WO2015196628A1 - 通信系统的载波聚合方法及装置 - Google Patents

通信系统的载波聚合方法及装置 Download PDF

Info

Publication number
WO2015196628A1
WO2015196628A1 PCT/CN2014/088425 CN2014088425W WO2015196628A1 WO 2015196628 A1 WO2015196628 A1 WO 2015196628A1 CN 2014088425 W CN2014088425 W CN 2014088425W WO 2015196628 A1 WO2015196628 A1 WO 2015196628A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
serving cell
uplink
deviation
downlink
Prior art date
Application number
PCT/CN2014/088425
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
梁春丽
夏树强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14895963.8A priority Critical patent/EP3163781B1/en
Priority to US15/321,787 priority patent/US10219180B2/en
Publication of WO2015196628A1 publication Critical patent/WO2015196628A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to the field of communications, and in particular to a carrier aggregation method and apparatus for a communication system.
  • a radio frame (Radio Frame) in a Long Term Evolution (LTE) system includes a Frequency Division Duplex (FDD) mode and a Time Division Duplex (TDD) mode.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Frame structure As shown in FIG. 1, in the frame structure of the FDD mode, a 10 msec (ms) radio frame is composed of twenty slots of length 0.5 ms and numbers 0 to 19, and slots 2i and 2i. +1 constitutes a subframe i of length 1 ms (where 0 ⁇ i ⁇ 9). As shown in FIG.
  • a 10 ms radio frame is composed of two half frames having a length of 5 ms, and one subframe includes five subframes having a length of 1 ms, and the subframe is included.
  • i is defined as a combination of two time slots 2i and 2i+1 of length 0.5 ms (where 0 ⁇ i ⁇ 9).
  • the uplink and downlink configurations supported by each subframe are shown in Table 1. Wherein, "D” indicates a subframe dedicated to downlink transmission, "U” indicates a subframe dedicated to uplink transmission, and "S” indicates a downlink pilot slot (Down Link Pilot Time Slot, DwPTS for short), and a guard interval.
  • D indicates a subframe dedicated to downlink transmission
  • U indicates a subframe dedicated to uplink transmission
  • S indicates a downlink pilot slot (Down Link Pilot Time Slot, DwPTS for short), and a guard interval.
  • a special subframe of the three domains (Guard Period, GP for short) and Uplink Pilot
  • Table 1 shows the uplink and downlink configuration diagrams supported by each subframe.
  • LTE TDD supports 5ms and 10ms uplink and downlink switching cycles. If the downlink to uplink transition point period is 5 ms, the special subframe will exist in two fields; if the downlink to uplink transition point period is 10 ms, the special subframe exists only in the first field; subframe #0 and sub Frame #5 and DwPTS are always used for downlink transmission; UpPTS and subframes immediately following the special subframe are dedicated to uplink transmission.
  • a Physical Downlink Shared Channel (PDSCH) and a corresponding hybrid automatic repeat request-acknowledgment (HARQ) are transmitted in a Hybrid Automatic Repeat Request (HARQ).
  • the ACK information has a timing rule that the downlink HARQ timing relationship is as follows: when the UE detects the PDSCH transmission or the physical downlink control channel (Physical Downlink Control Channel) indicating the downlink SPS release in the subframe n-4.
  • the UE will transmit the corresponding HARQ-ACK information on the uplink subframe n, that is, the feedback delay of the downlink HARQ is 4; for the LTE TDD system, the downlink HARQ timing relationship has the following provisions: when the UE is in the subframe The PDCCH is detected on the nk or the PDCCH indicating the downlink semi-persistent scheduling SPS release, and the UE transmits the corresponding HARQ-ACK information on the uplink subframe n, where k belongs to K, and K is ⁇ k 0 , k 1 ,...
  • K is the total number of K, and the maximum value of M is 4, and the value corresponding to k is the feedback delay of downlink HARQ.
  • Table 2 The values of K in different uplink and downlink configurations are shown in Table 2. It can be obtained from Table 2 that the downlink HARQ feedback delay of the TDD system is greater than or equal to the downlink HARQ feedback delay of the LTE FDD system.
  • LTE-A Long Term Evolution Advanced
  • CA Carrier Aggregation
  • a carrier to be aggregated is called a component carrier (CC), which is also called a serving cell.
  • CC component carrier
  • PCC/PCell primary component carrier/cell
  • SCC/SCell secondary component carrier/cell
  • the FDD serving cell aggregation is supported, and the corresponding downlink HARQ feedback delay is 4. Supports TDD serving cell aggregation in the same uplink and downlink configuration, and also supports TDD serving cell aggregation in different uplink and downlink configurations.
  • the corresponding downlink HARQ feedback delay is k, and the k value is as shown in Table 2. From the feedback delay, the feedback delay of the existing carrier aggregation TDD system is greater than or equal to the carrier aggregation FDD system.
  • the present invention provides a carrier aggregation method and apparatus for the communication system to solve at least the above problems.
  • a carrier aggregation method for a communication system including: a plurality of serving cells having a subframe offset are aggregated to obtain K primary serving cells and M secondary serving cells, where K and the M are positive integers; the transmitting node transmits information on the plurality of serving cells according to the subframe deviation.
  • the subframe deviation includes: a corresponding subframe index difference value between serving cells in the same radio frame index, or a difference between subframes in which the synchronization channel is located between the multiple serving cells.
  • the presence of the subframe offset includes: the subframe deviation exists between the serving cells adjacent to the cell index in the multiple serving cells; or the plurality of serving cells and the fixed serving cell exist in the subframe a frame offset, wherein the fixed serving cell is a serving cell in the plurality of serving cells.
  • the fixed serving cell is one of: a serving cell as a primary serving cell, a serving cell with a largest subframe index, and a predefined serving cell of a transit node.
  • the multiple serving cells include: an FDD serving cell and/or a TDD serving cell.
  • the transmitting node includes a base station and a terminal, and the transmitting node transmits information on the preset multiple carriers according to the deviation, including: the terminal is in the multiple according to the subframe deviation Transmitting information on the serving cell; and/or the base station performs information scheduling on the plurality of serving cells according to the subframe deviation, and transmits information according to the scheduling.
  • the method further includes: the terminal acquiring the subframe deviation according to at least one of: the terminal acquiring by using signaling The subframe Deviating; the terminal acquires the subframe offset by detecting a location of a synchronization channel corresponding to the multiple serving cells; and acquiring the subframe offset by using an uplink and downlink configuration corresponding to the multiple serving cells.
  • the subframe offset includes at least one of the following: when the uplink and downlink configurations of the primary serving cell are #0 and the secondary serving cell The uplink and downlink configuration is #1, and the subframe deviation is 3; when the uplink and downlink configuration of the primary serving cell is #1 and the uplink and downlink configuration of the secondary serving cell is #0, the subframe deviation is 2; when the uplink and downlink configuration of the primary serving cell is # 2, the uplink and downlink configuration of the secondary serving cell is #0, the subframe deviation is 2; when the uplink and downlink configuration of the primary serving cell is #3 and the uplink and downlink configuration of the secondary serving cell is #6, the subframe deviation is 3; when the primary serving cell The uplink and downlink configuration is #4, and the uplink and downlink configuration of the secondary serving cell is #0, and the subframe deviation is 2; when the uplink and downlink configuration of the primary serving cell is #5 and the up
  • the transmitting, by the terminal, the information on the multiple serving cells according to the subframe deviation includes:
  • the terminal is uplinking Sending a corresponding hybrid automatic repeat request-acknowledgment HARQ-ACK on subframe n+4, where
  • the terminal sends the HARQ-ACK on the primary serving cell;
  • the terminal sends the HARQ-ACK on the primary serving cell;
  • the primary serving cell is a downlink subframe, and the HARQ-ACK is sent on the secondary serving cell.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including:
  • downlink control information corresponding to the physical uplink shared channel PUSCH transmission is detected on the subframe n (Downlink Control Information,
  • the terminal transmits the PUSCH on the subframe n+4, wherein the serving cell selection in which the DCI is located includes at least one of the following:
  • the carrier corresponding to the PUSCH transmitted on the subframe n+4 has a downlink subframe on the subframe n, and the DCI is transmitted on the same serving cell as the PUSCH;
  • the DCI is transmitted on a serving cell different from the PUSCH, and the terminal according to the timing deviation, At least one of an uplink and downlink ratio and a high layer signaling of the aggregation serving cell determines a serving cell where the DCI is located;
  • the carrier where the DCI corresponding to the PUSCH is located is determined according to the configuration.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including:
  • the terminal When there are corresponding downlink subframes and uplink subframes in each subframe index, the terminal sends a PUSCH on the subframe n, and detects a PUSCH-compatible physical hybrid automatic retransmission indicator channel on the subframe n+4 (Physical Hybrid)
  • An ARQ indicator or channel PHICH is used, where the PH cell selection of the PHICH includes at least one of the following:
  • the PHICH is transmitted on the same serving cell as the PUSCH;
  • the PHICH is transmitted on a serving cell different from the PUSCH, and the terminal is based on the timing deviation. And determining, by the at least one of the uplink and downlink ratio and the high layer signaling of the aggregation serving cell, the serving cell where the PHICH is located;
  • the carrier where the PHICH is located is determined according to the configuration.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including:
  • the terminal When there are corresponding downlink subframes and uplink subframes under each subframe index, the terminal detects the PHICH on the subframe n, and if the PHICH feedback is non-acknowledgement (NACK), the retransmission is sent on the subframe n+4.
  • NACK non-acknowledgement
  • the serving cell selection in which the retransmitted PUSCH is located includes at least one of the following:
  • the transmitted PUSCH is transmitted on the same serving cell as the PHICH;
  • the transmitted PUSCH is transmitted on a serving cell different from the PHICH, where the terminal Determining, according to the timing deviation, the uplink and downlink ratio of the aggregate serving cell, and the high layer signaling, the serving cell where the retransmitted PUSCH is located;
  • the carrier where the retransmitted PUSCH is located is determined according to the configuration.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including:
  • the terminal When there is a corresponding uplink subframe under each subframe index, the terminal detects an uplink DCI format or a random access response indication and corresponding channel state information (Channel State Information, referred to as The CSI) trigger field is set to trigger the report, and the aperiodic CSI report is sent on the PUSCH corresponding to the subframe n+4.
  • the CSI Channel State Information
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including: if each subframe index has a corresponding uplink subframe:
  • the periodic CSI is sent on the primary serving cell
  • the periodic CSI is sent on the primary serving cell
  • the secondary serving cell corresponding to the subframe n is an uplink subframe
  • the primary serving cell is a downlink subframe
  • the periodic CSI is sent in the secondary serving cell
  • the period CSI of each serving cell is configured according to the period and offset corresponding to the FDD system.
  • the performing, by the base station, information scheduling on the multiple serving cells according to the subframe deviation and transmitting information according to the scheduling including: the base station notifying the subframe deviation; Information scheduling is performed on a plurality of preset serving cells, and corresponding information transmission is performed according to the scheduling.
  • the base station notifying the subframe deviation includes: the base station notifying the terminal of the subframe deviation, and/or notifying a neighboring base station of the subframe offset.
  • the subframe deviation includes: a corresponding subframe index difference value between serving cells in the same radio frame index, or a difference between subframes in which the synchronization channel is located between the multiple serving cells.
  • the presence of the subframe deviation includes: the subframe deviation exists between the serving cells adjacent to the cell index in the multiple serving cells; or the multiple serving cells and one fixed serving cell exist.
  • the subframe deviation is described, wherein the fixed serving cell is a serving cell in the multiple serving cells.
