WO2016004642A1 - 可对挤出物料截面积进行调节的3d打印机喷头及其速度和精度控制方法 - Google Patents

可对挤出物料截面积进行调节的3d打印机喷头及其速度和精度控制方法 Download PDF

Info

Publication number
WO2016004642A1
WO2016004642A1 PCT/CN2014/082514 CN2014082514W WO2016004642A1 WO 2016004642 A1 WO2016004642 A1 WO 2016004642A1 CN 2014082514 W CN2014082514 W CN 2014082514W WO 2016004642 A1 WO2016004642 A1 WO 2016004642A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
cross
speed
printing
printer
Prior art date
Application number
PCT/CN2014/082514
Other languages
English (en)
French (fr)
Inventor
王飞跃
熊刚
沈震
刘学
Original Assignee
东莞中国科学院云计算产业技术创新与育成中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞中国科学院云计算产业技术创新与育成中心 filed Critical 东莞中国科学院云计算产业技术创新与育成中心
Priority to US14/778,108 priority Critical patent/US10016929B2/en
Publication of WO2016004642A1 publication Critical patent/WO2016004642A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/226Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2055/00Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
    • B29K2055/02ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/490233-D printing, layer of powder, add drops of binder in layer, new powder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • 3D printer nozzle capable of adjusting the cross-sectional area of extruded material and its speed and precision control method
  • the invention relates to the field of 3D printing technology, in particular to a 3D printer nozzle cross-sectional area adjustable structure and a speed and precision control method thereof.
  • 3D printing as a rapid prototyping technology, uses a book software to layer and discretize a 3D digital model, and then uses an adhesive material such as powdered metal or plastic to construct an entity by layer-by-layer stacking.
  • 3D printing technology is an additive manufacturing category that is different from traditional subtractive manufacturing and can save production materials.
  • the common 3D printing technology has a fuse deposition technology, which melts and melts a filamentous hot-melt material, is extruded by a nozzle with a fine passage, is sprayed from a nozzle, and is deposited on a workbench at a temperature. Curing begins below the curing temperature and the finished product is formed by layering of the material.
  • the nozzle is a core component; however, the cross-sectional shape of the extrusion nozzle of the conventional 3D printer has only a fixed circular shape, and the effective forming width of the nozzle spinning per unit time is constant. Since the effective unit forming area of the nozzle spinning is not adjustable, we cannot control the printing accuracy and speed of the 3D printer; different printing accuracy and speed cannot be achieved for different printing purposes and different printing areas (different models or the same model).
  • SUMMARY OF THE INVENTION One of the technical problems solved by the present invention is based on the current inner diameter cross-sectional shape of a 3D printer nozzle. It is circular and cannot control the printing speed and precision of different models or different areas of the same model. It provides a 3D printer nozzle that can adjust the cross-sectional area of the extruded material, which can adjust the printing speed and precision.
  • the second technical problem solved by the present invention is that the shape of the inner diameter of the nozzle of the current 3D printer is circular, and the current state of control of printing speed and precision for different models or different regions of the same model cannot be provided.
  • Print speed and accuracy control methods that control print speed and accuracy.
  • the utility model comprises a conveying pipeline and an extrusion nozzle; the extrusion nozzle is located below the conveying pipeline; and the utility model further comprises: a peripheral casing and a driving device, wherein the conveying pipeline is embedded in the outer casing, and the extrusion nozzle is the same
  • the shaft is fixedly connected under the conveying pipeline; the center of gravity of the cross section shape of the inner passage of the conveying passage and the extrusion nozzle is located on the same axis of the cross section of the vertical conveying pipeline and the extrusion nozzle; the conveying pipeline is at the driving device Under the driving, the rotating shaft can be rotated relative to the extrusion nozzle; for different rotation angles, the width of the forming region of the extrusion nozzle extrusion is different in the same direction; thereby adjusting the cross-sectional area of the spray nozzle.
  • the driving device comprises a turntable and a motor; the turntable is connected to the printer body, the motor is located in the outer casing and can drive the turntable to rotate; the feed line is fixedly mounted on the lower end of the turntable.
  • the cross-sectional shape of the inner passage of the conveying pipe and the cross-sectional shape of the inner passage of the extruding nozzle are regular polygonal shapes.
  • the regular polygon may be a regular polygon such as a triangle or a quadrangle.
  • the cross-sectional shape of the inner passage of the conveying pipe and the cross-sectional shape of the inner passage of the extruding nozzle are the same rectangle, wherein the long side of the rectangle is J max and the short side is toast ⁇ ; the conveying pipe is perpendicular to the conveying material
  • the angle of rotation of the shaft of the inner passage section of the pipe and the extrusion nozzle is such that the nozzle having the rotation angle of ⁇ advances in one direction
  • the effective printing area width is J max S ii ⁇ + J min C0S
  • the nozzle moving speed is constant and the Z-axis forming height of each layer is a certain value, the nozzles with different rotation angles per unit time are effectively printed.
  • the area of the area is proportional to the width of the print area.
