions: UE 20a using its PS access capability before the handover and UE 20b using its CS capability after the handover.
- the UE 20a initiates a call over the PS access and the call is routed to an end point (in this case a remote UE 30) via the IMS, as shown by the dashed line arrows 201 -203, followed by the solid arrows 204, 205.
- Handover of the call from the PS to the CS access is controlled by a Mobile Management Entity (MME) 28.
- MME Mobile Management Entity
- the call is routed from the UE20b via the IMS as shown by the dotted line arrows 205-209, followed by the solid arrows 204, 205.
- MME Mobile Management Entity
- the principal network entities shown for the PS access include the eNodeB 21 , and a Packet Data Network Gateway and a Serving Gateway (PGW & SGW) 22, hereafter referred to as S/PGW 22.
- the call is routed via the IMS entities, Proxy-Call/Session Control Function (P-CSCF) 23 and an Interrogating-CSCF, which assigns a Serving CSCF, as illustrated by (l/S-CSCF) 25.
- P-CSCF Proxy-Call/Session Control Function
- Interrogating-CSCF which assigns a Serving CSCF, as illustrated by (l/S-CSCF) 25.
- the principal network entities through which the call is routed include the NodeB 26, and a Mobile Switching Centre (MSC) Server 27.
- MSC Mobile Switching Centre
- Also shown in Figure 2 in the IMS network is an Access Transfer Control Function (ATCF) 24, and Session Call Continuity Application Server (SCC AS) 34.
- ATCF Access
- FIG 3 is a signal flow diagram illustrating the signalling that occurs in a SRVCC handover of a call.
- the network entities shown at the top of the diagram have the same reference numerals as those shown in figure 2, and illustrates an SRVCC handover of an ongoing multimedia telephony (MMTel) call 301 from a PS to a CS access.
- MMTel multimedia telephony
- the call 301 proceeds via the S/P-GW 22, which shown in Figure 3 together with the MME 28.
- the handover will transfer the call to a CS access, via the Target MSC/MGW 27, which will become the anchoring node.
- measurement reports sent by the UE 20 to the access network, E-UTRAN 36 are analysed by the access network and determine, at step 303, that a SRVCC handover to a CS access is required.
- a handover required indication 304 is sent to the MME 28, which sends a handover request 305 to the MSC/MGW 27, including information as to the target RAN 26 to which the call is to be handed over.
- Signals 306 and 307 between the MSC/MGW 27 and target RAN 26 prepare for the handover.
- the MSC/MGW 27 sends a SIP INVITE 308 including the new routing information for the handed over call to the l-CSCF 25, which, at 309, forwards this to the P-CSCF/ATCF 23/24.
- the P-CSCF/ATCF 23/24 finds the anchored session, and at step 31 1 sends a command to an Access Transfer Gateway (not shown) to route the media via the CS access.
- the MSC/MGW 27 sends a PS to CS response 312 to the MME 28, which sends a handover (HO) command 313 to the E-UTRAN 36, which sends a handover command 314 to the UE 20.
- these steps may occur in parallel with steps 308 to 31 1 and it is not necessarily the case that the SIP INVITE 308 is received and acted upon in the IMS network before the UE 20 has received the handover command from the E- UTRAN at step 314.
- the UE retunes to the GERAN CS access. This results, as shown at step 316, in handover detection, a suspension of procedures and handover detection at the target MSC/MGW 27.
- step 323 the P-CSCF/ATCF 23/24 sends a SIP INVITE to the SCC AS 34, which, at step 324, results in all media components except for the active voice/audio session being removed.
- step 322 the MSC/MGW 27 sends a location update to the user's Home Location Register (HLR).
- HLR Home Location Register
- the embodiments described below establish a procedure that makes the IMS network and UE favor the handover to WiFi and abort the SRVCC handover.
- the procedures apply for cases when the UE detects and initiates a handover to WiFi before it has received a SRVCC handover command to hand over to a CS access.
- the procedures include features that impact the device (UE), as well as features that impact the IMS network.
- the UE once it has decided to connect to WiFi, is configured not to act on a handover command when received from the LTE network, either by ignoring the command or by sending a reject message, and to send a SIP re-INVITE to the IMS network as soon as WiFi connectivity is established.
- the SIP re-INVITE includes an indication that WiFi is in use.
- the IMS network In the IMS network, if a SRVCC INVITE has been received from an MSC before the re- INVITE is received from the UE with the indication of WiFi access, the IMS network will re-establish the session over the WiFi access, and will remove the session via the MSC.
- a state parameter is set that will reject an incoming SRVCC INVITE from an MSC. This state will be cleared after a configurable timeout or when a new re-INVITE is received from the UE indicating that it is no longer communicating via WiFi access.
- Figure 4 illustrates a procedure that provides a solution to this problem in a first scenario.
- the SRVCC handover procedures are initiated in the network and a handover command 402 is sent to the UE (step 314 if figure 3).
- the UE 20 instead of the UE 20 retuning (step 315 in figure 3), the UE 20 either ignores the handover command, or, as shown, sends a handover rejection 403 to the E-UTRAN 36, and as soon as it is connected to WiFi sends a re-INVITE 404 to the IMS specifying a cause 48x (where x is a numeral in the range 0-9, to be assigned) or other indication that the UE is now using a WLAN connection.
- a cause 48x where x is a numeral in the range 0-9, to be assigned
- the handover command is sent to the UE before the SIP INVITE (step 308 in figure 3) is received and acted upon in the IMS network.
- the P-CSCF/ATCF 23/24 forwards the re-INVITE to the SCC AS 34, and 200OK messages 406, 407 are returned to the UE.
- the P-CSCF/ATCF 23/24 sets a current access network parameter to WLAN, so that any subsequent SRVCC request message will be rejected.