  • the fixed serving cell is one of: a serving cell that is the primary serving cell, a serving cell with the largest subframe index, and a predefined serving cell of the transport node.
  • the multiple serving cells include: a frequency division duplex FDD serving cell and/or a time division duplex TDD serving cell.
  • a plurality of serving cells having a subframe offset are aggregated to obtain K primary serving cells and M secondary serving cells; and the transmitting node transmits information on the plurality of serving cells after the set according to the subframe deviation.
  • the transmission delay can be reduced.
  • FIG. 1 is a schematic diagram of a frame structure in an LTE FDD system according to the related art
  • FIG. 2 is a schematic diagram of a frame structure in an LTE TDD system according to the related art
  • FIG. 3 is a flowchart of a carrier aggregation method of a communication system according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram of a carrier aggregation apparatus of a communication system according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an example 1 according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an example 2 according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an example 3 according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an example four according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an example 1 according to an embodiment of the present invention.
  • Example 2 is a schematic diagram of Example 2 according to Embodiment 2 of the present invention.
  • Example 3 is a schematic diagram of Example 3 according to Embodiment 2 of the present invention.
  • Example 5 is a schematic diagram of Example 5 according to Embodiment 3 of the present invention.
  • Example 6 is a schematic diagram of Example 6 according to Embodiment 3 of the present invention.
  • Example 7 is a schematic diagram of Example 7 according to Embodiment 3 of the present invention.
  • Example 7 is a schematic diagram of Example 7 according to Embodiment 3 of the present invention.
  • Example 8 is a schematic diagram of Example 8 according to Embodiment 3 of the present invention.
  • 17 is a schematic diagram of an example 1 according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of Example 2 of Embodiment 4 of the present invention.
  • FIG. 3 is a flowchart of a carrier aggregation method of a communication system according to an embodiment of the present invention. As shown in FIG. 3, the method includes steps S302 to S304.
  • Step S302 the plurality of serving cells with the subframe offset are aggregated to obtain K primary serving cells and M secondary serving cells, where K and M are positive integers.
  • Step S304 the transmitting node transmits information on the plurality of serving cells according to the subframe deviation.
  • the subframe deviation is a corresponding subframe index difference between serving cells under the same radio frame index. In another embodiment of the embodiments of the present invention, the subframe deviation is a difference between subframes in which the synchronization channel is located between the plurality of serving cells.
  • the subframe deviation includes: a subframe offset exists between the serving cells adjacent to the cell index in the multiple serving cells; or a subframe deviation occurs between the multiple serving cells and the fixed serving cell,
  • the fixed serving cell is a serving cell in multiple serving cells.
  • the fixed serving cell is one of the following: a serving cell as a primary serving cell, a serving cell having a largest subframe index, and a predefined serving cell in a transmitting node.
  • the multiple serving cells include: a frequency division duplex FDD serving cell and/or a time division duplex TDD serving cell.
  • the transmitting node includes a base station and a terminal, and the transmitting node transmits information on the preset multiple carriers according to the subframe deviation, including: the terminal transmits information on the multiple serving cells according to the subframe deviation. And/or, the base station performs information scheduling on the plurality of serving cells according to the subframe deviation, and transmits the information according to the scheduling.
  • the terminal before the terminal transmits the information on the multiple serving cells according to the subframe deviation, the terminal further includes: the terminal acquiring the subframe offset according to at least one of the following: the terminal acquires the subframe offset by using the signaling; The subframe offset is obtained by detecting the location of the synchronization channel corresponding to the multiple serving cells; and the subframe offset is obtained by the uplink and downlink configurations corresponding to the multiple serving cells.
  • the subframe offset when acquiring a subframe offset by using an uplink and downlink configuration corresponding to multiple serving cells, includes at least one of the following:
  • the subframe deviation is 3;
  • the subframe offset is 2;
  • the subframe offset is 2;
  • the subframe deviation is 3;
  • the subframe offset is 2;
  • the subframe deviation is 2;
  • the subframe deviation is 3;
  • the subframe offset is 2;
  • the subframe offset is 3;
  • the subframe deviation is 2.
  • the terminal transmitting information on the multiple serving cells according to the subframe deviation includes: if there is a corresponding uplink subframe under each subframe index, if the primary service is in the primary service A PDCCH/EPDCCH corresponding to the PDCCH/EPDCCH or a PDCCH/EPDCCH indicating the SPS release, or a PDSCH corresponding to the PDCCH/EPDCCH is not detected on the subframe n, or a PDCCH/EPDCCH corresponding to the PDCCH/EPDCCH is detected on the secondary serving cell subframe n.
  • the terminal transmits a corresponding HARQ-ACK on the uplink subframe n+4, where:
  • the terminal When the primary serving cell and the secondary serving cell corresponding to the subframe n+4 are both uplink subframes, the terminal sends a HARQ-ACK on the primary serving cell;
  • the terminal sends a HARQ-ACK on the primary serving cell;
  • the primary serving cell is a downlink subframe, and the HARQ-ACK is sent on the secondary serving cell.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including: when each subframe index has a corresponding downlink subframe and an uplink subframe, if the subframe is in the subframe
  • the DCI corresponding to the PUSCH transmission is detected on the n, and the terminal transmits the PUSCH in the subframe n+4, where the serving cell selection in which the DCI is located includes at least one of the following:
  • the carrier corresponding to the PUSCH transmitted on the subframe n+4 has a downlink subframe on the subframe n, and the DCI is transmitted on the same serving cell as the PUSCH;
  • the carrier corresponding to the PUSCH transmitted on the subframe n+4 has no downlink subframes on the subframe n, and the DCI is transmitted on the serving cell different from the PUSCH, and the terminal aggregates the serving cell according to the timing deviation.
  • At least one of uplink and downlink ratio and high layer signaling determines a serving cell where the DCI is located;
  • the carrier where the DCI corresponding to the PUSCH is located is determined according to the configuration.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including: when each subframe index has a corresponding downlink subframe and an uplink subframe, the terminal is in the subframe.
  • the PUSCH is transmitted on the n, and the PUSCH corresponding PHICH is detected on the subframe n+4, wherein the serving cell selection in which the PHICH is located includes at least one of the following:
  • the PHICH is transmitted on the same serving cell as the PUSCH;
  • the PHICH is transmitted on a serving cell different from the PUSCH, and the terminal aggregates the serving cell according to the timing deviation. At least one of the uplink and downlink ratio and the high layer signaling determines the serving cell where the PHICH is located;
  • the carrier where the PHICH is located is determined according to the configuration.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including: when each subframe index has a corresponding downlink subframe and an uplink subframe, the terminal is in the subframe.
  • the PHICH is detected on the n, and if the PHICH feedback is NACK, the retransmitted PUSCH is sent on the subframe n+4, wherein the serving cell selection in which the retransmitted PUSCH is located includes at least one of the following:
  • the transmitted PUSCH is transmitted on the same serving cell as the PHICH;
  • the transmitted PUSCH is transmitted on a serving cell different from the PHICH, and the terminal according to the timing deviation, At least one of uplink and downlink ratio and high layer signaling of the aggregation serving cell determines a serving cell where the retransmitted PUSCH is located;
  • the carrier where the retransmitted PUSCH is located is determined according to the configuration.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including: when there is a corresponding uplink subframe under each subframe index, the terminal is in the serving cell c subframe n
  • the uplink DCI format or the random access response indication is detected, and the corresponding CSI triggering domain is set to trigger reporting, and the aperiodic CSI reporting is sent on the PUSCH corresponding to the subframe n+4.
  • the terminal transmits information on the multiple serving cells according to the subframe deviation, including: if each subframe index has a corresponding uplink subframe:
  • the periodic CSI is sent on the primary serving cell
  • the periodic CSI is sent on the primary serving cell
  • the secondary serving cell corresponding to the subframe n is an uplink subframe
  • the primary serving cell is a downlink subframe
  • the periodic CSI is sent in the secondary serving cell
  • the period CSI of each serving cell is configured according to the period and offset corresponding to the FDD system.
  • the base station performs information scheduling on multiple serving cells according to the subframe deviation and transmits information according to the scheduling, including: the base station notifies the subframe offset; and the base station performs information on the preset multiple carriers. Scheduling and corresponding information transmission according to the schedule.
  • the base station notifies the subframe offset, including: the base station notifying the terminal subframe offset, and/or notifying the neighbor base station subframe offset.
  • the apparatus includes: an aggregation module 10 configured to aggregate multiple serving cells with subframe offsets to obtain K.
  • the subframe deviation is a corresponding subframe index difference between serving cells under the same radio frame index.
  • the subframe deviation is a difference between subframes in which the synchronization channel is located between the multiple serving cells.
  • the presence of the subframe offset includes: a subframe offset exists between the serving cells adjacent to the cell index in the multiple serving cells; or, the subframe exists in multiple serving cells and one fixed serving cell Deviation, wherein the fixed serving cell is a serving cell in a plurality of serving cells.
  • the fixed serving cell is one of: a serving cell that is the primary serving cell, a serving cell with the largest subframe index, and a predefined serving cell of the transport node.
  • the multiple serving cells include: a frequency division duplex FDD serving cell and/or a time division duplex TDD serving cell.
  • the primary serving cell is a TDD serving cell and the uplink and downlink configuration is #0
  • the secondary serving cell #0 is a TDD serving cell
  • the uplink and downlink configuration is #1
  • the secondary serving cell #1 is a TDD serving cell and the uplink and downlink configurations are configured.
  • a carrier aggregation method is: the primary serving cell is a fixed serving cell, and the secondary serving cell #0, the secondary serving cell #1, and the primary serving cell are aggregated by the subframe offsets N0, N1, As shown in FIG. 5, the uplink and downlink configuration of the primary serving cell is #0, and the uplink and downlink configurations of the secondary serving cell #0 and the secondary serving cell #1 are both #1, so the values of N0 and N1 are all 3, or The uplink and downlink configuration of the primary serving cell is #0, so the values of N0 and N1 are all 3, or the base station and the terminal pre-agreed N0, and the value of N1 is 3.
  • the primary serving cell is a TDD serving cell and the uplink and downlink configuration is 0
  • the secondary serving cell #0 is a TDD serving cell
  • the uplink and downlink configuration is #1
  • the secondary serving cell #1 is TDD.
  • the serving cell has an uplink and downlink configuration of #0;
  • a carrier aggregation method is: a primary serving cell is a fixed serving cell, and a secondary serving cell #0, a secondary serving cell #1, and a primary serving cell are aggregated by a subframe offset N0, N1, such as As shown in FIG. 6 , the uplink and downlink configuration of the primary serving cell is #0, and the uplink and downlink configurations of the secondary serving cell #0 are all #1, so the value of N0 is 3, and the uplink and downlink configuration of the primary serving cell is #0.
  • the uplink and downlink configurations of the secondary serving cell #1 are both #0, so N1 has a value of 2.
  • the primary serving cell is an FDD serving cell
  • the secondary serving cell #0 is an FDD serving cell