  • the peripheral casing includes heating means for heating the easily melted conveying material such as ABS or PLA in the conveying pipe to be in a molten state.
  • the printing speed regulation method is:
  • Printing speed ⁇ * S * J ;
  • S is the cross-sectional area of the actual nozzle of the nozzle, which is the unit printing print area, which is a constant related to the printer;
  • the actual nozzle cross-sectional area S and the unit print forming area £ determine the feed rate and affect the hot melt speed; the feed speed and the hot melt speed together determine the printing speed;
  • the precision adjustment method is as follows: according to the different requirements of the printing precision, the printing speed is adjusted to control the printing precision; when the printing precision is high, the printing speed is slow; when the printing precision is low, the printing speed is fast.
  • the motor controls the angle of rotation of the extrusion nozzle to change the cross-sectional area S of the actual extruded material of the extrusion nozzle per unit time; since the working speed of the printing nozzle does not change, in order to ensure that the forming height of each layer of the Z-axis is a certain value, real-time
  • the feeding speed of the conveying pipeline is adjusted; the feeding speed is equal to the hot melting speed of the conveying material, and also the printing speed when the printer is working.
  • the cross-sectional shape of the inner passage of the conveying pipe and the cross-sectional shape of the inner passage of the extruding nozzle are the same rectangular shape, wherein the long side of the rectangle is J max and the short side is J mn ;
  • the effective printing area of the nozzle with different rotation angles per unit time is proportional to the width of the printing area; the width of the printing area is J max S ii ⁇ + J min C0S , where ⁇ The angle of rotation of the feed line about an axis perpendicular to the cross-sectional shape of the inner passage of the feed line and the extrusion nozzle.
  • the present invention controls the rotation of the extrusion nozzle relative to the feed line by controlling the rotation of the motor. Angle; and then select different print forming widths; thereby achieving control of the print forming area; to control the printing accuracy and speed of the printer. Different printing accuracy and speed can be adjusted for different printing purposes and different printing areas.
  • Figure 1 is a front elevational view of the printer head of the present invention
  • Figure 2 is a plan view of the nozzle of the present invention at different rotation angles
  • Figure 3 is a logic diagram of factors affecting the printing speed of the present invention
  • Figure 4 is a diagram of the printing speed control system of the present invention.
  • FIG. 1 it is a front view of the printer head of the present invention; and includes a peripheral housing 602, a delivery line 604 and an extrusion nozzle 605.
  • the peripheral housing 602 includes a heating element that heats the transfer material in the delivery line to a molten state.
  • the extrusion nozzle 605 is fixedly connected below the delivery line 604.
  • the cross section of the inner passage 603 of the conveying pipe and the inner passage 606 of the extruding nozzle have a regular triangular shape, a quadrangular shape and the like, and the center of gravity of the cross-sectional shape of the inner passage 603 of the conveying passage and the cross-sectional shape of the inner passage 606 of the extruding nozzle.
  • the center of gravity is on an axis perpendicular to the cross section of the passage 603 in the feed line and the cross section of the passage 606 in the extrusion nozzle.
  • the delivery line 604 is fixedly mounted on the lower end of the turntable 601, and the turntable 601 is connected to the printer body.
  • the turntable 601 is rotatable about an axis perpendicular to the cross section of the passage 603 in the feed line and the cross section of the passage 606 in the extrusion nozzle.
  • the peripheral housing 602 includes a motor controllable rotation of the turntable 601, and the rotation angle of the turntable is regulated by the number of rotations of the motor.
  • the cross-sectional shape of the inner passage 603 of the conveying pipe is designed to be the same as the cross-sectional shape of the inner passage 606 of the extrusion nozzle, wherein the long side of the rectangle is J ⁇ and the short side is nin. .
  • the rotation of the nozzle can be regulated by the rotation of the turntable 601.
  • a, b, and c are top views of the inner passage cross-section of the nozzles of different rotation angles.
  • the effective printing area width is J ⁇ sii ⁇ + ⁇ cos ⁇ Since the moving speed of the nozzle is constant at the working position, the Z-axis forming height of each layer is constant. Value, the effective print area of the nozzle with different rotation angles per unit time is proportional to the width of the print area.
  • the feed rate of the feed line should be adjusted in real time.
  • the rotation angle of the nozzle in c is 0.
  • the effective printing area width of the nozzle is J mn
  • the printing precision is the highest
  • the printing speed is also the slowest, which can be applied to the case where the printing precision is high. under.
  • the printing speed control method is:
  • Printing speed ⁇ * S * J ;
  • S is the cross-sectional area of the actual nozzle of the nozzle, which is the unit printing print area, which is a constant related to the printer;
  • the actual nozzle cross-sectional area S and the unit print forming area £ determine the feed rate and affect the hot melt speed; the feed speed and the hot melt speed together determine the printing speed;
  • the printing speed is controlled by a change in S and , that is, the feed speed of the nozzle feed line is regulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