- the anchor MSC/MGW 27 sends an INVITE specifying the connection routing for the SRVCC handover to CS access (as at step 308 of figure 3).
- the P-CSCF/ATCF 23/24 rejects this, because it has already set the current access parameter to WLAN at step 408, by sending a 4xx (where x and y are numerals in the range 0-9, to be assigned) error message 41 1 (i.e. an appropriate error message having an error code in the 400 range) via the l-CSCF 25 to the anchor MSC/MGW 27. This is acknowledged at step 412.
- the MME 28 sends a PS to CS cancel notification to the target MSC/MGW 27. Accordingly, as indicated at step 414, because the session continues using WiFi, which maintains PS access, there is no need to remove the PS media components (as at step 328 of the SRVCC handover procedures illustrated in figure 3).
- Figure 5 shows the signalling sequence for the scenario where the SIP INVITE (step 308 in figure 3) is received and acted upon in the IMS network before the re-INVITE is sent by the UE 20.
- a handover command 501 is sent to the UE (step 314 in figure 3).
- the UE 20 either ignores the handover command or, as shown, responds by sending a handover rejection 502 to the E-UTRAN 36.
- the Anchor MSC/MGW 27 sends an INVITE to the IMS to initiate the SRVCC handover procedure.
- the ATGW (not shown) is ordered to start redirecting media from PS to CS access (step 31 1 of figure 3).
- a SIP 200OK message is sent to the anchor MSC/MGW 27 and this is acknowledged at step 506.
- the P-CSCF/ATCF 23/24 forwards the SRVCC SIP INVITE to the SCC AS 34, which returns a SIP 200 OK at step 508.
- the SCC AS 34 initiates a fallback timer. This is a standard procedure (see 3GPP TS 24.237) used to allow the call to fall back to the PS access if the quality of the communications recover to an acceptable level before the timer has timed out, or if for any reason the UE 20 cannot complete the SRVCC handover.
- the UE 20 has successfully connected to WiFi via a WLAN and sends a SIP re-INVITE to the IMS (in the same way as it did in the figure 4 scenario at step 404). This is forwarded to the SCC AS 34 at step 51 1 . Assuming that this is received before the fallback timer has timed out, then at step 512 a 200 OK message is returned back to the UE 20 and at step 513 the fallback timer is stopped (before it has timed out). Note that if the fallback timer times out before the re-INVITE is received, then the SRVCC handover to CS will proceed, but because the UE is connected to WiFi the call will be dropped.
- the Anchor MSC/MGW 27 sends a SIP BYE 519 with a Q.850 cause to the P-CSCF/ATCF 23/24. This is forwarded at step 520 to the SCC AS 34, which then returns a SIP 200 OK message 521 via the P- CSCF/ATCF 23/24 to the MSC/MGW 27.
- FIG. 6 is a schematic illustration of the principal functional components of a user terminal 60, such as UE 20 described above.
- the user terminal 60 is adapted for wireless telecommunications and includes a transceiver 61 for sending and receiving wireless communications, a processer 62 for executing program instructions and a memory 63 storing program instructions and data.
- the terminal is configured to be able to communicate using any of a number of different radio access methods and includes functional modules, including a CS module 66 for communicating using a CS access, and PS access modules that include a LTE access module 65 and a WiFi access module 64.
- the program instructions in the memory 63 include instructions that enable the terminal 60 to be able to switch between the different radio access methods, and include instructions that enable the terminal (i) to make a determination to switch from a PS LTE access to a WiFi access, and (ii) after switching to WiFi access to ignore or interrupt a command received to hand over to a CS access.
- the user terminal 60 may also be configured to perform any of the functionality required of the UE 20 described above.
- FIG. 7 is a schematic illustration of the principal functional components of a telecommunications network entity 70 configured as an ATCF, such as the ATCF 24 described above.
- the network entity 70 includes an interface, or transceiver 71 for sending and receiving communications to/from other entities in the network, a processor 72, and a memory storing data and instructions implemented by the processor.
- the instructions cause the processor, on receiving a SIP re-INVITE message from a user terminal indicating that the user terminal is attached to the network via a WiFi access, to send instructions to other network entities to ensure that the terminal continues with the WiFi access and is not handed over to a CS access.
- the network entity 70 may also include programming instructions that cause the processor 70 to implement any of functions of the P-CSCF/ATCF 23/24 described above.
- the embodiments described above provide a solution for allowing IP (PS) connectivity to be maintained and assuring coherent handling in the situation where competing conditions arise between a SRVCC handover and a UE-initiated handover to WiFi. This minimises the risk of call failure, and ensures that a call continues on a PS access whenever possible.
- PS IP
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Business, Economics & Management (AREA)
- General Business, Economics & Management (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
One aspect includes a method of operating a user terminal adapted for wireless telecommunications using any of a plurality of different radio access technologies including a Circuit Switched, CS, access and a Packet Switched, PS access. The PS access includes access via a Long Term Evolution, LTE, network and WiFi access via a Wireless Local Area Network, WLAN. The method includes: (i) making a determination to switch from a PS LTE access to a WiFi access, (ii) switching to WiFi access, and (iii) ignoring or rejecting a command received to hand over to a CS access. Other aspects include a user terminal, a telecommunications network entity, and a method of operating a telecommunications network entity.
Description
Resolving Competing Handover Conditions in Wireless Networks
Technical Field
The present invention relates to methods and apparatus in a telecommunications network for resolving conflicts that can arise when handing over calls between different wireless networks. In particular solutions are presented for resolving a competing Single Radio Voice Call Continuity handover and a handover to a WiFi access.