  • a carrier aggregation method is: a terminal and a base station pre-agreed that the primary serving cell is a fixed serving cell, and the secondary serving cell #0 and the primary serving cell are aggregated by a subframe offset N0, where the base station It is pre-agreed with the terminal that the value of N0 is 5, and Figure 7 is shown by the FDD downlink. It can be seen from the figure that since the public information of the aggregated serving cell is transmitted in different subframes, the inter-cell interference of the public information can be reduced.
  • the serving cell #0 is a TDD serving cell and the uplink and downlink configuration is 0
  • the serving cell #1 is a TDD serving cell, and the uplink and downlink configuration is #1
  • the serving cell #2 is a TDD serving cell
  • the uplink and downlink configurations are 2
  • the serving cell #3 is a TDD serving cell and the uplink and downlink configuration is #3;
  • a method for carrier aggregation is: a subframe offset exists between adjacent serving cells of a cell index, that is, a subframe offset N0 exists between the serving cell #0 and the serving cell #1, and the service There is a subframe offset N1 aggregation between the cell #1 and the serving cell #2, and a subframe offset N2 exists between the serving cell #2 and the serving cell #3. It is assumed that the values of N0 and N2 are the same, and the value of N1 is 1, as shown in Figure 8.
  • the uplink and downlink configuration of the primary serving cell is #0
  • the uplink and downlink configuration of the secondary serving cell is #1
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method according to the present invention. polymerization.
  • the high layer signaling may be RRC signaling
  • the subframe deviation is 1, 2, 3, 4 by 2 bits, or It is MAC layer signaling.
  • the terminal detects that the primary serving cell has PDSCH transmission on the subframe #0 of the radio frame #m, because the primary serving cell corresponds to the radio frame #m subframe #4, so the HARQ-ACK corresponding to the PDSCH on the primary serving cell subframe #0
  • the terminal detects that the primary serving cell has PDSCH transmission on the subframe #1 of the radio frame #m because the secondary serving cell corresponds to the radio frame#
  • the subframe #5 of subframe #5 detects that the primary serving cell has PDSCH transmission, because the primary serving cell corresponds to the radio frame #m subframe #9, so the HARQ-ACK response corresponding to the PDSCH on the primary serving cell subframe #5 is in the primary service.
  • k 4.
  • the terminal detects that the secondary serving cell has a PDSCH transmission on the subframe #9 of the radio frame #m, because the primary serving cell corresponds to the radio frame #m+1 subframe #2 as an uplink subframe, so the secondary serving cell
  • the terminal detects the DCI corresponding to the PUSCH transmission on the primary serving cell radio frame #m downlink subframe #0, and transmits the corresponding PUSCH on the primary serving cell subframe 4, if the CSI is triggered in the DCI. If the domain is set to trigger reporting, the corresponding CSI is sent on the primary serving cell subframe 4; the terminal detects the PHICH corresponding to the PUSCH on the secondary serving cell radio frame #m subframe #8. If the PHICH is NACK, the terminal is in the primary service. The retransmission PUSCH is transmitted on the cell radio frame #m+1 subframe #2.
  • the terminal detects the DCI corresponding to the PUSCH transmission on the primary serving cell radio frame #m downlink subframe #1, and transmits the corresponding PUSCH on the secondary serving cell radio frame #m subframe #5, if The CSI triggering field in the DCI is set to trigger reporting, and the corresponding CSI is sent on the secondary serving cell radio frame #m subframe #5; the terminal detects the PHICH corresponding to the PUSCH on the secondary serving cell radio frame #m subframe #9. If the PHICH is NACK, the terminal transmits a retransmission PUSCH on the primary serving cell radio frame #m+1 subframe #3.
  • the carrier aggregation mode provided by the present invention that is, by configuring the subframe deviation of the aggregated serving cell, the corresponding uplink subframe and downlink subframe can be configured on each radio frame, thereby
  • the feedback delay corresponding to the HARQ-ACK response is 4, the scheduling timing between the PDCCH and the PUSCH is 4, the timing between the PUSCH and the corresponding PHICH feedback is 4, and the timing between the PHICH and the retransmitted PUSCH is 4.
  • the uplink and downlink configuration of the primary serving cell is #1
  • the uplink and downlink configuration of the secondary serving cell is #0.
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method provided by the present invention. polymerization.
  • the process is similar to the example 1, and will not be described here.
  • the uplink and downlink configuration of the primary serving cell is #2, and the uplink and downlink configuration of the secondary serving cell is #0.
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method provided by the present invention. polymerization.
  • the terminal detects that the primary serving cell has a PDSCH transmission on the subframe #0 of the radio frame #m, because the primary serving cell and the secondary serving cell correspond to the radio frame #m subframe #8 are both downlink subframes, so the primary serving cell and the secondary
  • the HARQ-ACK corresponding to the PDSCH on the serving cell is sent on the primary serving cell.
  • the k value is determined by the prior art.
  • the secondary serving cell can be regarded as an FDD serving cell, where the secondary serving cell corresponds to the uplink subframe.
  • the value of k may be determined according to the value specified in the TDD-FDD aggregation.
  • the uplink and downlink configuration of the primary serving cell is #0
  • the uplink and downlink configuration of the secondary serving cell is #1
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method according to the present invention. polymerization.
  • the terminal determines that the subframe offset N0 is 3 by using a lookup table or a predefined manner, and the terminal is on the primary serving cell and the secondary serving cell. Send and receive data.
  • the process of receiving the downlink data and transmitting the corresponding HARQ-ACK response information is the same as that of the first embodiment of the second embodiment, and details are not described herein again.
  • the uplink and downlink configuration of the primary serving cell is #1
  • the uplink and downlink configuration of the secondary serving cell is #0.
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method provided by the present invention. polymerization.
  • the terminal determines that the subframe offset N0 is 2 by using a lookup table or a predefined manner, and the terminal is on the primary serving cell and the secondary serving cell. Send and receive data.
  • the process of receiving the downlink data and transmitting the corresponding HARQ-ACK response information is the same as that of the second embodiment of the second embodiment, and details are not described herein again.
  • the uplink and downlink configuration of the primary serving cell is #2, and the uplink and downlink configuration of the secondary serving cell is #0.
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method provided by the present invention. polymerization.
  • the terminal determines that the subframe offset N0 is 2 by using a lookup table or a predefined manner, and the terminal is on the primary serving cell and the secondary serving cell. Send and receive data.
  • the process of the terminal receiving the downlink data and transmitting the corresponding HARQ-ACK response information is the same as that of the third embodiment of the second embodiment, and details are not described herein again.
  • the uplink and downlink configuration of the primary serving cell is #3
  • the uplink and downlink configuration of the secondary serving cell is #6
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method according to the present invention. polymerization.
  • the terminal determines that the subframe offset N0 is 3 by looking up a table or a predefined manner.
  • the HARQ-ACK corresponding to the PDSCH on the primary serving cell and the secondary serving cell is sent on the primary serving cell.
  • the value of time k can be determined according to related art, and will not be described herein.
  • the uplink and downlink configuration of the primary serving cell is #4
  • the uplink and downlink configuration of the secondary serving cell is #0
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method provided by the present invention. polymerization.
  • the uplink and downlink configuration of the primary serving cell is #4, and the uplink and downlink configuration of the secondary serving cell is #0, and the terminal determines that the subframe offset N0 is 2 by using a table lookup or a predefined manner;
  • the terminal detects that the secondary serving cell has a PDSCH transmission on the subframe #3 of the radio frame #m, because the primary serving cell and the secondary serving cell correspond to the radio frame #m subframe #7, #8 are both downlink subframes, so the primary service
  • the HARQ-ACK corresponding to the PDSCH on the cell and the secondary serving cell is sent on the primary serving cell, and the k value may be determined according to the related art, and details are not described herein again.
  • the uplink and downlink configuration of the primary serving cell is #5
  • the uplink and downlink configuration of the secondary serving cell is #0
  • the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method according to the present invention. polymerization.
  • the uplink and downlink configuration of the primary serving cell is #5, and the uplink and downlink configuration of the secondary serving cell is #0, and the terminal determines that the subframe offset N0 is 2 by using a table lookup or a predefined manner;
  • the terminal detects that the primary serving cell and the secondary serving cell have PDSCH transmission on the subframe #3 of the radio frame #m, because the primary serving cell and the secondary serving cell correspond to the radio frame #m subframe #7, 8 are both downlink subframes. Therefore, the HARQ-ACK corresponding to the PDSCH on the primary serving cell and the secondary serving cell is sent on the primary serving cell, and the k value can be determined according to the related art, and details are not described herein again.
  • the uplink and downlink configuration of the primary serving cell is #6, and the uplink and downlink configuration of the secondary serving cell is #0, and the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method according to the present invention. polymerization.
  • the uplink and downlink configuration of the primary serving cell is #6, and the uplink and downlink configuration of the secondary serving cell is #0, and the terminal determines that the subframe offset N0 is 3 by using a table lookup or a predefined manner;
  • the terminal detects that the primary serving cell has a PDSCH transmission on the subframe #5 of the radio frame #m, because the primary serving cell and the secondary serving cell corresponding to the radio frame #m subframe #9 are both downlink subframes, so the primary serving cell and the secondary
  • the HARQ-ACK corresponding to the PDSCH on the serving cell is sent on the primary serving cell, and the k value may be determined according to the related art, and details are not described herein.
  • the uplink and downlink configuration of the primary serving cell is #6, and the uplink and downlink configuration of the secondary serving cell is #1, and the primary serving cell and the secondary serving cell are performed according to the carrier aggregation method according to the present invention. polymerization.
  • the terminal determines that the subframe offset N0 is 2 by using a lookup table or a predefined manner.
  • the uplink and downlink configuration of the primary serving cell is #0
  • the uplink and downlink configuration #5 of the secondary serving cell, and the primary serving cell and the secondary serving cell are aggregated according to the carrier aggregation method provided by the present invention.
  • the terminal determines that the subframe offset N0 is 3 according to the uplink and downlink configuration of the primary serving cell, and the terminal is on the primary serving cell and the secondary serving cell.
  • Send and receive information The process of transmitting and receiving information by the terminal has been described in detail in Embodiment 2 and Embodiment 3, and details are not described herein again.
  • the uplink and downlink configuration of the primary serving cell is #3, and the uplink and downlink configuration #1 of the secondary serving cell determines that the subframe offset N0 is 3 according to the uplink and downlink configuration of the primary serving cell.
  • the process of transmitting and receiving information by the terminal has been described in detail in Embodiment 2 and Embodiment 3, and details are not described herein again.
  • the present invention achieves the following technical effects: the feedback delay of the carrier aggregation TDD system can be effectively reduced, so that the feedback delay of the carrier aggregation TDD system is equivalent to the FDD carrier aggregation FDD system. .
  • using this method can effectively reduce inter-cell interference and improve transmission performance.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • multiple serving cells with subframe offsets are aggregated to obtain K primary serving cells and M secondary serving cells; and the transmitting nodes are aggregated according to the subframe deviation.
  • the transmission of information on multiple serving cells can reduce the transmission delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种通信系统的载波聚合方法及装置,其中通信系统的载波聚合方法包括:将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区,其中,K和M为正整数;传输节点按照子帧偏差在聚合后的多个服务小区上传输信息。通过本发明,可以降低LTE TDD系统的传输时延。