一种可对挤出物料截面积进行调节的3D打印机喷头,包括有输料管路(604)、挤料喷嘴(605);挤料喷嘴(605)位于输料管路(604)下方;还包括有外围壳体(602)和驱动装置,输料管路(604)内嵌于外围壳体(602)内,挤料喷嘴(605)同轴固定连接在输料管路(604)下方;输料管路的内通道(603)与挤料喷嘴的内通道(606)截面形状的重心位于垂直输料管路(604)和挤料喷嘴内通道(606)截面的同一轴上;输料管路(604)在驱动装置的驱动下可以相对于挤料喷嘴(605)绕前述轴转动;针对不同的旋转角度,在同一方向上挤料喷嘴(605)挤料的成形区域宽度不同;从而调节喷头喷丝的截面积。上述3D打印机喷头可以控制打印的速度和精度,在确保精度要求的情况下,提升整体打印速度。

Description

可对挤出物料截面积进行调节的 3D打印机喷头及其速度和精度控制方法
技术领域
本发明涉及 3D打印技术领说域, 尤其是一种 3D打印机喷丝截面积可调结构 及其速度和精度控制方法。 背景技术
3D打印, 作为一种快速成形技术, 是通过书软件将 3D数字模型进行分层离散 化处理, 然后运用粉末状金属或塑料等可粘合性材料, 通过逐层堆积的方式来 构造实体。 3D打印技术是一种加式制造范畴, 有别于传统的减式制造范畴, 能 够更好的节约生产原料。 目前, 常见的 3D打印技术有熔丝沉积技术, 它是将丝状热熔性材料加热融 化, 通过带有一个微细通道的喷头挤喷出来, 从喷嘴喷出后, 沉积在工作台上, 温度低于固化温度后开始固化, 通过材料的层层堆积最终形成成品。 3D打印中, 喷头是其一个核心部件; 但是常规的 3D打印机的打印喷头的挤料喷嘴内径截面 形状只有固定的圆形, 单位时间内喷嘴喷丝的有效成形宽度一定。 由于喷嘴喷 丝的有效单位成形面积不可调, 我们不能控制 3D打印机的打印精度和速度; 无 法针对不同的打印目的和不同的打印区域 (不同模型或者同一模型), 实现不同 的打印精度和速度。 发明内容 本发明解决的技术问题之一在于基于目前的 3D打印机喷嘴内径截面形状都 是圆形的, 不能做到针对不同模型或者同一模型不同区域的打印速度和精度的 控制的现状, 提供一种可对挤出物料截面积进行调节的 3D打印机喷头, 可以调 节打印速度和精度。
本发明解决的技术问题之二在于基于目前的 3D打印机喷嘴内径截面形状都 是圆形的, 不能做到针对不同模型或者同一模型不同区域的打印速度和精度的 控制的现状, 提供一种可以根据打印需求控制打印速度和精度的速度和精度控 制方法。
本发明解决上述技术问题之一的技术方案是:
包括有输料管路、 挤料喷嘴; 挤料喷嘴位于输料管路下方; 其特征在于: 还包括有外围壳体和驱动装置, 输料管路内嵌于外围壳体内, 挤料喷嘴同轴固 定连接在输料管路下方; 输料通道与挤料喷嘴的内通道截面形状的重心位于垂 直输料管路和挤料喷嘴内通道截面的同一轴上; 输料管路在驱动装置的驱动下 可以相对于挤料喷嘴绕前述轴转动; 针对不同的旋转角度, 在同一方向上挤料 喷嘴挤料的成形区域宽度不同; 从而调节喷头喷丝的截面积。
所述的驱动装置包括转盘和电机; 转盘与打印机机体相连, 电机位于外围 壳体内并可驱动转盘转动; 输料管路固定安装于转盘的下端。
所述的输料管路的内通道截面形状与挤料喷嘴的内通道截面形状均为规则 的多边形。
所述的规则的多边形可为三角形、 四边形等规则的多边形。
所述的输料管路的内通道截面形状和挤料喷嘴的内通道截面形状为相同的 矩形, 其中矩形的长边为 Jmax, 短边为 „ιη ; 输料管路绕垂直于输料管路和挤料 喷嘴的内通道截面形状的轴的旋转角度为 当旋转角度为 ^的喷头往一方向进 行工作时, 有效的打印区域宽度为 Jmax Sii^ + Jmin C0S 在喷头移动速度大小不变、 每层的 Z轴成型高度为一定值时, 单位时间内不同旋转角度的喷头有效的打印 区域面积与打印区域宽度成正比。
所述的外围壳体内包含有加热装置, 用于加热输料管路中的 ABS或 PLA等 易熔融的传输物料, 使其为熔融状态。
本发明解决上述技术问题之二的技术方案是:
所述的打印速度调控方法是:
