WO2015198810A1 - 無線通信装置、無線通信システムおよび通信制御方法 - Google Patents

無線通信装置、無線通信システムおよび通信制御方法 Download PDF

Info

Publication number
WO2015198810A1
WO2015198810A1 PCT/JP2015/065980 JP2015065980W WO2015198810A1 WO 2015198810 A1 WO2015198810 A1 WO 2015198810A1 JP 2015065980 W JP2015065980 W JP 2015065980W WO 2015198810 A1 WO2015198810 A1 WO 2015198810A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel quality
wireless communication
communication device
information
quantization bits
Prior art date
Application number
PCT/JP2015/065980
Other languages
English (en)
French (fr)
Inventor
童 方偉
智春 山▲崎▼
宏行 浦林
勝裕 三井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2016529225A priority Critical patent/JPWO2015198810A1/ja
Publication of WO2015198810A1 publication Critical patent/WO2015198810A1/ja
Priority to US15/382,355 priority patent/US20170099616A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/003Adaptive formatting arrangements particular to signalling, e.g. variable amount of bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to a wireless communication device, and more particularly to a wireless communication device that feeds back channel information to a base station using a digital transmission method.
  • Non-Patent Document 1 A wireless communication apparatus that employs a digital transmission system performs quantization, binary coding, and symbol mapping signal processing on analog transmission target data when generating a transmission signal from an analog value. Such processing is disclosed in Non-Patent Document 1.
  • quantization is a process of approximately replacing an analog value that is a continuous quantity with a discrete value such as an integer.
  • the binary coding is a process for converting a discrete value obtained by quantization into a binary number (that is, a bit string).
  • Symbol mapping is a process of converting a bit string obtained by binary coding into a transmission symbol (that is, digital modulation).
  • the above-described digital transmission method can apply error correction codes and the like, it has high resistance to transmission channel noise and interference, but it is necessary to increase the transmission bit length in order to increase the resolution of transmission target data. There is a problem that capacity is tight. On the other hand, if the channel capacity is refrained and set to a short bit length, even when the channel quality is improved and the channel capacity is sufficient, the channel capacity cannot be fully utilized, and there is a problem that the resolution is lowered.
  • channel information (CSI) measured at the user terminal is fed back to the base station.
  • the CSI is quantized with a predetermined fixed number of bits, and thus the quantization error is also fixed.
  • the accuracy of CSI is maintained constant.
  • the accuracy of CSI does not change even when the channel condition is good, there is a problem that improvement in transmission performance cannot be expected.
  • the present invention has been made to solve the above-described problems, and a wireless communication apparatus capable of improving transmission performance according to channel conditions even when channel information is fed back to a base station using a digital transmission method. I will provide a.
  • One aspect of a wireless communication apparatus is a wireless communication apparatus that communicates with a subordinate radio communication apparatus, and the channel quality of a channel used for feedback of a signal from the subordinate radio communication apparatus Control based on the estimated channel quality and dynamically adjusting the number of quantization bits used when the subordinate radio communication apparatus quantizes the channel information to notify the subordinate radio communication apparatus And the control unit adjusts the number of quantization bits to be increased when the estimated channel quality is increased.
  • One aspect of the wireless communication apparatus is that modulation is performed when the control unit transmits channel information after quantization in the subordinate wireless communication apparatus in accordance with dynamic adjustment of the number of quantization bits. Dynamically adjust the scheme and coding rate.
  • control unit sets a numerical range of channel quality in stages, associates the number of quantization bits with each numerical range, and the estimated channel quality is
  • the number of quantization bits associated with the numerical range is determined as the number of quantization bits corresponding to the estimated channel quality, and information on the determined number of quantization bits is provided. Notify the subordinate radio communication apparatus.
  • the control unit sets a numerical range of channel quality in stages, associates the modulation scheme and coding rate for each numerical range, and the estimated channel quality is: If it is within any numerical range, the modulation scheme and the coding rate associated with the numerical range are determined as a modulation scheme and a coding rate corresponding to the estimated channel quality, and the determined modulation scheme and Coding rate information is notified to the subordinate radio communication apparatus.
  • the control unit sets a numerical range of channel quality in stages, and associates the number of quantization bits, the modulation scheme, and the coding rate with each numerical range. And assigning an index to each numerical range of channel quality, and if the estimated channel quality is within any numerical range, the number of quantization bits associated with the numerical range, the modulation scheme, and the coding The rate is determined as the number of quantization bits, the modulation scheme, and the coding rate corresponding to the estimated channel quality, and the allocated index information is notified to the subordinate radio communication apparatus.
  • the control unit notifies the subordinate radio communication device of the number of quantization bits dynamically adjusted, and then the subordinate radio communication device within a certain period of time. If the acknowledgment signal is not received, repeat the operation of notifying the subordinate radio communication device of the same number of quantization bits again, and if the number of repetitions exceeds a predetermined number, dynamically adjust The operation of notifying the subordinate radio communication apparatus of the number of quantized bits is stopped.
  • control unit dynamically adjusts the estimation interval of the channel quality according to the speed of change of the channel quality.
  • One aspect of the wireless communication system is a wireless communication system including a wireless communication device and a wireless communication device subordinate to the wireless communication device, wherein the wireless communication device is a wireless communication device under the control. Estimates the channel quality of the channel used for feedback of the signal from the device, and dynamically determines the number of quantization bits used when quantizing the channel information in the subordinate radio communication device based on the estimated channel quality And a control unit that notifies the subordinate radio communication device and adjusts the number of quantization bits to be increased when the estimated channel quality is increased.
  • the subordinate wireless communication device when the subordinate wireless communication device does not receive the information on the number of quantization bits from the wireless communication device, the information on the number of quantization bits given last time or Channel information is quantized using information on the number of quantization bits determined by default.
  • One aspect of the wireless communication system is that modulation is performed when the control unit transmits channel information after quantization in the subordinate wireless communication device in accordance with dynamic adjustment of the number of quantization bits. Dynamically adjusting a scheme and a coding rate and notifying the subordinate radio communication device, and the subordinate radio communication device is not provided with information on the modulation scheme and the coding rate from the radio communication device, The quantized channel information is transmitted using the modulation scheme and coding rate information given last time or the modulation scheme and coding rate information determined by default.
  • One aspect of the communication control method according to the present invention is a communication control method in a wireless communication apparatus that performs communication with a subordinate radio communication apparatus, and is used for feedback of a signal from the subordinate radio communication apparatus.
  • a channel quality estimation step (a) and based on the estimated channel quality, dynamically adjusts the number of quantization bits used when the subordinate radio communication apparatus quantizes the channel information Step (b), and the step (b) includes a step of adjusting the number of quantization bits to be increased if the estimated channel quality is increased.
  • FIG. 10 is a block diagram of an eNB according to Embodiment 3. It is a figure which shows the protocol stack of the radio
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • FIG. 1 is a configuration diagram of the LTE system.
  • the LTE system includes a plurality of UEs (User (Equipment) 100, E-UTRAN (Evolved-UMTS Terrestria1 Radio Access Network) 10, and EPC (Evolved Packet Core) 20.
  • the E-UTRAN 10 corresponds to a radio access network
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages one or a plurality of cells, and performs radio communication with the UE 100 that establishes a connection with a cell managed by the eNB 200.
  • “cell” is used as a term indicating a minimum unit of a radio communication area, and also as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes a plurality of MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network note that performs user data transfer control, and corresponds to an exchange.
  • the EPC 20 configured by the MME / S-GW 300 accommodates the eNB 200.
  • the eNB 200 is connected to each other via the interface X2.
  • the eNB 200 is connected to the MME / S-GW 300 via the interface SI.
  • FIG. 2 is a block diagram showing the configuration of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • GNSS Global Navigation Satellite System
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 ′.
  • the plurality of antennas 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 includes a transmission unit 111 that converts a baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits the radio signal from a plurality of antennas 101.
  • the radio transceiver 110 includes a receiving unit 112 that converts radio signals received by the plurality of antennas 101 into baseband signals (received signals) and outputs the baseband signals to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a signal processing unit 161 that performs signal processing such as modulation / demodulation and encoding / decoding of a baseband signal, and a control unit 162 that executes various programs by executing programs stored in the memory 150. Contains.
  • the signal processing unit 161 since the channel information (CSI) measured by the UE 100 is transmitted to the eNB 200 by digital feedback, the signal processing unit 161 has a digital transmission processing unit.
  • the digital transmission processing unit generates a transmission signal by a digital transmission method according to the current 3GPP standard.
  • the processor 160 may further include a codec for encoding / decoding audio / video signals.
  • the processor 160 executes various controls described later.
  • FIG. 3 is a block diagram showing a configuration of the eNB 200.
  • the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a base station side control unit.
  • the plurality of antennas 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 includes a transmission unit 211 that converts a baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits the radio signal from a plurality of antennas 201.
  • the wireless transceiver 210 includes a reception unit 212 that converts wireless signals received by the plurality of antennas 201 into baseband signals (reception signals) and outputs the baseband signals to the processor 240.
  • the network interface 220 is connected to the adjacent eNB 200 via the interface X2 (FIG. 1), and is connected to the MME / S-GW 300 via the interface SI (FIG. 1).
  • the network interface 220 is used for communication performed on the interface X2 and communication performed on the interface SI.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a signal processing unit 241 that performs signal processing such as modulation / demodulation and encoding / decoding of a baseband signal, and a control unit 242 that executes various programs by executing a program stored in the memory 230. Contains. The processor 240 executes various controls described later.