Description

通信系统的载波聚合方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种通信系统的载波聚合方法及装置。
背景技术
长期演进(Long Term Evolution,简称为LTE)系统中的无线帧(Radio Frame)包括频分双工(Frequency Division Duplex,简称为FDD)模式和时分双工(Time Division Duplex,简称为TDD)模式的帧结构。如图1所示,在FDD模式的帧结构中,一个10毫秒(ms)的无线帧由二十个长度为0.5ms、编号为0~19的时隙(slot)组成,时隙2i和2i+1组成长度为1ms的子帧(subframe)i(其中,0≤i≤9)。如图2所示,在TDD模式的帧结构中,一个10ms的无线帧由两个长为5ms的半帧(half frame)组成,一个半帧中包括5个长度为1ms的子帧,子帧i定义为2个长为0.5ms的时隙2i和2i+1的组合(其中,0≤i≤9)。各子帧支持的上下行配置如表1所示。其中,“D”表示专用于下行传输的子帧,“U”表示专用于上行传输的子帧,“S”表示用于下行导频时隙(Downlink Pilot Time Slot,简称为DwPTS)、保护间隔(Guard Period,简称为GP)和上行导频时隙(Uplink Pilot Time Slot,简称为UpPTS)这三个域的特殊子帧。
表1各子帧支持的上下行配置示意表
Figure PCTCN2014088425-appb-000001
从上表可以看出,LTE TDD支持5ms和10ms的上下行切换周期。如果下行到上行转换点周期为5ms,特殊子帧会存在于两个半帧中;如果下行到上行转换点周期为10ms,特殊子帧只存在于第一个半帧中;子帧#0和子帧#5以及DwPTS总是用于下行传输;UpPTS和紧跟于特殊子帧后的子帧专用于上行传输。
LTE FDD系统中,对下行混合自动重传请求(Hybrid Automatic Repeat Request,简称为HARQ)中发送物理下行共享信道(Physical Downlink Shared Channel,简称为 PDSCH)与相应的混合自动重传请求-确认(HARQ-ACK)信息有如下定时规定,即对于下行HARQ定时关系有如下规定:当UE在子帧n-4上检测到PDSCH传输或者指示下行SPS release的物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH),UE将在上行子帧n上传输对应的HARQ-ACK信息,也就是下行HARQ的反馈时延为4;对于LTE TDD系统中,对下行HARQ定时关系有如下规定:当UE在子帧n-k上检测到PDSCH传输或者指示下行半持续调度SPS释放的PDCCH,UE将在上行子帧n上传输对应的HARQ-ACK信息,其中k属于K,K为{k0,k1,...,kM-1},M为K的总数,M最大值为4,k对应的值就是下行HARQ的反馈时延,不同上下行配置中K的取值如表2所示。从表2可以得到,TDD系统的下行HARQ反馈时延大于等于LTE FDD系统的下行HARQ反馈时延4,
表2TDD系统中下行相关组索引K:{k0,k1,...,kM-1}
Figure PCTCN2014088425-appb-000002
为了满足高级国际电信联盟(International Telecommunication Union-Advanced,简称为ITU-Advanced)的要求,作为LTE的演进标准的高级长期演进(Long Term Evolution Advanced,简称为LTE-A)系统需要支持更大的系统带宽(最高可达100MHz),并需要后向兼容LTE现有的标准。在现有的LTE系统的基础上,可以将LTE系统的带宽进行合并来获得更大的带宽,这种技术称为载波聚合(Carrier Aggregation,简称为CA)技术,该技术能够提高IMT-Advance系统的频谱利用率、缓解频谱资源紧缺,进而优化频谱资源的利用。
在引入了载波聚合的系统中,进行聚合的载波称为分量载波(Component Carrier,简称为CC),也称为一个服务小区(Serving Cell)。同时,还提出了主分量载波/小区(Primary Component Carrier/Cell,简称为PCC/PCell)和辅分量载波/小区(Secondary Component Carrier/Cell,简称为SCC/SCell)的概念,在进行了载波聚合的系统中,至 少包含一个主服务小区和辅服务小区,其中主服务小区一直处于激活状态。现有载波聚合技术中,支持FDD服务小区聚合,其对应的下行HARQ反馈时延为4。支持相同上下行配置的TDD服务小区聚合,也支持不同上下行配置的TDD服务小区聚合。对于TDD服务小区聚合,其对应的下行HARQ反馈时延为k,k值如表2所示。从反馈时延来看,现有的载波聚合TDD系统的反馈时延大于等于载波聚合的FDD系统。
针对相关技术中载波聚合TDD系统的反馈时延大于等于载波聚合的FDD系统的问题,目前尚未提出有效的解决方案。
发明内容
针对载波聚合TDD系统的反馈时延大于等于载波聚合的FDD系统的问题,本发明提供了一种通信系统的载波聚合方法及装置,以至少解决上述问题。
根据本发明的一个方面,提供了一种通信系统的载波聚合方法,包括:将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区,其中,所述K和所述M为正整数;传输节点按照所述子帧偏差在所述多个服务小区上传输信息。
可选地,所述子帧偏差包括:相同无线帧索引下服务小区之间对应的子帧索引差值、或者所述多个服务小区之间同步信道所在子帧的差值。
可选地,所述存在子帧偏差包括:所述多个服务小区中小区索引相邻的服务小区之间存在所述子帧偏差;或者所述多个服务小区与固定服务小区存在所述子帧偏差,其中,所述固定服务小区为所述多个服务小区中的服务小区。
可选地,所述固定服务小区为以下之一:作为主服务小区的服务小区、子帧索引最大的服务小区、传输节点预定义的服务小区。
可选地,所述多个服务小区包括:FDD服务小区和/或TDD服务小区。
可选地,所述传输节点包括基站和终端;所述传输节点按照所述偏差在所述预设的多个载波上传输信息,包括:所述终端根据所述子帧偏差在所述多个服务小区上传输信息;和/或所述基站根据所述子帧偏差在所述多个服务小区上进行信息调度,以及按照所述调度传输信息。
可选地,所述终端根据所述子帧偏差在所述多个服务小区上传输信息之前,还包括:所述终端按照以下至少之一获取所述子帧偏差:所述终端通过信令获取所述子帧 偏差;所述终端通过检测所述多个服务小区对应的同步信道的位置获取所述子帧偏差;通过所述多个服务小区对应的上下行配置获取所述子帧偏差。
可选地,通过所述多个服务小区对应的上下行配置获取所述子帧偏差时,所述子帧偏差包括以下至少之一:当主服务小区的上下行配置为#0且辅服务小区的上下行配置为#1,子帧偏差为3;当主服务小区的上下行配置为#1且辅服务小区的上下行配置为#0,子帧偏差为2;当主服务小区的上下行配置为#2且辅服务小区的上下行配置为#0,子帧偏差为2;当主服务小区的上下行配置为#3且辅服务小区的上下行配置为#6,子帧偏差为3;当主服务小区的上下行配置为#4且辅服务小区的上下行配置为#0,子帧偏差为2;当主服务小区的上下行配置为#5且辅服务小区的上下行配置为#0,子帧偏差为2;当主服务小区的上下行配置为#6且辅服务小区的上下行配置为#1,子帧偏差为3;当主服务小区的上下行配置为#6且辅服务小区的上下行配置为#0,子帧偏差为2;当主服务小区的上下行配置为#0、#3、#6之一时且子帧偏差为3;当主服务小区的上下行配置为#1,#2、#4、#5之一时,子帧偏差为2。
可选地,所述终端根据所述子帧偏差在所述多个服务小区上传输信息包括:
在每个子帧索引下都有对应的上行子帧的情况下,如果在主服务小区子帧n上检测到有物理下行控制信道/增强物理下行控制信道(PDCCH/EPDCCH)对应的物理下行共享信道PDSCH传输或者指示半持续调度(SPS)释放的PDCCH/EPDCCH,或者没有PDCCH/EPDCCH对应的PDSCH,或者在辅服务小区子帧n上检测到有PDCCH/EPDCCH对应的PDSCH传输,所述终端在上行子帧n+4上发送对应的混合自动重传请求-确认HARQ-ACK,其中,
当子帧n+4对应的主服务小区和辅服务小区都为上行子帧,所述终端在主服务小区上发送所述HARQ-ACK;
当子帧n+4对应的主服务小区为上行子帧,辅服务小区为下行子帧,所述终端在主服务小区上发送所述HARQ-ACK;
当子帧n+4对应的辅服务小区为上行子帧,主服务小区为下行子帧,在辅服务小区上发送所述HARQ-ACK。
可选地,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
当每个子帧索引下都有对应的下行子帧和上行子帧时,如果在子帧n上检测到物理上行共享信道PUSCH传输对应的下行控制信息(Downlink Control Information,简 称为DCI),所述终端在子帧n+4上传输PUSCH,其中,所述DCI所在的服务小区选择包括以下至少之一:
当没有配置跨载波调度,子帧n+4上传输的PUSCH对应的载波在子帧n上有下行子帧时,所述DCI在与PUSCH相同的服务小区上传输;
当没有配置跨载波调度,子帧n+4上传输的PUSCH对应的载波在子帧n上没有下行子帧时,所述DCI在与PUSCH不同的服务小区上传输,所述终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定所述DCI所在的服务小区;
当配置跨载波调度时,所述PUSCH对应的DCI所在的载波根据配置确定。
可选地,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
当每个子帧索引下都有对应的下行子帧和上行子帧时,所述终端在子帧n上发送PUSCH,在子帧n+4上检测PUSCH对应物理混合自动重传指示信道(Physical Hybrid ARQ Indicator or Channel,简称为PHICH),其中,所述PHICH所在的服务小区选择包括以下至少之一:
当没有配置跨载波调度时,子帧n上传输的PUSCH对应的载波在子帧n+4上有下行子帧时,所述PHICH在与PUSCH相同的服务小区上传输;
当没有配置跨载波调度时,子帧n+4上传输的PUSCH对应的载波在子帧n上没有下行子帧时,所述PHICH在与PUSCH不同的服务小区上传输,所述终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定所述PHICH所在的服务小区;
当配置跨载波调度时,所述PHICH所在的载波根据配置确定。
可选地,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
当每个子帧索引下都有对应的下行子帧和上行子帧时,终端在子帧n上检测到PHICH,如果PHICH反馈为非确认(NACK),在子帧n+4上发送重传的PUSCH,其中,
所述重传的PUSCH所在的服务小区选择包括以下至少之一:
当没有配置跨载波调度时,子帧n上传输的PHICH对应的载波在子帧n+4上有上行行子帧时,所述传的PUSCH在与PHICH相同的服务小区上传输;
当没有配置跨载波调度时,子帧n上传输的PHICH对应的载波在子帧n+4上没有上行行子帧时,所述传的PUSCH在与PHICH不同的服务小区上传输,所述终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定所述重传的PUSCH所在的服务小区;
当配置跨载波调度时,所述重传的PUSCH所在的载波根据配置确定。
可选地,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
当每个子帧索引下都有对应的上行子帧时,所述终端在服务小区c子帧n上检测到上行DCI格式或者随机接入响应指示且对应的信道状态信息(Channel State Information,简称为CSI)触发域设置为触发上报,在子帧n+4对应的PUSCH上发送非周期CSI上报。
可选地,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:如果每个子帧索引下都有对应的上行子帧:
当子帧n对应的主服务小区和辅服务小区都为上行子帧,周期CSI在主服务小区上发送;
当子帧n对应的主服务小区为上行子帧,辅服务小区为下行子帧,周期CSI在主服务小区上发送;