Background
IP Multimedia Subsystem (IMS) is the technology defined by the Third Generation Partnership Project (3GPP) to provide IP Multimedia services over mobile communication networks. IMS provides key features to enrich the end-user person-to- person communication experience through the integration and interaction of services. IMS allows person-to-person (client-to-client) as well as person-to-content (client-to- server) communications over an IP-based network. The IMS makes use of the Session Initiation Protocol (SIP) and Session Description Protocol (SDP) to set up and control calls or sessions between user terminals (or user terminals and application servers). Whilst SIP was created as a user-to-user protocol, IMS allows operators and service providers to control user access to services and to charge users accordingly.
A User Equipment (UE) can access the IMS by attaching to an access network. If the access network is a Packet Switched (PS) network, such as an Evolved Packet Core (EPC)/Long Term Evolution (LTE) access network, an IMS session can be set up by the UE using SIP signalling. However, many existing access networks only support Circuit Switched (CS) technology for telephony with good enough quality of service, and procedures are well established for dealing with the provision of media and services to a UE accessing the IMS via a CS access network.
There are many occasions when during a call/session it is required to transfer or hand over the call/session from one access network to another. Single Radio Voice Call Continuity (SRVCC) is described in 3GPP TS 23.237 and 3GPP TS 23.216, which specify procedures for handover of a voice call from a PS access to a CS access (e.g. transfer of a VoIP IMS session from an evolved UMTS Radio Access Network - E- UTRAN - to a UTRAN or GSM Edge RAN - GERAN).
Accordingly, Voice over LTE (VoLTE) networks and devices that support co-existence with CS technology will normally have support for SRVCC. 3GPP TS 24.402 specifies procedures for non-3GPP access with the introduction of EPC integrated WLAN. This integrates WLAN as an additionally supported access technology to LTE and CS for a voice service (VoWiFi). However situations can arise where a competing or 'race' condition arises between a SRVCC (LTE to CS) handover and a WLAN handover (LTE to WiFi), when a UE leaves LTE coverage. More particularly, when a user device that supports VoLTE, VoWiFi and CS voice communications as well as SRVCC is attached to a LTE access and has an ongoing call that experiences a drop of signal quality, the device may decide to initiate a voice call handover to WiFi (if available). At the same time, the serving eNodeB (radio access node in LTE) may decide to initiate a SRVCC handover based on measurement reports received from the device. If these competing handover procedures are allowed to continue unchecked a potential call failure may occur.
The embodiments presented herein address these problems, noting that it is normally desirable to maintain PS connectivity in order to maintain communication enrichments such as conversational video.
Summary
One aspect includes a method of operating a user terminal adapted for wireless telecommunications using any of a plurality of different radio access technologies including a Circuit Switched, CS, access and a Packet Switched, PS access. The PS access includes access via a Long Term Evolution, LTE, network and WiFi access via a Wireless Local Area Network, WLAN. The method includes: (i) making a determination to switch from a PS LTE access to a WiFi access, (ii) switching to WiFi access, and (iii) ignoring or rejecting a command received to hand over to a CS access.
Another aspect includes a method of operating a telecommunications network entity to control which of a plurality of different radio access technologies is used to support a session of a user terminal. The radio access technologies include a Circuit Switched, CS, access and a Packet Switched, PS access. The PS access includes access via a
Long Term Evolution, LTE, network and WiFi access. The method comprises: receiving a Session Initiation Protocol, SIP, re-INVITE message from a user terminal, the message indicating that the user terminal is attached to the network via a WiFi access; and sending instructions to other network entities to ensure that the terminal continues with the WiFi access and is not handed over to a CS access.
Another aspect includes a user terminal adapted for wireless telecommunications using any of a plurality of different radio access methods including a Circuit Switched, CS, access and a Packet Switched, PS access. The PS access includes access via a Long Term Evolution, LTE, network and WiFi access. The user terminal is capable of switching between the different radio access methods. The user terminal is configured (i) to make a determination to switch from a PS LTE access to a WiFi access, and (ii) after switching to WiFi access to ignore or interrupt a command received to hand over to a CS access.
Another aspect includes a telecommunications network entity configured as an Access Transfer Control Function, ATCF. The entity includes an interface for sending and receiving communications to/from other entities in the network, a processor, and memory having instructions implemented by the processor. On receiving a Session Initiation Protocol, SIP, re-INVITE message from a user terminal indicating that the user terminal is attached to the network via a WiFi access, the processor causes the entity to send instructions to other network entities to ensure that the terminal continues with the WiFi access and is not handed over to a Circuit Switched, CS, access. It is an advantage that IP (PS) connectivity can be maintained and that a coherent mechanism is provided for handling the situation where competing conditions arise between a SRVCC handover and a UE-initiated handover to WiFi. This minimizes the risk of call failure, and ensures that a call continues on a PS access whenever possible.
Brief Description of the Drawings
Figure 1 illustrates schematically an IMS network in association with a cellular network architecture of a Packet Service access network;
Figure 2 illustrates schematically the principal network components involved in a SRVCC handover of a call from a PS access to a CS access.
Figure 3 is a signal diagram for a normal SRVCC handover of a call.
Figure 4 is a signal diagram of an embodiment of a procedure for avoiding a handover race condition in one set of circumstances.
Figure 5 is a signal diagram is a signal diagram of an embodiment of a procedure for avoiding a handover race condition in another set of circumstances.
Figure 6 is a schematic block diagram of a User Equipment (UE).
Figure 7 is a schematic block diagram of a network entity.