打印速度 = ^ * S * J ; 其中 S为喷嘴实际喷丝的截面积, 为单位打印成形 面积, 是与打印机有关的常量;
喷嘴实际喷丝截面积 S和单位打印成形面积 £决定进料速度,并影响热熔速 度; 进料速度和热熔速度共同决定打印速度;
通过 S与 的改变形成一个信号来控制打印速度, 即调控喷头输料管路的进 料速度;
所述的精度调控方法是: 根据打印精度的不同需求, 调整打印速度以控制 打印精度; 打印精度要求高时, 打印速度慢; 打印精度要求低时, 打印速度快。
通过电机调控挤料喷嘴旋转的角度来改变单位时间内挤料喷嘴实际挤出物 料的截面积 S; 由于打印喷头的工作移动速度不变, 为确保每层 Z轴成形高度为 一定值, 要实时地根据挤料喷嘴实际挤出物料的截面积 S来调控输料管路的进 料速度; 进料速度与传输物料的热熔速度大小相等, 同时也为打印机工作时的 打印速度 。
所述的输料管路的内通道截面形状和挤料喷嘴的内通道截面形状为相同的 矩形时, 其中矩形的长边为 Jmax, 短边为 Jmn ; 在喷头移动速度大小不变、 每层 的 z 轴成型高度为一定值时, 单位时间内不同旋转角度的喷头有效的打印区域 面积与打印区域宽度成正比;所述的打印区域宽度为 Jmax Sii^ + Jmin C0S 其中, Θ 为输料管路绕垂直于输料管路和挤料喷嘴的内通道截面形状的轴的旋转角度^ 有益效果: 本发明通过控制电机的转动, 进而控制挤料喷嘴相对于输料管路的旋转角 度; 进而选择不同的打印成形宽度; 从而实现对打印成形面积的控制; 以控制 打印机的打印精度和速度。 可针对不同的打印目的和不同的打印区域, 调整不 同的打印精度和速度。 附图说明
下面结合附图对本发明进一步说明:
图 1是本发明打印机喷头主视图;
图 2为是本发明喷头在不同旋转角度时的俯视图;
图 3是本发明打印速度影响因素的逻辑图; 图 4是本发明打印速度调控系统图。
具体实施方式
如图 1所示, 是本发明打印机喷头主视图;, 包含有外围壳体 602、 输料管 路 604和挤料喷嘴 605。外围壳体 602包含加热元件, 加热输料管路中的传输物 料, 使其为熔融状态。 其中, 挤料喷嘴 605固定连接在输料管路 604的下方。 输料管路的内通道 603截面与挤料喷嘴的内通道 606截面为规则的三角形、 四 边形等多边形, 同时输料通道的内通道 603截面形状的重心与挤料喷嘴的内通 道 606截面形状的重心在垂直于输料管路内通道 603截面和挤料喷嘴内通道 606 截面的轴上。 输料管路 604固定安装于转盘 601的下端, 同时转盘 601与打印机体相连, 转盘 601可绕垂直于输料管路内通道 603截面和挤料喷嘴内通道 606截面的轴 旋转。 外围壳体 602中包含有电机可控制转盘 601的转动, 通过电机的转动圈 数来调控转盘的旋转角度。
在本方案中为简明地描述发明思路, 设计输料管路的内通道 603截面形状 与挤料喷嘴的内通道 606截面形状为相同的矩形, 其中矩形的长边为 J^ , 短边 为 nin。
通过转盘 601的转动可调控喷头的旋转。 如图 2所示, a、 b、 c为不同旋 转角度喷头的内通道截面俯视图。 当旋转角度为 ^的喷头往一方向进行工作时, 有效的打印区域宽度为 J^ sii^ + ^ cos^ 由于喷头在工作位时的移动速度大小 不变, 每层的 Z轴成型高度为一定值, 单位时间内不同旋转角度的喷头有效的 打印区域面积与打印区域宽度成正比。 针对不同旋转角度喷头工作时, 要实时 地调控输料管路的进料速度。 如图 2所示, c中喷头的旋转角度为 0, 此时喷头 有效地打印区域宽度为 Jmn, 打印的精度最高, 同时打印的速度也最慢, 可应用 在对打印精度要求高的情况下。
如图 3、 4所示, 本发明中, 打印速度调控方法是:
打印速度 = ^ * S * J ; 其中 S为喷嘴实际喷丝的截面积, 为单位打印成形 面积, 是与打印机有关的常量;
喷嘴实际喷丝截面积 S和单位打印成形面积 £决定进料速度,并影响热熔速 度; 进料速度和热熔速度共同决定打印速度;
通过 S与 的改变形成一个信号来控制打印速度, 即调控喷头输料管路的进 料速度。