当子帧n对应的辅服务小区为上行子帧,主服务小区为下行子帧,周期CSI在辅服务小区中上发送;
其中,各个服务小区的周期CSI按照FDD系统对应的周期和偏移配置。
可选地,所述基站根据所述子帧偏差在所述多个服务小区上进行信息调度以及按照所述调度传输信息,包括:所述基站通知所述子帧偏差;所述基站在所述预设的多个服务小区上进行信息调度以及按照调度进行相应的信息传输。
可选地,所述基站通知所述子帧偏差,包括:所述基站通知所述终端所述子帧偏差,和/或,通知相邻基站所述子帧偏差。
根据本发明的另一个方面,提供了一种通信系统的载波聚合装置,包括:聚合模块,设置为将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个 辅服务小区,其中,所述K和所述M为正整数;传输模块,设置为按照所述子帧偏差在所述多个服务小区上传输信息。
可选地,所述子帧偏差包括:相同无线帧索引下服务小区之间对应的子帧索引差值,或者所述多个服务小区之间同步信道所在子帧的差值。
可选地,所述存在子帧偏差包括:所述多个服务小区中小区索引相邻的服务小区之间存在所述子帧偏差;或者,所述多个服务小区与一个固定服务小区存在所述子帧偏差,其中,所述固定服务小区为所述多个服务小区中的服务小区。
可选地,所述固定服务小区为以下之一:作为主服务小区的服务小区中的一个、子帧索引最大的服务小区、传输节点预定义的服务小区。
可选地,所述多个服务小区包括:频分双工FDD服务小区和/或时分双工TDD服务小区。
通过本发明,将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区;传输节点按照所述子帧偏差在集合后的多个服务小区上传输信息,可以降低传输时延。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的LTE FDD系统中帧结构的示意图;
图2是根据相关技术的LTE TDD系统中帧结构的示意图;
图3是根据本发明实施例的通信系统的载波聚合方法的流程图;
图4是根据本发明实施例的通信系统的载波聚合装置的结构框图;
图5是根据本发明实施例一实例一的示意图;
图6是根据本发明实施例一实例二的示意图;
图7是根据本发明实施例一实例三的示意图;
图8是根据本发明实施例一实例四的示意图;
图9是根据本发明实施例二实例一的示意图;
图10是根据本发明实施例二实例二的示意图;
图11是根据本发明实施例二实例三的示意图;
图12是根据本发明实施例三实例五的示意图;
图13是根据本发明实施例三实例六的示意图;
图14是根据本发明实施例三实例七的示意图;
图15是根据本发明实施例三实例七的示意图;
图16是根据本发明实施例三实例八的示意图;
图17是根据本发明实施例四实例一的示意图;以及
图18是根据本发明实施例四实例二的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图3是根据本发明实施例的通信系统的载波聚合方法的流程图,如图3所示,该方法包括步骤S302至步骤S304。
步骤S302,将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区,其中,K和M为正整数。
步骤S304,传输节点按照上述子帧偏差在多个服务小区上传输信息。
在本发明实施例的一个实施方式中,子帧偏差为相同无线帧索引下服务小区之间对应的子帧索引差值。在本发明实施例的另一个实施方式中,子帧偏差为多个服务小区之间同步信道所在子帧的差值。
在本发明实施例的一个实施方式中,存在子帧偏差包括:多个服务小区中小区索引相邻的服务小区之间存在子帧偏差;或者多个服务小区与固定服务小区存在子帧偏差,其中,固定服务小区为多个服务小区中的服务小区。
在本发明实施例的一个实施方式中,固定服务小区为以下之一:作为主服务小区的服务小区、子帧索引最大的服务小区、传输节点预定义的服务小区。
在本发明实施例的一个实施方式中,多个服务小区包括:频分双工FDD服务小区和/或时分双工TDD服务小区。
在本发明实施例的一个实施方式中,传输节点包括基站和终端;传输节点按照子帧偏差在预设的多个载波上传输信息,包括:终端根据子帧偏差在多个服务小区上传输信息;和/或,基站根据子帧偏差在多个服务小区上进行信息调度,以及按照调度传输信息。
在本发明实施例的一个实施方式中,终端根据子帧偏差在多个服务小区上传输信息之前,还包括:终端按照以下至少之一获取子帧偏差:终端通过信令获取子帧偏差;终端通过检测多个服务小区对应的同步信道的位置获取子帧偏差;通过多个服务小区对应的上下行配置获取子帧偏差。
在本发明实施例的一个实施方式中,通过多个服务小区对应的上下行配置获取子帧偏差时,子帧偏差包括以下至少之一:
当主服务小区的上下行配置为#0且辅服务小区的上下行配置为#1,子帧偏差为3;
当主服务小区的上下行配置为#1且辅服务小区的上下行配置为#0,子帧偏差为2;
当主服务小区的上下行配置为#2且辅服务小区的上下行配置为#0,子帧偏差为2;
当主服务小区的上下行配置为#3且辅服务小区的上下行配置为#6,子帧偏差为3;
当主服务小区的上下行配置为#4且辅服务小区的上下行配置为#0,子帧偏差为2;
当主服务小区的上下行配置为#5且辅服务小区的上下行配置为#0,子帧偏差为2;
当主服务小区的上下行配置为#6且辅服务小区的上下行配置为#1,子帧偏差为3;
当主服务小区的上下行配置为#6且辅服务小区的上下行配置为#0,子帧偏差为2;
当主服务小区的上下行配置为#0、#3、#6之一时,子帧偏差为3;
当主服务小区的上下行配置为#1、#2、#4、#5之一时,子帧偏差为2。
进一步的,在本发明实施例的一个实施方式中,终端根据子帧偏差在多个服务小区上传输信息包括:在每个子帧索引下都有对应的上行子帧的情况下,如果在主服务小区子帧n上检测到有PDCCH/EPDCCH对应的PDSCH传输或者指示SPS释放的PDCCH/EPDCCH,或者没有PDCCH/EPDCCH对应的PDSCH,或者在辅服务小区子帧n上检测到有PDCCH/EPDCCH对应的PDSCH传输,终端在上行子帧n+4上发送对应的HARQ-ACK,其中:
当子帧n+4对应的主服务小区和辅服务小区都为上行子帧,终端在主服务小区上发送HARQ-ACK;
当子帧n+4对应的主服务小区为上行子帧,辅服务小区为下行子帧,终端在主服务小区上发送HARQ-ACK;
当子帧n+4对应的辅服务小区为上行子帧,主服务小区为下行子帧,在辅服务小区上发送HARQ-ACK。
在本发明实施例的一个实施方式中,终端根据子帧偏差在多个服务小区上传输信息,包括:当每个子帧索引下都有对应的下行子帧和上行子帧时,如果在子帧n上检测到PUSCH传输对应的DCI,终端在子帧n+4上传输PUSCH,其中,DCI所在的服务小区选择包括以下至少之一:
当没有配置跨载波调度,子帧n+4上传输的PUSCH对应的载波在子帧n上有下行子帧时,DCI在与PUSCH相同的服务小区上传输;
当没有配置跨载波调度,子帧n+4上传输的PUSCH对应的载波在子帧n上没有下行子帧时,DCI在与PUSCH不同的服务小区上传输,终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定DCI所在的服务小区;
当配置跨载波调度时,PUSCH对应的DCI所在的载波根据配置确定。
在本发明实施例的一个实施方式中,终端根据子帧偏差在多个服务小区上传输信息,包括:当每个子帧索引下都有对应的下行子帧和上行子帧时,终端在子帧n上发送PUSCH,在子帧n+4上检测PUSCH对应PHICH,其中,PHICH所在的服务小区选择包括以下至少之一:
当没有配置跨载波调度时,子帧n上传输的PUSCH对应的载波在子帧n+4上有下行子帧时,PHICH在与PUSCH相同的服务小区上传输;
当没有配置跨载波调度时,子帧n+4上传输的PUSCH对应的载波在子帧n上没有下行子帧时,PHICH在与PUSCH不同的服务小区上传输,终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定PHICH所在的服务小区;
当配置跨载波调度时,PHICH所在的载波根据配置确定。
在本发明实施例的一个实施方式中,终端根据子帧偏差在多个服务小区上传输信息,包括:当每个子帧索引下都有对应的下行子帧和上行子帧时,终端在子帧n上检测到PHICH,如果PHICH反馈为NACK,在子帧n+4上发送重传的PUSCH,其中,重传的PUSCH所在的服务小区选择包括以下至少之一:
当没有配置跨载波调度时,子帧n上传输的PHICH对应的载波在子帧n+4上有上行行子帧时,传的PUSCH在与PHICH相同的服务小区上传输;
当没有配置跨载波调度时,子帧n上传输的PHICH对应的载波在子帧n+4上没有上行行子帧时,传的PUSCH在与PHICH不同的服务小区上传输,终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定重传的PUSCH所在的服务小区;
当配置跨载波调度时,重传的PUSCH所在的载波根据配置确定。
在本发明实施例的一个实施方式中,终端根据子帧偏差在多个服务小区上传输信息,包括:当每个子帧索引下都有对应的上行子帧时,终端在服务小区c子帧n上检测到上行DCI格式或者随机接入响应指示且对应的CSI触发域设置为触发上报,在子帧n+4对应的PUSCH上发送非周期CSI上报。
在本发明实施例的一个实施方式中,终端根据子帧偏差在多个服务小区上传输信息,包括:如果每个子帧索引下都有对应的上行子帧:
当子帧n对应的主服务小区和辅服务小区都为上行子帧,周期CSI在主服务小区上发送;
当子帧n对应的主服务小区为上行子帧,辅服务小区为下行子帧,周期CSI在主服务小区上发送;
当子帧n对应的辅服务小区为上行子帧,主服务小区为下行子帧,周期CSI在辅服务小区中上发送;
其中,各个服务小区的周期CSI按照FDD系统对应的周期和偏移配置。
在本发明实施例的一个实施方式中,基站根据子帧偏差在多个服务小区上进行信息调度以及按照调度传输信息,包括:基站通知子帧偏差;基站在预设的多个载波上进行信息调度以及按照调度进行相应的信息传输。
在本发明实施例的一个实施方式中,基站通知子帧偏差,包括:基站通知终端子帧偏差,和/或,通知相邻基站子帧偏差。
图4是根据本发明实施例的通信系统的载波聚合装置的结构框图,如图4所示,该装置包括:聚合模块10,设置为将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区,其中,K和M为正整数;传输模块20,设置为按照子帧偏差在多个服务小区上传输信息。
在本发明实施例的一个实施方式中,子帧偏差为相同无线帧索引下服务小区之间对应的子帧索引差值。
在本发明实施例的一个实施方式中,子帧偏差为多个服务小区之间同步信道所在子帧的差值。
在本发明实施例的一个实施方式中,存在子帧偏差包括:多个服务小区中小区索引相邻的服务小区之间存在子帧偏差;或者,多个服务小区与一个固定服务小区存在子帧偏差,其中,固定服务小区为多个服务小区中的服务小区。
在本发明实施例的一个实施方式中,固定服务小区为以下之一:作为主服务小区的服务小区中的一个、子帧索引最大的服务小区、传输节点预定义的服务小区。
在本发明实施例的一个实施方式中,多个服务小区包括:频分双工FDD服务小区和/或时分双工TDD服务小区。
对于与上述方法相同的部分,参见本发明上述的描述,在此不再赘述。
下面对本发明实施例的具体实例进行描述。
实施例一
实例一
在本实例中,主服务小区为TDD服务小区且上下行配置为#0,辅服务小区#0为TDD服务小区且上下行配置为#1,辅服务小区#1为TDD服务小区且上下行配置为#1;
作为本发明实施例的一个例子,一种载波聚合的方法是:主服务小区为固定服务小区,那么辅服务小区#0、辅服务小区#1和主服务小区以子帧偏差N0,N1聚合,如图5所示;其中,主服务小区的上下行配置为#0,辅服务小区#0和辅服务小区#1的上下行配置都为#1,所以N0,N1的值都为3,或者,主服务小区的上下行配置为#0,所以N0,N1的值都为3,或者,基站和终端预先约定好N0,N1的值为3。
实例二
在本实例中,如图6所示:主服务小区为TDD服务小区且的上下行配置为0,辅服务小区#0为TDD服务小区且上下行配置为#1,辅服务小区#1为TDD服务小区且上下行配置为#0;
作为本发明实施例的一个例子,一种载波聚合的方法是:主服务小区为固定服务小区,辅服务小区#0、辅服务小区#1和主服务小区以子帧偏差N0,N1聚合,如图6所示;其中,主服务小区的上下行配置为#0,辅服务小区#0的上下行配置都为#1,所以N0,值为3,主服务小区的上下行配置为#0,辅服务小区#1的上下行配置都为#0,所以N1,值为2。