Detailed Description
Figure 1 illustrates schematically how the IMS fits into the 3GPP cellular network architecture in the case of a Packet Service access network. As shown in Figure 1 control of communications occurs at three layers (or planes). The lowest layer is the Connectivity Layer 1 , also referred to as the bearer plane and through which signals are directed to/from user equipment (UE) accessing the network. The entities within the connectivity layer 1 that connect an IMS subscriber to IMS services form a network that is generally referred to as the IP-Connectivity Access Network, IP-CAN (which in this case is the 3GPP Packet Service access network). The middle layer is the Control Layer 4, and at the top is the Application Layer 6. The IMS 3 includes a core network 3a, which operates over the middle, Control Layer 4 and the Connectivity Layer 1 , and a Service Network 3b. The IMS core network 3a includes nodes that send/receive signals to/from the 3GPP Packet Service access network at the Connectivity Layer 1 and network nodes that include Call/Session Control Functions (CSCFs) 5, which operate as SIP proxies within the IMS in the middle, Control Layer 4. The top, Application Layer 6 includes the IMS service network 3b. Application Servers (ASs) 7 are provided for implementing IMS service functionality.
As shown in Figure 1 , a User Equipment (UE) can access the IMS by attaching to an access network and then over the Connectivity Layer 1 , which is part of a Packet Switched (PS) domain. For example, the UE may attach via an Evolved Packet Core (EPC)/Long Term Evolution (LTE) access. In that case an IMS session can be set up by the UE using SIP signalling. However, many existing access networks operate only using Circuit Switched (CS) technology, but a UE may also access IMS services via a CS domain 8. Although the CS domain will not handle SIP, procedures are well
established for dealing with the provision of media and services between the IMS and a UE using a CS access.
There are many occasions when during a call/session it is required to transfer or hand over the call/session from one access network to another. There are a variety of factors that are used to determine when a call needs to be handed over to another access network. In general, the access network determines, based on the cells for which the UE reports measurements, when the conditions arise that require a request to be made to the core network for the call to be handed over.
Figure 2 illustrates schematically the principal network components involved in a Single Radio Voice Call Continuity (SRVCC) handover of an emergency call from a PS access network (which in the illustration is a LTE access network as exemplified by the eNodeB 21 base station) to a CS access network (which in the illustration is a GSM/WCDMA access network containing a NodeB 26 base station). A UE 20 accesses an IMS network over the PS access network. The UE 20 is capable of accessing both the CS and the PS access network and has corresponding interfaces for each type of access. Figure 2 shows the UE 20 in two positions: UE 20a using its PS access capability before the handover and UE 20b using its CS capability after the handover.
The UE 20a initiates a call over the PS access and the call is routed to an end point (in this case a remote UE 30) via the IMS, as shown by the dashed line arrows 201 -203, followed by the solid arrows 204, 205. Handover of the call from the PS to the CS access is controlled by a Mobile Management Entity (MME) 28. After the handover of the call to the CS access, the call is routed from the UE20b via the IMS as shown by the dotted line arrows 205-209, followed by the solid arrows 204, 205.
The principal network entities shown for the PS access include the eNodeB 21 , and a Packet Data Network Gateway and a Serving Gateway (PGW & SGW) 22, hereafter referred to as S/PGW 22. The call is routed via the IMS entities, Proxy-Call/Session Control Function (P-CSCF) 23 and an Interrogating-CSCF, which assigns a Serving CSCF, as illustrated by (l/S-CSCF) 25. For the CS access, the principal network entities through which the call is routed include the NodeB 26, and a Mobile Switching Centre (MSC) Server 27. Also shown in Figure 2 in the IMS network is an Access
Transfer Control Function (ATCF) 24, and Session Call Continuity Application Server (SCC AS) 34.
Figure 3 is a signal flow diagram illustrating the signalling that occurs in a SRVCC handover of a call. The network entities shown at the top of the diagram have the same reference numerals as those shown in figure 2, and illustrates an SRVCC handover of an ongoing multimedia telephony (MMTel) call 301 from a PS to a CS access. As shown the call 301 proceeds via the S/P-GW 22, which shown in Figure 3 together with the MME 28. The handover will transfer the call to a CS access, via the Target MSC/MGW 27, which will become the anchoring node. At step 302 measurement reports sent by the UE 20 to the access network, E-UTRAN 36, are analysed by the access network and determine, at step 303, that a SRVCC handover to a CS access is required. A handover required indication 304 is sent to the MME 28, which sends a handover request 305 to the MSC/MGW 27, including information as to the target RAN 26 to which the call is to be handed over. Signals 306 and 307 between the MSC/MGW 27 and target RAN 26 prepare for the handover. Once established, the MSC/MGW 27 sends a SIP INVITE 308 including the new routing information for the handed over call to the l-CSCF 25, which, at 309, forwards this to the P-CSCF/ATCF 23/24. At step 310, the P-CSCF/ATCF 23/24 finds the anchored session, and at step 31 1 sends a command to an Access Transfer Gateway (not shown) to route the media via the CS access.
The MSC/MGW 27 sends a PS to CS response 312 to the MME 28, which sends a handover (HO) command 313 to the E-UTRAN 36, which sends a handover command 314 to the UE 20. Note that these steps may occur in parallel with steps 308 to 31 1 and it is not necessarily the case that the SIP INVITE 308 is received and acted upon in the IMS network before the UE 20 has received the handover command from the E- UTRAN at step 314. At step 315 the UE retunes to the GERAN CS access. This results, as shown at step 316, in handover detection, a suspension of procedures and handover detection at the target MSC/MGW 27. Completion of the procedures is a shown at steps 317 to 326. Importantly, at step 323 the P-CSCF/ATCF 23/24 sends a SIP INVITE to the SCC AS 34, which, at step 324, results in all media components except for the active voice/audio session being removed. Also, at step 322 the MSC/MGW 27 sends a location update to the user's Home Location Register (HLR).