  • FIG. 4 is a diagram showing a protocol stack of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Media Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme (MCS)) and an allocated resource block.
  • MCS modulation / coding scheme
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control messages (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to radio bearer establishment, re-establishment, and release.
  • RRC connected state When there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state (RRC connected state). Otherwise, the UE 100 is in an idle state (RRC idle state).
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier Frequency Frequency Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is lmsec, and the length of each slot is 0.5 msec.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource unit configured by one subcarrier and one symbol is referred to as a resource element (RE).
  • a frequency resource can be specified by a resource block, and a time resource can be specified by a subframe (or slot).
  • the section of the first few symbols of each subframe is a control region used mainly as a physical downlink control channel (PDCCH) for transmitting a control signal.
  • the remaining section of each subframe is an area that can be used as a physical downlink shared channel (PDSCH) mainly for transmitting user data.
  • PDSCH physical downlink shared channel
  • the PDCCH carries a control signal.
  • the control signal includes, for example, uplink SI (Scheduling Information), downlink SI, and TPC bits.
  • the uplink SI is information indicating allocation of uplink radio resources
  • the downlink SI is information indicating allocation of downlink radio resources.
  • the TPC bit is information instructing increase / decrease in uplink transmission power. These pieces of information are referred to as downlink control information (DCI).
  • DCI downlink control information
  • the PDSCH carries control signals and / or user data.
  • the downlink data area may be allocated only to user data, or may be allocated so that user data and control signals are multiplexed.
  • CRS cell-specific reference signals
  • CSI-RS channel information reference signals
  • the eNB 200 transmits CRS and CSI-RS from each of the plurality of antennas 201.
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH) for transmitting a control signal.
  • the central portion in the frequency direction in each subframe is an area that can be used as a physical uplink shared channel (PUSCH) mainly for transmitting user data.
  • PUSCH physical uplink shared channel
  • the PUCCH carries a control signal.
  • the control signal includes, for example, CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), RI (Rank Indicator), SR (Scheduling Request), ACK / NACK, and the like.
  • CQI is an index indicating downlink channel quality, and is used for determining a recommended modulation scheme and coding rate to be used for downlink transmission.
  • the PMI is an index indicating a precoder matrix that is preferably used for downlink transmission.
  • RI is an index indicating the number of layers (number of streams) that can be used for downlink transmission.
  • SR is information for requesting allocation of uplink radio resources (resource blocks).
  • ACK / NACK is information indicating whether or not a signal transmitted via a downlink physical channel (for example, PDSCH) has been successfully decoded.
  • CQI, PMI, and RI correspond to channel information (CSI: Channel State Information) obtained by the UE 100 performing channel estimation using a downlink reference signal (CRS and / or CSI-RS).
  • CSI Channel State Information
  • the PUSCH carries control signals and / or user data.
  • the uplink data area may be allocated only to user data, or may be allocated so that user data and control signals are multiplexed.
  • a predetermined symbol in each subframe is provided with a sounding reference signal (SRS) and a demodulation reference signal (DMRS).
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • Embodiments will be described below by taking the application to LTE described with reference to FIGS. 1 to 5 as an example.
  • UE100 feeds back the measured channel information (CSI) to eNB200 by a digital transmission system.
  • eNB 200 estimates channel quality of an uplink channel used for CSI feedback from UE 100, and is used when UE 100 quantizes CSI based on the estimated channel quality.
  • the UE 100 is notified by dynamically adjusting the number of quantization bits and the MCS when transmitting the quantized CSI.
  • CSI feedback from the UE 100 is normally performed using a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH), and the channel quality is estimated.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • FIG. 6 is a flowchart for explaining the control operation of the number of quantization bits and MCS dynamic processing based on the estimated value of channel quality in the present embodiment.
  • the eNB 200 estimates the channel quality of the uplink channel used for CSI feedback (step S1).
  • the channel quality is defined by SINR (Signal-to-Interference-plus Noise-Ratio) or SNR (signal-to-noise-ratio), and the channel quality of PUCCH and PUSCH uses sounding reference signal (SRS) and / or demodulation reference signal (DMRS). Can be estimated.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • PUCCH it is also conceivable that the channel quality is supplementarily estimated from the congestion situation of cells managed by the eNB 200 itself.
  • FIG. 7 shows an example of a 3 ⁇ 3 channel matrix. Each element a 11 to a 33 in the channel matrix is represented by a complex number.
  • the number of quantization bits used when quantizing CSI in UE 100 and MCS (Modulation Coding Scheme) for transmitting the quantized CSI are determined, and predetermined It memorize
  • the MCS when transmitting the number of quantization bits and the CSI after quantization is easily determined by preparing a correspondence table of channel quality and number of quantization bits and channel quality and MCS in advance. be able to.
  • FIG. 8 shows an example of a correspondence table between channel quality and the number of quantization bits.
  • a case where channel quality is defined by SINR is shown.
  • the number of quantization bits is determined to be 2 bits
  • the SINR is ⁇ 10 dB or more and less than ⁇ 5 dB
  • the number of quantization bits is determined to be 3 bits.
  • the channel quality value here, SINR value
  • a correspondence table is created so as to increase the number of quantization bits.
  • the CSI is quantized with a small number of bits to reduce the amount of feedback information. Conversely, when the channel quality is high, the CSI is increased with a high number of bits. This is because the accuracy of CSI is increased by quantization, and the transmission performance is improved as a result of reducing the quantization error.
  • FIG. 9 shows an example of a correspondence table between channel quality and MCS.
  • a case where channel quality is defined by SINR is shown.
  • the modulation method is BPSK (Binary Phase Shift) Keying)
  • the coding rate is determined to be 1/3
  • the SINR is ⁇ 10 dB or more and less than ⁇ 5 dB
  • the modulation scheme is BPSK and the coding rate is determined to 2/3.
  • the channel quality value here, SINR value
  • a correspondence table is created so that a modulation scheme and a coding rate that can transmit more information at a time are determined. Yes.
  • the coding rate here refers to the coding rate of the turbo code, but in the following, the coding rate of the turbo code is simply referred to as the coding rate.
  • the error correction capability of the coding method used may be adjusted dynamically. For example, when the SINR is less than ⁇ 10 dB, the error correction capability is adjusted to be equivalent to that of a turbo code with a coding rate of 1/3. When the SINR is ⁇ 10 dB or more and less than ⁇ 5 dB, the coding rate is 2/3. What is necessary is just to adjust to error correction capability equivalent to a turbo code.
  • the CSI is quantized with a small number of bits when the channel quality is low, so the overhead is small, and the modulation scheme and coding rate in this case do not require the ability to send a lot of information at one time, This is because when the quality is high, the CSI is quantized with a high number of bits, so the overhead increases, and the modulation scheme and coding rate in this case are required to have the ability to send more information at a time.
  • the modulation scheme changes from BPSK to QPSK (Quadrature Phase Shift Keying), and from QPSK to QAM (Quadrature Amplitude Modulation).
  • QAM Quadrature Amplitude Modulation
  • 16QAM, 64QAM, and 256QAM are changed. Note that the correspondence tables shown in FIGS. 8 and 9 are examples, and the present invention is not limited to these.
  • the determined number of quantization bits and MCS are read from a predetermined storage unit and notified to the UE 100 (step S3).
  • the determined quantization bit number and MCS may be notified to the UE 100, but for example, the correspondence table of channel quality and quantization bit number as shown in FIGS. 4 bit data is required to notify the number of quantization bits, 4 bit data is required to notify MCS, and a total of 8 bit data must be sent. This will increase the overhead.
  • a pattern of combinations of the number of quantization bits and MCS is set in advance, an index (referred to as “joint index”) is assigned to each combination, and an index correspondence table for combinations of the number of quantization bits and MCS ( (Referred to as “joint table”) is stored in the UE 100 in advance.
  • joint table an index correspondence table for combinations of the number of quantization bits and MCS
  • FIG. 10 shows an example of a joint table.
  • a joint index 0 corresponds to a combination of a quantization bit number of 2 bits, a modulation scheme of BPSK, and a coding rate of 1/3.
  • UE 100 refers to the joint table based on the notified index number and obtains the corresponding number of quantization bits and MCS.
  • “0” may be one level lower than the previous index, and “1” may be notified one level higher than the previous index. If the amount of information is 2 bits, notification such as two steps lower than the previous index is possible.
  • DCI Downlink Control Information
  • MCE MAC Control Element
  • RRC Radio Resource Control
  • the eNB 200 After notifying the UE 100 of the quantization bit number and MCS (or joint index) information, the eNB 200 waits for the reception of the ACK signal for a predetermined period (step S5). If the ACK signal cannot be received within a predetermined period, the process times out and notifies the UE 100 of step S3 again.
  • the UE 100 that has transmitted the ACK signal quantizes the CSI information based on the information on the number of quantization bits notified from the eNB 200 (step S6), and after quantization using the MCS modulation scheme and coding rate. Are fed back to the eNB 200 (step S7).
  • step S8 the eNB 200 that has received the quantized CSI information demodulates and decodes the CSI according to the number of quantization bits and the MCS (notified to the UE 100) stored in a predetermined storage unit. Note that the quantization bit number stored in the eNB 200, the MCS, and the quantization bit number and MCS received by the UE 100 are all reset (cleared) when the communication session ends.
  • a precoder for downlink transmission is generated based on the fed back CSI (step S9).
  • the eNB 200 estimates the channel quality of the uplink channel used for CSI feedback from the UE 100, and the quantum used when the UE 100 quantizes the CSI based on the estimated channel quality. Since the UE 100 is notified by dynamically adjusting the number of quantization bits and the MCS when transmitting the quantized CSI, the accuracy of CSI fed back from the UE 100 is improved when the channel condition is good, and the transmission performance is improved. Improvement can be expected.
  • the eNB 200 estimates the channel quality of the uplink channel used for CSI feedback from the UE 100, and is used when the UE 100 quantizes the CSI based on the estimated channel quality.
  • the number of quantization bits and the MCS for transmitting the quantized CSI are dynamically adjusted. However, only the number of quantization bits is dynamically adjusted.
  • a scheme-coding rate for example, QPSK-1 / 3
  • an existing MCS mechanism when CSI is fed back using PUSCH
  • ⁇ Modification 1> In the quantization bit number and MCS dynamic processing described with reference to FIG. 6, when an ACK signal cannot be received in step S5, a timeout is repeated, and the number of times is not limited. Alternatively, a threshold may be provided for the number of times of timeout, and the notification of the number of quantization bits and MCS (or joint index) may be stopped when the threshold is exceeded.