实例三
在本实例中,主服务小区为FDD服务小区,辅服务小区#0为FDD服务小区。
作为本发明实施例的一个例子,一种载波聚合的方法是:终端和基站预先约定好主服务小区为固定服务小区,辅服务小区#0合主服务小区以子帧偏差N0聚合,其中,基站和终端预先约定好N0的值为5,图7以FDD下行所示。从图中可以看出,由于聚合的服务小区的公有信息在不同的子帧发送,从而可以降低公有信息小区间干扰。
实例四
在本实例中,服务小区#0为TDD服务小区且上下行配置为0,服务小区#1为TDD服务小区且上下行配置为#1,服务小区#2为TDD服务小区且上下行配置为2,服务小区#3为TDD服务小区且上下行配置为#3;
作为本发明实施例的一个例子,一种载波聚合的方法是:小区索引相邻的服务小区之间存在子帧偏差,即服务小区#0和服务小区#1之间存在子帧偏差N0,服务小区#1和服务小区#2之间存在子帧偏差N1聚合,服务小区#2和服务小区#3之间存在子帧偏差N2,假设N0和N2的取值相同为2,N1的取值为1,如图8所示。
实施例二
实例一:
在本实例中,如图9所示,主服务小区的上下行配置为#0,辅服务小区的上下行配置为#1,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
终端通过高层信令获得主服务小区和辅服务小区之间的子帧偏差N0=3,其中高层信令可以是RRC信令,用2bit表示子帧偏差为1、2、3、4,也可以是MAC层信令。
终端在无线帧#m的子帧#0上检测到主服务小区有PDSCH传输,因为主服务小区对应无线帧#m子帧#4,所以主服务小区子帧#0上PDSCH对应的HARQ-ACK响应在主服务小区无线帧#m子帧#4上发送,即k=4;终端在无线帧#m的子帧#1上检测到主服务小区有PDSCH传输,因为辅服务小区对应无线帧#m子帧#5为上行子帧,所以主服务小区子帧#1上PDSCH对应的HARQ-ACK响应在辅服务小区无线帧#m子帧#5上发送,即k=4;终端在无线帧#m的子帧#5上检测到主服务小区有PDSCH传输,因为主服务小区对应无线帧#m子帧#9,所以主服务小区子帧#5上PDSCH对应的HARQ-ACK响应在主服务小区无线帧#m子帧#9上发送,即k=4;终端在无线帧#m的子帧#6上检测到主服务小区有PDSCH传输,因为辅服务小区对应无线帧#m+1子帧#0为上行子帧,所以主服务小区子帧#6上PDSCH对应的HARQ-ACK响应在辅服务小区无线帧#m+1子帧#0上发送,即k=4。
终端在无线帧#m的子帧#2上检测到辅服务小区有PDSCH传输,因为辅服务小区对应无线帧#m子帧#6为上行子帧,所以辅服务小区子帧#2上PDSCH对应的HARQ-ACK响应在辅服务小区无线帧#m子帧#6上发送,即k=4;终端在无线帧#m的子帧#3上检测到辅服务小区有PDSCH传输,因为主服务小区对应无线帧#m子帧#7为上行子帧,所以辅服务小区子帧#3上PDSCH对应的HARQ-ACK响应在主服务小区无线帧#m子帧#7上发送,即k=4;终端在无线帧#m的子帧#4上检测到辅服务小区有PDSCH传输,因为主服务小区对应无线帧#m子帧#8为上行子帧,所以辅服务小区子帧#4上PDSCH对应的HARQ-ACK响应在主服务小区无线帧#m子帧#8上发送,即k=4;终端在无线帧#m的子帧#7上检测到辅服务小区有PDSCH传输,因为辅服务小区对应无线帧#m+1子帧#0为上行子帧,所以辅服务小区子帧#7上PDSCH对应的 HARQ-ACK响应在辅服务小区无线帧#m+1子帧#0上发送,即k=4;终端在无线帧#m的子帧#8上检测到辅服务小区有PDSCH传输,因为主服务小区对应无线帧#m+1子帧#1为上行子帧,所以辅服务小区子帧#8上PDSCH对应的HARQ-ACK响应在主服务小区无线帧#m+1子帧#1上发送,即k=4;终端在无线帧#m的子帧#9上检测到辅服务小区有PDSCH传输,因为主服务小区对应无线帧#m+1子帧#2为上行子帧,所以辅服务小区子帧#9上PDSCH对应的HARQ-ACK响应在主服务小区无线帧#m+1子帧#2上发送,即k=4。
当没有配置跨载波调度时,终端在主服务小区无线帧#m下行子帧#0上检测到PUSCH传输对应的DCI,在主服务小区子帧4上传输对应的PUSCH,如果该DCI中CSI触发域设置为触发上报,那么对应的CSI在主服务小区子帧4上发送;终端在辅服务小区无线帧#m子帧#8上检测该PUSCH对应的PHICH,如果PHICH为NACK,终端在主服务小区无线帧#m+1子帧#2上发送重传PUSCH。当没有配置跨载波调度时,终端在主服务小区无线帧#m下行子帧#1上检测到PUSCH传输对应的DCI,在辅服务小区无线帧#m子帧#5上传输对应的PUSCH,如果该DCI中CSI触发域设置为触发上报,那么对应的CSI在辅服务小区无线帧#m子帧#5上发送;终端在辅服务小区无线帧#m子帧#9上检测该PUSCH对应的PHICH,如果PHICH为NACK,终端在主服务小区无线帧#m+1子帧#3上发送重传PUSCH。
从上面的实施例可以看出,通过本发明提供的载波聚合方式,即通过对聚合的服务小区配置子帧偏差,可以使得每个无线帧上都有对应的上行子帧和下行子帧,从而使得HARQ-ACK响应对应的反馈延迟都为4,PDCCH和PUSCH之间的调度定时为4,PUSCH和对应的PHICH反馈之间的定时为4,PHICH和重传PUSCH之间的定时为4,为现有TDD系统反馈延迟的最小值。
实例二
在本实例中,如图10所示,主服务小区的上下行配置为#1,辅服务小区的上下行配置为#0,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
终端检测辅服务小区的同步信道的位置,确定子帧#2为辅服务小区对应的第一个子帧,即子帧偏差N0=2;终端在所述主服务小区和辅服务小区上收发信息的过程和实例一类似,这里不再赘述。
实例三
在本实例中,如图11所示,主服务小区的上下行配置为#2,辅服务小区的上下行配置为#0,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
终端通过物理层信令获得主服务小区和辅服务小区之间的子帧偏差N0=2,其中物理层信令可以是DCI中空闲比特,或是DCI中增加2比特来表示1~4个子帧偏差等。
终端在无线帧#m的子帧#0上检测到主服务小区有PDSCH传输,因为主服务小区和辅服务小区对应无线帧#m子帧#8都为下行子帧,所以主服务小区和辅服务小区上PDSCH对应的HARQ-ACK都在主服务小区上发送,此时k值由现有技术确定,例如,可以将辅服务小区看做是FDD服务小区,其中辅服务小区对应上行子帧相当于FDD服务小区中没有调度的子帧,k的取值可以根据TDD-FDD聚合中规定的取值确定。
实施例三
实例一
在本实例中,如图9所示,主服务小区的上下行配置为#0,辅服务小区的上下行配置为#1,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#0,辅服务小区的上下行配置为#1,终端通过查表或预定义的方式确定子帧偏差N0为3,终端在主服务小区和辅服务小区上收发数据。终端接收下行数据,发送对应HARQ-ACK响应信息的过程和实施例二实例一相同,这里不再赘述。
实例二
在本实例中,如图10所示,主服务小区的上下行配置为#1,辅服务小区的上下行配置为#0,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#1,辅服务小区的上下行配置为#0,终端通过查表或预定义的方式确定子帧偏差N0为2,终端在主服务小区和辅服务小区上收发数据。终端接收下行数据,发送对应HARQ-ACK响应信息的过程和实施例二实例二相同,这里不再赘述。
实例三
在本实例中,如图11所示,主服务小区的上下行配置为#2,辅服务小区的上下行配置为#0,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#2,辅服务小区的上下行配置为#0,终端通过查表或预定义的方式确定子帧偏差N0为2,终端在主服务小区和辅服务小区上收发数据。终端接收下行数据发送对应HARQ-ACK响应信息的过程和实施例二实例三相同,这里不再赘述。
实例四
在本实例中,如图12所示,主服务小区的上下行配置为#3,辅服务小区的上下行配置为#6,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#3,辅服务小区的上下行配置为#6,终端通过查表或预定义的方式确定子帧偏差N0为3。
因为主服务小区和辅服务小区对应无线帧#m子帧#8,#9都为下行子帧,所以主服务小区和辅服务小区上PDSCH对应的HARQ-ACK都在主服务小区上发送,此时k值可以根据相关技术确定,在此不再赘述。
实例五
在本实例中,如图13所示,主服务小区的上下行配置为#4,辅服务小区的上下行配置为#0,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#4,辅服务小区的上下行配置为#0,终端通过查表或预定义的方式确定子帧偏差N0为2;
终端在无线帧#m的子帧#3上检测到辅服务小区有PDSCH传输,因为主服务小区和辅服务小区对应无线帧#m子帧#7,#8都为下行子帧,所以主服务小区和辅服务小区上PDSCH对应的HARQ-ACK都在主服务小区上发送,此时k值可以根据相关技术确定,在此不再赘述。
实例六
在本实例中,如图14所示,主服务小区的上下行配置为#5,辅服务小区的上下行配置为#0,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#5,辅服务小区的上下行配置为#0,终端通过查表或预定义的方式确定子帧偏差N0为2;
终端在无线帧#m的子帧#3上检测到主服务小区和辅服务小区有PDSCH传输,因为主服务小区和辅服务小区对应无线帧#m子帧#7,8都为下行子帧,所以主服务小区和辅服务小区上PDSCH对应的HARQ-ACK都在主服务小区上发送,此时k值可以根据相关技术确定,在此不再赘述。
实例七
在本实例中,如图15所示,主服务小区的上下行配置为#6,辅服务小区的上下行配置为#0,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#6,辅服务小区的上下行配置为#0,终端通过查表或预定义的方式确定子帧偏差N0为3;
终端在无线帧#m的子帧#5上检测到主服务小区有PDSCH传输,因为主服务小区和辅服务小区对应无线帧#m子帧#9都为下行子帧,所以主服务小区和辅服务小区上PDSCH对应的HARQ-ACK都在主服务小区上发送,此时k值可以根据相关技术确定,在此不再赘述。
实例八
在本实例中,如图16所示,主服务小区的上下行配置为#6,辅服务小区的上下行配置为#1,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。
因为主服务小区的上下行配置为#6,辅服务小区的上下行配置为#1,终端通过查表或预定义的方式确定子帧偏差N0为2。
终端的收发信息的过程和实例一类似,这里不再赘述。
其中终端通过查表或预定义的方式属于终端通过主服务小区和辅服务小区对应的上下行配置获得所述子帧偏差的实现方式,当然,其他根据主服务小区和辅服务小区对应的上下行配置获得子帧偏差的实现方式也是可以的。
实施例四
实例一
在本实例中,如图17所示,主服务小区的上下行配置为#0,辅服务小区的上下行配置#5,主服务小区和辅服务小区按照本发明给出的载波聚合方法进行聚合。终端根据主服务小区的上下行配置确定子帧偏差N0为3,终端在主服务小区和辅服务小区上 收发信息。终端收发信息的过程在实施例二和实施例三已经进行详细的描述,这里不再赘述。
实例二
在本实例中,如图18所示,主服务小区的上下行配置为#3,辅服务小区的上下行配置#1,终端根据主服务小区的上下行配置确定子帧偏差N0为3,终端在主服务小区和辅服务小区上收发信息。终端收发信息的过程在实施例二和实施例三已经进行详细的描述,这里不再赘述。
从以上的描述中,可以看出,本发明实现了如下技术效果:能有效的减少载波聚合的TDD系统对应反馈时延,使得载波聚合的TDD系统的反馈时延和FDD载波聚合的FDD系统相当。另外,对于载波聚合的FDD系统,使用该方法能有效地减少小区间的干扰,提高传输性能。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,通过上述实施例及优选实施方式,将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区;传输节点按照所述子帧偏差在集合后的多个服务小区上传输信息,可以降低传输时延。