Finally, the signals shown at 326 complete the process and the voice call proceeds via the CS access.
As previously explained, problems can arise if the UE decides to try to move to a WiFi access at the same time that a SRVCC handover is initiated. The embodiments described below establish a procedure that makes the IMS network and UE favor the handover to WiFi and abort the SRVCC handover. The procedures apply for cases when the UE detects and initiates a handover to WiFi before it has received a SRVCC handover command to hand over to a CS access. The procedures include features that impact the device (UE), as well as features that impact the IMS network.
The UE, once it has decided to connect to WiFi, is configured not to act on a handover command when received from the LTE network, either by ignoring the command or by sending a reject message, and to send a SIP re-INVITE to the IMS network as soon as WiFi connectivity is established. The SIP re-INVITE includes an indication that WiFi is in use.
In the IMS network, if a SRVCC INVITE has been received from an MSC before the re- INVITE is received from the UE with the indication of WiFi access, the IMS network will re-establish the session over the WiFi access, and will remove the session via the MSC. In the IMS, once the UE has sent the re-INVITE to announce its current access to be WiFi, a state parameter is set that will reject an incoming SRVCC INVITE from an MSC. This state will be cleared after a configurable timeout or when a new re-INVITE is received from the UE indicating that it is no longer communicating via WiFi access.
Figure 4 illustrates a procedure that provides a solution to this problem in a first scenario. In this case, as shown at step 401 , the SRVCC handover procedures are initiated in the network and a handover command 402 is sent to the UE (step 314 if figure 3). Now, instead of the UE 20 retuning (step 315 in figure 3), the UE 20 either ignores the handover command, or, as shown, sends a handover rejection 403 to the E-UTRAN 36, and as soon as it is connected to WiFi sends a re-INVITE 404 to the IMS specifying a cause 48x (where x is a numeral in the range 0-9, to be assigned) or other indication that the UE is now using a WLAN connection. However, in this scenario the handover command is sent to the UE before the SIP INVITE (step 308 in figure 3) is received and acted upon in the IMS network. At step 405 the P-CSCF/ATCF 23/24
forwards the re-INVITE to the SCC AS 34, and 200OK messages 406, 407 are returned to the UE. Next, at step 408, the P-CSCF/ATCF 23/24 sets a current access network parameter to WLAN, so that any subsequent SRVCC request message will be rejected. Thus, as shown at step 409, when the anchor MSC/MGW 27 sends an INVITE specifying the connection routing for the SRVCC handover to CS access (as at step 308 of figure 3). At step 410 the P-CSCF/ATCF 23/24 rejects this, because it has already set the current access parameter to WLAN at step 408, by sending a 4xx (where x and y are numerals in the range 0-9, to be assigned) error message 41 1 (i.e. an appropriate error message having an error code in the 400 range) via the l-CSCF 25 to the anchor MSC/MGW 27. This is acknowledged at step 412. At step 413 the MME 28 sends a PS to CS cancel notification to the target MSC/MGW 27. Accordingly, as indicated at step 414, because the session continues using WiFi, which maintains PS access, there is no need to remove the PS media components (as at step 328 of the SRVCC handover procedures illustrated in figure 3).
Figure 5 shows the signalling sequence for the scenario where the SIP INVITE (step 308 in figure 3) is received and acted upon in the IMS network before the re-INVITE is sent by the UE 20. As shown, once the SRVCC handover procedures have been initiated in the network a handover command 501 is sent to the UE (step 314 in figure 3). The UE 20 either ignores the handover command or, as shown, responds by sending a handover rejection 502 to the E-UTRAN 36. At step 503 the Anchor MSC/MGW 27 sends an INVITE to the IMS to initiate the SRVCC handover procedure. At step 504 the ATGW (not shown) is ordered to start redirecting media from PS to CS access (step 31 1 of figure 3). At step 505 a SIP 200OK message is sent to the anchor MSC/MGW 27 and this is acknowledged at step 506. At step 507, the P-CSCF/ATCF 23/24 forwards the SRVCC SIP INVITE to the SCC AS 34, which returns a SIP 200 OK at step 508. At step 509 the SCC AS 34 initiates a fallback timer. This is a standard procedure (see 3GPP TS 24.237) used to allow the call to fall back to the PS access if the quality of the communications recover to an acceptable level before the timer has timed out, or if for any reason the UE 20 cannot complete the SRVCC handover.
Now, at step 510, the UE 20 has successfully connected to WiFi via a WLAN and sends a SIP re-INVITE to the IMS (in the same way as it did in the figure 4 scenario at step 404). This is forwarded to the SCC AS 34 at step 51 1 . Assuming that this is received before the fallback timer has timed out, then at step 512 a 200 OK message is
returned back to the UE 20 and at step 513 the fallback timer is stopped (before it has timed out). Note that if the fallback timer times out before the re-INVITE is received, then the SRVCC handover to CS will proceed, but because the UE is connected to WiFi the call will be dropped.
Finally, there are two possibilities for completing the process such that the established session with the Anchor MSC/MGW 27 is stopped and the call proceeds using WiFi. These are denoted as options A and B in figure 5. In option A the P-CSCF/ATCF 23/24 sends a SIP BYE 514 to the MSC/MGW 27, which responds with a SIP 200 OK message 515. When subsequently the MME 28 sends a PS to CS cancel notification 516, the anchor MSC/MGW 27 can ignore this because there is no longer any session to be cleared at the ATCF 24 (as shown at step 517). In Option B, when a PS to CS cancel notification 518 is received from the MME 28, the Anchor MSC/MGW 27 sends a SIP BYE 519 with a Q.850 cause to the P-CSCF/ATCF 23/24. This is forwarded at step 520 to the SCC AS 34, which then returns a SIP 200 OK message 521 via the P- CSCF/ATCF 23/24 to the MSC/MGW 27.