  • steps S11, S12, and S13 shown in FIG. 11 are added between step S3 and step S5 of the flowchart shown in FIG.
  • step S11 After notifying the UE 100 of the number of quantization bits and MCS in step S3, it is determined whether or not the number of timeouts exceeds a threshold value (step S11).
  • step S5 the reception of the ACK signal from the UE 100 is waited for a predetermined period. While notifying in step S3, the timeout count is incremented by 1, and the determination in step S11 is awaited (step S12).
  • step S11 when it is determined in step S11 that the number of timeouts exceeds the threshold, the notification of the number of quantization bits and MCS is stopped (step S13).
  • the UE 100 may not be able to receive the quantization bit number and MCS information. In this case, if there is the previously received quantization bit number and MCS information, use them. If there is no information on the number of quantization bits and MCS received last time (they have never been received during the current session), the number of quantization bits determined by default (for example, 4 bits) is used for CSI. The information may be quantized, and the quantized CSI information may be fed back to the eNB at a modulation scheme-coding rate (for example, QPSK-1 / 3) determined by default.
  • a modulation scheme-coding rate for example, QPSK-1 / 3
  • the UE 100 determines whether or not the quantization bit number and MCS information have been received (step S16), and if the quantization bit number and MCS information are received, the quantization is performed.
  • the CSI information is quantized based on the bit number information (step S6), and the quantized CSI information is fed back to the eNB 200 using the MCS modulation scheme and coding rate (step S7).
  • step S16 determines whether or not there is a previously received quantization bit number and MCS information.
  • step S18 If there is the previously received quantization bit number and MCS information, the previously received quantization bit number and MCS information are read and used (step S18). On the other hand, if it is determined in step S17 that there is no information on the number of quantization bits and MCS received last time (never received in the current session), the number of quantization bits and MCS determined by default are determined. Is read out and used (step S19).
  • step S6 the CSI information is quantized using the previously received quantization bit number or the default quantization bit number, and in step S7, the previously received modulation scheme and coding rate or default modulation is determined.
  • the CSI information after quantization is fed back to the eNB 200 using the scheme and the coding rate.
  • the eNB 200 may not be able to demodulate or decode the CSI after quantization. This is because the CSI is processed with the number of quantization bits and MCS, which is different from the number of quantization bits and MCS sent by itself.
  • the eNB 200 tries to demodulate and decode with the previously transmitted quantization bit number and MCS, and if not, demodulates and decodes the CSI with the default quantization bit number and MCS.
  • the UE 100 may be configured to notify the eNB 200 of the default value or the previously used value as described above. In this case, the time spent for CSI demodulation and decoding trials at the eNB 200 can be shortened.
  • CSI feedback from the UE 100 is performed periodically and a case where the feedback is performed aperiodically are defined. If the quantization bit number and MCS dynamic processing described with reference to FIG. 6 are executed each time the CSI feedback timing is reached, both periodic and non-periodic CSI feedback can be handled, but it is clarified. Therefore, the case where CSI feedback is aperiodic will be described with reference to FIG.
  • the eNB 200 requests the UE 100 for CSI feedback before estimating the channel quality of the uplink channel used for CSI feedback in step S1 (step S0). .
  • CSI I feedback may be requested after estimating the channel quality.
  • the processing of steps S1 to S9 is the same as that in FIG.
  • the channel quality may be estimated with a period longer than the CSI feedback period. In that case, whenever the channel quality estimation is performed, the number of quantization bits and the MCS are adjusted dynamically at an appropriate period or as necessary (when the channel quality has changed). Also good.
  • the processing load associated with channel quality estimation can be obtained by adopting the above configuration.
  • the overhead accompanying notification of the number of quantization bits and MCS can be reduced.
  • the channel quality estimation, the number of quantization bits, and the notification of MCS may be periodically performed at regular intervals regardless of the CSI feedback period.
  • the eNB 200 confirms whether or not it is time to estimate the channel quality of the uplink channel used for CSI feedback (step S21).
  • step S1 If the time has been reached, the process of step S1 is executed, and if the time has not been reached, the process waits.
  • step S1 After estimating the channel quality in step S1, it is determined whether or not the estimated value is the same as the previous estimated value (step S22).
  • step S2 when it determines with it not being the same as the last estimated value by step S22, the process of step S2 is performed and the number of quantization bits and MCS are notified to UE100 (step S3). Further, in this case, the current estimated value is stored and used as a comparison target in the next estimation.
  • step S22 if it is determined in step S22 that it is the same as the previous estimated value, the number of quantization bits and MCS are not notified, and the current estimated value is not stored. That is, the previous estimated value to be compared is not updated. Note that the UE 100 cannot receive notification of the number of quantization bits and MCS, but the UE 100 employs the configuration described with reference to FIG. 12, so that the quantization bits used in the previous quantization of CSI information are used. If the information such as the number of quantization bits or the number of quantization bits has never been received, the CSI information is quantized using the number of quantization bits determined by default, and the quantized CSI information is fed back to the eNB 200 Can do.
  • whether or not it is the same as the previous estimated value in step S22 is determined by providing a threshold, for example, if it is determined that the difference from the previous estimated value is within a range of 5%. be able to.
  • the threshold is not limited to 5%, and may be 3%, 10%, or the like.
  • the channel quality estimation interval is set to, for example, 20 msec as a default value, but is not limited to this value, and may be set to 10 msec, 5 msec, or 2 msec for a UE that changes quickly. good.
  • the stored channel quality estimate is reset when the communication session ends.
  • the eNB 200 periodically notifies the number of quantization bits and MCS at regular intervals, if it is determined in step S22 that it is the same as the previous estimated value, the notification of the number of quantization bits and MCS is performed. In this case, the UE 100 may not be able to receive the quantization bit number and MCS information. In this case, if there is the previously received quantization bit number and MCS information, the previous received quantization is used. When there is no information on the number of bits and MCS, the CSI information is quantized using a default number of quantization bits (for example, 4 bits), and the CSI information after quantization is determined by default. What is necessary is just to set it as the structure fed back to eNB by (for example, QPSK-1 / 3). The specific configuration is the same as in FIG.
  • the channel quality estimation interval may be dynamically adjusted according to the rate of change in channel quality.
  • FIG. 15 is a flowchart for explaining a method for dynamically adjusting the channel estimation interval. As shown in FIG. 15, when a communication session is started between the eNB 200 and the UE 100, for example, 20 msec is set as the initial estimated interval (step S41).
  • channel estimation is repeated at 20 msec intervals, and each time a difference between the new estimated value and the previous (previous) estimated value is calculated, and it is determined whether or not the difference between the two exceeds 20% (step S42). . If there are three or more cases exceeding 20% within the predetermined period, the process proceeds to step S46, and if not, the process proceeds to step S43.
  • the case where it exceeds 20% within a predetermined period is more than 3 times means that it exceeds 20% within, for example, 5 times of the currently set estimation interval (within 5 time estimations).
  • step S46 that is, when there are three or more cases exceeding 20% within a predetermined period, it can be said that a large change in channel quality frequently occurs.
  • step S46 change the estimated interval by half.
  • the process proceeds to step S47 to determine whether or not the changed estimated interval is smaller than the shortest interval. If it is determined that the changed estimated interval is smaller than the shortest interval, the estimated interval is set to the shortest interval. Set (step S48), and proceed to step S45.
  • the shortest interval is the shortest interval time of CSI feedback defined by the LTE specification. For example, when the shortest period of CSI feedback is 1 subframe, the shortest estimated interval is 1 msec.
  • step S45 the process proceeds to step S45 while keeping the estimated interval after the change.
  • step S43 the new estimated value and the previous estimated value are determined within the predetermined period. It is determined whether there are three or more cases where the difference is less than 5%. This is an operation for confirming that the channel quality has not changed much, not a large change in which the difference between the new estimated value and the previous estimated value exceeds 20%.
  • the predetermined period here is the same as the predetermined period when it is determined whether or not it exceeds 20%. That is, both the case where the difference between the new estimated value and the previous estimated value is greater than 20% and less than 5% within the same predetermined period are determined.
  • step S44 the process proceeds to step S45.
  • step S44 that is, when there are three or more times within a predetermined period of time, it can be said that the channel quality has not changed frequently, There is no need to check frequently, the estimated interval is changed to twice, and the process proceeds to step S45.
  • step S45 it is determined whether the communication session currently in progress has ended. When the communication session is finished, the control of the dynamic adjustment of the channel estimation interval is also finished. On the other hand, if the communication session has not ended, the operation from step S42 is repeated. When the communication session ends, the channel quality estimation value and the counted number are reset.
  • step S42 When the process proceeds from step S42 to step S43 and then from step S43 to step S45, that is, when the estimation interval is not changed within a predetermined period, it corresponds to the oldest estimated value of the recorded count values. Throw away and accumulate the number of times corresponding to the new estimated value obtained over time of the estimation interval. Alternatively, all the count values of the number of times of recording, for example, all five times may be discarded, the recording may be reset, and the number of times may be recorded again within a predetermined period.
  • step S44 and step S46 are performed, that is, when the estimation interval is changed within a predetermined period (including the case where step S48 is performed according to the determination of step S47), the count value of the number of times is set. Reset and record the number of times again within a predetermined period.
  • the difference (20%, 5%) between the new estimated value and the previous estimated value is an example, and it is needless to say that 20% may be 15%, and 5% may be 3%.
  • the number of times (three times) that the difference between the new estimated value and the previous estimated value exceeds the predetermined value or falls below the predetermined value within a predetermined period is an example, and is set to 2 or 5 times. It goes without saying that it is also good.
  • the operation of dynamically adjusting the channel estimation interval described with reference to FIG. 15 is an operation by the control unit 242 of the processor 240 of the eNB 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明は無線通信装置に関し、配下の無線通信装置との間で通信を行う無線通信装置であって、配下の無線通信装置からの信号のフィードバックに使用されるチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、配下の無線通信装置でチャネル情報を量子化する際に使われる量子化ビット数を動的に調節して配下の無線通信装置に通知する制御部を備え、制御部は、推定したチャネル品質が高くなれば量子化ビット数を大きくするように調節する。