Claims

权 利 要 求 书
1、 可对挤出物料截面积进行调节的 3D打印机喷头, 包括有输料管路、 挤 料喷嘴; 挤料喷嘴位于输料管路下方; 其特征在于: 还包括有外围壳体和驱动 装置, 输料管路内嵌于外围壳体内, 挤料喷嘴同轴固定连接在输料管路下方; 输料通道与挤料喷嘴的内通道截面形状的重心位于垂直输料管路和挤料喷嘴内 通道截面的同一轴上; 输料管路在驱动装置的驱动下可以相对于挤料喷嘴绕前 述轴转动; 针对不同的旋转角度, 在同一方向上挤料喷嘴挤料的成形区域宽度 不同; 从而调节喷头喷丝的截面积。
2、根据权利要求 1所述的可对挤出物料截面积进行调节的 3D打印机喷头, 其特征在于: 所述的驱动装置包括转盘和电机; 转盘与打印机机体相连, 电机 位于外围壳体内并可驱动转盘转动; 输料管路固定安装于转盘的下端。
3、 根据权利要求 1或 2所述的可对挤出物料截面积进行调节的 3D打印机 喷头, 其特征在于: 所述的输料管路的内通道截面形状与挤料喷嘴的内通道截 面形状均为规则的多边形。
4、根据权利要求 3所述的可对挤出物料截面积进行调节的 3D打印机喷头, 其特征在于: 所述的规则的多边形可为三角形、 四边形等规则的多边形。
5、根据权利要求 4所述的可对挤出物料截面积进行调节的 3D打印机喷头, 其特征在于: 所述的输料管路的内通道截面形状和挤料喷嘴的内通道截面形状 为相同的矩形, 其中矩形的长边为 Jmax, 短边为 皿; 输料管路绕垂直于输料管 路和挤料喷嘴的内通道截面形状的轴的旋转角度为 当旋转角度为 ^的喷头往 一方向进行工作时, 有效的打印区域宽度为 Jmax Sii^ +Jm,„C0S 在喷头移动速度 大小不变、 每层的 z轴成型高度为一定值时, 单位时间内不同旋转角度的喷头 有效的打印区域面积与打印区域宽度成正比。
6、根据权利要求 5所述的可对挤出物料截面积进行调节的 3D打印机喷头, 其特征在于: 所述的外围壳体内包含有加热装置, 用于加热输料管路中的 ABS 或 PLA等易熔融的传输物料, 使其为熔融状态。
7、一种应用于权利 1至 6任一项所述的可对挤出物料截面积进行调节的 3D 打印机喷头的 3D打印机速度和精度控制方法, 其特征在于:
所述的打印速度调控方法是:
打印速度 = ^ * S * J ; 其中 S为喷嘴实际喷丝的截面积, 为单位打印成形 面积, 是与打印机有关的常量;
喷嘴实际喷丝截面积 S和单位打印成形面积 £决定进料速度,并影响热熔速 度; 进料速度和热熔速度共同决定打印速度;
通过 S与 的改变形成一个信号来控制打印速度, 即调控喷头输料管路的进 料速度;
所述的精度调控方法是: 根据打印精度的不同需求, 调整打印速度以控制 打印精度; 打印精度要求高时, 打印速度慢; 打印精度要求低时, 打印速度快。
8、 根据权利要求 7所述的速度和精度调控方法, 其特征在于: 通过电机调 控挤料喷嘴旋转的角度来改变单位时间内挤料喷嘴实际挤出物料的截面积 S;由 于打印喷头的工作移动速度不变, 为确保每层 Z 轴成形高度为一定值, 要实时 地根据挤料喷嘴实际挤出物料的截面积 S 来调控输料管路的进料速度; 进料速 度与传输物料的热熔速度大小相等, 同时也为打印机工作时的打印速度 。
9、 根据权利要求 7或 8所述的速度和精度调控方法, 其特征在于: 所述的 输料管路的内通道截面形状和挤料喷嘴的内通道截面形状为相同的矩形时, 其 中矩形的长边为^ , 短边为 Jmin; 在喷头移动速度大小不变、 每层的 z轴成型 高度为一定值时, 单位时间内不同旋转角度的喷头有效的打印区域面积与打印 区域宽度成正比; 所述的打印区域宽度为 Jmax Sii^ + Jmin C0S^ 其中, Θ 为输料 管路绕垂直于输料管路和挤料喷嘴的内通道截面形状的轴的旋转角度^
PCT/CN2014/082514 2014-07-11 2014-07-18 可对挤出物料截面积进行调节的3d打印机喷头及其速度和精度控制方法 WO2016004642A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/778,108 US10016929B2 (en) 2014-07-11 2014-07-18 3D printer spray nozzle capable of adjusting cross section areas of extruded materials and method for controlling printing speed and precision of the 3D printer spray nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410331972.9 2014-07-11
CN201410331972.9A CN104097327B (zh) 2014-07-11 2014-07-11 3d打印机喷丝截面积可调结构及其速度和精度控制方法