Claims (21)

  1. 一种通信系统的载波聚合方法,包括:
    将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区,其中,所述K和所述M为正整数;
    传输节点按照所述子帧偏差在所述多个服务小区上传输信息。
  2. 根据权利要求1所述的方法,其中,所述子帧偏差包括:相同无线帧索引下服务小区之间对应的子帧索引差值、或者所述多个服务小区之间同步信道所在子帧的差值。
  3. 根据权利要求1所述的方法,其中,所述存在子帧偏差包括:
    所述多个服务小区中小区索引相邻的服务小区之间存在所述子帧偏差;或者
    所述多个服务小区与固定服务小区存在所述子帧偏差,其中,所述固定服务小区为所述多个服务小区中的服务小区。
  4. 根据权利要求3所述的方法,其中,所述固定服务小区为以下之一:作为主服务小区的服务小区、子帧索引最大的服务小区、传输节点预定义的服务小区。
  5. 根据权利要求1所述的方法,其中,所述多个服务小区包括:频分双工FDD服务小区和/或时分双工TDD服务小区。
  6. 根据权利要求1所述的方法,其中,所述传输节点包括基站和终端;所述传输节点按照所述偏差在所述预设的多个载波上传输信息,包括:
    所述终端根据所述子帧偏差在所述多个服务小区上传输信息;和/或
    所述基站根据所述子帧偏差在所述多个服务小区上进行信息调度,以及按照所述调度传输信息。
  7. 根据权利要求6所述的方法,其中,所述终端根据所述子帧偏差在所述多个服务小区上传输信息之前,还包括:所述终端按照以下至少之一获取所述子帧偏差:
    所述终端通过信令获取所述子帧偏差;
    所述终端通过检测所述多个服务小区对应的同步信道的位置获取所述子帧偏差;
    通过所述多个服务小区对应的上下行配置获取所述子帧偏差。
  8. 根据权利要求7所述的方法,其中,通过所述多个服务小区对应的上下行配置获取所述子帧偏差时,所述子帧偏差包括以下至少之一:
    当主服务小区的上下行配置为#0且辅服务小区的上下行配置为#1时,子帧偏差为3;
    当主服务小区的上下行配置为#1且辅服务小区的上下行配置为#0时,子帧偏差为2;
    当主服务小区的上下行配置为#2且辅服务小区的上下行配置为#0时,子帧偏差为2;
    当主服务小区的上下行配置为#3且辅服务小区的上下行配置为#6时,子帧偏差为3;
    当主服务小区的上下行配置为#4且辅服务小区的上下行配置为#0时,子帧偏差为2;
    当主服务小区的上下行配置为#5且辅服务小区的上下行配置为#0时,子帧偏差为2;
    当主服务小区的上下行配置为#6且辅服务小区的上下行配置为#1时,子帧偏差为3;
    当主服务小区的上下行配置为#6且辅服务小区的上下行配置为#0时,子帧偏差为2;
    当主服务小区的上下行配置为#0、#3、#6之一时,子帧偏差为3;
    当主服务小区的上下行配置为#1、#2、#4、#5之一时,子帧偏差为2。
  9. 根据权利要求8所述的方法,其中,所述终端根据所述子帧偏差在所述多个服务小区上传输信息包括:
    在每个子帧索引下都有对应的上行子帧的情况下,如果在主服务小区子帧n上检测到有物理下行控制信道/增强物理下行控制信道PDCCH/EPDCCH对应的物理下行共享信道PDSCH传输或者指示半持续调度SPS释放的PDCCH/EPDCCH,或者没有PDCCH/EPDCCH对应的PDSCH,或者在辅服务 小区子帧n上检测到有PDCCH/EPDCCH对应的PDSCH传输,所述终端在上行子帧n+4上发送对应的混合自动重传请求-确认HARQ-ACK,其中,
    当子帧n+4对应的主服务小区和辅服务小区都为上行子帧,所述终端在主服务小区上发送所述HARQ-ACK;
    当子帧n+4对应的主服务小区为上行子帧,辅服务小区为下行子帧,所述终端在主服务小区上发送所述HARQ-ACK;
    当子帧n+4对应的辅服务小区为上行子帧,主服务小区为下行子帧,在辅服务小区上发送所述HARQ-ACK。
  10. 根据权利要求8所述的方法,其中,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
    当每个子帧索引下都有对应的下行子帧和上行子帧时,如果在子帧n上检测到物理上行共享信道PUSCH传输对应的下行控制信息DCI,所述终端在子帧n+4上传输PUSCH,其中,所述DCI所在的服务小区选择包括以下至少之一:
    当没有配置跨载波调度,子帧n+4上传输的PUSCH对应的载波在子帧n上有下行子帧时,所述DCI在与PUSCH相同的服务小区上传输;
    当没有配置跨载波调度,子帧n+4上传输的PUSCH对应的载波在子帧n上没有下行子帧时,所述DCI在与PUSCH不同的服务小区上传输,所述终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定所述DCI所在的服务小区;
    当配置跨载波调度时,所述PUSCH对应的DCI所在的载波根据配置确定。
  11. 根据权利要求8所述的方法,其中,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
    当每个子帧索引下都有对应的下行子帧和上行子帧时,所述终端在子帧n上发送PUSCH,在子帧n+4上检测PUSCH对应物理混合自动重传指示信道PHICH,其中,所述PHICH所在的服务小区选择包括以下至少之一:
    当没有配置跨载波调度时,子帧n上传输的PUSCH对应的载波在子帧n+4上有下行子帧时,所述PHICH在与PUSCH相同的服务小区上传输;
    当没有配置跨载波调度时,子帧n+4上传输的PUSCH对应的载波在子帧n上没有下行子帧时,所述PHICH在与PUSCH不同的服务小区上传输,所述 终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定所述PHICH所在的服务小区;
    当配置跨载波调度时,所述PHICH所在的载波根据配置确定。
  12. 根据权利要求8所述的方法,其中,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
    当每个子帧索引下都有对应的下行子帧和上行子帧时,终端在子帧n上检测到PHICH,如果PHICH反馈为非确认NACK,在子帧n+4上发送重传的PUSCH,其中,
    所述重传的PUSCH所在的服务小区选择包括以下至少之一:
    当没有配置跨载波调度时,子帧n上传输的PHICH对应的载波在子帧n+4上有上行行子帧时,所述传的PUSCH在与PHICH相同的服务小区上传输;
    当没有配置跨载波调度时,子帧n上传输的PHICH对应的载波在子帧n+4上没有上行行子帧时,所述传的PUSCH在与PHICH不同的服务小区上传输,所述终端根据定时偏差、聚合服务小区的上下行配比、高层信令中至少之一确定所述重传的PUSCH所在的服务小区;
    当配置跨载波调度时,所述重传的PUSCH所在的载波根据配置确定。
  13. 根据权利要求8所述的方法,其中,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:
    当每个子帧索引下都有对应的上行子帧时,所述终端在服务小区c子帧n上检测到上行DCI格式或者随机接入响应指示且对应的信道状态信息CSI触发域设置为触发上报,在子帧n+4对应的PUSCH上发送非周期CSI上报。
  14. 根据权利要求8所述的方法,其中,所述终端根据所述子帧偏差在所述多个服务小区上传输信息,包括:如果每个子帧索引下都有对应的上行子帧:
    当子帧n对应的主服务小区和辅服务小区都为上行子帧,周期CSI在主服务小区上发送;
    当子帧n对应的主服务小区为上行子帧,辅服务小区为下行子帧,周期CSI在主服务小区上发送;
    当子帧n对应的辅服务小区为上行子帧,主服务小区为下行子帧,周期CSI在辅服务小区中上发送;
    其中,各个服务小区的周期CSI按照FDD系统对应的周期和偏移配置。
  15. 根据权利要求6所述的方法,其中,所述基站根据所述子帧偏差在所述多个服务小区上进行信息调度以及按照所述调度传输信息,包括:
    所述基站通知所述子帧偏差;
    所述基站在所述预设的多个服务小区上进行信息调度以及按照调度进行相应的信息传输。
  16. 根据权利要求15所述的方法,其中,所述基站通知所述子帧偏差,包括:
    所述基站通知所述终端所述子帧偏差,和/或,通知相邻基站所述子帧偏差。
  17. 一种通信系统的载波聚合装置,包括:
    聚合模块,设置为将存在子帧偏差的多个服务小区进行聚合,得到K个主服务小区和M个辅服务小区,其中,所述K和所述M为正整数;
    传输模块,设置为按照所述子帧偏差在所述多个服务小区上传输信息。
  18. 根据权利要求17所述的装置,其中,所述子帧偏差包括:相同无线帧索引下服务小区之间对应的子帧索引差值,或者所述多个服务小区之间同步信道所在子帧的差值。
  19. 根据权利要求17所述的装置,其中,所述存在子帧偏差包括:
    所述多个服务小区中小区索引相邻的服务小区之间存在所述子帧偏差;或者
    所述多个服务小区与一个固定服务小区存在所述子帧偏差,其中,所述固定服务小区为所述多个服务小区中的服务小区。
  20. 根据权利要求19所述的装置,其中,所述固定服务小区为以下之一:作为主服务小区的服务小区中的一个、子帧索引最大的服务小区、传输节点预定义的服务小区。
  21. 根据权利要求17所述的装置,其中,所述多个服务小区包括:频分双工FDD服务小区和/或时分双工TDD服务小区。
PCT/CN2014/088425 2014-06-24 2014-10-11 通信系统的载波聚合方法及装置 WO2015196628A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14895963.8A EP3163781B1 (en) 2014-06-24 2014-10-11 Carrier aggregation method and apparatus for communication system
US15/321,787 US10219180B2 (en) 2014-06-24 2014-10-11 Carrier aggregation method and apparatus for communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410289700.7A CN105207757B (zh) 2014-06-24 2014-06-24 通信系统的载波聚合方法及装置
CN201410289700.7 2014-06-24