Description

無線通信装置、無線通信システムおよび通信制御方法
 本発明は無線通信装置に関し、特に、デジタル伝送方式でチャネル情報を基地局にフィードバックする無線通信装置に関する。
 近年、無線通信においてはデジタル伝送方式が主流になっている。デジタル伝送方式を採用する無線通信装置は、アナログの送信対象データに対して、アナログ値から送信信号を生成する場合に、量子化、二進符号化、およびシンボルマッピングの各信号処理を行う。このような処理については非特許文献1に開示がある。
 ここで量子化とは、連続量であるアナログ値を整数等の離散値に近似的に置換する処理である。二進符号化とは、量子化により得られた離散値を二進数(すなわち、ビット列)に変換する処理である。シンボルマッピングとは、二進符号化により得られたビット列を送信シンボルに変換(すなわち、デジタル変調)する処理である。
 上述したデジタル伝送方式は、誤り訂正符号等が適用できるので、伝送チャネルの雑音や干渉に対する耐性が高いものの、送信対象データの分解能を上げるためには送信ビット長を長くする必要があるため、チャネル容量が逼迫するという問題がある。逆に、チャネル容量を遠慮して、短いビット長に設定すると、チャネル品質が良くなってチャネル容量が十分ある場合にも、チャネル容量を十分に利用できず、分解能を低下させるという問題がある。
3GPP技術仕様「TS36.211 V11.1.0」2012年12月
 上述したデジタル伝送方式では、ユーザ端末で測定したチャネル情報(CSI)を基地局にフィードバックするが、その際には、予め定めた固定のビット数でCSIを量子化するので、量子化誤差も固定され、CSIの精度が一定に維持されるという利点がある。しかし、チャネル状況が良い場合にもCSIの精度が変わらないので、伝送性能の向上が期待できないという問題がある。
 本発明は上記のような問題を解決するためになされたものであり、デジタル伝送方式でチャネル情報を基地局にフィードバックする場合であっても、チャネル状況に応じて伝送性能を向上できる無線通信装置を提供する。
 本発明に係る無線通信装置の一態様は、配下の無線通信装置との間で通信を行う無線通信装置であって、前記配下の無線通信装置からの信号のフィードバックに使用されるチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、前記配下の無線通信装置でチャネル情報を量子化する際に使われる量子化ビット数を動的に調節して前記配下の無線通信装置に通知する制御部を備え、前記制御部は、推定したチャネル品質が高くなれば前記量子化ビット数を大きくするように調節する。
 本発明に係る無線通信装置の一態様は、前記制御部が、前記量子化ビット数の動的な調節に合わせて、前記配下の無線通信装置で量子化後のチャネル情報を送信する際の変調方式およびコーディングレートを動的に調節する。
 本発明に係る無線通信装置の一態様は、前記制御部が、チャネル品質の数値範囲を段階的に設定し、該数値範囲ごとに前記量子化ビット数を対応付け、推定したチャネル品質が、いずれかの数値範囲内にある場合には、その数値範囲に対応付けられた前記量子化ビット数を、推定したチャネル品質に対応する量子化ビット数として決定し、決定した量子化ビット数の情報を前記配下の無線通信装置に通知する。
 本発明に係る無線通信装置の一態様は、前記制御部が、チャネル品質の数値範囲を段階的に設定し、該数値範囲ごとに前記変調方式およびコーディングレートを対応付け、推定したチャネル品質が、いずれかの数値範囲内にある場合には、その数値範囲に対応付けられた前記変調方式および前記コーディングレートを、推定したチャネル品質に対応する変調方式およびコーディングレートとして決定し、決定した変調方式およびコーディングレートの情報を前記配下の無線通信装置に通知する。
 本発明に係る無線通信装置の一態様は、前記制御部が、チャネル品質の数値範囲を段階的に設定し、該数値範囲ごとに前記量子化ビット数、前記変調方式および前記コーディングレートを対応付けると共に、チャネル品質の数値範囲ごとにインデックスを割り付け、推定したチャネル品質が、いずれかの数値範囲内にある場合には、その数値範囲に対応付けられた前記量子化ビット数、前記変調方式および前記コーディングレートを、推定したチャネル品質に対応する量子化ビット数、変調方式およびコーディングレートとして決定し、割り付けられたインデックスの情報を前記配下の無線通信装置に通知する。
 本発明に係る無線通信装置の一態様は、前記制御部が、動的に調節した前記量子化ビット数を前記配下の無線通信装置に通知した後、一定の期間内に前記配下の無線通信装置からの肯定応答信号を受信しない場合は、再び同じ量子化ビット数を前記配下の無線通信装置に通知する動作を繰り返し、繰り返しの回数が、予め定めた回数を超えた場合は、動的に調節した前記量子化ビット数を前記配下の無線通信装置に通知する動作を中止する。
 本発明に係る無線通信装置の一態様は、前記制御部が、前記チャネル品質の推定間隔を前記チャネル品質の変化の速さに従って動的に調整する。
 本発明に係る無線通信システムの一態様は、無線通信装置と、前記無線通信装置の配下の無線通信装置と、を備えた無線通信システムであって、前記無線通信装置は、前記配下の無線通信装置からの信号のフィードバックに使用されるチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、前記配下の無線通信装置でチャネル情報を量子化する際に使われる量子化ビット数を動的に調節して前記配下の無線通信装置に通知する制御部を備え、前記制御部は、推定したチャネル品質が高くなれば前記量子化ビット数を大きくするように調節する。
 本発明に係る無線通信システムの一態様は、前記配下の無線通信装置が、前記無線通信装置から前記量子化ビット数の情報が与えられない場合は、前回与えられた量子化ビット数の情報またはデフォルトで定めた量子化ビット数の情報を用いてチャネル情報を量子化する。
 本発明に係る無線通信システムの一態様は、前記制御部が、前記量子化ビット数の動的な調節に合わせて、前記配下の無線通信装置で量子化後のチャネル情報を送信する際の変調方式およびコーディングレートを動的に調節して前記配下の無線通信装置に通知し、前記配下の無線通信装置は、前記無線通信装置から前記変調方式および前記コーディングレートの情報が与えられない場合は、前回与えられた変調方式およびコーディングレートの情報またはデフォルトで定めた変調方式およびコーディングレートの情報を用いて前記量子化後のチャネル情報を送信する。
 本発明に係る通信制御方法の一態様は、配下の無線通信装置との間で通信を行う無線通信装置での通信制御方法であって、前記配下の無線通信装置からの信号のフィードバックに使用されるチャネルのチャネル品質を推定するステップ(a)と、推定した前記チャネル品質に基づいて、前記配下の無線通信装置でチャネル情報を量子化する際に使われる量子化ビット数を動的に調節するステップ(b)と、を備え、前記ステップ(b)は、推定したチャネル品質が高くなれば前記量子化ビット数を大きくするように調節するステップを含んでいる。
 本発明によれば、チャネル状況に応じて伝送性能を向上できる無線通信装置を得ることができる。
実施の形態に係るLTEシステムの構成図である。 実施の形態に係るUEのブロック図である。 実施の形態3に係るeNBのブロック図である。 LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。 LTEシステムで使用される無線フレームの構成図である。 実施の形態におけるチャネル品質の推定値に基づく量子化ビット数およびMCSの動的処理の制御動作を説明するフローチャートである。 チャネル行列の一例を示す図である。 チャネル品質と量子化ビット数の対応表を示す図である。 チャネル品質とMCSとの対応表を示す図である。 ジョイントテーブルの一例を示す図である。 実施の形態の変形例1を説明するフローチャートである。 実施の形態の変形例1を説明するフローチャートである。 実施の形態の変形例2を説明するフローチャートである。 実施の形態の変形例4を説明するフローチャートである。 チャネル推定の間隔を動的に調整する方法を説明するフローチャートである。
 <はじめに>
 発明の実施の形態の説明に先だって、3GPP(3rd Generation Partnership Project)で標準化されているLTE(Long Term Evolution)について説明する。
 図1は、LTEシステムの構成図である。図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved-UMTS Terrestria1 Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含んでいる。E-UTRAN10は無線アクセスネットワークに相当し、EPC20はコアネットワークに相当する。E-UTRAN10およびEPC20は、LTEシステムのネットワークを構成する。
 UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含んでいる。eNB200は基地局に相当する。eNB200は、1または複数のセルを管理しており、自らが管理するセルとの接続を確立したUE100との無線通信を行う。なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他にUE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御およびスケジューリングのための測定制御機能と、を有している。
 EPC20は、複数のMME(Mobility Management Entity)/S-GW(Serving―Gateway)300を含んでいる。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノートであり、交換局に相当する。MME/S-GW300により構成されるEPC20は、eNB200を収容する。
 eNB200は、インターフェイスX2を介して相互に接続される。また、eNB200は、インターフェイスSIを介してMME/S-GW300と接続される。
 図2は、UE100の構成を示すブロック図である。図2に示すようにUE100は、複数のアンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160とを有している。なお、UE100は、GNSS受信機130を有していなくても良い。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160'としても良い。
 複数のアンテナ101および無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換して複数のアンテナ101から送信する送信部111を含んでいる。また、無線送受信機110は、複数のアンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する受信部112を含んでいる。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、および各種ボタンなどを含んでいる。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。プロセッサ160は、ベースバンド信号の変調・復調および符号化・復号などの信号処理を行う信号処理部161と、メモリ150に記憶されるプログラムを実行して各種の制御を行う制御部162と、を含んでいる。
 ここで、後に説明するように、UE100が測定したチャネル情報(CSI)を、デジタルフィードバックによりeNB200に伝送するので、信号処理部161にはデジタル伝送処理部を有している。
 デジタル伝送処理部は、現行の3GPP規格に従ったデジタル伝送方式により送信信号を生成する。
 プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでも良い。プロセッサ160は、後述する各種の制御を実行する。
 図3は、eNB200の構成を示すブロック図である。図3に示すようにeNB200は、複数のアンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有している。メモリ230およびプロセッサ240は、基地局側制御部を構成する。
 複数のアンテナ201および無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換して複数のアンテナ201から送信する送信部211を含んでいる。また、無線送受信機210は、複数のアンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する受信部212を含んでいる。
 ネットワークインターフェイス220は、インターフェイスX2(図1)を介して隣接するeNB200と接続され、インターフェイスSI(図1)を介してMME/S-GW300と接続される。ネットワークインターフェイス220は、インターフェイスX2上で行う通信およびインターフェイスSI上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。プロセッサ240は、ベースバンド信号の変調・復調および符号化・復号などの信号処理を行う信号処理部241と、メモリ230に記憶されるプログラムを実行して各種の制御を行う制御部242と、を含んでいる。プロセッサ240は、後述する各種の制御を実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタックを示す図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1~レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Media Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含んでいる。レイヤ3は、RRC(Radio Resource Control)レイヤを含んでいる。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、およびリソースマッピング・デマッピングを行う。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、およびハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))、および割当てリソースブロックを決定するスケジューラを含んでいる。