Publications (1)

Publication Number Publication Date
WO2016004642A1 true WO2016004642A1 (zh) 2016-01-14

Family

ID=51666062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082514 WO2016004642A1 (zh) 2014-07-11 2014-07-18 可对挤出物料截面积进行调节的3d打印机喷头及其速度和精度控制方法

Country Status (3)

Country Link
US (1) US10016929B2 (zh)
CN (1) CN104097327B (zh)
WO (1) WO2016004642A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015092A1 (de) 2016-07-22 2018-01-25 Robert Bosch Gmbh Extruder für 3d-drucker mit variablem materialdurchsatz
WO2019020454A1 (de) * 2017-07-27 2019-01-31 Starfort Des Stubenruss Moritz Ein 3d-druckkopf zum einsatz in einem 3d-drucker, ein 3d-drucker mit einem solchen 3d-druckkopf, ein verfahren zum betreiben eines solchen 3d-druckers, und mit einem solchen 3d-drucker hergestelltes druckerzeugnis
CN113165245A (zh) * 2018-09-21 2021-07-23 弗劳恩霍夫应用研究促进协会 用于影响挤出的可塑性变形材料的体积流量的装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104759621B (zh) * 2015-04-15 2016-10-19 吉林大学 一种可实现出料口截面积无级调控的增材制造装置成形口
CN106273441B (zh) * 2015-05-22 2018-09-14 三纬国际立体列印科技股份有限公司 打印温度的控制方法及其装置
US10500778B2 (en) * 2015-09-18 2019-12-10 Cloud Computing Center Chinese Academy Of Sciences 3D printer spray nozzle structure and method thereof for controlling speed and precision
US20170173884A1 (en) * 2015-12-22 2017-06-22 Western Digital Technologies, Inc. Rotation and nozzle opening control of extruders in printing systems
US20170320267A1 (en) * 2016-05-03 2017-11-09 Ut-Battelle, Llc Variable Width Deposition for Additive Manufacturing with Orientable Nozzle
DE202016104820U1 (de) * 2016-09-01 2017-09-05 Mike Petrick Ausgabedüse für einen 3D-Drucker
CN108262947A (zh) * 2017-01-02 2018-07-10 上海雷标实业有限公司 一种3d打印机圆喷头与扁喷头交替使用转换机构
CN106945150A (zh) * 2017-04-20 2017-07-14 武汉朗克医疗器械有限公司 一种3d打印机用打印头
CN108248041B (zh) * 2018-03-20 2023-06-02 河北工业大学 一种喷嘴口径可调的3d打印机喷头
CN108908937A (zh) * 2018-06-20 2018-11-30 上海赟鼎智能科技有限公司 挤出装置
WO2020043647A1 (en) * 2018-08-28 2020-03-05 Signify Holding B.V. Method of manufacturing an object by means of 3d printing
EP3702126A1 (en) * 2019-02-28 2020-09-02 Technische Universität Dresden Method for producing an elastic and flexible fiber with optical, electrical or microfluidic functionality
DE102019116694A1 (de) * 2019-06-19 2020-12-24 Airbus Operations Gmbh Fördereinrichtung und Arbeitskopf für eine additive Fertigungsmaschine sowie additive Fertigungsmaschine
US11158339B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Magnetic recording layer formulation for tape media
US11790942B2 (en) 2019-08-20 2023-10-17 International Business Machines Corporation Process for forming magnetic recording layer for tape media
US11158337B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Tape cartridge having tape media having synergistic magnetic recording layer and underlayer
US11410697B2 (en) 2019-08-20 2022-08-09 International Business Machines Corporation Process for forming underlayer for tape media
US12014760B2 (en) * 2019-08-20 2024-06-18 International Business Machines Corporation Process for forming tape media having synergistic magnetic recording layer and underlayer