Publications (1)

Publication Number Publication Date
WO2015196628A1 true WO2015196628A1 (zh) 2015-12-30

Family

ID=54936589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088425 WO2015196628A1 (zh) 2014-06-24 2014-10-11 通信系统的载波聚合方法及装置

Country Status (4)

Country Link
US (1) US10219180B2 (zh)
EP (1) EP3163781B1 (zh)
CN (1) CN105207757B (zh)
WO (1) WO2015196628A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439991B2 (ja) * 2014-02-24 2018-12-19 シャープ株式会社 端末装置、集積回路、および、無線通信方法
CN106162892B (zh) * 2015-04-15 2019-10-29 上海诺基亚贝尔股份有限公司 非授权频段信道的占用方法及装置
AU2016265051B2 (en) * 2015-05-15 2018-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Communicating a transport block in a wireless network
CN107046719B (zh) * 2016-02-05 2020-05-12 上海诺基亚贝尔股份有限公司 用于减少时分双工的传输时延的方法、装置和系统
KR102267376B1 (ko) * 2017-01-09 2021-06-21 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 반영구적 csi-rs에 대한 신뢰성있는 동적 표시를 위한 시스템들 및 방법들
US10419196B2 (en) 2017-05-05 2019-09-17 At&T Intellectual Property I, L.P. Virtual carrier aggregation for wideband operation of wireless communication systems
US11711171B2 (en) * 2018-01-11 2023-07-25 Huawei Technologies Co., Ltd. System and method for reliable transmission over network resources
CN111327410B (zh) * 2018-12-17 2021-05-18 华为技术有限公司 一种用于载波聚合系统的通信方法、终端及网络设备
CN112787765B (zh) * 2019-11-08 2021-11-12 大唐移动通信设备有限公司 一种harq反馈方法、终端、基站和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013067430A1 (en) * 2011-11-04 2013-05-10 Interdigital Patent Holdings Inc. Method and apparatus for power control for wireless transmissions on multiple component carriers associated with multiple timing advances
CN103444118A (zh) * 2011-03-14 2013-12-11 Lg电子株式会社 在无线通信系统中发射ack/nack的方法和设备
CN103563436A (zh) * 2011-08-10 2014-02-05 松下电器产业株式会社 终端装置、基站装置和发送接收方法
CN103582113A (zh) * 2012-08-10 2014-02-12 电信科学技术研究院 非连续接收维护方法和设备
CN104079390A (zh) * 2013-03-25 2014-10-01 北京三星通信技术研究有限公司 跨基站载波聚合系统中传输harq-ack反馈信息的方法及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI519190B (zh) * 2009-11-19 2016-01-21 內數位專利控股公司 多載波系統中分量載波啟動/止動
KR101549763B1 (ko) * 2011-02-10 2015-09-02 엘지전자 주식회사 반송파 집성 시스템에서 스케줄링 방법 및 장치
US9838194B2 (en) * 2011-12-16 2017-12-05 Goldpeak Innovations Inc User equipment, PDSCH A/N transmitting method thereof, transmission/reception point, and PDSCH A/N receiving method thereof
CN103368709B (zh) * 2012-04-09 2018-08-14 中兴通讯股份有限公司 一种混合自动重传请求确认应答信息发送方法及装置
CN102916791A (zh) * 2012-09-29 2013-02-06 北京三星通信技术研究有限公司 载波聚合和动态tdd系统中的pusch传输方法和移动终端
EP2739108B1 (en) * 2012-11-28 2019-01-02 Samsung Electronics Co., Ltd Method and apparatus for performing communication in a wireless communication system
US9386602B2 (en) * 2013-09-20 2016-07-05 Blackberry Limited Method and system for HARQ operation and scheduling in joint TDD and FDD carrier aggregation
WO2015045270A1 (en) * 2013-09-26 2015-04-02 Sharp Kabushiki Kaisha Subframe offset in tdd-fdd carrier aggregation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444118A (zh) * 2011-03-14 2013-12-11 Lg电子株式会社 在无线通信系统中发射ack/nack的方法和设备
CN103563436A (zh) * 2011-08-10 2014-02-05 松下电器产业株式会社 终端装置、基站装置和发送接收方法
WO2013067430A1 (en) * 2011-11-04 2013-05-10 Interdigital Patent Holdings Inc. Method and apparatus for power control for wireless transmissions on multiple component carriers associated with multiple timing advances
CN103582113A (zh) * 2012-08-10 2014-02-12 电信科学技术研究院 非连续接收维护方法和设备
CN104079390A (zh) * 2013-03-25 2014-10-01 北京三星通信技术研究有限公司 跨基站载波聚合系统中传输harq-ack反馈信息的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163781A4 *

Also Published As

Publication number Publication date
EP3163781B1 (en) 2019-12-11
CN105207757B (zh) 2020-01-21
EP3163781A1 (en) 2017-05-03
US20170289852A1 (en) 2017-10-05
EP3163781A4 (en) 2017-07-05
CN105207757A (zh) 2015-12-30
US10219180B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
US11229053B2 (en) Method, apparatus, and system for channel access in unlicensed band
US20210266114A1 (en) Node and method for downlink scheduling and hybrid automatic repeat request timing
US10595166B2 (en) Systems and methods for processing time reduction signaling
US11070346B2 (en) Base station, user equipment and methods therein for control timing configuration assignment in a multiple cell communications network
US10735170B2 (en) ACK/NACK feedback method and user equipment
US9906334B2 (en) Method and apparatus for transmitting ACK/NACK signal in wireless communication system
WO2015196628A1 (zh) 通信系统的载波聚合方法及装置
US10581559B2 (en) User Equipment, base stations and methods
US9155079B2 (en) Communication method and device in a wireless communication system
US20180048447A1 (en) User equipments, base stations and methods
US10205576B2 (en) Acknowledgement transmission method and apparatus in wireless communication system
US10244513B2 (en) Method and device for configuring and sending uplink control channel, base station and user equipment
US9877311B2 (en) Uplink control information sending method, and user equipment and base station
US9705641B2 (en) Method and device for sending answer information
US20150188687A1 (en) Ack/nack feedback bit number determination method and device
US11368976B2 (en) Node and method for downlink scheduling and hybrid automatic repeat request timing
US20160329994A1 (en) Method and device for response information transmission, terminal, base station and storage medium
WO2014173333A1 (zh) 一种上行控制信息的发送方法及装置
RU2644417C2 (ru) Способ и устройство для передачи данных при агрегации спектра
US10321322B2 (en) Method and device for processing information
CN109792725B (zh) 载波聚合的消息反馈方法及装置
WO2014169868A1 (zh) 一种用户设备、节点设备及上行定时关系的确定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014895963

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895963

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15321787

Country of ref document: US