 RLCレイヤは、MACレイヤおよび物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、および暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御メッセージ(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立および解放に応じて、論理チャネル、トランスポートチャネル、および物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態(RRC connected state)であり、そうでない場合、UE100はアイドル状態(RRC idle state)である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理およびモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiplexing Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さはlmsecであり、各スロットの長さは0.5msecである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリアおよび1つのシンボルによって構成される無線リソース単位は、リソースエレメント(RE)と称される。
 UE100に割当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(またはスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に制御信号を伝送するための物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主にユーザデータを伝送するための物理下りリンク共有チャネル(PDSCH)として使用できる領域である。
 PDCCHは、制御信号を搬送する。制御信号は、例えば、上りリンクSI(Scheduling Information)、下りリンクSI、TPCビットを含む。上りリンクSIは上りリンク無線リソースの割当てを示す情報であり、下りリンクSIは、下りリンク無線リソースの割当てを示す情報である。TPCビットは、上りリンクの送信電力の増減を指示する情報である。これらの情報は、下りリンク制御情報(DCI)と称される。
 PDSCHは、制御信号および/またはユーザデータを搬送する。例えば、下りリンクのデータ領域は、ユーザデータにのみ割当てられても良く、ユーザデータおよび制御信号が多重されるように割当てられても良い。
 また、下りリンクにおいて、各サブフレームには、セル固有参照信号(CRS)およびチャネル情報参照信号(CSI-RS)が分散して設けられる。CRSおよびCSI-RSのそれぞれは、所定の直交信号系列により構成される。eNB200は、複数のアンテナ201のそれぞれからCRSおよびCSI-RSを送信する。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に制御信号を伝送するための物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主にユーザデータを伝送するための物理上りリンク共有チャネル(PUSCH)として使用できる領域である。
 PUCCHは、制御信号を搬送する。制御信号は、例えば、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Indicator)、RI(Rank Indicator)、SR(Scheduling Request)、ACK/NACKなどである。
 CQIは、下りリンクのチャネル品質を示すインデックスであり、下りリンク伝送に使用すべき推奨変調方式および符号化率の決定等に使用される。PMIは、下りリンクの伝送のために使用することが望ましいプレコーダマトリックスを示すインデックスである。RIは、下りリンクの伝送に使用可能なレイヤ数(ストリーム数)を示すインデックスである。SRは、上りリンク無線リソース(リソースブロック)の割当てを要求する情報である。ACK/NACKは、下りリンクの物理チャネル(例えばPDSCH)を介して送信される信号の復号に成功したか否かを示す情報である。
 CQI、PMIおよびRIは、UE100が下り参照信号(CRSおよび/またはCSI-RS)を利用してチャネル推定を行い、得られたチャネル情報(CSI:Channel State Information)に相当する。
 PUSCHは、制御信号および/またはユーザデータを搬送する。例えば、上りリンクのデータ領域は、ユーザデータにのみ割当てられても良く、ユーザデータおよび制御信号が多重されるように割当てられても良い。
 また、上りリンクにおいて、各サブフレームの所定のシンボルには、サウンディング参照信号(SRS)および復調参照信号(DMRS)が設けられる。SRSおよびDMRSのそれぞれは、所定の直交信号系列により構成される。
 以上、図1~図5を用いて説明したLTEへの適用を例として、以下、実施の形態について説明する。
 <実施の形態>
 UE100は、測定したチャネル情報(CSI)を、デジタル伝送方式によりeNB200にフィードバックする。本実施の形態においては、eNB200が、UE100からのCSIのフィードバックに使用されるアップリンクのチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、UE100においてCSIを量子化する際に使われる量子化ビット数および量子化後のCSIを送信する際のMCSを動的に調節してUE100に通知する。
 UE100からのCSIのフィードバックは、通常、物理上りリンク制御チャネル(PUCCH)または物理上りリンク共有チャネル(PUSCH)を用いて行われるが、これらのチャネル品質を推定する。
 図6は、本実施の形態におけるチャネル品質の推定値に基づく量子化ビット数およびMCSの動的処理の制御動作を説明するフローチャートである。
 図6に示されるように、eNB200は、CSIのフィードバックに使用されるアップリンクのチャネルのチャネル品質を推定する(ステップS1)。
 チャネル品質は、SINR(Signal to Interference plus Noise Ratio)またはSNR(signal to noise ratio)で定義され、PUCCHおよびPUSCHのチャネル品質は、サウンディング参照信号(SRS)および/または復調参照信号(DMRS)を用いて推定できる。なお、PUCCHに関しては、eNB200が自ら管理しているセルの混みあい状況からチャネル品質を補助的に推定することも考えられる。
 ここで、本発明におけるCSIとしては、チャネル行列、チャネル共分散行列等の「原始」の情報が考えられるが、本発明の効果を奏するのであれば、これらに限定されるものではない。図7には3行3列のチャネル行列の一例を示す。なお、チャネル行列中の各要素a11~a33は複素数で表される。
 次に、推定したチャネル品質に基づいて、UE100においてCSIを量子化する際に使われる量子化ビット数および量子化後のCSIを送信する際のMCS(Modulation and Coding Scheme)を決定し、所定の記憶部、例えば図3に示したメモリ230に記憶する(ステップS2)。
 ここで、量子化ビット数および量子化後のCSIを送信する際のMCSは、チャネル品質と量子化ビット数、チャネル品質とMCSとの対応表を予め準備しておくことで、容易に決定することができる。
 図8には、チャネル品質と量子化ビット数の対応表の一例を示しており、ここでは、チャネル品質をSINRで定義した場合を示している。図8において、例えば、SINRが-10dB未満の場合は量子化ビット数が2ビットに決定され、SINRが-10dB以上、-5dB未満の場合は量子化ビット数が3ビットに決定されるように、チャネル品質の値(ここではSINRの値)が大きくなり、チャネル状況が良くなると、量子化ビット数を大きくするように対応表が作成されている。
 これは、チャネル品質が低い場合、すなわちノイズや干渉が多い場合には少ないビット数でCSIを量子化し、フィードバック情報量を減らし、逆に、チャネル品質が高い場合には、高いビット数でCSIを量子化することでCSIの精度を高め、量子化誤差を低減することで、結果的に伝送性能を高めるためである。
 図9には、チャネル品質とMCSとの対応表の一例を示しており、ここでは、チャネル品質をSINRで定義した場合を示している。図9において、例えば、SINRが-10dB未満の場合は、変調方式がBPSK(Binary Phase Shift Keying)で、コーディングレートが1/3に決定され、SINRが-10dB以上、-5dB未満の場合は、変調方式がBPSKで、コーディングレートが2/3に決定される。このように、チャネル品質の値(ここではSINRの値)が大きくなり、チャネル状況が良くなると、一度により多くの情報を送信できる変調方式およびコーディングレートが決定されるように対応表が作成されている。ここで言うコーディングレートとはターボ符号のコーディングレートを指すが、以下においてもターボ符号のコーディングレートを単にコーディングレートと呼称する。なお、ターボ符号以外のチャネルコーディング方法が用いられる場合では、利用されるコーディング方法の誤り訂正能力を動的に調整すれば良い。例えば、SINRが-10dB未満の場合は、コーディングレートが1/3のターボ符号と同等の誤り訂正能力に調整し、SINRが-10dB以上、-5dB未満の場合は、コーディングレートが2/3のターボ符号と同等の誤り訂正能力に調整すれば良い。
 これは、チャネル品質が低い場合には少ないビット数でCSIを量子化するので、オーバーヘッドは少なく、この場合の変調方式およびコーディングレートには、一度に多くの情報を送る能力は要求されないが、チャネル品質が高い場合には、高いビット数でCSIを量子化するので、オーバーヘッドが多くなり、この場合の変調方式およびコーディングレートには、一度により多くの情報を送る能力が要求されるためである。
 なお、図9においては、チャネル品質が高くなるにつれて、変調方式がBPSKからQPSK(Quadrature Phase Shift Keying)に、QPSKからQAM(Quadrature Amplitude Modulation)に変わり、QAMにおいても、チャネル品質が高くなるにつれて、16QAM、64QAM、256QAMのように変わる例を示している。なお、図8および図9に示した対応表は一例であり、これに限定されるものではない。
 ここで、図6の説明に戻る。量子化ビット数および量子化後のCSIを送信する際のMCSを決定した後は、決定した量子化ビット数およびMCSを所定の記憶部から読み出して、UE100に通知する(ステップS3)。
 この場合、決定した量子化ビット数およびMCSをそれぞれUE100に通知しても良いが、例えば、図8、9に示したようなチャネル品質と量子化ビット数の対応表、およびチャネル品質とMCSとの対応表である場合、量子化ビット数を通知するには4ビットのデータが必要であり、MCSを通知するには4ビットのデータが必要であり、合計8ビットのデータを送る必要があり、オーバーヘッドが増えることとなる。
 そこで、量子化ビット数とMCSとの組み合わせのパターンを予め設定し、当該組み合わせにごとにインデックス(「ジョイントインデックス」と呼称)を割り付け、量子化ビット数とMCSとの組み合わせに対するインデックスの対応表(「ジョイントテーブル」と呼称)を予めUE100に記憶させておく。そして、eNB200で量子化ビット数およびMCSを決定した後は、両者の組み合わせに対応するジョイントインデックスの情報をUE100に通知することで、オーバーヘッドを低減することができる。
 図10にはジョイントテーブルの一例を示しており、例えば、ジョイントインデックス0には、量子化ビット数が2ビット、変調方式がBPSKで、コーディングレートが1/3の組み合わせが対応している。
 UE100では、通知されたインデックス番号に基づいてジョイントテーブルを参照し、対応する量子化ビット数およびMCSを取得する。
 なお、1つの通信セッションの期間中に、最初に上記インデックスをUE100に通知した後は、次に通知する場合は、先のインデックスとの差分の情報だけを通知するようにしても良い。
 例えば、1ビットの情報で、「0」の場合は先のインデックスよりも1段下げ、「1」の場合は先のインデックスよりも1段上げるなどの通知の仕方をしても良い。この情報量を2ビットにすれば、先のインデックスよりも2段下げる、2段上げるなどの通知も可能となる。
 なお、量子化ビット数およびMCS(またはジョイントインデックス)の情報をUE100に送信するには、DCI(Downlink Control Information)、MCE(MAC Control Element)またはRRC(Radio Resource Control)シグナリング等を利用する。
 ここで再び図6の説明に戻る。量子化ビット数およびMCS(またはジョイントインデックス)の情報を受信したUE100は、eNB200にACK(肯定応答)信号を送信する(ステップS4)。
 eNB200では、UE100に量子化ビット数およびMCS(またはジョイントインデックス)の情報を通知した後は、ACK信号の受信を所定期間待ち(ステップS5)、所定期間内にACK信号を受信した場合はステップS8に進み、所定期間内にACK信号を受信できなかった場合はタイムアウトして、再び、UE100にステップS3の通知を行う。
 一方、ACK信号を送信したUE100は、eNB200から通知された量子化ビット数の情報に基づいてCSI情報を量子化し(ステップS6)、また、MCSの変調方式およびコーディングレートを用いて、量子化後のCSI情報をeNB200にフィードバックする(ステップS7)。
 量子化後のCSI情報を受けたeNB200では、ステップS8において、所定の記憶部に記憶された量子化ビット数およびMCS(UE100に通知したもの)に従ってCSIを復調し、デコーディングする。なお、eNB200が記憶された量子化ビット数、MCS、およびUE100が受信した量子化ビット数やMCSは通信セッションが終了すると全てリセット(クリア)される。
 そして、フィードバックされたCSIに基づいてダウンリンク送信用のプリコーダを生成する(ステップS9)。
 以上説明したように、eNB200が、UE100からのCSIのフィードバックに使用されるアップリンクのチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、UE100においてCSIを量子化する際に使われる量子化ビット数および量子化後のCSIを送信する際のMCSを動的に調節してUE100に通知するので、チャネル状況が良い場合にはUE100からフィードバックされるCSIの精度が高くなり、伝送性能の向上が期待できる。