US11152027B2 (en) 2019-08-20 2021-10-19 International Business Machines Corporation Tape media having synergistic magnetic recording layer and underlayer
US11158340B2 (en) 2019-08-20 2021-10-26 International Business Machines Corporation Underlayer formulation for tape media
US10967571B1 (en) 2019-10-29 2021-04-06 International Business Machines Corporation Varying orifice cross-section for three-dimensional printing
CA3214568A1 (en) * 2021-04-07 2022-10-13 Harris Taylor Nozzles, nozzle assemblies, and related methods
CN114228133B (zh) * 2021-11-04 2022-10-21 华南理工大学 一种3d打印的外壁速度调节方法、系统、装置及介质
CN115214129A (zh) * 2022-07-01 2022-10-21 四川大学 连续纤维增强复合材料3d打印头及打印机
CN115476508A (zh) * 2022-09-06 2022-12-16 深圳先进技术研究院 连续变纤维直径的挤出式3d打印方法、打印系统和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW586971B (en) * 2003-07-25 2004-05-11 Jiue-Kuan Wang Two-dimensiaonl rotary spray nozzle device
DE102011110804A1 (de) * 2011-08-22 2013-02-28 Kai Parthy 3D-Druckkopf mit kühlbarem Beschickungskanal aus hochwärmeleitfähigem Material
CN203357906U (zh) * 2013-06-28 2013-12-25 济南集罗电子有限公司 3d打印笔
CN103737930A (zh) * 2013-12-24 2014-04-23 青岛尚慧信息技术有限公司 一种3d打印设备及其进料管
US20140134334A1 (en) * 2012-11-09 2014-05-15 Evonik Industries Ag Multicolour extrusion-based 3d print process
CN104085111A (zh) * 2014-07-11 2014-10-08 东莞中国科学院云计算产业技术创新与育成中心 一种多喷嘴3d打印机及其速度和精度控制方法
CN104085112A (zh) * 2014-07-11 2014-10-08 东莞中国科学院云计算产业技术创新与育成中心 一种3d打印机喷头及其速度和精度调控方法
CN203974076U (zh) * 2014-07-11 2014-12-03 东莞中国科学院云计算产业技术创新与育成中心 一种多喷嘴3d打印机
CN204020007U (zh) * 2014-07-11 2014-12-17 东莞中国科学院云计算产业技术创新与育成中心 3d打印机喷丝截面积可调结构
CN204020008U (zh) * 2014-07-11 2014-12-17 东莞中国科学院云计算产业技术创新与育成中心 一种3d打印机喷头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439584B (zh) * 2008-08-29 2011-03-23 东华大学 一种微乳液体黏结剂三维打印系统可打印性能的测定方法
JP2011005666A (ja) * 2009-06-23 2011-01-13 Altech Co Ltd 循環式サポート材除去装置
US9566742B2 (en) * 2012-04-03 2017-02-14 Massachusetts Institute Of Technology Methods and apparatus for computer-assisted spray foam fabrication
US9511543B2 (en) * 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
CN103612394B (zh) * 2013-11-29 2015-07-15 北京化工大学 一种高压静电驱动且可变直径3d打印机
AU2015234243A1 (en) * 2014-03-21 2016-11-03 Laing O'rourke Australia Pty Limited Method and apparatus for fabricating an object
JP6427758B2 (ja) * 2014-06-06 2018-11-28 泰 金田 光の反射方向・反射強度が制御された3次元印刷物および印刷方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW586971B (en) * 2003-07-25 2004-05-11 Jiue-Kuan Wang Two-dimensiaonl rotary spray nozzle device
DE102011110804A1 (de) * 2011-08-22 2013-02-28 Kai Parthy 3D-Druckkopf mit kühlbarem Beschickungskanal aus hochwärmeleitfähigem Material
US20140134334A1 (en) * 2012-11-09 2014-05-15 Evonik Industries Ag Multicolour extrusion-based 3d print process
CN203357906U (zh) * 2013-06-28 2013-12-25 济南集罗电子有限公司 3d打印笔
CN103737930A (zh) * 2013-12-24 2014-04-23 青岛尚慧信息技术有限公司 一种3d打印设备及其进料管
CN104085111A (zh) * 2014-07-11 2014-10-08 东莞中国科学院云计算产业技术创新与育成中心 一种多喷嘴3d打印机及其速度和精度控制方法
CN104085112A (zh) * 2014-07-11 2014-10-08 东莞中国科学院云计算产业技术创新与育成中心 一种3d打印机喷头及其速度和精度调控方法
CN203974076U (zh) * 2014-07-11 2014-12-03 东莞中国科学院云计算产业技术创新与育成中心 一种多喷嘴3d打印机
CN204020007U (zh) * 2014-07-11 2014-12-17 东莞中国科学院云计算产业技术创新与育成中心 3d打印机喷丝截面积可调结构
CN204020008U (zh) * 2014-07-11 2014-12-17 东莞中国科学院云计算产业技术创新与育成中心 一种3d打印机喷头