Figure 6 is a schematic illustration of the principal functional components of a user terminal 60, such as UE 20 described above. The user terminal 60 is adapted for wireless telecommunications and includes a transceiver 61 for sending and receiving wireless communications, a processer 62 for executing program instructions and a memory 63 storing program instructions and data. The terminal is configured to be able to communicate using any of a number of different radio access methods and includes functional modules, including a CS module 66 for communicating using a CS access, and PS access modules that include a LTE access module 65 and a WiFi access module 64. The program instructions in the memory 63 include instructions that enable the terminal 60 to be able to switch between the different radio access methods, and include instructions that enable the terminal (i) to make a determination to switch from a PS LTE access to a WiFi access, and (ii) after switching to WiFi access to ignore or interrupt a command received to hand over to a CS access. The user terminal 60 may also be configured to perform any of the functionality required of the UE 20 described above.
Figure 7 is a schematic illustration of the principal functional components of a telecommunications network entity 70 configured as an ATCF, such as the ATCF 24
described above. The network entity 70 includes an interface, or transceiver 71 for sending and receiving communications to/from other entities in the network, a processor 72, and a memory storing data and instructions implemented by the processor. The instructions cause the processor, on receiving a SIP re-INVITE message from a user terminal indicating that the user terminal is attached to the network via a WiFi access, to send instructions to other network entities to ensure that the terminal continues with the WiFi access and is not handed over to a CS access. The network entity 70 may also include programming instructions that cause the processor 70 to implement any of functions of the P-CSCF/ATCF 23/24 described above.
The embodiments described above provide a solution for allowing IP (PS) connectivity to be maintained and assuring coherent handling in the situation where competing conditions arise between a SRVCC handover and a UE-initiated handover to WiFi. This minimises the risk of call failure, and ensures that a call continues on a PS access whenever possible.
Claims
1. A method of operating a user terminal adapted for wireless telecommunications using any of a plurality of different radio access technologies including a Circuit Switched, CS, access and a Packet Switched, PS access, wherein the PS access includes access via a Long Term Evolution, LTE, network and WiFi access via a Wireless Local Area Network, WLAN, the method comprising:
(i) making a determination to switch from a PS LTE access to a WiFi access,
(ii) switching to WiFi access, and
(iii) ignoring or rejecting a command received to hand over to a CS access.
2. The method of claim 1 , wherein the user terminal is accessing an IMS network, and further comprising, on receiving a command to hand over to CS access after making the determination to switch to WiFi access, sending a Session Initiation Protocol, SIP, re-INVITE message to the IMS network as soon as the user terminal has established WiFi access.
3. A method of operating a telecommunications network entity to control which of a plurality of different radio access technologies is used to support a session of a user terminal, the radio access technologies including a Circuit Switched, CS, access and a Packet Switched, PS access, wherein the PS access includes access via a Long Term Evolution, LTE, network and WiFi access, the method comprising:
receiving a Session Initiation Protocol, SIP, re-INVITE message from a user terminal, the message indicating that the user terminal is attached to the network via a WiFi access; and
sending instructions to other network entities to ensure that the terminal continues with the WiFi access and is not handed over to a CS access.
4. The method of claim 3, further comprising, after receiving the re-INVITE message, and upon receiving a message from a Mobile Switching Centre, MSC, requesting a hand-over to CS access, sending a response rejecting the handover request together with an error indication.
5. The method of claim 3 further comprising, after receiving a message from a MSC requesting a handover to CS access and initiating a handover procedure, and on receiving the re-INVITE message, terminating the handover procedure.
6. The method of claim 5, further comprising, on receiving the message requesting a handover to CS access, initiating a fallback timer, wherein receiving the re-INVITE message stops the fallback timer to terminate the handover procedure.
7. The method of claim 5 or claim 6, further comprising, on receiving the re- INVITE message, sending a message to the MSC to terminate the handover procedure.
8. A user terminal adapted for wireless telecommunications using any of a plurality of different radio access methods including a Circuit Switched, CS, access and a Packet Switched, PS access, wherein the PS access includes access via a Long Term Evolution, LTE, network and WiFi access, wherein the user terminal is capable of switching between the different radio access methods, and wherein the user terminal is configured (i) to make a determination to switch from a PS LTE access to a WiFi access, and (ii) after switching to WiFi access to ignore or interrupt a command received to hand over to a CS access.
9. The user terminal of claim 8, wherein the user terminal is configured to access an IMS network, and on receiving a command to hand over to CS access after making the determination to switch to WiFi access, to send a Session Initiation Protocol, SIP, re-INVITE message to the IMS network as soon as it has established WiFi access.
10. A telecommunications network entity configured as an Access Transfer Control Function, ATCF, comprising:
an interface for sending and receiving communications to/from other entities in the network,
a processor; and
memory having instructions implemented by the processor,
wherein, on receiving a Session Initiation Protocol, SIP, re-INVITE message from a user terminal indicating that the user terminal is attached to the network via a WiFi access, the processor causes the entity to send instructions to other network entities to
ensure that the terminal continues with the WiFi access and is not handed over to a Circuit Switched, CS, access.
11 . The network entity of claim 10, further configured, after receiving the re-INVITE message and subsequently receiving a message from a MSC requesting a hand-over to Circuit Switched, CS, access, to return a message to the Mobile Switching Centre, MSC, rejecting the handover request together with an error indication.
12. The network entity of claim 10 further configured, on receiving the re-INVITE message after receiving a message from a MSC requesting a handover to CS access, to initiate termination of the handover procedure.