 なお、以上の説明においては、eNB200が、UE100からのCSIのフィードバックに使用されるアップリンクのチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、UE100においてCSIを量子化する際に使われる量子化ビット数および量子化後のCSIを送信する際のMCSを動的に調節するものとして説明したが、量子化ビット数のみを動的に調節する構成とし、MCSはデフォルトで定めた変調方式-コーディングレート(例えば、QPSK-1/3)や、既存のMCSの仕組み(PUSCHを利用してCSIをフィードバックする場合)を利用しても良い。
 なお、図6を用いて説明したチャネル品質の推定値に基づく量子化ビット数およびMCSの動的処理の制御動作は、eNB200のプロセッサ240の制御部242による動作である。
 <変形例1>
 図6を用いて説明した量子化ビット数およびMCSの動的処理では、ステップS5でACK信号を受信できなかった場合は、タイムアウトを繰り返し、その回数に制限は設けられていない例を示したが、タイムアウトの回数に閾値を設け、閾値を超えると、量子化ビット数およびMCS(またはジョイントインデックス)の通知を中止する構成としても良い。
 より具体的には、図6に示したフローチャートのステップS3とステップS5との間に、図11に示すステップS11、S12およびS13のステップを加えた構成としても良い。
 図11に示すように、ステップS3で量子化ビット数およびMCSをUE100に通知した後、タイムアウトの回数が閾値を超えているか否かを判定する(ステップS11)。
 そして、タイムアウトの回数が閾値未満である場合は、UE100からのACK信号の受信を所定期間待ち(ステップS5)、所定期間内にACK信号を受信できなかった場合はタイムアウトして、再び、UE100にステップS3の通知を行うと共に、タイムアウトのカウントを1つ増やし、ステップS11の判定を待つ(ステップS12)。
 一方、ステップS11でタイムアウトの回数が閾値を超えていると判定された場合は、量子化ビット数およびMCSの通知を中止する(ステップS13)。
 このような構成を採ることで、UE100からのACK信号を受信できない場合に、量子化ビット数およびMCSの通知動作が無制限に繰り返されることを防止できる。なお、カウントされるタイムアウトの回数は通信セッションが終了するとリセットされる。
 また、eNB200が上記構成を採る場合、UE100では量子化ビット数およびMCSの情報が受信できない場合が生じるが、その場合は、前回受信した量子化ビット数およびMCSの情報があれば、それを利用し、前回受信した量子化ビット数およびMCSの情報がない(現在のセッション中に1回も受信していない)場合は、デフォルトで定めた量子化ビット数(例えば、4ビット)を用いてCSI情報を量子化し、量子化後のCSI情報をデフォルトで定めた変調方式-コーディングレート(例えば、QPSK-1/3)でeNBにフィードバックする構成とすれば良い。
 より具体的には、図6に示したフローチャートのステップS6とステップS7に、図12に示すステップS16~S17を加えた構成とすれば良い。
 図12に示すように、UE100では、量子化ビット数およびMCSの情報を受信したか否かの判定を行い(ステップS16)、量子化ビット数およびMCSの情報を受信した場合には、量子化ビット数の情報に基づいてCSI情報を量子化し(ステップS6)、また、MCSの変調方式およびコーディングレートを用いて、量子化後のCSI情報をeNB200にフィードバックする(ステップS7)。
 一方、ステップS16で量子化ビット数およびMCSの情報を受信できていないと判定される場合は、ステップS17において、前回受信した量子化ビット数およびMCSの情報があるか否かを判定する。
 そして、前回受信した量子化ビット数およびMCSの情報がある場合は、前回受信した量子化ビット数およびMCSの情報を読み出して利用する(ステップS18)。一方、ステップS17において、前回受信した量子化ビット数およびMCSの情報がない(現在のセッション中に1回も受信していない)と判定される場合は、デフォルトで定めた量子化ビット数およびMCSの情報を読み出して利用する(ステップS19)。
 その後は、ステップS6では、前回受信した量子化ビット数またはデフォルトで定めた量子化ビット数を用いてCSI情報を量子化し、ステップS7では、前回受信した変調方式およびコーディングレートまたはデフォルトで定めた変調方式およびコーディングレートを用いて、量子化後のCSI情報をeNB200にフィードバックする。
 上記のように、UE100が、前回受信した値やデフォルト値を用いた場合は、eNB200では、量子化後のCSIの復調やデコーディングができない場合がある。これは、自らが送った量子化ビット数およびMCSとは異なる、量子化ビット数およびMCSでCSIが処理されているためである。
 この場合、eNB200では、前回送った量子化ビット数およびMCSで復調、デコーディングを試み、できなければ、デフォルトで定めた量子化ビット数およびMCSでCSIを復調しデコーディングする。
 なお、UE100は、上記のようにデフォルト値や前回使用した値を用いた場合には、その旨をeNB200に通知する構成としても良い。この場合は、eNB200でのCSIの復調およびデコーディングの試行に費やす時間を短縮できる。
 <変形例2>
 LTEの規格においては、UE100からのCSIのフィードバックを周期的に行う場合と、非周期的に行う場合とが規定されている。図6を用いて説明した量子化ビット数およびMCSの動的処理は、CSIのフィードバックのタイミングになる度に実行すれば、周期および非周期の両方のCSIのフィードバックに対応できるが、明確にするために、CSIのフィードバックが非周期的な場合について図13を用いて説明する。
 すなわち、図13に示すように、eNB200は、ステップS1で、CSIのフィードバックに使用されるアップリンクのチャネルのチャネル品質を推定する前に、UE100に対してCSIのフィードバックを要求する(ステップS0)。なお、チャネルの品質を推定した後にCSIのIフィードバックを要求しても良い。また、ステップS1~S9の処理は、図6と同じであるので説明は省略する。
 <変形例3>
 チャネル品質の推定は、CSIのフィードバックの周期より長い周期で行っても良い。その場合はチャネル品質の推定が実行されるたびに、適当な周期または必要に応じて(チャネル品質に変化があったような場合)、量子化ビット数およびMCSを動的に調整するようにしても良い。
 チャネル品質の変動の速さ(一定期間内の変化量)がCSIのフィードバックの周期と比べて十分遅い環境下においては上記のような構成を採ることで、チャネル品質の推定に伴う処理負荷や、量子化ビット数およびMCSの通知に伴うオーバーヘッドを削減できる。
 <変形例4>
 チャネル品質の推定と、量子化ビット数およびMCSの通知は、CSIのフィードバックの周期とは無関係に、一定の間隔で周期的に行っても良い。
 より具体的には、図6に示したフローチャートのステップS1~S3の部分に、図14に示すステップS21およびS22のステップを加えた構成とすれば良い。
 すなわち、図14に示すように、eNB200は、ステップS1に先だって、CSIのフィードバックに使用されるアップリンクのチャネルのチャネル品質を推定する時間になったか否かを確認する(ステップS21)。
 そして、当該時間に達した場合はステップS1の処理を実行し、当該時間に達していない場合は待機する。
 ステップS1でチャネル品質を推定した後は、当該推定値が、前回の推定値と同じか否かを判定する(ステップS22)。
 そして、ステップS22で前回の推定値と同じではないと判定された場合は、ステップS2の処理を行い、量子化ビット数およびMCSをUE100に通知する(ステップS3)。また、この場合では、今回の推定値を記憶し、次回推定する際の比較対象とする。
 一方、ステップS22で前回の推定値と同じと判定された場合は、量子化ビット数およびMCSの通知は行わず、今回の推定値は記憶しない。すなわち、比較対象の前回推定値を更新しない。なお、UE100は量子化ビット数およびMCSの通知を受けることができないが、UE100においては、図12を用いて説明した構成を採用することで、前回のCSI情報の量子化で使用した量子化ビット数、または、1回も量子化ビット数等の情報を受信していない場合はデフォルトで定めた量子化ビット数を用いてCSI情報を量子化し、量子化後のCSI情報をeNB200にフィードバックすることができる。
 ここで、ステップS22における前回の推定値と同じか否かの判定は、例えば、前回の推定値との差が5%の範囲内にあれば同じと判定するなど、閾値を設けることで判定することができる。なお、当該閾値は、5%に限定されるものではなく、例えば、3%、10%等としても良い。
 また、チャネル品質の推定間隔は、例えば、デフォルト値として、20msecを設定するが、この値に限定されるものではなく、変化の速いUEに対しては、10msec、5msecまたは2msecに設定しても良い。
 このような構成を採ることで、時間と共に変動するチャネル状況に対応することができる。なお、記憶されたチャネル品質の推定値は通信セッションが終了するとリセットされる。
 なお、eNB200が、量子化ビット数およびMCSの通知を一定の間隔で周期的に行う場合、ステップS22で前回の推定値と同じと判定された場合は、量子化ビット数およびMCSの通知は行わないので、UE100では量子化ビット数およびMCSの情報が受信できない場合が生じるが、その場合は、前回受信した量子化ビット数およびMCSの情報があれば、それを利用し、前回受信した量子化ビット数およびMCSの情報がない場合は、デフォルトで定めた量子化ビット数(例えば、4ビット)を用いてCSI情報を量子化し、量子化後のCSI情報をデフォルトで定めた変調方式-コーディングレート(例えば、QPSK-1/3)でeNBにフィードバックする構成とすれば良い。その具体的な構成は図12と同じであるので説明は省略する。
 また、以下に説明するように、チャネル品質の推定間隔をチャネル品質の変化の速さに従って動的に調整するようにしても良い。
 図15はチャネル推定の間隔を動的に調整する方法を説明するフローチャートである。図15に示すように、eNB200とUE100との間で通信セッションが開始されると、初期推定間隔として例えば20msecが設定される(ステップS41)。
 そして、20msec間隔でチャネル推定を繰り返し、その都度、新しい推定値とその前(前回)の推定値との差を算出し、両者の差が20%を超えるか否かを判断する(ステップS42)。そして、所定の期間内に20%を超える場合が3回以上ある場合にはステップS46に進み、そうでない場合にはステップS43に進む。
 ここで、所定の期間内に20%を超える場合が3回以上ある場合とは、現在設定されている推定間隔の例えば5倍時間内(5回の推定を行う時間内)に20%を超えることが累積で3回以上ある場合を意味し、推定間隔が、例えば初期設定の20msec間隔である場合は、その5倍の時間(100msec)内で20%を超えることが3回以上あったと言うことになる。
 ステップS46に進んだ場合、すなわち、所定の期間内に20%を超える場合が3回以上あった場合は、チャネル品質の大きな変化が頻繁に起きていると言うことができ、チャネル品質の変化の早さを確認するため、推定間隔を半分に変更する。
 続いて、ステップS47に進んで、変更後の推定間隔が最短間隔より小さいか否かを判断し、変更後の推定間隔が最短間隔よりも小さいと判断される場合は、推定間隔を最短間隔に設定し(ステップS48)、ステップS45に進む。ここで、最短間隔とは、LTE仕様で規定されるCSIフィードバックの最短間隔時間のことであり、例えばCSIフィードバックの最短期間が1サブフレームの場合は最短の推定間隔が1msecとなる。
 一方、変更後の推定間隔が最短間隔以上と判断される場合は、変更後の推定間隔のままステップS45に進む。
 ステップS42からステップS43に進んだ場合、すなわち、所定の期間内に20%を超える場合が3回に満たない場合は、ステップS43において、所定の期間内に新しい推定値と前回の推定値との差が5%未満となる場合が3回以上あるか否かを判断する。これは、新しい推定値と前回の推定値との差が20%を超えるような大きな変化ではなく、チャネル品質があまり変化していないことを確認するための動作である。
 ここでの所定の期間は20%を超えるか否かを判定する場合の所定期間と同じである。すなわち、同じ所定期間内に、新しい推定値と前回の推定値との差が20%を超える場合と5%未満となる場合の両方について判断を行うことになる。
 そして、所定の期間内に5%未満となる場合が3回以上ある場合にはステップS44に進み、そうでない場合にはステップS45に進む。
 ステップS44に進んだ場合、すなわち、所定の期間内に5%未満となる場合が3回以上あった場合は、チャネル品質の変化が頻繁に起きていないと言うことができ、チャネル品質の変化を頻繁に確認する必要がなく、推定間隔を2倍に変更し、ステップS45に進む。
 ステップS45では、現在進行中の通信セッションが終了したかを判断する。通信セッションが終了した場合はチャネル推定間隔の動的調整の制御も終了する。一方、通信セッションが終了していない場合はステップS42以下の動作を繰り返すことになる。通信セッション終了すると、チャネル品質の推定値、及びカウントした回数をリセットする。
 なお、ステップS42からステップS43に進み、ステップS43からステップS45に進んだ場合、すなわち、推定間隔が所定期間内で変更がない場合は、記録した回数のカウント値の一番古い推定値に対応するものを捨てて、推定間隔の時間経過で得た新たな推定値に対応する回数を累積する。また、記録した回数のカウント値の全て、例えば5回分の全てを捨てて、記録をリセットし、再度、所定期間内で回数を記録するようにしても良い。
 なお、ステップS44、ステップS46が実行された場合、すなわち、推定間隔が所定期間内で変更された場合は(ステップS47の判断によって、ステップS48が実行される場合も含む)、回数のカウント値をリセットし、再度、所定期間内で回数を記録する。
 なお、上述した新しい推定値と前回の推定値との差(20%、5%)は一例であり、20%を15%とし、5%を3%としても良いことは言うまでもない。
 また、所定の期間内に新しい推定値と前回の推定値との差が所定値を超える、または所定値未満となる回数(3回)についても一例であり、2回や5回に設定しても良いことは言うまでもない。
 なお、図15を用いて説明したチャネル推定の間隔を動的に調整する動作は、eNB200のプロセッサ240の制御部242による動作である。
 この発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。