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015092A1 (de) 2016-07-22 2018-01-25 Robert Bosch Gmbh Extruder für 3d-drucker mit variablem materialdurchsatz
DE102016213439A1 (de) 2016-07-22 2018-01-25 Robert Bosch Gmbh Extruder für 3D-Drucker mit variablem Materialdurchsatz
US10894359B2 (en) 2016-07-22 2021-01-19 Robert Bosch Gmbh Extruder for a 3D printer with a variable material throughput
WO2019020454A1 (de) * 2017-07-27 2019-01-31 Starfort Des Stubenruss Moritz Ein 3d-druckkopf zum einsatz in einem 3d-drucker, ein 3d-drucker mit einem solchen 3d-druckkopf, ein verfahren zum betreiben eines solchen 3d-druckers, und mit einem solchen 3d-drucker hergestelltes druckerzeugnis
CN113165245A (zh) * 2018-09-21 2021-07-23 弗劳恩霍夫应用研究促进协会 用于影响挤出的可塑性变形材料的体积流量的装置
CN113165245B (zh) * 2018-09-21 2022-10-11 弗劳恩霍夫应用研究促进协会 用于影响挤出的可塑性变形材料的体积流量的装置

Also Published As

Publication number Publication date
CN104097327B (zh) 2017-01-25
US20180079139A1 (en) 2018-03-22
US10016929B2 (en) 2018-07-10
CN104097327A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
WO2016004642A1 (zh) 可对挤出物料截面积进行调节的3d打印机喷头及其速度和精度控制方法
WO2016004641A1 (zh) 3d打印机喷头结构及其速度和精度控制方法
US10150239B2 (en) Extruder for three-dimensional additive printer
US10500778B2 (en) 3D printer spray nozzle structure and method thereof for controlling speed and precision
CA3003067C (en) Methods and apparatus for processing and dispensing material during additive manufacturing
JP7053430B2 (ja) 押出機の角度配向を基準にして付加製造中にマルチノズル押出機の速度を調整するためのシステム及び方法
US10328637B2 (en) Interlayer adhesion in a part printed by additive manufacturing
CN204736441U (zh) 3d打印机
US10150249B2 (en) Dual head extruder for three-dimensional additive printer
CN104085111A (zh) 一种多喷嘴3d打印机及其速度和精度控制方法
JP2014516841A (ja) 3次元対象物の作製装置および作製方法
EP3331704B1 (en) Extruder for three-dimensional additive printer
EP3575060B1 (en) Method for operating a multi-nozzle extruder using zig-zag patterns that provide improved structual integrity
CN204020007U (zh) 3d打印机喷丝截面积可调结构
CN204020008U (zh) 一种3d打印机喷头
CN108177335A (zh) 熔体固体双相3d打印机
JP7174106B2 (ja) 付加製造中にマルチノズル押出機を動作させるためのシステム及び方法
US11198246B2 (en) Method of forming three-dimensional object and three-dimensional forming apparatus
TWI664090B (zh) Laminated forming system
CN104149344A (zh) 一种熔融体多维取向的增材制造打印喷头系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14778108

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897369

Country of ref document: EP

Kind code of ref document: A1