13. The network entity of claim 12 further configured, on receiving the message requesting a handover to CS access, forwarding the message to a Session Call Continuity Application Server, SCC AS, to initiate a fallback timer and on receiving the relNVITE message, forwarding the re-INVITE message to the SCC AS to stop the fallback timer so as to terminate the handover procedure.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480080477.3A CN106664616B (en) | 2014-07-07 | 2014-07-07 | Resolving contention handover conditions in a wireless network |
EP14736782.5A EP3167650B1 (en) | 2014-07-07 | 2014-07-07 | Resolving competing handover conditions in wireless networks |
US15/324,345 US10027719B2 (en) | 2014-07-07 | 2014-07-07 | Resolving competing handover conditions in wireless networks |
PCT/EP2014/064415 WO2016004968A1 (en) | 2014-07-07 | 2014-07-07 | Resolving competing handover conditions in wireless networks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2014/064415 WO2016004968A1 (en) | 2014-07-07 | 2014-07-07 | Resolving competing handover conditions in wireless networks |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016004968A1 true WO2016004968A1 (en) | 2016-01-14 |
Family
ID=51162793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2014/064415 WO2016004968A1 (en) | 2014-07-07 | 2014-07-07 | Resolving competing handover conditions in wireless networks |
Country Status (4)
Country | Link |
---|---|
US (1) | US10027719B2 (en) |
EP (1) | EP3167650B1 (en) |
CN (1) | CN106664616B (en) |
WO (1) | WO2016004968A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107333305A (en) * | 2016-04-29 | 2017-11-07 | 展讯通信(上海)有限公司 | Suitable for the switching method and device of user terminal |
CN107996029A (en) * | 2017-09-30 | 2018-05-04 | 深圳市云中飞网络科技有限公司 | The falling result detection method and device of CSFB a kind of, computer-readable storage medium |
WO2018098788A1 (en) * | 2016-12-01 | 2018-06-07 | 华为技术有限公司 | Method and apparatus for releasing wireless access bearer |
WO2018228678A1 (en) * | 2017-06-13 | 2018-12-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Quality of service initiated handover |
CN111246530A (en) * | 2020-02-06 | 2020-06-05 | 北京小米移动软件有限公司 | Network switching method and device and storage medium |
US11032746B2 (en) | 2017-06-23 | 2021-06-08 | British Telecommunications Public Limited Company | Voice service handover |
US11140620B2 (en) | 2017-03-31 | 2021-10-05 | British Telecommunications Public Limited Company | Access network selection |
US11147010B2 (en) | 2017-03-31 | 2021-10-12 | British Telecommunications Public Limited Company | Network discovery |
US11197204B2 (en) | 2017-06-23 | 2021-12-07 | British Telecommunications Public Limited Company | Voice service handover |
US11337077B2 (en) | 2018-03-29 | 2022-05-17 | British Telecommunications Public Limited Company | Method of channel selection in a wireless network |
US11974218B2 (en) | 2017-03-31 | 2024-04-30 | British Telecommunications Public Limited Company | Access network selection |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10080163B2 (en) * | 2014-07-15 | 2018-09-18 | T-Mobile Usa, Inc. | Telecommunication network pre-establishment service interruption response |
EP3205143B1 (en) * | 2014-10-08 | 2020-09-02 | Nokia Solutions and Networks Oy | Transfer of communication parameters |
JP2019145858A (en) * | 2016-06-30 | 2019-08-29 | シャープ株式会社 | Terminal device, control device, and communication control method |
US10104583B2 (en) * | 2016-08-26 | 2018-10-16 | Samsung Electronics Co., Ltd. | Adaptive VoLTE handover mode based on network capability |
US10582435B2 (en) * | 2017-07-28 | 2020-03-03 | Samsung Electronics Co., Ltd. | Method and system for handling wireless communication in voice over wireless fidelity system |
CN110225542B (en) * | 2019-05-29 | 2022-08-02 | 广东工业大学 | Method and system for switching network of wearable device |
CN110972088B (en) * | 2019-11-27 | 2022-02-18 | 宇龙计算机通信科技(深圳)有限公司 | Voice call network switching method and device, storage medium and electronic equipment |
CN111182598A (en) * | 2019-12-31 | 2020-05-19 | 惠州Tcl移动通信有限公司 | Call switching method and device, storage medium and mobile terminal |
US11039297B1 (en) * | 2020-02-26 | 2021-06-15 | Apple Inc. | DSDS Wi-Fi calling enhancements |
US12035420B2 (en) | 2021-11-18 | 2024-07-09 | T-Mobile Usa, Inc. | Breakout gateway control function number modification based on SIP invite header information |
US11936694B2 (en) | 2021-11-18 | 2024-03-19 | T-Mobile Usa, Inc. | Cross-domain routing based on session initiation protocol information |
US11974176B2 (en) * | 2021-12-03 | 2024-04-30 | Qualcomm Incorporated | Inter-radio access technology handoff procedure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070297373A1 (en) * | 2006-06-21 | 2007-12-27 | Nokia Corporation | Method, system and computer program product for providing session initiation/delivery through a wlan to a terminal |
US20100081428A1 (en) * | 2008-09-26 | 2010-04-01 | Harunobu Maejima | Wireless Device Having Multiple Network Interfaces And Network Handover Capability |
WO2010077689A1 (en) * | 2008-12-08 | 2010-07-08 | Qualcomm Incorporated | Apparatus and method for providing mobility to ims sessions in mobile ip networks |
WO2013104651A1 (en) * | 2012-01-10 | 2013-07-18 | Nokia Siemens Networks Oy | Handling handover requests in a communications system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9179291B1 (en) * | 2005-10-20 | 2015-11-03 | Apple Inc. | Providing a set of services to a multi-mode mobile station that is able to operate over packet-switched and circuit-switched access networks |