Claims (11)

  1.  配下の無線通信装置との間で通信を行う無線通信装置であって、
     前記配下の無線通信装置からの信号のフィードバックに使用されるチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、前記配下の無線通信装置でチャネル情報を量子化する際に使われる量子化ビット数を動的に調節して前記配下の無線通信装置に通知する制御部を備え、
     前記制御部は、
     推定したチャネル品質が高くなれば前記量子化ビット数を大きくするように調節する、無線通信装置。
  2.  前記制御部は、
     前記量子化ビット数の動的な調節に合わせて、前記配下の無線通信装置で量子化後のチャネル情報を送信する際の変調方式およびコーディングレートを動的に調節する、請求項1記載の無線通信装置。
  3.  前記制御部は、
     チャネル品質の数値範囲を段階的に設定し、該数値範囲ごとに前記量子化ビット数を対応付け、
     推定したチャネル品質が、いずれかの数値範囲内にある場合には、その数値範囲に対応付けられた前記量子化ビット数を、推定したチャネル品質に対応する量子化ビット数として決定し、決定した量子化ビット数の情報を前記配下の無線通信装置に通知する、請求項1記載の無線通信装置。
  4.  前記制御部は、
     チャネル品質の数値範囲を段階的に設定し、該数値範囲ごとに前記変調方式および前記コーディングレートを対応付け、
     推定したチャネル品質が、いずれかの数値範囲内にある場合には、その数値範囲に対応付けられた前記変調方式および前記コーディングレートを、推定したチャネル品質に対応する変調方式およびコーディングレートとして決定し、決定した変調方式およびコーディングレートの情報を前記配下の無線通信装置に通知する、請求項2記載の無線通信装置。
  5.  前記制御部は、
     チャネル品質の数値範囲を段階的に設定し、該数値範囲ごとに前記量子化ビット数、前記変調方式および前記コーディングレートを対応付けると共に、チャネル品質の数値範囲ごとにインデックスを割り付け、
     推定したチャネル品質が、いずれかの数値範囲内にある場合には、その数値範囲に対応付けられた前記量子化ビット数、前記変調方式および前記コーディングレートを、推定したチャネル品質に対応する量子化ビット数、変調方式およびコーディングレートとして決定し、割り付けられたインデックスの情報を前記配下の無線通信装置に通知する、請求項2記載の無線通信装置。
  6.  前記制御部は、
     動的に調節した前記量子化ビット数を前記配下の無線通信装置に通知した後、
     一定の期間内に前記配下の無線通信装置からの肯定応答信号を受信しない場合は、再び同じ量子化ビット数を前記配下の無線通信装置に通知する動作を繰り返し、繰り返しの回数が、予め定めた回数を超えた場合は、動的に調節した前記量子化ビット数を前記配下の無線通信装置に通知する動作を中止する、請求項1記載の無線通信装置。
  7.  前記制御部は、
     前記チャネル品質の推定間隔を前記チャネル品質の変化の速さに従って動的に調整する請求項1記載の無線通信装置。
  8.  無線通信装置と、
     前記無線通信装置の配下の無線通信装置と、を備えた無線通信システムであって、
     前記無線通信装置は、
     前記配下の無線通信装置からの信号のフィードバックに使用されるチャネルのチャネル品質を推定し、推定したチャネル品質に基づいて、前記配下の無線通信装置でチャネル情報を量子化する際に使われる量子化ビット数を動的に調節して前記配下の無線通信装置に通知する制御部を備え、
     前記制御部は、
     推定したチャネル品質が高くなれば前記量子化ビット数を大きくするように調節する、無線通信システム。
  9.  前記配下の無線通信装置は、
     前記無線通信装置から前記量子化ビット数の情報が与えられない場合は、
     前回与えられた量子化ビット数の情報またはデフォルトで定めた量子化ビット数の情報を用いてチャネル情報を量子化する、請求項8記載の無線通信システム。
  10.  前記制御部は、
     前記量子化ビット数の動的な調節に合わせて、前記配下の無線通信装置で量子化後のチャネル情報を送信する際の変調方式およびコーディングレートを動的に調節して前記配下の無線通信装置に通知し、
     前記配下の無線通信装置は、
     前記無線通信装置から前記変調方式および前記コーディングレートの情報が与えられない場合は、
     前回与えられた変調方式およびコーディングレートの情報またはデフォルトで定めた変調方式およびコーディングレートの情報を用いて前記量子化後のチャネル情報を送信する、請求項9記載の無線通信システム。
  11.  配下の無線通信装置との間で通信を行う無線通信装置での通信制御方法であって、
     (a)前記配下の無線通信装置からの信号のフィードバックに使用されるチャネルのチャネル品質を推定するステップと、
     (b)推定した前記チャネル品質に基づいて、前記配下の無線通信装置でチャネル情報を量子化する際に使われる量子化ビット数を動的に調節するステップと、を備え、
     前記ステップ(b)は、
     推定したチャネル品質が高くなれば前記量子化ビット数を大きくするように調節するステップを含む、通信制御方法。
PCT/JP2015/065980 2014-06-25 2015-06-03 無線通信装置、無線通信システムおよび通信制御方法 WO2015198810A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016529225A JPWO2015198810A1 (ja) 2014-06-25 2015-06-03 無線通信装置、無線通信システムおよび通信制御方法
US15/382,355 US20170099616A1 (en) 2014-06-25 2016-12-16 Wireless communication device, wireless communication system, and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014130122 2014-06-25
JP2014-130122 2014-06-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/382,355 Continuation US20170099616A1 (en) 2014-06-25 2016-12-16 Wireless communication device, wireless communication system, and communication control method

Publications (1)

Publication Number Publication Date
WO2015198810A1 true WO2015198810A1 (ja) 2015-12-30

Family

ID=54937907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065980 WO2015198810A1 (ja) 2014-06-25 2015-06-03 無線通信装置、無線通信システムおよび通信制御方法

Country Status (3)

Country Link
US (1) US20170099616A1 (ja)
JP (1) JPWO2015198810A1 (ja)
WO (1) WO2015198810A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137058A (ja) * 2019-02-25 2020-08-31 株式会社日立国際電気 無線通信システム、送信局及び受信局

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10390382B2 (en) * 2016-12-29 2019-08-20 Intel IP Corporation Devices and methods for processing transmissions from multiple network access nodes based on distinguishing features
EP3979533A4 (en) * 2019-08-26 2022-06-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CHANNEL STATE INFORMATION PROCESSING METHOD, ELECTRONIC DEVICE AND MEMORY MEDIA
CN111652376B (zh) * 2020-07-03 2024-02-27 本源量子计算科技(合肥)股份有限公司 一种量子比特信号的读取方法及装置
US11337100B1 (en) * 2021-02-25 2022-05-17 Nokia Solutions And Networks Oy Transfer of channel estimate in radio access network
CN116827489A (zh) * 2022-03-18 2023-09-29 中兴通讯股份有限公司 信道状态信息的反馈方法、装置、存储介质及电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236431A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc チャネル品質情報報告方法、基地局及びユーザ端末
JP2008283475A (ja) * 2007-05-10 2008-11-20 Matsushita Electric Ind Co Ltd 無線通信システム、基地局装置、および無線端末
WO2009008337A1 (ja) * 2007-07-06 2009-01-15 Sharp Kabushiki Kaisha 移動通信システム、基地局装置および移動局装置
WO2009130913A1 (ja) * 2008-04-25 2009-10-29 パナソニック株式会社 無線通信装置および量子化方法
JP2010109610A (ja) * 2008-10-29 2010-05-13 Panasonic Electric Works Co Ltd 適応変調通信装置
JP2014093677A (ja) * 2012-11-05 2014-05-19 Sharp Corp 無線通信装置および基地局装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8150433B2 (en) * 2005-08-16 2012-04-03 The Regents Of The University Of California Beamforming method for wireless communication systems and apparatus for performing the same
US8699960B2 (en) * 2007-12-21 2014-04-15 Qualcomm Incorporated Methods and apparatus for channel quality indication feedback in a communication system
US20090180456A1 (en) * 2008-01-15 2009-07-16 Khoi Ly Method and system for adaptive quantization steps for hs-scch decoding using average cqi
JP5361872B2 (ja) * 2008-04-18 2013-12-04 パナソニック株式会社 無線受信装置、無線送信装置及びフィードバック方法
US8218422B2 (en) * 2008-06-03 2012-07-10 Nec Laboratories America, Inc. Coordinated linear beamforming in downlink multi-cell wireless networks
EP2294740B1 (en) * 2008-07-02 2014-04-02 Huawei Technologies Co. Ltd. System and method for quantization of channel state information
CN102130741B (zh) * 2010-11-09 2013-09-25 华为技术有限公司 一种信道质量信息的传输方法、基站及用户设备
US9155080B2 (en) * 2011-03-03 2015-10-06 Lg Electronics Inc. Method and device for transmitting control information in wireless communication system
US8867639B2 (en) * 2012-04-23 2014-10-21 Lg Electronics Inc. Feedback method for virtual MIMO transmission in wireless ad-hoc communication system
US8824535B2 (en) * 2012-05-22 2014-09-02 Blackberry Limited System and method for transmitting data through a digital interface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236431A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc チャネル品質情報報告方法、基地局及びユーザ端末
JP2008283475A (ja) * 2007-05-10 2008-11-20 Matsushita Electric Ind Co Ltd 無線通信システム、基地局装置、および無線端末
WO2009008337A1 (ja) * 2007-07-06 2009-01-15 Sharp Kabushiki Kaisha 移動通信システム、基地局装置および移動局装置
WO2009130913A1 (ja) * 2008-04-25 2009-10-29 パナソニック株式会社 無線通信装置および量子化方法
JP2010109610A (ja) * 2008-10-29 2010-05-13 Panasonic Electric Works Co Ltd 適応変調通信装置
JP2014093677A (ja) * 2012-11-05 2014-05-19 Sharp Corp 無線通信装置および基地局装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020137058A (ja) * 2019-02-25 2020-08-31 株式会社日立国際電気 無線通信システム、送信局及び受信局
JP7260327B2 (ja) 2019-02-25 2023-04-18 株式会社日立国際電気 無線通信システム、送信局及び受信局

Also Published As

Publication number Publication date
US20170099616A1 (en) 2017-04-06
JPWO2015198810A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
US8767664B2 (en) Mobile terminal apparatus, radio base station apparatus and radio communication method
JP6388584B2 (ja) 端末装置、基地局装置、集積回路、および通信方法
JP6006332B2 (ja) 基地局、プロセッサ、通信制御方法及びユーザ端末
WO2015198810A1 (ja) 無線通信装置、無線通信システムおよび通信制御方法
WO2013094578A1 (ja) 移動通信システム、基地局装置、移動局装置、通信方法および集積回路
KR20190047076A (ko) 단축된 tti를 갖는 pusch 상의 uci에 대한 제어 정보 mcs 오프셋 결정
JP6886399B2 (ja) 無線端末、基地局、及びプロセッサ
WO2017187697A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP6461812B2 (ja) ユーザ端末、基地局、及び方法
JP6205491B2 (ja) 無線通信装置および信号処理の制御方法
JPWO2017187810A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP6352280B2 (ja) ネットワーク装置及びユーザ端末
JP6101544B2 (ja) 基地局、通信制御方法、及びプロセッサ
JP6158309B2 (ja) 基地局、プロセッサ、及び通信制御方法
JP6577494B2 (ja) 無線通信装置および信号処理の制御方法
CN110268663B (zh) 上行链路控制信息处理方法及用户设备
JP6871162B2 (ja) 基地局及び無線端末
JP2018196077A (ja) 端末装置、基地局装置、通信方法、および、集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811457

Country of ref document: EP

Kind code of ref document: A1