US8886261B2 (en) * | 2005-12-06 | 2014-11-11 | Motorola Mobility Llc | Multi-mode methods and devices utilizing battery power level for selection of the modes |
CN102362524A (en) * | 2009-03-23 | 2012-02-22 | 诺基亚公司 | Systems, methods, apparatuses, and computer program products for facilitating voice call continuity in intersystem handover |
CN103889013A (en) * | 2012-12-19 | 2014-06-25 | 中国移动通信集团北京有限公司 | Cellular network and WLAN seamless switching method, device and client |
US10080163B2 (en) * | 2014-07-15 | 2018-09-18 | T-Mobile Usa, Inc. | Telecommunication network pre-establishment service interruption response |
-
2014
- 2014-07-07 US US15/324,345 patent/US10027719B2/en active Active
- 2014-07-07 CN CN201480080477.3A patent/CN106664616B/en active Active
- 2014-07-07 WO PCT/EP2014/064415 patent/WO2016004968A1/en active Application Filing
- 2014-07-07 EP EP14736782.5A patent/EP3167650B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070297373A1 (en) * | 2006-06-21 | 2007-12-27 | Nokia Corporation | Method, system and computer program product for providing session initiation/delivery through a wlan to a terminal |
US20100081428A1 (en) * | 2008-09-26 | 2010-04-01 | Harunobu Maejima | Wireless Device Having Multiple Network Interfaces And Network Handover Capability |
WO2010077689A1 (en) * | 2008-12-08 | 2010-07-08 | Qualcomm Incorporated | Apparatus and method for providing mobility to ims sessions in mobile ip networks |
WO2013104651A1 (en) * | 2012-01-10 | 2013-07-18 | Nokia Siemens Networks Oy | Handling handover requests in a communications system |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107333305A (en) * | 2016-04-29 | 2017-11-07 | 展讯通信(上海)有限公司 | Suitable for the switching method and device of user terminal |
WO2018098788A1 (en) * | 2016-12-01 | 2018-06-07 | 华为技术有限公司 | Method and apparatus for releasing wireless access bearer |
US11140620B2 (en) | 2017-03-31 | 2021-10-05 | British Telecommunications Public Limited Company | Access network selection |
US11974218B2 (en) | 2017-03-31 | 2024-04-30 | British Telecommunications Public Limited Company | Access network selection |
US11147010B2 (en) | 2017-03-31 | 2021-10-12 | British Telecommunications Public Limited Company | Network discovery |
WO2018228678A1 (en) * | 2017-06-13 | 2018-12-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Quality of service initiated handover |
US10595250B2 (en) | 2017-06-13 | 2020-03-17 | Telefonaktiebolaget Lm Ericsson (Publ) | Quality of service initiated handover |
US11032746B2 (en) | 2017-06-23 | 2021-06-08 | British Telecommunications Public Limited Company | Voice service handover |
US11197204B2 (en) | 2017-06-23 | 2021-12-07 | British Telecommunications Public Limited Company | Voice service handover |
WO2019061486A1 (en) * | 2017-09-30 | 2019-04-04 | 深圳市云中飞网络科技有限公司 | Csfb fallback result detecting method, device thereof and computer storage medium |
CN107996029A (en) * | 2017-09-30 | 2018-05-04 | 深圳市云中飞网络科技有限公司 | The falling result detection method and device of CSFB a kind of, computer-readable storage medium |
US11337077B2 (en) | 2018-03-29 | 2022-05-17 | British Telecommunications Public Limited Company | Method of channel selection in a wireless network |
CN111246530A (en) * | 2020-02-06 | 2020-06-05 | 北京小米移动软件有限公司 | Network switching method and device and storage medium |
EP3863330A1 (en) * | 2020-02-06 | 2021-08-11 | Beijing Xiaomi Mobile Software Co., Ltd. | Network switching to a target wireless access network capable of establishing a connection with an ims network |
US11252623B2 (en) | 2020-02-06 | 2022-02-15 | Beijing Xiaomi Mobile Software Co., Ltd. | Network switching method, device and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN106664616A (en) | 2017-05-10 |
US20170180429A1 (en) | 2017-06-22 |
EP3167650A1 (en) | 2017-05-17 |
CN106664616B (en) | 2020-09-04 |
EP3167650B1 (en) | 2021-05-19 |
US10027719B2 (en) | 2018-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10027719B2 (en) | Resolving competing handover conditions in wireless networks | |
US10721656B2 (en) | Telecommunication network pre-establishment service interruption response | |
KR102179048B1 (en) | Method for providing packet-service emergency call seamlessly | |
US20160029228A1 (en) | Telecommunications Network Non-Establishment Response | |
US20150016420A1 (en) | Handover of user-equipment (ue) undetected emergency calls | |
EP2826292B1 (en) | Handover of emergency call anchored in ims to a circuit switched access network | |
EP2640030B1 (en) | Capability update in a telecommunications network | |
EP3307009B1 (en) | Method for establishing a communication and communication device | |
JP6480011B2 (en) | Method and mobile radio communication network component for establishing communication | |
EP2850884B1 (en) | Service provision in a cellular communications network comprising cells with different service capabilities | |
US9900806B2 (en) | Handling call transfer in a communication network | |
US11832323B2 (en) | Internet protocol multimedia subsystem session continuity in dual registration | |
US20210377817A1 (en) | Packet-switched to circuit-switched handover during voip call initiation | |
WO2013053365A1 (en) | Methods of and nodes for locating an emergency voice session anchoring node in a serving communication network for transferring an emergency voice session |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14736782 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2014736782 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014736782 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15324345 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |